WorldWideScience

Sample records for nonlinear bethe-heitler pair

  1. Nonlinear Bethe-Heitler Pair Creation in an Intense Two-Mode Laser Field

    CERN Document Server

    Augustin, Sven

    2013-01-01

    We investigate electron-positron pair creation in the interaction of a nuclear Coulomb field and a highly intense two-mode laser field. For bichromatic laser fields, we examine the differences arising for commensurable and incommensurable frequencies in a continuous variation of the laser frequency ratio and the quantum interference effects, which may occur in the commensurable case. We show that the interference manifests in the angular distributions and the total pair-production rates of the created particles. Additionally, by varying the amplitudes of the two modes we study pair creation in a monochromatic laser wave of arbitrarily elliptical polarization.

  2. Interference Effects in Bethe-Heitler Pair Creation in a Bichromatic Laser Field

    CERN Document Server

    Augustin, Sven

    2013-01-01

    We study the creation of electron-positron pairs in the superposition of a nuclear Coulomb field and a two-color laser field of high intensity. Our focus lies on quantum interference effects, which may arise if the two laser frequencies are commensurable. We show that the interference manifests in the angular distributions of the created particles, which are discussed in the nuclear rest frame and the laboratory frame. Additionally, we demonstrate that the total pair-production rates can be affected by interference and identify the relative phase between the two laser modes, which optimizes the pair-production yield.

  3. Nonperturbative Bethe-Heitler pair creation in combined high- and low-frequency laser fields

    CERN Document Server

    Augustin, Sven

    2014-01-01

    The nonperturbative regime of electron-positron pair creation by a relativistic proton beam colliding with a highly intense bichromatic laser field is studied. The laser wave is composed of a strong low-frequency and a weak high-frequency mode, with mutually orthogonal polarization vectors. We show that the presence of the high-frequency field component can strongly enhance the pair-creation rate. Besides, a characteristic influence of the high-frequency mode on the angular and energy distributions of the created particles is demonstrated, both in the nuclear rest frame and the laboratory frame.

  4. Separation of contributions from deeply virtual Compton scattering and its interference with the Bethe-Heitler process in measurements on a hydrogen target

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor MI (United States). Randall Lab. of Physics; Akopov, N. [Yerevan Physics Institue (Armenia); Akopov, Z. [DESY, Hamburg (DE)](and others)

    2009-09-15

    Hard exclusive leptoproduction of real photons from an unpolarized proton target is studied in an effort to elucidate generalized parton distributions. The data accumulated during the years 1996-2005 with the HERMES spectrometer are analyzed to yield asymmetries with respect to the combined dependence of the cross section on beam helicity and charge, thereby revealing previously unseparated contributions from deeply virtual Compton scattering and its interference with the Bethe-Heitler process. The integrated luminosity is sufficient to show correlated dependences on two kinematic variables, and provides the most precise determination of the dependence on only the beam charge. (orig.)

  5. Study of tau-pair production at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (Poland). Faculty of Physics and Applied Computer Science; Adamus, M. [Institute for Nuclear Studies, Warsaw (PL)] (and others)

    2010-12-15

    A study of events containing two tau leptons with high transverse momentum has been performed with the ZEUS detector at HERA, using a data sample corresponding to an integrated luminosity of 0.33 fb{sup -1}. The tau candidates were identified from their decays into electrons, muons or hadronic jets. The number of tau-pair candidates has been compared with the prediction from the Standard Model, where the largest contribution is expected from Bethe-Heitler processes. The total visible cross section was extracted. Standard Model expectations agree well with the measured distributions, also at high invariant mass of the tau pair. (orig.)

  6. Experimental Study of Single Vertex (e-.-e+) Pair Creation in a Crystal

    CERN Multimedia

    2002-01-01

    This experiment will study the newly predicted process of e|--e|+ pair production by high energy photons incident along major axial direction of a single crystal. This process is based upon the well known channelling properties of negatively charged particles along atomic rows of a crystal. The e|--e|+ pair creation may proceed in a one-step process, without violating energy and momentum conversation laws, due to the lowering of the total energy of the channelled electron (Fig. 1). \\\\ \\\\ The pair creation rate should increase with increasing photon energies (above a threshold of a few GeV) and largely exceed the Bethe-Heitler process rate for photon energies of a few tens of GeV. It is also expected that the created particles share the photon energy nearly equally, in contrast with the rather flat energy distribution associated with the Bethe-Heitler process. \\\\ \\\\ The experimental set-up (Fig. 2) is designed for the study of those two features: photon energy dependence of the pair creation rate, and energy d...

  7. Chemical Nonlinearities and Radical Pair Lifetime Estimation

    Science.gov (United States)

    Robinson, Gregory

    2013-03-01

    Much attention has recently developed around chemical reactions that depend on applied static magnetic fields as weak as earth's. This interest is largely motivated by experiments that implicate the role of spin-selective radical pair recombination in biological magnetic sensing. Existing literature uses a straightforward calculation to approximate the expected lifetime of coherent radical pairs as a function of the minimum RF amplitude that is observed to disrupt magnetic navigation, apparently by decohering the radical pair via electronic Zeeman excitations. But we show that chemical nonlinearities can preclude direct computation of coherent pair lifetime without considering the cellular signalling mechanisms involved, and discuss whether it can explain the surprising fragility of some animals' compass sense. In particular, we demonstrate that an autocatalytic cycle can introduce threshold effects on the disruption sensitivity to applied oscillatory magnetic fields. We will show examples in the mean-field limit and consider the consequences of noise and fluctuations in the Freidlin-Wentzell picture of perturbed dynamical systems.

  8. Polarization Phenomena in Small-Angle Photoproduction of $e^+ e^-$ Pairs and the Gerasimov-Drell-Hearn Sum Rule

    CERN Document Server

    Lvov, A I; Drechsel, D; Scherer, S

    1998-01-01

    Photoproduction of $e^+e^-$ pairs at small angles is investigated as a tool to determine the functions $f_1$ and $f_2$ entering the real-photon forward Compton scattering amplitude. The method is based on an interference of the Bethe-Heitler and the virtual Compton scattering mechanisms, generating an azimuthal asymmetry in the $e^+$ versus $e^-$ yield. The general case of a circularly polarized beam and a longitudinally polarized target allows one to determine both the real and imaginary parts of $f_1$ as well as $f_2$. The imaginary part of $f_2$ requires target polarization only. We calculate cross sections and asymmetries of the reaction $p(\\gamma,e^+e^-)p$, estimate corrections and backgrounds, and propose suitable kinematical regions to perform the experiment. Our investigation shows that photoproduction of $e^+e^-$-pairs off the proton and light nuclei may serve as a rather sensitive test of the validity of the Gerasimov-Drell-Hearn sum rule.

  9. Numerical study of pair creation by ultraintense lasers

    CERN Document Server

    Nakashima, K

    2002-01-01

    Now that intensity of lasers has reached 10 sup 2 sup 0 W/cm sup 2 , electron-positron pairs can be created by the irradiation of such ultraintense lasers on a thin gold foil. The energy of electrons produced by ultraintense lasers reaches more than several tens of MeV. Such high energy electrons become a source for creating electron-positron pairs via interaction with nuclei. There are a few processes that create electron-positron pairs in this situation. Two processes, call the trident process and the Bethe-Heitler process, are considered in this study. A numerical simulation code based on a relativistic Fokker-Planck equation is developed for studying the hot electron transport. The equation is solved by assuming one-dimensional real space and two-dimensional momentum space with axial symmetry. It is found that the total positron yield increases logarithmically with the increase of the laser intensity, and the resultant energy distribution of the created positron is found to have a peak near the energy of ...

  10. Magnetically collimated pair jets at the LLNL Titan laser

    Science.gov (United States)

    Williams, Jackson; Chen, Hui; Barnak, Daniel; Betti, Riccardo; Fiksel, Gennady; Hazi, Andrew; Kerr, Shaun; Krauland, Christine; Link, Anthony; Manuel, Mario; Meyerhofer, David; Nagel, Sabrina; Park, Jaebum; Peebles, Jonathan; Pollock, Bradley; Tommasini, Riccardo

    2015-11-01

    Positron-electron pair production experiments were performed at the Titan laser at the Jupiter Laser Facility to investigate the dependence of target thickness and atomic number on pair yield. Externally applied axial magnetic fields, generated by a Helmholtz coil, were used to collimate positrons where the signal observed at the detector increased by a factor of 20 over reference shots without a field. This enabled the detection of positrons from a range of target materials. The emitted positron yield was found to be proportional to the square of the atomic number. This scaling is reduced from the Bethe-Heitler cross section of Z4 by Compton scattering and the stopping power of the target. Monte Carlo simulations support these conclusions, providing a power-law scaling of emitted positrons for all materials and a range of mm-thick targets. This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 12-ERD-062 and the LLNL LGSP.

  11. The stimulated Breit-Wheeler process as a source of background + - pairs at the international linear collider

    Indian Academy of Sciences (India)

    A Hartin

    2007-12-01

    Passage of beamstrahlung photons through the bunch fields at the interaction point of the ILC determines background pair production. The number of background pairs per bunch crossing due to the Breit-Wheeler, Bethe-Heitler and Landau-Lifshitz processes is well-known. However, the Breit-Wheeler process also takes place in and is modified by the bunch fields. A full QED calculation of this stimulated Breit-Wheeler process reveals cross-section resonances due to the virtual particle reaching the mass shell. The one-loop electron self-energy in the bunch field is also calculated and included as a radiative correction. The bunch field is considered to be a constant crossed electromagnetic field with associated bunch field photons. Resonance is found to occur whenever the energy of contributed bunch field photons is equal to the beamstrahlung photon energy. The stimulated Breit-Wheeler cross-section exceeds the ordinary Breit-Wheeler cross-section by several orders of magnitude and a significantly different pair background may result.

  12. Generation of High Purity Photon-Pair in a Short Highly Non-Linear Fiber

    Science.gov (United States)

    2013-01-01

    of entangled photon pairs in optical fiber attracted enormous interest due to its better spatial mode definition and inherent compatibility with...existing fiber optics technologies for long distance transmission, storage and processing. Entangled photon pair generation in optical fiber is...nonlinear microstructure fiber (HNMSF) [7]. In contrast, entangled photon pair generation at telecom wavelengths via SFWM using highly nonlinear fiber

  13. Non-linear dynamics of a spur gear pair

    Science.gov (United States)

    Kahraman, A.; Singh, R.

    1990-10-01

    Non-linear frequency response characteristics of a spur gear pair with backlash are examined in this paper for both external and internal excitations. The internal excitation is of importance from the high frequency noise and vibration control viewpoint and it represents the overall kinematic or static transmission error. Such problems may be significantly different from the rattle problems associated with external, low frequency torque excitation. Two solution methods, namely the digital simulation technique and the method of harmonic balance, have been used to develop the steady state solutions for the internal sinusoidal excitation. Difficulties associated with the determination of the multiple solutions at a given frequency in the digital simulation technique have been resolved, as one must search the entire initial conditions map. Such solutions and the transition frequencies for various impact situations are easily found by the method of harmonic balance. Further, the principle of superposition can be employed to analyze the periodic transmission error excitation and/or combined excitation problems provided that the excitation frequencies are sufficiently apart from each other. Our analytical predictions match satisfactorily with the limited experimental data available in the literature. Using the digital simulation, we have also observed that the chaotic and subharmonic resonances may exist in a gear pair depending upon the mean or design load, mean to alternating force ratio, damping and backlash. Specifically, the mean load determines the conditions for no impacts, single-sided impacts and double-sided impacts. Our results are different from the frequency response characteristics of the conventional, single-degree-of-freedom, clearance type non-linear system. Our formulation should form the basis of further analytical and experimental work in the geared rotor dynamics area.

  14. Bethe-Heitler cascades as a plausible origin of hard spectra in distant TeV blazars

    CERN Document Server

    Zheng, Y G; Kang, S J

    2016-01-01

    Context. Very high-energy (VHE) $\\gamma$-ray measurements of distant TeV blazars can be nicely explained by TeV spectra induced by ultra high-energy cosmic rays. Aims. We develop a model for a plausible origin of hard spectra in distant TeV blazars. Methods. In the model, the TeV emission in distant TeV blazars is dominated by two mixed components. The first is the internal component with the photon energy around 1 TeV produced by inverse Compton scattering of the relativistic electrons on the synchrotron photons (SSC) with a correction for extragalactic background light absorbtion and the other is the external component with the photon energy more than 1 TeV produced by the cascade emission from high-energy protons propagating through intergalactic space. Results. Assuming suitable model parameters, we apply the model to observed spectra of distant TeV blazars of 1ES 0229+200. Our results show that 1) the observed spectrum properties of 1ES 0229+200, especially the TeV $\\gamma$-ray tail of the observed spect...

  15. Texture segmentation via nonlinear interactions among Gabor feature pairs

    Science.gov (United States)

    Tang, Hak W.; Srinivasan, Venugopal; Ong, Sim-Heng

    1995-01-01

    Segmentation of an image based on texture can be performed by a set of N Gabor filters that uniformly covers the spatial frequency domain. The filter outputs that characterize the frequency and orientation content of the intensity distribution in the vicinity of a pixel constitute an N-element feature vector. As an alternative to the computationally intensive procedure of segmentation based on the N-element vectors generated at each pixel, we propose an algorithm for selecting a pair of filters that provides maximum discrimination between two textures constituting the object and its surroundings in an image. Images filtered by the selected filters are nonlinearity transformed to produce two feature maps. The feature maps are smoothed by an intercompetitive and intracooperative interaction process between them. These interactions have proven to be much superior to simple Gaussian filtering in reducing the effects of spatial variability of feature maps. A segmented binary image is then generated by a pixel-by-pixel comparison of the two maps. Results of experiments involving several texture combinations show that this procedure is capable of producing clean segmentation.

  16. The Class of Stabilizing Nonlinear Plant Controller Pairs

    NARCIS (Netherlands)

    Paice, A.D.B.; Schaft, Arjan J. van der

    1996-01-01

    In this paper a general approach is taken to yield a characterization of the class of stable plant controller pairs which is a generalization of the Youla parameterization for linear systems. This is based on the idea of representing the input-output pairs of the plant and controller as elements of

  17. Enhanced continuous-variable entanglement by a pair of nonlinearly coupled waveguides

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We seek to analyze a three-level cascade laser with a pair of nonlinearly coupled waveguides inside the cavity. Applying the pertinent master equation, we investigate the squeezing and entanglement properties intracavity produced by our system. It is shown that with the help of nonlinearly coupled waveguides highly squeezed as well as macroscopic entangled light with high intensity can be achieved.

  18. Nonlinear Analysis of Spur Gear Pair with Time-varying Mesh Stiffness

    OpenAIRE

    Rao T. V. V. L. N.; Awang M.; Lias M. R.; Rani A. M. A.

    2014-01-01

    This study presents nonlinear analysis of single degree of freedom spur gear pair with time-varying mesh stiffness. The backlash is approximated using nonlinear term. The periodic steady-state solutions of the nonlinear system are obtained by closed-form expressions using the method of multiple scales. The stability and forced vibration response of the gear system are analyzed. The effect of mesh stiffness variation on the amplitude parameter of nondimensional dynamic transmission error for p...

  19. On a method for constructing the Lax pairs for nonlinear integrable equations

    Science.gov (United States)

    Habibullin, I. T.; Khakimova, A. R.; Poptsova, M. N.

    2016-01-01

    We suggest a direct algorithm for searching the Lax pairs for nonlinear integrable equations. It is effective for both continuous and discrete models. The first operator of the Lax pair corresponding to a given nonlinear equation is found immediately, coinciding with the linearization of the considered nonlinear equation. The second one is obtained as an invariant manifold to the linearized equation. A surprisingly simple relation between the second operator of the Lax pair and the recursion operator is discussed: the recursion operator can immediately be found from the Lax pair. Examples considered in the article are convincing evidence that the found Lax pairs differ from the classical ones. The examples also show that the suggested objects are true Lax pairs which allow the construction of infinite series of conservation laws and hierarchies of higher symmetries. In the case of the hyperbolic type partial differential equation our algorithm is slightly modified; in order to construct the Lax pairs from the invariant manifolds we use the cutting off conditions for the corresponding infinite Laplace sequence. The efficiency of the method is illustrated by application to some equations given in the Svinolupov-Sokolov classification list for which the Lax pairs and the recursion operators have not been found earlier.

  20. Effect of loss on photon-pair generation in nonlinear waveguides arrays

    CERN Document Server

    Antonosyan, Diana A; Sukhorukov, Andrey A

    2014-01-01

    We describe theoretically the process of spontaneous parametric down-conversion in quadratic nonlinear waveguide arrays in the presence of linear loss. We derive a set of discrete Schrodinger-type equations for the biphoton wave function, and the wave function of one photon when the other photon in a pair is lost. We demonstrate effects arising from loss-affected interference between the generated photon pairs and show that nonlinear waveguide arrays can serve as a robust loss-tolerant integrated platform for the generation of entangled photon states with non-classical spatial correlations.

  1. Soliton pair generation in the interactions of Airy and nonlinear accelerating beams

    CERN Document Server

    Zhang, Yiqi; Wu, Zhenkun; Zheng, Huaibin; Lu, Keqing; Li, Yuanyuan; Zhang, Yanpeng

    2013-01-01

    We investigate numerically the interactions of two in-phase and out-of-phase Airy beams and nonlinear accelerating beams in Kerr and saturable nonlinear media, in one transverse dimension. We find that bound and unbound soliton pairs, as well as single solitons, can form in such interactions. If the interval between two incident beams is large relative to the width of their first lobes, the generated soliton pairs just propagate individually and do not interact. However, if the interval is comparable to the widths of the maximum lobes, the pairs interact and display varied behavior. In the in-phase case, they attract each other and exhibit stable bound, oscillating, and unbound states, after shedding some radiation initially. In the out-of-phase case, they repel each other and after an initial interaction, fly away as individual solitons. While the incident beams display acceleration, the solitons or soliton pairs generated from those beams do not.

  2. Nonlinear Analysis of Spur Gear Pair with Time-varying Mesh Stiffness

    Directory of Open Access Journals (Sweden)

    Rao T. V. V. L. N.

    2014-07-01

    Full Text Available This study presents nonlinear analysis of single degree of freedom spur gear pair with time-varying mesh stiffness. The backlash is approximated using nonlinear term. The periodic steady-state solutions of the nonlinear system are obtained by closed-form expressions using the method of multiple scales. The stability and forced vibration response of the gear system are analyzed. The effect of mesh stiffness variation on the amplitude parameter of nondimensional dynamic transmission error for primary resonance is presented. The closed-form solutions in terms of mesh stiffness variations provide design guidelines for dynamic analysis of spur gear.

  3. Effects of noninstantaneous nonlinear processes on photon-pair generation by spontaneous four-wave mixing

    DEFF Research Database (Denmark)

    Koefoed, Jacob Gade; Christensen, Jesper Bjerge; Rottwitt, Karsten

    2017-01-01

    We present a general model, based on a Hamiltonian approach, for the joint quantum state of photon pairs generated through pulsed spontaneous four-wave mixing, including nonlinear phase modulation and a finite material response time. For the case of a silica fiber, it is found that the pair......-dependent change in quantum-mechanical purity may be observed in silica. This shows that Raman scattering not only introduces noise, but can also drastically change the spectral correlations in photon pairs when pumped with short pulses....

  4. Spatial properties of entangled photon pairs generated in nonlinear layered structures

    CERN Document Server

    Perina, Jan

    2011-01-01

    A spatial quantum model of spontaneous parametric down-conversion in nonlinear layered structures is developed expanding the interacting vectorial fields into monochromatic plane waves. A two-photon spectral amplitude depending on the signal- and idler-field frequencies and propagation directions is used to derive transverse profiles of the emitted fields as well as their spatial correlations. Intensity spatial profiles and their spatial correlations are mainly determined by the positions of transmission peaks formed in these structures with photonic bands. A method for geometry optimization of the structures with respect to efficiency of the nonlinear process is suggested. Several structures composed of GaN/AlN layers are analyzed as typical examples. They allow the generation of photon pairs correlated in several emission directions. Photon-pair generation rates increasing better than the second power of the number of layers can be reached. Also structures efficiently generated photon pairs showing anti-bun...

  5. Nonlinear behavior analysis of spur gear pairs with a one-way clutch

    Science.gov (United States)

    Gill-Jeong, Cheon

    2007-04-01

    Nonlinear behavior analysis of a paired spur gear system with a one-way clutch was used to verify whether a one-way clutch is effective for reducing torsional vibration. The dynamic responses were studied over a wide frequency range by speed sweeping to check the nonlinear behavior using numerical integration. The gear system with a one-way clutch showed typical nonlinear behavior, such as softening nonlinearity and jump phenomena. The oscillating component of the dynamic transmission error was reduced over the entire frequency range compared to a system without a one-way clutch, and double-side contact could be prevented, even with very small backlash. Installing a one-way clutch on both sides of the gear system was more effective at mitigating the negative effects of various parameter changes than installing one only on the input or output side.

  6. Nonlinear Landau damping and modulation of electrostatic waves in a nonextensive electron-positron-pair plasma.

    Science.gov (United States)

    Chatterjee, Debjani; Misra, A P

    2015-12-01

    The nonlinear theory of amplitude modulation of electrostatic wave envelopes in a collisionless electron-positron (EP) pair plasma is studied by using a set of Vlasov-Poisson equations in the context of Tsallis' q-nonextensive statistics. In particular, the previous linear theory of Langmuir oscillations in EP plasmas [Saberian and Esfandyari-Kalejahi, Phys. Rev. E 87, 053112 (2013)] is rectified and modified. Applying the multiple scale technique (MST), it is shown that the evolution of electrostatic wave envelopes is governed by a nonlinear Schrödinger (NLS) equation with a nonlocal nonlinear term ∝P∫|ϕ(ξ',τ)|(2)dξ'ϕ/(ξ-ξ') [where P denotes the Cauchy principal value, ϕ is the small-amplitude electrostatic (complex) potential, and ξ and τ are the stretched coordinates in MST], which appears due to the wave-particle resonance. It is found that a subregion 1/3Landau damping) due to the nonlocal nonlinearity in the NLS equation. Furthermore, the effect of the nonlinear Landau damping is to slow down the amplitude of the wave envelope, and the corresponding decay rate can be faster the larger is the number of superthermal particles in pair plasmas.

  7. Coherent combs of anti-matter from nonlinear electron-positron pair creation

    CERN Document Server

    Krajewska, K

    2014-01-01

    Electron-positron pair creation in collisions of a modulated laser pulse with a high-energy photon (nonlinear Breit-Wheeler process) is studied by means of strong-field quantum electrodynamics. It is shown that the driving pulse modulations lead to appearance of comb structures in the energy spectra of produced positrons (electrons). It is demonstrated that these combs result from a coherent enhancement of probability amplitudes of pair creation from different modulations of the laser pulse. Thus, resembling the Young-double slit experiment for anti-matter (matter) waves.

  8. Enhanced continuous-variable entanglement by a pair of nonlinearly coupled waveguides

    Institute of Scientific and Technical Information of China (English)

    WANG KeQuan; FAN QiuBo

    2009-01-01

    We seek to analyze a three-level cascade laser with a pair of non,nearly coupled waveguides inside the cavity.Applying the pertinent master equation,we investigate the squeezing and entanglement prop-erties intracavity produced by our system.It is shown that with the help of nonlinearly coupled waveguides highly squeezed as well as macroscopic entangled light with high intensity can be achieved.

  9. Attractor-repeller pair of topological zero modes in a nonlinear quantum walk

    Science.gov (United States)

    Gerasimenko, Y.; Tarasinski, B.; Beenakker, C. W. J.

    2016-02-01

    The quantum-mechanical counterpart of a classical random walk offers a rich dynamics that has recently been shown to include topologically protected bound states (zero modes) at boundaries or domain walls. Here we show that a topological zero mode may acquire a dynamical role in the presence of nonlinearities. We consider a one-dimensional discrete-time quantum walk that combines zero modes with a particle-conserving nonlinear relaxation mechanism. The presence of both particle-hole and chiral symmetry converts two zero modes of opposite chirality into an attractor-repeller pair of the nonlinear dynamics. This makes it possible to steer the walker towards a domain wall and trap it there.

  10. Interactions between impurities and breather-pairs in a nonlinear lattice

    Science.gov (United States)

    Lin, Han; Chen, Weizhong; Lu, Lei; Wei, Rongjue

    2003-09-01

    Based on the Frenkel-Kontorova (FK) model with a δ-impurity, this Letter investigates the interactions between impurities and breather-pairs in a nonlinear pendulum chain driven by a vertical vibration. The numerical results show that a long impurity in pendulum length can absorb more energy into the chain and upgrade the energy level of the breather-pair, when the driving frequency is slight lower than that of parametric resonance of the perfect pendulums, while a short one plays a counteractive role. As the chain is driven at a higher frequency, the effect of impurities turns reverse, which shows a clear symmetry and equivalency between long and short impurities. The main results including the effect and the symmetry of impurities generalize the conclusion on the single breather to the breather-pair.

  11. Interactions between impurities and breather-pairs in a nonlinear lattice

    Energy Technology Data Exchange (ETDEWEB)

    Lin Han; Chen Weizhong; Lu Lei; Wei Rongjue

    2003-09-15

    Based on the Frenkel-Kontorova (FK) model with a {delta}-impurity, this Letter investigates the interactions between impurities and breather-pairs in a nonlinear pendulum chain driven by a vertical vibration. The numerical results show that a long impurity in pendulum length can absorb more energy into the chain and upgrade the energy level of the breather-pair, when the driving frequency is slight lower than that of parametric resonance of the perfect pendulums, while a short one plays a counteractive role. As the chain is driven at a higher frequency, the effect of impurities turns reverse, which shows a clear symmetry and equivalency between long and short impurities. The main results including the effect and the symmetry of impurities generalize the conclusion on the single breather to the breather-pair.

  12. Generation of photon pairs through parametric processes in nonlinear waveguides with the account of losses

    Science.gov (United States)

    Vavulin, D. N.; Sukhorukov, A. A.

    2016-08-01

    We present an analytical description of the process of spontaneous four-wave mixing in a cubic nonlinear fiber with linear losses. We consider the generation of photon pairs in the fiber when in the input of fiber is fed the pumping wave and single signal photon. The focus of attention is on three cases: when the signal photon propagates in the fiber without generating of biphotons; when the photon pair is generated; and when the photon is lost in the fiber. We also consider the cascade processes, but do not give them an analytical description because of their smallness. Description of the biphotons generation process we provide using the Schrodinger-type equation, and take into account the losses in the fiber through the introduction of the virtual beam splitters. We demonstrate the effectiveness of the generation of photon pairs through parametric processes.

  13. On the non-linearity of the master equation describing spin-selective radical-ion-pair reactions

    OpenAIRE

    Kominis, I. K.

    2010-01-01

    We elaborate on the physical meaning of the non-linear master equation that was recently derived to account for spin-selective radical-ion-pair reactions. Based on quite general arguments, we show that such a non-linear master equation is indeed to be expected.

  14. Generation of spatially pure photon pairs in a multimode nonlinear waveguide using intermodal dispersion

    CERN Document Server

    Karpinski, Michal; Banaszek, Konrad

    2012-01-01

    We present experimental realization of type-II spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate (KTiOPO4) nonlinear waveguide. We demonstrate that by careful exploitation of intermodal dispersion in the waveguide it is feasible to produce photon pairs in well defined transverse modes without any additional spatial filtering at the output. Spatial characteristics is verified by measurements of the M2 beam quality factors. We also prepared a postselected polarization-entangled two-photon state shown to violate Bell's inequality. Similar techniques based on intermodal dispersion can be used to generate spatial entanglement and hyperentanglement.

  15. Finite-dimensional even and odd nonlinear pair coherent states and their some nonclassical properties

    Institute of Scientific and Technical Information of China (English)

    Meng Xiang-Guo; Wang Ji-Suo; Liu Tang-Kun

    2008-01-01

    In this paper a new class of finite-dimensional even and odd nonlinear pair coherent states(EONLPCSs),which can be realized via operating the superposed evolution operators D±(τ)on the state |q,0),is constructed,then their orthonormalized property,completeness relations and some nonclassical properties are discussed.It is shown that the finite-dimensional EONLPCSs possess normalization and completeness relations.Moreover,the finite-dimensional EONLPCSs exhibit remarkably different sub-Poissonian distributions and phase probability distributions for different values of parameters q,η and ξ.

  16. Approximated Lax pairs for the reduced order integration of nonlinear evolution equations

    Science.gov (United States)

    Gerbeau, Jean-Frédéric; Lombardi, Damiano

    2014-05-01

    A reduced-order model algorithm, called ALP, is proposed to solve nonlinear evolution partial differential equations. It is based on approximations of generalized Lax pairs. Contrary to other reduced-order methods, like Proper Orthogonal Decomposition, the basis on which the solution is searched for evolves in time according to a dynamics specific to the problem. It is therefore well-suited to solving problems with progressive front or wave propagation. Another difference with other reduced-order methods is that it is not based on an off-line/on-line strategy. Numerical examples are shown for the linear advection, KdV and FKPP equations, in one and two dimensions.

  17. Non-Linear Dynamic Response of a Spur Gear Pair: Modelling and Experimental Comparisons

    Science.gov (United States)

    PARKER, R. G.; VIJAYAKAR, S. M.; IMAJO, T.

    2000-10-01

    The dynamic response of a spur gear pair is investigated using a finite element/contact mechanics model that offers significant advantages for dynamic gear analyses. The gear pair is analyzed across a wide range of operating speeds and torques. Comparisons are made to other researchers' published experiments that reveal complex non-linear phenomena. The non-linearity source is contact loss of the meshing teeth, which, in contrast to the prevailing understanding, occurs even for large torques despite the use of high-precision gears. A primary feature of the modelling is that dynamic mesh forces are calculated using a detailed contact analysis at each time step as the gears roll through the mesh; there is no need to externally specify the excitation in the form of time-varying mesh stiffness, static transmission error input, or the like. A semi-analytical model near the tooth surface is matched to a finite element solution away from the tooth surface, and the computational efficiency that results permits dynamic analysis. Two-single-degree-of-freedom models are also studied. While one gives encouragingly good results, the other, which appears to have better mesh stiffness modelling, gives poor comparisons with experiments. The results indicate the sensitivity of such models to the Fourier spectrum of the changing mesh stiffness.

  18. Oblique non-neutral solitary Alfven modes in weakly nonlinear pair plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Verheest, Frank [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); School of Physics, Howard College Campus, University of KwaZulu-Natal, Durban 4041 (South Africa); Lakhina, G S [Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410218 (India); Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2005-04-01

    The equal charge-to-mass ratio for both species in pair plasmas induces a decoupling of the linear eigenmodes between waves that are charge neutral or non-neutral, also at oblique propagation with respect to a static magnetic field. While the charge-neutral linear modes have been studied in greater detail, including their weakly and strongly nonlinear counterparts, the non-neutral mode has received less attention. Here the nonlinear evolution of a solitary non-neutral mode at oblique propagation is investigated in an electron-positron plasma. Employing the framework of reductive perturbation analysis, a modified Korteweg-de Vries equation (with cubic nonlinearity) for the lowest-order wave magnetic field is obtained. In the linear approximation, the non-neutral mode has its magnetic component orthogonal to the plane spanned by the directions of wave propagation and of the static magnetic field. The linear polarization is not maintained at higher orders. The results may be relevant to the microstructure in pulsar radiation or to the subpulses.

  19. Nonlinear Landau damping and modulation of electrostatic waves in a nonextensive electron-positron pair plasma

    CERN Document Server

    Chatterjee, D

    2015-01-01

    The nonlinear theory of amplitude modulation of electrostatic wave envelopes in a collisionless electron-positron (EP) pair plasma is studied by using a set of Vlasov-Poisson equations in the context of Tsallis' $q$-nonextensive statistics. In particular, the previous linear theory of Langmuir oscillations in EP plasmas [Phys. Rev. E {\\bf87}, 053112 (2013)] is rectified and modified. Applying the multiple scale technique (MST), it is shown that the evolution of electrostatic wave envelopes is governed by a nonlinear Schr{\\"o}dinger (NLS) equation with a nonlocal nonlinear term $\\propto {\\cal{P}}\\int|\\phi(\\xi',\\tau)|^2d\\xi'\\phi/(\\xi-\\xi') $ [where ${\\cal P}$ denotes the Cauchy principal value, $\\phi$ is the small-amplitude electrostatic (complex) potential, and $\\xi$ and $\\tau$ are the stretched coordinates in MST] which appears due to the wave-particle resonance. It is found that a subregion $1/3

  20. Nonlinear Breit-Wheeler pair production in a tightly focused laser beam

    CERN Document Server

    Di Piazza, A

    2016-01-01

    The only available analytical framework for investigating QED processes in a strong laser field systematically relies on approximating the latter as a plane wave. However, realistic high-intensity laser beams feature much more complex space-time structures than plane waves. Here, we show the feasibility of an analytical framework for investigating strong-field QED processes in laser beams of arbitrary space-time structure by determining the energy spectrum of positrons produced via nonlinear Breit-Wheeler pair production as a function of the background field. A numerical evaluation of the angular resolved positron spectrum shows significant quantitative differences with respect to the analogous result in a plane wave, such that the present results will be also important for the design of upcoming strong laser facilities aiming at measuring this process.

  1. Nonlinear Breit-Wheeler Pair Production in a Tightly Focused Laser Beam

    Science.gov (United States)

    Di Piazza, A.

    2016-11-01

    The only available analytical framework for investigating QED processes in a strong laser field systematically relies on approximating the latter as a plane wave. However, realistic high-intensity laser beams feature much more complex space-time structures than plane waves. Here, we show the feasibility of an analytical framework for investigating strong-field QED processes in laser beams of arbitrary space-time structure by determining the energy spectrum of positrons produced via nonlinear Breit-Wheeler pair production as a function of the background field in the realistic assumption that the energy of the incoming photon is the largest dynamical energy in the problem. A numerical evaluation of the angular resolved positron spectrum shows significant quantitative differences with respect to the analogous result in a plane wave, such that the present results will be also important for the design of upcoming strong laser facilities aiming at measuring this process.

  2. Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry

    Science.gov (United States)

    Kaiser, F.; Ngah, L. A.; Issautier, A.; Delord, T.; Aktas, D.; D'Auria, V.; De Micheli, M. P.; Kastberg, A.; Labonté, L.; Alibart, O.; Martin, A.; Tanzilli, S.

    2014-09-01

    We present a versatile, high-brightness, guided-wave source of polarization entangled photons, emitted at a telecom wavelength. Photon-pairs are generated using an integrated type-0 nonlinear waveguide, and subsequently prepared in a polarization entangled state via a stabilized fiber interferometer. We show that the single photon emission wavelength can be tuned over more than 50 nm, whereas the single photon spectral bandwidth can be chosen at will over more than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing entanglement analysis, we demonstrate a high degree of control of the quantum state via the violation of the Bell inequalities by more than 40 standard deviations. This makes this scheme suitable for a wide range of quantum optics experiments, ranging from fundamental research to quantum information applications. We report on details of the setup, as well as on the characterization of all included components, previously outlined in Kaiser et al. (Laser Phys. Lett. 10 (2013) 045202).

  3. Nonlinear friction modelling and compensation control of hysteresis phenomena for a pair of tendon-sheath actuated surgical robots

    Science.gov (United States)

    Do, T. N.; Tjahjowidodo, T.; Lau, M. W. S.; Phee, S. J.

    2015-08-01

    Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a special method that allows surgical operations via natural orifices like mouth, anus, and vagina, without leaving visible scars. The use of flexible tendon-sheath mechanism (TSM) is common in these systems because of its light weight in structure, flexibility, and easy transmission of power. However, nonlinear friction and backlash hysteresis pose many challenges to control of such systems; in addition, they do not provide haptic feedback to assist the surgeon in the operation of the systems. In this paper, we propose a new dynamic friction model and backlash hysteresis nonlinearity for a pair of TSM to deal with these problems. The proposed friction model, unlike current approaches in the literature, is smooth and able to capture the force at near zero velocity when the system is stationary or operates at small motion. This model can be used to estimate the friction force for haptic feedback purpose. To improve the system tracking performances, a backlash hysteresis model will be introduced, which can be used in a feedforward controller scheme. The controller involves a simple computation of the inverse hysteresis model. The proposed models are configuration independent and able to capture the nonlinearities for arbitrary tendon-sheath shapes. A representative experimental setup is used to validate the proposed models and to demonstrate the improvement in position tracking accuracy and the possibility of providing desired force information at the distal end of a pair of TSM slave manipulator for haptic feedback to the surgeons.

  4. Modulational Instability in a Pair of Non-identical Coupled Nonlinear Electrical Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    Eric Tala-Tebue; Aurelien Kenfack-Jiotsa; Marius Hervé Tatchou-Ntemfack; Timoléon Crépin Kofané

    2013-01-01

    In this work,we investigate the dynamics of modulated waves non-identical coupled nonlinear transmission lines.Traditional methods for avoiding mode mixing in identical coupled nonlinear electrical lines consist of adding the same number of linear inductors in each branch.Adding linear inductors in a single line leads to asymmetric coupled nonlinear electrical transmission lines which propagate the signal and the mode mixing.On one hand,the difference between the two lines induced the fission for only one mode of propagation.This fission is influenced by the amplitude of the signal and the amount of the input energy as well; it also narrows the width of the input pulse soliton,leading to a possible increasing of the bit rate.On the other hand,the dissymmetry of the two lines converts the network into a good amplifier for the w_ mode which corresponds to the regime admitting low frequencies.

  5. Nonlinear interaction of instability waves and vortex-pairing noise in axisymmetric subsonic jets

    Science.gov (United States)

    Yang, Hai-Hua; Zhou, Lin; Zhang, Xing-Chen; Wan, Zhen-Hua; Sun, De-Jun

    2016-10-01

    A direct simulation with selected inflow forcing is performed for an accurate description of the jet flow field and far-field noise. The effects of the Mach number and heating on the acoustic field are studied in detail. The beam patterns and acoustic intensities are both varied as the change of the Mach number and temperature. The decomposition of the source terms of the Lilley-Goldstein (L-G) equation shows that the momentum and thermodynamic components lead to distinctly different beam patterns. Significant cancellation is found between the momentum and thermodynamic components at low polar angles for the isothermal jet and large polar angles for the hot jet. The cancellation leads to the minimum values of the far-field sound. Based on linear parabolized stability equation solutions, the nonlinear interaction model for sound prediction is built in combination with the L-G equation. The dominant beam patterns and their original locations predicted by the nonlinear model are in good agreement with the direct simulation results, and the predictions of sound pressure level (SPL) by the nonlinear model are relatively reasonable.

  6. Phases, quantum interferences and effective vector meson masses in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Soyeur, M.

    1996-12-31

    We discuss the prospects for observing the mass of {rho}- and {omega}-mesons around nuclear matter density by studying their coherent photoproduction in nuclear targets and subsequent in-medium decay into e{sup +}e{sup -}pairs. The quantum interference of {rho} and {omega}-mesons in the e{sup +}e{sup -}channel and the interference between Bethe-Heitler pairs and dielectrons from vector meson decays are of particular interest. (author). 21 refs.

  7. A Pair of Resonance Stripe Solitons and Lump Solutions to a Reduced (3+1)-Dimensional Nonlinear Evolution Equation

    Science.gov (United States)

    Chen, Mei-Dan; Li, Xian; Wang, Yao; Li, Biao

    2017-06-01

    With symbolic computation, some lump solutions are presented to a (3+1)-dimensional nonlinear evolution equation by searching the positive quadratic function from the Hirota bilinear form of equation. The quadratic function contains six free parameters, four of which satisfy two determinant conditions guaranteeing analyticity and rational localization of the solutions, while the others are free. Then, by combining positive quadratic function with exponential function, the interaction solutions between lump solutions and the stripe solitons are presented on the basis of some conditions. Furthermore, we extend this method to obtain more general solutions by combining of positive quadratic function and hyperbolic cosine function. Thus the interaction solutions between lump solutions and a pair of resonance stripe solitons are derived and asymptotic property of the interaction solutions are analyzed under some specific conditions. Finally, the dynamic properties of these solutions are shown in figures by choosing the values of the parameters. Supported by National Natural Science Foundation of China under Grant Nos. 11271211, 11275072, and 11435005, Ningbo Natural Science Foundation under Grant No. 2015A610159 and the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No. xkzw11502 and K.C. Wong Magna Fund in Ningbo University

  8. Timelike Compton scattering off the neutron and generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Boer, M.; Guidal, M. [CNRS-IN2P3, Universite Paris-Sud, Institut de Physique Nucleaire d' Orsay, Orsay (France); Vanderhaeghen, M. [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2016-02-15

    We study the exclusive photoproduction of an electron-positron pair on a neutron target in the Jefferson Lab energy domain. The reaction consists of two processes: the Bethe-Heitler and the Timelike Compton Scattering. The latter process provides potentially access to the Generalized Parton Distributions (GPDs) of the nucleon. We calculate all the unpolarized, single- and double-spin observables of the reaction and study their sensitivities to GPDs. (orig.)

  9. Timelike Compton scattering off the proton and generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Boer, M.; Guidal, M. [Universite Paris-Sud, Institut de Physique Nucleaire d' Orsay, CNRS-IN2P3, Orsay (France); Vanderhaeghen, M. [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2015-08-15

    We study the exclusive photoproduction of a lepton pair off the proton with the aim of studying the proton quark structure via the Generalized Parton Distributions (GPD) formalism. After deriving the amplitudes of the processes contributing to the γP → P' e{sup +}e{sup -}, the timelike Compton scattering and the Bethe-Heitler process, we calculate all unpolarized, single- and double- spin beam-target observables in the valence region in terms of GPDs. (orig.)

  10. Cosmic absorption of ultra high energy particles

    Science.gov (United States)

    Ruffini, R.; Vereshchagin, G. V.; Xue, S.-S.

    2016-02-01

    This paper summarizes the limits on propagation of ultra high energy particles in the Universe, set up by their interactions with cosmic background of photons and neutrinos. By taking into account cosmic evolution of these backgrounds and considering appropriate interactions we derive the mean free path for ultra high energy photons, protons and neutrinos. For photons the relevant processes are the Breit-Wheeler process as well as the double pair production process. For protons the relevant reactions are the photopion production and the Bethe-Heitler process. We discuss the interplay between the energy loss length and mean free path for the Bethe-Heitler process. Neutrino opacity is determined by its scattering off the cosmic background neutrino. We compute for the first time the high energy neutrino horizon as a function of its energy.

  11. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties.

    Science.gov (United States)

    Stoumpos, Constantinos C; Frazer, Laszlo; Clark, Daniel J; Kim, Yong Soo; Rhim, Sonny H; Freeman, Arthur J; Ketterson, John B; Jang, Joon I; Kanatzidis, Mercouri G

    2015-06-03

    The synthesis and properties of the hybrid organic/inorganic germanium perovskite compounds, AGeI3, are reported (A = Cs, organic cation). The systematic study of this reaction system led to the isolation of 6 new hybrid semiconductors. Using CsGeI3 (1) as the prototype compound, we have prepared methylammonium, CH3NH3GeI3 (2), formamidinium, HC(NH2)2GeI3 (3), acetamidinium, CH3C(NH2)2GeI3 (4), guanidinium, C(NH2)3GeI3 (5), trimethylammonium, (CH3)3NHGeI3 (6), and isopropylammonium, (CH3)2C(H)NH3GeI3 (7) analogues. The crystal structures of the compounds are classified based on their dimensionality with 1–4 forming 3D perovskite frameworks and 5–7 1D infinite chains. Compounds 1–7, with the exception of compounds 5 (centrosymmetric) and 7 (nonpolar acentric), crystallize in polar space groups. The 3D compounds have direct band gaps of 1.6 eV (1), 1.9 eV (2), 2.2 eV (3), and 2.5 eV (4), while the 1D compounds have indirect band gaps of 2.7 eV (5), 2.5 eV (6), and 2.8 eV (7). Herein, we report on the second harmonic generation (SHG) properties of the compounds, which display remarkably strong, type I phase-matchable SHG response with high laser-induced damage thresholds (up to ∼3 GW/cm(2)). The second-order nonlinear susceptibility, χS(2), was determined to be 125.3 ± 10.5 pm/V (1), (161.0 ± 14.5) pm/V (2), 143.0 ± 13.5 pm/V (3), and 57.2 ± 5.5 pm/V (4). First-principles density functional theory electronic structure calculations indicate that the large SHG response is attributed to the high density of states in the valence band due to sp-hybridization of the Ge and I orbitals, a consequence of the lone pair activation.

  12. Lax pair, conservation laws, solitons, and rogue waves for a generalised nonlinear Schroedinger-Maxwell-Bloch system under the nonlinear tunneling effect for an inhomogeneous erbium-doped silica fibre

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhe; Gao, Yi-Tian; Su, Chuan-Qi; Wang, Qi-Min; Mao, Bing-Qing [Beijing Univ. of Aeronautics and Astronautics (China). Ministry-of-Education Key Lab. of Fluid Mechanics and National Lab. for Computational Fluid Dynamics

    2016-04-01

    Under investigation in this article is a generalised nonlinear Schroedinger-Maxwell-Bloch system for the picosecond optical pulse propagation in an inhomogeneous erbium-doped silica optical fibre. Lax pair, conservation laws, Darboux transformation, and generalised Darboux transformation for the system are constructed; with the one- and two-soliton solutions, the first- and second-order rogue waves given. Soliton propagation is discussed. Nonlinear tunneling effect on the solitons and rogue waves are investigated. We find that (i) the detuning of the atomic transition frequency from the optical pulse frequency affects the velocity of the pulse when the detuning is small, (ii) nonlinear tunneling effect does not affect the energy redistribution of the soliton interaction, (iii) dispersion barrier/well has an effect on the soliton velocity, whereas nonlinear well/barrier does not, (iv) nonlinear well/barrier could amplify/compress the solitons or rogue waves in a smoother manner than the dispersion barrier/well, and (v) dispersion barrier could ''attract'' the nearby rogue waves, whereas the dispersion well has a repulsive effect on them.

  13. Complex Korteweg-de Vries equation and Nonlinear dust-acoustic waves in a magnetoplasma with a pair of trapped ions

    CERN Document Server

    Misra, A P

    2015-01-01

    The nonlinear propagation of dust-acoustic (DA) waves in a magnetized dusty plasma with a pair of trapped ions is investigated. Starting from a set of hydrodynamic equations for massive dust fluids as well as kinetic Vlasov equations for ions, and applying the reductive perturbation technique, a Korteweg-de Vries (KdV)-like equation with a complex coefficient of nonlinearity is derived, which governs the evolution of small-amplitude DA waves in plasmas. The complex coefficient arises due to vortex-like distributions of both positive and negative ions. An analytical as well as numerical solution of the KdV equation are obtained and analyzed with the effects of external magnetic field, the dust pressure as well as different mass and temperatures of positive and negative ions.

  14. Rogue-pair and dark-bright-rogue waves of the coupled nonlinear Schrödinger equations from inhomogeneous femtosecond optical fibers

    Science.gov (United States)

    Yomba, Emmanuel; Zakeri, Gholam-Ali

    2016-08-01

    The coupled inhomogeneous Schrödinger equations with a wide range of applications describing a field of pluses with the right and the left polarizations that take into account cross-phase modulations, stimulated Ramani scattering, and absorption effects are investigated. A combination of several different approaches is used in a novel way to obtain the explicit expressions for the rogue-pair and dark-bright-rogue waves. We study the dynamics of these structurally stable rogues and analyze the effects of a parameter that controls the region of stability that intrinsically connects the cross-phase modulation and other Kerr nonlinearity factors. The effects of the right and left polarizations on the shape of the rogue-pair and other solitary rogue waves are graphically analyzed. These rogue-pair waves are studied on periodic and non-periodic settings. We observe that rogue-pair wave from the right and left polarizations has a similar structure while the dark-bright-rogue waves have quite different intensity profiles.

  15. Nonlinear and spin effects in two-photon annihilation of a fermion pair in an intensive laser wave

    CERN Document Server

    Sikach, S M

    2001-01-01

    The pattern of calculation of amplitudes of a series of processes in the field of an intensive laser wave, in which two fermions $(p; p')$ and two real photons $(k_1; k_2)$ participate, is considered. In relation to one-photon processes, these processes are of the second order on $\\alpha$, if the wave intensity $\\xi \\ll 1$ (i.e., actually absorption from the wave only one quantum). Otherwise, they are competing and essentially nonlinear. One-photon processes have a number of the important physical applications. For example, ${\\gamma}e$ and ${\\gamma}{\\gamma}$ colliders work on their basis. In DSB the calculation is conducted at the level of reaction amplitudes. It essentially simplifies both the calculation and the form of obtained results; those combinations of amplitudes which describe the spin effects are easy to calculate. And these effects are especially essential in nonlinear processes. The calculations are conducted in covariant form. Besides compactness, this provides independence of the frames of refe...

  16. 齿轮系统非线性动力学特性分析%Analysis of Nonlinear Dynamics in a Spur Gear Pair System

    Institute of Scientific and Technical Information of China (English)

    苏程; 尹朋朋

    2011-01-01

    A nonlinear dynamics model for a spur gear pair system was established where the backlash,the time-varying stiffness and the transmission error were considered.The nonlinear single-degree-of-freedom equations were solved by employing variable step size Runge-Kutta integration method.The nonlinear dynamics characteristics of the system were discussed for different system parameters and classified based on bifurcation diagrams,phase portraits,Poincaré maps and Fourier spectra.The chaotic motion was obtained.By means of analyzing the variation law of dynamic load,the relations between transformation process and backlash in the engaging state,which varies among the states of non-impact,single sided impact and double-sided impact,of gear system were discussed.%综合考虑齿侧间隙、时变啮合刚度、综合啮合误差等因素,建立了直齿轮副单自由度非线性动力学模型,并利用变步长Runge-Kutta法对单自由度运动微分方程进行了数值求解。结合系统的分岔图、相图、Poincaré映射图以及FFT频谱图,分析了系统在参数变化时的动力学特性,得到了系统的混沌运动规律。结合齿轮的动载荷历程,得到了齿轮啮合冲击状态在非冲击、单边冲击以及双边冲击状态之间变化时变化过程与系统参数之间的关系。

  17. Research on a Nonlinear Robust Adaptive Control Method of the Elbow Joint of a Seven-Function Hydraulic Manipulator Based on Double-Screw-Pair Transmission

    Directory of Open Access Journals (Sweden)

    Gaosheng Luo

    2014-01-01

    Full Text Available A robust adaptive control method with full-state feedback is proposed based on the fact that the elbow joint of a seven-function hydraulic manipulator with double-screw-pair transmission features the following control characteristics: a strongly nonlinear hydraulic system, parameter uncertainties susceptible to temperature and pressure changes of the external environment, and unknown outer disturbances. Combined with the design method of the back-stepping controller, the asymptotic stability of the control system in the presence of disturbances from uncertain systematic parameters and unknown external disturbances was demonstrated using Lyapunov stability theory. Based on the elbow joint of the seven-function master-slave hydraulic manipulator for the 4500 m Deep-Sea Working System as the research subject, a comparative study was conducted using the control method presented in this paper for unknown external disturbances. Simulations and experiments of different unknown outer disturbances showed that (1 the proposed controller could robustly track the desired reference trajectory with satisfactory dynamic performance and steady accuracy and that (2 the modified parameter adaptive laws could also guarantee that the estimated parameters are bounded.

  18. 单自由度齿轮系统非线性动力学特性分析%Analysis of the nonlinear dynamics in a single-degree-of-freedom spur gear pair system

    Institute of Scientific and Technical Information of China (English)

    苏程; 黄志丹

    2012-01-01

    A nonlinear dynamic model for a spur gear pair system was established wherein the backlash and the time-varying stiffness and the transmission error were considered. The nonlinear single-degree-of-freedom equations were solved by employing the variable step-size Runge-Kutta integration method. The nonlinear dynamic characteristics of the system were discussed for different clearance values based on bifurcation diagrams, phase portraits, Poincare maps and Fourier spectra. Finally, the chaotic motion was obtained.%建立了综合考虑齿侧间隙、时变啮合刚度、综合啮合误差等因素的直齿轮副的单自由度非线性动力学模型,利用变步长Runge-Kutta法对单自由度运动微分方程进行数值求解.结合系统的分岔图、相图、Poincaré映射图以及FFT频谱图,分析了系统在不同侧隙值下,阻尼比变化时的动力学特性,得到了系统的混沌运动形成过程.

  19. Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes

    KAUST Repository

    Auzinger, Winfried

    2016-07-28

    We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.

  20. Extended Homogeneous Balance Method and Lax Pairs, Backlund Transformation

    Institute of Scientific and Technical Information of China (English)

    BAI ChengLin

    2002-01-01

    Using the extended homogeneous balance method, which is very concise and primary, Lax pairs and Backlund transformation for most nonlinear evolution equations, such as the compound KdV-Burgers equation and nonlinear diffusion equation are obtained.

  1. Pairing Learners in Pair Work Activity

    Science.gov (United States)

    Storch, Neomy; Aldosari, Ali

    2013-01-01

    Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…

  2. Treatment of energy loss and multiple scattering in the context of track parameter and covariance matrix propagation in continuous material in the ATLAS experiment

    CERN Document Server

    Lund, E; Hughes, E W; Lopez Mateos, D; Salzburger, A; Strandlie, A

    2008-01-01

    In this paper we study the energy loss, its fluctuations, and the multiple scattering of particles passing through matter, with an emphasis on muons. In addition to the well-known Bethe-Bloch and Bethe-Heitler equations describing the mean energy loss from ionization and bremsstrahlung respectively, new parameterizations of the mean energy loss of muons from the direct e+e- pair production and photonuclear interactions are presented along with new estimates of the most probable energy loss and its fluctuations in the ATLAS calorimeters. Moreover, a new adaptive Highland/Moliere approach to finding the multiple scattering angle is taken to accomodate a wide range of scatterer thicknesses. Furthermore, tests of the muon energy loss, its fluctuations, and multiple scattering are done in the ATLAS calorimeters. The material effects described in this paper are all part of the simultaneous track and error propagation (STEP) algorithm of the common ATLAS tracking software.

  3. 金属橡胶非线性干摩擦副的接触作用机理及其仿真结果分析%Contacting mechanism of nonlinear friction pair for metallic rubber and its simulation results

    Institute of Scientific and Technical Information of China (English)

    李宇燕; 黄协清; 宋凯

    2011-01-01

    从金属橡胶材料的干摩擦阻尼产生的机理人手,提出了一种全新的金属橡胶非线性干摩擦结构单元力学模型,该结构单元由一对带有轴向和径向两个方向的弹性元件构成,它们既表示了金属丝之间的摩擦特性,同时也表示了螺线卷线匝在受力变形时的弹性特征.以建立的金属橡胶材料力学模型为基础,采用多个摩擦副单元串联组成的结构,深入研究了线匝的摩擦接触,通过对结构单元组成系统的计算机模拟仿真,对金属橡胶元件在不同载荷作用下的滞迟回线进行了深入地分析和研究,在静态载荷作用下,研究了结构单元的摩擦系数、结构单元的摩擦角对金属橡胶结构摩擦耗能的影响,在动态载荷作用下,研究了载荷的幅值、载荷的频率、载荷的初始相位对摩擦耗能的影响,此项研究工作大大减少了静态和动态试验方面的工作.%From dry-friction damping mechanism of metallic rubber, a new mechanical model for nonlinear friction structure element of metallic rubber was put forward. The structural element was made up of axial and radial elastic elements. The two elements not only denoted friction characteristics among wires, but also elastic properties of spiral turns. Based on the mechanical model constructed, using a series connection structure with multiple friction pairs, friction contacts between turns were studied. Through simulation for the system with the structural elements, hysteresis loops were deeply analyzed and studied under different loading for metallic rubber elements. Under static loading, the effects of friction coefficient and friction angle on energy dissipation of metallic rubber were studied, and under dynamic loading the effects of force's amplitude, frequency and initial phase on energy dissipation were also studied, the studies largely reduced the efforts for static and dynamic experiments.

  4. Exploring the performance of a nonlinear tuned mass damper

    DEFF Research Database (Denmark)

    Alexander, Nicholas A.; Schilder, Frank

    2009-01-01

    We explore the performance of a nonlinear tuned mass damper (NTMD), which is modeled as a two degree of freedom system with a cubic nonlinearity. This nonlinearity is physically derived from a geometric configuration of two pairs of springs. The springs in one pair rotate as they extend, which re...

  5. Subthreshold pair production in short laser pulses

    OpenAIRE

    Nousch, T.; Seipt, D.; Kampfer, B.; Titov, A. I.

    2012-01-01

    The $e^+e^-$ pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold $\\sqrt{s} = 2m$ a similar enhancement of the pair production rate as for circular polarization. The strong subthreshold enhancement is traced back to the finite bandwidth of the laser pulse. A folding model is develo...

  6. Powered Tate Pairing Computation

    Science.gov (United States)

    Kang, Bo Gyeong; Park, Je Hong

    In this letter, we provide a simple proof of bilinearity for the eta pairing. Based on it, we show an efficient method to compute the powered Tate pairing as well. Although efficiency of our method is equivalent to that of the Tate pairing on the eta pairing approach, but ours is more general in principle.

  7. Pairings on hyperelliptic curves

    CERN Document Server

    Balakrishnan, Jennifer; Chisholm, Sarah; Eisentraeger, Kirsten; Stange, Katherine; Teske, Edlyn

    2009-01-01

    We assemble and reorganize the recent work in the area of hyperelliptic pairings: We survey the research on constructing hyperelliptic curves suitable for pairing-based cryptography. We also showcase the hyperelliptic pairings proposed to date, and develop a unifying framework. We discuss the techniques used to optimize the pairing computation on hyperelliptic curves, and present many directions for further research.

  8. The exact solutions for a nonisospectral nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Ning Tongke [Finance College, Shanghai Normal University, Shanghai 200234 (China)], E-mail: tkning@shnu.edu.cn; Zhang Weiguo; Jia Gao [Science College, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2009-10-30

    In this paper, lax pair for the nonisospectral nonlinear Schroedinger hierarchy is given, the time dependence of nonisospectral scattering data is derived and exact solutions for the nonisospectral nonlinear Schroedinger hierarchy are obtained through the inverse scattering transform.

  9. The inverse problem for Schwinger pair production

    Energy Technology Data Exchange (ETDEWEB)

    Hebenstreit, F., E-mail: hebenstreit@itp.unibe.ch

    2016-02-10

    The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism) depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.

  10. An inverse problem for Schwinger pair production

    CERN Document Server

    Hebenstreit, Florian

    2016-01-01

    The production of electron-positron pairs in time-dependent electric fields (Schwinger mechanism) depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.

  11. The inverse problem for Schwinger pair production

    Directory of Open Access Journals (Sweden)

    F. Hebenstreit

    2016-02-01

    Full Text Available The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.

  12. BINARY NONLINEARIZATION FOR THE DIRAC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    MAWENXIU

    1997-01-01

    A Bargmann symmetry constraint is proposed for the Lax pairs and the adjoint Lax pairs of the Dirac systems. It is shown that the spatial part of the nonlinearized Lax pairs and adjoint Lax pairs is a finite dimensional Linuville integrable Hamiltonian system and that under the control of the spatial part, the time parts of the nonlinearized Lax pairs and adjoint Lax pairs are interpreted as a hierarchy of commutative, finite dimensional Linuville integrable Hamiltoian systems whose Hamiltonian functions consist of a series of integrals of motion for the spatial part. Moreover an invaiutive representation of solutions of the Dirac systems exhibits their integrability by quadratures. This kind of symmetry constraint procedure involving thespectral problem and the adjoint spectral problem is referred to as a binary nonlinearization technique like a binary Darhoux transformation.

  13. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  14. Casimir light: photon pairs.

    OpenAIRE

    1993-01-01

    Expressions are developed for weak single pair emission probability and strong emission average number of pairs. The water transparency cutoff is closely realized, showing that the fundamental time scale is even shorter.

  15. Nonlinear supratransmission

    Energy Technology Data Exchange (ETDEWEB)

    Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)

    2003-05-07

    A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.

  16. A stabilized pairing functional

    CERN Document Server

    Erler, J; Reinhard, P --G

    2008-01-01

    We propose a modified pairing functional for nuclear structure calculations which avoids the abrupt phase transition between pairing and non-pairing states. The intended application is the description of nuclear collective motion where the smoothing of the transition is compulsory to remove singularities. The stabilized pairing functional allows a thoroughly variational formulation, unlike the Lipkin-Nogami (LN) scheme which is often used for the purpose of smoothing. First applications to nuclear ground states and collective excitations prove the reliability and efficiency of the proposed stabilized pairing.

  17. Practical Nonlinearities

    Science.gov (United States)

    2016-07-01

    Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9

  18. Subthreshold pair production in short laser pulses

    CERN Document Server

    Nousch, T; Kampfer, B; Titov, A I

    2012-01-01

    The $e^+e^-$ pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold $\\sqrt{s} = 2m$ a similar enhancement of the pair production rate as for circular polarization. The strong subthreshold enhancement is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  19. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  20. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  1. Nonlinear analysis

    CERN Document Server

    Nanda, Sudarsan

    2013-01-01

    "Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.

  2. Matched-pair classification

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, James P [Los Alamos National Laboratory

    2009-01-01

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  3. Cooper pairs and bipolarons

    OpenAIRE

    Lakhno, Victor D.

    2016-01-01

    It is shown that Cooper pairs are a solution of the bipolaron problem for model Fr\\"{o}hlich Hamiltonian. The total energy of a pair for the initial Fr\\"{o}hlich Hamiltonian is found. Differences between the solutions for the model and initial two-particle problems are discussed.

  4. Cooper pairs and bipolarons

    Science.gov (United States)

    Lakhno, Victor

    2016-11-01

    It is shown that Cooper pairs are a solution of the bipolaron problem for model Fröhlich Hamiltonian. The total energy of a pair for the initial Fröhlich Hamiltonian is found. Differences between the solutions for the model and initial two-particle problems are discussed.

  5. Critical Schwinger Pair Production.

    Science.gov (United States)

    Gies, Holger; Torgrimsson, Greger

    2016-03-04

    We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential Berezinskii-Kosterlitz-Thouless-type scaling, and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting criticality.

  6. Stereo pairs in Astrophysics

    CERN Document Server

    Vogt, Frédéric

    2011-01-01

    Stereoscopic visualization is seldom used in Astrophysical publications and presentations compared to other scientific fields, e.g., Biochemistry, where it has been recognized as a valuable tool for decades. We put forth the view that stereo pairs can be a useful tool for the Astrophysics community in communicating a truer representation of astrophysical data. Here, we review the main theoretical aspects of stereoscopy, and present a tutorial to easily create stereo pairs using Python. We then describe how stereo pairs provide a way to incorporate 3D data in 2D publications of standard journals. We illustrate the use of stereo pairs with one conceptual and two Astrophysical science examples: an integral field spectroscopy study of a supernova remnant, and numerical simulations of a relativistic AGN jet. We also use these examples to make the case that stereo pairs are not merely an ostentatious way to present data, but an enhancement in the communication of scientific results in publications because they prov...

  7. Critical Schwinger pair production

    CERN Document Server

    Gies, Holger

    2015-01-01

    We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential BKT-type scaling and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting ...

  8. Nonlinear Reconstruction

    CERN Document Server

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran

    2016-01-01

    We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.

  9. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  10. Narrowband Photon Pair Source for Quantum Networks

    CERN Document Server

    Monteiro, F; Sanguinetti, B; Zbinden, H; Thew, R T

    2013-01-01

    We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a cavity. The cavity parameters are chosen such that the emitted photon pair modes can be matched in the region of telecom ultra dense wavelength division multiplexing (U-DWDM) channel spacings. This approach provides efficient, low-loss, mode selection that is compatible with standard telecommunication networks. Photons with a coherence time of 8.6 ns (116 MHz) are produced and their purity is demonstrated. A source brightness of 134 pairs(s.mW.MHz)$^{-1}$ is reported. The high level of purity and compatibility with standard telecom networks is of great importance for complex quantum communication networks.

  11. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t

  12. Adaptive Pairing Reversible Watermarking.

    Science.gov (United States)

    Dragoi, Ioan-Catalin; Coltuc, Dinu

    2016-05-01

    This letter revisits the pairwise reversible watermarking scheme of Ou et al., 2013. An adaptive pixel pairing that considers only pixels with similar prediction errors is introduced. This adaptive approach provides an increased number of pixel pairs where both pixels are embedded and decreases the number of shifted pixels. The adaptive pairwise reversible watermarking outperforms the state-of-the-art low embedding bit-rate schemes proposed so far.

  13. Stereo pairs in Astrophysics

    Science.gov (United States)

    Vogt, Frédéric; Wagner, Alexander Y.

    2012-01-01

    Stereoscopic visualization is seldom used in Astrophysical publications and presentations compared to other scientific fields, e.g., Biochemistry, where it has been recognized as a valuable tool for decades. We put forth the view that stereo pairs can be a useful tool for the Astrophysics community in communicating a truer representation of astrophysical data. Here, we review the main theoretical aspects of stereoscopy, and present a tutorial to easily create stereo pairs using Python. We then describe how stereo pairs provide a way to incorporate 3D data in 2D publications of standard journals. We illustrate the use of stereo pairs with one conceptual and two Astrophysical science examples: an integral field spectroscopy study of a supernova remnant, and numerical simulations of a relativistic AGN jet. We also use these examples to make the case that stereo pairs are not merely an ostentatious way to present data, but an enhancement in the communication of scientific results in publications because they provide the reader with a realistic view of multi-dimensional data, be it of observational or theoretical nature. In recognition of the ongoing 3D expansion in the commercial sector, we advocate an increased use of stereo pairs in Astrophysics publications and presentations as a first step towards new interactive and multi-dimensional publication methods.

  14. Nonlinear susceptibility magnitude imaging of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ficko, Bradley W., E-mail: Bradley.W.Ficko@Dartmouth.edu; Giacometti, Paolo; Diamond, Solomon G.

    2015-03-15

    This study demonstrates a method for improving the resolution of susceptibility magnitude imaging (SMI) using spatial information that arises from the nonlinear magnetization characteristics of magnetic nanoparticles (mNPs). In this proof-of-concept study of nonlinear SMI, a pair of drive coils and several permanent magnets generate applied magnetic fields and a coil is used as a magnetic field sensor. Sinusoidal alternating current (AC) in the drive coils results in linear mNP magnetization responses at primary frequencies, and nonlinear responses at harmonic frequencies and intermodulation frequencies. The spatial information content of the nonlinear responses is evaluated by reconstructing tomographic images with sequentially increasing voxel counts using the combined linear and nonlinear data. Using the linear data alone it is not possible to accurately reconstruct more than 2 voxels with a pair of drive coils and a single sensor. However, nonlinear SMI is found to accurately reconstruct 12 voxels (R{sup 2}=0.99, CNR=84.9) using the same physical configuration. Several time-multiplexing methods are then explored to determine if additional spatial information can be obtained by varying the amplitude, phase and frequency of the applied magnetic fields from the two drive coils. Asynchronous phase modulation, amplitude modulation, intermodulation phase modulation, and frequency modulation all resulted in accurate reconstruction of 6 voxels (R{sup 2}>0.9) indicating that time multiplexing is a valid approach to further increase the resolution of nonlinear SMI. The spatial information content of nonlinear mNP responses and the potential for resolution enhancement with time multiplexing demonstrate the concept and advantages of nonlinear SMI. - Highlights: • Development of a nonlinear susceptibility magnitude imaging model • Demonstration of nonlinear SMI with primary and harmonic frequencies • Demonstration of nonlinear SMI with primary and intermodulation

  15. Nonlinear channelizer

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  16. Nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)

    1989-01-01

    Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.

  17. Junctionless Cooper pair transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  18. Nonlinear Systems.

    Science.gov (United States)

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  19. Kink pair production and dislocation motion

    Science.gov (United States)

    Fitzgerald, S. P.

    2016-12-01

    The motion of extended defects called dislocations controls the mechanical properties of crystalline materials such as strength and ductility. Under moderate applied loads, this motion proceeds via the thermal nucleation of kink pairs. The nucleation rate is known to be a highly nonlinear function of the applied load, and its calculation has long been a theoretical challenge. In this article, a stochastic path integral approach is used to derive a simple, general, and exact formula for the rate. The predictions are in excellent agreement with experimental and computational investigations, and unambiguously explain the origin of the observed extreme nonlinearity. The results can also be applied to other systems modelled by an elastic string interacting with a periodic potential, such as Josephson junctions in superconductors.

  20. Paired fuzzy sets

    DEFF Research Database (Denmark)

    Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel

    2015-01-01

    In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...

  1. Minimal Pairs: Minimal Importance?

    Science.gov (United States)

    Brown, Adam

    1995-01-01

    This article argues that minimal pairs do not merit as much attention as they receive in pronunciation instruction. There are other aspects of pronunciation that are of greater importance, and there are other ways of teaching vowel and consonant pronunciation. (13 references) (VWL)

  2. Au pair trajectories

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2015-01-01

    Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send import...... the Danish au pair scheme therefore speaks to current research on domestic work migration, the transnational family relations of young Filipina migrants and the forms of self-transformation that Filipino migration might engender.......Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send...... ethnographic component of the dissertation consists of four articles, all emphasizing the au pairs’ agency by viewing their migration as a dynamic personal and social experience. Arguing that Filipina au pairs tend to be understood primarily from the perspective of their precarious situation as domestic...

  3. Anchored paired comparisons

    Science.gov (United States)

    Dalal, E. N.; Handley, J. C.; Wu, W.; Wang, J.

    2008-01-01

    The method of paired comparisons is often used in image quality evaluations. Psychometric scale values for quality judgments are modeled using Thurstone's Law of Comparative Judgment in which distance in a psychometric scale space is a function of the probability of preference. The transformation from psychometric space to probability is a cumulative probability distribution. The major drawback of a complete paired comparison experiment is that every treatment is compared to every other, thus the number of comparisons grows quadratically. We ameliorate this difficulty by performing paired comparisons in two stages, by precisely estimating anchors in the psychometric scale space which are spaced apart to cover the range of scale values and comparing treatments against those anchors. In this model, we employ a generalized linear model where the regression equation has a constant offset vector determined by the anchors. The result of this formulation is a straightforward statistical model easily analyzed using any modern statistics package. This enables model fitting and diagnostics. This method was applied to overall preference evaluations of color pictorial hardcopy images. The results were found to be compatible with complete paired comparison experiments, but with significantly less effort.

  4. Aspectual Pairing in Polish

    NARCIS (Netherlands)

    Młynarczyk, A.K.

    2004-01-01

    The received view on Slavic aspect is that it is intrinsically complex, and that there is little hope of discerning any substantial regularity. We argue that this view is mistaken. We argue that the vast majority of Polish verbs really do come in aspectual pairs and that far from being a mysterious

  5. Excited cooper pairs

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)

    2001-02-01

    Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es

  6. Breathing solitary-pulse pairs in a linearly coupled system

    CERN Document Server

    Dana, Brenda; Bahabad, Alon

    2014-01-01

    It is shown that pairs of solitary pulses (SPs) in a linearly-coupled system with opposite group-velocity dispersions form robust breathing bound states. The system can be realized by temporal-modulation coupling of SPs with different carrier frequencies propagating in the same medium, or by coupling of SPs in a dual-core waveguide. Broad SP pairs are produced in a virtually exact form by means of the variational approximation. Strong nonlinearity tends to destroy the periodic evolution of the SP pairs.

  7. Multi-pair states in electron-positron pair creation

    Science.gov (United States)

    Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.

    2016-09-01

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron-positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron-positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron-positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron-positron pairs.

  8. Quantum nonlinear optics without photons

    Science.gov (United States)

    Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco

    2017-08-01

    Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.

  9. Nonlinear PDEs

    OpenAIRE

    2015-01-01

    From the Back Cover: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications re...

  10. Junctionless Cooper pair transistor

    Science.gov (United States)

    Arutyunov, K. Yu.; Lehtinen, J. S.

    2017-02-01

    Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current-voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  11. Protected Flux Pairing Qubit

    Science.gov (United States)

    Bell, Matthew; Zhang, Wenyuan; Ioffe, Lev; Gershenson, Michael

    2014-03-01

    We have studied the coherent flux tunneling in a qubit containing two submicron Josephson junctions shunted by a superinductor (a dissipationless inductor with an impedance much greater than the resistance quantum). The two low energy quantum states of this device, " open="|"> 0 and " open="|"> 1, are represented by even and odd number of fluxes in the loop, respectively. This device is dual to the charge pairing Josephson rhombi qubit. The spectrum of the device, studied by microwave spectroscopy, reflects the interference between coherent quantum phase slips in the two junctions (the Aharonov-Casher effect). The time domain measurements demonstrate the suppression of the qubit's energy relaxation in the protected regime, which illustrates the potential of this flux pairing device as a protected quantum circuit. Templeton Foundation, NSF, and ARO.

  12. Proposal for the generation of photon pairs with nonzero orbital angular momentum in a ring fiber.

    Science.gov (United States)

    Javůrek, D; Svozilík, J; Peřina, J

    2014-09-22

    We present a method for the generation of correlated photon pairs in desired orbital-angular-momentum states using a non-linear silica ring fiber and spontaneous parametric down-conversion. Photon-pair emission under quasi-phase-matching conditions with quantum conversion efficiency 6 × 10(-11) is found in a 1-m long fiber with a thermally induced χ(2) nonlinearity in a ring-shaped core.

  13. On Various Nonlinearity Measures for Boolean Functions.

    Science.gov (United States)

    Boyar, Joan; Find, Magnus Gausdal; Peralta, René

    2016-07-01

    A necessary condition for the security of cryptographic functions is to be "sufficiently distant" from linear, and cryptographers have proposed several measures for this distance. In this paper, we show that six common measures, nonlinearity, algebraic degree, annihilator immunity, algebraic thickness, normality, and multiplicative complexity, are incomparable in the sense that for each pair of measures, μ1, μ2, there exist functions f1, f2 with f1 being more nonlinear than f2 according to μ1, but less nonlinear according to μ2. We also present new connections between two of these measures. Additionally, we give a lower bound on the multiplicative complexity of collision-free functions.

  14. Cylindrically confined pair-ion-electron and pair-ion plasmas having axial sheared flow and radial gradients

    Energy Technology Data Exchange (ETDEWEB)

    Batool, Nazia; Saleem, H. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan)

    2013-10-15

    The linear and nonlinear dynamics of pair-ion (PI) and pair-ion-electron plasmas (PIE) have been investigated in a cylindrical geometry with a sheared plasma flow along the axial direction having radial dependence. The coupled linear dispersion relation of low frequency electrostatic waves has been presented taking into account the Guassian profile of density and linear gradient of sheared flow. It is pointed out that the quasi-neutral cold inhomogeneous pure pair ion plasma supports only the obliquely propagating convective cell mode. The linear dispersion relation of this mode has been solved using boundary conditions. The nonlinear structures in the form of vortices formed by different waves have been discussed in PI and PIE plasmas.

  15. Au pairs on Facebook

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2016-01-01

    Ethnographers are increasingly making use of Facebook to acquire access and general acquaintance with their field of study. However, little has been written on how Facebook is used methodologically in research that does not have social media sites as the main focus of interest. This article argues...... that engagement with Facebook as a methodological tool can be useful in research among migrants in highly politicised fields. Pointing to a discursive construction of Filipina au pairs as victims of labour exploitation, the article shows how fieldwork on Facebook enables the exploration of the ways in which...... and on Facebook....

  16. Multispecies pair annihilation reactions.

    Science.gov (United States)

    Deloubrière, Olivier; Hilhorst, Henk J; Täuber, Uwe C

    2002-12-16

    We consider diffusion-limited reactions A(i)+A(j)--> (12 and d> or =2, we argue that the asymptotic density decay for such mutual annihilation processes with equal rates and initial densities is the same as for single-species pair annihilation A+A-->. In d=1, however, particle segregation occurs for all q< infinity. The total density decays according to a q dependent power law, rho(t) approximately t(-alpha(q)). Within a simplified version of the model alpha(q)=(q-1)/2q can be determined exactly. Our findings are supported through Monte Carlo simulations.

  17. Au pairs on Facebook

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2016-01-01

    Ethnographers are increasingly making use of Facebook to acquire access and general acquaintance with their field of study. However, little has been written on how Facebook is used methodologically in research that does not have social media sites as the main focus of interest. This article argues...... that engagement with Facebook as a methodological tool can be useful in research among migrants in highly politicised fields. Pointing to a discursive construction of Filipina au pairs as victims of labour exploitation, the article shows how fieldwork on Facebook enables the exploration of the ways in which...... and on Facebook....

  18. Prolongation Structure of Semi-discrete Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on noncommutative differential calculus, we present a theory of prolongation structure for semi-discrete nonlinear evolution equations. As an illustrative example, a semi-discrete model of the nonlinear Schr(o)dinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.

  19. Searching for Pair Halos

    Science.gov (United States)

    Fallon, Lisa; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Behera, B.; Bernlühr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bühler, R.; Bulik, T.; Büsching, I.; Boutelier, T.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Conrad, J.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Domainko, A. Djannati-Ataü W.; Drury, L. O'c.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fürster, A.; Fontaine, G.; Füssling, M.; Gabici, S.; Gallant, Y. A.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Güring, D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jung, I.; Katarzynski, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Khálifi, B.; Keogh, D.; Klochkov, D.; Kluzniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Lamanna, G.; Lenain, J.-P.; Lohse, T.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Mau-Rin, D.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Ona Wilhelmi, E.; Opitz, B.; Orford, K. J.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Ryde, F.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schück, F. M.; Schünwald, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sushch, I.; Sikora, M.; Skilton, J. L.; Sol, H.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Szostek, A.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Venter, L.; Vialle, J. P.; Viana, A.; Vincent, P.; Vivier, M.; Vülk, H. J.; Volpe, F.; Vorobiov, S.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    We have conducted a search for the giant Pair Halo structures which are inevitably formed around TeV sources due to interactions of very high energy gamma-rays with the Extragalactic Background Light (EBL). The resulting electron/positron pairs are Compton upscattered on photons of the 2.7 K Cosmic Microwave Background Radiation to produce a second generation of gamma-rays which again interact with the EBL; thus an electromagnetic cascade develops. If the magnetic fields on Mpc scales surrounding the central source are sufficiently strong (10-11 G or more), electrons are effectively isotropised before interacting with radiation fields. In this case an extended halo is produced around the source. Using H.E.S.S. observations of Active Galactic Nuclei, including data from PKS 2155-304, 1ES 1101-232 and 1ES 0229+200, we have completed a detailed analysis of these sources. I will present and discuss the astrophysical implications of these results.

  20. Fission: statistical nucleon pair breaking

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M. (Instituto Peruano de Energia Nuclear, Lima (Peru))

    1984-06-01

    In order to explain the odd-even effect observed in low energy fission fragment distributions it has been recently required a double mechanism of nucleon pair breaking: before scission (early pair breaking) and at scission (late pair breaking), respectively. In the present work we show that, using the same formulae but considering only the early pair breaking mechanism, one can reproduce fairly well all the available experimental data on the odd-even effects.

  1. Diffractive charged meson pair production

    CERN Document Server

    Lehmann-Dronke, B; Schäfer, S; Stein, E; Schäfer, A

    1999-01-01

    We investigate the possibility to measure the nonforward gluon distribution function by means of diffractively produced charged pion and kaon pairs in polarized lepton nucleon scattering. The resulting cross sections are sizable and are dominated by the gluonic contribution. We find large spin asymmetries, both for pion pairs and for kaon pairs.

  2. Application of Acupoints in Pairs

    Institute of Scientific and Technical Information of China (English)

    季扬

    2004-01-01

    @@ Application of acupoints in pairs is a kind of point association in which only a pair of compatible points is used. Based on the principle of compatibility, the author of this article often uses the "pair-point needling" to treat some common diseases, and have obtained very good therapeutic results. Some examples are introduced below.

  3. Cotorsion Pair Extensions

    Institute of Scientific and Technical Information of China (English)

    De Xu ZHOU

    2009-01-01

    Assume that S is an almost excellent extension of R. Using functors Hom R(S,-) and -(×)R S, we establish some connections between classes of modules (L)R and (L)S, cotorsion pairs ((A)R, (A)R)and ((A)S, (B)S). If (L)S is a T-extension or (and) H-extension of (L)R, we show that (L)S is a (resp., monomorphic, epimorphic, special) preenveloping class if and only if so is (L)R. If (S, S) is a TH-extension of ((A)R,(B)R), we obtain that ((A)S,(B)S) is complete (resp., of finite type, of cofinite type, hereditary, perfect, n-tilting) if and only if so is ((A)R,(B)R).

  4. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  5. Nonlinear Dynamics

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    3.1 A Unified Nonlinear Feedback Functional Method for Study Both Control and Synchronization of Spatiotemporal Chaos Fang Jinqing Ali M. K. (Department of Physics, The University of Lethbridge,Lethbridge, Alberta T1K 3M4,Canada) Two fundamental questions dominate future chaos control theories.The first is the problem of controlling hyperchaos in higher dimensional systems.The second question has yet to be addressed:the problem of controlling spatiotemporal chaos in a spatiotemporal system.In recent years, control and synchronization of spatiotemporal chaos and hyperchaos have became a much more important and challenging subject. The reason for this is the control and synchronism of such behaviours have extensive and great potential of interdisciplinary applications, such as security communication, information processing, medicine and so on. However, this subject is not much known and remains an outstanding open.

  6. Polarization operator approach to pair creation in short laser pulses

    CERN Document Server

    Meuren, Sebastian; Keitel, Christoph H; Di Piazza, Antonino

    2014-01-01

    We investigate the nonlinear Breit-Wheeler process inside short laser pulses, i.e. the creation of an electron-positron pair induced by a gamma photon inside a plane-wave background field. To obtain the total pair-creation probability we verify (to leading-order) the cutting rule for the polarization operator in the realm of strong-field QED by an explicit calculation. Furthermore, a double-integral representation for the leading-order contribution to the field-dependent part of the polarization operator is derived. The combination of both results yields a compact expression for the total pair-creation probability inside an arbitrary plane-wave background field. It is shown numerically that with presently available technology pair-creation probabilities of the order of ten percent could be reached for a single gamma photon.

  7. Nonlinear susceptibility magnitude imaging of magnetic nanoparticles

    Science.gov (United States)

    Ficko, Bradley W.; Giacometti, Paolo; Diamond, Solomon G.

    2015-03-01

    This study demonstrates a method for improving the resolution of susceptibility magnitude imaging (SMI) using spatial information that arises from the nonlinear magnetization characteristics of magnetic nanoparticles (mNPs). In this proof-of-concept study of nonlinear SMI, a pair of drive coils and several permanent magnets generate applied magnetic fields and a coil is used as a magnetic field sensor. Sinusoidal alternating current (AC) in the drive coils results in linear mNP magnetization responses at primary frequencies, and nonlinear responses at harmonic frequencies and intermodulation frequencies. The spatial information content of the nonlinear responses is evaluated by reconstructing tomographic images with sequentially increasing voxel counts using the combined linear and nonlinear data. Using the linear data alone it is not possible to accurately reconstruct more than 2 voxels with a pair of drive coils and a single sensor. However, nonlinear SMI is found to accurately reconstruct 12 voxels (R2=0.99, CNR=84.9) using the same physical configuration. Several time-multiplexing methods are then explored to determine if additional spatial information can be obtained by varying the amplitude, phase and frequency of the applied magnetic fields from the two drive coils. Asynchronous phase modulation, amplitude modulation, intermodulation phase modulation, and frequency modulation all resulted in accurate reconstruction of 6 voxels (R2>0.9) indicating that time multiplexing is a valid approach to further increase the resolution of nonlinear SMI. The spatial information content of nonlinear mNP responses and the potential for resolution enhancement with time multiplexing demonstrate the concept and advantages of nonlinear SMI.

  8. Structural optimization for nonlinear dynamic response.

    Science.gov (United States)

    Dou, Suguang; Strachan, B Scott; Shaw, Steven W; Jensen, Jakob S

    2015-09-28

    Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped-clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order of magnitude by relatively simple changes in the shape of these elements. We expect the proposed approach, and its extensions, to be useful for the design of systems used for fundamental studies of nonlinear behaviour as well as for the development of commercial devices that exploit nonlinear behaviour.

  9. Multi-pair states in electron–positron pair creation

    Directory of Open Access Journals (Sweden)

    Anton Wöllert

    2016-09-01

    Full Text Available Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  10. On the rogue wave propagation in ion pair superthermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahed, H. G., E-mail: hgomaa-eg@yahoo.com, E-mail: hgomaa-eg@mans.edu.eg; Zahran, M. A. [Physics Department, College of Sciences and Humanities Studies Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj (Saudi Arabia); Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); El-Shewy, E. K., E-mail: emadshewy@yahoo.com; Elwakil, S. A. [Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt)

    2016-02-15

    Effects of superthermal electron on the features of nonlinear acoustic waves in unmagnetized collisionless ion pair plasma with superthermal electrons have been examined. The system equations are reduced in the form of the nonlinear Schrodinger equation. The rogue wave characteristics dependences on the ionic density ratio (ν = n{sub –0}/n{sub +0}), ionic mass ratio (Q = m{sub +}/m{sub −}), and superthermality index (κ) are investigated. It is worth mentioning that the results present in this work could be applicable in the Earth's ionosphere plasmas.

  11. Experimental many-pairs nonlocality

    Science.gov (United States)

    Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian

    2017-08-01

    Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.

  12. Nonlinear Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...

  13. Pairing the Volcano

    CERN Document Server

    Ionica, Sorina

    2011-01-01

    Isogeny volcanoes are graphs whose vertices are elliptic curves and whose edges are $\\ell$-isogenies. Algorithms allowing to travel on these graphs were developed by Kohel in his thesis (1996) and later on, by Fouquet and Morain (2001). However, up to now, no method was known, to predict, before taking a step on the volcano, the direction of this step. Hence, in Kohel's and Fouquet-Morain algorithms, many steps are taken before choosing the right direction. In particular, ascending or horizontal isogenies are usually found using a trial-and-error approach. In this paper, we propose an alternative method that efficiently finds all points $P$ of order $\\ell$ such that the subgroup generated by $P$ is the kernel of an horizontal or an ascending isogeny. In many cases, our method is faster than previous methods. This is an extended version of a paper published in the proceedings of ANTS 2010. In addition, we treat the case of 2-isogeny volcanoes and we derive from the group structure of the curve and the pairing ...

  14. Pair production in short laser pulses near threshold

    Energy Technology Data Exchange (ETDEWEB)

    Nousch, T. [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Seipt, D., E-mail: d.seipt@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Kaempfer, B. [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Titov, A.I. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna 141980 (Russian Federation)

    2012-08-29

    The e{sup +}e{sup -} pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold {radical}(s)=2m a similar enhancement of the pair production rate as for circular polarization. The strong enhancement below the weak-field threshold is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  15. Pair production in short laser pulses near threshold

    Science.gov (United States)

    Nousch, T.; Seipt, D.; Kämpfer, B.; Titov, A. I.

    2012-08-01

    The e+e- pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold √{ s} = 2 m a similar enhancement of the pair production rate as for circular polarization. The strong enhancement below the weak-field threshold is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  16. Nanoscale nonlinear PANDA ring resonator

    CERN Document Server

    Yupapin, Preecha

    2012-01-01

    Microring/nanoring resonator is an interesting device that has been widely studied and investigated by researchers from a variety of specializations. This book begins with the basic background of linear and nonlinear ring resonators. A novel design of nano device known as a PANDA ring resonator is proposed. The use of the device in the form of a PANDA in applications such as nanoelectronics, measurement, communication, sensors, optical and quantum computing, drug delivery, hybrid transistor and a new concept of electron-hole pair is discussed in detail.

  17. Structural optimization for nonlinear dynamic response

    DEFF Research Database (Denmark)

    Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.

    2015-01-01

    condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped–clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...... by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance...

  18. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... is perturbed by a small amplitude incoherent wave-field. The initial evolution is exponential, following the growth of perturbations predicted by linear stability theory. The fluctuations saturate at relatively high amplitudes, by forming a pair of magnetic field aligned vortex-like structures of opposite...

  19. Nonlinear singular vectors and nonlinear singular values

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel concept of nonlinear singular vector and nonlinear singular value is introduced, which is a natural generalization of the classical linear singular vector and linear singular value to the nonlinear category. The optimization problem related to the determination of nonlinear singular vectors and singular values is formulated. The general idea of this approach is demonstrated by a simple two-dimensional quasigeostrophic model in the atmospheric and oceanic sciences. The advantage and its applications of the new method to the predictability, ensemble forecast and finite-time nonlinear instability are discussed. This paper makes a necessary preparation for further theoretical and numerical investigations.

  20. Multiple origins of asteroid pairs

    CERN Document Server

    Jacobson, Seth A

    2015-01-01

    Rotationally fissioned asteroids produce unbound daughter asteroids that have very similar heliocentric orbits. Backward integration of their current heliocentric orbits provides an age of closest proximity that can be used to date the rotational fission event. Most asteroid pairs follow a predicted theoretical relationship between the primary spin period and the mass ratio of the two pair members that is a direct consequence of the YORP-induced rotational fission hypothesis. If the progenitor asteroid has strength, asteroid pairs may have high mass ratios with possibly fast rotating primaries. However, secondary fission leaves the originally predicted trend unaltered. We also describe the characteristics of pair members produced by four alternative routes from a rotational fission event to an asteroid pair. Unlike direct formation from the event itself, the age of closest proximity of these pairs cannot generally be used to date the rotational fission event since considerable time may have passed.

  1. Generation of polarization entangled photon pairs in Bragg reflection waveguides

    OpenAIRE

    Vallés Marí, Adam

    2012-01-01

    Integrated optics, nonlinear optics, quantum optics [ANGLÈS] We report the observation of polarization entangled photon pairs generated by means of type-II spontaneous parametric down-conversion (SPDC) within an AlGaAs Bragg reflection waveguide (BRW). Even though SPDC in BRW had been observed before, the photons detected were not entangled in the polarization degree of freedom. As a necessary previous step, we also characterized the phase-matching properties of the waveguides designed by ...

  2. Status and plans for 2016, CERN NA63

    CERN Document Server

    Uggerhøj, UI; Di Piazza, A

    2016-01-01

    In the NA63 experiment of May 2015 the purpose was primarily to measure the photon spectrum of channeled electrons in diamond with relevance to using diamond as a pair production target for future linear colliders and secondarily to look for the effect of radiation reaction as described in [Di Piazza et al.(2015)Di Piazza, Wistisen, and Uggerhøj]. The setup was designed to be able to be efficient from photon energies as low as ~40MeV. This was estimated based on requiring the energy of a deflected particle in the magnet to stay within the final detector ’M6’, see figure 1, i.e. a deflection of ~1cm at ’M6’ should correspond to 40 MeV. This was, however, not achieved in the experiment. A large drop off of efficiency is seen already at 1.5GeV as seen in figure 4. We have since investigated the cause of this and made a detailed simulation of the whole setup. The most significant effect for the large difference in the expected and achieved lower energy cut off is due to the fact that Bethe-Heitler pair p...

  3. Nonlinear Quantum Optics in Artificially Structured Media

    Science.gov (United States)

    Helt, Lukas Gordon

    This thesis presents an analysis of photon pairs generated via either spontaneous parametric downconversion or spontaneous four-wave mixing in channel waveguides as well as in microring resonators side-coupled to channel waveguides. The state of photons exiting a particular device is calculated within a general Hamiltonian formalism that simplifies the link between quantum nonlinear optics experiments and classical nonlinear optics experiments. This state contains information regarding photon pair production efficiency as well as modal and spectral correlations between the two photons, characterized by a two-dimensional spectral distribution function called the biphoton wave function. In the limit of a low probability of pair production, photon pair production efficiencies are cast into forms resembling corresponding well-known classical nonlinear optical frequency conversion efficiencies, making it easy to see what plays the role of a classical "seed" field in an un-seeded (quantum) process. This also allows photon pair production efficiencies to be calculated based on the results of classical nonlinear optical experiments. It is further calculated that, unless generated photons are collected over a very narrow frequency range, their generation efficiency does not scale the same way with device length in a channel waveguide, or resonance quality factor in a microring resonator, as might be expected from the corresponding classical frequency conversion efficiency. Although calculations do not include self- or cross-phase modulation, nor two-photon absorption or free-carrier absorption, it is calculated that their neglect is justified in the low pair production probability limit. Linear (scattering) loss is also neglected, though partially addressed in the final chapter of this thesis. Biphoton wave functions are calculated explicitly, such that their shape and orientation, including approximate analytic expressions for their widths, can easily be determined. This

  4. PERIODIC COMPLEMENTARY BINARY SEQUENCE PAIRS

    Institute of Scientific and Technical Information of China (English)

    XuChengqian; ZhaoXiaoqun

    2002-01-01

    A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP)is proposed .A new class of block design-Difference Family Pair (DFP)is also proposed .The relationship between PCSP and DFP,the properties and exising conditions of PCSP and the recursive constructions for PCSP are given.

  5. PERIODIC COMPLEMENTARY BINARY SEQUENCE PAIRS

    Institute of Scientific and Technical Information of China (English)

    Xu Chengqian; Zhao Xiaoqun

    2002-01-01

    A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP) is proposed. A new class of block design-Difference Family Pair (DFP) is also proposed.The relationship between PCSP and DFP, the properties and existing conditions of PCSP and the recursive constructions for PCSP are given.

  6. Assessment Strategies for Pair Programming

    Science.gov (United States)

    Hahn, Jan Hendrik; Mentz, Elsa; Meyer, Lukas

    2009-01-01

    Although pair programming has proved its usefulness in teaching and learning programming skills, it is difficult to assess the individual roles and abilities of students whilst programming in pairs. (Note that within this manuscript, the term assessment refers to evaluating individual student performance.) Assessing only the outcomes of a pair…

  7. Instability of vortex pair leapfrogging

    DEFF Research Database (Denmark)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...

  8. Kramers Pairs in configuration interaction

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2003-01-01

    The theory of symmetry-preserving Kramers pair creation operators is reviewed and formulas for applying these operators to configuration interaction calculations are derived. A new and more general type of symmetry-preserving pair creation operator is proposed and shown to commute with the total...

  9. Stereo Pair: Patagonia, Argentina

    Science.gov (United States)

    2000-01-01

    This view of northern Patagonia, near El Cain, Argentina shows complexly eroded volcanic terrain, with basalt mesas, sinkholes, landslide debris, playas, and relatively few integrated drainage channels. Surrounding this site (but also extending far to the east) is a broad plateau capped by basalt, the Meseta de Somuncura. Here, near the western edge of the plateau, erosion has broken through the basalt cap in a variety of ways. On the mesas, water-filled sinkholes (lower left) are most likely the result of the collapse of old lava tubes. Along the edges of the mesas (several locations) the basalt seems to be sliding away from the plateau in a series of slices. Water erosion by overland flow is also evident, particularly in canyons where vegetation blankets the drainage channels (green patterns, bottom of image). However, overland water flow does not extend very far at any location. This entire site drains to local playas, some of which are seen here (blue). While the water can reach the playas and then evaporate, what becomes of the eroded rock debris? Wind might excavate some of the finer eroded debris, but the fate of much of the missing bedrock remains mysterious.This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7 satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7

  10. NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS

    Institute of Scientific and Technical Information of China (English)

    PENG SHIGE

    2005-01-01

    This paper deals with nonlinear expectations. The author obtains a nonlinear generalization of the well-known Kolmogorov's consistent theorem and then use it to construct filtration-consistent nonlinear expectations via nonlinear Markov chains. Compared to the author's previous results, i.e., the theory of g-expectations introduced via BSDE on a probability space, the present framework is not based on a given probability measure. Many fully nonlinear and singular situations are covered. The induced topology is a natural generalization of Lp-norms and L∞-norm in linear situations.The author also obtains the existence and uniqueness result of BSDE under this new framework and develops a nonlinear type of von Neumann-Morgenstern representation theorem to utilities and present dynamic risk measures.

  11. Transmitting information by controlling nonlinear oscillators

    Science.gov (United States)

    Tôrres, Leonardo A. B.; Aguirre, Luis A.

    2004-09-01

    The transmission of information relying on the perturbation of nonlinear oscillators vector fields can be approached in a unified manner. This can be accomplished by making use of the Information Transmission Via Control principle, which is stated and proved in the present work. In short, this principle establishes that any controller used to identically synchronize pairs of nonlinear oscillators, including chaotic ones as a special case, can be actually employed as demodulator/decoder in the process of information recovery. Other theoretical results related to the practical realization of the ITVC principle are presented and experimental data is provided showing a good agreement with the proposed theory.

  12. Dimensional reduction of nonlinear time delay systems

    Directory of Open Access Journals (Sweden)

    M. S. Fofana

    2005-01-01

    infinite-dimensional problem without the assumption of small time delay. This dimensional reduction is illustrated in this paper with the delay versions of the Duffing and van der Pol equations. For both nonlinear delay equations, transcendental characteristic equations of linearized stability are examined through Hopf bifurcation. The infinite-dimensional nonlinear solutions of the delay equations are decomposed into stable and centre subspaces, whose respective dimensions are determined by the linearized stability of the transcendental equations. Linear semigroups, infinitesimal generators, and their adjoint forms with bilinear pairings are the additional candidates for the infinite-dimensional reduction.

  13. A spectral characterization of nonlinear normal modes

    Science.gov (United States)

    Cirillo, G. I.; Mauroy, A.; Renson, L.; Kerschen, G.; Sepulchre, R.

    2016-09-01

    This paper explores the relationship that exists between nonlinear normal modes (NNMs) defined as invariant manifolds in phase space and the spectral expansion of the Koopman operator. Specifically, we demonstrate that NNMs correspond to zero level sets of specific eigenfunctions of the Koopman operator. Thanks to this direct connection, a new, global parametrization of the invariant manifolds is established. Unlike the classical parametrization using a pair of state-space variables, this parametrization remains valid whenever the invariant manifold undergoes folding, which extends the computation of NNMs to regimes of greater energy. The proposed ideas are illustrated using a two-degree-of-freedom system with cubic nonlinearity.

  14. Parasitic photon-pair suppression via photonic stop-band engineering

    CERN Document Server

    Helt, L G; Liscidini, Marco; Steel, M J

    2016-01-01

    We calculate that an appropriate modification of the field associated with only one of the photons of a photon-pair can suppress generation of the pair entirely. From this general result, we develop a method for suppressing the generation of undesired photon-pairs utilizing photonic stop-bands. For a third-order nonlinear optical source of frequency-degenerate photons we calculate the modified frequency spectrum (joint spectral intensity or JSI) and show a significant increase in a standard metric, the coincidence to accidental ratio (CAR). These results open a new avenue for photon-pair frequency correlation engineering.

  15. Circumventing spontaneous Raman noise in a correlated photon pair source

    Directory of Open Access Journals (Sweden)

    Daniel R. Blay

    2016-12-01

    Full Text Available We propose a dual-pump third-order nonlinear scheme for producing pairs of correlated photons that is less susceptible to Raman noise than typical spontaneous four-wave mixing (SFWM methods. Beginning with the full multimode Hamiltonian, we derive a general expression for the joint spectral amplitude, from which the probability of producing a pair of photons can be calculated. As an example, we demonstrate that a probability of 0.012 pairs per pulse can be achieved in an appropriately designed fused silica microfiber. As compared with single pump SFWM in standard fiber, we calculate that our process shows significant suppression of the spontaneous Raman scattering and an improvement in the signal to noise ratio.

  16. Pair production in short intense laser pulses near threshold

    Energy Technology Data Exchange (ETDEWEB)

    Nousch, Tobias; Seipt, Daniel; Kaempfer, Burkhart [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Titov, Alexander I. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna 141980 (Russian Federation)

    2013-07-01

    We study finite-size effects in the process of e{sup +}e{sup -} pair production via the non-linear Breit-Wheeler process in ultra short laser pulses. Based on the Nikishov-Ritus method we use laser dressed electron and positron wave functions to derive the differential and total pair production cross section, focusing on the effects of a finite pulse duration. For short laser pulses with very few oscillations of the electromagnetic field we find an increase of the pair production rate below the perturbative weak-field threshold. The strong enhancement below the weak-field threshold is traced back to the finite bandwidth of the laser pulse. A folding model accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  17. Nonlinear Dynamics and Optimization of Spur Gears

    Science.gov (United States)

    Pellicano, Francesco; Bonori, Giorgio; Faggioni, Marcello; Scagliarini, Giorgio

    In the present study a single degree of freedom oscillator with clearance type non-linearity is considered. Such oscillator represents the simplest model able to analyze a single teeth gear pair, neglecting: bearings and shafts stiffness and multi mesh interactions. One of the test cases considered in the present work represents an actual gear pair that is part of a gear box of an agricultural vehicle; such gear pair gave rise to noise problems. The main gear pair characteristics (mesh stiffness and inertia) are evaluated after an accurate geometrical modelling. The meshing stiffness of the gear pair is piecewise linear and time varying (in particular periodic); it is evaluated numerically using nonlinear finite element analysis (with contact mechanics) for different positions along one mesh cycle, then it is expanded in Fourier series. A direct numerical integration approach and a smoothing technique have been considered to obtain the dynamic scenario. Bifurcation diagrams of Poincaré maps are plotted according to some sample case study from literature. Optimization procedures are proposed, in order to find optimal involute modifications that reduce gears vibration.

  18. Pairing correlations in exotic nuclei

    CERN Document Server

    Sagawa, H

    2012-01-01

    The BCS and HFB theories which can accommodate the pairing correlations in the ground states of atomic nuclei are presented. As an application of the pairing theories, we investigate the spatial extension of weakly bound Ne and C isotopes by taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method and a 3-body model, respectively. We show that the odd-even staggering in the reaction cross sections of $^{30,31,32}$Ne and $^{14,15,16}$C are successfully reproduced, and thus the staggering can be attributed to the unique role of pairing correlations in nuclei far from the stability line. A correlation between a one-neutron separation energy and the anti-halo effect is demonstrated for $s$- and p-waves using the HFB wave functions. We also propose effective density-dependent pairing interactions which reproduce both the neutron-neutron ($nn$) scattering length at zero density and the neutron pairing gap in uniform matter. Then, we apply these interactions to study pairing gaps in ...

  19. Electron reconstruction with the ATLAS inner detector

    CERN Document Server

    Atkinson, Thomas Martin

    The LHC will produce proton-proton collisions at a centre-of-mass energy of 14 TeV . ATLAS is a general-purpose detector for the LHC, sensitive to a wide range of physics processes. The total LHC production cross-section is dominated by QCD and so the search for rare physics events requires that ATLAS is able to reconstruct and identify leptons with high efficiency and accuracy. Electrons are measured in two ATLAS sub-detectors: the inner tracker reconstructs the trajectories of all charged particles, providing an estimate of the momentum; while the energies of electrons are measured by the electromagnetic calorimeter. The baseline track fitter for the inner detector is the Kalman filter (KF). The KF is optimal only when all measurement errors and material interactions can be described by gaussian probability density functions. Electrons loose energy in matter predominantly through bremsstrahlung, which is a strongly non-gaussian process described by the Bethe-Heitler distribution. In this case, a non-linear ...

  20. Pairing Correlations at High Spins

    Science.gov (United States)

    Ma, Hai-Liang; Dong, Bao-Guo; Zhang, Yan; Fan, Ping; Yuan, Da-Qing; Zhu, Shen-Yun; Zhang, Huan-Qiao; Petrache, C. M.; Ragnarsson, I.; Carlsson, B. G.

    The pairing correcting energies at high spins in 161Lu and 138Nd are studied by comparing the results of the cranked-Nilsson-Strutinsky (CNS) and cranked-Nilsson-Strutinsky-Bogoliubov (CNSB) models. It is concluded that the Coriolis effect rather than the rotational alignment effect plays a major role in the reduction of the pairing correlations in the high spin region. Then we proposed an average pairing correction method which not only better reproduces the experimental data comparing with the CNS model but also enables a clean-cut tracing of the configurations thus the full-spin-range discussion on the various rotating bands.

  1. Exact solution for generalized pairing

    OpenAIRE

    Pan, Feng; J.P. Draayer

    1997-01-01

    An infinite dimensional algebra, which is useful for deriving exact solutions of the generalized pairing problem, is introduced. A formalism for diagonalizing the corresponding Hamiltonian is also proposed. The theory is illustrated with some numerical examples.

  2. Pairing versus quarteting coherence length

    CERN Document Server

    Delion, Doru S

    2015-01-01

    We systematically analyse the coherence length in even-even nuclei. The pairing coherence length in the spin-singlet channel for the effective density dependent delta (DDD) and Gaussian interaction is estimated. We consider in our calculations bound states as well as narrow resonances. It turns out that the pairing gaps given by the DDD interaction are similar to those of the Gaussian potential if one renormalizes the radial width to the nuclear radius. The correlations induced by the pairing interaction have in all considered cases a long range character inside the nucleus and decrease towards the surface. The mean coherence length is larger than the geometrical radius for light nuclei and approaches this value for heavy nuclei. The effect of the temperature and states in continuum is investigated. Strong shell effects are evidenced, especially for protons. We generalize this concept to quartets by considering similar relations, but between proton and neutron pairs. The quartet coherence length has a similar...

  3. Pairing mechanisms for binary stars

    CERN Document Server

    Kouwenhoven, M B N; Goodwin, S P; Zwart, S F Portegies; Kaper, L; 10.1002/asna.200811061

    2008-01-01

    Knowledge of the binary population in stellar groupings provides important information about the outcome of the star forming process in different environments. Binarity is also a key ingredient in stellar population studies and is a prerequisite to calibrate the binary evolution channels. In these proceedings we present an overview of several commonly used methods to pair individual stars into binary systems, which we refer to as the pairing function. Many pairing functions are frequently used by observers and computational astronomers, either for the mathematical convenience, or because they roughly describe the expected outcome of the star forming process. We discuss the consequences of each pairing function for the interpretation of observations and numerical simulations. The binary fraction and mass ratio distribution generally depend strongly on the selection of the range in primary spectral type in a sample. These quantities, when derived from a binary survey with a mass-limited sample of target stars, ...

  4. Atomic pair-state interferometer

    DEFF Research Database (Denmark)

    Nipper, J.; Balewski, Jonathan B.; Krupp, Alexander T.

    2012-01-01

    to measure the phase shift. Although the coupling between pair states is coherent on the time scale of the experiment, a loss of visibility occurs as a pair-state interferometer involves three simultaneously interfering paths and only one of them is phase shifted by the mutual interaction. Despite additional...... dephasing mechanisms, a pulsed Förster coupling sequence allows for observation of coherent dynamics around the Förster resonance....

  5. Dual pairs in fluid dynamics

    CERN Document Server

    Gay-Balmaz, François

    2010-01-01

    This paper is a rigorous study of the dual pair structure of the ideal fluid and the dual pair structure for the $n$-dimensional Camassa-Holm (EPDiff) equation, including the proofs of the necessary transitivity results. In the case of the ideal fluid, we show that a careful definition of the momentum maps leads naturally to central extensions of diffeomorphism groups such as the group of quantomorphisms and the Ismagilov central extension.

  6. Pair programming: more than just working together in pairs.

    Directory of Open Access Journals (Sweden)

    Elsa Mentz

    2012-03-01

    Full Text Available Pair programming originated in the industry where focus is placed on the development of a programme at the most costand time-effective manner, and within the parameters of quality. In this context, a specific programming code is not developed individually; rather, two people work together in order to ensure a higher quality programming code and to motivate each other to work at a faster pace. The problem with this approach was that novice programmers lacked the social skills to work in pairs as they had not been exposed to this sufficiently at tertiary level. The demand of the industry, especially in terms of programmers needing to be able to programme together, led to the incorporation of pair programming at tertiary level in the late nineties. The pedagogical principles on which any teaching-learning strategy should be built were, however, largely overlooked during this process. This article firstly looks into the semantic and ontological differences between co-operative and collaborative learning and secondly argues that pair programming, within the context of a social constructivist approach to teaching and learning, can be seen as a co-operative teaching-learning strategy. Pair programming is more than just allowing two students to work together on a programming task. The more structured way, in which pair programming needs to be implemented, concur with the principles of co-operative learning. The article concludes that the correct pedagogical application of pair programming as a co-operative teaching-learning strategy in tertiary education will result in improved learning capital.

  7. Nonlinear System Identification and Behavioral Modeling

    CERN Document Server

    Huq, Kazi Mohammed Saidul; Kabir, A F M Sultanul

    2010-01-01

    The problem of determining a mathematical model for an unknown system by observing its input-output data pair is generally referred to as system identification. A behavioral model reproduces the required behavior of the original analyzed system, such as there is a one-to-one correspondence between the behavior of the original system and the simulated system. This paper presents nonlinear system identification and behavioral modeling using a work assignment.

  8. Counting pairs of faint galaxies

    CERN Document Server

    Woods, D; Richer, H B; Woods, David; Fahlman, Gregory G; Richer, Harvey B

    1995-01-01

    The number of close pairs of galaxies observed to faint magnitude limits, when compared to nearby samples, determines the interaction or merger rate as a function of redshift. The prevalence of mergers at intermediate redshifts is fundamental to understanding how galaxies evolve and the relative population of galaxy types. Mergers have been used to explain the excess of galaxies in faint blue counts above the numbers expected from no-evolution models. Using deep CFHT (I\\leq24) imaging of a ``blank'' field we find a pair fraction which is consistent with the galaxies in our sample being randomly distributed with no significant excess of ``physical'' close pairs. This is contrary to the pair fraction of 34\\%\\pm9\\% found by Burkey {\\it et al.} for similar magnitude limits and using an identical approach to the pair analysis. Various reasons for this discrepancy are discussed. Colors and morphologies of our close pairs are consistent with the bulk of them being random superpositions although, as indicators of int...

  9. Three carbon pairs in Si

    Energy Technology Data Exchange (ETDEWEB)

    Docaj, A. [Physics Department, Texas Tech University, Lubbock, TX 79409-1051 (United States); Estreicher, S.K., E-mail: Stefan.Estreicher@ttu.edu [Physics Department, Texas Tech University, Lubbock, TX 79409-1051 (United States)

    2012-08-01

    Carbon impurities in Si are common in floating-zone and cast-Si materials. The simplest and most discussed carbon complex is the interstitial-substitutional C{sub i}C{sub s} pair, which readily forms when self-interstitials are present in the material. This pair has three possible configurations, each of which is electrically active. The less common C{sub s}C{sub s} pair has been studied in irradiated material but has also recently been seen in as-grown C-rich cast-Si, which is commonly used to fabricate solar cells. The third pair consists of two interstitial C atoms: C{sub i}C{sub i}. Although its formation probability is low for several reasons, the C{sub i}C{sub i} pair is very stable and electrically inactive. In this contribution, we report preliminary results of first-principles calculations of these three C pairs in Si. The structures, binding energies, vibrational spectra, and electrical activity are predicted.

  10. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  11. Distributed nonlinear optical response

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov

    2005-01-01

    The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...

  12. Noncommutative Nonlinear Supersymmetry

    CERN Document Server

    Nishino, H; Nishino, Hitoshi; Rajpoot, Subhash

    2002-01-01

    We present noncommutative nonlinear supersymmetric theories. The first example is a non-polynomial Akulov-Volkov-type lagrangian with noncommutative nonlinear global supersymmetry in arbitrary space-time dimensions. The second example is the generalization of this lagrangian to Dirac-Born-Infeld lagrangian with nonlinear supersymmetry realized in dimensions D=2,3,4 and 6 (mod 8).

  13. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind P. Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications,the Raman amplification being only one of the recent examples. In this tutorial I review the vario us nonlinear effects occurring in optical fibers from both standpoints..

  14. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind; P.; Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications, the Raman amplification being only one of the recent examples. In this tutorial I review the various nonlinear effects occurring in optical fibers from both standpoints..

  15. Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide

    CERN Document Server

    Lobino, M; Xiong, C; Clark, A S; Bonneau, D; Natarajan, C M; Tanner, M G; Hadfield, R H; Dorenbos, S N; Zijlstra, T; Zwiller, V; Marangoni, M; Ramponi, R; Thompson, M G; Eggleton, B J; O'Brien, J L

    2011-01-01

    We demonstrate photon-pair generation in a reverse proton exchanged waveguide fabricated on a periodically poled magnesium doped stoichiometric lithium tantalate substrate. Detected pairs are generated via a cascaded second order nonlinear process where a pump laser at wavelength of 1.55 $\\mu$m is first doubled in frequency by second harmonic generation and subsequently downconverted around the same spectral region. Pairs are detected at a rate of 42 per second with a coincidence to accidental ratio of 0.7. This cascaded pair generation process is similar to four-wave-mixing where two pump photons annihilate and create a correlated photon pair.

  16. PBH tests for nonlinear systems

    NARCIS (Netherlands)

    Kawano, Yu; Ohtsuka, Toshiyuki

    2017-01-01

    Recently, concepts of nonlinear eigenvalues and eigenvectors are introduced. In this paper, we establish connections between the nonlinear eigenvalues and nonlinear accessibility/observability. In particular, we provide a generalization of Popov- Belevitch-Hautus (PBH) test to nonlinear accessibilit

  17. Nonlinear pulse propagation in birefringent fiber Bragg gratings.

    Science.gov (United States)

    Pereira, S; Sipe, J

    1998-11-23

    We present two sets of equations to describe nonlinear pulse propagation in a birefringent fiber Bragg grating. The first set uses a coupled-mode formalism to describe light in or near the photonic band gap of the grating. The second set is a pair of coupled nonlinear Schroedinger equations. We use these equations to examine viable switching experiments in the presence of birefringence. We show how the birefringence can both aid and hinder device applications.

  18. Superconductivity: The persistence of pairs

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  19. Nonlinear dynamics and complexity

    CERN Document Server

    Luo, Albert; Fu, Xilin

    2014-01-01

    This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

  20. Radical-ion-pair reactions are the biochemical equivalent of the optical double slit experiment

    OpenAIRE

    Kominis, I. K.

    2010-01-01

    Radical-ion-pair reactions were recently shown to represent a rich biophysical laboratory for the application of quantum measurement theory methods and concepts. We here show that radical-ion-pair reactions essentially form a non-linear biochemical double slit interferometer. Quantum coherence effects are visible when "which-path" information is limited, and the incoherent limit is approached when measurement-induced decoherence sets in. Based on this analogy with the optical double slit expe...

  1. Paired structures in knowledge representation

    DEFF Research Database (Denmark)

    Montero, J.; Bustince, H.; Franco de los Ríos, Camilo;

    2016-01-01

    In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here it is clai......In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here...... of paired structures, generated from two paired concepts together with their associated neutrality, all of them to be modeled as fuzzy sets. In this way, paired structures can be viewed as a standard basic model from which different models arise. This unifying view should therefore allow a deeper analysis...

  2. Organometallic frustrated Lewis pair chemistry.

    Science.gov (United States)

    Erker, Gerhard

    2011-08-07

    Frustrated Lewis pairs are playing an increasingly important role in organometallic chemistry. Examples are presented and discussed where organometallic systems themselves serve as the Lewis base or Lewis acid components in frustrated Lewis pair chemistry, mostly through their attached functional groups. Activation of dihydrogen takes place easily in many of these systems. This may lead to the generation of novel catalyst systems but also in many cases to the occurrence of specific reactions at the periphery of the organometallic frameworks. Increasingly, FLP reactions are used to carry out functional group conversions in organometallic systems under mild reaction conditions. The limits of typical FLP reactivity are explored with selected organometallic examples, a discussion that points toward new developments, such as the discovery of facile new 1,1-carboboration reactions. Learning more and more about the broad spectrum of frustrated Lewis pair chemistry helps us to find novel reactions and applications.

  3. Exlusive charmed meson pair production

    CERN Document Server

    Berezhnoy, A V

    2004-01-01

    The experimental data of BELLE Collaboration on the exclusive charmed meson pair production in the process of monophotonic $e^+e^-$-annihilation ($e^+e^-\\to \\gamma^* \\to D\\bar D$) has been studied. It has been shown that these data is described satisfactorily in the frame work of constituent quark model. Our studies have demonstrated that the central production process $e^+e^-\\to e^+e^-\\gamma\\gamma \\to e^+e^-D\\bar D +X$ and the process of monophotonic $e^+e^-$-annihilation yield comparable numbers of the charmed meson pairs.

  4. Instantons in lepton pair production

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, A.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Utermann, A. [Vrije Univ., Amsterdam (Netherlands). Dept. of Physics and Astronomy

    2006-05-15

    We consider QCD instanton-induced contributions to lepton pair production in hadron-hadron collisions. We relate these contributions to those known from deep inelastic scattering and demonstrate that they can be calculated reliably for sufficiently large momentum transfer. We observe that the instanton contribution to the angular distribution of the lepton pairs at finite momentum transfer strongly violates the Lam-Tung relation - a relation between coefficient functions of the angular distribution which is valid within the framework of ordinary perturbation theory. The drastic violation of this relation, as seen in experimental data, might be related to such instanton-induced effects. (Orig.)

  5. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    Antonella Fiacca; Nikolaos Matzakos; Nikolaos S Papageorgiou; Raffaella Servadei

    2001-11-01

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all $\\mathbb{R}$. Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper and lower solutions. Then we drop the requirement that the monotone nonlinearity is defined on all of $\\mathbb{R}$. This case is important because it covers variational inequalities. Using the theory of operators of monotone type we show that the problem has a solution. Finally in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth locally Lipschitz functionals we prove the existence of at least two nontrivial solutions (multiplicity theorem).

  6. Resonant Meta-atoms with Nonlinearities on Demand

    CERN Document Server

    Filonov, Dmitry; Kozlov, Vitali; Malomed, Boris A; Ginzburg, Pavel

    2016-01-01

    Nonlinear light-matter interactions and their applications are constrained by properties of available materials. The use of metamaterials opens the way to achieve precise control over electromagnetic properties at a microscopic level, providing new tools for experimental studies of complex nonlinear phenomena in photonics. Here a doubly resonant nonlinear meta-atom is proposed, analyzed and characterized in the GHz spectral range. The underlying structure is composed of a pair of split rings, resonant at both fundamental and nonlinear frequencies. The rings share a varactor diode, which serves as a microscopic source of nonlinearity. Flexible control over the coupling and near- and far-field patterns are reported, favoring the doubly resonant structure over other realizations. Relative efficiencies of the second and third harmonics, generated by the diode, are tailored by dint of the double-ring geometry, providing a guideline for selecting one frequency against another, using the design of the auxiliary stru...

  7. Crystalline structure and symmetry dependence of acoustic nonlinearity parameters

    Science.gov (United States)

    Cantrell, John H.

    1994-01-01

    A quantitative measure of elastic wave nonlinearity in crystals is provided by the acoustic nonlinearity parameters. The nonlinearity parameters are defined for arbitrary propagation modes for solids of arbitrary crystalline symmetry and are determined along the pure mode propagation directions for 33 crystals of cubic symmetry from data reported in the literature. The magnitudes of the nonlinearity parameters are found to exhibit a strong dependence on the crystalline structure and symmetries associated with the modal direction in the solid. Calculations based on the Born-Mayer potential for crystals having a dominant repulsive contribution to the elastic constants from the interatomic pair potential suggest that the origin of the structure dependence is associated with the shape rather than the strength of the potential. Considerations based on variations in crystal symmetry during loading along pure mode propagation directions of face-centered-cubic solids provide a qualitative explanation for the dependence of the acoustic nonlinearity parameters on modal direction.

  8. Electron pair creation by photons

    NARCIS (Netherlands)

    Holtwijk, Theodoor

    1960-01-01

    In our experiment on the creation of electron pairs a 5 MeV betatron was used as radiation source and a cloud chamber (with magnetic field) was used as detection instrument. The experimental arrangement is described in section 2.1. The cloud chamber was of the overcompression type so that the recove

  9. Pairs of dual periodic frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Goh, Say Song

    2012-01-01

    is needed. The purpose of the present paper is to provide constructions of dual pairs of frames in the setting of the Hilbert space of periodic functions L2(0,2π). The frames constructed are given explicitly as trigonometric polynomials, which allows for an efficient calculation of the coefficients...

  10. Electron pair creation by photons

    NARCIS (Netherlands)

    Holtwijk, Theodoor

    1960-01-01

    In our experiment on the creation of electron pairs a 5 MeV betatron was used as radiation source and a cloud chamber (with magnetic field) was used as detection instrument. The experimental arrangement is described in section 2.1. The cloud chamber was of the overcompression type so that the recove

  11. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  12. Kinetic effects in the transverse filamentation instability of pair plasmas

    Directory of Open Access Journals (Sweden)

    D'Angelo M.

    2015-01-01

    Full Text Available The evolution of the filamentation instability produced by two counter-streaming pair plasmas is studied with particle-in-cell (PIC simulations in both one (1D and two (2D spatial dimensions. Radiation friction effects on particles are taken into account. During the nonlinear stage of the instability, a strong broadening of the particle energy spectrum occurs accompanied by the formation of a peak at twice their initial energy. A simple theory of the peak formation is presented. The presence of radiative losses does not change the dynamics of the instability but affects the structure of the particle spectra.

  13. Wave Localization and Density Bunching in Pair Ion Plasmas

    CERN Document Server

    Mahajan, Swadesh M

    2008-01-01

    By investigating the nonlinear propagation of high intensity electromagnetic (EM) waves in a pair ion plasma, whose symmetry is broken via contamination by a small fraction of high mass immobile ions, it is shown that this new and interesting state of (laboratory created) matter is capable of supporting structures that strongly localize and bunch the EM radiation with density excess in the region of localization. Testing of this prediction in controlled laboratory experiments can lend credence, inter alia, to conjectures on structure formation (via the same mechanism) in the MEV era of the early universe.

  14. Nonlinear Cross Gramians

    Science.gov (United States)

    Ionescu, Tudor C.; Scherpen, Jacquelien M. A.

    We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain linearization results that correspond to the notion of a cross Gramian for symmetric linear systems. Furthermore, first steps towards relations with the singular value functions of the nonlinear Hankel operator are studied and yield promising results.

  15. Nonlinear functional analysis

    Directory of Open Access Journals (Sweden)

    W. L. Fouché

    1983-03-01

    Full Text Available In this article we discuss some aspects of nonlinear functional analysis. It included reviews of Banach’s contraction theorem, Schauder’s fixed point theorem, globalising techniques and applications of homotopy theory to nonlinear functional analysis. The author emphasises that fundamentally new ideas are required in order to achieve a better understanding of phenomena which contain both nonlinear and definite infinite dimensional features.

  16. Nonlinear Electrodynamics and QED

    OpenAIRE

    2003-01-01

    The limits of linear electrodynamics are reviewed, and possible directions of nonlinear extension are explored. The central theme is that the qualitative character of the empirical successes of quantum electrodynamics must be used as a guide for understanding the nature of the nonlinearity of electrodynamics at the subatomic level. Some established theories of nonlinear electrodynamics, namely, those of Mie, Born, and Infeld are presented in the language of the modern geometrical and topologi...

  17. Word pair classification during imagined speech using direct brain recordings

    Science.gov (United States)

    Martin, Stephanie; Brunner, Peter; Iturrate, Iñaki; Millán, José Del R.; Schalk, Gerwin; Knight, Robert T.; Pasley, Brian N.

    2016-05-01

    People that cannot communicate due to neurological disorders would benefit from an internal speech decoder. Here, we showed the ability to classify individual words during imagined speech from electrocorticographic signals. In a word imagery task, we used high gamma (70–150 Hz) time features with a support vector machine model to classify individual words from a pair of words. To account for temporal irregularities during speech production, we introduced a non-linear time alignment into the SVM kernel. Classification accuracy reached 88% in a two-class classification framework (50% chance level), and average classification accuracy across fifteen word-pairs was significant across five subjects (mean = 58% p perception and production. These data represent a proof of concept study for basic decoding of speech imagery, and delineate a number of key challenges to usage of speech imagery neural representations for clinical applications.

  18. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  19. Nonlinear magnetic metamaterials.

    Science.gov (United States)

    Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S

    2008-12-08

    We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission. (c) 2008 Optical Society of America

  20. Organic nonlinear optical materials

    Science.gov (United States)

    Umegaki, S.

    1987-01-01

    Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.

  1. Nonlinearity-reduced interferometer

    Science.gov (United States)

    Wu, Chien-ming

    2007-12-01

    Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as the frequency mixing, polarization mixing, polarization-frequency mixing, and the ghost reflections. An interferometer having accuracy in displacement measurement of less than one-nanometer is necessary in nanometrology. To meet the requirement, the periodic nonlinearity should be less than deep sub-nanometer. In this paper, a nonlinearity-reduced interferometry has been proposed. Both the linear- and straightness-interferometer were tested. The developed interferometer demonstrated of a residual nonlinearity less than 25 pm.

  2. Application of Optimization Techniques to a Nonlinear Problem of Communication Network Design With Nonlinear Constraints

    Science.gov (United States)

    2002-06-01

    IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 1033 Application of Optimization Techniques to a Nonlinear Problem of Communication... IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 We consider J source-destination pairs, each of which is assigned a fixed multihop...blocking probabilities are at the maximum permitted value. IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE

  3. Long wave-short wave resonance in nonlinear negative refractive index media.

    Science.gov (United States)

    Chowdhury, Aref; Tataronis, John A

    2008-04-18

    We show that long wave-short wave resonance can be achieved in a second-order nonlinear negative refractive index medium when the short wave lies on the negative index branch. With the medium exhibiting a second-order nonlinear susceptibility, a number of nonlinear phenomena such as solitary waves, paired solitons, and periodic wave trains are possible or enhanced through the cascaded second-order effect. Potential applications include the generation of terahertz waves from optical pulses.

  4. A Unified and Explicit Construction of N-Soliton Solutions for the Nonlinear Schrfdinger Equation

    Institute of Scientific and Technical Information of China (English)

    FAN En-Gui

    2001-01-01

    An explicit N-fold Darboux transformation with multiparameters for nonlinear Schrodinger equation is constructed with the help of its Lax pairs and a reduction technique. According to this Darboux transformation, the solutions of the nonlinear Schrfdinger equation are reduced to solving a linear algebraic system, from which a unified and explicit formulation of N-soliton solutions with multiparameters for the nonlinear Schrfdinger equation is given.``

  5. Skew Pairs of Idempotents in Transformation Semigroups

    Institute of Scientific and Technical Information of China (English)

    T. S. BLYTH; M. H. ALMEIDA SANTOS

    2006-01-01

    An ordered pair (e, f) of idempotents of a regular semigroup is called a skew pair if ef is not idempotent whereas fe is idempotent. We have shown previously that there are four distinct types of skew pairs of idempotents. Here we investigate the ubiquity of such skew pairs in full transformation semigroups.

  6. Photon pair generation in multimode optical fibers via intermodal phase-matching

    CERN Document Server

    Pourbeyram, Hamed

    2016-01-01

    We present a detailed study of photon-pair generation in a multimode optical fiber via nonlinear four-wave mixing and intermodal phase-matching. We show that in multimode optical fibers, it is possible to generate correlated photon pairs in different fiber modes with large spectral shifts from the pump wavelength, such that the photon pairs are immune to contamination from spontaneous Raman scattering and residual pump photons. We also show that it is possible to generate factorable two-photon states exhibiting minimal spectral correlations between the photon pair components in conventional multimode fibers using commonly available pump lasers. It is also possible to simultaneously generate multiple factorable states from different FWM processes in the same fiber and over a wide range of visible spectrum by varying the pump wavelength without affecting the factorability of the states. Therefore, photon-pair generation in multimode optical fibers exhibits considerable potential for producing state engineered p...

  7. THE HAMILTONIAN SYSTEMS OF THE LCZ HIERARCHY BY NONLINEARIZATION

    Institute of Scientific and Technical Information of China (English)

    Li Lu

    2000-01-01

    In this paper, we first search for the Hamiltonian structure of LCZ hierarchy by use of a trace identity. Then we determine a higher-order constraint condition between the potentials and the eigenfunctions of the LCZ spectral problem, and under this constraint condition, the Lax pairs of LCZ hierarchy are all nonlinearized into the finite-dimensional integrable Hamiltonian systems in Liouville sense.

  8. Background-free nonlinear microspectroscopy with vibrational molecular interferometry

    NARCIS (Netherlands)

    Garbacik, E.T.; Korterik, Jeroen P.; Otto, Cornelis; Mukamel, S.; Herek, Jennifer Lynn; Offerhaus, Herman L.; Periasamy, A.; König, K.; So, P.T.C.

    2012-01-01

    We demonstrate a method for performing nonlinear microspectroscopy that provides an intuitive and unified description of the various signal contributions, and allows the direct extraction of the vibrational response. Three optical fields create a pair of Stokes Raman pathways that interfere in the

  9. Background-Free Nonlinear Microspectroscopy with Vibrational Molecular Interferometry

    NARCIS (Netherlands)

    Garbacik, Erik T.; Korterik, Jeroen P.; Otto, Cees; Mukamel, Shaul; Herek, Jennifer L.; Offerhaus, Herman L.

    2011-01-01

    We demonstrate a method for performing nonlinear microspectroscopy that provides an intuitive and unified description of the various signal contributions, and allows the direct extraction of the vibrational response. Three optical fields create a pair of Stokes Raman pathways that interfere in the s

  10. Sturm-Picone type theorems for nonlinear differential systems

    Directory of Open Access Journals (Sweden)

    Aydin Tiryaki

    2015-06-01

    Full Text Available In this article, we establish a Picone-type inequality for a pair of first-order nonlinear differential systems. By using this inequality, we give Sturm-Picone type comparison theorems for these systems and a special class of second-order half-linear equations with damping term.

  11. Stable Kernel Representations as Nonlinear Left Coprime Factorizations

    NARCIS (Netherlands)

    Paice, A.D.B.; Schaft, A.J. van der

    1994-01-01

    A representation of nonlinear systems based on the idea of representing the input-output pairs of the system as elements of the kernel of a stable operator has been recently introduced. This has been denoted the kernel representation of the system. In this paper it is demonstrated that the kernel

  12. Pairing theory of striped superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Loder, Florian; Kampf, Arno P.; Kopp, Thilo; Graser, Siegfried [Center for Electronic Correlations and Magnetism, Institute of Physics, Augsburg (Germany)

    2011-07-01

    Striped high-T{sub c} superconductors such as La{sub 7/8}Ba{sub 1/8}CuO{sub 4} show a fascinating competition between spin and charge order on the one hand and superconductivity on the other. A theory for these systems therefore has to capture both the spin correlations in an antiferromagnet and the pair-correlation of a superconductor. For this purpose we have developed an effective Hartree-Fock theory by merging electron pairing with finite center-of-mass momentum and antiferromagnetism. We show that this theory reproduces the key experimental features such as the formation of the antiferromagnetic stripe patterns at 7/8 band filling or the quasi one-dimensional electronic structure observed by photoemission spectroscopy.

  13. Collisions of Vortex Filament Pairs

    Science.gov (United States)

    Banica, Valeria; Faou, Erwan; Miot, Evelyne

    2014-12-01

    We consider the problem of collisions of vortex filaments for a model introduced by Klein et al. (J Fluid Mech 288:201-248, 1995) and Zakharov (Sov Phys Usp 31(7):672-674, 1988, Lect. Notes Phys 536:369-385, 1999) to describe the interaction of almost parallel vortex filaments in three-dimensional fluids. Since the results of Crow (AIAA J 8:2172-2179, 1970) examples of collisions are searched as perturbations of antiparallel translating pairs of filaments, with initial perturbations related to the unstable mode of the linearized problem; most results are numerical calculations. In this article, we first consider a related model for the evolution of pairs of filaments, and we display another type of initial perturbation leading to collision in finite time. Moreover, we give numerical evidence that it also leads to collision through the initial model. We finally study the self-similar solutions of the model.

  14. Digital coherent superposition of optical OFDM subcarrier pairs with Hermitian symmetry for phase noise mitigation.

    Science.gov (United States)

    Yi, Xingwen; Chen, Xuemei; Sharma, Dinesh; Li, Chao; Luo, Ming; Yang, Qi; Li, Zhaohui; Qiu, Kun

    2014-06-02

    Digital coherent superposition (DCS) provides an approach to combat fiber nonlinearities by trading off the spectrum efficiency. In analogy, we extend the concept of DCS to the optical OFDM subcarrier pairs with Hermitian symmetry to combat the linear and nonlinear phase noise. At the transmitter, we simply use a real-valued OFDM signal to drive a Mach-Zehnder (MZ) intensity modulator biased at the null point and the so-generated OFDM signal is Hermitian in the frequency domain. At receiver, after the conventional OFDM signal processing, we conduct DCS of the optical OFDM subcarrier pairs, which requires only conjugation and summation. We show that the inter-carrier-interference (ICI) due to phase noise can be reduced because of the Hermitain symmetry. In a simulation, this method improves the tolerance to the laser phase noise. In a nonlinear WDM transmission experiment, this method also achieves better performance under the influence of cross phase modulation (XPM).

  15. Septin pairs, a complex choreography.

    Science.gov (United States)

    Ewers, Helge

    2011-06-13

    Septins form a filamentous collar at the mother-bud neck in budding yeast. In cytokinesis, this collar splits into two rings and the septin complexes undergo a dramatic reorientation. Using fluorescence polarization microscopy, DeMay et al. (2011. J. Cell Biol. doi:10.1083/jcb.201012143) now demonstrate that septin complexes assemble as paired filaments in vivo and reveal new insights into septin organization during cytokinesis.

  16. Triplet Pairing in Neutron Matter

    CERN Document Server

    Khodel, V V; Clark, J W

    2001-01-01

    The separation method developed earlier by us [Nucl. Phys. {\\bf A598} 390 (1996)] to calculate and analyze solutions of the BCS gap equation for $^1$S$_0$ pairing is extended and applied to $^3$P$_2$--$^3$F$_2$ pairing in pure neutron matter. The pairing matrix elements are written as a separable part plus a remainder that vanishes when either momentum variable is on the Fermi surface. This decomposition effects a separation of the problem of determining the dependence of the gap components in a spin-angle representation on the magnitude of the momentum (described by a set of functions independent of magnetic quantum number) from the problem of determining the dependence of the gap on angle or magnetic projection. The former problem is solved through a set of nonsingular, quasilinear integral equations, providing inputs for solution of the latter problem through a coupled system of algebraic equations for a set of numerical coefficients. An incisive criterion is given for finding the upper critical density fo...

  17. Morse theory and stable pairs

    CERN Document Server

    Wentworth, Richard A

    2010-01-01

    We study the Morse theory of the Yang-Mills-Higgs functional on the space of pairs $(A,\\Phi)$, where $A$ is a unitary connection on a rank 2 hermitian vector bundle over a compact Riemann surface, and $\\Phi$ is a holomorphic section of $(E, d_A")$. We prove that a certain explicitly defined substratification of the Morse stratification is perfect in the sense of $\\G$-equivariant cohomology, where $\\G$ denotes the unitary gauge group. As a consequence, Kirwan surjectivity holds for pairs. It also follows that the twist embedding into higher degree induces a surjection on equivariant cohomology. This may be interpreted as a rank 2 version of the analogous statement for symmetric products of Riemann surfaces. Finally, we compute the $\\G$-equivariant Poincar\\'e polynomial of the space of $\\tau$-semistable pairs. In particular, we recover an earlier result of Thaddeus. The analysis provides an interpretation of the Thaddeus flips in terms of a variation of Morse functions.

  18. Mediators of homologous DNA pairing.

    Science.gov (United States)

    Zelensky, Alex; Kanaar, Roland; Wyman, Claire

    2014-10-09

    Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. Lasers for nonlinear microscopy.

    Science.gov (United States)

    Wise, Frank

    2013-03-01

    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  20. Nonlinear optical materials.

    Science.gov (United States)

    Eaton, D F

    1991-07-19

    The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.

  1. Estimating nonlinear models

    Science.gov (United States)

    Billings, S. A.

    1988-03-01

    Time and frequency domain identification methods for nonlinear systems are reviewed. Parametric methods, prediction error methods, structure detection, model validation, and experiment design are discussed. Identification of a liquid level system, a heat exchanger, and a turbocharge automotive diesel engine are illustrated. Rational models are introduced. Spectral analysis for nonlinear systems is treated. Recursive estimation is mentioned.

  2. Nonlinear Cross Gramians

    NARCIS (Netherlands)

    Ionescu, T. C.; Scherpen, J. M. A.; Korytowski, A; Malanowski, K; Mitkowski, W; Szymkat, M

    2009-01-01

    We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain

  3. Engineered nonlinear lattices

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Christiansen, Peter Leth; Torner, L.

    1999-01-01

    We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear...

  4. Controllability in nonlinear systems

    Science.gov (United States)

    Hirschorn, R. M.

    1975-01-01

    An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.

  5. Nonlinear Maneuver Autopilot

    Science.gov (United States)

    Menon, P. K. A.; Badgett, M. E.; Walker, R. A.

    1992-01-01

    Trajectory-control laws based on singular-perturbation theory and nonlinear dynamical modeling. Nonlinear maneuver autopilot commands flight-test trajectories of F-15 airplane. Underlying theory of controller enables separation of variables processed in fast and slow control loops, reducing amount of computation required.

  6. Nonlinear optics and photonics

    CERN Document Server

    He, Guang S

    2015-01-01

    This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...

  7. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  8. Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2010-10-15

    Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters

  9. Charge Aspects of Composite Pair Superconductivity

    Science.gov (United States)

    Flint, Rebecca

    2014-03-01

    Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.

  10. Pair Tunneling through Single Molecules

    Science.gov (United States)

    Raikh, Mikhail

    2007-03-01

    Coupling to molecular vibrations induces a polaronic shift, and can lead to a negative charging energy, U. For negative U, the occupation of the ground state of the molecule is even. In this situation, virtual pair transitions between the molecule and the leads can dominate electron transport. At low temperature, T, these transitions give rise to the charge-Kondo effect [1]. We developed the electron transport theory through the negative-U molecule [2] at relatively high T, when the Kondo correlations are suppressed. Two physical ingredients distinguish our theory from the transport through a superconducting grain coupled to the normal leads [3]: (i) in parallel with sequential pair-tunneling processes, single-particle cotunneling processes take place; (ii) the electron pair on the molecule can be created (or annihilated) by two electrons tunneling in from (or out to) opposite leads. We found that, even within the rate-equation description, the behavior of differential conductance through the negative-U molecule as function of the gate voltage is quite peculiar: the height of the peak near the degeneracy point is independent of temperature, while its width is proportional to T. This is in contrast to the ordinary Coulomb-blockade conductance peak, whose integral strength is T-independent. At finite source-drain bias, V>>T, the width of the conductance peak is ˜V, whereas the conventional Coulomb-blockade peak at finite V splits into two sharp peaks at detunings V/2, and -V/2. Possible applications to the gate-controlled current rectification and switching will be discussed. [1] A. Taraphder and P. Coleman, Phys. Rev. Lett. 66, 2814 (1991). [2] J. Koch, M. E. Raikh, and F. von Oppen, Phys. Rev. Lett. 96, 056803 (2006). [3] F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R. I. Shekhter, Phys. Rev. Lett. 70, 4138 (1993).

  11. Nonlinear Energy Collimation System for Linear Colliders

    CERN Document Server

    Resta-Lopez, Javier

    2011-01-01

    The post-linac energy collimation system of multi-TeV linear colliders is designed to fulfil an important function of protection of the Beam Delivery System (BDS) against miss-steered beams likely generated by failure modes in the main linac. For the case of the Compact Linear Collider (CLIC), the energy collimators are required to withstand the impact of a full bunch train in case of failure. This is a very challenging task, assuming the nominal CLIC beam parameters at 1.5 TeV beam energy. The increase of the transverse spot size at the collimators using nonlinear magnets is a potential solution to guarantee the survival of the collimators. In this paper we present an alternative nonlinear optics based on a skew sextupole pair for energy collimation. Performance simulation results are also presented.

  12. A Simple Holographic Model of Nonlinear Conductivity

    CERN Document Server

    Horowitz, Gary T; Santos, Jorge E

    2013-01-01

    We present a simple analytic gravitational solution which describes the holographic dual of a 2+1-dimensional conductor which goes beyond the usual linear response. In particular it includes Joule heating. We find that the nonlinear frequency-dependent conductivity is a constant. Surprisingly, the pressure remains isotropic. We also apply an electric field to a holographic insulator and show that there is a maximum electric field below which it can remain an insulator. Above this critical value, we argue that it becomes a conductor due to pair creation of charged particles. Finally, we study 1+1 and 3+1 dimensional conductors at the nonlinear level; here exact solutions are not available and a perturbative analysis shows that the current becomes time dependent, but in a way that is captured by a time-dependent effective temperature.

  13. 3-D nonlinear evolution of MHD instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, G.; Hicks, H. R.; Wooten, J. W.

    1977-03-01

    The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed.

  14. Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response

    CERN Document Server

    Bovino, F A; Sibilia, C; Giardina, M; Váró, G; Gergely, C

    2011-01-01

    We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under "off resonance" femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.

  15. Endocrine factors of pair bonding.

    Science.gov (United States)

    Stárka, L

    2007-01-01

    Throughout literature--fiction and poetry, fine arts and music--falling in love and enjoying romantic love plays a central role. While several psychosocial conceptions of pair attachment consider the participation of hormones, human endocrinology has dealt with this theme only marginally. According to some authors in addictology, falling in love shows some signs of hormonal response to stressors with changes in dopamine and serotonin signalling and neurotrophin (transforming growth factor b) concentration. Endorphins, oxytocin and vasopressin may play a role during the later phases of love. However, proof of hormonal events associated with love in humans has, until recently, been lacking.

  16. Top pair production at ATLAS

    Directory of Open Access Journals (Sweden)

    Loginov Andrey

    2013-05-01

    Full Text Available An overview of latest ATLAS measurements of top pair (tt̅ production in proton-proton collisions at the LHC at centre-of-mass energies of 7 and 8 TeV is presented. Measurements of the tt̅ production cross section (σtt̅ in various decay channels, including analyses of differential σtt̅ distributions and a study of jet multiplicity in tt̅ production, as well as searches for tt̅ resonances using boosted top techniques and standard methods, are discussed.

  17. Nonlinear cochlear mechanics.

    Science.gov (United States)

    Zweig, George

    2016-05-01

    An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis.

  18. Filipino au pairs on the move

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2016-01-01

    Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial interdep......Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial...

  19. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind P

    2001-01-01

    The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical

  20. Will Nonlinear Backcalculation Help?

    DEFF Research Database (Denmark)

    Ullidtz, Per

    2000-01-01

    demonstrates, that treating the subgrade as a nonlinear elastic material, can result in more realistic moduli and a much better agreement between measured and calculated stresses and strains.The response of nonlinear elastic materials can be calculated using the Finite Element Method (FEM). A much simpler...... approach is to use the Method of Equivalent Thicknesses (MET), modified for a nonlinear subgrade. The paper includes an example where moduli backcalculated using FEM, linear elastic theory and MET are compared. Stresses and strains predicted by the three methods are also compared to measured values...

  1. Nonlinear graphene metamaterial

    CERN Document Server

    Nikolaenko, Andrey E; Atmatzakis, Evangelos; Luo, Zhiqiang; Shen, Ze Xiang; De Angelis, Francesco; Boden, Stuart A; Di Fabrizio, Enzo; Zheludev, Nikolay I

    2012-01-01

    We demonstrate that the broadband nonlinear optical response of graphene can be resonantly enhanced by more than an order of magnitude through hybridization with a plasmonic metamaterial,while retaining an ultrafast nonlinear response time of ~1 ps. Transmission modulation close to ~1% is seen at a pump uence of ~0.03 mJ/cm^2 at the wavelength of ~1600 nm. This approach allows to engineer and enhance graphene's nonlinearity within a broad wavelength range enabling applications in optical switching, mode-locking and pulse shaping.

  2. Nonlinear Excitation in a Ferrimagnetic Zigzag Chain

    Institute of Scientific and Technical Information of China (English)

    王为忠

    2003-01-01

    We study the nonlinear excitation(solitons)in a ferrimagnetic polymer chain by using a total Hamiltonian consisting of Su-Schrieffer-Heeger Hamiltonian and a Hubbard term.At half-filling,the distortion of lattices forms domain wall solitons,while the spin configuration forms envelope solitons.The soliton pair is obtained in a range of the electron-electron(e-e)interaction U,which depends on the electron-phonon(e-ph)interaction.The spin solitons corresponding to the left domain wall and the right domain wall of the displacement are quite different.

  3. Critical concentration of ion-pairs formation in nonpolar media.

    Science.gov (United States)

    Dukhin, Andrei

    2014-07-01

    It is known that nonpolar liquids can be ionized by adding surfactants, either ionic or nonionic. Surfactant molecules serve as solvating agents, building inverse micelles around ions, and preventing their association back into neutral molecules. According to the Bjerrum-Onsager-Fuoss theory, these inverse micelle ions should form "ion pairs." This, in turn, leads to nonlinear dependence of the conductivity on the concentration. Surprisingly, ionic surfactants exhibit linear conductivity dependence, which implies that these inverse micelle ions do not form ion pairs. Theory predicts the existence of two ionic strength ranges, which are separated by a certain critical ion concentration. Ionic strength above the critical one is proportional to the square root of the ion concentration, whereas it becomes linear below the critical concentration. Critical ion concentration lies within the range of 10(-11) -10(-7) mol/L when ion size ranges from 1 to 3 nm. Critical ion concentration is related, but not equal, to a certain surfactant concentration (critical concentration of ion-pairs formation (CIPC)) because only a fraction of the surfactant molecules is incorporated into the micelles ions. The linear conductivity dependence for ionic surfactants indicates that the corresponding CIPC is above the range of studied concentrations, perhaps, due to rather large ion size. The same linearity is a sign that charged inverse micelles structure and fraction are concentration independent due to strong charge-dipole interaction in the charge micelle core. This also proves that CIPC is independent of critical concentration of micelle formation. Nonionic surfactants, on the other hand, exhibit nonlinear conductivity dependence apparently due to smaller ion sizes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Coupled parametric processes in binary nonlinear photonic structures

    CERN Document Server

    Saygin, M Yu

    2016-01-01

    We study parametric interactions in a new type of nonlinear photonic structures, which is realized in the vicinity of a pair of nonlinear crystals. In this kind of structure, which we call binary, multiple nonlinear optical processes can be implemented simultaneously, owing to multiple phase-matching conditions, fulfilled separately in the constituent crystals. The coupling between the nonlinear processes by means of modes sharing similar frequency is attained by the spatially-broadband nature of the parametric fields. We investigate the spatial properties of the fields generated in the binary structure constructed from periodically poled crystals for the two examples: 1) single parametric down-conversion, and 2) coupled parametric down-conversion and up-conversion processes. The efficacy of the fields' generation in these examples is analyzed through comparison with the cases of traditional single periodically poled crystal and aperiodic photonic structure, respectively. It has been shown that the relative s...

  5. Bound Polaron Pair Formation in Poly (phenylenevinylenes)

    Science.gov (United States)

    Rothberg, Lewis

    The following sections are included: * INTRODUCTION * PHOTOGENERATED YIELD OF SINGLET EXCITONS * AGGREGRATION EFFECTS ON EXCITED STATE PHOTO-GENERATION * ASSIGNMENT TO BOUND POLARON PAIRS AND DISCUSSION * PROBLEMS WITH THE BOUND POLARON PAIR PICTURE AND CONCLUSION * REFERENCES

  6. Multipolar nonlinear nanophotonics

    CERN Document Server

    Smirnova, Daria

    2016-01-01

    Nonlinear nanophotonics is a rapidly developing field with many useful applications for a design of nonlinear nanoantennas, light sources, nanolasers, sensors, and ultrafast miniature metadevices. A tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost nonlinear optical effects, thus offering versatile opportunities for subwavelength control of light. To achieve the desired functionalities, it is essential to gain flexible control over the near- and far-field properties of nanostructures. Thus, both modal and multipolar analyses are widely exploited for engineering nonlinear scattering from resonant nanoscale elements, in particular for enhancing the near-field interaction, tailoring the far-field multipolar interference, and optimization of the radiation directionality. Here, we review the recent advances in this recently emerged research field ranging from metallic structures exhibiting localized plasmonic resonances to hybrid metal-dielectric and all-dielectric...

  7. Solitons in nonlinear lattices

    CERN Document Server

    Kartashov, Yaroslav V; Torner, Lluis

    2010-01-01

    This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions c...

  8. Nonlinear plasmonic antennas

    Directory of Open Access Journals (Sweden)

    Shakeeb Bin Hasan

    2014-12-01

    Full Text Available Contrary to traditional optical elements, plasmonic antennas made from nanostructured metals permit the localization of electromagnetic fields on length scales much smaller than the wavelength of light. This results in huge amplitudes for the electromagnetic field close to the antenna being conducive for the observation of nonlinear effects already at moderate pump powers. Thus, these antennas exhibit a promising potential to achieve optical frequency conversion and all-optical control of light at the nano-scale. This opens unprecedented opportunities for ultrafast nonlinear spectroscopy, sensing devices, on-chip optical frequency conversion, nonlinear optical metamaterials, and novel photon sources. Here, we review some of the recent advances in exploiting the potential of plasmonic antennas to realize robust nonlinear applications.

  9. Ultrafast nonlinear optics

    CERN Document Server

    Leburn, Christopher; Reid, Derryck

    2013-01-01

    The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...

  10. Nonlinear Source Emulator

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem

    and remains the prime source of energy in non-terrestrial applications such as those in sky-explorers. However, a renewable energy source is expensive, bulky, and its performance is weather dependent, which make testing of downstream converters very difficult. As a result, a nonlinear source emulator (NSE......) is a good solution to solve the problems associated with the use of real nonlinear sources in testing phases. However, a recent technical survey conducted during this work shows that most existing NSEs have only been concerned with simulating nonlinear systems in terrestrial applications. Furthermore......, their dynamic performance were not fast enough in order to imitate how a real nonlinear energy source would react under extreme conditions and operation modes. Particularly, a system in the sky can experience a step change of sunlight irradiation. Moreover, operation modes may include load step between nominal...

  11. Introduction to nonlinear science

    CERN Document Server

    Nicolis, G

    1995-01-01

    One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...

  12. Nonlinear magnetoinductive transmission lines

    CERN Document Server

    Lazarides, Nikos; Tsironis, G P

    2011-01-01

    Power transmission in one-dimensional nonlinear magnetic metamaterials driven at one end is investigated numerically and analytically in a wide frequency range. The nonlinear magnetic metamaterials are composed of varactor-loaded split-ring resonators which are coupled magnetically through their mutual inductances, forming thus a magnetoiductive transmission line. In the linear limit, significant power transmission along the array only appears for frequencies inside the linear magnetoinductive wave band. We present analytical, closed form solutions for the magnetoinductive waves transmitting the power in this regime, and their discrete frequency dispersion. When nonlinearity is important, more frequency bands with significant power transmission along the array may appear. In the equivalent circuit picture, the nonlinear magnetoiductive transmission line driven at one end by a relatively weak electromotive force, can be modeled by coupled resistive-inductive-capacitive (RLC) circuits with voltage-dependent cap...

  13. Optimization under Nonlinear Constraints

    OpenAIRE

    1982-01-01

    In this paper a timesaving method is proposed for maximizing likelihood functions when the parameter space is subject to nonlinear constraints, expressible as second order polynomials. The suggested approach is especially attractive when dealing with systems with many parameters.

  14. Nonlinearity in nanomechanical cantilevers

    DEFF Research Database (Denmark)

    Villanueva Torrijo, Luis Guillermo; Karabalin, R. B.; Matheny, M. H.

    2013-01-01

    Euler-Bernoulli beam theory is widely used to successfully predict the linear dynamics of micro-and nanocantilever beams. However, its capacity to characterize the nonlinear dynamics of these devices has not yet been rigorously assessed, despite its use in nanoelectromechanical systems development....... These findings underscore the delicate balance between inertial and geometric nonlinear effects in the fundamental mode, and strongly motivate further work to develop theories beyond the Euler-Bernoulli approximation. DOI: 10.1103/PhysRevB.87.024304....... In this article, we report the first highly controlled measurements of the nonlinear response of nanomechanical cantilevers using an ultralinear detection system. This is performed for an extensive range of devices to probe the validity of Euler-Bernoulli theory in the nonlinear regime. We find that its...

  15. Nonlinear Stokes Mueller Polarimetry

    CERN Document Server

    Samim, Masood; Barzda, Virginijus

    2015-01-01

    The Stokes Mueller polarimetry is generalized to include nonlinear optical processes such as second- and third-harmonic generation, sum- and difference-frequency generations. The overall algebraic form of the polarimetry is preserved, where the incoming and outgoing radiations are represented by column vectors and the intervening medium is represented by a matrix. Expressions for the generalized nonlinear Stokes vector and the Mueller matrix are provided in terms of coherency and correlation matrices, expanded by higher-dimensional analogues of Pauli matrices. In all cases, the outgoing radiation is represented by the conventional $4\\times 1$ Stokes vector, while dimensions of the incoming radiation Stokes vector and Mueller matrix depend on the order of the process being examined. In addition, relation between nonlinear susceptibilities and the measured Mueller matrices are explicitly provided. Finally, the approach of combining linear and nonlinear optical elements is discussed within the context of polarim...

  16. Fision: Nucleon pair breaking before scission

    OpenAIRE

    Montoya, Modesto

    1984-01-01

    In order to explain the odd-even effect observed in low energy fission fragment distributions it has been recently required a double mechanism of nucleon pair breaking: before scission (early pair breaking) and at scission (late pair breaking), respectively. In the present work we show that, using the same formulae but considering only the early pair breaking mechanism, one can reproduce fairly well all the available experimental data on the odd-even effects.

  17. Adaptive and Nonlinear Control

    Science.gov (United States)

    1992-02-29

    in [22], we also applied the concept of zero dynamics to the problem of exact linearization of a nonlinear control system by dynamic feedback. Exact ...nonlinear systems, although it was well-known that the conditions for exact linearization are very stringent and consequently do not apply to a broad...29th IEEE Conference n Decision and Control, Invited Paper delivered by Dr. Gilliam. Exact Linearization of Zero Dynamics, 29th IEEE Conference on

  18. Nonlinear Optics and Turbulence

    Science.gov (United States)

    1992-10-01

    currently at Queen Mary College, London Patrick Dunne, (Ph.D., 1987, M.I.T., Hydrodynamic Stability, Nonlinear Waves), 1987-1988. Alecsander Dyachenko...U I I I U I I 3 9 3 V. BIOGRAPHIES A. FACULTY BRUCE BAYLY, 31, Ph.D. 1986, Princeton University. Postdoctoral visiting member 1986-88 at Courant...Caputo, A. C. Newell, and M. Shelley , "Nonlinear Wave Propagation Through a Random Medium and Soliton Tunneling", Integrable Systems and

  19. Robust Nonlinear Neural Codes

    Science.gov (United States)

    Yang, Qianli; Pitkow, Xaq

    2015-03-01

    Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.

  20. Nonlinear Multiantenna Detection Methods

    Directory of Open Access Journals (Sweden)

    Chen Sheng

    2004-01-01

    Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.

  1. Nonlinear systems in medicine.

    Science.gov (United States)

    Higgins, John P

    2002-01-01

    Many achievements in medicine have come from applying linear theory to problems. Most current methods of data analysis use linear models, which are based on proportionality between two variables and/or relationships described by linear differential equations. However, nonlinear behavior commonly occurs within human systems due to their complex dynamic nature; this cannot be described adequately by linear models. Nonlinear thinking has grown among physiologists and physicians over the past century, and non-linear system theories are beginning to be applied to assist in interpreting, explaining, and predicting biological phenomena. Chaos theory describes elements manifesting behavior that is extremely sensitive to initial conditions, does not repeat itself and yet is deterministic. Complexity theory goes one step beyond chaos and is attempting to explain complex behavior that emerges within dynamic nonlinear systems. Nonlinear modeling still has not been able to explain all of the complexity present in human systems, and further models still need to be refined and developed. However, nonlinear modeling is helping to explain some system behaviors that linear systems cannot and thus will augment our understanding of the nature of complex dynamic systems within the human body in health and in disease states.

  2. Drift wave in pair-ion plasma

    Indian Academy of Sciences (India)

    Samiran Ghosh; Nikhil Chakrabarti; Manoranjan Khan; M R Gupta

    2013-02-01

    The conditions for the existence of low-frequency electrostatic drift wave in pair-ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.

  3. On one-sided torsion pair

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Motivated by the concept of a torsion pair in a pre-triangulated category induced by Beligiannis and Reiten, the notion of a left (right) torsion pair in the left (right) triangulated category is introduced and investigated. We provide new connections between different aspects of torsion pairs in one-sided triangulated categories, pre-triangulated categories, stable categories and derived categories.

  4. Homolog pairing and segregation in Drosophila meiosis.

    Science.gov (United States)

    McKee, B D

    2009-01-01

    Pairing of homologous chromosomes is fundamental to their reliable segregation during meiosis I and thus underlies sexual reproduction. In most eukaryotes homolog pairing is confined to prophase of meiosis I and is accompanied by frequent exchanges, known as crossovers, between homologous chromatids. Crossovers give rise to chiasmata, stable interhomolog connectors that are required for bipolar orientation (orientation to opposite poles) of homologs during meiosis I. Drosophila is unique among model eukaryotes in exhibiting regular homolog pairing in mitotic as well as meiotic cells. I review the results of recent molecular studies of pairing in both mitosis and meiosis in Drosophila. These studies show that homolog pairing is continuous between pre-meiotic mitosis and meiosis but that pairing frequencies and patterns are altered during the mitotic-meiotic transition. They also show that, with the exception of X-Y pairing in male meiosis, which is mediated specifically by the 240-bp rDNA spacer repeats, chromosome pairing is not restricted to specific sites in either mitosis or meiosis. Instead, virtually all chromosome regions, both heterochromatic and euchromatic, exhibit autonomous pairing capacity. Mutations that reduce the frequencies of both mitotic and meiotic pairing have been recently described, but no mutations that abolish pairing completely have been discovered, and the genetic control of pairing in Drosophila remains to be elucidated.

  5. Handbook of nonlinear optical crystals

    CERN Document Server

    Dmitriev, Valentin G; Nikogosyan, David N

    1991-01-01

    This Handbook of Nonlinear Optical Crystals provides a complete description of the properties and applications of nonlinear crystals In addition, it presents the most important equations for calculating the main parameters of nonlinear frequency converters This comprehensive reference work will be of great value to all scientists and engineers working in nonlinear optics, quantum electronics and laser physics

  6. QUANTUM CRYPTOGRAPHY WITH PHOTON PAIRS

    Directory of Open Access Journals (Sweden)

    Anand Sharma,

    2010-07-01

    Full Text Available Quantum cryptographic systems use quantum mechanical concepts that are based on qubit superposition of states, and on the no cloning or no copying theorem to establish unbreakable cipher keys. The basic idea of quantum cryptography is to send the key in the form of photons over a public channel, encoding the zeros and one on quantum states in such a way that any eavesdropping attempt can be detected. Using optical communications the most commonly quantum mechanical property used is the polarization state of photon. However, in most quantum cryptographic algorithms a random polarization state is required. The photons are ideal for low loss transport, either in free space or in optical fibers, i.e. we have the full arsenal of fiber optic technology at our disposal. In this paper we are describing the process of quantum cryptography with photon pairs.

  7. Perturbations of vortex ring pairs

    CERN Document Server

    Gubser, Steven S; Parikh, Sarthak

    2015-01-01

    We study pairs of co-axial vortex rings starting from the action for a classical bosonic string in a three-form background. We complete earlier work on the phase diagram of classical orbits by explicitly considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into two-dimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur. When the circulations have the opposite sign, larger wavelength instabilities can occur.

  8. Paired states on a torus

    Energy Technology Data Exchange (ETDEWEB)

    Cristofano, Gerardo E-mail: gerardo.cristofano@na.infn.it; Maiella, Giuseppe E-mail: giuseppe.maiella@na.infn.it; Marotta, Vincenzo E-mail: vincenzo.marotta@na.infn.it; Niccoli, Giuliano E-mail: giuliano.niccoli@na.infn.it

    2002-10-14

    We analyze the modular properties of the effective CFT description for paired states, proposed in G. Cristofano, G. Maiella, V. Marrota, Mod. Phys. Lett. A 15 (2000) 1679, corresponding to the non-standard filling {nu}=((1)/(p+1)). We construct its characters for the twisted and the untwisted sector and the diagonal partition function. We show that the degrees of freedom entering our partition function naturally go to complete a Z{sub 2}-orbifold construction of the CFT for the Halperin state. Different behaviours for the p even and p odd cases are also studied. Finally it is shown that the tunneling phenomenon selects out a twist invariant CFT which is identified with the Moore-Read model.

  9. Nonlinear Approaches in Engineering Applications

    CERN Document Server

    Jazar, Reza

    2012-01-01

    Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...

  10. The identification of physical close galaxy pairs

    CERN Document Server

    Soares, D S L

    2007-01-01

    A classification scheme for close pairs of galaxies is proposed. The scheme is motivated by the fact that the majority of apparent close pairs are in fact wide pairs in three-dimensional space. This is demonstrated by means of numerical simulations of random samples of binary galaxies and the scrutiny of the resulting projected and spatial separation distributions. Observational strategies for classifying close pairs according to the scheme are suggested. As a result, physical -- i.e., bound and spatially -- close pairs are identified.

  11. Pairing correlations and transitions in nuclear systems

    CERN Document Server

    Belic, A; Hjorth-Jensen, M

    2004-01-01

    We discuss several pairing-related phenomena in nuclear systems, ranging from superfluidity in neutron stars to the gradual breaking of pairs in finite nuclei. We describe recent experimental evidence that points to a relation between pairing and phase transitions (or transformations) in finite nuclear systems. A simple pairing interaction model is used in order to study and classify an eventual pairing phase transition in finite fermionic systems such as nuclei. We show that systems with as few as 10-16 fermions can exhibit clear features reminiscent of a phase transition.

  12. Factors affecting home range of mallard pairs

    Energy Technology Data Exchange (ETDEWEB)

    Riechmann, J.H.

    1976-06-01

    Certain habitat and social factors were investigated for their effect on home range size of mallard (Anas platyhynchos) pairs breeding in a forested region of north-central Minnesota during the spring of 1971--72. Data from 31 radio-marked hens and drakes were used, but primary emphasis was placed on 8 pairs (5 with both members of the pair marked). Pairs were radio-tracked on river marsh areas, river channels, and large sand lakes to provide comparative data for evaluating home range size differences. Home ranges varied from an average of 53 ha for pairs using primarily river habitat to 871 ha for pairs using only large sand lakes. River and lake shorelines varied considerably in species and density of vegetation. Interaction between pairs as well as density of flocked males appeared to be influenced by these habitat differences with resultant effects on home range sizes.

  13. On Minus Paired-Domination in Graphs

    Institute of Scientific and Technical Information of China (English)

    邢化明; 孙良

    2003-01-01

    The study of minus paired-domination of a graph G=(V,E) is initiated. Let SV be any paired-dominating set of G, a minus paired-dominating function is a function of the form f∶V→{-1,0,1} such that f(v)=1 for v∈S, f(v)≤0 for v∈V-S, and f(N[v])≥1 for all v∈V. The weight of a minus paired-dominating function f is w(f)=∑f(v), over all vertices v∈V. The minus paired-domination number of a graph G is γ-p(G)=min{w(f)|f is a minus paired-dominating function of G}. On the basis of the minus paired-domination number of a graph G defined, some of its properties are discussed.

  14. N-H Stretching Excitations in Adenosine-Thymidine Base Pairs in Solution: Base Pair Geometries, Infrared Line Shapes and Ultrafast Vibrational Dynamics

    Science.gov (United States)

    Greve, Christian; Preketes, Nicholas K.; Fidder, Henk; Costard, Rene; Koeppe, Benjamin; Heisler, Ismael A.; Mukamel, Shaul; Temps, Friedrich; Nibbering, Erik T. J.; Elsaesser, Thomas

    2013-01-01

    We explore the N-H stretching vibrations of adenosine-thymidine base pairs in chloroform solution with linear and nonlinear infrared spectroscopy. Based on estimates from NMR measurements and ab initio calculations, we conclude that adenosine and thymidine form hydrogen bonded base pairs in Watson-Crick, reverse Watson-Crick, Hoogsteen and reverse Hoogsteen configurations with similar probability. Steady-state concentration- and temperature dependent linear FT-IR studies, including H/D exchange experiments, reveal that these hydrogen-bonded base pairs have complex N-H/N-D stretching spectra with a multitude of spectral components. Nonlinear 2D-IR spectroscopic results, together with IR-pump-IR-probe measurements, as also corroborated by ab initio calculations, reveal that the number of N-H stretching transitions is larger than the total number of N-H stretching modes. This is explained by couplings to other modes, such as an underdamped low-frequency hydrogen-bond mode, and a Fermi resonance with NH2 bending overtone levels of the adenosine amino-group. Our results demonstrate that modeling based on local N-H stretching vibrations only is not sufficient and call for further refinement of the description of the N-H stretching manifolds of nucleic acid base pairs of adenosine and thymidine, incorporating a multitude of couplings with fingerprint and low-frequency modes. PMID:23234439

  15. Cumulative Paired φ-Entropy

    Directory of Open Access Journals (Sweden)

    Ingo Klein

    2016-07-01

    Full Text Available A new kind of entropy will be introduced which generalizes both the differential entropy and the cumulative (residual entropy. The generalization is twofold. First, we simultaneously define the entropy for cumulative distribution functions (cdfs and survivor functions (sfs, instead of defining it separately for densities, cdfs, or sfs. Secondly, we consider a general “entropy generating function” φ, the same way Burbea et al. (IEEE Trans. Inf. Theory 1982, 28, 489–495 and Liese et al. (Convex Statistical Distances; Teubner-Verlag, 1987 did in the context of φ-divergences. Combining the ideas of φ-entropy and cumulative entropy leads to the new “cumulative paired φ-entropy” ( C P E φ . This new entropy has already been discussed in at least four scientific disciplines, be it with certain modifications or simplifications. In the fuzzy set theory, for example, cumulative paired φ-entropies were defined for membership functions, whereas in uncertainty and reliability theories some variations of C P E φ were recently considered as measures of information. With a single exception, the discussions in the scientific disciplines appear to be held independently of each other. We consider C P E φ for continuous cdfs and show that C P E φ is rather a measure of dispersion than a measure of information. In the first place, this will be demonstrated by deriving an upper bound which is determined by the standard deviation and by solving the maximum entropy problem under the restriction of a fixed variance. Next, this paper specifically shows that C P E φ satisfies the axioms of a dispersion measure. The corresponding dispersion functional can easily be estimated by an L-estimator, containing all its known asymptotic properties. C P E φ is the basis for several related concepts like mutual φ-information, φ-correlation, and φ-regression, which generalize Gini correlation and Gini regression. In addition, linear rank tests for scale that

  16. From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity

    Science.gov (United States)

    Okuyama, Manaka; Takahashi, Kazutaka

    2016-08-01

    Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic X Y spin chains from the Toda equations are studied in detail.

  17. Nonlinear pulsation masses

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.G.

    1990-01-01

    The advent of nonlinear pulsation theory really coincides with the development of the large computers after the second world war. Christy and Stobbie were the first to make use of finite difference techniques on computers to model the bumps'' observed in the classical Cepheid light and velocity curves, the so-called Hertzsprung'' sequence. Following this work a more sophisticated analysis of the light and velocity curves from the models was made by Simon and Davis using Fourier techniques. Recently a simpler amplitude equation formalism has been developed that helps explain this resonance mechanism. The determination of Population I Cepheid masses by nonlinear methods will be discussed. For the lower mass objects, such as RR Lyrae and BL Her. stars, we find general agreement using evolutionary masses and nonlinear pulsation theory. An apparent difficulty of nonlinear pulsation theory occurs in the understanding of double'' mode pulsation, which will also be discussed. Recent studies in nonlinear pulsation theory have dealt with the question of mode selection, period doubling and the trends towards chaotic behavior such as is observed in the transition from W Virginis to RV Tauri-like stars. 10 refs., 1 fig., 2 tabs.

  18. Pulsational-Pair Instability Supernovae

    CERN Document Server

    Woosley, S E

    2016-01-01

    The final evolution of stars in the mass range 60 - 150 solar masses is explored. Depending upon their mass loss and rotation rates, many of these stars will end their lives as pulsational pair-instability supernovae. Even a non-rotating 70 solar mass star is pulsationally unstable during oxygen shell burning and can power a sub-luminous supernova. Rotation decreases the limit further. For more massive stars, the pulsations are less frequent, span a longer time, and are more powerful. Violent pulsations eject not only any residual low density envelope, but also that fraction of the helium core mass outside about 35 - 50 solar masses. The remaining core of helium and heavy elements continues to evolve, ultimately forming an iron core of about 2.5 solar masses that probably collapses to a black hole. A variety of observational transients result with total durations ranging from days to 10,000 years, and luminosities from 10$^{41}$ to 10$^{44}$ erg s$^{-1}$. Many transients resemble ordinary Type IIp supernovae,...

  19. A Completeness Study on Certain 2×2 Lax Pairs Including Zero Terms

    Directory of Open Access Journals (Sweden)

    Mike C. Hay

    2011-09-01

    Full Text Available We expand the completeness study instigated in [J. Math. Phys. 50 (2009, 103516, 29 pages] which found all 2×2 Lax pairs with non-zero, separable terms in each entry of each Lax matrix, along with the most general nonlinear systems that can be associated with them. Here we allow some of the terms within the Lax matrices to be zero. We cover all possible Lax pairs of this type and find a new third order equation that can be reduced to special cases of the non-autonomous lattice KdV and lattice modified KdV equations among others.

  20. Nonlinear elastic waves in materials

    CERN Document Server

    Rushchitsky, Jeremiah J

    2014-01-01

    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  1. Report on Pairing-based Cryptography.

    Science.gov (United States)

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed.

  2. Nonlinear Dynamic Force Spectroscopy

    CERN Document Server

    Björnham, Oscar

    2016-01-01

    Dynamic force spectroscopy (DFS) is an experimental technique that is commonly used to assess information of the strength, energy landscape, and lifetime of noncovalent bio-molecular interactions. DFS traditionally requires an applied force that increases linearly with time so that the bio-complex under investigation is exposed to a constant loading rate. However, tethers or polymers can modulate the applied force in a nonlinear regime. For example, bacterial adhesion pili and polymers with worm-like chain properties are examples of structures that show nonlinear force responses. In these situations, the theory for traditional DFS cannot be readily applied. In this work we expand the theory for DFS to also include nonlinear external forces while still maintaining compatibility with the linear DFS theory. To validate the theory we modeled a bio-complex expressed on a stiff, an elastic and a worm-like chain polymer, using Monte Carlo methods, and assessed the corresponding rupture force spectra. It was found th...

  3. Nonlinear optomechanical paddle nanocavities

    CERN Document Server

    Kaviani, Hamidreza; Wu, Marcelo; Ghobadi, Roohollah; Barclay, Paul E

    2014-01-01

    A photonic crystal optomechanical system combining strong nonlinear optomechanical coupling, low effective mass and large optical mode spacing is introduced. This nanoscale "paddle nanocavity" device supports mechanical resonances with effective mass of 300--600 fg which couple nonlinearly to co-localized optical modes with a quadratic optomechanical coupling coefficient $g^{(2)} > 2\\pi\\times400$ MHz/nm$^2$, and a two phonon to single photon optomechanical coupling rate $\\Delta \\omega_0 > 2\\pi\\times 16$ Hz. This coupling relies on strong phonon-photon interactions in a structure whose optical mode spectrum is highly non--degenerate. Simulations indicate that nonlinear optomechanical readout of thermally driven motion in these devices should be observable for T $> 50 $ mK, and that measurement of phonon shot noise is achievable.

  4. Nonlinear dynamics of structures

    CERN Document Server

    Oller, Sergio

    2014-01-01

    This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics.   This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects.   Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution  are studied, and the theoretical concepts and its programming algorithms are presented.  

  5. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    , leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...... nonlinear coefficient and in various applications, it is therefore possible to reduce the required fiber lengths quite dramatically, leading to increased stability and efficiency. Furthermore, it is possible to design these fibers with zero-dispersion at previously unreachable wavelengths, paving the way...... for completely new applications, especially in and near the visible wavelength region. One such application is supercontinuum generation. Supercontinuum generation is extreme broadening of pulses in a nonlinear medium (in this case a small-core fiber), and depending on the dispersion of the fiber, it is possible...

  6. Linearizing nonlinear optics

    CERN Document Server

    Schmidt, Bruno E; Ernotte, Guilmot; Clerici, Matteo; Morandotti, Roberto; Ibrahim, Heide; Legare, Francois

    2016-01-01

    In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second har...

  7. Nonlinear optomechanics with graphene

    Science.gov (United States)

    Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Vengalattore, Mukund

    2016-05-01

    To date, studies of cavity optomechanics have been limited to exploiting the linear interactions between the light and mechanics. However, investigations of quantum signal transduction, quantum enhanced metrology and manybody physics with optomechanics each require strong, nonlinear interactions. Graphene nanomembranes are an exciting prospect for realizing such studies due to their inherently nonlinear nature and low mass. We fabricate large graphene nanomembranes and study their mechanical and optical properties. By using dark ground imaging techniques, we correlate their eigenmode shapes with the measured dissipation. We study their hysteretic response present even at low driving amplitudes, and their nonlinear dissipation. Finally, we discuss ongoing efforts to use these resonators for studies of quantum optomechanics and force sensing. This work is supported by the DARPA QuASAR program through a Grant from the ARO.

  8. Nonlinear Analysis of Buckling

    Directory of Open Access Journals (Sweden)

    Psotný Martin

    2014-06-01

    Full Text Available The stability analysis of slender web loaded in compression was presented. To solve this problem, a specialized computer program based on FEM was created. The nonlinear finite element method equations were derived from the variational principle of minimum of potential energy. To obtain the nonlinear equilibrium paths, the Newton-Raphson iteration algorithm was used. Corresponding levels of the total potential energy were defined. The peculiarities of the effects of the initial imperfections were investigated. Special attention was focused on the influence of imperfections on the post-critical buckling mode. The stable and unstable paths of the nonlinear solution were separated. Obtained results were compared with those gained using ANSYS system.

  9. Nonlinear Metamaterials for Holography

    CERN Document Server

    Almeida, Euclides; Prior, Yehiam

    2015-01-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multi-layer metamaterial holograms where by the nonlinear process of Third Harmonic Generation, a background free image is formed at a new frequency which is the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analyzed and prospects for future device applications are discussed.

  10. Multidimensional nonlinear descriptive analysis

    CERN Document Server

    Nishisato, Shizuhiko

    2006-01-01

    Quantification of categorical, or non-numerical, data is a problem that scientists face across a wide range of disciplines. Exploring data analysis in various areas of research, such as the social sciences and biology, Multidimensional Nonlinear Descriptive Analysis presents methods for analyzing categorical data that are not necessarily sampled randomly from a normal population and often involve nonlinear relations. This reference not only provides an overview of multidimensional nonlinear descriptive analysis (MUNDA) of discrete data, it also offers new results in a variety of fields. The first part of the book covers conceptual and technical preliminaries needed to understand the data analysis in subsequent chapters. The next two parts contain applications of MUNDA to diverse data types, with each chapter devoted to one type of categorical data, a brief historical comment, and basic skills peculiar to the data types. The final part examines several problems and then concludes with suggestions for futu...

  11. Nonlinear airship aeroelasticity

    Science.gov (United States)

    Bessert, N.; Frederich, O.

    2005-12-01

    The aeroelastic derivatives for today's aircraft are calculated in the concept phase using a standard procedure. This scheme has to be extended for large airships, due to various nonlinearities in structural and aerodynamic behaviour. In general, the structural model of an airship is physically as well as geometrically nonlinear. The main sources of nonlinearity are large deformations and the nonlinear material behaviour of membranes. The aerodynamic solution is also included in the nonlinear problem, because the deformed airship influences the surrounding flow. Due to these nonlinearities, the aeroelastic problem for airships can only be solved by an iterative procedure. As one possibility, the coupled aerodynamic and structural dynamic problem was handled using linked standard solvers. On the structural side, the Finite-Element program package ABAQUS was extended with an interface to the aerodynamic solver VSAERO. VSAERO is based on the aerodynamic panel method using potential flow theory. The equilibrium of the internal structural and the external aerodynamic forces leads to the structural response and a trimmed flight state for the specified flight conditions (e.g. speed, altitude). The application of small perturbations around a trimmed state produces reaction forces and moments. These constraint forces are then transferred into translational and rotational acceleration fields by performing an inertia relief analysis of the disturbed structural model. The change between the trimmed flight state and the disturbed one yields the respective aeroelastic derivatives. By including the calculated derivatives in the linearised equation of motion system, it is possible to judge the stability and controllability of the investigated airship.

  12. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  13. Limits to Nonlinear Inversion

    DEFF Research Database (Denmark)

    Mosegaard, Klaus

    2012-01-01

    For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our......-heuristics are inefficient for large-scale, non-linear inverse problems, and that the 'no-free-lunch' theorem holds. We discuss typical objections to the relevance of this theorem. A consequence of the no-free-lunch theorem is that algorithms adapted to the mathematical structure of the problem perform more efficiently than...

  14. Fundamentals of nonlinear optics

    CERN Document Server

    Powers, Peter E

    2011-01-01

    Peter Powers's rigorous but simple description of a difficult field keeps the reader's attention throughout. … All chapters contain a list of references and large numbers of practice examples to be worked through. … By carefully working through the proposed problems, students will develop a sound understanding of the fundamental principles and applications. … the book serves perfectly for an introductory-level course for second- and third-order nonlinear optical phenomena. The author's writing style is refreshing and original. I expect that Fundamentals of Nonlinear Optics will fast become pop

  15. Tunable nonlinear graphene metasurfaces

    CERN Document Server

    Smirnova, Daria A; Kivshar, Yuri S; Khanikaev, Alexander B

    2015-01-01

    We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of structured metamaterial elements ("metamolecules") and graphene plasmons exhibiting strong mutual coupling and avoided dispersion crossing. High tunability of graphene plasmons facilitates strong interaction between the subradiant modes, modifying the spectral position and lifetime of the associated Fano resonances. We demonstrate that strong resonant interaction, combined with the subwavelength localization of plasmons, leads to the enhanced nonlinear response and high efficiency of the second-harmonic generation.

  16. Nonlinear effects in optical fibers

    CERN Document Server

    Ferreira, Mario F

    2011-01-01

    Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber

  17. Relativistic Magnetic Reconnection in Pair Plasmas in Three Dimensions

    CERN Document Server

    Kagan, Daniel; Spitkovsky, Anatoly

    2012-01-01

    We investigate guide-field magnetic reconnection and particle acceleration in relativistic pair plasmas with three-dimensional particle-in-cell (PIC) simulations of a kinetic-scale current sheet in a periodic geometry at low magnetizations. The tearing instability is the dominant mode in the current sheet for all guide field strengths, while the linear kink mode is less important even without guide field. Oblique modes seem to be suppressed entirely. In its nonlinear evolution, the reconnection layer develops a network of interconnected and interacting magnetic flux ropes. As smaller flux ropes merge into larger ones, the reconnection layer evolves toward a three-dimensional, disordered state in which the resulting flux rope segments contain magnetic substructure on plasma skin depth scales. Embedded in the flux ropes, we detect spatially and temporally intermittent sites of dissipation reflected in peaks in the parallel electric field. Magnetic dissipation and particle acceleration persist until the end of t...

  18. Power-efficient production of photon pairs in a tapered chalcogenide microwire

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Scott, Evan, E-mail: emeyersc@uwaterloo.ca; Dot, Audrey [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Ahmad, Raja; Li, Lizhu; Rochette, Martin [Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montréal, Québec H3A 2A7 (Canada); Jennewein, Thomas [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Quantum Information Science Program, Canadian Institute for Advanced Research, 180 Dundas Street West, Suite 1400, Toronto, Ontario M5G 1Z8 (Canada)

    2015-02-23

    Using tapered fibers of As{sub 2}Se{sub 3} chalcogenide glass, we produce photon pairs at telecommunication wavelengths with low pump powers. We found maximum coincidences-to-accidentals ratios of 2.13 ± 0.07 for degenerate pumping with 3.2 μW average power, and 1.33 ± 0.03 for non-degenerate pumping with 1.0 μW and 1.5 μW average power of the two pumps. Our results show that the ultrahigh nonlinearity in these microwires could allow single-photon pumping to produce photon pairs, enabling the production of large entangled states, heralding of single photons after lossy transmission, and photonic quantum information processing with nonlinear optics.

  19. Ensemble treatments of thermal pairing in nuclei

    Science.gov (United States)

    Hung, Nguyen Quang; Dang, Nguyen Dinh

    2009-10-01

    A systematic comparison is conducted for pairing properties of finite systems at nonzero temperature as predicted by the exact solutions of the pairing problem embedded in three principal statistical ensembles, namely the grandcanonical ensemble, canonical ensemble and microcanonical ensemble, as well as the unprojected (FTBCS1+SCQRPA) and Lipkin-Nogami projected (FTLN1+SCQRPA) theories that include the quasiparticle number fluctuation and coupling to pair vibrations within the self-consistent quasiparticle random-phase approximation. The numerical calculations are performed for the pairing gap, total energy, heat capacity, entropy, and microcanonical temperature within the doubly-folded equidistant multilevel pairing model. The FTLN1+SCQRPA predictions are found to agree best with the exact grand-canonical results. In general, all approaches clearly show that the superfluid-normal phase transition is smoothed out in finite systems. A novel formula is suggested for extracting the empirical pairing gap in reasonable agreement with the exact canonical results.

  20. Filipino au pairs on the move

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2016-01-01

    Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial interdep...... by including the migrants’ broader social network within the frame of research.......Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial...... interdependence, whilst they continuously form their trajectories in relation to opportunities and restraints posed along the way by their local and transnational social relations. The article argues that examinations of migration trajectories benefit from broadening the research out in both time and space...

  1. Pair programming in education: a literature review

    Science.gov (United States)

    Hanks, Brian; Fitzgerald, Sue; McCauley, Renée; Murphy, Laurie; Zander, Carol

    2011-06-01

    This article provides a review of educational research literature focused on pair programming in the undergraduate computer science curriculum. Research suggests that the benefits of pair programming include increased success rates in introductory courses, increased retention in the major, higher quality software, higher student confidence in solutions, and improvement in learning outcomes. Moreover, there is some evidence that women, in particular, benefit from pair programming. The literature also provides evidence that the transition from paired to solo programming is easy for students. The greatest challenges for paired students appear to concern scheduling and partner compatibility. This review also considers practical issues such as assigning partners, teaching students to work in pairs, and assessing individual contributions, and concludes with a discussion of open research questions.

  2. Ordered pairing in liquid metallic hydrogen

    Science.gov (United States)

    Carlsson, A. E.; Ashcroft, N. W.

    1983-01-01

    We study two possible types of pairing involving the protons of a proposed low-temperature liquid phase metallic hydrogen. Electron-proton pairing, which can result in an insulating phase, is investigated by using an approximate solution of an Eliashberg-type equation for the anomalous self-energy. A very low estimate of the transition temperature is obtained by including proton correlations in the effective interaction. For proton-proton pairing, we derive a new proton pair potential based on the Abrikosov wave function. This potential includes the electron-proton interaction to all orders and has a much larger well depth than is obtained with linear screening methods. This suggests the possibility of either a superfluid paired phase analogous to that in He-3, or alternatively a phase with true molecular pairing.

  3. Galaxy pairs align with galactic filaments

    CERN Document Server

    Tempel, Elmo

    2015-01-01

    Context. Gravitational collapse theory and numerical simulations suggest that the velocity field within large-scale galaxy filaments is dominated by motions along the filaments. Aims. Our aim is to check whether observational data reveal any preferred orientation of galaxy pairs with respect to the underlying filaments as a result of the expectedly anisotropic velocity field. Methods. We use galaxy pairs and galaxy filaments identified from the Sloan Digital Sky Survey data. For filament extraction, we use the Bisous model that is based the marked point process technique. During the filament detection, we use the centre point of each pair instead of the positions of galaxies to avoid a built-in influence of pair orientation on the filament construction. For pairs lying within filaments (3012 cases), we calculate the angle between the line connecting galaxies of each pair and their host filament. To avoid redshift-space distortions, the angle is measured in the plain of the sky. Results. The alignment analysis...

  4. Multipair approach to pairing in nuclei

    CERN Document Server

    Sambataro, M

    2012-01-01

    The ground state of a general pairing Hamiltonian for a finite nuclear system is constructed as a product of collective, real, distinct pairs. These are determined sequentially via an iterative variational procedure that resorts to diagonalizations of the Hamiltonian in restricted model spaces. Different applications of the method are provided that include comparisons with exact and projected BCS results. The quantities that are examined are correlation energies, occupation numbers and pair transfer matrix elements. In a first application within the picket-fence model, the method is seen to generate the exact ground state for pairing strengths confined in a given range. Further applications of the method concern pairing in spherically symmetric mean fields and include simple exactly solvable models as well as some realistic calculations for middle-shell Sn isotopes. In the latter applications, two different ways of defining the pairs are examined: either with J=0 or with no well-defined angular momentum. The ...

  5. An Entropic Approach for Pair Trading

    Directory of Open Access Journals (Sweden)

    Daisuke Yoshikawa

    2017-06-01

    Full Text Available In this paper, we derive the optimal boundary for pair trading. This boundary defines the points of entry into or exit from the market for a given stock pair. However, if the assumed model contains uncertainty, the resulting boundary could result in large losses. To avoid this, we develop a more robust strategy by accounting for the model uncertainty. To incorporate the model uncertainty, we use the relative entropy as a penalty function in the expected profit from pair trading.

  6. Top pair production distributions at the Tevatron

    Directory of Open Access Journals (Sweden)

    Takeuchi Yuji

    2013-05-01

    Full Text Available At the Tevatron, the top quark is mainly produced in pairs through the strong interaction and decays before forming hadrons. Thus the kinematical distributions at top pair production possess rich information on the tt¯$tar t$ production vertex including polarizations of top and anti-top quarks. In this article, recent measurements on top quark pair production distributions at Tevatron (CDF and DO are presented.

  7. An Entropic Approach for Pair Trading

    OpenAIRE

    Daisuke Yoshikawa

    2017-01-01

    In this paper, we derive the optimal boundary for pair trading. This boundary defines the points of entry into or exit from the market for a given stock pair. However, if the assumed model contains uncertainty, the resulting boundary could result in large losses. To avoid this, we develop a more robust strategy by accounting for the model uncertainty. To incorporate the model uncertainty, we use the relative entropy as a penalty function in the expected profit from pair trading.

  8. Dual origin of pairing in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Idini, A. [University of Jyvaskyla, Department of Physics (Finland); Potel, G. [Michigan State University, National Superconducting Cyclotron Laboratory (United States); Barranco, F. [Escuela Superior de Ingenieros, Universidad de Sevilla, Departamento de Fìsica Aplicada III (Spain); Vigezzi, E., E-mail: enrico.vigezzi@mi.infn.it [INFN Sezione di Milano (Italy); Broglia, R. A. [Università di Milano, Dipartimento di Fisica (Italy)

    2016-11-15

    The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  9. Lax pairs for deformed Minkowski spacetimes

    CERN Document Server

    Kyono, Hideki; Yoshida, Kentaroh

    2015-01-01

    We proceed to study Yang-Baxter deformations of 4D Minkowski spacetime based on a conformal embedding. We first revisit a Melvin background and argue a Lax pair by adopting a simple replacement law invented in 1509.00173. This argument enables us to deduce a general expression of Lax pair. Then the anticipated Lax pair is shown to work for arbitrary classical $r$-matrices with Poinca\\'e generators. As other examples, we present Lax pairs for pp-wave backgrounds, the Hashimoto-Sethi background, the Spradlin-Takayanagi-Volovich background.

  10. Lax pairs for deformed Minkowski spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Kyono, Hideki; Sakamoto, Jun-ichi; Yoshida, Kentaroh [Department of Physics, Kyoto University,Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)

    2016-01-25

    We proceed to study Yang-Baxter deformations of 4D Minkowski spacetime based on a conformal embedding. We first revisit a Melvin background and argue a Lax pair by adopting a simple replacement law invented in 1509.00173. This argument enables us to deduce a general expression of Lax pair. Then the anticipated Lax pair is shown to work for arbitrary classical r-matrices with Poincaré generators. As other examples, we present Lax pairs for pp-wave backgrounds, the Hashimoto-Sethi background, the Spradlin-Takayanagi-Volovich background.

  11. Transrelativistic pair plasmas in AGN jets

    DEFF Research Database (Denmark)

    Bottcher, M.; Pohl, M.; Schlickeiser, R.

    1999-01-01

    Models of relativistic jets filled with ultrarelativistic pair plasma are very successful in explaining the broadband radiation of gamma-ray blazars. Assuming that the initial injection and cooling of ultrarelativistic pair plasma in an AGN jet has occurred, producing the observed high-energy gamma......-ray radiation, we investigate the further evolution of the pair plasma as it continues to move out from the central engine. The effects of thermalization and reacceleration, the emission of pair bremsstrahlung and annihilation radiation and the bulk Compton process, and the possible application to MeV blazars...

  12. COTORSION PAIRS OVER FINITE GROUP GRADED RINGS

    Institute of Scientific and Technical Information of China (English)

    MENG Fan-yun; SUN Ju-xiang

    2015-01-01

    In this paper, we study the relation of cotorsion pairs between the graded and ungraded cases. By using the graded theory and the relative homological algebra, we first consider the relationship of cotorsion pairs in R-mod and S = R∗G-mod when R is any ring and G is a finite group. Then we study rigid cotorsion pairs in R-gr and consider the relationship of cotorsion pairs between R-gr and R-mod when R is a ring graded by a finite group G with|G|−1 ∈R.

  13. Cyclic pairs and common best proximity points in uniformly convex Banach spaces

    Directory of Open Access Journals (Sweden)

    Gabeleh Moosa

    2017-06-01

    Full Text Available In this article, we survey the existence, uniqueness and convergence of a common best proximity point for a cyclic pair of mappings, which is equivalent to study of a solution for a nonlinear programming problem in the setting of uniformly convex Banach spaces. Finally, we provide an extension of Edelstein’s fixed point theorem in strictly convex Banach spaces. Examples are given to illustrate our main conclusions.

  14. Nonlinear elliptic systems with exponential nonlinearities

    Directory of Open Access Journals (Sweden)

    Said El Manouni

    2002-12-01

    Full Text Available In this paper we investigate the existence of solutions for {gather*} -mathop{m div}( a(| abla u | ^N| abla u |^{N-2}u = f(x,u,v quad mbox{in } Omega -mathop{m div}(a(| abla v| ^N| abla v |^{N-2}v = g(x,u,v quad mbox{in } Omega u(x = v(x = 0 quad mbox{on }partial Omega. end{gather*} Where $Omega$ is a bounded domain in ${mathbb{R}}^N$, $Ngeq 2$, $f$ and $g$ are nonlinearities having an exponential growth on $Omega$ and $a$ is a continuous function satisfying some conditions which ensure the existence of solutions.

  15. Nonlinearity and disorder: Classification and stability of nonlinear impurity modes

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole

    2001-01-01

    We study the effects produced by competition of two physical mechanisms of energy localization in inhomogeneous nonlinear systems. As an example, we analyze spatially localized modes supported by a nonlinear impurity in the generalized nonlinear Schrödinger equation and describe three types of no...

  16. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-10-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  17. Nonlinear Regression with R

    CERN Document Server

    Ritz, Christian; Parmigiani, Giovanni

    2009-01-01

    R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.

  18. Methods of nonlinear kinetics

    OpenAIRE

    Gorban, A. N.; Karlin, I.V.

    2003-01-01

    Nonlinear kinetic equations are reviewed for a wide audience of specialists and postgraduate students in physics, mathematical physics, material science, chemical engineering and interdisciplinary research. Contents: The Boltzmann equation, Phenomenology and Quasi-chemical representation of the Boltzmann equation, Kinetic models, Discrete velocity models, Direct simulation, Lattice Gas and Lattice Boltzmann models, Minimal Boltzmann models for flows at low Knudsen number, Other kinetic equati...

  19. Intramolecular and nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  20. Nonlinear Hamiltonian systems

    DEFF Research Database (Denmark)

    Jørgensen, Michael Finn

    1995-01-01

    It is generally very difficult to solve nonlinear systems, and such systems often possess chaotic solutions. In the rare event that a system is completely solvable, it is said to integrable. Such systems never have chaotic solutions. Using the Inverse Scattering Transform Method (ISTM) two...

  1. Nonlinear phased array imaging

    Science.gov (United States)

    Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.

    2016-04-01

    A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.

  2. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-11-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  3. Trirefringence in nonlinear metamaterials

    CERN Document Server

    De Lorenci, Vitorio A

    2012-01-01

    We study the propagation of electromagnetic waves in the limit of geometrical optics for a class of nearly transparent nonlinear uniaxial metamaterials for which their permittivity tensors present a negative principal component. Their permeability are assumed positive and dependent on the electric field. We show that light waves experience triple refraction -- trirefringence. Additionally to the ordinary wave, two extraordinary waves propagate in such media.

  4. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  5. Nonlinear fibre optics overview

    DEFF Research Database (Denmark)

    Travers, J. C.; Frosz, Michael Henoch; Dudley, J. M.

    2010-01-01

    , provides a background to the associated nonlinear optical processes, treats the generation mechanisms from continuous wave to femtosecond pulse pump regimes and highlights the diverse applications. A full discussion of numerical methods and comprehensive computer code are also provided, enabling readers...

  6. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  7. Is this scaling nonlinear?

    CERN Document Server

    Leitao, J C; Gerlach, M; Altmann, E G

    2016-01-01

    One of the most celebrated findings in complex systems in the last decade is that different indexes y (e.g., patents) scale nonlinearly with the population~x of the cities in which they appear, i.e., $y\\sim x^\\beta, \\beta \

  8. Nonlinear Gravitational Lagrangians revisited

    CERN Document Server

    Magnano, Guido

    2016-01-01

    The Legendre transformation method, applied in 1987 to deal with purely metric gravitational Lagrangians with nonlinear dependence on the Ricci tensor, is extended to metric-affine models and is shown to provide a concise and insightful comparison of the dynamical content of the two variational frameworks.

  9. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  10. Nonlinear tsunami generation mechanism

    Directory of Open Access Journals (Sweden)

    M. A. Nosov

    2001-01-01

    Full Text Available The nonlinear mechanism of long gravitational surface water wave generation by high-frequency bottom oscillations in a water layer of constant depth is investigated analytically. The connection between the surface wave amplitude and the parameters of bottom oscillations and source length is investigated.

  11. Topics in Nonlinear Dynamics

    DEFF Research Database (Denmark)

    Mosekilde, Erik

    Through a significant number of detailed and realistic examples this book illustrates how the insights gained over the past couple of decades in the fields of nonlinear dynamics and chaos theory can be applied in practice. Aomng the topics considered are microbiological reaction systems, ecological...

  12. Terahertz semiconductor nonlinear optics

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias

    2013-01-01

    nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...

  13. Nonlinear Optical Terahertz Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our approach is based on high-Q optical WGM resonators made with a nonlinear crystal. Such resonators have been demonstrated to dramatically enhance nonlinear...

  14. Phase retrieval using nonlinear diversity.

    Science.gov (United States)

    Lu, Chien-Hung; Barsi, Christopher; Williams, Matthew O; Kutz, J Nathan; Fleischer, Jason W

    2013-04-01

    We extend the Gerchberg-Saxton algorithm to phase retrieval in a nonlinear system. Using a tunable photorefractive crystal, we experimentally demonstrate the noninterferometric technique by reconstructing an unknown phase object from optical intensity measurements taken at different nonlinear strengths.

  15. Strong nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2017-01-01

    This book outlines an analytical solution procedure of the pure nonlinear oscillator system, offering a solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter. Includes exercises.

  16. Defects in the discrete non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Doikou, Anastasia, E-mail: adoikou@upatras.gr [University of Patras, Department of Engineering Sciences, Physics Division, GR-26500 Patras (Greece)

    2012-01-01

    The discrete non-linear Schroedinger (NLS) model in the presence of an integrable defect is examined. The problem is viewed from a purely algebraic point of view, starting from the fundamental algebraic relations that rule the model. The first charges in involution are explicitly constructed, as well as the corresponding Lax pairs. These lead to sets of difference equations, which include particular terms corresponding to the impurity point. A first glimpse regarding the corresponding continuum limit is also provided.

  17. Likelihood inference for discretely observed non-linear diffusions

    OpenAIRE

    1998-01-01

    This paper is concerned with the Bayesian estimation of non-linear stochastic differential equations when observations are discretely sampled. The estimation framework relies on the introduction of latent auxiliary data to complete the missing diffusion between each pair of measurements. Tuned Markov chain Monte Carlo (MCMC) methods based on the Metropolis-Hastings algorithm, in conjunction with the Euler-Maruyama discretization scheme, are used to sample the posterior distribution of the lat...

  18. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, A. [Technical Institute G. Cardano, Piazza della Resistenza 1, 00015 Monterotondo, Rome (Italy)

    1997-08-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio{endash}temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a {open_quotes}universal{close_quotes} character, inasmuch as they may be derived from a very large class of nonlinear evolution equations with a linear dispersive part. {copyright} {ital 1997 American Institute of Physics.}

  19. Cubication of Conservative Nonlinear Oscillators

    Science.gov (United States)

    Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…

  20. Terahertz Nonlinear Optics in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2013-01-01

    We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...

  1. Fault Detection for Nonlinear Systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.H.

    1998-01-01

    The paper describes a general method for designing fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension of methods based...

  2. Nonlinear Polarimetric Microscopy for Biomedical Imaging

    Science.gov (United States)

    Samim, Masood

    A framework for the nonlinear optical polarimetry and polarimetric microscopy is developed. Mathematical equations are derived in terms of linear and nonlinear Stokes Mueller formalism, which comprehensively characterize the polarization properties of the incoming and outgoing radiations, and provide structural information about the organization of the investigated materials. The algebraic formalism developed in this thesis simplifies many predictions for a nonlinear polarimetry study and provides an intuitive understanding of various polarization properties for radiations and the intervening medium. For polarimetric microscopy experiments, a custom fast-scanning differential polarization microscope is developed, which is also capable of real-time three-dimensional imaging. The setup is equipped with a pair of high-speed resonant and galvanometric scanning mirrors, and supplemented by advanced adaptive optics and data acquisition modules. The scanning mirrors when combined with the adaptive optics deformable mirror enable fast 3D imaging. Deformable membrane mirrors and genetic algorithm optimization routines are employed to improve the imaging conditions including correcting the optical aberrations, maximizing signal intensities, and minimizing point-spread-functions of the focal volume. A field-programmable-gate array (FPGA) chip is exploited to rapidly acquire and process the multidimensional data. Using the nonlinear optical polarimetry framework and the home-built polarization microscope, a few biologically important tissues are measured and analyzed to gain insight as to their structure and dynamics. The structure and distribution of muscle sarcomere myosins, connective tissue collagen, carbohydrate-rich starch, and fruit fly eye retinal molecules are characterized with revealing polarization studies. In each case, using the theoretical framework, polarization sensitive data are analyzed to decipher the molecular orientations and nonlinear optical

  3. Implementing Nonlinear Feedback Controllers Using DNA Strand Displacement Reactions.

    Science.gov (United States)

    Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh V; Bates, Declan G

    2016-07-01

    We show how an important class of nonlinear feedback controllers can be designed using idealized abstract chemical reactions and implemented via DNA strand displacement (DSD) reactions. Exploiting chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks, we show how a set of unimolecular and bimolecular reactions can be used to realize input-output dynamics that produce a nonlinear quasi sliding mode (QSM) feedback controller. The kinetics of the required chemical reactions can then be implemented as enzyme-free, enthalpy/entropy driven DNA reactions using a toehold mediated strand displacement mechanism via Watson-Crick base pairing and branch migration. We demonstrate that the closed loop response of the nonlinear QSM controller outperforms a traditional linear controller by facilitating much faster tracking response dynamics without introducing overshoots in the transient response. The resulting controller is highly modular and is less affected by retroactivity effects than standard linear designs.

  4. Non-linear behaviour of large-area avalanche photodiodes

    CERN Document Server

    Fernandes, L M P; Monteiro, C M B; Santos, J M; Morgado, R E

    2002-01-01

    The characterisation of photodiodes used as photosensors requires a determination of the number of electron-hole pairs produced by scintillation light. One method involves comparing signals produced by X-ray absorptions occurring directly in the avalanche photodiode with the light signals. When the light is derived from light-emitting diodes in the 400-600 nm range, significant non-linear behaviour is reported. In the present work, we extend the study of the linear behaviour to large-area avalanche photodiodes, of Advanced Photonix, used as photosensors of the vacuum ultraviolet (VUV) scintillation light produced by argon (128 nm) and xenon (173 nm). We observed greater non-linearities in the avalanche photodiodes for the VUV scintillation light than reported previously for visible light, but considerably less than the non-linearities observed in other commercially available avalanche photodiodes.

  5. Nonlinear lepton-photon interactions in external background fields

    Energy Technology Data Exchange (ETDEWEB)

    Akal, Ibrahim [DESY, Hamburg (Germany). Theory Group; Moortgat-Pick, Gudrid [DESY, Hamburg (Germany). Theory Group; Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2016-02-09

    Nonlinear phenomena of lepton-photon interactions in external backgrounds with a generalised periodic plane-wave geometry are studied. We discuss nonlinear Compton scattering in head-on lepton-photon collisions extended properly to beyond the soft-photon regime. In addition, our results are applied to stimulated lepton-antilepton pair production in photon collisions with unrestricted energies. Derivations are considered semi-classically based on unperturbed fermionic Volkov representations encoding the full interaction with the background field. Closed expressions for total probabilities considering S-matrix elements have been derived. The general formula is applied to Compton scattering by an electron propagating in an external laser-like background. We obtain additive contributions in the extended unconstrained result which turns out to be stringently required in the highly nonlinear regime. A detailed comparison of contributing harmonics is discussed for various field parameters.

  6. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dong; ZHOU Lin; SI Li-Sheng; GONG Xiu-Fen

    2007-01-01

    @@ A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented.Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  7. Open string pair creation from worldsheet instantons

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Christian [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Muehlenberg 1, D-14476 Potsdam (Germany); Torrielli, Alessandro [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2010-10-08

    Worldline instantons provide a particularly elegant way to derive Schwinger's well-known formula for the pair creation rate due to a constant electric field in quantum electrodynamics. In this communication, we show how to extend this method to the corresponding problem of open string pair creation. (fast track communication)

  8. Exploring Pair Programming Benefits for MIS Majors

    Science.gov (United States)

    Dongo, Tendai; Reed, April H.; O'Hara, Margaret

    2016-01-01

    Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS) and Software Engineering (SE) majors have identified benefits such as technical productivity, program/design quality, academic…

  9. Prime pairs and the zeta function

    NARCIS (Netherlands)

    Korevaar, J.

    2009-01-01

    Are there infinitely many prime pairs with given even difference? Most mathematicians think so. Using a strong arithmetic hypothesis, Goldston, Pintz and Yildirim have recently shown that there are infinitely many pairs of primes differing by at most sixteen. There is extensive numerical support for

  10. Bidirectional Synonym Ratings of 464 Noun Pairs.

    Science.gov (United States)

    Whitten, William B.; And Others

    1979-01-01

    Each of 464 noun pairs was rated for synonymy on a seven-point scale by college students to provide an extensive set of synonym pairs for use as stimuli in experiments, and to evaluate the effects of word encoding order on perceived synonymy. (SW)

  11. Kinetic energy driven pairing in cuprate superconductors

    NARCIS (Netherlands)

    Maier, TA; Jarrell, M; Macridin, A; Slezak, C

    2004-01-01

    Pairing occurs in conventional superconductors through a reduction of the electronic potential energy accompanied by an increase in kinetic energy. In the underdoped cuprates, optical experiments show that pairing is driven by a reduction of the electronic kinetic energy. Using the dynamical cluster

  12. Exploring Pair Programming Benefits for MIS Majors

    Science.gov (United States)

    Dongo, Tendai; Reed, April H.; O'Hara, Margaret

    2016-01-01

    Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS) and Software Engineering (SE) majors have identified benefits such as technical productivity, program/design quality, academic…

  13. Prime pairs and the zeta function

    NARCIS (Netherlands)

    Korevaar, J.

    2009-01-01

    Are there infinitely many prime pairs with given even difference? Most mathematicians think so. Using a strong arithmetic hypothesis, Goldston, Pintz and Yildirim have recently shown that there are infinitely many pairs of primes differing by at most sixteen. There is extensive numerical support for

  14. Optimal scaling of paired comparison data

    NARCIS (Netherlands)

    van de Velden, M.

    2004-01-01

    In this paper we consider the analysis of paired comparisons using optimal scaling techniques. In particular, we will, inspired by Guttman's approach for quantifying paired comparisons, formulate a new method to obtain optimal scaling values for the subjects. We will compare our results with those o

  15. Nonlinear electrostatic drift Kelvin-Helmholtz instability

    Science.gov (United States)

    Sharma, Avadhesh C.; Srivastava, Krishna M.

    1993-01-01

    Nonlinear analysis of electrostatic drift Kelvin-Helmholtz instability is performed. It is shown that the analysis leads to the propagation of the weakly nonlinear dispersive waves, and the nonlinear behavior is governed by the nonlinear Burger's equation.

  16. Nonlinear response from the perspective of energy landscapes and beyond

    Science.gov (United States)

    Heuer, Andreas; Schroer, Carsten F. E.; Diddens, Diddo; Rehwald, Christian; Blank-Burian, Markus

    2017-08-01

    The paper discusses the nonlinear response of disordered systems. In particular we show how the nonlinear response can be interpreted in terms of properties of the potential energy landscape. It is shown why the use of relatively small systems is very helpful for this approach. For a standard model system we check which system sizes are particular suited. In case of the driving of a single particle via an external force the concept of an effective temperature helps to scale the force dependence for different temperature on a single master curve. In all cases the mobility increases with increasing external force. These results are compared with a stochastic process described by a 1d Langevin equation where a similar scaling is observed. Furthermore it is shown that for different classes of disordered systems the mobility can also decrease with increasing force. The results can be related to the properties of the chosen potential energy landscape. Finally, results for the crossover from the linear to the nonlinear conductivity of ionic liquids are presented, inspired by recent experimental results in the Roling group. Apart from a standard imidazolium-based ionic liquid we study a system which is characterized by a low conductivity as compared to other ionic liquids and very small nonlinear effects. We show via a real space structural analysis that for this system a particularly strong pair formation is observed and that the strength of the pair formation is insensitive to the application of strong electric fields. Consequences of this observation are discussed.

  17. Muon pair production in relativistic nuclear collisions

    CERN Document Server

    Hencken, K; Serbo, V G

    2006-01-01

    The exclusive production of one $\\mu^+\\mu^-$ pair in collisions of two ultra-relativistic nuclei is considered. We present the simple method for calculation of the Born cross section for this process. Then we found that the Coulomb corrections to this cross section (which correspond to multi-photon exchange of the produced $\\mu^{\\pm}$ with nuclei) are small while the unitarity corrections are large. This is in sharp contrast to the exclusive $e^+e^-$ pair production where the Coulomb corrections to the Born cross section are large while the unitarity corrections are small. We calculated also the cross section for the production of one $\\mu^+\\mu^-$ pair and several $e^+e^-$ pairs in the leading logarithmic approximation. Using this cross section we found that the inclusive production of $\\mu^+\\mu^-$ pair coincides in this approximation with its Born value.

  18. Pairing in a dry Fermi sea.

    Science.gov (United States)

    Maier, T A; Staar, P; Mishra, V; Chatterjee, U; Campuzano, J C; Scalapino, D J

    2016-06-17

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.

  19. On the geometry of classically integrable two-dimensional non-linear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Mohammedi, N., E-mail: nouri@lmpt.univ-tours.f [Laboratoire de Mathematiques et Physique Theorique (CNRS - UMR 6083), Universite Francois Rabelais de Tours, Faculte des Sciences et Techniques, Parc de Grandmont, F-37200 Tours (France)

    2010-11-11

    A master equation expressing the zero curvature representation of the equations of motion of a two-dimensional non-linear sigma models is found. The geometrical properties of this equation are outlined. Special attention is paid to those representations possessing a spectral parameter. Furthermore, a closer connection between integrability and T-duality transformations is emphasised. Finally, new integrable non-linear sigma models are found and all their corresponding Lax pairs depend on a spectral parameter.

  20. FUZZY IDENTIFIER WITH EXPONENTIAL RATE OF CONVERGENCE FOR NONLINEAR DYNAMIC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper,fuzzy systems are used as identifiers for unknown nonlinear dynamic systems.The fuzzy identifier can incorporate linguistic knowledge of nonlinear dynamic systems with input-output pairs directly into the design.In the case where there is the modelling error,a new identification algorithm is proposed.It is proved that the fuzzy identifier is globally stable and the identification error converges to zero exponentially fast.

  1. Solubilization and fractionation of paired helical filaments.

    Science.gov (United States)

    González, P J; Correas, I; Avila, J

    1992-09-01

    Paired helical filaments isolated from brains of two different patients with Alzheimer's disease were extensively treated with the ionic detergent, sodium dodecyl sulphate. Filaments were solubilized at different extents, depending on the brain examined, thus suggesting the existence of two types of paired helical filaments: sodium dodecyl sulphate-soluble and insoluble filaments. In the first case, the number of structures resembling paired helical filaments greatly decreased after the detergent treatment, as observed by electron microscopy. Simultaneously, a decrease in the amount of sedimentable protein was also observed upon centrifugation of the sodium dodecyl sulfate-treated paired helical filaments. A sodium dodecyl sulphate-soluble fraction was isolated as a supernatant after low-speed centrifugation of the sodium dodecyl sulphate-treated paired helical filaments. The addition of the non-ionic detergent Nonidet-P40 to this fraction resulted in the formation of paired helical filament-like structures. When the sodium dodecyl sulphate-soluble fraction was further fractionated by high-speed centrifugation, three subfractions were observed: a supernatant, a pellet and a thin layer between these two subfractions. No paired helical filaments were observed in any of these subfractions, even after addition of Nonidet P-40. However, when they were mixed back together, the treatment with Nonidet P-40 resulted in the visualization of paired helical filament-like structures. These results suggest that at least two different components are needed for the reconstitution of paired helical filaments as determined by electron microscopy. The method described here may allow the study of the components involved in the formation of paired helical filaments and the identification of possible factors capable of blocking this process.

  2. Pair plasma formation in the interaction of a thin plasma with ultra-intense counter-propagating lasers

    Science.gov (United States)

    Slade-Lowther, Cody

    2016-10-01

    Next-generation lasers (e.g. ELI) expect to reach peak intensities of 1023 Wcm-2. At such intensities, the electromagnetic field strength is sufficient for non-linear Quantum Electrodynamics effects to become important. The processes of non-linear Compton scattering and Breit-Wheeler Pair production become likely at intensities >=1023 Wcm-2, and have been predicted to lead to prolific pair and γ-ray production via electromagnetic cascades. We present results for the case of two counter-propagating circularly- polarized lasers of intensity I ∈ [1023 ,1025 ] Wcm24 interacting with a plasma of initial density n0 ∈ [1025 ,1035 ] via the Monte-Carlo- particle-in-cell code EPOCH. We show the maximum pair plasma density in I vs n0 space. We further discuss the variation within this space on the plasma characteristics, including laser absorption and field-particle energy distribution.

  3. Strong Interactions of Photon Pairs in Cavity QED

    Science.gov (United States)

    Kimble, H. J.

    2008-05-01

    The charge and spin degrees of freedom of massive particles have relatively large long-range interactions, which enable nonlinear coupling between pairs of atoms, ions, electrons, and diverse quasi-particles. By contrast, photons have vanishingly small cross-sections for direct coupling. Instead, photon interactions must be mediated by a material system. Even then,typical materials produce photon-photon couplings that are orders of magnitude too small for nontrivial dynamics with individual photon pairs. The leading exception to this state of affairs is cavity quantum electrodynamics (cQED), where strong interactions between light and matter at the single-photon level have enabled a wide set of scientific advances [1]. My presentation will describe two experiments in the Caltech Quantum Optics Group where strong interactions of photon pairs have been observed. The work in Ref. [2] provided the initial realization of photon blockade for an atomic system by using a Fabry-Perot cavity containing one atom strongly coupled to the cavity field. The underlying blockade mechanism was the quantum anharmonicity of the ladder of energy levels for the composite atom-cavity system. Beyond this structural effect, a new % dynamical mechanism was identified in Ref. [3] for which photon transport is regulated by the conditional state of one intracavity atom, leading to an efficient mechanism that is insensitive to many experimental imperfections and which achieves high efficiency for single-photon transport. The experiment utilized the interaction of an atom with the fields of a microtoroidal resonator [4]. Regulation was achieved by way of an interference effect involving the directly transmitted optical field, the intracavity field in the absence of the atom, and the polarization field radiated by the atom, with the requisite nonlinearity provided by the quantum character of the emission from one atom.[1] R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J

  4. Giant kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well structures.

    Science.gov (United States)

    Zhu, Chengjie; Huang, Guoxiang

    2011-11-07

    We study linear and nonlinear propagations of probe and signal pulses in a multiple quantum-well structure with a four-level, double Λ-type configuration. We show that slow, mutually matched group velocities and giant Kerr nonlinearity of the probe and the signal pulses may be achieved with nearly vanishing optical absorption. Based on these properties we demonstrate that two-qubit quantum polarization phase gates can be constructed and highly entangled photon pairs may be produced. In addition, we show that coupled slow-light soliton pairs with very low generation power can be realized in the system.

  5. Optothermal nonlinearity of silica aerogel

    CERN Document Server

    Braidotti, Maria Chiara; Fleming, Adam; Samuels, Michiel C; Di Falco, Andrea; Conti, Claudio

    2016-01-01

    We report on the characterization of silica aerogel thermal optical nonlinearity, obtained by z-scan technique. The results show that typical silica aerogels have nonlinear optical coefficient similar to that of glass $(\\simeq 10^{-12} $m$^2/$W), with negligible optical nonlinear absorption. The non\\-li\\-near coefficient can be increased to values in the range of $10^{-10} $m$^2/$W by embedding an absorbing dye in the aerogel. This value is one order of magnitude higher than that observed in the pure dye and in typical highly nonlinear materials like liquid crystals.

  6. Pair approximation for the q -voter model with independence on complex networks

    Science.gov (United States)

    Jedrzejewski, Arkadiusz

    2017-01-01

    We investigate the q -voter model with stochastic noise arising from independence on complex networks. Using the pair approximation, we provide a comprehensive, mathematical description of its behavior and derive a formula for the critical point. The analytical results are validated by carrying out Monte Carlo experiments. The pair approximation prediction exhibits substantial agreement with simulations, especially for networks with weak clustering and large average degree. Nonetheless, for the average degree close to q , some discrepancies originate. It is the first time we are aware of that the presented approach has been applied to the nonlinear voter dynamics with noise. Up till now, the analytical results have been obtained only for a complete graph. We show that in the limiting case the prediction of pair approximation coincides with the known solution on a fully connected network.

  7. Essentials of nonlinear optics

    CERN Document Server

    Murti, Y V G S

    2014-01-01

    Current literature on Nonlinear Optics varies widely in terms of content, style, and coverage of specific topics, relative emphasis of areas and the depth of treatment. While most of these books are excellent resources for the researchers, there is a strong need for books appropriate for presenting the subject at the undergraduate or postgraduate levels in Universities. The need for such a book to serve as a textbook at the level of the bachelors and masters courses was felt by the authors while teaching courses on nonlinear optics to students of both science and engineering during the past two decades. This book has emerged from an attempt to address the requirement of presenting the subject at college level. A one-semester course covering the essentials can effectively be designed based on this.

  8. Nonlinear metamaterials for holography

    Science.gov (United States)

    Almeida, Euclides; Bitton, Ora; Prior, Yehiam

    2016-08-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency--the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed.

  9. Nonlinear metamaterials for holography

    Science.gov (United States)

    Almeida, Euclides; Bitton, Ora

    2016-01-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency—the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed. PMID:27545581

  10. Nonlinear data assimilation

    CERN Document Server

    Van Leeuwen, Peter Jan; Reich, Sebastian

    2015-01-01

    This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.

  11. Nonlinearity without Superluminality

    CERN Document Server

    Kent, A

    2002-01-01

    Quantum theory is compatible with special relativity. In particular, though measurements on entangled systems are correlated in a way that cannot be reproduced by local hidden variables, they cannot be used for superluminal signalling. As Gisin and Polchinski first pointed out, this is not true for general nonlinear modifications of the Schroedinger equation. Excluding superluminal signalling has thus been taken to rule out most nonlinear versions of quantum theory. The no superluminal signalling constraint has also been used for alternative derivations of the optimal fidelities attainable for imperfect quantum cloning and other operations. These results apply to theories satisfying the rule that their predictions for widely separated and slowly moving entangled systems can be approximated by non-relativistic equations of motion with respect to a preferred time coordinate. This paper describes a natural way in which this rule might fail to hold. In particular, it is shown that quantum readout devices which di...

  12. Monte Carlo and nonlinearities

    CERN Document Server

    Dauchet, Jérémi; Blanco, Stéphane; Caliot, Cyril; Charon, Julien; Coustet, Christophe; Hafi, Mouna El; Eymet, Vincent; Farges, Olivier; Forest, Vincent; Fournier, Richard; Galtier, Mathieu; Gautrais, Jacques; Khuong, Anaïs; Pelissier, Lionel; Piaud, Benjamin; Roger, Maxime; Terrée, Guillaume; Weitz, Sebastian

    2016-01-01

    The Monte Carlo method is widely used to numerically predict systems behaviour. However, its powerful incremental design assumes a strong premise which has severely limited application so far: the estimation process must combine linearly over dimensions. Here we show that this premise can be alleviated by projecting nonlinearities on a polynomial basis and increasing the configuration-space dimension. Considering phytoplankton growth in light-limited environments, radiative transfer in planetary atmospheres, electromagnetic scattering by particles and concentrated-solar-power-plant productions, we prove the real world usability of this advance on four test-cases that were so far regarded as impracticable by Monte Carlo approaches. We also illustrate an outstanding feature of our method when applied to sharp problems with interacting particles: handling rare events is now straightforward. Overall, our extension preserves the features that made the method popular: addressing nonlinearities does not compromise o...

  13. Nonlinear Photonics 2014: introduction.

    Science.gov (United States)

    Akhmediev, N; Kartashov, Yaroslav

    2015-01-12

    International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.

  14. Nonlinear fractional relaxation

    Indian Academy of Sciences (India)

    A Tofighi

    2012-04-01

    We define a nonlinear model for fractional relaxation phenomena. We use -expansion method to analyse this model. By studying the fundamental solutions of this model we find that when → 0 the model exhibits a fast decay rate and when → ∞ the model exhibits a power-law decay. By analysing the frequency response we find a logarithmic enhancement for the relative ratio of susceptibility.

  15. -Deformed nonlinear maps

    Indian Academy of Sciences (India)

    Ramaswamy Jaganathan; Sudeshna Sinha

    2005-03-01

    Motivated by studies on -deformed physical systems related to quantum group structures, and by the elements of Tsallis statistical mechanics, the concept of -deformed nonlinear maps is introduced. As a specific example, a -deformation procedure is applied to the logistic map. Compared to the canonical logistic map, the resulting family of -logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors – a phenomenon rare in one-dimensional maps.

  16. Controllability of nonlinear systems.

    Science.gov (United States)

    Sussmann, H. J.; Jurdjevic, V.

    1972-01-01

    Discussion of the controllability of nonlinear systems described by the equation dx/dt - F(x,u). Concepts formulated by Chow (1939) and Lobry (1970) are applied to establish criteria for F and its derivatives to obtain qualitative information on sets which can be obtained from x which denotes a variable of state in an arbitrary, real, analytical manifold. It is shown that controllability implies strong accessibility for a large class of manifolds including Euclidean spaces.-

  17. Stochastic Nonlinear Aeroelasticity

    Science.gov (United States)

    2009-01-01

    STOCHASTIC NONLINEAR AEROELASTICITY 5a. CONTRACT NUMBER In- house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0601102 6. AUTHOR(S) Philip S...ABSTRACT This report documents the culmination of in- house work in the area of uncertainty quantification and probabilistic techniques for... coff U∞ cs ea lw cw Figure 6: Wing and store geometry (left), wing box structural model (middle), flutter distribution (right

  18. Nonlinear Control Systems

    Science.gov (United States)

    2007-03-01

    IEEE Transactions on Automatic Control , AC- 48, pp. 1712-1723, (2003). [14] C.I. Byrnes, A. Isidori...Nonlinear internal models for output regulation,” IEEE Transactions on Automatic Control , AC-49, pp. 2244-2247, (2004). [15] C.I. Byrnes, F. Celani, A...approach,” IEEE Transactions on Automatic Control , 48 (Dec. 2003), 2172–2190. 2. C. I. Byrnes, “Differential Forms and Dynamical Systems,” to appear

  19. Filamentation with nonlinear Bessel vortices.

    Science.gov (United States)

    Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A

    2014-10-20

    We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics.

  20. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  1. Quantum well nonlinear microcavities

    Science.gov (United States)

    Oudar, J. L.; Kuszelewicz, R.; Sfez, B.; Pellat, D.; Azoulay, R.

    We report on recent progress in reducing the power threshold of all-optical bistable quantum well vertical microcavities. Significant improvements are achieved through an increase of the cavity finesse, together with a reduction of the device active layer thickness. A critical intensity of 5 μW/μm 2 has been observed on a microcavity of finesse 250, with a nonlinear medium of only 18 GaAs quantum wells of 10 nm thickness. Further improvements of the Bragg mirror quality resulted in a finesse of 700 and a power-lifetime product of 15 fJ/μm 2. Microresonator pixellation allows to obtain 2-dimensional arrays. A thermally-induced alloy-mixing technique is described, which produced a 110 meV carrier confinement energy, together with a refractive index change of -.012, averaged over the 2.6 μm nonlinear medium thickness. The resulting electrical and optical confinement is shown to improve the nonlinear characteristics, by limiting lateral carrier diffusion and light diffraction.

  2. P-wave Cooper pair splitting

    Directory of Open Access Journals (Sweden)

    Henning Soller

    2012-07-01

    Full Text Available Background: Splitting of Cooper pairs has recently been realized experimentally for s-wave Cooper pairs. A split Cooper pair represents an entangled two-electron pair state, which has possible application in on-chip quantum computation. Likewise the spin-activity of interfaces in nanoscale tunnel junctions has been investigated theoretically and experimentally in recent years. However, the possible implications of spin-active interfaces in Cooper pair splitters so far have not been investigated.Results: We analyze the current and the cross correlation of currents in a superconductor–ferromagnet beam splitter, including spin-active scattering. Using the Hamiltonian formalism, we calculate the cumulant-generating function of charge transfer. As a first step, we discuss characteristics of the conductance for crossed Andreev reflection in superconductor–ferromagnet beam splitters with s-wave and p-wave superconductors and no spin-active scattering. In a second step, we consider spin-active scattering and show how to realize p-wave splitting using only an s-wave superconductor, through the process of spin-flipped crossed Andreev reflection. We present results for the conductance and cross correlations.Conclusion: Spin-activity of interfaces in Cooper pair splitters allows for new features in ordinary s-wave Cooper pair splitters, that can otherwise only be realized by using p-wave superconductors. In particular, it provides access to Bell states that are different from the typical spin singlet state.

  3. Pure Pairing Modes in Trapped Fermion Systems

    Science.gov (United States)

    Capuzzi, P.; Hernández, E. S.; Szybisz, L.

    2013-05-01

    We present numerical predictions for the shape of the pairing fluctuations in harmonically trapped atomic 6Li with two spin projections, based on the fluiddynamical description of cold fermions with pairing interactions. In previous works it has been shown that when the equilibrium of a symmetric mixture is perturbed, the linearized fluiddynamic equations decouple into two sets, one containing the sound mode of fermion superfluids and the other the pairing mode. The latter corresponds to oscillations of the modulus of the complex gap and is driven by the kinetic energy densities of the particles and of the pairs. Assuming proportionality between the heat flux and the energy gradient, the particle kinetic energy undergoes a diffusive behavior and the diffusion parameter is the key parameter for the relaxation time scale. We examine a possible range of values for this parameter and find that the shape of the pairing oscillation is rather insensitive to the precise value of the transport coefficient. Moreover, the pairing fluctuation is largely confined to the center of the trap, and the energy of the pairing mode is consistent with the magnitude of the equilibrium gap.

  4. String pair production in non homogeneous backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)

    2016-04-28

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  5. Exploring Pair Programming Benefits for MIS Majors

    Directory of Open Access Journals (Sweden)

    April H. Reed

    2016-12-01

    Full Text Available Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS and Software Engineering (SE majors have identified benefits such as technical productivity, program/design quality, academic performance, and increased satisfaction for their participants. In this paper, pair programming is studied with Management Information Systems (MIS majors, who (unlike CS and SE majors taking several programming courses typically take only one programming course and often struggle to develop advanced programming skills within that single course. The researchers conducted two pair programming experiments in an introductory software development course for MIS majors over three semesters to determine if pair programming could enhance learning for MIS students. The program results, researchers’ direct observations, and participants’ responses to a survey questionnaire were analyzed after each experiment. The results indicate that pair programming appears to be beneficial to MIS students’ technical productivity and program design quality, specifically the ability to create programs using high-level concepts. Additionally, results confirmed increased student satisfaction and reduced frustration, as the pairs worked collaboratively to produce a program while actively communicating and enjoying the process.

  6. An Easy-To-Use Combination Four-Terminal-Pair/Two-Terminal-Pair AC Transformer Bridge.

    Science.gov (United States)

    Jeffery, A; Shields, J Q; Lee, L H

    1998-01-01

    A new four-terminal-pair bridge, capable of achieving a relative standard uncertainty of 1×10(-9), was constructed at the National Institute of Standards and Technology by converting a two-terminal-pair bridge. The conversion requires only the addition of components which are easily removed if two-terminal-pair measurements are to be made. The design and testing of this bridge is described. The new four-terminal-pair bridge requires fewer auxiliary balances than the present four-terminal-pair bridge employed at NIST, which makes it much easier to use. This new design can be used to compare capacitance, resistance, and inductance standards.

  7. English for au pairs the au pair's guide to learning English

    CERN Document Server

    Curtis, Lucy

    2014-01-01

    English for Au Pairs has interlinked stories about a group of au pairs new to England. Marta, an 18-year-old from Poland arrives in the UK to work as an au pair. Throughout her year-long stay she has many different experiences - some bad, some good - but with the support of her host family she finds new friends and improves her English. English for Au Pairs offers insight into the joys and difficulties of being an au pair while at the same time reinforcing English language learning through grammar explanations and exercises.

  8. Pair supersolid with atom-pair hopping on the state-dependent triangular lattice

    Science.gov (United States)

    Zhang, Wanzhou; Yin, Ruoxi; Wang, Yancheng

    2013-11-01

    We systematically study an extended Bose-Hubbard model with atom hopping and atom-pair hopping in the presence of a three-body constraint on the triangular lattice. By means of large-scale quantum Monte Carlo simulations, the ground-state phase diagram is studied. We find a first-order transition between the atomic superfluid phase and the pair superfluid phase when the ratio of the atomic hopping and the atom-pair hopping is adapted. The first-order transition remains unchanged under various conditions. We then focus on the interplay among the atom-pair hopping, the on-site repulsion, and the nearest-neighbor repulsion. With on-site repulsion present, we observe first-order transitions between the Mott insulators and pair superfluid driven by the pair hopping. With the nearest-neighbor repulsion turning on, three typical solid phases with 2/3, 1, and 4/3 filling emerge at small atom-pair hopping region. A stable pair supersolid phase is found at small on-site repulsion. This is due to the three-body constraint and the pair hopping, which essentially make the model a quasihardcore boson system. Thus the pair supersolid state emerges basing on the order-by-disorder mechanism, by which hardcore bosons avoid classical frustration on the triangular lattice. Without on-site repulsion, the transitions between the pair supersolid and the atom superfluid or pair superfluid are first order, except for the particle-hole symmetric point. With weak on-site repulsion and atom hopping turning on, the transition between the pair supersolid and pair superfluid phase becomes continuous. The transition between solid and pair supersolid is three-dimensional XY university, with dynamical exponent z=1 and correlation exponent ν=0.67155. The thermal melting of pair supersolid belongs to the two-dimensional Ising university. We check both energetic and mechanical balance of pair supersolid phase. Lowering the three-body constraint, no pair supersolid is found due to the absence of

  9. Pair Creation at Large Inherent Angles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P.; Tauchi, T.; Schroeder, D.V.; /SLAC

    2007-04-25

    In the next-generation linear colliders, the low-energy e{sup +}e{sup -} pairs created during the collision of high-energy e{sup +}e{sup -} beams would cause potential deleterious background problems to the detectors. At low collider energies, the pairs are made essentially by the incoherent process, where the pair is created by the interaction of beamstrahlung photons on the individual particles in the oncoming beam. This problem was first identified by Zolotarev, et al[1]. At energies where the beamstrahlung parameter {Upsilon} lies approximately in the range 0.6 {approx}< {Upsilon} {approx}< 100, pair creation from the beamstrahlung photons is dominated by a coherent process, first noted by Chen[2]. The seriousness of this pair creation problem lies in the transverse momenta that the pair particles carry when leaving the interaction point (IP) with large angles. One source of transverse momentum is from the kick by the field of the oncoming beam which results in an outcoming angle {theta} {proportional_to} 1/{radical}x, where x is the fractional energy of the particle relative to the initial beam particle energy[2,3]. As was shown in Ref. 131, there in fact exists an energy threshold for the coherent pairs, where x{sub th} {approx}> 1/2{Upsilon}. Thus within a tolerable exiting angle, there exists an upper limit for {Upsilon} where all coherent pairs would leave the detector through the exhaust port[4]. A somewhat different analysis has been done by Schroeder[5]. In the next generation of linear colliders, as it occurs, the coherent pairs can be exponentially suppressed[2] by properly choosing the {Upsilon}({approx}< 0.6). When this is achieved, the incoherent pairs becomes dominant. Since the central issue is the transverse momentum for particles with large angles, we notice that there is another source for it. Namely, when the pair particles are created at low energies, the intrinsic angles of these pairs when produced may already be large. This issue was

  10. Pair creation in heavy ion channeling

    Directory of Open Access Journals (Sweden)

    N.A. Belov

    2016-04-01

    Full Text Available Heavy ions channeled through crystals with multi-GeV kinetic energies can create electron–positron pairs. In the framework of the ion, the energy of virtual photons arising from the periodic crystal potential may exceed the threshold 2mec2. The repeated periodic collisions with the crystal ions yield high pair production rates. When the virtual photon frequency matches a nuclear transition in the ion, the production rate can be resonantly increased. In this two-step excitation-pair conversion scheme, the excitation rates are coherently enhanced, and scale approximately quadratically with the number of crystal sites along the channel.

  11. Implementation of Cryptosystems Based on Tate Pairing

    Institute of Scientific and Technical Information of China (English)

    Lei Hu; Jun-Wu Dong; Ding-Yi Pei

    2005-01-01

    Tate pairings over elliptic curves are important in cryptography since they can be used to construct efficient identity-based cryptosystems, and their implementation dominantly determines the efficiencies of the cryptosystems. In this paper, the implementation of a cryptosystem is provided based on the Tate pairing over a supersingular elliptic curve of MOV degree 3. The implementation is primarily designed to re-use low-level codes developed in implementation of usual elliptic curve cryptosystems. The paper studies how to construct the underlying ground field and its extension to accelerate the finite field arithmetic, and presents a technique to speedup the time-consuming powering in the Tate pairing algorithm.

  12. Becoming independent through au pair migration

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2015-01-01

    . This article argues that, despite this critique, au pairing does play an important formative role for young Filipinas because it opens up for experiences abroad that enable them to be recognised as independent adults in Philippine society. Rather than autonomy, however, au pairs define their independence...... in terms of their capacity to assume responsibility for others, thereby achieving a position of social respect. Based on ethnographic fieldwork in Denmark and the Philippines, this article explores how young Filipinas use the social, economic, and cultural resources they gain from their au pair stay abroad...

  13. Soliton solutions for two nonlinear partial differential equations using a Darboux transformation of the Lax pairs.

    Science.gov (United States)

    Lin, Ji; Ren, Bo; Li, Hua-mei; Li, Yi-Shen

    2008-03-01

    Two Darboux transformations of the (1+1) -dimensional Wu-Zhang (WZ) equation and the two-component Camassa-Holm (2CH) system with the reciprocal transformation are obtained. One-loop and two-loop soliton solutions and multisoliton(like) solutions of the 2CH system are obtained by using the Darboux transformations and selecting different seed solutions of the corresponding equations. The bidirectional soliton solutions of the (1+1) -dimensional WZ equation are also obtained. The interactions of two-soliton head-on and overtaking collisions for the WZ equation and the evolution of the two-soliton(-like) solutions for the 2CH system are studied.

  14. Amplification of Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry

    Science.gov (United States)

    Islam, SK Firoz; Saha, Arijit

    2017-09-01

    Motivated by the recent experiments [Scientific Reports 6, 23051 (2016), 10.1038/srep23051; Phys. Rev. Lett. 114, 096602 (2015), 10.1103/PhysRevLett.114.096602], we theoretically investigate Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry. By considering the graphene-based superconductor as an entangler device, instead of normal [two-dimensional (2D)] BCS superconductor, we show that the Cooper pair splitting current mediated by the crossed Andreev process is amplified compared to its normal superconductor counterpart. This amplification is attributed to the strong suppression of the local normal Andreev reflection process (arising from the Cooper pair splitting) from the graphene-based superconductor to lead via the same quantum dot, in comparison to the usual 2D superconductor. Due to the vanishing density of states at the Dirac point of undoped graphene, a doped graphene-based superconductor is considered here and it is observed that Cooper pair splitting current is very insensitive to the doping level in comparison to the usual 2D superconductor. The transport process of nonlocal spin-entangled electrons also depends on the type of pairing, i.e., whether the electron-hole pairing is onsite, intersublattice or the combination of both. The intersublattice pairing of graphene causes the maximum nonlocal Cooper pair splitting current, whereas the presence of both pairings reduces the Cooper pair splitting current.

  15. Implementation of New Pairing Technique for Studying the Effectiveness of Pairs on Persona and Programming

    Directory of Open Access Journals (Sweden)

    HARSIMARJEET KHURANA

    2011-01-01

    Full Text Available This paper reports on a study in which persona for the category of paired and solo students were compared on the parameter like program clarity, presentation, satisfaction level and confidence level, also the effectiveness of pairs in a JAVA programming language and the impact of pairs on each other. In this study same programs were given to all the category of paired and solo students. Finding reported in this paper are that pairing students were more likely to turn in working programs, and these programs were correctly implemented with more required features as compared to solo students. It has been observed that pairing of intelligent, average and poor with themselves has not shown significant differences but we have seen significant differences with combination of pairs.

  16. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Estrada, R.F.

    1979-08-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly.

  17. Nonlinear Companding Circuits With Thermal Compensation to Enhance Input Dynamic Range in Analog Optical Fiber Links

    Directory of Open Access Journals (Sweden)

    J. Rodríguez-Rodriguez

    2011-04-01

    Full Text Available Measuring systems based on a pair of optical fiber transmitter-receivers are used in medium-voltage testinglaboratories wherein the environment of high electromagnetic interference (EMI is a limitation for using conventionalcabling. Nonlinear compensation techniques have been used to limit the voltage range at the input of optical fiberlinks. However, nonlinear compensation introduces gain and linearity errors caused by thermal drift. This paperpresents a method of thermal compensation for the nonlinear circuit used to improve transient signal handlingcapabilities in measuring system while maintaining low errors in gain and linearity caused by thermal drift.

  18. Complex behavior in chains of nonlinear oscillators

    Science.gov (United States)

    Alonso, Leandro M.

    2017-06-01

    This article outlines sufficient conditions under which a one-dimensional chain of identical nonlinear oscillators can display complex spatio-temporal behavior. The units are described by phase equations and consist of excitable oscillators. The interactions are local and the network is poised to a critical state by balancing excitation and inhibition locally. The results presented here suggest that in networks composed of many oscillatory units with local interactions, excitability together with balanced interactions is sufficient to give rise to complex emergent features. For values of the parameters where complex behavior occurs, the system also displays a high-dimensional bifurcation where an exponentially large number of equilibria are borne in pairs out of multiple saddle-node bifurcations.

  19. Nonlinear robust hierarchical control for nonlinear uncertain systems

    Directory of Open Access Journals (Sweden)

    Leonessa Alexander

    1999-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  20. Nonlinear scattering in plasmonic nanostructures

    Science.gov (United States)

    Chu, Shi-Wei

    2016-09-01

    Nonlinear phenomena provide novel light manipulation capabilities and innovative applications. Recently, we discovered nonlinear saturation on single-particle scattering of gold nanospheres by continuous-wave laser excitation and innovatively applied to improve microscopic resolution down to λ/8. However, the nonlinearity was limited to the green-orange plasmonic band of gold nanosphere, and the underlying mechanism has not yet been fully understood. In this work, we demonstrated that nonlinear scattering exists for various material/geometry combinations, thus expanding the applicable wavelength range. For near-infrared, gold nanorod is used, while for blue-violet, silver nanospheres are adopted. In terms of mechanism, the nonlinearity may originate from interband/intraband absorption, hot electron, or hot lattice, which are spectrally mixed in the case of gold nanosphere. For gold nanorod and silver nanosphere, nonlinear scattering occurs at plasmonic resonances, which are spectrally far from interband/intraband absorptions, so they are excluded. We found that the nonlinear index is much larger than possible contributions from hot electrons in literature. Therefore, we conclude that hot lattice is the major mechanism. In addition, we propose that similar to z-scan, which is the standard method to characterize nonlinearity of a thin sample, laser scanning microscopy should be adopted as the standard method to characterize nonlinearity from a nanostructure. Our work not only provides the physical mechanism of the nonlinear scattering, but also paves the way toward multi-color superresolution imaging based on non-bleaching plasmonic scattering.

  1. 22 CFR 62.31 - Au pairs.

    Science.gov (United States)

    2010-04-01

    ... equivalent and a personality profile. Such personality profile will be based upon a psychometric test... such academic course work in an amount not to exceed $1,000 for EduCare au pair participants and in an...

  2. On the concept of frustrated Lewis pairs.

    Science.gov (United States)

    Fontaine, Frédéric-Georges; Stephan, Douglas W

    2017-08-28

    In this concept article, we consider the notion of 'frustrated Lewis pairs' (FLPs). While the original use of the term referred to steric inhibition of dative bond formation in a Lewis pair, work in the intervening decade demonstrates the limitation of this simplistic view. Analogies to known transition metal chemistry and the applications in other areas of chemistry are considered. In the light of these findings, we present reflections on the criteria for a definition of the term 'frustrated Lewis pair'. Segregation of the Lewis acid and base and the kinetic nature of FLP reactivity are discussed. We are led to the conclusion that, while an all-inclusive definition of FLP is challenging, the notion of 'FLP chemistry' is more readily recognized.This article is part of the themed issue 'Frustrated Lewis pair chemistry'. © 2017 The Author(s).

  3. Pairing properties of realistic effective interactions

    Directory of Open Access Journals (Sweden)

    Gargano A.

    2016-01-01

    Full Text Available We investigate the pairing properties of an effective shell-model interaction defined within a model space outside 132Sn and derived by means of perturbation theory from the CD-Bonn free nucleon-nucleon potential. It turns out that the neutron pairing component of the effective interaction is significantly weaker than the proton one, which accounts for the large pairing gap difference observed in the two-valence identical particle nuclei 134Sn and 134Te. The role of the contribution arising from one particle-one hole excitations in determining the pairing force is discussed and its microscopic structure is also analyzed in terms of the multipole decomposition.

  4. Colors of Dynamically Associated Asteroid Pairs

    CERN Document Server

    Moskovitz, Nicholas

    2012-01-01

    Recent dynamical studies have identified pairs of asteroids that reside in nearly identical heliocentric orbits. Possible formation scenarios for these systems include dissociation of binary asteroids, collisional disruption of a single parent body, or spin-up and rotational fission of a rubble-pile. Aside from detailed dynamical analyses and measurement of rotational light curves, little work has been done to investigate the colors or spectra of these unusual objects. A photometric and spectroscopic survey was conducted to determine the reflectance properties of asteroid pairs. New observations were obtained for a total of 34 individual asteroids. Additional photometric measurements were retrieved from the Sloan Digital Sky Survey Moving Object Catalog. Colors or spectra for a total of 42 pair components are presented here. The main findings of this work are: (1) the components in the observed pair systems have the same colors within the uncertainties of this survey, and (2) the color distribution of asteroi...

  5. Comments on Coulomb pairing in aromatic hydrocarbons

    CERN Document Server

    Huber, D L

    2013-01-01

    Recently reported anomalies in the double-photonionization spectra of aromatic molecules such as benzene, naphthalene, anthracene and coronene are attributed to Coulomb-pair resonances of pi electrons.

  6. Four square mile survey pair count instructions

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This standard operating procedure (SOP) provides guidance for conducting bird pair count measurements on wetlands for the HAPETs Four-Square-Mile survey. This set of...

  7. Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, Kim Ø; Salerno, M.

    2006-01-01

    A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowi......-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated....

  8. Dichromatic nonlinear eigenmodes in slab waveguide with chi(2) nonlinearity.

    Science.gov (United States)

    Darmanyan, S A; Nevière, M

    2001-03-01

    The existence of purely nonlinear eigenmodes in a waveguiding structure composed of a slab with quadratic nonlinearity surrounded by (non)linear claddings is reported. Modes having bright and dark solitonlike shapes and consisting of two mutually locked harmonics are identified. Asymmetrical modes are shown to exist in symmetrical environments. Constraints for the existence of the modes are derived in terms of parameters of guiding structure materials.

  9. Measurement of Localized Nonlinear Microwave Response of Superconductors

    Science.gov (United States)

    Lee, Sheng-Chiang; Palmer, Benjamin; Maiorov, B.

    2005-03-01

    We measure the local harmonic generation from superconducting thin films at microwave frequencies to investigate the intrinsic nonlinear Meissner effect near T/c in zero magnetic field. Both second and third harmonic generation are measured to identify time-reversal symmetry breaking (TRSB) and time-reversal symmetric (TRS) nonlinearities. The microscope can measure the local nonlinear response of a bicrystal grain boundary [Sheng-Chiang Lee and Steven M. Anlage, Physica C 408-410, 324 (2004); cond-mat/0408170]. We also performed a systematic doping-dependent study of the nonlinear response and find that the TRS characteristic nonlinearity current density scale follows the doping dependence of the de-pairing critical current density [cond-mat/0405595]. We extract a spontaneous TRSB characteristic current density scale that onsets at T/c, grows with decreasing temperature, and systematically decreases in magnitude (at fixed T/T/c) with under-doping. The origin of this current scale could be Josephson circulating currents or the spontaneous magnetization associated with a TRSB order parameter.

  10. Nonlinear wave dynamics near phase transition in PT-symmetric localized potentials

    Science.gov (United States)

    Nixon, Sean; Yang, Jianke

    2016-09-01

    Nonlinear wave propagation in parity-time symmetric localized potentials is investigated analytically near a phase-transition point where a pair of real eigenvalues of the potential coalesce and bifurcate into the complex plane. Necessary conditions for a phase transition to occur are derived based on a generalization of the Krein signature. Using the multi-scale perturbation analysis, a reduced nonlinear ordinary differential equation (ODE) is derived for the amplitude of localized solutions near phase transition. Above the phase transition, this ODE predicts a family of stable solitons not bifurcating from linear (infinitesimal) modes under a certain sign of nonlinearity. In addition, it predicts periodically-oscillating nonlinear modes away from solitons. Under the opposite sign of nonlinearity, it predicts unbounded growth of solutions. Below the phase transition, solution dynamics is predicted as well. All analytical results are compared to direct computations of the full system and good agreement is observed.

  11. Nonlinear wave dynamics near phase transition in $\\mathcal{PT}$-symmetric localized potentials

    CERN Document Server

    Nixon, Sean

    2015-01-01

    Nonlinear wave propagation in parity-time ($\\mathcal{PT}$) symmetric localized potentials is investigated analytically near a phase-transition point where a pair of real eigenvalues of the potential coalesce and bifurcate into the complex plane. Necessary conditions for phase transition to occur are derived based on a generalization of the Krein signature. Using multi-scale perturbation analysis, a reduced nonlinear ODE model is derived for the amplitude of localized solutions near phase transition. Above phase transition, this ODE model predicts a family of stable solitons not bifurcating from linear (infinitesimal) modes under a certain sign of nonlinearity. In addition, it predicts periodically-oscillating nonlinear modes away from solitons. Under the opposite sign of nonlinearity, it predicts unbounded growth of solutions. Below phase transition, solution dynamics is predicted as well. All analytical results are compared to direct computations of the full system and good agreement is observed.

  12. A family of nonlinear Schrödinger equations admitting q-plane wave solutions

    Science.gov (United States)

    Nobre, F. D.; Plastino, A. R.

    2017-08-01

    Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross-Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross-Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field Φ (x → , t) (besides the usual one Ψ (x → , t)) must be introduced for consistency. The new field can be identified with Ψ* (x → , t) only when q → 1. For q ≠ 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields Ψ (x → , t) and Φ (x → , t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by Ψ (x → , t) and Φ (x → , t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.

  13. Array-Based Discovery of Aptamer Pairs

    Science.gov (United States)

    2014-12-11

    18460−18465. (25) Liu, Y.; Adams, J. D.; Turner, K.; Cochran, F. V.; Gambhir, S. S.; Soh, H. T. Lab Chip 2009, 9, 1033−1036. (26) Katilius, E.; Flores, C...discovery of aptamer pairs. We use microfluidic selection and high-throughput sequencing to obtain an enriched pool of aptamer sequences. Next, we...overcomes this problem to achieve efficient discovery of aptamer pairs. We use microfluidic selection and high- throughput sequencing to obtain an

  14. Alternative DNA base pairing through metal coordination.

    Science.gov (United States)

    Clever, Guido H; Shionoya, Mitsuhiko

    2012-01-01

    Base-pairing in the naturally occurring DNA and RNA oligonucleotide duplexes is based on π-stacking, hydrogen bonding, and shape complementarity between the nucleobases adenine, thymine, guanine, and cytosine as well as on the hydrophobic-hydrophilic balance in aqueous media. This complex system of multiple supramolecular interactions is the product of a long-term evolutionary process and thus highly optimized to serve its biological functions such as information storage and processing. After the successful implementation of automated DNA synthesis, chemists have begun to introduce artificial modifications inside the core of the DNA double helix in order to study various aspects of base pairing, generate new base pairs orthogonal to the natural ones, and equip the biopolymer with entirely new functions. The idea to replace the hydrogen bonding interactions with metal coordination between ligand-like nucleosides and suitable transition metal ions culminated in the development of a plethora of artificial base-pairing systems termed "metal base-pairs" which were shown to strongly enhance the DNA duplex stability. Furthermore, they show great potential for the use of DNA as a molecular wire in nanoscale electronic architectures. Although single electrons have proven to be transmitted by natural DNA over a distance of several base pairs, the high ohmic resistance of unmodified oligonucleotides was identified as a serious obstacle. By exchanging some or all of the Watson-Crick base pairs in DNA with metal complexes, this problem may be solved. In the future, these research efforts are supposed to lead to DNA-like materials with superior conductivity for nano-electronic applications. Other fields of potential application such as DNA-based supramolecular architecture and catalysis may be strongly influenced by these developments as well. This text is meant to illustrate the basic concepts of metal-base pairing and give an outline over recent developments in this field.

  15. Marcus Theory of Ion-Pairing

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Santanu; Baer, Marcel D.; Mundy, Christopher J.; Schenter, Gregory K.

    2017-08-08

    We present a theory for ion pair dissociation and association, motivated by the concepts of the Marcus theory of electron transfer. Despite the extensive research on ion-pairing in many chemical and biological processes, much can be learned from the exploration of collective reaction coordinates. To this end, we explore two reaction coordinates, ion pair distance and coordination number. The study of the correlation between these reaction coordinates provides a new insight into the mechanism and kinetics of ion pair dissociation and association in water. The potential of mean force on these 2D-surfaces computed from molecular dynamics simulations of different monovalent ion pairs reveal a Marcus-like mechanism for ion-pairing: Water molecules rearrange forming an activated coordination state prior to ion pair dissociation or association, followed by relaxation of the coordination state due to further water rearrangement. Like Marcus theory, we find the existence of an inverted region where the transition rates are slower with increasing exergonicity. This study provides a new perspective for the future investigations of ion-pairing and transport. SR, CJM, and GKS were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). The research was performed using PNNL Institutional Computing. PNNL is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy.

  16. Nonlinear Schrodinger equation with chaotic, random, and nonperiodic nonlinearity

    CERN Document Server

    Cardoso, W B; Avelar, A T; Bazeia, D; Hussein, M S

    2009-01-01

    In this paper we deal with a nonlinear Schr\\"{o}dinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Comparing with a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein Condensates and their collective excitations and transport.

  17. Pair Production in Low Luminosity Galactic Nuclei

    CERN Document Server

    Moscibrodzka, Monika; Dolence, Joshua C; Shiokawa, Hotaka

    2011-01-01

    Electron-positron pairs may be produced near accreting black holes by a variety of physical processes, and the resulting pair plasma may be accelerated and collimated into a relativistic jet. Here we use a self-consistent dynamical and radiative model to investigate pair production by \\gamma\\gamma collisions in weakly radiative accretion flows around a black hole of mass M and accretion rate \\dot{M}. Our flow model is drawn from general relativistic magnetohydrodynamic simulations, and our radiation field is computed by a Monte Carlo transport scheme assuming the electron distribution function is thermal. We argue that the pair production rate scales as r^{-6} M^{-1} \\dot{M}^{6}. We confirm this numerically and calibrate the scaling relation. This relation is self-consistent in a wedge in M, \\dot{M} parameter space. If \\dot{M} is too low the implied pair density over the poles of the black hole is below the Goldreich-Julian density and \\gamma\\gamma pair production is relatively unimportant; if \\dot{M} is too ...

  18. Migration of helium-pair in metals

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J.L.; Geng, W.T., E-mail: geng@ustb.edu.cn

    2016-09-15

    We have carried out a first-principles density functional theory investigation into the migration of both a single interstitial He and an interstitial He-pair in Fe, Mo, W, Cu, Pd, and Pt. We find the migration trajectories and barriers are determined predominantly by low-energy He-pair configurations which depend mainly on the energy state of a single He in different interstices. The migration barrier for a He-pair in bcc metals is always slightly higher than for a single He. Configurations of a He-pair in fcc metals are very complicated, due to the existence of interstitial sites with nearly identical energy for a single He. The migration barrier for a He-pair is slightly lower than (in Cu), or similar to (in Pd and Pt) a single He. The collective migrations of a He-pair are ensured by strong He−He interactions with strength-versus-distance forms resembling chemical bonds and can be described with Morse potentials.

  19. Seniority zero pair coupled cluster doubles theory.

    Science.gov (United States)

    Stein, Tamar; Henderson, Thomas M; Scuseria, Gustavo E

    2014-06-07

    Coupled cluster theory with single and double excitations accurately describes weak electron correlation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field computational cost and is an excellent approximation to the full configuration interaction (FCI) of the paired space provided that the orbital basis defining the pairing scheme is adequately optimized. In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI leads to a very accurate description of static correlation. The same conclusion extends to p-CCD if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these results with numerous examples. We also explore the contributions of different seniority sectors to the coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level. Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems.

  20. Formation of asteroid pairs by rotational fission.

    Science.gov (United States)

    Pravec, P; Vokrouhlický, D; Polishook, D; Scheeres, D J; Harris, A W; Galád, A; Vaduvescu, O; Pozo, F; Barr, A; Longa, P; Vachier, F; Colas, F; Pray, D P; Pollock, J; Reichart, D; Ivarsen, K; Haislip, J; Lacluyze, A; Kusnirák, P; Henych, T; Marchis, F; Macomber, B; Jacobson, S A; Krugly, Yu N; Sergeev, A V; Leroy, A

    2010-08-26

    Pairs of asteroids sharing similar heliocentric orbits, but not bound together, were found recently. Backward integrations of their orbits indicated that they separated gently with low relative velocities, but did not provide additional insight into their formation mechanism. A previously hypothesized rotational fission process may explain their formation-critical predictions are that the mass ratios are less than about 0.2 and, as the mass ratio approaches this upper limit, the spin period of the larger body becomes long. Here we report photometric observations of a sample of asteroid pairs, revealing that the primaries of pairs with mass ratios much less than 0.2 rotate rapidly, near their critical fission frequency. As the mass ratio approaches 0.2, the primary period grows long. This occurs as the total energy of the system approaches zero, requiring the asteroid pair to extract an increasing fraction of energy from the primary's spin in order to escape. We do not find asteroid pairs with mass ratios larger than 0.2. Rotationally fissioned systems beyond this limit have insufficient energy to disrupt. We conclude that asteroid pairs are formed by the rotational fission of a parent asteroid into a proto-binary system, which subsequently disrupts under its own internal system dynamics soon after formation.

  1. Nonlinear Optical Rectennas

    CERN Document Server

    Stolz, A; Markey, L; Francs, G Colas des; Bouhelier, A

    2013-01-01

    We introduce strongly-coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion and demonstrate that a two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.

  2. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  3. Nonlinear electrodynamics with birefringence

    CERN Document Server

    Kruglov, S I

    2015-01-01

    A new model of nonlinear electrodynamics with three parameters is suggested. The phenomena of vacuum birefringence takes place when there is the external constant magnetic field. We calculate the indices of refraction for two polarizations of electromagnetic waves, parallel and perpendicular to the magnetic induction field. From the Bir\\'{e}fringence Magn\\'{e}tique du Vide (BMV) experiment one of the coefficients, $\\gamma\\approx 10^{-20}$ T$^{-2}$, was estimated. The canonical, symmetrical Belinfante energy-momentum tensors and dilatation current were obtained. The dilatation symmetry and the dual symmetry are broken in the model considered.

  4. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  5. Nonlinear dynamics in psychology

    Directory of Open Access Journals (Sweden)

    Stephen J. Guastello

    2001-01-01

    Full Text Available This article provides a survey of the applications of nonlinear dynamical systems theory to substantive problems encountered in the full scope of psychological science. Applications are organized into three topical areas – cognitive science, social and organizational psychology, and personality and clinical psychology. Both theoretical and empirical studies are considered with an emphasis on works that capture the broadest scope of issues that are of substantive interest to psychological theory. A budding literature on the implications of NDS principles in professional practice is reported also.

  6. Nonlinear Control Systems

    Science.gov (United States)

    2009-11-18

    analytic semigroup T(t) ~ eAl is exponentially stable (Notice that it is also a contraction semigroup ). 3. Be 3(U, Z) and P e £(W, 2) are bounded. 4. Ce...quite often in practice, .4 is self-adjoint. We also note that, since we assume (—A) is sectorial, we work with the semigroup exp(.4f) rather than...Uniform Output Regulation of Nonlinear Sys- tems: A convergent Dynamics Approach, Birkhauser, Boston, 2006. 23 135] A. Pazy, Semigroups of Linear

  7. Nonlinear elliptic systems

    Directory of Open Access Journals (Sweden)

    DJAIRO G. DEFIGUEIREDO

    2000-12-01

    Full Text Available In this paper we treat the question of the existence of solutions of boundary value problems for systems of nonlinear elliptic equations of the form - deltau = f (x, u, v,Ñu,Ñv, - deltav = g(x, u, v, Ñu, Ñv, in omega, We discuss several classes of such systems using both variational and topological methods. The notion of criticality takes into consideration the coupling, which plays important roles in both a priori estimates for the solutions and Palais-Smale conditions for the associated functional in the variational case.

  8. Fundamental aspects of recoupled pair bonds. I. Recoupled pair bonds in carbon and sulfur monofluoride

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Thom H., E-mail: thdjr@uw.edu; Xu, Lu T.; Takeshita, Tyler Y. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801 (United States)

    2015-01-21

    The number of singly occupied orbitals in the ground-state atomic configuration of an element defines its nominal valence. For carbon and sulfur, with two singly occupied orbitals in their {sup 3}P ground states, the nominal valence is two. However, in both cases, it is possible to form more bonds than indicated by the nominal valence—up to four bonds for carbon and six bonds for sulfur. In carbon, the electrons in the 2s lone pair can participate in bonding, and in sulfur the electrons in both the 3p and 3s lone pairs can participate. Carbon 2s and sulfur 3p recoupled pair bonds are the basis for the tetravalence of carbon and sulfur, and 3s recoupled pair bonds enable sulfur to be hexavalent. In this paper, we report generalized valence bond as well as more accurate calculations on the a{sup 4}Σ{sup −} states of CF and SF, which are archetypal examples of molecules that possess recoupled pair bonds. These calculations provide insights into the fundamental nature of recoupled pair bonds and illustrate the key differences between recoupled pair bonds formed with the 2s lone pair of carbon, as a representative of the early p-block elements, and recoupled pair bonds formed with the 3p lone pair of sulfur, as a representative of the late p-block elements.

  9. Global Analysis of Nonlinear Dynamics

    CERN Document Server

    Luo, Albert

    2012-01-01

    Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.  

  10. Nonlinear evolution of drift instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.W.; Krommes, J.A.; Oberman, C.R.; Smith, R.A.

    1984-01-01

    The nonlinear evolution of collisionless drift instabilities in a shear-free magnetic field has been studied by means of gyrokinetic particle simulation as well as numerical integration of model mode-coupling equations. The purpose of the investigation is to identify relevant nonlinear mechanisms responsible for the steady-state drift wave fluctuations. It is found that the saturation of the instability is mainly caused by the nonlinear E x B convection of the resonant electrons and their associated velocity space nonlinearity. The latter also induces energy exchange between the competing modes, which, in turn, gives rise to enhanced diffusion. The nonlinear E x B convection of the ions, which contributes to the nonlinear frequency shift, is also an important ingredient for the saturation.

  11. Microevolution between paired antral and paired antrum and corpus Helicobacter pylori isolates recovered from individual patients.

    Science.gov (United States)

    Carroll, Ian M; Ahmed, Niyaz; Beesley, Sarah M; Khan, Aleem A; Ghousunnissa, Sheikh; Moráin, Colm A O; Habibullah, C M; Smyth, Cyril J

    2004-07-01

    Sequence variations located at the signal sequence and mid-region within the vacA gene, the 3'-end of the cagA gene, the indel motifs at the 3'-end of the cag pathogenicity island and the regions upstream of the vacA and ribA genes were determined by PCR in 19 paired antral or antrum and corpus Helicobacter pylori isolates obtained at the same endoscopic session, and three antral pairs taken sequentially. Random amplification of polymorphic DNA (RAPD)-PCR and fluorescent amplified fragment length polymorphism (FAFLP)-PCR fingerprinting were applied to these paired clinical isolates. The FAFLP-PCR profiles generated were phylogenetically analysed. For the 22 paired isolates there were no differences within pairs at five of the genetic loci studied. However, six pairs of isolates (27%), of which four were antrum and corpus pairs, showed differences in the numbers of repeats located at the 3'-end of the cagA gene. RAPD-PCR fingerprinting showed that 16 (73%) pairs, nine of which were antrum and corpus pairs, possessed identical profiles, while six (27%) displayed distinctly different profiles, indicating mixed infections. Three of the six pairs showing differences at the 3'-end of the cagA gene yielded identical RAPD-PCR fingerprints. FAFLP-PCR fingerprinting and phylogenetic analysis revealed that all 16 pairs that displayed identical RAPD-PCR profiles had highly similar, but not identical, fingerprints, demonstrating that these pairs were ancestrally related but had undergone minor genomic alterations. Two antrum and corpus pairs of isolates, within the latter group, were isolates obtained from two siblings from the same family. This analysis demonstrated that each sibling was colonized by ancestrally related strains that exhibited differences in vacA genotype characteristics.

  12. Z-scan theory for nonlocal nonlinear media with simultaneous nonlinear refraction and nonlinear absorption.

    Science.gov (United States)

    Rashidian Vaziri, Mohammad Reza

    2013-07-10

    In this paper, the Z-scan theory for nonlocal nonlinear media has been further developed when nonlinear absorption and nonlinear refraction appear simultaneously. To this end, the nonlinear photoinduced phase shift between the impinging and outgoing Gaussian beams from a nonlocal nonlinear sample has been generalized. It is shown that this kind of phase shift will reduce correctly to its known counterpart for the case of pure refractive nonlinearity. Using this generalized form of phase shift, the basic formulas for closed- and open-aperture beam transmittances in the far field have been provided, and a simple procedure for interpreting the Z-scan results has been proposed. In this procedure, by separately performing open- and closed-aperture Z-scan experiments and using the represented relations for the far-field transmittances, one can measure the nonlinear absorption coefficient and nonlinear index of refraction as well as the order of nonlocality. Theoretically, it is shown that when the absorptive nonlinearity is present in addition to the refractive nonlinearity, the sample nonlocal response can noticeably suppress the peak and enhance the valley of the Z-scan closed-aperture transmittance curves, which is due to the nonlocal action's ability to change the beam transverse dimensions.

  13. Topics on nonlinear generalized functions

    CERN Document Server

    Colombeau, J F

    2011-01-01

    The aim of this paper is to give the text of a recent introduction to nonlinear generalized functions exposed in my talk in the congress gf2011, which was asked by several participants. Three representative topics were presented: two recalls "Nonlinear generalized functions and their connections with distribution theory", "Examples of applications", and a recent development: "Locally convex topologies and compactness: a functional analysis of nonlinear generalized functions".

  14. Nonlinear Ultrasonic Phased Array Imaging

    Science.gov (United States)

    Potter, J. N.; Croxford, A. J.; Wilcox, P. D.

    2014-10-01

    This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging through depth.

  15. Nonlinear ultrasonic phased array imaging

    OpenAIRE

    Potter, J N; Croxford, A.J.; Wilcox, P. D.

    2014-01-01

    This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging t...

  16. Research on Nonlinear Dynamical Systems.

    Science.gov (United States)

    1983-01-10

    investigated fundamental aspects of functional differential equations, including qualitative questions (stability, nonlinear oscillations ), in 142,45,47,52...Bifurcation in the Duffing equation with several parameters, II. Proc. of the Royal Society of Edinburgh, Series A, 79A (1977), pp.317-326. 1I.J (with ;Ibtoas...Lecture Notes in Mathematics, Vol. 730 (1979). [54] Nonlinear oscillations in equations with delays. Proc. at A.M.S. 10th Summer Seminar on Nonlinear

  17. Nonlinear ultrasonic phased array imaging.

    Science.gov (United States)

    Potter, J N; Croxford, A J; Wilcox, P D

    2014-10-03

    This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging through depth.

  18. Remote Atmospheric Nonlinear Optical Magnetometry

    Science.gov (United States)

    2014-04-28

    Boyd , Nonlinear Optics (Elsevier, Burlington, MA, 2008). [13] M. Scully and S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6703--14-9548 Remote Atmospheric Nonlinear Optical Magnetometry PhilliP SPrangle...b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Remote Atmospheric Nonlinear Optical Magnetometry Phillip Sprangle, Luke

  19. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  20. Linearization of conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E; Pascual, I [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2009-03-11

    A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for the complete range of oscillation amplitudes. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of the technique.

  1. Problems in nonlinear resistive MHD

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)

    1998-12-31

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.

  2. Asymptotics for dissipative nonlinear equations

    CERN Document Server

    Hayashi, Nakao; Kaikina, Elena I; Shishmarev, Ilya A

    2006-01-01

    Many of problems of the natural sciences lead to nonlinear partial differential equations. However, only a few of them have succeeded in being solved explicitly. Therefore different methods of qualitative analysis such as the asymptotic methods play a very important role. This is the first book in the world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others.

  3. Focus issue introduction: nonlinear optics.

    Science.gov (United States)

    Boulanger, Benoît; Cundiff, Steven T; Gauthier, Daniel J; Karlsson, Magnus; Lu, Yan-Qing; Norwood, Robert A; Skryabin, Dmitry; Taira, Takunori

    2011-11-07

    It is now fifty years since the original observation of second harmonic generation ushered in the field of nonlinear optics, close on the heels of the invention of the laser. This feature issue celebrates this anniversary with papers that span the range from new nonlinear optical materials, through the increasingly novel methods that have been developed for phase matching, to emerging areas such as nonlinear metamaterials and plasmonic enhancement of optical properties. It is clear that the next fifty years of nonlinear optics will witness a proliferation of new applications with increasing technological impact.

  4. Nonlocal homogenization for nonlinear metamaterials

    CERN Document Server

    Gorlach, Maxim A; Lapine, Mikhail; Kivshar, Yuri S; Belov, Pavel A

    2016-01-01

    We present a consistent theoretical approach for calculating effective nonlinear susceptibilities of metamaterials taking into account both frequency and spatial dispersion. Employing the discrete dipole model, we demonstrate that effects of spatial dispersion become especially pronounced in the vicinity of effective permittivity resonance where nonlinear susceptibilities reach their maxima. In that case spatial dispersion may enable simultaneous generation of two harmonic signals with the same frequency and polarization but different wave vectors. We also prove that the derived expressions for nonlinear susceptibilities transform into the known form when spatial dispersion effects are negligible. In addition to revealing new physical phenomena, our results provide useful theoretical tools for analysing resonant nonlinear metamaterials.

  5. Nonlinear Peltier effect in semiconductors

    Science.gov (United States)

    Zebarjadi, Mona; Esfarjani, Keivan; Shakouri, Ali

    2007-09-01

    Nonlinear Peltier coefficient of a doped InGaAs semiconductor is calculated numerically using the Monte Carlo technique. The Peltier coefficient is also obtained analytically for single parabolic band semiconductors assuming a shifted Fermi-Dirac electronic distribution under an applied bias. Analytical results are in agreement with numerical simulations. Key material parameters affecting the nonlinear behavior are doping concentration, effective mass, and electron-phonon coupling. Current density thresholds at which nonlinear behavior is observable are extracted from numerical data. It is shown that the nonlinear Peltier effect can be used to enhance cooling of thin film microrefrigerator devices especially at low temperatures.

  6. Nonlinearities in Behavioral Macroeconomics.

    Science.gov (United States)

    Gomes, Orlando

    2017-07-01

    This article undertakes a journey across the literature on behavioral macroeconomics, with attention concentrated on the nonlinearities that the behavioral approach typically suggests or implies. The emphasis is placed on thinking the macro economy as a living organism, composed of many interacting parts, each one having a will of its own, which is in sharp contrast with the mechanism of the orthodox view (well represented by the neoclassical or new Keynesian dynamic stochastic general equilibrium - DSGE - model). The paper advocates that a thorough understanding of individual behavior in collective contexts is the only possible avenue to further explore macroeconomic phenomena and the often observed 'anomalies' that the benchmark DSGE macro framework is unable to explain or justify. After a reflection on the role of behavioral traits as a fundamental component of a new way of thinking the economy, the article proceeds with a debate on some of the most relevant frameworks in the literature that somehow link macro behavior and nonlinearities; covered subjects include macro models with disequilibrium rules, agent-based models that highlight interaction and complexity, evolutionary switching frameworks, and inattention based decision problems. These subjects have, as a fundamental point in common, the use of behavioral elements to transform existing interpretations of the economic reality, making it more evident how irregular fluctuations emerge and unfold on the aggregate.

  7. Improved nonlinear prediction method

    Science.gov (United States)

    Adenan, Nur Hamiza; Md Noorani, Mohd Salmi

    2014-06-01

    The analysis and prediction of time series data have been addressed by researchers. Many techniques have been developed to be applied in various areas, such as weather forecasting, financial markets and hydrological phenomena involving data that are contaminated by noise. Therefore, various techniques to improve the method have been introduced to analyze and predict time series data. In respect of the importance of analysis and the accuracy of the prediction result, a study was undertaken to test the effectiveness of the improved nonlinear prediction method for data that contain noise. The improved nonlinear prediction method involves the formation of composite serial data based on the successive differences of the time series. Then, the phase space reconstruction was performed on the composite data (one-dimensional) to reconstruct a number of space dimensions. Finally the local linear approximation method was employed to make a prediction based on the phase space. This improved method was tested with data series Logistics that contain 0%, 5%, 10%, 20% and 30% of noise. The results show that by using the improved method, the predictions were found to be in close agreement with the observed ones. The correlation coefficient was close to one when the improved method was applied on data with up to 10% noise. Thus, an improvement to analyze data with noise without involving any noise reduction method was introduced to predict the time series data.

  8. Generalized pairing strategies-a bridge from pairing strategies to colorings

    Directory of Open Access Journals (Sweden)

    Győrffy Lajos

    2016-12-01

    Full Text Available In this paper we define a bridge between pairings and colorings of the hypergraphs by introducing a generalization of pairs called t-cakes for t ∈ ℕ, t ≥ 2. For t = 2 the 2-cakes are the same as the well-known pairs of system of distinct representatives, that can be turned to pairing strategies in Maker-Breaker hypergraph games, see Hales and Jewett [12]. The two-colorings are the other extremity of t-cakes, in which the whole ground set of the hypergraph is one big cake that we divide into two parts (color classes. Starting from the pairings (2-cake placement and two-colorings we define the generalized t-cake placements where we pair p elements by q elements (p, q ∈ ℕ, 1 ≤ p, q < t, p + q = t.

  9. Existence of Corotating and Counter-Rotating Vortex Pairs for Active Scalar Equations

    Science.gov (United States)

    Hmidi, Taoufik; Mateu, Joan

    2017-03-01

    In this paper, we study the existence of corotating and counter-rotating pairs of simply connected patches for Euler equations and the {(SQG)_{α}} equations with {α in (0,1)}. From the numerical experiments implemented for Euler equations in Deem and Zabusky (Phys Rev Lett 40(13):859-862, 1978), Pierrehumbert (J Fluid Mech 99:129-144, 1980), Saffman and Szeto (Phys Fluids 23(12):2339-2342, 1980) it is conjectured the existence of a curve of steady vortex pairs passing through the point vortex pairs. There are some analytical proofs based on variational principle (Keady in J Aust Math Soc Ser B 26:487-502, 1985; Turkington in Nonlinear Anal Theory Methods Appl 9(4):351-369, 1985); however, they do not give enough information about the pairs, such as the uniqueness or the topological structure of each single vortex. We intend in this paper to give direct proofs confirming the numerical experiments and extend these results for the {(SQG)_{α}} equation when {α in (0,1)}. The proofs rely on the contour dynamics equations combined with a desingularization of the point vortex pairs and the application of the implicit function theorem.

  10. Simulation Study of Magnetic Fields generated by the Electromagnetic Filamentation Instability driven by Pair Loading

    Science.gov (United States)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hededal, C.; Hardee, P.; Mizuno, Y.; Fishman, G. J.

    2007-01-01

    Using a 3-D relativistic particle-in-cell (RPIC) code, we have investigated particle acceleration associated with a relativistic electron-positron (cold) jet propagating into ambient electron-positron and electron-ion plasmas without initial magnetic fields in order to investigate the nonlinear stage of the Weibel instability. We have also performed simulations with broad Lorentz factor distribution of jet electrons and positrons, which are assumed to be created by the photon annihilation. The growth time and nonlinear saturation levels depend on the initial jet parallel velocity distributions and ambient plasma. Simulations show that the Weibel instability created in the collisionless shocks accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The nonlinear fluctuation amplitude of densities, currents, electric, and magnetic fields in the electron-ion ambient plasma are larger than those in the electron-positron ambient plasma. We have shown that plasma instabilities driven by these streaming electron-positron pairs are responsible for the excitation of near-equipartition, turbulent magnetic fields. These fields maintain a strong saturated level on timescales much longer than the electron skin depth at least for the duration of the simulations. Our results reveal the importance of the electromagnetic filamentation instability in ensuring an effective coupling between electron-positron pairs and ions, and may help explain the origin of large upstream fields in GRB shock.

  11. Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.

  12. Theoretical study of pair density wave superconductors

    Science.gov (United States)

    Zheng, Zhichao

    In conventional superconductors, the Cooper pairs are formed from quasiparticles. We explore another type of superconducting state, a pair density wave (PDW) order, which spontaneously breaks some of the translational and point group symmetries. In a PDW superconductor, the order parameter is a periodic function of the center-of-mass coordinate, and the spatial average value of the superconducting order parameter vanishes. In the early 1960s, following the success of the BCS theory of superconductivity, Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) developed theories of inhomogeneous superconducting states. Because of this Zeeman splitting in a magnetic field, the Cooper pairs having a nonzero center-of-mass momentum are more stable than the normal pairing, leading to the FFLO state. Experiments suggest possible occurrence of the FFLO state in the heavy-fermion compound CeCoIn5, and in quasi-low-dimensional organic superconductors. FFLO phases have also been argued to be of importance in understanding ultracold atomic Fermi gases and in the formation of color superconductivity in high density quark matter. In all Fermi superfluids known at the present time, Cooper pairs are composed of particles with spin 1/2. The spin component of a pair wave function can be characterized by its total spin S = 0 (singlet) and S = 1 (triplet). In the discovered broken inversion superconductors CePt3Si, Li2Pt3B, and Li2Pd3B, the magnetic field leads to novel inhomogeneous superconducting states, namely the helical phase and the multiple-q phase. Its order parameter exhibits periodicity similar to FFLO phase, and the consequences of both phases are same: the enhancement of transition temperature as a function of magnetic field. We have studied the PDW phases in broken parity superconductors with vortices included. By studying PDW vortex states, we find the usual Abrikosov vortex solution is unstable against a new solution with fractional vortex pairs. We have also studied the

  13. String pair production in non homogeneous backgrounds

    CERN Document Server

    Bolognesi, Stefano; Tallarita, Gianni

    2016-01-01

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is les...

  14. Pairing instabilities of Dirac composite fermions

    Science.gov (United States)

    Milovanović, M. V.; Ćirić, M. Dimitrijević; Juričić, V.

    2016-09-01

    Recently, a Dirac (particle-hole symmetric) description of composite fermions in the half-filled Landau level (LL) was proposed [D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027], and we study its possible consequences on BCS (Cooper) pairing of composite fermions (CFs). One of the main consequences is the existence of anisotropic states in single-layer and bilayer systems, which was previously suggested in Jeong and Park [J. S. Jeong and K. Park, Phys. Rev. B 91, 195119 (2015), 10.1103/PhysRevB.91.195119]. We argue that in the half-filled LL in the single-layer case the gapped states may sustain anisotropy, because isotropic pairings may coexist with anisotropic ones. Furthermore, anisotropic pairings with the addition of a particle-hole symmetry-breaking mass term may evolve into rotationally symmetric states, i.e., Pfaffian states of Halperin-Lee-Read (HLR) ordinary CFs. On the basis of the Dirac formalism, we argue that in the quantum Hall bilayer at total filling factor 1, with decreasing distance between the layers, weak pairing of p -wave paired CFs is gradually transformed from Dirac to ordinary, HLR-like, with a concomitant decrease in the CF number. Global characterization of low-energy spectra based on the Dirac CFs agrees well with previous calculations performed by exact diagonalization on a torus. Finally, we discuss features of the Dirac formalism when applied in this context.

  15. Pairing and specific heat in hot nuclei

    CERN Document Server

    Gambacurta, Danilo; Sandulescu, Nicu

    2013-01-01

    The thermodynamics of pairing phase-transition in nuclei is studied in the canonical ensemble and treating the pairing correlations in a finite-temperature variation after projection BCS approach (FT-VAP). Due to the restoration of particle number conservation, the pairing gap and the specific heat calculated in the FT-VAP approach vary smoothly with the temperature, indicating a gradual transition from the superfluid to the normal phase, as expected in finite systems. We have checked that the predictions of the FT-VAP approach are very accurate when compared to the results obtained by an exact diagonalization of the pairing Hamiltonian. The influence of pairing correlations on specific heat is analysed for the isotopes $^{161,162}$Dy and $^{171,172}$Yb. It is shown that the FT-VAP approach, applied with a level density provided by mean field calculations and supplemented, at high energies, by the level density of the back-shifted Fermi gas model, can approximate reasonably well the main properties of specifi...

  16. The environment of low redshift quasar pairs

    CERN Document Server

    Sandrinelli, Angela; Treves, Aldo; Farina, Emanuele Paolo; Uslenghi, Michela

    2014-01-01

    We investigate the properties of the galaxy environment of a sample of 14 low redshift (z $<$ 0.85) quasar physical pairs extracted from SDSS DR10 archives. The pairs have a systemic radial velocity difference $\\Delta V_\\parallel \\leqslant$ 600 $km \\ s^{-1}$ (based on [OIII]5007 \\AA \\ line) and projected distance $ R_\\bot \\leqslant$ 600 kpc. The physical association of the pairs is statistically confirmed at a level of $\\sim$ 90 %. For most of the images of these quasars we are able to resolve their host galaxies that turn out to be on average similar to those of quasars not in pairs. We also found that quasars in a pair are on average in region of modest galaxy overdensity extending up 0.5 Mpc from the QSO. This galaxy overdensity is indistinguishable from that of a homogeneous sample of isolated quasars at the same redshift and with similar host galaxy luminosity. These results, albeit derived from a small (but homogeneous) sample of objects, suggest that the rare activation of two quasars with small phy...

  17. Vector boson pair production at hadron colliders

    CERN Document Server

    Adamson, K L

    2002-01-01

    We calculate the contribution of gluon-gluon induced processes to vector boson pair production at hadron colliders, specifically the production of WZ, W gamma and Z gamma pairs. We calculate the tree level processes gg -> WZqq-bqr, gg -> W gamma qq-bar and gg -> Z gamma qq-bar, and the one loop process gg -> Z gamma. We use the helicity method and include the decay of the W and Z bosons into leptons in the narrow width approximation. We include anomalous triple gauge couplings in all of our vector boson pair production calculations. In order to integrate over the qq-bar final state phase space we use an extended version of the subtraction method to NNLO and cancel collinear singularities explicitly. The general subtraction terms that are obtained apply to all vector boson pair production processes. Due to the large gluon density at low x, the gluon induced terms of vector boson pair production are expected to be the dominant NNLO QCD correction, relevant at LHC energies. However, we show that due to a cancell...

  18. Localized Excitations in a Sixth-Order (1+1)-Dimensional Nonlinear Evolution Equation

    Institute of Scientific and Technical Information of China (English)

    SHEN Shou-Feng

    2005-01-01

    In this letter, by means of the Lax pair, Darboux transformation, and variable separation approach, a new exact solution of a sixth-order (1+ 1)-dimensional nonlinear evolution equation, which includes some arbitrary functions,is obtained. Abundant new localized excitations can be found by selecting appropriate functions and they are illustrated both analytically and graphically.

  19. Scene matching based on non-linear pre-processing on reference image and sensed image

    Institute of Scientific and Technical Information of China (English)

    Zhong Sheng; Zhang Tianxu; Sang Nong

    2005-01-01

    To solve the heterogeneous image scene matching problem, a non-linear pre-processing method for the original images before intensity-based correlation is proposed. The result shows that the proper matching probability is raised greatly. Especially for the low S/N image pairs, the effect is more remarkable.

  20. Traveling Wave Solutions for a Delayed SIRS Infectious Disease Model with Nonlocal Diffusion and Nonlinear Incidence

    Directory of Open Access Journals (Sweden)

    Xiaohong Tian

    2014-01-01

    Full Text Available A delayed SIRS infectious disease model with nonlocal diffusion and nonlinear incidence is investigated. By constructing a pair of upper-lower solutions and using Schauder's fixed point theorem, we derive the existence of a traveling wave solution connecting the disease-free steady state and the endemic steady state.

  1. The Kadomtsev-Petviashvili equation for dust ion-acoustic solitons in pair-ion plasmas

    Institute of Scientific and Technical Information of China (English)

    Hafeez Ur-Rehman

    2013-01-01

    Using the reductive perturbation method,we have derived the Kadomtsev-Petviashvili (KP) equation to study the nonlinear properties of electrostatic collisionless dust ion-acoustic solitons in pair-ion (p-i) plasmas.We have chosen the fluid model for the positive ions,the negative ions,and a fraction of static charged (both positively and negatively) dust particles.Numerical solutions of these dust ion-acoustic solitons are plotted and their characteristics are discussed.It is found that only the amplitudes of the electrostatic dust ion-acoustic solitons vary when the dust is introduced in the pair-ion plasma.It is also noticed that the amplitude and the width of these solitons both vary when the thermal energy of the positive or negative ions is varied.It is shown that potential hump structures are formed when the temperature of the negative ions is higher than that of the positive ions,and potential dip structures are observed when the temperature of the positive ions supersedes that of the negative ions.As the pair-ion plasma mimics the electron-positron plasma,thus our results might be helpful in understanding the nonlinear dust ion acoustic solitary waves in super dense astronomical bodies.

  2. Supersymmetric quantum mechanics approach to a nonlinear lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ricotta, Regina Maria [Faculdade de Tecnologia de Sao Paulo (FATEC), SP (Brazil); Drigo Filho, Elso [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2011-07-01

    Full text: DNA is one of the most important macromolecules of all biological system. New discoveries about it have open a vast new field of research, the physics of nonlinear DNA. A particular feature that has attracted a lot of attention is the thermal denaturation, i.e., the spontaneous separation of the two strands upon heating. In 1989 a simple lattice model for the denaturation of the DNA was proposed, the Peyrard-Bishop model, PB. The bio molecule is described by two chains of particles coupled by nonlinear springs, simulating the hydrogen bonds that connect the two basis in a pair. The potential for the hydrogen bonds is usually approximated by a Morse potential. The Hamiltonian system generates a partition function which allows the evaluation of the thermodynamical quantities such as mean strength of the basis pairs. As a byproduct the Hamiltonian system was shown to be a NLSE (nonlinear Schroedinger equation) having soliton solutions. On the other hand, a reflectionless potential with one bound state, constructed using supersymmetric quantum mechanics, SQM, can be shown to be identical to a soliton solution of the KdV equation. Thus, motivated by this Hamiltonian problem and inspired by the PB model, we consider the Hamiltonian of a reflectionless potential through SQM, in order to evaluate thermodynamical quantities of a unidimensional lattice with possible biological applications. (author)

  3. Chaos Suppression in a Sine Square Map through Nonlinear Coupling

    Institute of Scientific and Technical Information of China (English)

    Eduardo L. Brugnago; Paulo C. Rech

    2011-01-01

    We study a pair of nonlinearly coupled identical chaotic sine square maps.More specifically,we investigate the chaos suppression associated with the variation of two parameters.Two-dimensional parameter-space regions where the chaotic dynamics of the individual chaotic sine square map is driven towards regular dynamics are delimited.Additionally,the dynamics of the coupled system is numerically characterized as the parameters are changed.In recent years,many efforts have been devoted to chaos suppression in a nonlinear dynamics field.Iglesias et al.[1] reported a chaos suppression method through numerical truncation and rounding errors,with applications in discrete-time systems.Hénon map[2] and the Burgers map[3] were used to illustrate the method.A method of feedback impulsive chaos suppression was introduced by Osipov et al.[4]It is an algorithm of suppressing chaos in continuoustime dissipative systems with an external impulsive force,whose necessary condition is a reduction of the continuous flow to a discrete-time one-dimensional map.%We study a pair of nonlinearly coupled identical chaotic sine square maps. More specifically, we investigate the chaos suppression associated with the variation of two parameters. Two-dimensional parameter-space regions where the chaotic dynamics of the individual chaotic sine square map is driven towards regular dynamics are delimited. Additionally, the dynamics of the coupled system is numerically characterized as the parameters are changed.

  4. Mad-Maximized Higgs Pair Analyses

    CERN Document Server

    Kling, Felix; Schichtel, Peter

    2016-01-01

    We study Higgs pair production with a subsequent decay to a pair of photons and a pair of bottoms at the LHC. We use the log-likelihood ratio to identify the kinematic regions which either allow us to separate the di-Higgs signal from backgrounds or to determine the Higgs self-coupling. We find that both regions are separate enough to ensure that details of the background modelling will not affect the determination of the self-coupling. Assuming dominant statistical uncertainties we determine the best precision with which the Higgs self- coupling can be probed in this channel. We finally comment on the same questions at a future 100 TeV collider.

  5. Schwinger Pair Production in Pulsed Electric Fields

    CERN Document Server

    Kim, Sang Pyo; Ruffini, Remo

    2012-01-01

    We numerically investigate the temporal behavior and the structure of longitudinal momentum spectrum and the field polarity effect on pair production in pulsed electric fields in scalar quantum electrodynamics (QED). Using the evolution operator expressed in terms of the particle and antiparticle operators, we find the exact quantum states under the influence of electric pulses and measure the number of pairs of the Minkowski particle and antiparticle. The number of pairs, depending on the configuration of electric pulses, exhibits rich structures in the longitudinal momentum spectrum and undergoes diverse dynamical behaviors at the onset of the interaction but always either converges to a momentum-dependent constant or oscillates around a momentum-dependent time average after the completion of fields.

  6. Hard photodisintegration of a proton pair

    Science.gov (United States)

    Pomerantz, I.; Bubis, N.; Allada, K.; Beck, A.; Beck, S.; Berman, B. L.; Boeglin, W.; Camsonne, A.; Canan, M.; Chirapatpimol, K.; Cisbani, E.; Cusanno, F.; de Jager, C. W.; Dutta, C.; Garibaldi, F.; Geagla, O.; Gilman, R.; Glister, J.; Higinbotham, D. W.; Jiang, X.; Katramatou, A. T.; Khrosinkova, E.; Lee, B. W.; LeRose, J. J.; Lindgren, R.; McCullough, E.; Meekins, D.; Michaels, R.; Moffit, B.; Petratos, G. G.; Piasetzky, E.; Qian, X.; Qiang, Y.; Rodriguez, I.; Ron, G.; Saha, A.; Sarty, A. J.; Sawatzky, B.; Schulte, E.; Shneor, R.; Sparveris, N.; Subedi, R.; Strauch, S.; Sulkosky, V.; Wang, Y.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Zhan, X.; Zheng, X.

    2010-02-01

    We present a study of high energy photodisintegration of proton-pairs through the γ+He3→p+p+n channel. Photon energies, Eγ, from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. The s scaling of the cross section, as predicted by the constituent counting rule for two nucleon photodisintegration, was observed for the first time. The onset of the scaling is at a higher energy and the cross section is significantly lower than for deuteron (pn pair) photodisintegration. For Eγ below the scaling region, the scaled cross section was found to present a strong energy-dependent structure not observed in deuteron photodisintegration.

  7. Holographic EPR Pairs, Wormholes and Radiation

    CERN Document Server

    Chernicoff, Mariano; Pedraza, Juan F

    2013-01-01

    As evidence for the ER=EPR conjecture, it has recently been observed that the string that is holographically dual to an entangled quark-antiquark pair separating with (asymptotically) uniform acceleration has a wormhole on its worldsheet. We point out that a two-sided horizon and a wormhole actually appear for much more generic quark-antiquark trajectories, which is consistent with the fact that the members of an EPR pair need not be permanently out of causal contact. The feature that determines whether the causal structure of the string worldsheet is trivial or not turns out to be the emission of gluonic radiation by the dual quark and antiquark. In the strongly-coupled gauge theory, it is only when radiation is emitted that one obtains an unambiguous separation of the pair into entangled subsystems, and this is what is reflected on the gravity side by the existence of the worldsheet horizon.

  8. Categorical Pairs and the Indicative Shift

    CERN Document Server

    Kauffman, Louis H

    2011-01-01

    This paper introduces the notion of a categorical pair, a pair of categories (C,C') such that every morphism in C is an object in C'. Categorical pairs are precursors to 2-categories. Arrows in C' can express relationships among the morphisms of C. In particular we show that by using a model of the linguistic process of naming, we can ensure that every morphism in C has an indirect self-reference of the form a -----> Fa where this arrow occurs in the category C'. This result is shown to generalize and clarify known fixed point theorems in logic and categories, and is applied to Goedel's Incompleteness Theorem, the Cantor Diagonal Process and the Lawvere Fixed Point Theorem. In particular we show that the indirect self-reference that is central to Goedel's Theorem is an instance of a general pattern here called the indicative shift.

  9. Nonlinear Evolution of Ferroelectric Domains

    Institute of Scientific and Technical Information of China (English)

    WeiLU; Dai-NingFANG; 等

    1997-01-01

    The nonlinear evolution of ferroelectric domains is investigated in the paper and amodel is proposed which can be applied to numerical computation.Numerical results show that the model can accurately predict some nonlinear behavior and consist with those experimental results.

  10. Nonlinear Electrodynamics and black holes

    CERN Document Server

    Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo

    2007-01-01

    It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.

  11. Space curves, anholonomy and nonlinearity

    Indian Academy of Sciences (India)

    Radha Balakrishnan

    2005-04-01

    Using classical differential geometry, we discuss the phenomenon of anholonomy that gets associated with a static and a moving curve. We obtain the expressions for the respective geometric phases in the two cases and interpret them. We show that there is a close connection between anholonomy and nonlinearity in a wide class of nonlinear systems.

  12. Balancing for unstable nonlinear systems

    NARCIS (Netherlands)

    Scherpen, J.M.A.

    1993-01-01

    A previously obtained method of balancing for stable nonlinear systems is extended to unstable nonlinear systems. The similarity invariants obtained by the concept of LQG balancing for an unstable linear system can also be obtained by considering a past and future energy function of the system. By c

  13. Nonlinear diffusion and superconducting hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Mayergoyz, I.D. [Univ. of Maryland, College Park, MD (United States)

    1996-12-31

    Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.

  14. Nonlinear energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Lallart, Mickael; Guyomar, Daniel, E-mail: mickael.lallart@insa-lyon.fr [LGEF, INSA-Lyon, Universite de Lyon, 8 rue de la Physique, F-69621 (France)

    2011-10-29

    The proliferation of wearable and left-behind devices has raised the issue of powering such systems. While primary batteries have been widely used in order to address this issue, recent trends have focused on energy harvesting products that feature high reliability and low maintenance issues. Among all the ambient sources available for energy harvesting, vibrations and heat have been of significant interest among the research community for small-scale devices. However, the conversion abilities of materials are still limited when dealing with systems featuring small dimensions. The purpose of this paper is to presents an up-to-date view of nonlinear approaches for increasing the efficiency of electromechanical and electrocaloric conversion mechanisms. From the modeling of the operation principles of the different architectures, a comparative analysis will be exposed, emphasizing the advantages and drawbacks of the presented concepts, in terms of maximal output power (under constant vibration magnitude or taking into account the damping effect), load independence, and implementation easiness.

  15. Nonlinear organic plasmonics

    CERN Document Server

    Fainberg, B D

    2015-01-01

    Purely organic materials with negative and near-zero dielectric permittivity can be easily fabricated. Here we develop a theory of nonlinear non-steady-state organic plasmonics with strong laser pulses. The bistability response of the electron-vibrational model of organic materials in the condensed phase has been demonstrated. Non-steady-state organic plasmonics enable us to obtain near-zero dielectric permittivity during a short time. We have proposed to use non-steady-state organic plasmonics for the enhancement of intersite dipolar energy-transfer interaction in the quantum dot wire that influences on electron transport through nanojunctions. Such interactions can compensate Coulomb repulsions for particular conditions. We propose the exciton control of Coulomb blocking in the quantum dot wire based on the non-steady-state near-zero dielectric permittivity of the organic host medium.

  16. Nonlinear Water Waves

    CERN Document Server

    2016-01-01

    This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...

  17. Nonlinear estimation and classification

    CERN Document Server

    Hansen, Mark; Holmes, Christopher; Mallick, Bani; Yu, Bin

    2003-01-01

    Researchers in many disciplines face the formidable task of analyzing massive amounts of high-dimensional and highly-structured data This is due in part to recent advances in data collection and computing technologies As a result, fundamental statistical research is being undertaken in a variety of different fields Driven by the complexity of these new problems, and fueled by the explosion of available computer power, highly adaptive, non-linear procedures are now essential components of modern "data analysis," a term that we liberally interpret to include speech and pattern recognition, classification, data compression and signal processing The development of new, flexible methods combines advances from many sources, including approximation theory, numerical analysis, machine learning, signal processing and statistics The proposed workshop intends to bring together eminent experts from these fields in order to exchange ideas and forge directions for the future

  18. Nonlinear transmission sputtering

    Science.gov (United States)

    Bitensky, I. S.; Sigmund, P.

    1996-05-01

    General expressions have been derived for the nonlinear yield of transmission sputtering for an incident polyatomic ion under the assumption that the molecule breaks up on entering the target and that sputter yields are enhanced due to proximity of atomic trajectories. Special attention is given to the case of negligible Coulomb explosion where projectile atoms penetrate independently. For weakly overlapping trajectories, the yield enhancement factor of a polyatomic molecule can be expressed by that of a diatom, amended with a correction for triple correlations if necessary. This expression is in good agreement with recent experimental findings on phenylalanine targets. Pertinent results on multiple scattering of atomic ions are reviewed and applied to independently-moving fragment atoms. The merits of measurements at variable layer thickness in addition to variable projectile energy are mentioned.

  19. Perspectives on Nonlinear Filtering

    KAUST Repository

    Law, Kody

    2015-01-07

    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).

  20. Nonlinear rotordynamics analysis

    Science.gov (United States)

    Day, W. B.; Zalik, R. A.

    1986-01-01

    Three analytic consequences of the nonlinear Jeffcott equations are examined. The primary application of these analyses is directed toward understanding the excessive vibrations recorded in the Liquid Oxygen (LOX) pump of the Space Shuttle Main Engine (SSME) during hot firing ground testing. The first task is to provide bounds on the coefficients of the equations which delimit the two cases of numerical solution as a circle or an annulus. The second task examines the mathematical generalization to multiple forcing functions, which includes the special problems of mass imbalance, side force, rubbing, and combination of these forces. Finally, stability and boundedness of the steady-state solutions is discussed and related to the corresponding linear problem.

  1. Nonlinear optics response of semiconductor quantum wells under high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Chemla, D.S.

    1993-07-01

    Recent investigations on the nonlinear optical response of semiconductor quantum wells in a strong perpendicular magnetic field, H, are reviewed. After some introductory material the evolution of the linear optical properties of GaAs QW`s as a function of H is discussed; an examination is made of how the magneto-excitons (MX) extrapolate continuously between quasi-2D QW excitons (X) when H = 0, and pairs of Landau levels (LL) when H {yields} {infinity}. Next, femtosecond time resolved investigations of their nonlinear optical response are presented; the evolution of MX-MX interactions with increasing H is stressed. Finally, how, as the dimensionality is reduced by application of H, the number of scattering channels is limited and relaxation of electron-hole pairs is affected. How nonlinear optical spectroscopy can be exploited to access the relaxation of angular momentum within magneto-excitons is also discussed.

  2. Nonlinearities in vegetation functioning

    Science.gov (United States)

    Ceballos-Núñez, Verónika; Müller, Markus; Metzler, Holger; Sierra, Carlos

    2016-04-01

    Given the current drastic changes in climate and atmospheric CO2 concentrations, and the role of vegetation in the global carbon cycle, there is increasing attention to the carbon allocation component in biosphere terrestrial models. Improving the representation of C allocation in models could be the key to having better predictions of the fate of C once it enters the vegetation and is partitioned to C pools of different residence times. C allocation has often been modeled using systems of ordinary differential equations, and it has been hypothesized that most models can be generalized with a specific form of a linear dynamical system. However, several studies have highlighted discrepancies between empirical observations and model predictions, attributing these differences to problems with model structure. Although efforts have been made to compare different models, the outcome of these qualitative assessments has been a conceptual categorization of them. In this contribution, we introduce a new effort to identify the main properties of groups of models by studying their mathematical structure. For this purpose, we performed a literature research of the relevant models of carbon allocation in vegetation and developed a database with their representation in symbolic mathematics. We used the Python package SymPy for symbolic mathematics as a common language and manipulated the models to calculate their Jacobian matrix at fixed points and their eigenvalues, among other mathematical analyses. Our preliminary results show a tendency of inverse proportionality between model complexity and size of time/space scale; complex interactions between the variables controlling carbon allocation in vegetation tend to operate at shorter time/space scales, and vice-versa. Most importantly, we found that although the linear structure is common, other structures with non-linearities have been also proposed. We, therefore, propose a new General Model that can accommodate these

  3. Nonlinear field space cosmology

    Science.gov (United States)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2017-08-01

    We consider the FRW cosmological model in which the matter content of the Universe (playing the role of an inflaton or quintessence) is given by a novel generalization of the massive scalar field. The latter is a scalar version of the recently introduced nonlinear field space theory, where the physical phase space of a given field is assumed to be compactified at large energies. For our analysis, we choose the simple case of a field with the spherical phase space and endow it with the generalized Hamiltonian analogous to the XXZ Heisenberg model, normally describing a system of spins in condensed matter physics. Subsequently, we study both the homogenous cosmological sector and linear perturbations of such a test field. In the homogenous sector, we find that nonlinearity of the field phase space is becoming relevant for large volumes of the Universe and can lead to a recollapse, and possibly also at very high energies, leading to the phase of a bounce. Quantization of the field is performed in the limit where the nontrivial nature of its phase space can be neglected, while there is a nonvanishing contribution from the Lorentz symmetry breaking term of the Hamiltonian. As a result, in the leading order of the XXZ anisotropy parameter, we find that the inflationary spectral index remains unmodified with respect to the standard case but the total amplitude of perturbations is subject to a correction. The Bunch-Davies vacuum state also becomes appropriately corrected. The proposed new approach is bringing cosmology and condensed matter physics closer together, which may turn out to be beneficial for both disciplines.

  4. Breaking of Cooper pairs in 108Pd

    Science.gov (United States)

    Rahmatinejad, A.; Kakavand, T.; Razavi, R.

    2016-04-01

    In this paper, breaking of Cooper pairs in 108Pd is investigated within the canonical ensemble framework and the BCS model. Our results show an evidence of two phase transitions, which are related to neutron and proton systems. Also, with consideration of pairing interaction, the role of neutron and proton systems in entropy, spin cutoff parameter and as a result in the moment of inertia are investigated. The results show minor role for the proton system at low temperatures and approximately equal roles for both neutron and proton systems after the critical temperature. Good agreement was observed between obtained results and the experimental data.

  5. Nilpotent orbits in real symmetric pairs

    CERN Document Server

    Dietrich, Heiko; Ruggeri, Daniele; Trigiante, Mario

    2016-01-01

    In the classification of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determining the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of SL_2(R)^4 acting on the fourth tensor power of the natural 2-dimensional SL_2(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model.

  6. Fostering multiculturalism: the English Conversation Pairs Program.

    Science.gov (United States)

    Smith, B E; Elander, E

    1995-01-01

    Exposure to and personal interactions with people of diverse cultures foster an acceptance of multiculturalism. To this end, the English Conversation Pairs Program provides weekly conversation sessions between students who are native speakers of English (NSE) and students who speak English as a second language (ESL). Attitudes of twenty-two NSE students are surveyed before and after participation in the Conversation Pairs Program. This paper discusses (a) NSE students' perceptions of the program, (b) perceived changes in cultural sensitivity of NSE students, (c) activities which enhance and/or hamper program effectiveness, and (d) variables which influence program effectiveness.

  7. Pairing Phase Transitions of Matter under Rotation

    CERN Document Server

    Jiang, Yin

    2016-01-01

    The phases and properties of matter under global rotation have attracted much interest recently. In this paper we investigate the pairing phenomena in a system of fermions under the presence of rotation. We find that there is a generic suppression effect on pairing states with zero angular momentum. We demonstrate this effect with the chiral condensation and the color superconductivity in hot dense QCD matter as explicit examples. In the case of chiral condensation, a new phase diagram in the temperature-rotation parameter space is found, with a nontrivial critical point.

  8. NONLINEAR STABILITY FOR EADY'S MODEL

    Institute of Scientific and Technical Information of China (English)

    LIU Yong-ming; QIU Ling-cun

    2005-01-01

    Poincaré type integral inequality plays an important role in the study of nonlinear stability ( in the sense of Arnold's second theorem) for three-dimensional quasigeostophic flow. The nonlinear stability of Eady's model is one of the most important cases in the application of the method. But the best nonlinear stability criterion obtained so far and the linear stability criterion are not coincident. The two criteria coincide only when the period of the channel is infinite.additional conservation law of momentum and by rigorous estimate of integral inequality. So the new nonlinear stability criterion was obtained, which shows that for Eady 's model in the periodic channel, the linear stable implies the nonlinear stable.

  9. Nonlinear Waves in Complex Systems

    DEFF Research Database (Denmark)

    2007-01-01

    The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...

  10. Terahertz Nonlinearity in Graphene Plasmons

    CERN Document Server

    Jadidi, Mohammad M; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin

    2015-01-01

    Sub-wavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, sub-wavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a THz pump-THz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by two orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results.

  11. Fast Numerical Nonlinear Fourier Transforms

    CERN Document Server

    Wahls, Sander

    2014-01-01

    The nonlinear Fourier transform, which is also known as the forward scattering transform, decomposes a periodic signal into nonlinearly interacting waves. In contrast to the common Fourier transform, these waves no longer have to be sinusoidal. Physically relevant waveforms are often available for the analysis instead. The details of the transform depend on the waveforms underlying the analysis, which in turn are specified through the implicit assumption that the signal is governed by a certain evolution equation. For example, water waves generated by the Korteweg-de Vries equation can be expressed in terms of cnoidal waves. Light waves in optical fiber governed by the nonlinear Schr\\"dinger equation (NSE) are another example. Nonlinear analogs of classic problems such as spectral analysis and filtering arise in many applications, with information transmission in optical fiber, as proposed by Yousefi and Kschischang, being a very recent one. The nonlinear Fourier transform is eminently suited to address them ...

  12. Properties of Nonlinear Dynamo Waves

    Science.gov (United States)

    Tobias, S. M.

    1997-01-01

    Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.

  13. Cubication of conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, Augusto; Alvarez, Mariela L [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, Elena; Pascual, Inmaculada [Departamento de Optica, FarmacologIa y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2009-09-15

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  14. Nonlinear Oscillators in Space Physics

    Science.gov (United States)

    Lester,Daniel; Thronson, Harley

    2011-01-01

    We discuss dynamical systems that produce an oscillation without an external time dependent source. Numerical results are presented for nonlinear oscillators in the Em1h's atmosphere, foremost the quasi-biennial oscillation (QBOl. These fluid dynamical oscillators, like the solar dynamo, have in common that one of the variables in a governing equation is strongly nonlinear and that the nonlinearity, to first order, has particular form. of 3rd or odd power. It is shown that this form of nonlinearity can produce the fundamental li'equency of the internal oscillation. which has a period that is favored by the dynamical condition of the fluid. The fundamental frequency maintains the oscillation, with no energy input to the system at that particular frequency. Nonlinearities of 2nd or even power could not maintain the oscillation.

  15. Asymptotic expansions in nonlinear rotordynamics

    Science.gov (United States)

    Day, William B.

    1987-01-01

    This paper is an examination of special nonlinearities of the Jeffcott equations in rotordynamics. The immediate application of this analysis is directed toward understanding the excessive vibrations recorded in the LOX pump of the SSME during hot-firing ground testing. Deadband, side force, and rubbing are three possible sources of inducing nonlinearity in the Jeffcott equations. The present analysis initially reduces these problems to the same mathematical description. A special frequency, named the nonlinear natural frequency, is defined and used to develop the solutions of the nonlinear Jeffcott equations as singular asymptotic expansions. This nonlinear natural frequency, which is the ratio of the cross-stiffness and the damping, plays a major role in determining response frequencies.

  16. Nonlinear hyperbolic waves in multidimensions

    CERN Document Server

    Prasad, Phoolan

    2001-01-01

    The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...

  17. Analysis of Nonlinear Electromagnetic Metamaterials

    CERN Document Server

    Poutrina, Ekaterina; Smith, David R

    2010-01-01

    We analyze the properties of a nonlinear metamaterial formed by integrating nonlinear components or materials into the capacitive regions of metamaterial elements. A straightforward homogenization procedure leads to general expressions for the nonlinear susceptibilities of the composite metamaterial medium. The expressions are convenient, as they enable inhomogeneous system of scattering elements to be described as a continuous medium using the standard notation of nonlinear optics. We illustrate the validity and accuracy of our theoretical framework by performing measurements on a fabricated metamaterial sample composed of an array of split ring resonators (SRRs) with packaged varactors embedded in the capacitive gaps in a manner similar to that of Wang et al. [Opt. Express 16, 16058 (2008)]. Because the SRRs exhibit a predominant magnetic response to electromagnetic fields, the varactor-loaded SRR composite can be described as a magnetic material with nonlinear terms in its effective magnetic susceptibility...

  18. On production $e^{+}+e^{-}$-pairs by a high energy photon in collision with photons of a laser wave

    CERN Document Server

    Galynsky, M V; Galynskii, Mikhail; Sikach, Sergei

    1998-01-01

    We calculate the number of $e^+ e^-$-pairs produced by a Compton high energy photon in turn formed in the process $e + n \\gamma_0 -> e + \\gamma$ at simultaneous collision with several photons $\\gamma_0$ of the same laser beam initial electron beam and laser photons are helicity is considered. It is shown that taking into account nonlinear effects in the Compton backscattering leads to decreasing the threshold of production of $e^+ e^-$-pairs and increasing their number. The consideration is based on the direct calculation of matrix elements in the formalism of diagonal spin basis.

  19. Age-dependent trajectories differ between within-pair and extra-pair paternity success.

    Science.gov (United States)

    Hsu, Y-H; Simons, M J P; Schroeder, J; Girndt, A; Winney, I S; Burke, T; Nakagawa, S

    2017-02-24

    Reproductive success is associated with age in many taxa, increasing in early life followed by reproductive senescence. In socially monogamous but genetically polygamous species, this generates the interesting possibility of differential trajectories of within-pair and extra-pair siring success with age in males. We investigate these relationships simultaneously using within-individual analyses with 13 years of data from an insular house sparrow (Passer domesticus) population. As expected, we found that both within- and extra-pair paternity success increased with age, followed by a senescence-like decline. However, the age trajectories of within- and extra-pair paternity successes differed significantly, with the extra-pair paternity success increasing faster, although not significantly, in early life, and showing a delayed decline by 1.5 years on average later in life compared to within-pair paternity success. These different trajectories indicate that the two alternative mating tactics should have age-dependent pay-offs. Males may partition their reproductive effort between within- and extra-pair matings depending on their current age to reap the maximal combined benefit from both strategies. The interplay between these mating strategies and age-specific mortality may explain the variation in rates of extra-pair paternity observed within and between species.

  20. Communication: Multipole approximations of distant pair energies in local correlation methods with pair natural orbitals

    Science.gov (United States)

    Werner, Hans-Joachim

    2016-11-01

    The accuracy of multipole approximations for distant pair energies in local second-order Møller-Plesset perturbation theory (LMP2) as introduced by Hetzer et al. [Chem. Phys. Lett. 290, 143 (1998)] is investigated for three chemical reactions involving molecules with up to 92 atoms. Various iterative and non-iterative approaches are compared, using different energy thresholds for distant pair selection. It is demonstrated that the simple non-iterative dipole-dipole approximation, which has been used in several recent pair natural orbitals (PNO)-LMP2 and PNO-LCCSD (local coupled-cluster with singles and doubles) methods, may underestimate the distant pair energies by up to 50% and can lead to significant errors in relative energies, unless very tight thresholds are used. The accuracy can be much improved by including higher multipole orders and by optimizing the distant pair amplitudes iteratively along with all other amplitudes. A new approach is presented in which very small special PNO domains for distant pairs are used in the iterative approach. This reduces the number of distant pair amplitudes by 3 orders of magnitude and keeps the additional computational effort for the iterative optimization of distant pair amplitudes minimal.