WorldWideScience

Sample records for nonlinear beam propagation

  1. Electromagnetic beam propagation in nonlinear media

    Institute of Scientific and Technical Information of China (English)

    V.V.Semak; M.N.Shneider

    2015-01-01

    We deduce a complete wave propagation equation that includes inhomogeneity of the dielectric constant and present this propagation equation in compact vector form. Although similar equations are known in narrow fields such as radio wave propagation in the ionosphere and electromagnetic and acoustic wave propagation in stratified media, we develop here a novel approach of using such equations in the modeling of laser beam propagation in nonlinear media. Our approach satisfies the correspondence principle since in the limit of zero-length wavelength it reduces from physical to geometrical optics.

  2. Laser beam propagation in non-linearly absorbing media

    CSIR Research Space (South Africa)

    Forbes, A

    2006-08-01

    Full Text Available Many analytical techniques exist to explore the propagation of certain laser beams in free space, or in a linearly absorbing medium. When the medium is nonlinearly absorbing the propagation must be described by an iterative process using the well...

  3. Propagation of a Laguerre-Gaussian correlated Schell-model beam in strongly nonlocal nonlinear media

    Science.gov (United States)

    Qiu, Yunli; Chen, Zhaoxi; He, Yingji

    2017-04-01

    Analytical expressions for the cross-spectral density function and the second-order moments of the Wigner distribution function of a Laguerre-Gaussian correlated Schell-model (LGCSM) beam propagating in strongly nonlocal nonlinear media are derived. The propagation properties, such as beam irradiance, beam width, the spectral degree of coherence and the propagation factor of a LGCSM beam inside the media are investigated in detail. The effect of the beam parameters and the input power on the evolution properties of a LGCSM is illustrated numerically. It is found that the beam width varies periodically or keeps invariant for a certain proper input power. And both the beam irradiance and the spectral degree of coherence of the LGCSM beam change periodically with the propagation distance for the arbitrary input power which however has no influence on the propagation factor. The coherent length and the mode order mainly affect the evolution speed of the LGCSM beam in strongly nonlocal nonlinear media.

  4. Underlying conservation and stability laws in nonlinear propagation of axicon-generated Bessel beams

    CERN Document Server

    Porras, Miguel A; Losada, Juan Carlos

    2015-01-01

    In light filamentation induced by axicon-generated, powerful Bessel beams, the spatial propagation dynamics in the nonlinear medium determines the geometry of the filament channel and hence its potential applications. We show that the observed steady and unsteady Bessel beam propagation regimes can be understood in a unified way from the existence of an attractor and its stability properties. The attractor is identified as the nonlinear unbalanced Bessel beam (NL-UBB) whose inward H\\"ankel beam amplitude equals the amplitude of the linear Bessel beam that the axicon would generate in linear propagation. A simple analytical formula that determines de NL-UBB attractor is given. Steady or unsteady propagation depends on whether the attracting NL-UBB has a small, exponentially growing, unstable mode. In case of unsteady propagation, periodic, quasi-periodic or chaotic dynamics after the axicon reproduces similar dynamics after the development of the small unstable mode into the large perturbation regime.

  5. Reciprocity breaking during nonlinear propagation of adapted beams through random media.

    Science.gov (United States)

    Palastro, J P; Peñano, J; Nelson, W; DiComo, G; Helle, M; Johnson, L A; Hafizi, B

    2016-08-22

    Adaptive optics (AO) systems rely on the principle of reciprocity, or symmetry with respect to the interchange of point sources and receivers. These systems use the light received from a low power emitter on or near a target to compensate phase aberrations acquired by a laser beam during linear propagation through random media. If, however, the laser beam propagates nonlinearly, reciprocity is broken, potentially undermining AO correction. Here we examine the consequences of this breakdown, providing the first analysis of AO applied to high peak power laser beams. While discussed for general random and nonlinear media, we consider specific examples of Kerr-nonlinear, turbulent atmosphere.

  6. Reciprocity breaking during nonlinear propagation of adapted beams through random media

    CERN Document Server

    Palastro, J P; Nelson, W; DiComo, G; Johnson, L A; Helle, M H; Hafizi, B

    2016-01-01

    Adaptive optics (AO) systems rely on the principle of reciprocity, or symmetry with respect to the interchange of point sources and receivers. These systems use the light received from a low power emitter on or near a target to compensate profile aberrations acquired by a laser beam during linear propagation through random media. If, however, the laser beam propagates nonlinearly, reciprocity is broken, potentially undermining AO correction. Here we examine the consequences of this breakdown. While discussed for general random and nonlinear media, we consider specific examples of Kerr-nonlinear, turbulent atmosphere.

  7. Propagation of Gaussian beam in longitudinally inhomogeneous nonlinear graded index waveguides with gain and losses

    CERN Document Server

    Yesayan, G L

    2001-01-01

    The equations for the width and curvature radius of the wave front for a Gaussian beam of light propagating along the axis of the longitudinally inhomogeneous graded index waveguide with gain and losses in the presence of third-order nonlinearity are obtained. By means of numerical calculations it is shown that in such waveguides the mode of stabilization of the beam width is possible, when the absorption of radiation on the edges of the beam compensates its spreading caused by the longitudinal inhomogeneity and nonlinearity of the waveguide

  8. Role of Density Profiles for the Nonlinear Propagation of Intense Laser Beam through Plasma Channel

    OpenAIRE

    Sonu Sen; Meenu Asthana Varshney; Dinesh Varshney

    2014-01-01

    In this work role of density profiles for the nonlinear propagation of intense laser beam through plasma channel is analyzed. By employing the expression for the dielectric function of different density profile plasma, a differential equation for beamwidth parameter is derived under WKB and paraxial approximation. The laser induces modifications of the dielectric function through nonlinearities. It is found that density profiles play vital role in laser-plasma interaction studies. To have num...

  9. Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media

    Science.gov (United States)

    Wu, Zhen-Kun; Li, Peng; Gu, Yu-Zong

    2017-10-01

    We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show that parameters such as the degree of nonlocality and amplitude have profound effects on the intensity distribution of the period of an Airy beam. Nonlocal nonlinear media will reduce into a harmonic potential if the nonlocality is strong enough, which results in the beam fluctuating in an approximately cosine mode. The beam profile changes from an Airy profile to a Gaussian one at a critical point, and during propagation the process repeats to form an unusual oscillation. We also briefly discus the two-dimensional case, being equivalent to a product of two one-dimensional cases.

  10. Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water

    CERN Document Server

    Hafizi, B; Penano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D

    2015-01-01

    The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. While discussed here in the context of propagation in water, the gain-focusing phenomenon is general to any medium supporting nonlinear focusing and stimulated forward Raman scattering.

  11. (3+1)-dimensional nonlinear propagation equation for ultrashort pulsed beam in left-handed material

    Institute of Scientific and Technical Information of China (English)

    Hu Yong-Hua; Fu Xi-Quan; Wen Shuang-Chun; Su Wen-Hua; Fan Dian-Yuan

    2006-01-01

    In this paper a comprehensive framework for treating the nonlinear propagation of ultrashort pulse in metamaterial with dispersive dielectric susceptibility and magnetic permeability is presented. Under the slowly-evolving-wave approximation, a generalized (3+1)-dimensional wave equation first order in the propagation coordinate and suitable for both right-handed material (RHM) and left-handed material (LHM) is derived. By the commonly used Drude dispersive model for LHM, a (3+1)-dimensional nonlinear Schr(o)dinger equation describing ultrashort pulsed beam propagation in LHM is obtained, and its difference from that for conventional RHM is discussed. Particularly, the self-steeping effect of ultrashort pulse is found to be anomalous in LHM.

  12. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes.

    Science.gov (United States)

    Zhang, Lifu; Li, Chuxin; Zhong, Haizhe; Xu, Changwen; Lei, Dajun; Li, Ying; Fan, Dianyuan

    2016-06-27

    We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power.

  13. Relativistic nonlinearity and wave-guide propagation of rippled laser beam in plasma

    Indian Academy of Sciences (India)

    R K Khanna; K Baheti

    2001-06-01

    In the present paper we have investigated the self-focusing behaviour of radially symmetrical rippled Gaussian laser beam propagating in a plasma. Considering the nonlinearity to arise from relativistic phenomena and following the approach of Akhmanov et al, which is based on the WKB and paraxial-ray approximation, the self-focusing behaviour has been investigated in some detail. The effect of the position and width of the ripple on the self-focusing of laser beam has been studied for arbitrary large magnitude of nonlinearity. Results indicate that the medium behaves as an oscillatory wave-guide. The self-focusing is found to depend on the position parameter of ripple as well as on the beam width. Values of critical power has been calculated for different values of the position parameter of ripple. Effects of axially and radially inhomogeneous plasma on self-focusing behaviour have been investigated and presented here.

  14. Role of Density Profiles for the Nonlinear Propagation of Intense Laser Beam through Plasma Channel

    Directory of Open Access Journals (Sweden)

    Sonu Sen

    2014-01-01

    Full Text Available In this work role of density profiles for the nonlinear propagation of intense laser beam through plasma channel is analyzed. By employing the expression for the dielectric function of different density profile plasma, a differential equation for beamwidth parameter is derived under WKB and paraxial approximation. The laser induces modifications of the dielectric function through nonlinearities. It is found that density profiles play vital role in laser-plasma interaction studies. To have numerical appreciation of the results the propagation equation for plasma is solved using the fourth order Runge-Kutta method for the initial plane wave front of the beam, using boundary conditions. The spot size of the laser beam decreases as the beam penetrates into the plasma and significantly adds self-focusing in plasma. This causes the laser beam to become more focused by reduction of diffraction effect, which is an important phenomenon in inertial confinement fusion and also for the understanding of self-focusing of laser pulses. Numerical computations are presented and discussed in the form of graphs for typical parameters of laser-plasma interaction.

  15. Propagation characteristics of a high-power broadband laser beam passing through a nonlinear optical medium with defects

    Institute of Scientific and Technical Information of China (English)

    Xueqiong; Chen; Xiaoyan; Li; Ziyang; Chen; Jixiong; Pu; Guowen; Zhang; Jianqiang; Zhu

    2013-01-01

    The intensity distributions of a high-power broadband laser beam passing through a nonlinear optical medium with defects and then propagating in free space are investigated based on the general nonlinear Schr¨odinger equation and the split-step Fourier numerical method. The influences of the bandwidth of the laser beam, the thickness of the medium,and the defects on the light intensity distribution are revealed. We find that the nonlinear optical effect can be suppressed and that the uniformity of the beam can be improved for a high-power broadband laser beam with appropriate wide bandwidth. It is also found that, under the same incident light intensity, a thicker medium will lead to a stronger self-focusing intensity, and that the influence of defects in the optical elements on the intensity is stronger for a narrowband beam than for a broadband beam.

  16. Modulation instability, solitons and beam propagation in spatially nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Krolikowski, Wieslaw; Bang, Ole; Nikolov, Nikola Ivanov

    2004-01-01

    We present an overview of recent advances in the understanding of optical beams in nonlinear media with a spatially nonlocal nonlinear response. We discuss the impact of nonlocality on the modulational instability of plane waves, the collapse of finite-size beams, and the formation and interaction...

  17. Propagation of dark stripe beams in nonlinear media: Snake instability and creation of optical vortices

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.; Zozulya, A.A.

    1996-01-01

    We analyze the evolution of (1+1) dimensional dark stripe beams in bulk media with a photorefractive nonlinear response. These beams, including solitary wave solutions, are shown to be unstable with respect to symmetry breaking and formation of structure along the initially homogeneous coordinate....... Experimental results show the complete sequence of events starting from self-focusing of the stripe, its bending due to the snake instability, and subsequent decay into a set of optical vortices....

  18. Polarization shaping for control of nonlinear propagation

    CERN Document Server

    Bouchard, Frédéric; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W

    2016-01-01

    We study the nonlinear optical propagation of two different classes of space-varying polarized light beams -- radially symmetric vector beams and Poincar\\'e beams with lemon and star topologies -- in a rubidium vapour cell. Unlike Laguerre-Gauss and other types of beams that experience modulational instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.

  19. Polarization Shaping for Control of Nonlinear Propagation.

    Science.gov (United States)

    Bouchard, Frédéric; Larocque, Hugo; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W

    2016-12-02

    We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization-radially symmetric vector beams and Poincaré beams with lemon and star topologies-in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.

  20. High Energy Laser Beam Propagation in the Atmosphere: The Integral Invariants of the Nonlinear Parabolic Equation and the Method of Moments

    Science.gov (United States)

    Manning, Robert M.

    2012-01-01

    The method of moments is used to define and derive expressions for laser beam deflection and beam radius broadening for high-energy propagation through the Earth s atmosphere. These expressions are augmented with the integral invariants of the corresponding nonlinear parabolic equation that describes the electric field of high-energy laser beam to propagation to yield universal equations for the aforementioned quantities; the beam deflection is a linear function of the propagation distance whereas the beam broadening is a quadratic function of distance. The coefficients of these expressions are then derived from a thin screen approximation solution of the nonlinear parabolic equation to give corresponding analytical expressions for a target located outside the Earth s atmospheric layer. These equations, which are graphically presented for a host of propagation scenarios, as well as the thin screen model, are easily amenable to the phase expansions of the wave front for the specification and design of adaptive optics algorithms to correct for the inherent phase aberrations. This work finds application in, for example, the analysis of beamed energy propulsion for space-based vehicles.

  1. Non-linear propagation of laser beam and focusing due to self-action in optical fiber: Non-paraxial approach

    Indian Academy of Sciences (India)

    R K Khanna; R C Chouhan

    2003-10-01

    A somewhat more general analysis for solving spatial propagation characteristics of intense Gaussian beam is presented and applied to the laser beam propagation in step-index profile as well as parabolic profile dielectric fibers with Kerr non-linearity. Considering self-action due to saturating and non-saturating non-linearity in the refractive index, a general theory has been developed without any kind of power series expansion for the dielectric constant as is usually done in other theories that make use of paraxial approximation. Result of the steady state self-focusing analysis indicates that the Kerr non-linearity acts as a perturbation on the radial inhomogeneity due to fiber geometry. Analysis indicates that the paraxial rays and peripheral rays focus at different points, indicating aberration effect. Calculated critical power matches with the experimentally reported result.

  2. Bidirectional beam propagation method

    Science.gov (United States)

    Kaczmarski, P.; Lagasse, P. E.

    1988-05-01

    A bidirectional extension of the beam propagation method (BPM) to optical waveguides with a longitudinal discontinuity is presented. The algorithm is verified by computing a reflection of the TE(0) mode from a semiconductor laser facet. The bidirectional BPM is applicable to other configurations such as totally reflecting waveguide mirrors, an abruption transition in a waveguide, or a waveguide with many discontinuities generating multiple reflections. The method can also be adapted to TM polarization.

  3. Reconstruction of nonlinear wave propagation

    Science.gov (United States)

    Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

    2013-04-23

    Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

  4. Propagation of ion-acoustic solitons in an electron beam-superthermal plasma system with finite ion-temperature: Linear and fully nonlinear investigation

    Energy Technology Data Exchange (ETDEWEB)

    Saberian, E. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of); Department of Physics, Faculty of Basic Sciences, University of Neyshabur, Neyshabur (Iran, Islamic Republic of); Esfandyari-Kalejahi, A.; Rastkar-Ebrahimzadeh, A.; Afsari-Ghazi, M. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of)

    2013-03-15

    The propagation of ion-acoustic (IA) solitons is studied in a plasma system, comprised of warm ions and superthermal (Kappa distributed) electrons in the presence of an electron-beam by using a hydrodynamic model. In the linear analysis, it is seen that increasing the superthermality lowers the phase speed of the IA waves. On the other hand, in a fully nonlinear investigation, the Mach number range and characteristics of IA solitons are analyzed, parametrically and numerically. It is found that the accessible region for the existence of IA solitons reduces with increasing the superthermality. However, IA solitons with both negative and positive polarities can coexist in the system. Additionally, solitary waves with both subsonic and supersonic speeds are predicted in the plasma, depending on the value of ion-temperature and the superthermality of electrons in the system. It is examined that there are upper critical values for beam parameters (i.e., density and velocity) after which, IA solitary waves could not propagate in the plasma. Furthermore, a typical interaction between IA waves and the electron-beam in the plasma is confirmed.

  5. Nonlinear acoustic propagation in rectangular ducts

    Science.gov (United States)

    Nayfeh, A. H.; Tsai, M.-S.

    1974-01-01

    The method of multiple scales is used to obtain a second-order uniformly valid expansion for nonlinear acoustic wave propagation in a rectangular duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear materials attenuate sound more than linear materials except at high acoustic frequencies. The nonlinear materials produce higher and combination tones which have higher attenuation rates than the fundamentals. Moreover, the attenuation rates of the fundamentals increase with increasing amplitude.

  6. Nonlinear and Dispersive Optical Pulse Propagation

    Science.gov (United States)

    Dijaili, Sol Peter

    In this dissertation, there are basically four novel contributions to the field of picosecond pulse propagation and measurement. The first contribution is the temporal ABCD matrix which is an analog of the traditional ABCD ray matrices used in Gaussian beam propagation. The temporal ABCD matrix allows for the easy calculation of the effects of linear chirp or group velocity dispersion in the time domain. As with Gaussian beams in space, there also exists a complete Hermite-Gaussian basis in time whose propagation can be tracked with the temporal ABCD matrices. The second contribution is the timing synchronization between a colliding pulse mode-locked dye laser and a gain-switched Fabry-Perot type AlGaAs laser diode that has achieved less than 40 femtoseconds of relative timing jitter by using a pulsed optical phase lock loop (POPLL). The relative timing jitter was measured using the error voltage of the feedback loop. This method of measurement is accurate since the frequencies of all the timing fluctuations fall within the loop bandwidth. The novel element is a broad band optical cross-correlator that can resolve femtosecond time delay errors between two pulse trains. The third contribution is a novel dispersive technique of determining the nonlinear frequency sweep of a picosecond pulse with relatively good accuracy. All the measurements are made in the time domain and hence there is no time-bandwidth limitation to the accuracy. The fourth contribution is the first demonstration of cross -phase modulation in a semiconductor laser amplifier where a variable chirp was observed. A simple expression for the chirp imparted on a weak signal pulse by the action of a strong pump pulse is derived. A maximum frequency excursion of 16 GHz due to the cross-phase modulation was measured. A value of 5 was found for alpha _{xpm} which is a factor for characterizing the cross-phase modulation in a similar manner to the conventional linewidth enhancement factor, alpha.

  7. Diagnostics for the ATA beam propagation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.; Atchison, W.L.; Barletta, W.A.

    1981-11-01

    This report contains a discussion of the diagnostics required for the beam propagation experiment to be done with the ATA accelerator. Included are a list of the diagnostics needed; a description of the ATA experimental environment; the status of beam diagnostics available at Livermore including recent developments, and a prioritized list of accelerator and propagation diagnostics under consideration or in various stages of development.

  8. Wave Beam Propagation Through Density Fluctuations

    NARCIS (Netherlands)

    Balakin, A. A.; Bertelli, N.; Westerhof, E.

    2011-01-01

    Perturbations induced by edge density fluctuations on electron cyclotron wave beams propagating in fusion plasmas are studied by means of a quasi-optical code. The effects of such fluctuations are illustrated here by showing the beam propagation in the case of single harmonic perturbations to the wa

  9. Generalized rectangular finite difference beam propagation method.

    Science.gov (United States)

    Sujecki, Slawomir

    2008-08-10

    A method is proposed that allows for significant improvement of the numerical efficiency of the standard finite difference beam propagation algorithm. The advantages of the proposed method derive from the fact that it allows for an arbitrary selection of the preferred direction of propagation. It is demonstrated that such flexibility is particularly useful when studying the properties of obliquely propagating optical beams. The results obtained show that the proposed method achieves the same level of accuracy as the standard finite difference beam propagation method but with lower order Padé approximations and a coarser finite difference mesh.

  10. Laser beam propagation generation and propagation of customized light

    CERN Document Server

    Forbes, Andrew

    2014-01-01

    ""The text is easy to read and is accompanied by beautiful illustrations. It is an excellent book for anyone working in laser beam propagation and an asset for any library.""-Optics & Photonics News, July 2014

  11. Application of propagating beam methods to electromagnetic and acoustic wave propagation problems - a review

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, P.E.; Baets, R.

    1987-12-01

    The advantages and disadvantages of various propagating beam methods (BPMs) used in the solution of electromagnetic and acoustical problems are considered. The basic assumptions and approximations which are necessary for the derivation of the BPM algorithm are discussed with respect to applications to acoustics and optics and linear and nonlinear materials. Particular attention is given to the case of passive waveguiding structures and the role that BPM can play in the analysis of nonlinear structures such as semiconductor lasers. 28 references.

  12. Application of propagating beam methods to electromagnetic and acoustic wave propagation problems - A review

    Science.gov (United States)

    Lagasse, P. E.; Baets, R.

    1987-12-01

    The advantages and disadvantages of various propagating beam methods (BPMs) used in the solution of electromagnetic and acoustical problems are considered. The basic assumptions and approximations which are necessary for the derivation of the BPM algorithm are discussed with respect to applications to acoustics and optics and linear and nonlinear materials. Particular attention is given to the case of passive waveguiding structures and the role that BPM can play in the analysis of nonlinear structures such as semiconductor lasers.

  13. Generation and propagation of radially polarized beams in optical fibers

    DEFF Research Database (Denmark)

    Ramachandran, Siddharth; Kristensen, P; Yan, M F

    2009-01-01

    Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even in the pres......Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even...... in the presence of strong bend perturbations. This opens the door to exploiting nonlinear fiber optics to manipulate such beams. This fiber also possesses the intriguingly counterintuitive property of being polarization maintaining despite being strictly cylindrically symmetric, a prospect hitherto considered...... infeasible with optical fibers. (C) 2009 Optical Society of America....

  14. Modeling of nonlinear propagation in fiber tapers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2012-01-01

    A full-vectorial nonlinear propagation equation for short pulses in tapered optical fibers is developed. Specific emphasis is placed on the importance of the field normalization convention for the structure of the equations, and the interpretation of the resulting field amplitudes. Different...... numerical schemes for interpolation of fiber parameters along the taper are discussed and tested in numerical simulations on soliton propagation and generation of continuum radiation in short photonic-crystal fiber tapers....

  15. Beam-propagation method - Analysis and assessment

    Science.gov (United States)

    van Roey, J.; van der Donk, J.; Lagasse, P. E.

    1981-07-01

    A method for the calculation of the propagation of a light beam through an inhomogeneous medium is presented. A theoretical analysis of this beam-propagation method is given, and a set of conditions necessary for the accurate application of the method is derived. The method is illustrated by the study of a number of integrated-optic structures, such as thin-film waveguides and gratings.

  16. Negative propagation effect in nonparaxial Airy beams.

    Science.gov (United States)

    Vaveliuk, Pablo; Martinez-Matos, Oscar

    2012-11-19

    Negative propagation is an unusual effect concerning the local sign change in the Poynting vector components of an optical beam under free propagation. We report this effect for finite-energy Airy beams in a subwavelength nonparaxial regime. This effect is due to a coupling process between propagating and evanescent plane waves forming the beam in the spectral domain and it is demonstrated for a single TE or TM mode. This is contrary to what happens for vector Bessel beams and vector X-waves, for which a complex superposition of TE and TM modes is mandatory. We also show that evanescent waves cannot contribute to the energy flux density by themselves such that a pure evanescent Airy beam is not physically realizable. The break of the shape-preserving and diffraction-free properties of Airy beams in a nonparaxial regime is exclusively caused by the propagating waves. The negative propagation effect in subwavelength nonparaxial Airy beams opens new capabilities in optical traps and tweezers, optical detection of invisibility cloacks and selective on-chip manipulation of nanoparticles.

  17. Longitudinal nonlinear wave propagation through soft tissue.

    Science.gov (United States)

    Valdez, M; Balachandran, B

    2013-04-01

    In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated

  18. Moderately nonlinear ultrasound propagation in blood-mimicking fluid.

    Science.gov (United States)

    Kharin, Nikolay A; Vince, D Geoffrey

    2004-04-01

    In medical diagnostic ultrasound (US), higher than-in-water nonlinearity of body fluids and tissue usually does not produce strong nonlinearly distorted waves because of the high absorption. The relative influence of absorption and nonlinearity can be characterized by the Gol'dberg number Gamma. There are two limiting cases in nonlinear acoustics: weak waves (Gamma 1). However, at diagnostic frequencies in tissue and body fluids, the nonlinear effects and effects of absorption more likely are comparable (Gol'dberg number Gamma approximately 1). The aim of this work was to study the nonlinear propagation of a moderately nonlinear US second harmonic signal in a blood-mimicking fluid. Quasilinear solutions to the KZK equation are presented, assuming radiation from a flat and geometrically focused circular Gaussian source. The solutions are expressed in a new simplified closed form and are in very good agreement with those of previous studies measuring and modeling Gaussian beams. The solutions also show good agreement with the measurements of the beams produced by commercially available transducers, even without special Gaussian shading.

  19. Propagation of an Airy-Gaussian beam in defected photonic lattices

    CERN Document Server

    Shi, Zhiwei; Zhu, Xing; Li, Yang; Li, Huagang

    2016-01-01

    We investigate numerically that a finite Airy-Gaussian (AiG) beam varies its trajectory and shape in the defected photonic lattices. The propagation properties and beam self-bending are controlled with modulation depth and period of the photonic lattices, positive and negative defects, beam distribution factor and nonlinearity change. For positive defects, the pseudo-period oscillation and localization of the AiG beam may be formed under a certain condition, while the beam is diffused for negative defects. Moreover, the solitons may appear during the propagation process when the self-focusing nonlinearity is introduced.

  20. Propagation of Gaussian beams family through a Kerr-type left-handed metamaterial

    Institute of Scientific and Technical Information of China (English)

    A. Keshavarz; M. Naseri

    2015-01-01

    In this paper the propagation of elegant Hermite-cosh-Gaussian, elegant Laguerre Gaussian, and Bessel Gaussian beams through a Kerr left-handed metamaterial (LHM) slab have been studied. A split-step Fourier method is used to investigate the propagation of laser beams through this media. Numerical simulation shows that Gaussian beams have different focusing behaviors in a Kerr LHM slab with positive or negative nonlinearity. Beam focusing happens in slabs with positive nonlinearity and not in slabs with negative nonlinearity;however, negative nonlinearity is required for a Kerr LHM slab to act like a lens. Additionally, the focusing properties of beams can be controlled by controlling the thickness of the slab or the input power of the incident beam. A multilayer structure is also proposed to have beam focusing by thinner slabs and passing longer distances.

  1. Anomalous velocity enhancing of soliton, propagating in nonlinear PhC, due to its reflection from nonlinear ambient medium

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Lysak, T. M.

    2016-05-01

    We demonstrate a new possibility of a soliton velocity control at its propagation in a nonlinear layered structure (1D photonic crystal) which is placed in a nonlinear ambient medium. Nonlinear response of the ambient medium, as well as the PhC layers, is cubic. At the initial time moment, a soliton is spread over a few layers of PhC. Then, soliton propagates across the layered structure because of the initial wave-vector direction presence for the laser beam. The soliton reaches the PhC faces and reflects from them or passes through the face. As a nonlinear medium surrounds the PhC, the laser beam obtains additional impulse after interaction with this medium and accelerates (or slows down or stops near the PhC face). Nonlinear response of the ambient medium can be additionally created by another laser beam which shines near the PhC faces.

  2. Nonparaxial Propagation of Vectorial Elliptical Gaussian Beams

    Directory of Open Access Journals (Sweden)

    Wang Xun

    2016-01-01

    Full Text Available Based on the vectorial Rayleigh-Sommerfeld diffraction integral formulae, analytical expressions for a vectorial elliptical Gaussian beam’s nonparaxial propagating in free space are derived and used to investigate target beam’s propagation properties. As a special case of nonparaxial propagation, the target beam’s paraxial propagation has also been examined. The relationship of vectorial elliptical Gaussian beam’s intensity distribution and nonparaxial effect with elliptic coefficient α and waist width related parameter fω has been analyzed. Results show that no matter what value of elliptic coefficient α is, when parameter fω is large, nonparaxial conclusions of elliptical Gaussian beam should be adopted; while parameter fω is small, the paraxial approximation of elliptical Gaussian beam is effective. In addition, the peak intensity value of elliptical Gaussian beam decreases with increasing the propagation distance whether parameter fω is large or small, and the larger the elliptic coefficient α is, the faster the peak intensity value decreases. These characteristics of vectorial elliptical Gaussian beam might find applications in modern optics.

  3. Wave envelopes method for description of nonlinear acoustic wave propagation.

    Science.gov (United States)

    Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L

    2006-07-01

    A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach

  4. Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.

    of nonlinear beam reshaping occurring on a short time scale before the establishment of a steady state regime. In experiment, a 532nm laser beam can be injected into a single hole of an infiltrated PCF cladding structure, and the temporal dynamics of the nonlinear response is measured by monitoring......Liquid-infiltrated photonic crystal fibers (PCFs) offer a new way of studying light propagation in periodic and discrete systems. A wide range of available fiber structures combined with the ease of infiltration opens up a range of novel experimental opportunities for optical detection and bio......-sensing as well as active devices for all-optical switching at low (mW) laser powers. Commercially available PCFs infiltrated with liquids also provide a versatile and compact tool for exploration of the fundamentals of nonlinear beam propagation in periodic photonic structures. To explore the full scientific...

  5. Vertical laser beam propagation through the troposphere

    Science.gov (United States)

    Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.

    1974-01-01

    The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.

  6. Optical Beams in Nonlocal Nonlinear Media

    DEFF Research Database (Denmark)

    Królikowski, W.; Bang, Ole; Wyller, J.

    2003-01-01

    We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....

  7. Stabilization of vortex beams in Kerr media by nonlinear absorption

    Science.gov (United States)

    Porras, Miguel A.; Carvalho, Márcio; Leblond, Hervé; Malomed, Boris A.

    2016-11-01

    We elaborate a solution for the problem of stable propagation of transversely localized vortex beams in homogeneous optical media with self-focusing Kerr nonlinearity. Stationary nonlinear Bessel-vortex states are stabilized against azimuthal breakup and collapse by multiphoton absorption, while the respective power loss is offset by the radial influx of the power from an intrinsic reservoir. A linear stability analysis and direct numerical simulations reveal a region of stability of these vortices. Beams with multiple vorticities have their stability regions too. These beams can then form robust tubular filaments in transparent dielectrics as common as air, water, and optical glasses at sufficiently high intensities. We also show that the tubular, rotating, and specklelike filamentation regimes, previously observed in experiments with axicon-generated Bessel beams, can be explained as manifestations of the stability or instability of a specific nonlinear Bessel-vortex state, which is fully identified.

  8. Stabilization of vortex beams in Kerr media by nonlinear absorption

    CERN Document Server

    Porras, Miguel A; Leblond, Hervé; Malomed, Boris A

    2016-01-01

    We elaborate a new solution for the problem of stable propagation of transversely localized vortex beams in homogeneous optical media with self-focusing Kerr nonlinearity. Stationary nonlinear Bessel-vortex states are stabilized against azimuthal breakup and collapse by multiphoton absorption, while the respective power loss is offset by the radial influx of the power from an intrinsic reservoir. A linear stability analysis and direct numerical simulations reveal a region of stability of these vortices. Beams with multiple vorticities have their stability regions too. These beams can then form robust tubular filaments in transparent dielectrics as common as air, water and optical glasses at sufficiently high intensities. We also show that the tubular, rotating and speckle-like filamentation regimes, previously observed in experiments with axicon-generated Bessel beams, can be explained as manifestations of the stability or instability of a specific nonlinear Bessel-vortex state, which is fully identified.

  9. DBEM crack propagation for nonlinear fracture problems

    Directory of Open Access Journals (Sweden)

    R. Citarella

    2015-10-01

    Full Text Available A three-dimensional crack propagation simulation is performed by the Dual Boundary Element Method (DBEM. The Stress Intensity Factors (SIFs along the front of a semi elliptical crack, initiated from the external surface of a hollow axle, are calculated for bending and press fit loading separately and for a combination of them. In correspondence of the latter loading condition, a crack propagation is also simulated, with the crack growth rates calculated using the NASGRO3 formula, calibrated for the material under analysis (steel ASTM A469. The J-integral and COD approaches are selected for SIFs calculation in DBEM environment, where the crack path is assessed by the minimum strain energy density criterion (MSED. In correspondence of the initial crack scenario, SIFs along the crack front are also calculated by the Finite Element (FE code ZENCRACK, using COD, in order to provide, by a cross comparison with DBEM, an assessment on the level of accuracy obtained. Due to the symmetry of the bending problem a pure mode I crack propagation is realised with no kinking of the propagating crack whereas for press fit loading the crack propagation becomes mixed mode. The crack growth analysis is nonlinear because of normal gap elements used to model the press fit condition with added friction, and is developed in an iterative-incremental procedure. From the analysis of the SIFs results related to the initial cracked configuration, it is possible to assess the impact of the press fit condition when superimposed to the bending load case.

  10. Nonlinear biochemical signal processing via noise propagation.

    Science.gov (United States)

    Kim, Kyung Hyuk; Qian, Hong; Sauro, Herbert M

    2013-10-14

    Single-cell studies often show significant phenotypic variability due to the stochastic nature of intra-cellular biochemical reactions. When the numbers of molecules, e.g., transcription factors and regulatory enzymes, are in low abundance, fluctuations in biochemical activities become significant and such "noise" can propagate through regulatory cascades in terms of biochemical reaction networks. Here we develop an intuitive, yet fully quantitative method for analyzing how noise affects cellular phenotypes based on identifying a system's nonlinearities and noise propagations. We observe that such noise can simultaneously enhance sensitivities in one behavioral region while reducing sensitivities in another. Employing this novel phenomenon we designed three biochemical signal processing modules: (a) A gene regulatory network that acts as a concentration detector with both enhanced amplitude and sensitivity. (b) A non-cooperative positive feedback system, with a graded dose-response in the deterministic case, that serves as a bistable switch due to noise-induced ultra-sensitivity. (c) A noise-induced linear amplifier for gene regulation that requires no feedback. The methods developed in the present work allow one to understand and engineer nonlinear biochemical signal processors based on fluctuation-induced phenotypes.

  11. Laser beam shaping profiles and propagation.

    Science.gov (United States)

    Shealy, David L; Hoffnagle, John A

    2006-07-20

    We consider four families of functions--the super-Gaussian, flattened Gaussian, Fermi-Dirac, and super-Lorentzian--that have been used to describe flattened irradiance profiles. We determine the shape and width parameters of the different distributions, when each flattened profile has the same radius and slope of the irradiance at its half-height point, and then we evaluate the implicit functional relationship between the shape and width parameters for matched profiles, which provides a quantitative way to compare profiles described by different families of functions. We conclude from an analysis of each profile with matched parameters using Kirchhoff-Fresnel diffraction theory and M2 analysis that the diffraction patterns as they propagate differ by small amounts, which may not be distinguished experimentally. Thus, beam shaping optics is designed to produce either of these four flattened output irradiance distributions with matched parameters will yield similar irradiance distributions as the beam propagates.

  12. Laser beam propagation in atmospheric turbulence

    Science.gov (United States)

    Murty, S. S. R.

    1979-01-01

    The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.

  13. Nonlinear Boundary Stabilization of Nonuniform Timoshenko Beam

    Institute of Scientific and Technical Information of China (English)

    Qing-xu Yan; Hui-chao Zou; De-xing Feng

    2003-01-01

    In this paper, the stabilization problem of nonuniform Timoshenko beam by some nonlinear boundary feedback controls is considered. By virtue of nonlinear semigroup theory, energy-perturbed approach and exponential multiplier method, it is shown that the vibration of the beam under the proposed control action decays exponentially or in negative power of time t as t →∞.

  14. Laser beam propagation in nematic liquid crystals at the temperature close to the nematicisotropic critical point.

    Science.gov (United States)

    Chen, Yu-Jen; Lin, Yu-Sung; Jiang, I-Min; Tsai, Ming-Shan

    2008-03-17

    This study investigates the optical nonlinearity of beam propagation in homogeneously aligned nematic liquid crystal (NLC) cells at a temperature close to the nematic-isotropic temperature (TNI). The undulate propagation mode with convergent and divergent loops appearing alternately is reported and the thermally enhanced optical reorientation nonlinearity at the focus is described. The optically induced phase transition exists along the pump beam direction. With the application of the conscopic technique, the arrangements of LC at the focus are proposed in this study. Results of this study demonstrate that the evolution of the LC configuration was affected by the pump beam based on the analysis of conoscopic patterns.

  15. Boundary controllability for a nonlinear beam equation

    Directory of Open Access Journals (Sweden)

    Xiao-Min Cao

    2015-09-01

    Full Text Available This article concerns a nonlinear system modeling the bending vibrations of a nonlinear beam of length $L>0$. First, we derive the existence of long time solutions near an equilibrium. Then we prove that the nonlinear beam is locally exact controllable around the equilibrium in $H^4(0,L$ and with control functions in $H^2(0,T$. The approach we used are open mapping theorem, local controllability established by linearization, and the induction.

  16. Nonlinear feedback control of Timoshenko beam

    Institute of Scientific and Technical Information of China (English)

    冯德兴; 张维弢

    1995-01-01

    This note is concerned with nonlinear boundary feedback control of a Timoshenko beam. Under some nonlinear boundary feedback control, first the nonlinear semigroup theory is used to show the existence and uniqueness of solution for the corresponding closed loop system. Then by using the Lyapunov method, it is proved that the vibration of the beam under the proposed control action decays in a negative power of time t as t→.

  17. Definition and measurement of the beam propagation factor M2 for chromatic laser beams

    Institute of Scientific and Technical Information of China (English)

    Tao Fang; Xin Ye; Jinfu Niu; Jianqiu Xu

    2006-01-01

    The concept of the beam propagation factor M2 is extended for chromatic laser beams. The definition of the beam propagation factor can be generalized with the weighted effective wavelength. Using the new definition of factor M2, the propagation of chromatic beams can be analyzed by the beam propagation factor M2 as same as that of monochromatic beams. A simple method to measure the chromatic beam factor M2 is demonstrated. The chromatic factor M2 is found invariable while the laser beam propagates through the dispersion-free ABCD system.

  18. Nonlinear acoustic propagation in two-dimensional ducts

    Science.gov (United States)

    Nayfeh, A. H.; Tsai, M.-S.

    1974-01-01

    The method of multiple scales is used to obtain a second-order uniformly valid expansion for the nonlinear acoustic wave propagation in a two-dimensional duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear effects tend to flatten and broaden the absorption versus frequency curve, in qualitative agreement with the experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.

  19. EXACT ANALYSIS OF WAVE PROPAGATION IN AN INFINITE RECTANGULAR BEAM

    Institute of Scientific and Technical Information of China (English)

    孙卫明; 杨光松; 李东旭

    2004-01-01

    The Fourier series method was extended for the exact analysis of wave propagation in an infinite rectangular beam. Initially, by solving the three-dimensional elastodynamic equations a general analytic solution was derived for wave motion within the beam. And then for the beam with stress-free boundaries, the propagation characteristics of elastic waves were presented. This accurate wave propagation model lays a solid foundation of simultaneous control of coupled waves in the beam.

  20. Safe Laser Beam Propagation for Interplanetary Links

    Science.gov (United States)

    Wilson, Keith E.

    2011-01-01

    Ground-to-space laser uplinks to Earth–orbiting satellites and deep space probes serve both as a beacon and an uplink command channel for deep space probes and Earth-orbiting satellites. An acquisition and tracking point design to support a high bandwidth downlink from a 20-cm optical terminal on an orbiting Mars spacecraft typically calls for 2.5 kW of 1030-nm uplink optical power in 40 micro-radians divergent beams.2 The NOHD (nominal ocular hazard distance) of the 1030nm uplink is in excess of 2E5 km, approximately half the distance to the moon. Recognizing the possible threat of high power laser uplinks to the flying public and to sensitive Earth-orbiting satellites, JPL developed a three-tiered system at its Optical Communications Telescope Laboratory (OCTL) to ensure safe laser beam propagation through navigational and near-Earth space.

  1. Hollow Gaussian Schell-model beam and its propagation

    CERN Document Server

    Wang, Li-Gang

    2007-01-01

    In this paper, we present a new model, hollow Gaussian-Schell model beams (HGSMBs), to describe the practical dark hollow beams. An analytical propagation formula for HGSMBs passing through a paraxial first-order optical system is derived based on the theory of coherence. Based on the derived formula, an application example showing the influence of spatial coherence on the propagation of beams is illustrated. It is found that the beam propagating properties of HGSMBs will be greatly affected by their spatial coherence. Our model provides a very convenient way for analyzing the propagation properties of partially coherent dark hollow beams.

  2. CHAOTIC BELT PHENOMENA IN NONLINEAR ELASTIC BEAM

    Institute of Scientific and Technical Information of China (English)

    张年梅; 杨桂通

    2003-01-01

    The chaotic motions of axial compressed nonlinear elastic beam subjected totransverse load were studied. The damping force in the system is nonlinear. Consideringmaterial and geometric nonlinearity, nonlinear governing equation of the system wasderived. By use of nonlinear Galerkin method, differential dynamic system was set up.Melnikov method was used to analyze the characters of the system. The results showed thatchaos may occur in the system when the load parameters P0 and f satisfy some conditions.The zone of chaotic motion was belted. The route from subharmonic bifurcation to chaoswas analyzed. The critical conditions that chaos occurs were determined.

  3. Orbital angular momentum of helical necklace beams in colloid-based nonlinear optical metamaterials (Conference Presentation)

    Science.gov (United States)

    Walasik, Wiktor T.; Silahli, Salih Z.; Litchinitser, Natalia M.

    2016-09-01

    Colloidal metamaterials are a robust and flexible platform for engineering of optical nonlinearities and studies of light filamentation. To date, nonlinear propagation and modulation instability of Gaussian beams and optical vortices carrying orbital angular momentum were studied in such media. Here, we investigate the propagation of necklace beams and the conservation of the orbital angular momentum in colloidal media with saturable nonlinearity. We study various scenarios leading to generation of helical necklace beams or twisted beams, depending on the radius, power, and charge of the input vortex beam. Helical beams are build of two separate solitary beams with circular cross-sections that spiral around their center of mass as a result of the equilibrium between the attraction force of in-phase solitons and the centrifugal force associated with the rotational movement. A twisted beam is a single beam with an elliptical cross-section that rotates around it's own axis. We show that the orbital angular momentum is converted into the rotational motion at different rates for helical and twisted beams. While earlier studies reported that solitary beams are expelled form the initial vortex ring along straight trajectories tangent to the vortex ring, we show that depending on the charge and the power of the initial beam, these trajectories can diverge from the tangential direction and may be curvilinear. These results provide a detailed description of necklace beam dynamics in saturable nonlinear media and may be useful in studies of light filamentation in liquids and light propagation in highly scattering colloids and biological samples.

  4. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dong; ZHOU Lin; SI Li-Sheng; GONG Xiu-Fen

    2007-01-01

    @@ A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented.Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  5. Nonlinear ultrasound wave propagation in thermoviscous fluids

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter

    coupled nonlinear partial differential equations, which resembles those of optical chi-2 materials. We think this result makes a remarkable link between nonlinear acoustics and nonlinear optics. Finally our analysis reveal an exact kink solution to the nonlinear acoustic problem. This kink solution...

  6. Nonlinear effects in propagation of radiation of X-ray free-electron lasers

    Science.gov (United States)

    Nosik, V. L.

    2016-05-01

    Nonlinear effects accompanying the propagation of high-intensity beams of X-ray free-electron lasers are considered. It is shown that the X-ray wave field in the crystal significantly changes due to the formation of "hollow" atomic shells as a result of the photoelectric effect.

  7. Nonparaxial propagation of phase-flipped Gaussian beams

    Institute of Scientific and Technical Information of China (English)

    Gao Zeng-Hui; Lü Bai-Da

    2008-01-01

    This paper derives the closed-form expressions for nonparaxial phase flipped Gaussian (PFG) beams propagating in free space, through a knife edge and an aperture, which enable us to study nonparaxial propagation properties of PFG beams and to compare nonparaxial results with paraxial ones. It is found that the f parameter, offsetting distance of the knife edge and truncation parameter affect the nonparaxial beam propagation properties. Only under certain conditions the paraxial approximation is applicable. The results are illustrated by numerical examples.

  8. Nonlinear evolution of Airy-like beams generated by modulated waveguide arrays.

    Science.gov (United States)

    Cao, Zheng; Tan, Qinggui; Li, Xiaojun; Qi, Xinyuan

    2016-08-20

    We numerically study the formation of modulated waveguide generated Airy-like beams and their subsequent evolution in homogeneous medium. The results show that the Airy-like beams could be generated from narrow Gaussian beams propagating in one-dimensional transverse separation modulated unbent, cosine bent, or logarithm bent waveguide arrays, respectively. The waveguide-generated Airy-like beams maintain their characteristics when propagating without nonlinearity or under the self-defocusing nonlinearity in homogeneous medium, while the beams are distorted under the self-focusing nonlinearity. The deformation depends on the waveguide bending and the outgoing angles of the Airy-like beams. Our results provide a new way to generate and manipulate the Airy-like beam.

  9. Positron Beam Propagation in a Meter Long Plasma Channel

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, K.A.; Blue, B.E.; Clayton, C.E.; Joshi, C.; Mori, W.B.; /UCLA; Decker, F.-J.; Hogan, M.J.; Iverson, R.; O' Connell, C.; Raimondi, P.; Siemann, Robert H.; Walz, D.; /SLAC; Katsouleas, T.C.; Muggli, P.; /Southern California U.

    2008-03-17

    Recent experiments and simulations have shown that positron beams propagating in plasmas can be focused and also create wakes with large accelerating gradients. For similar parameters, the wakes driven by positron beams are somewhat smaller compared to the case of an electron beam. Simulations have shown that the wake amplitude can be increased if the positron beam is propagated in a hollow plasma channel (Ref. 1). This paper, compares experimentally, the propagation and beam dynamics of a positron beam in a meter scale homogeneous plasma, to a positron beam hollow channel plasma. The results show that positron beams in hollow channels are less prone to distortions and deflections. Hollow channels were observed to guide the positron beam onto the channel axis. Beam energy loss was also observed implying the formation of a large wake amplitude. The experiments were carried out as part of the E-162 plasma wakefield experiments at SLAC.

  10. Propagation of ion beams through a tenuous magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chrien, E.F.; Valeo, E.J.; Kulsrud, R.M.; Oberman, C.R.

    1985-10-01

    When an ion beam is propagated through a plasma, the question of charge neutralization is critical to its propagation. We consider such a problem where the plasma is magnetized with magnetic field perpendicular to the beam. The plasma-number density and beam-number density are assumed comparable. We reduce the problem to a two-dimensional model, which we solve. The solution suggests that it should be possible to attain charge neutralization if the beam density is properly varied along itself.

  11. Beam Propagation Factor and Generation of Cosh-squared-Gaussian Beams

    Institute of Scientific and Technical Information of China (English)

    ZHU Kaicheng; TANG Huiqin; ZHU Zhenhe

    2001-01-01

    A new light beam termed as a cosh-squared-Gaussian beam (ChSGB) which may be one of solutions of the paraxial wave equation for propagation in complex optical systems has been introduced. Their beam propagation factor (M2-factor) is derived and schemes to generate this light beams are proposed.

  12. Nonlinear light propagation in fs laser-written waveguide arrays

    Directory of Open Access Journals (Sweden)

    Szameit A.

    2013-11-01

    Full Text Available We report on recent achievements in the field of nonlinear light propagation in fs laser-written waveguide lattices. Particular emphasis is thereby given on discrete solitons in such systems.

  13. Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound

    Institute of Scientific and Technical Information of China (English)

    FAN Ting-Bo; LIU Zhen-Bo; ZHANG Zhe; ZHANG DONG; GONG Xiu-Fen

    2009-01-01

    A theoretical model of the nonlinear propagation in multi-layered tissues for strong focused ultrasound is proposed. In this model, the spheroidal beam equation (SBE) is utilized to describe the nonlinear sound propagation in each layer tissue, and generalized oblique incidence theory is used to deal with the sound transmission between two layer tissues. Computer simulation is performed on a fat-muscle-liver tissue model under the irradiation of a 1 MHz focused transducer with a large aperture angle of 35°. The results demonstrate that the tissue layer would change the amplitude of sound pressure at the focal region and cause the increase of side petals.

  14. Nonlinear propagation and control of acoustic waves in phononic superlattices

    CERN Document Server

    Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J

    2015-01-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.

  15. Nonlinear optimization of beam lines

    CERN Document Server

    Tomás Garcia, Rogelio

    2006-01-01

    The current final focus systems of linear colliders have been designed based on the local compensation scheme proposed by P. Raimondi and A. Seryi [1]. However, there exist remaining aberrations that deteriorate the performance of the system. This paper develops a general algorithm for the optimization of beam lines based on the computation of the high orders of the transfer map using MAD-X [2] and PTC [3]. The algorithm is applied to the CLIC [4] Beam Delivery System (BDS).

  16. Nonlinear Stability of Intense Mismatched Beams in a Uniform Focusing Field

    CERN Document Server

    Pakter, Renato; Simeoni, Wilson

    2005-01-01

    We investigate the nonlinear coupling between axisymmetric and elliptic oscillations in the dynamics of intense beams propagating in a uniform magnetic focusing field. It is shown that finite amplitude mismatched oscillations of an initially round beam may destabilize elliptic oscillations, heavily affecting stability and the shape of the beam. This is a potential mechanics for beam particle loss in such systems. Self consistent simulations are performed to verify the findings.

  17. Nonlinear wave propagation in a rapidly-spun fiber.

    Science.gov (United States)

    McKinstrie, C J; Kogelnik, H

    2006-09-04

    Multiple-scale analysis is used to study linear wave propagation in a rapidly-spun fiber and its predictions are shown to be consistent with results obtained by other methods. Subsequently, multiple-scale analysis is used to derive a generalized Schroedinger equation for nonlinear wave propagation in a rapidly-spun fiber. The consequences of this equation for pulse propagation and four-wave mixing are discussed briefly.

  18. Nonlinear propagation of short wavelength drift-Alfven waves

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two...

  19. A Schrdinger formulation research for light beam propagation

    Institute of Scientific and Technical Information of China (English)

    刘承宜; 郭弘; 胡巍; 邓锡铭

    2000-01-01

    The wave equation of light beam propagation was written in the form of an axial-coordinate-dependent Schrodinger equation, and the expectation value of a dynamical variable, the trial function of variational approach and the ABCD law were discussed by use of quantum mechanics approach. In view of the evolution equations of expectation values of dynamical variables in the framework of quantum mechanics, the definition of a potential function representing the beam propagation stability and its universal formula with the quality factor, the universal formula of beam width and curvature radius for a paraxial beam and cylindrically symmetric non-paraxial beam, the general formula of second derivative of beam width with respect to the axial coordinate of beam for a paraxial beam, and the general criteria of the conservation of beam quality factor and the existence of a potential well of a potential function for a paraxial beam, were given or derived, respectively. Starting with the same trial function, the co

  20. Theoretical tools for atom-laser-beam propagation

    OpenAIRE

    Riou, Jean-Félix; Le Coq, Yann; Impens, François; Guerin, William; Bordé, Christian,; Aspect, Alain; Bouyer, Philippe

    2008-01-01

    We present a theoretical model for the propagation of non self-interacting atom laser beams. We start from a general propagation integral equation, and we use the same approximations as in photon optics to derive tools to calculate the atom laser beam propagation. We discuss the approximations that allow to reduce the general equation whether to a Fresnel-Kirchhoff integral calculated by using the stationary phase method, or to the eikonal. Within the paraxial approximation, we also introduce...

  1. SPP propagation in nonlinear glass-metal interface

    KAUST Repository

    Sagor, Rakibul Hasan

    2011-12-01

    The non-linear propagation of Surface-Plasmon-Polaritons (SPP) in single interface of metal and chalcogenide glass (ChG) is considered. A time domain simulation algorithm is developed using the Finite Difference Time Domain (FDTD) method. The general polarization algorithm incorporated in the auxiliary differential equation (ADE) is used to model frequency-dependent dispersion relation and third-order nonlinearity of ChG. The main objective is to observe the nonlinear behavior of SPP propagation and study the dynamics of the whole structure. © 2011 IEEE.

  2. Propagation and interaction of cos-Gaussian beams in photorefractive crystals

    Science.gov (United States)

    Jiang, Qichang; Su, Yanli; Nie, Hexian; Ma, Ziwei; Li, Yonghong

    2017-07-01

    Investigate numerically the propagation and interaction of cos-Gaussian beams in a biased photorefractive crystal by the finite difference method. The results show that the single cos-Gaussian beam can evolve into Y-type breathing solitons when the self-focusing nonlinearity is small, and the soliton properties can be controlled by adjusting the nonlinear parameter or cos modulation parameter. The distance between two components of Y-type breathing solitons will decrease with increasing the nonlinear parameter or decreasing the cos modulation parameter. The breathing soliton with two weak sidebands can form when the self-focusing nonlinearity is big. Moreover, two internal components of two cos-Gaussian beams have obvious interaction but two outside components have tiny interaction.

  3. Nonparaxial propagation of Lorentz-Gauss beams in uniaxial crystal orthogonal to the optical axis.

    Science.gov (United States)

    Wang, Xun; Liu, Zhirong; Zhao, Daomu

    2014-04-01

    Analytical expressions for the three components of nonparaxial propagation of a polarized Lorentz-Gauss beam in uniaxial crystal orthogonal to the optical axis are derived and used to investigate its propagation properties in uniaxial crystal. The influences of the initial beam parameters and the parameters of the uniaxial crystal on the evolution of the beam-intensity distribution in the uniaxial crystal are examined in detail. Results show that the statistical properties of a nonparaxial Lorentz-Gauss beam in a uniaxial crystal orthogonal to the optical axis are closely determined by the initial beam's parameters and the parameters of the crystal: the beam waist sizes-w(0), w(0x), and w(0y)-not only affect the size and shape of the beam profile in uniaxial crystal but also determine the nonparaxial effect of a Lorentz-Gauss beam; the beam profile of a Lorentz-Gauss beam in uniaxial crystal is elongated in the x or y direction, which is determined by the ratio of the extraordinary refractive index to the ordinary refractive index; with increasing deviation of the ratio from unity, the extension of the beam profile augments. The results indicate that uniaxial crystal provides an effective and convenient method for modulating the Lorentz-Gauss beams. Our results may be valuable in some fields, such as optical trapping and nonlinear optics, where a light beam with a special profile and polarization is required.

  4. Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas

    CERN Document Server

    Timofeev, I V

    2012-01-01

    Nonlinear interaction of a low density electron beam with a uniform plasma is studied using two-dimensional particle-in-cell (PIC) simulations. We focus on formation of coherent phase space structures in the case, when a wide two-dimensional wave spectrum is driven unstable, and we also study how nonlinear evolution of these structures is affected by the external magnetic field. In the case of isotropic plasma, nonlinear buildup of filamentation modes due to the combined effects of two-stream and oblique instabilities is found to exist and growth mechanisms of secondary instabilities destroying the BGK--type nonlinear wave are identified. In the weak magnetic field, the energy of beam-excited plasma waves at the nonlinear stage of beam-plasma interaction goes predominantly to the short-wavelength upper-hybrid waves propagating parallel to the magnetic field, whereas in the strong magnetic field the spectral energy is transferred to the electrostatic whistlers with oblique propagation.

  5. Nonlinear continuous-wave optical propagation in nematic liquid crystals: Interplay between reorientational and thermal effects

    Science.gov (United States)

    Alberucci, Alessandro; Laudyn, Urszula A.; Piccardi, Armando; Kwasny, Michał; Klus, Bartlomiej; Karpierz, Mirosław A.; Assanto, Gaetano

    2017-07-01

    We investigate nonlinear optical propagation of continuous-wave (CW) beams in bulk nematic liquid crystals. We thoroughly analyze the competing roles of reorientational and thermal nonlinearity with reference to self-focusing/defocusing and, eventually, the formation of nonlinear diffraction-free wavepackets, the so-called spatial optical solitons. To this extent we refer to dye-doped nematic liquid crystals in planar cells excited by a single CW beam in the highly nonlocal limit. To adjust the relative weight between the two nonlinear responses, we employ two distinct wavelengths, inside and outside the absorption band of the dye, respectively. Different concentrations of the dye are considered in order to enhance the thermal effect. The theoretical analysis is complemented by numerical simulations in the highly nonlocal approximation based on a semi-analytic approach. Theoretical results are finally compared to experimental results in the Nematic Liquid Crystals (NLC) 4-trans-4'-n-hexylcyclohexylisothiocyanatobenzene (6CHBT) doped with Sudan Blue dye.

  6. Dynamic Nonlinear Focal Shift in Amplitude Modulated Moderately Focused Acoustic Beams

    CERN Document Server

    Jiménez, Noé; González-Salido, Nuria

    2016-01-01

    The phenomenon of the displacement of the position of the pressure, intensity and acoustic radiation force maxima along the axis of focused acoustic beams under increasing driving amplitudes (nonlinear focal shift) is studied for the case of a moderately focused beam excited with continuous and 25 kHz amplitude modulated signals, both in water and tissue. We prove that in amplitude modulated beams the linear and nonlinear propagation effects coexist in a semi-period of modulation, giving place to a complex dynamic behaviour, where the singular points of the beam (peak pressure, rarefaction, intensity and acoustic radiation force) locate at different points on axis as a function of time. These entire phenomena are explained in terms of harmonic generation and absorption during the propagation in a lossy nonlinear medium both, for a continuous and an amplitude modulated beam. One of the possible applications of the acoustic radiation force displacement is the generation of shear waves at different locations by ...

  7. Extensions of nonlinear error propagation analysis for explicit pseudodynamic testing

    Institute of Scientific and Technical Information of China (English)

    Shuenn-Yih Chang

    2009-01-01

    Two important extensions of a technique to perform a nonlinear error propagation analysis for an explicit pseudodynamic algorithm (Chang, 2003) are presented. One extends the stability study from a given time step to a complete step-by-step integration procedure. It is analytically proven that ensuring stability conditions in each time step leads to a stable computation of the entire step-by-step integration procedure. The other extension shows that the nonlinear error propagation results, which are derived for a nonlinear single degree of freedom (SDOF) system, can be applied to a nonlinear multiple degree of freedom (MDOF) system. This application is dependent upon the determination of the natural frequencies of the system in each time step, since all the numerical properties and error propagation properties in the time step are closely related to these frequencies. The results are derived from the step degree of nonlinearity. An instantaneous degree of nonlinearity is introduced to replace the step degree of nonlinearity and is shown to be easier to use in practice. The extensions can be also applied to the results derived from a SDOF system based on the instantaneous degree of nonlinearity, and hence a time step might be appropriately chosen to perform a pseudodynamic test prior to testing.

  8. Nonlinear wave propagation in constrained solids subjected to thermal loads

    Science.gov (United States)

    Nucera, Claudio; Lanza di Scalea, Francesco

    2014-01-01

    The classical mathematical treatment governing nonlinear wave propagation in solids relies on finite strain theory. In this scenario, a system of nonlinear partial differential equations can be derived to mathematically describe nonlinear phenomena such as acoustoelasticity (wave speed dependency on quasi-static stress), wave interaction, wave distortion, and higher-harmonic generation. The present work expands the topic of nonlinear wave propagation to the case of a constrained solid subjected to thermal loads. The origin of nonlinear effects in this case is explained on the basis of the anharmonicity of interatomic potentials, and the absorption of the potential energy corresponding to the (prevented) thermal expansion. Such "residual" energy is, at least, cubic as a function of strain, hence leading to a nonlinear wave equation and higher-harmonic generation. Closed-form solutions are given for the longitudinal wave speed and the second-harmonic nonlinear parameter as a function of interatomic potential parameters and temperature increase. The model predicts a decrease in longitudinal wave speed and a corresponding increase in nonlinear parameter with increasing temperature, as a result of the thermal stresses caused by the prevented thermal expansion of the solid. Experimental measurements of the ultrasonic nonlinear parameter on a steel block under constrained thermal expansion confirm this trend. These results suggest the potential of a nonlinear ultrasonic measurement to quantify thermal stresses from prevented thermal expansion. This knowledge can be extremely useful to prevent thermal buckling of various structures, such as continuous-welded rails in hot weather.

  9. A nonlinear RDF model for waves propagating in shallow water

    Institute of Scientific and Technical Information of China (English)

    王厚杰; 杨作升; 李瑞杰; 张军

    2001-01-01

    In this paper, a composite explicit nonlinear dispersion relation is presented with reference to Stokes 2nd order dispersion relation and the empirical relation of Hedges. The explicit dispersion relation has such advantages that it can smoothly match the Stokes relation in deep and intermediate water and Hedgs’s relation in shallow water. As an explicit formula, it separates the nonlinear term from the linear dispersion relation. Therefore it is convenient to obtain the numerical solution of nonlinear dispersion relation. The present formula is combined with the modified mild-slope equation including nonlinear effect to make a Refraction-Diffraction (RDF) model for wave propagating in shallow water. This nonlinear model is verified over a complicated topography with two submerged elliptical shoals resting on a slope beach. The computation results compared with those obtained from linear model show that at present the nonlinear RDF model can predict the nonlinear characteristics and the combined refracti

  10. Modeling of the vibrating beam accelerometer nonlinearities

    Science.gov (United States)

    Romanowski, P. A.; Knop, R. C.

    Successful modeling and processing of the output of a quartz Vibrating Beam Accelerometer (VBA), whose errors are inherently nonlinear with respect to input acceleration, are reported. The VBA output, with two signals that are frequencies of vibrating quartz beams, has inherent higher-order terms. In order to avoid vibration rectification errors, the signal output must be sampled at a rapid rate and the output must be reduced using a nonlinear model. The present model, with acceleration as a function of frequency, is derived by a least-squares process where the covariance matrix is obtained from simulated data. The system performance is found to be acceptable to strategic levels, and it is shown that a vibration rectification error of 400 micrograms/sq g can be reduced to 4 micrograms/sq g by using the processor electronics and a nonlinear model.

  11. Propagation of Gaussian Beams through Active GRIN Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Varela, A I; Flores-Arias, M T; Bao-Varela, C; Gomez-Reino, C [Grupo de ' Microoptica y Optica GRIN' , Unidad asociada al Instituto de Ciencias de Materiales de Aragon, ICMA/CSIC, Zaragoza, Espana y Escuela de Optica y OptometrIa, Campus Sur s/n, Universidade de Santiago, E15782 Santiago de Compostela (Spain); De la Fuente, X, E-mail: maite.flores@usc.es [Instituto de Ciencia de Materiales de Aragon (Universidad de Zaragoza-CSIC), Maria de Luna 3, E50018 Zaragoza (Spain)

    2011-01-01

    We discussed light propagation through an active GRIN material that exhibits loss or gain. Effects of gain or loss in GRIN materials can be phenomenologically taken into account by using a complex refractive index in the wave equation. This work examines the implication of using a complex refractive index on light propagation in an active GRIN material illuminated by a non-uniform monochromatic wave described by a Gaussian beam. We analyze how a Gaussian beam is propagated through the active material in order to characterize it by the beam parameters and the transverse irradiance distribution.

  12. The Propagation Characteristics of the Electron Beam with Initial Modulation

    Institute of Scientific and Technical Information of China (English)

    Zhang Jun(张军); Zhong Huihuang(钟辉煌)

    2003-01-01

    The propagation characteristics of the beam under various initial conditions are investigated by means of PIC method. The influences of density modulation and velocity modulation on the propagation characteristics are discussed and compared. The results reveal that by changing the amplitude of the two kinds of modulations and the phase difference between them, the distribution property of the first harmonic of the current density can be adapted along the beam propagating path, which is a feasible method to enhance the beam-wave interaction efficiency in Cerenkov HPM devices.

  13. Mean intensity of vortex Bessel beams propagating in turbulent atmosphere.

    Science.gov (United States)

    Lukin, Igor P

    2014-05-20

    Transformation of vortex Bessel beams during propagation in turbulent atmosphere is theoretically analyzed. Deforming influence of the random inhomogeneity of the turbulent medium on propagation of diffraction-free beams leads to disappearance of their invariant properties. In the given research, features of evolution of the spatial structure of distribution of mean intensity of vortex Bessel beams in turbulent atmosphere are analyzed. A quantitative criterion of possibility of carrying over of a dark central domain by vortex Bessel beams in a turbulent atmosphere is derived. The analysis of the behavior of several physical parameters of mean-level optical radiation shows that the shape stability of a vortex Bessel beam increases with the topological charge of this beam during its propagation in a turbulent atmosphere.

  14. Propagation of ultrashort pulsed beams in dispersive media

    Institute of Scientific and Technical Information of China (English)

    刘志军; 吕百达

    2003-01-01

    Starting from the Rayleigh diffraction integral, the propagation equation of ultrashort pulsed beams in dispersive media is derived without making the paraxial approximation and slowly varying envelope approximation (SVEA). The spatiotemporal properties of ultrashort pulsed beams in dispersive media, such as spectrum redshifting, narrowing and pulse distortion are illustrated with pulsed Gaussian beams. It is stressed that the "antibeam" behaviour of ultrashort pulsed beams can be avoided, if a suitable truncation function is chosen.

  15. Second harmonic generation of Cosh-Gaussian laser beam in collisional plasma with nonlinear absorption

    Science.gov (United States)

    Singh, Navpreet; Gupta, Naveen; Singh, Arvinder

    2016-12-01

    This paper investigates second harmonic generation (SHG) of an intense Cosh-Gaussian (ChG) laser beam propagating through a preformed underdense collisional plasma with nonlinear absorption. Nonuniform heating of plasma electrons takes place due to the nonuniform irradiance of intensity along the wavefront of laser beam. This nonuniform heating of plasma leads to the self-focusing of the laser beam and thus produces strong density gradients in the transverse direction. The density gradients so generated excite an electron plasma wave (EPW) at pump frequency that interacts with the pump beam to produce its second harmonics. To envision the propagation dynamics of the ChG laser beam, moment theory in Wentzel-Kramers-Brillouin (W.K.B) approximation has been invoked. The effects of nonlinear absorption on self-focusing of the laser beam as well as on the conversion efficiency of its second harmonics have been theoretically investigated.

  16. Differential Geometry applied to Acoustics : Non Linear Propagation in Reissner Beams

    CERN Document Server

    Bensoam, Joël

    2013-01-01

    Although acoustics is one of the disciplines of mechanics, its "geometrization" is still limited to a few areas. As shown in the work on nonlinear propagation in Reissner beams, it seems that an interpretation of the theories of acoustics through the concepts of differential geometry can help to address the non-linear phenomena in their intrinsic qualities. This results in a field of research aimed at establishing and solving dynamic models purged of any artificial nonlinearity by taking advantage of symmetry properties underlying the use of Lie groups. The geometric constructions needed for reduction are presented in the context of the "covariant" approach.

  17. Nonlinear Biochemical Signal Processing via Noise Propagation

    OpenAIRE

    Kim, Kyung Hyuk; Qian, Hong; Sauro, Herbert M.

    2013-01-01

    Single-cell studies often show significant phenotypic variability due to the stochastic nature of intra-cellular biochemical reactions. When the numbers of molecules, e.g., transcription factors and regulatory enzymes, are in low abundance, fluctuations in biochemical activities become significant and such "noise" can propagate through regulatory cascades in terms of biochemical reaction networks. Here we develop an intuitive, yet fully quantitative method for analyzing how noise affects cell...

  18. Scintillation Reduction for Laser Beams Propagating Through Turbulent Atmosphere

    CERN Document Server

    Berman, G P; Torous, S V

    2010-01-01

    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams, including the optical vortices, propagating in turbulent atmospheres. The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analyzed. These studies were performed for different dimensions of the detector, distances of propagation, and strengths of the atmospheric turbulence. Methods for significantly reducing the scintillation index are described. These methods utilize averaging of the signal at the detector over a set of partially coherent beams (PCBs). It is demonstrated that the most effective approach is using a set of PCBs with definite initial directions of propagation relative to the z-axis. This approach results in a significant compensation of the beam wandering which in many cases is the main contributor to the SI. A novel method is to generate the PCBs by combining two lase...

  19. Propagation dynamics of vortices in Helico-Conical optical beams

    CERN Document Server

    Bareza, Nestor

    2015-01-01

    We present the dynamics of optical vortices (OVs) that came from the propagation of helico-conical optical beam. This dynamics is investigated numerically by tracking the OVs at several distances using rigorous scalar diffraction theory. To ensure that our numerical calculations are correct, we compare the intensity profiles and their corresponding interferograms taken at different propagation distances between simulations and experiments. We observe that the peripheral isopolar vortices transport radially inward, toward the optical axis along the transverse spatial space as the beam propagates. When the beam has a central vortex, these vortices have significant induced angular rates of motion about the optical axis. These propagation dynamics of vortices influence the internal energy flow and the wave profile reconstruction of the beam, which can be important when deciding their applications.

  20. Propagation-dependent beam profile distortion associated with the Goos-Hanchen shift.

    Science.gov (United States)

    Wan, Yuhang; Zheng, Zheng; Zhu, Jinsong

    2009-11-09

    The propagation-dependent profile distortion of the reflected beam is studied via deriving the theoretical model of the optical field distribution in both the near and far field. It is shown that strong and fast-varying beam distortions can occur along the propagation path, compared to the profile on the reflecting surface. Numerical simulations for the case of a typical SPR configuration with a sharp angular response curve reveal that, when the phase distribution in the angular range covered by the input beam becomes nonlinear, previous theories based on the linear phase approximation fail to predict the Goos-Hanchen shift and its propagation-dependent variations precisely. Our study could shed light on more accurate modeling of the Goos-Hanchen effect's impact on the relevant photonic devices and measurement applications.

  1. Numerical modelling of nonlinear full-wave acoustic propagation

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  2. Plasmon beams interaction at interface between metal and dielectric with saturable Kerr nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Ignatyeva, Daria O.; Sukhorukov, Anatoly P. [Lomonosov Moscow State University, Moscow (Russian Federation)

    2012-12-15

    We present a novel theory of surface plasmon polariton interaction on the surface of dielectric with saturable Kerr nonlinearity. The effect of the total internal reflection of a weak signal plasmon beam from a high-power reference beam is discussed. Both ray and wave theories are used to describe signal propagation. The effect of the signal tunneling through the narrow inhomogeneity induced by the reference beam is considered. (orig.)

  3. Nonlinear pulse propagation in birefringent fiber Bragg gratings.

    Science.gov (United States)

    Pereira, S; Sipe, J

    1998-11-23

    We present two sets of equations to describe nonlinear pulse propagation in a birefringent fiber Bragg grating. The first set uses a coupled-mode formalism to describe light in or near the photonic band gap of the grating. The second set is a pair of coupled nonlinear Schroedinger equations. We use these equations to examine viable switching experiments in the presence of birefringence. We show how the birefringence can both aid and hinder device applications.

  4. Non-linear propagation in near sonic flows

    Science.gov (United States)

    Nayfeh, A. H.; Kelly, J. J.; Watson, L. T.

    1981-01-01

    A nonlinear analysis is developed for sound propagation in a variable-area duct in which the mean flow approaches choking conditions. A quasi-one-dimensional model is used and the nonlinear analysis represents the acoustic disturbance as a sum of interacting harmonics. The numerical procedure is stable for cases of strong interaction and is able to integrate through the throat region without any numerical instability.

  5. Wave Propagation In Strongly Nonlinear Two-Mass Chains

    Science.gov (United States)

    Wang, Si Yin; Herbold, Eric B.; Nesterenko, Vitali F.

    2010-05-01

    We developed experimental set up that allowed the investigation of propagation of oscillating waves generated at the entrance of nonlinear and strongly nonlinear two-mass granular chains composed of steel cylinders and steel spheres. The paper represents the first experimental data related to the propagation of these waves in nonlinear and strongly nonlinear chains. The dynamic compressive forces were detected using gauges imbedded inside particles at depths equal to 4 cells and 8 cells from the entrance gauge detecting the input signal. At these relatively short distances we were able to detect practically perfect transparency at low frequencies and cut off effects at higher frequencies for nonlinear and strongly nonlinear signals. We also observed transformation of oscillatory shocks into monotonous shocks. Numerical calculations of signal transformation by non-dissipative granular chains demonstrated transparency of the system at low frequencies and cut off phenomenon at high frequencies in reasonable agreement with experiments. Systems which are able to transform nonlinear and strongly nonlinear waves at small sizes of the system are important for practical applications such as attenuation of high amplitude pulses.

  6. Unified formalism for TE and TM beam propagators

    Science.gov (United States)

    Poladian, Leon; Ladouceur, Francois J.

    1998-07-01

    The unification of transverse electric (TE) and transverse magnetic (TM) beam propagation algorithms is made possible through a transformation which converts the wave equation for TM fields in planar waveguides into a form identical to the corresponding TE wave equation. The transformation can be applied to any smoothly varying waveguide. This transformation can be made independently of any paraxial or other approximations. Thus, any TE propagation algorithm can also be applied immediately to TM fields without additional approximations. This includes the classical fast Fourier transform beam propagator, which has not previously been applied successfully to TM propagation. We also specifically develop a Finite Difference Beam Propagation Method that applies to both TE and TM propagation in 1D (planar) geometry. Previous implementations for the TM case involve an approximation that in certain circumstances leads to severe errors (including the totally unphysical occurrence of field amplification). This is the first TM propagator which exactly conserves power. We also investigate the role of the reference background wavenumber (or index) and clarify its role as it is dynamically adapted. The algorithms proposed are easily adaptable to wide-angle beam propagators and to modern transparent boundary conditions. The extension of these ideas to rapidly varying structures (such as Bragg gratings) is also briefly discussed.

  7. Efficient interface conditions for the finite difference beam propagation method

    NARCIS (Netherlands)

    Hoekstra, Hugo; Krijnen, Gijsbertus J.M.; Lambeck, Paul

    1992-01-01

    It is shown that by adapting the refractive indexes in the vicinity of interfaces, the 2-D beam propagation method based on the finite-difference (FDBPM) scheme can be made much more effective. This holds especially for TM modes propagating in structures with high-index contrasts, such as surface

  8. Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation

    CERN Document Server

    Nariyuki, Y; Kumashiro, T; Hada, T

    2009-01-01

    Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.

  9. Wave Propagation in an Ion Beam-Plasma System

    DEFF Research Database (Denmark)

    Jensen, T. D.; Michelsen, Poul; Juul Rasmussen, Jens

    1979-01-01

    The spatial evolution of a velocity- or density-modulated ion beam is calculated for stable and unstable ion beam plasma systems, using the linearized Vlasov-Poisson equations. The propagation properties are found to be strongly dependent on the form of modulation. In the case of velocity...

  10. Characteristic of laser diode beam propagation through a collimating lens.

    Science.gov (United States)

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  11. Periodic solutions of nonlinear vibrating beams

    Directory of Open Access Journals (Sweden)

    J. Berkovits

    2003-01-01

    Full Text Available The aim of this paper is to prove new existence and multiplicity results for periodic semilinear beam equation with a nonlinear time-independent perturbation in case the period is not prescribed. Since the spectrum of the linear part varies with the period, the solvability of the equation depends crucially on the period which can be chosen as a free parameter. Since the period of the external forcing is generally unknown a priori, we consider the following natural problem. For a given time-independent nonlinearity, find periods T for which the equation is solvable for any T-periodic forcing. We will also deal with the existence of multiple solutions when the nonlinearity interacts with the spectrum of the linear part. We show that under certain conditions multiple solutions do exist for any small forcing term with suitable period T. The results are obtained via generalized Leray-Schauder degree and reductions to invariant subspaces.

  12. Uncertainty propagation for nonlinear vibrations: A non-intrusive approach

    Science.gov (United States)

    Panunzio, A. M.; Salles, Loic; Schwingshackl, C. W.

    2017-02-01

    The propagation of uncertain input parameters in a linear dynamic analysis is reasonably well established today, but with the focus of the dynamic analysis shifting towards nonlinear systems, new approaches is required to compute the uncertain nonlinear responses. A combination of stochastic methods (Polynomial Chaos Expansion, PCE) with an Asymptotic Numerical Method (ANM) for the solution of the nonlinear dynamic systems is presented to predict the propagation of random input uncertainties and assess their influence on the nonlinear vibrational behaviour of a system. The proposed method allows the computation of stochastic resonance frequencies and peak amplitudes based on multiple input uncertainties, leading to a series of uncertain nonlinear dynamic responses. One of the main challenges when using the PCE is thereby the Gibbs phenomenon, which can heavily impact the resulting stochastic nonlinear response by introducing spurious oscillations. A novel technique to avoid the Gibbs phenomenon is be presented in this paper, leading to high quality frequency response predictions. A comparison of the proposed stochastic nonlinear analysis technique to traditional Monte Carlo simulations, demonstrates comparable accuracy at a significantly reduced computational cost, thereby validating the proposed approach.

  13. Generation and propagation of nonlinear internal waves in Massachusetts Bay

    Science.gov (United States)

    Scotti, A.; Beardsley, R.C.; Butman, B.

    2007-01-01

    During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.

  14. Beams Propagation Modelled by Bi-filters

    OpenAIRE

    Lacaze, Bernard

    2010-01-01

    In acoustic, ultrasonic or electromagnetic propagation, crossed media are often modelled by linear filters with complex gains in accordance with the Beer-Lambert law. This paper addresses the problem of propagation in media where polarization has to be taken into account. Because waves are now bi-dimensional, an unique filter is not sufficient to represent the effects of the medium. We propose a model which uses four linear invariant filters, which allows to take into account exchanges betwee...

  15. Multiple-beam Propagation in an Anderson Localized Optical Fiber

    CERN Document Server

    Karbasi, Salman; Mafi, Arash

    2012-01-01

    We investigate the simultaneous propagation of multiple beams in a disordered Anderson localized optical fiber. The profiles of each beam fall off exponentially, enabling multiple channels at high-density. We examine the influence of fiber bends on the movement of the beam positions, which we refer to as drift. We investigate the extent of the drift of localized beams induced by macro-bending and show that it is possible to design Anderson localized optical fibers which can be used for practical beam-multiplexing applications.

  16. Gamma-beam propagation in the anisotropic medium

    CERN Document Server

    Maisheev, V A

    2000-01-01

    Propagation of gamma-beam in the anisotropic medium is considered. The simpliest example of such a medium of the general type is a combination of the two linearly polarized monochromatic laser waves with different frequencies (dichromatic wave). The optical properties of this combination are described with the use of the permittivity tensor. The refractive indices and polarization characteristics of normal electromagnetic waves propagating in the anisotropic medium are found. The relations, describing variations of gamma-beam intensity and Stokes parameters as functions of propagation length are obtained. The influence of laser wave intensity on the propagation process are calculated. The gamma-beam intensity losses in the dichromatic wave depend on the initial circular polarization of gamma-quanta. This effect is also applied to the single crystals, which are oriented in some regions of coherent pair production. In principle, the single crystal sensitivity to a circular polarization can be used for determina...

  17. Propagation of Airy Gaussian vortex beams in uniaxial crystals

    Science.gov (United States)

    Weihao, Yu; Ruihuang, Zhao; Fu, Deng; Jiayao, Huang; Chidao, Chen; Xiangbo, Yang; Yanping, Zhao; Dongmei, Deng

    2016-04-01

    The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108, 11374107, 10904041, and 11547212), the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province, China, the CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, the National Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. 2015093), and the Science and Technology Projects of Guangdong Province, China (Grant No. 2013B031800011).

  18. A Highly Adjustable Helical Beam: Design and Propagation Characteristic

    CERN Document Server

    Wen, Yuanhui; Yu, Siyuan

    2016-01-01

    Light fields with extraordinary propagation behaviours such as nondiffracting and self-bending are useful in optical delivery for energy, information, and even objects. A kind of helical beams is constructed here based on the caustic method. With appropriate design, the main lobe of these helical beams can be both well-confined and almost nondiffracting while moving along a helix with its radius, period, the number of rotations and main lobes highly adjustable. In addition, the main lobe contains almost half of the optical power and the peak intensity fluctuates below 15% during propagation. These promising characteristics may enable a variety of potential applications based on these beams.

  19. Instability versus equilibrium propagation of a laser beam in plasma.

    Science.gov (United States)

    Lushnikov, Pavel M; Rose, Harvey A

    2004-06-25

    We obtain, for the first time, an analytic theory of the forward stimulated Brillouin scattering instability of a spatially and temporally incoherent laser beam that controls the transition between statistical equilibrium and nonequilibrium (unstable) self-focusing regimes of beam propagation. The stability boundary may be used as a comprehensive guide for inertial confinement fusion designs. Well into the stable regime, an analytic expression for the angular diffusion coefficient is obtained, which provides an essential correction to a geometric optic approximation for beam propagation.

  20. Nonlinear pulse propagation: a time-transformation approach.

    Science.gov (United States)

    Xiao, Yuzhe; Agrawal, Govind P; Maywar, Drew N

    2012-04-01

    We present a time-transformation approach for studying the propagation of optical pulses inside a nonlinear medium. Unlike the conventional way of solving for the slowly varying amplitude of an optical pulse, our new approach maps directly the input electric field to the output one, without making the slowly varying envelope approximation. Conceptually, the time-transformation approach shows that the effect of propagation through a nonlinear medium is to change the relative spacing and duration of various temporal slices of the pulse. These temporal changes manifest as self-phase modulation in the spectral domain and self-steepening in the temporal domain. Our approach agrees with the generalized nonlinear Schrödinger equation for 100 fs pulses and the finite-difference time-domain solution of Maxwell's equations for two-cycle pulses, while producing results 20 and 50 times faster, respectively.

  1. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    Science.gov (United States)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier-Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle.

  2. Wave propagation properties in oscillatory chains with cubic nonlinearities via nonlinear map approach

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Francesco [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: francesco.romeo@uniromal.it; Rega, Giuseppe [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: giuseppe.rega@uniromal.it

    2006-02-01

    Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites (n, n + 1) thereby considering a dynamical system where the location index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled periodic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings concerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration.

  3. Scintillation reduction for laser beams propagating through turbulent atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Berman, G P; Gorshkov, V N [Theoretical Division, T-4 and CNLS MS B213, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Torous, S V, E-mail: gpb@lanl.gov [National Technical University of Ukraine ' KPI' , 37 Peremogy Avenue, Building 7, Kiev-56, 03056 (Ukraine)

    2011-03-14

    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams, including the optical vortices, propagating in turbulent atmospheres. The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analysed. These studies were performed for different dimensions of the detector, distances of propagation, and strengths of the atmospheric turbulence. Methods for significantly reducing the SI are described. These methods utilize averaging of the signal at the detector over a set of partially coherent beams (PCBs). It is demonstrated that the most effective approach is using a set of PCBs with definite initial directions of propagation relative to the z-axis. This approach results in a significant compensation of the beam wandering which in many cases is the main contributor to the SI. A novel method is to generate the PCBs by combining two laser beams-Gaussian and vortex beams, with different frequencies (the difference between these two frequencies being significantly smaller than the frequencies themselves). In this case, the effective suppression of the SI does not require high-frequency modulators. This result is important for achieving gigabit data rates in long-distance laser communication through turbulent atmospheres.

  4. Dispersion and stability analysis for a finite difference beam propagation method.

    Science.gov (United States)

    de-Oliva-Rubio, J; Molina-Fernández, I; Godoy-Rubio, R

    2008-06-09

    Applying continuous and discrete transformation techniques, new analytical expressions to calculate dispersion and stability of a Runge- Kutta Finite Difference Beam Propagation Method (RK-FDBPM) are obtained. These expressions give immediate insight about the discretization errors introduced by the numerical method in the plane-wave spectrum domain. From these expressions a novel strategy to adequately set the mesh steps sizes of the RK-FDBPM is presented. Assessment of the method is performed by studying the propagation in several linear and nonlinear photonic devices for different spatial discretizations.

  5. Nonlinear interaction of intense hypergeometric Gaussian subfamily laser beams in plasma

    Science.gov (United States)

    Sobhani, H.; Vaziri (Khamedi), M.; Rooholamininejad, H.; Bahrampour, A. R.

    2016-07-01

    Propagation of Hypergeometric-Gaussian laser beam in a nonlinear plasma medium is investigated by considering the Source Dependent Expansion method. A subfamily of Hypergeometric-Gaussian beams with a non-negative, even and integer radial index, can be expressed as the linear superposition of finite number of Laguerre-Gaussian functions. Propagation of Hypergeometric-Gaussian beams in a nonlinear plasma medium depends on the value of radial index. The bright rings' number of these beams is changed during the propagation in plasma medium. The effect of beam vortex charge number l and initial (input) beam intensity on the self-focusing of Hypergeometric-Gaussian beams is explored. Also, by choosing the suitable initial conditions, Hypergeometric-Gaussian subfamily beams can be converted to one or more mode components that a typical of mode conversion may be occurred. The self-focusing of these winding beams can be used to control the focusing force and improve the electron bunch quality in laser plasma accelerators.

  6. Vibration Analysis of Timoshenko Beams on a Nonlinear Elastic Foundation

    Institute of Scientific and Technical Information of China (English)

    MO Yihua; OU Li; ZHONG Hongzhi

    2009-01-01

    The vibrations of beams on a nonlinear elastic foundation were analyzed considering the effects of transverse shear deformation and the rotational inertia of beams. A weak form quadrature element method (QEM) is used for the vibration analysis. The fundamental frequencies of beams are presented for various slenderness ratios and nonlinear foundation parameters for both slender and short beams. The results for slender beams compare well with finite element results. The analysis shows that the transverse shear de-formation and the nonlinear foundation parameter significantly affect the fundamental frequency of the beams.

  7. Variational principle for nonlinear wave propagation in dissipative systems.

    Science.gov (United States)

    Dierckx, Hans; Verschelde, Henri

    2016-02-01

    The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time.

  8. A propagation model of computer virus with nonlinear vaccination probability

    Science.gov (United States)

    Gan, Chenquan; Yang, Xiaofan; Liu, Wanping; Zhu, Qingyi

    2014-01-01

    This paper is intended to examine the effect of vaccination on the spread of computer viruses. For that purpose, a novel computer virus propagation model, which incorporates a nonlinear vaccination probability, is proposed. A qualitative analysis of this model reveals that, depending on the value of the basic reproduction number, either the virus-free equilibrium or the viral equilibrium is globally asymptotically stable. The results of simulation experiments not only demonstrate the validity of our model, but also show the effectiveness of nonlinear vaccination strategies. Through parameter analysis, some effective strategies for eradicating viruses are suggested.

  9. Beam stability & nonlinear dynamics. Formal report

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. [ed.

    1996-12-31

    his Report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

  10. Beam Combining by Phase Transition Nonlinear Media

    Science.gov (United States)

    1990-02-01

    use the Redlich Kwong equation of state for the media we consider. This equation of state can be written RT a p - -b -FT(p.-’ + b)p ; 2-I M (2-1) where...as ac 3 dg-A7 C VA/\\CIIJT (6) The Redlich - Kwong equation of state; i.e., _ RT T-1/2 v-P v(v+P) (7) can be used to compute aP/lT, where the relevant...practical the application of nonlinear phase conjugate techniques to the beam combining of multiple lasers with a coherence characteristic of a

  11. Beaconless operation for optimal laser beam propagation through turbulent atmosphere

    Science.gov (United States)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-09-01

    Corruption of the wavefront, beam wondering and power density degradation at the receiving end are the effects typically observed at laser beam propagation through turbulent atmosphere. Compensation of these effects can be achieved if the reciprocal conditions for the propagating wave are satisfied along the propagation range. Practical realization of these conditions requires placing a localized beacon at the receiving end of the range and high-performance adaptive optics system (AOS). The key condition for an effective performance of AOS is a high value of the reciprocal component in the outgoing wave, since only this component is getting compensated after propagating turbulence perturbed path. The nonreciprocal components that is present in the wave directed toward the target is caused by three factors (detailed in this paper) that determine the partial restoration of the structure of the beacon beam. Thus solution of a complex problem of focusing the laser beam propagating through turbulent media can be achieved for the share of the outgoing wave that has a reciprocal component. This paper examines the ways and means that can be used in achieving the stated goal of effective laser power delivery on the distant image-resolved object.

  12. Analysis of laser beam propagation in a turbulent atmosphere

    Science.gov (United States)

    Clarke, R. H.

    1985-09-01

    The beam propagation method, based on the parabolic approximation to the wave equation, is used in conjunction with Papoulis' redefinition for optical fields of Woodward's ambiguity function. A simple derivation is given of Tatarskii's formula for the lateral coherence function, and hence the mean intensity profile, of a laser beam propagating through a turbulent atmosphere. Statistics of the received signal and the effects of spatial nonstationarity of the turbulence can also be deduced using this technique, as can the effects of very large-scale variations in refractive index and receiver directivity.

  13. Propagation of a beam halo in accelerator test facility 2 at KEK

    Institute of Scientific and Technical Information of China (English)

    BAI Sha; P.Bambade; GAO Jie

    2013-01-01

    The beam halo is a major issue for interaction region (IR) backgrounds at many colliders,for example,future linear colliders,B factories,and also it is an important problem at ATF2.In this paper,we report on the halo propagation along the ATF2 beam line with realistic apertures,the nonlinear optics influence on the increasing number of halo particles input is analyzed,and the transmitted halo particles distribution just before the last BPM is then described,the results from which will benefit the Compton recoil electrons measurement.

  14. Nonlinear propagation of planet-generated tidal waves

    OpenAIRE

    Rafikov, Roman

    2001-01-01

    The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process sp...

  15. Nonlinear Propagation of Light in One Dimensional Periodic Structures

    OpenAIRE

    Goodman, Roy H.; Weinstein, Michael I.; Philip J Holmes

    2000-01-01

    We consider the nonlinear propagation of light in an optical fiber waveguide as modeled by the anharmonic Maxwell-Lorentz equations (AMLE). The waveguide is assumed to have an index of refraction which varies periodically along its length. The wavelength of light is selected to be in resonance with the periodic structure (Bragg resonance). The AMLE system considered incorporates the effects non-instantaneous response of the medium to the electromagnetic field (chromatic or material dispersion...

  16. Properties of nonreciprocal light propagation in a nonlinear optical isolator

    OpenAIRE

    Roy, Dibyendu

    2016-01-01

    Light propagation in a nonlinear optical medium is nonreciprocal for spatially asymmetric linear permittivity. We here examine physical mechanism and properties of such nonreciprocity (NR). For this, we calculate transmission of light through a two-level atom asymmetrically coupled to light inside open waveguides. We determine the critical intensity of incident light for maximum NR and a dependence of the corresponding NR on asymmetry in the coupling. Surprisingly, we find that it is mainly c...

  17. Self-healing in scaled propagation invariant beams

    CERN Document Server

    Arrizón, Victor; Mellado-Villaseñor, Gabriel; Chávez-Cerda, Sabino

    2015-01-01

    We analyze and demonstrate, numerically and experimentally, the self-healing effect in scaled propagation invariant beams, subject to opaque obstructions.We introduce the signal to noise intensity ratio, a semi-analytical figure of merit, explicitly dependent on the features of the beams and the obstructions applied to them. The effect is quantitatively evaluated employing the Root Mean Square deviation and the similarity function.

  18. Instability Versus Equilibrium Propagation of Laser Beam in Plasma

    OpenAIRE

    Lushnikov, Pavel M.; Rose, Harvey A.

    2003-01-01

    We obtain, for the first time, an analytic theory of the forward stimulated Brillouin scattering instability of a spatially and temporally incoherent laser beam, that controls the transition between statistical equilibrium and non-equilibrium (unstable) self-focusing regimes of beam propagation. The stability boundary may be used as a comprehensive guide for inertial confinement fusion designs. Well into the stable regime, an analytic expression for the angular diffusion coefficient is obtain...

  19. Polarization of a probe laser beam due to nonlinear QED effects

    Science.gov (United States)

    Shakeri, Soroush; Kalantari, Seyed Zafarollah; Xue, She-Sheng

    2017-01-01

    Nonlinear QED interactions induce different polarization properties on a given probe beam. We consider the polarization effects caused by the photon-photon interaction in laser experiments, when a laser beam propagates through a constant magnetic field or collides with another laser beam. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian for both time-dependent and constant background field to explore the time evolution of the Stokes parameters Q, U, and V describing polarization. Assuming an initially linearly polarized probe laser beam, we also calculate the induced ellipticity and rotation of the polarization plane.

  20. Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations.

    Science.gov (United States)

    Andreasen, J; Kolesik, M

    2012-09-01

    Unidirectional pulse propagation equations [UPPE, Phys. Rev. E 70, 036604 (2004)] have provided a theoretical underpinning for computer-aided investigations into dynamics of high-power ultrashort laser pulses and have been successfully utilized for almost a decade. Unfortunately, they are restricted to applications in bulk media or, with additional approximations, to simple waveguide geometries in which only a few guided modes can approximate the propagating waveform. The purpose of this work is to generalize the directional pulse propagation equations to structures characterized by strong refractive index differences and material interfaces. We also outline a numerical solution framework that draws on the combination of the bulk-media UPPE method with single-frequency beam-propagation techniques.

  1. Propagation of whistler waves driven by fine structured ion beams in the magnetotail

    Science.gov (United States)

    Burinskaya, T.; Schriver, D.; Ashour-Abdalla, M.

    1994-01-01

    In a previous paper, which examined the propagation of low-frequency whistler waves generated by ion beams in the Earth's plasma sheet boundary layer (PSBL), it was found that whistler waves driven in the PSBL are focused toward the central plasma sheet due to the global magnetotail inhomogeneities; this finding may help explain the observations of magnetic noise bursts in the tail (Burinskaya et al., 1993). In this paper the same phenomenon is examined, but this time a much more realistic model is used for the ion beam in the PSBL. While the PSBL has been modeled as a solid, homogeneous ion beams with a width of one Earth radius, observations and theoretical considerations have shown that PSBL ion beams actually have a decreasing velocity profile toward the plasma sheet and that the density of the beams within the PSBL can vary locally. We consider again the propagation and generation of electromagnetic waves but in the presence of fine structured ion beams in the PSBL. Our results show that whistler waves, generated quasi-parallel to the background magnetic field, can be trapped locally within small spatial regions where the ion beam density is enhanced compared to the density of the adjacent PSBL region. Wave spectra and nonlinear saturation mechanisms are discussed.

  2. Approximate kinetic quasiequilibrium distributions for intense beam propagation through a periodic focusing quadrupole lattice

    Directory of Open Access Journals (Sweden)

    Edward A. Startsev

    2010-06-01

    Full Text Available The transverse dynamics of an intense charged particle beam propagating through a periodic quadrupole focusing lattice is described by the nonlinear Vlasov-Maxwell system of equations, where the propagation distances play the role of time. To determine matched-beam quasiequilibrium distribution functions, one needs to determine a dynamical invariant for the beam particles moving in the combined applied and self-generated fields. In this paper, a perturbative Hamiltonian transformation method is developed which is an expansion in the particle’s vacuum phase advance ϵ[over ¯]∼σ_{v}/2π, treated as a small parameter, which is used to transform away the fast particle orbit oscillations and obtain the average Hamiltonian accurate to order ϵ[over ¯]^{3}. The average Hamiltonian is an approximate invariant of the original system, and can be used to determine self-consistent beam quasiequilibrium solutions that are matched to the focusing channel. The equation determining the average self-field potential is derived for general boundary conditions by taking into account the average contribution of the charges induced on the boundary. It is shown for a cylindrical conducting boundary that the average self-field potential acquires an octupole component, which results in the average motion of some beam particles being nonintegrable and their trajectories chaotic. This chaotic behavior of the beam particles may significantly change the nature of the Landau damping (or growth of collective excitations supported by an intense charged particle beam.

  3. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound

    Science.gov (United States)

    Fan, Ting-Bo; Liu, Zhen-Bo; Zhang, Zhe; Zhang, Dong; Gong, Xiu-Fen

    2009-08-01

    A theoretical model of the nonlinear propagation in multi-layered tissues for strong focused ultrasound is proposed. In this model, the spheroidal beam equation (SBE) is utilized to describe the nonlinear sound propagation in each layer tissue, and generalized oblique incidence theory is used to deal with the sound transmission between two layer tissues. Computer simulation is performed on a fat-muscle-liver tissue model under the irradiation of a 1 MHz focused transducer with a large aperture angle of 35°. The results demonstrate that the tissue layer would change the amplitude of sound pressure at the focal region and cause the increase of side petals.

  4. FILAMENTATION INSTABILITY OF LASER BEAMS IN NONLOCAL NONLINEAR MEDIA

    Institute of Scientific and Technical Information of China (English)

    文双春; 范滇元

    2001-01-01

    The filamentation instability of laser beams propagating in nonlocal nonlinear media is investigated. It is shown that the filamentation instability can occur in weakly nonlocal self-focusing media for any degree of nonlocality, and in defocusing media for the input light intensity exceeding a threshold related to the degree of nonlocality. A linear stability analysis is used to predict the initial growth rate of the instability. It is found that the nonlocality tends to suppress filamentation instability in self-focusing media and to stimulate filamentation instability in self-defocusing media. Numerical simulations confirm the results of the linear stability analysis and disclose a recurrence phenomenon in nonlocal self-focusing media analogous to the Fermi-Pasta-Ulam problem.

  5. Spatial-temporal dynamics of broadband terahertz Bessel beam propagation

    Science.gov (United States)

    Semenova, V. A.; Kulya, M. S.; Bespalov, V. G.

    2016-08-01

    The unique properties of narrowband and broadband terahertz Bessel beams have led to a number of their applications in different fields, for example, for the depth of focusing and resolution enhancement in terahertz imaging. However, broadband terahertz Bessel beams can probably be also used for the diffraction minimization in the short-range broadband terahertz communications. For this purpose, the study of spatial-temporal dynamics of the broadband terahertz Bessel beams is needed. Here we present a simulation-based study of the propagating in non-dispersive medium broadband Bessel beams generated by a conical axicon lens. The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the Bessel beam in the frequency range from 0.1 to 3 THz at the distances 10-200 mm from the axicon. Bessel beam field is studied for the different spectral components of the initial pulse. The simulation results show that for the given parameters of the axicon lens one can obtain the Gauss-Bessel beam generation in the spectral range from 0.1 to 3 THz. The length of non-diffraction propagation for a different spectral components was measured, and it was shown that for all spectral components of the initial pulse this length is about 130 mm.

  6. Modeling beam propagation and frequency conversion for the beamlet laser

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, J.M.

    1996-06-01

    The development of the Beamlet laser has involved extensive and detailed modeling of laser performance and beam propagation to: (1) predict the performance limits of the laser, (2) select system configurations with higher performance, (3) analyze experiments and provide guidance for subsequent laser shots, and (4) design optical components and establish component manufacturing specifications. In contrast to modeling efforts of previous laser systems such as Nova, those for Beamlet include as much measured optical characterization data as possible. This article concentrates on modeling of beam propagation in the Beamlet laser system, including the frequency converter, and compares modeling predictions with experimental results for several Beamlet shots. It briefly describes the workstation-based propagation and frequency conversion codes used to accomplish modeling of the Beamlet.

  7. Propagation of electromagnetic stochastic beams in anisotropic turbulence.

    Science.gov (United States)

    Yao, Min; Toselli, Italo; Korotkova, Olga

    2014-12-29

    The effects of anisotropic, non-Kolmogorov turbulence on propagating stochastic electromagnetic beam-like fields are discussed for the first time. The atmosphere of interest can be found above the boundary layer, at high (more than 2 km above the ground) altitudes where the energy distribution among the turbulent eddies might not satisfy the classic assumption represented by the famous 11/3 Kolmogorov's power law, and the anisotropy in the direction orthogonal to the Earth surface is possibly present. Our analysis focuses on the classic electromagnetic Gaussian Schell-model beams but can either be readily reduced to scalar and/or coherent beams or generalized to other beam classes. In particular, we explore the effects of the anisotropic parameter on the spectral density, the spectral degree of coherence and on the spectral degree of polarization of the beam.

  8. A numerical simulation of nonlinear propagation of gravity wave packet in three-dimension compressible atmosphere

    Institute of Scientific and Technical Information of China (English)

    WU; Shaoping(吴少平); YI; Fan(易帆)

    2002-01-01

    By using FICE scheme, a numerical simulation of nonlinear propagation of gravity wave packet in three-dimension compressible atmosphere is presented. The whole nonlinear propagation process of the gravity wave packet is shown; the basic characteristics of nonlinear propagation and the influence of the ambient winds on the propagation are analyzed. The results show that FICE scheme can be extended in three-dimension by which the calculation is steady and kept for a long time; the increase of wave amplitude is faster than the exponential increase according to the linear gravity theory; nonlinear propagation makes the horizontal perturbation velocity increase greatly which can lead to enhancement of the local ambient winds; the propagation path and the propagation velocity of energy are different from the results expected by the linear gravity waves theory, the nonlinearity causes the change in propagation characteristics of gravity wave; the ambient winds alter the propagation path and group velocity of gravity wave.

  9. Soliton pair generation in the interactions of Airy and nonlinear accelerating beams

    CERN Document Server

    Zhang, Yiqi; Wu, Zhenkun; Zheng, Huaibin; Lu, Keqing; Li, Yuanyuan; Zhang, Yanpeng

    2013-01-01

    We investigate numerically the interactions of two in-phase and out-of-phase Airy beams and nonlinear accelerating beams in Kerr and saturable nonlinear media, in one transverse dimension. We find that bound and unbound soliton pairs, as well as single solitons, can form in such interactions. If the interval between two incident beams is large relative to the width of their first lobes, the generated soliton pairs just propagate individually and do not interact. However, if the interval is comparable to the widths of the maximum lobes, the pairs interact and display varied behavior. In the in-phase case, they attract each other and exhibit stable bound, oscillating, and unbound states, after shedding some radiation initially. In the out-of-phase case, they repel each other and after an initial interaction, fly away as individual solitons. While the incident beams display acceleration, the solitons or soliton pairs generated from those beams do not.

  10. Three-dimensional multispecies nonlinear perturbative particle simulations of collective processes in intense particle beams

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2000-08-01

    Full Text Available Collective processes in intense charged particle beams described self-consistently by the Vlasov-Maxwell equations are studied using a 3D multispecies nonlinear perturbative particle simulation method. The newly developed beam equilibrium, stability, and transport (BEST code is used to simulate the nonlinear stability properties of intense beam propagation, surface eigenmodes in a high-intensity beam, and the electron-proton (e-p two-stream instability observed in the Proton Storage Ring (PSR experiment. Detailed simulations in a parameter regime characteristic of the PSR experiment show that the dipole-mode two-stream instability is stabilized by a modest spread (about 0.1% in axial momentum of the beam particles.

  11. Beam wandering statistics of twin thin laser beam propagation under generalized atmospheric conditions.

    Science.gov (United States)

    Pérez, Darío G; Funes, Gustavo

    2012-12-03

    Under the Geometrics Optics approximation is possible to estimate the covariance between the displacements of two thin beams after they have propagated through a turbulent medium. Previous works have concentrated in long propagation distances to provide models for the wandering statistics. These models are useful when the separation between beams is smaller than the propagation path-regardless of the characteristics scales of the turbulence. In this work we give a complete model for these covariances, behavior introducing absolute limits to the validity of former approximations. Moreover, these generalizations are established for non-Kolmogorov atmospheric models.

  12. Linear and nonlinear propagation of water wave groups

    Science.gov (United States)

    Pierson, W. J., Jr.; Donelan, M. A.; Hui, W. H.

    1992-01-01

    Results are presented from a study of the evolution of waveforms with known analytical group shapes, in the form of both transient wave groups and the cloidal (cn) and dnoidal (dn) wave trains as derived from the nonlinear Schroedinger equation. The waveforms were generated in a long wind-wave tank of the Canada Centre for Inland Waters. It was found that the low-amplitude transients behaved as predicted by the linear theory and that the cn and dn wave trains of moderate steepness behaved almost as predicted by the nonlinear Schroedinger equation. Some of the results did not fit into any of the available theories for waves on water, but they provide important insight on how actual groups of waves propagate and on higher-order effects for a transient waveform.

  13. Vibration and wave propagation characteristics of multisegmented elastic beams

    Science.gov (United States)

    Nayfeh, Adnan H.; Hawwa, Muhammad A.

    1990-01-01

    Closed form analytical solutions are derived for the vibration and wave propagation of multisegmented elastic beams. Each segment is modeled as a Timoshenko beam with possible inclusion of material viscosity, elastic foundation and axial forces. Solutions are obtained by using transfer matrix methods. According to these methods formal solutions are first constructed which relate the deflection, slope, moment and shear force of one end of the individual segment to those of the other. By satisfying appropriate continuity conditions at segment junctions, a global 4x4 matrix results which relates the deflection, slope, moment and shear force of one end of the beam to those of the other. If any boundary conditions are subsequently invoked on the ends of the beam one gets the appropriate characteristic equation for the natural frequencies. Furthermore, by invoking appropriate periodicity conditions the dispersion relation for a periodic system is obtained. A variety of numerical examples are included.

  14. An efficient and accurate method for calculating nonlinear diffraction beam fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    This study develops an efficient and accurate method for calculating nonlinear diffraction beam fields propagating in fluids or solids. The Westervelt equation and quasilinear theory, from which the integral solutions for the fundamental and second harmonics can be obtained, are first considered. A computationally efficient method is then developed using a multi-Gaussian beam (MGB) model that easily separates the diffraction effects from the plane wave solution. The MGB models provide accurate beam fields when compared with the integral solutions for a number of transmitter-receiver geometries. These models can also serve as fast, powerful modeling tools for many nonlinear acoustics applications, especially in making diffraction corrections for the nonlinearity parameter determination, because of their computational efficiency and accuracy.

  15. Diffraction corrections for second harmonic beam fields and effects on the nonlinearity parameter evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    The nonlinearity parameter is frequently measured as a sensitive indicator in damaged material characterization or tissue harmonic imaging. Several previous studies have employed the plane wave solution, and ignored the effects of beam diffraction when measuring the non-linearity parameter β. This paper presents a multi-Gaussian beam approach to explicitly derive diffraction corrections for fundamental and second harmonics under quasilinear and paraxial approximation. Their effects on the nonlinearity parameter estimation demonstrate complicated dependence of β on the transmitter-receiver geometries, frequency, and propagation distance. The diffraction effects on the non-linearity parameter estimation are important even in the nearfield region. Experiments are performed to show that improved β values can be obtained by considering the diffraction effects.

  16. Ion injection optimization for a linear Paul trap to study intense beam propagation

    Directory of Open Access Journals (Sweden)

    Moses Chung

    2007-01-01

    Full Text Available The Paul Trap Simulator Experiment (PTSX is a linear Paul trap whose purpose is to simulate the nonlinear transverse dynamics of intense charged particle beam propagation in periodic-focusing quadrupole magnetic transport systems. Externally created cesium ions are injected and trapped in the long central electrodes of the PTSX device. In order to have well-matched one-component plasma equilibria for various beam physics experiments, it is important to optimize the ion injection. From the experimental studies reported in this paper, it is found that the injection process can be optimized by minimizing the beam mismatch between the source and the focusing lattice, and by minimizing the number of particles present in the vicinity of the injection electrodes when the injection electrodes are switched from the fully oscillating voltage waveform to their static trapping voltage.

  17. Nonlinear Vibrations of Timoshenko Beams with Various Boundary Conditions

    Institute of Scientific and Technical Information of China (English)

    郭强; 刘曦; 钟宏志

    2004-01-01

    This paper is concerned with the effects of boundary conditions on the large-amplitude free vibrations of Timoshenko beams. The effects of nonlinear terms on the frequency of Timoshenko beams with simply supported ends (supported-supported, SS), clamped ends (clamped-clamped, CC) and one end simply supported and the other end clamped (clamped-supported, CS) are discussed in detail. Given a specific vibration amplitude, the change of nonlinear frequency according to the effects of boundary conditions is always in the following descending order: SS, CS, and CC. It is found that the slenderness ratio has a significant influence on the nonlinear frequency. For slender beams, the nonlinear effects of bending curvature and shear strain are negligible regardless of the boundary conditions. For short beams and especially for those of large amplitude vibrations, however, the nonlinear effects of bending curvature and shear strain become noticeable in the following ascending order: SS, CS, and CC.

  18. Beam propagation in Cu +-Na + ion exchange channel waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Villegas Vicencio, L. J.; Khomenko, A. V.; Salazar, D.; Marquez, H. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Baja California (Mexico); Porte, H. [Universite de Franche-Comte, UFR des Sciences et Techniques, Besancon, Cedex (France)

    2001-06-01

    We employ the fast Fourier transform beam propagation method to simulate the propagation of light in graded index channel waveguides, these have been obtained by solid state diffusion of copper ions in soda-lime glass substrates. Longitudinal propagation has been simulated, the input light beam has a gaussian profile. Two cases have been analyzed, in the first, the Gaussian beam is collinear center to center with respect to waveguide; in the second, a small lateral offset and angular tilt have been introduced. Modal beating and bending effects have been founded. We have proven the validity of our numerical results in detailed comparison with experimental data. [Spanish] Se ha empleado el metodo de propagacion de haces por la transformada rapida de Fourier para simular la propagacion de la luz en guias de onda de indice de gradiente. Estas han sido fabricadas por difusion de iones de cobre en estado solido en substratos de vidrios sodicos-calcicos. Se han simulado dos casos, el primero, el perfil de luz de entrada, que es gaussiano, es colineal centro a centro respecto al centro de la guia de ondas: el segundo, se ha dado un pequeno corrimiento lateral y una inclinacion angular. Como consecuencia de los casos anteriores se ha observado efectos de batimiento modal. Los resultados de la simulacion se han validado con resultados experimentales.

  19. Effect of Tissue Inhomogeneity on Nonlinear Propagation of Focused Ultrasound

    Institute of Scientific and Technical Information of China (English)

    LIU Zhen-Bo; FAN Ting-Bo; GUO Xia-Sheng; ZHANG Dong

    2010-01-01

    @@ We study the influence of tissue inhomogeneity on the focused ultrasound based on the phase screen model and the acoustic nonlinear equation.The inhomogeneous tissue is considered as a combination of a homogeneous medium and a phase aberration screen.Six polyethylene(PE)plates with various correlation lengths and standard deviations are made to mimic the inhomogeneity induced by the human body abdominal.Results indicate that the correlation length affects the side lobe structure of the beam pattern; while the standard deviation is associated with the focusing capability.This study provides a theoretical and experimental basis for the development of a precise treatment plan for high intensity focused ultrasound.

  20. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    Science.gov (United States)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  1. Confinement of Vibrations in Variable-Geometry Nonlinear Flexible Beam

    Directory of Open Access Journals (Sweden)

    W. Gafsi

    2014-01-01

    Full Text Available In this paper, we propose a novel strategy for controlling a flexible nonlinear beam with the confinement of vibrations. We focus principally on design issues related to the passive control of the beam by proper selection of its geometrical and physical parameters. Due to large deflections within the regions where the vibrations are to be confined, we admit a nonlinear model that describes with precision the beam dynamics. In order to design a set of physical and geometrical parameters of the beam, we first formulate an inverse eigenvalue problem. To this end, we linearize the beam model and determine the linearly assumed modes that guarantee vibration confinement in selected spatial zones and satisfy the boundary conditions of the beam to be controlled. The approximation of the physical and geometrical parameters is based on the orthogonality of the assumed linear mode shapes. To validate the strategy, we input the resulting parameters into the nonlinear integral-partial differential equation that describes the beam dynamics. The nonlinear frequency response curves of the beam are approximated using the differential quadrature method and the finite difference method. We confirm that using the linear model, the strategy of vibration confinement remains valid for the nonlinear beam.

  2. Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts.

    Science.gov (United States)

    Aiello, A; Woerdman, J P

    2008-07-01

    We derive the polarization-dependent displacements parallel and perpendicular to the plane of incidence for a Gaussian light beam reflected from a planar interface, taking into account the propagation of the beam. Using a classical-optics formalism we show that beam propagation may greatly affect both Goos-Hänchen and Imbert-Fedorov shifts when the incident beam is focused.

  3. Non-Linear Back-propagation: Doing Back-Propagation withoutDerivatives of the Activation Function

    DEFF Research Database (Denmark)

    Hertz, John; Krogh, Anders Stærmose; Lautrup, Benny

    1997-01-01

    The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back-propagatio......-propagation algorithms in the framework of recurrent back-propagation and present some numerical simulations of feed-forward networks on the NetTalk problem. A discussion of implementation in analog VLSI electronics concludes the paper.......The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back...

  4. Dynamic nonlinear focal shift in amplitude modulated moderately focused acoustic beams.

    Science.gov (United States)

    Jiménez, Noé; Camarena, Francisco; González-Salido, Nuria

    2017-03-01

    The phenomenon of the displacement of the position of the pressure, intensity and acoustic radiation force maxima along the axis of focused acoustic beams under increasing driving amplitudes (nonlinear focal shift) is studied for the case of a moderately focused beam excited with continuous and 25kHz amplitude modulated signals, both in water and tissue. We prove that in amplitude modulated beams the linear and nonlinear propagation effects coexist in a semi-period of modulation, giving place to a complex dynamic behavior, where the singular points of the beam (peak pressure, rarefaction, intensity and acoustic radiation force) locate at different points on axis as a function of time. These entire phenomena are explained in terms of harmonic generation and absorption during the propagation in a lossy nonlinear medium both for a continuous and an amplitude modulated beam. One of the possible applications of the acoustic radiation force displacement is the generation of shear waves at different locations by using a focused mono-element transducer excited by an amplitude modulated signal.

  5. Beam propagation factors and kurtosis parameters of a Lorentz-Gauss vortex beam.

    Science.gov (United States)

    Zhou, Guoquan

    2014-06-01

    Based on the second-order and the higher-order moments, analytical expressions for the beam propagation factors of a Lorentz-Gauss vortex beam with l=1 have been derived, and analytical propagation expressions for the kurtosis parameters of a Lorentz-Gauss vortex beam with l=1 through a paraxial and real ABCD optical system have also been presented. The M² factor is determined by the parameters a and b and decreases with increasing the parameter a or b. The M² factor is validated to be larger than 2. The kurtosis parameters depend on the diffraction-free ranges of the Lorentz part, the parameters a and b, and the ratio A/B. The kurtosis parameters of a Lorentz-Gauss vortex beam propagating in free space are demonstrated in different reference planes. In the far field, the kurtosis parameter K decreases with increasing one of the parameters a and b. Upon propagation, the kurtosis parameter K first decreases, then increases, and finally tends to a saturated value. In any case, the kurtosis parameter K is larger than 2. This research is beneficial to optical trapping, guiding, and manipulation of microscopic particles and atoms using Lorentz-Gauss vortex beams.

  6. Beam wander of Gaussian-Schell model beams propagating through oceanic turbulence

    Science.gov (United States)

    Wu, Yuqian; Zhang, Yixin; Li, Ye; Hu, Zhengda

    2016-07-01

    For Gaussian-Schell model beams propagating in the isotropic turbulent ocean, theoretical expression of beam wander is derived based on the extended Huygens-Fresnel principle. The spatial coherence radius of spherical waves propagating in the paraxial channel of turbulent ocean including inner scale is also developed. Our results show that the beam wander decreases with the increasing rate of dissipation of kinetic energy per unit mass of fluid ɛ, but it increases as the increasing of the dissipation rate of temperature variance χt and the relative strength of temperature and salinity fluctuations ϖ. The salinity fluctuation has greater influence on the beam wander than that of temperature fluctuations. The model can be evaluated submarine-to-submarine/ship optical wireless communication performance.

  7. Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence.

    Science.gov (United States)

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-10

    The propagation properties of coherently combined truncated laser beam arrays with beam distortions through non-Kolmogorov turbulence are studied in detail both analytically and numerically. The analytical expressions for the average intensity and the beam width of coherently combined truncated laser beam arrays with beam distortions propagating through turbulence are derived based on the combination of statistical optics methods and the extended Huygens-Fresnel principle. The effect of beam distortions, such as amplitude modulation and phase fluctuation, is studied by numerical examples. The numerical results reveal that phase fluctuations have significant influence on the spreading of coherently combined truncated laser beam arrays in non-Kolmogorov turbulence, and the effects of the phase fluctuations can be negligible as long as the phase fluctuations are controlled under a certain level, i.e., a>0.05 for the situation considered in the paper. Furthermore, large phase fluctuations can convert the beam distribution rapidly to a Gaussian form, vary the spreading, weaken the optimum truncation effects, and suppress the dependence of spreading on the parameters of the non-Kolmogorov turbulence.

  8. Nonlinear Propagation of Planet-Generated Tidal Waves

    Science.gov (United States)

    Rafikov, R. R.

    2002-01-01

    The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to shock formation and wake dissipation, is followed in the weakly nonlinear regime. The 2001 local approach of Goodman and Rafikov is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of approx. 10(exp 6)-10(exp 7) yr, even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed that could be incorporated into the study of gap formation in a gaseous disk around the planet.

  9. Nonlinear propagation of planet-generated tidal waves

    CERN Document Server

    Rafikov, R R

    2002-01-01

    The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of the order 1-10 Myr even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed which could be incorporated into the study of gap formation in a gaseous disk around the planet.

  10. Properties of nonreciprocal light propagation in a nonlinear optical isolator

    CERN Document Server

    Roy, Dibyendu

    2016-01-01

    Light propagation in a nonlinear optical medium is nonreciprocal for spatially asymmetric linear permittivity. We here examine physical mechanism and properties of such nonreciprocity (NR). For this, we calculate transmission of light through a two-level atom asymmetrically coupled to light inside open waveguides. We determine the critical intensity of incident light for maximum NR and a dependence of the corresponding NR on asymmetry in the coupling. Surprisingly, we find that it is mainly coherent elastic scattering compared to incoherent scattering of incident light which causes maximum NR near the critical intensity. We also show a higher NR of an incident light in the presence of an additional weak light at the opposite port.

  11. Nonlinear Strain Measures, Shape Functions and Beam Elements for Dynamics of Flexible Beams

    Energy Technology Data Exchange (ETDEWEB)

    Sharf, I. [University of Victoria, Department of Mechanical Engineering (Canada)

    1999-05-15

    In this paper, we examine several aspects of the development of an explicit geometrically nonlinear beam element. These are: (i) linearization of the displacement field; (ii) the effect of a commonly adopted approximation for the nonlinear Lagrangian strain; and (iii) use of different-order shape functions for discretization. The issue of rigid-body check for a nonlinear beam element is also considered. An approximate check is introduced for an element based on an (approximate) intermediate strain measure. Several numerical examples are presented to support the analysis. The paper concludes with a discussion on the use of explicit nonlinear beam elements for multibody dynamics simulation.

  12. Solution and Positive Solution to Nonlinear Cantilever Beam Equations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using the decomposition technique of equation and the fixed point theorem, the existence of solution and positive solution is studied for a nonlinear cantilever beam equation. The equation describes the deformation of the elastic beam with a fixed end and a free end. The main results show that the equation has at least one solution or positive solution, provided that the "height" of nonlinear term is appropriate on a bounded set.

  13. Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams

    Science.gov (United States)

    Ebrahimi, Farzad; Reza Barati, Mohammad; Haghi, Parisa

    2016-11-01

    In this paper, the thermo-elastic wave propagation analysis of a temperature-dependent functionally graded (FG) nanobeam supported by Winkler-Pasternak elastic foundation is studied using nonlocal elasticity theory. The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function. The temperature field has a nonlinear distribution called heat conduction across the nanobeam thickness. Temperature-dependent material properties change gradually in the spatial coordinate according to the Mori-Tanaka model. The governing equations of the wave propagation of the refined FG nanobeam are derived by using Hamilton's principle. The analytic dispersion relation of the embedded nonlocal functionally graded nanobeam is obtained by solving an eigenvalue problem. Numerical examples show that the wave characteristics of the functionally graded nanobeam are related to the temperature distribution, elastic foundation parameters, nonlocality and material composition.

  14. Analytical treatment of the nonlinear electron cloud effect and the combined effects with beam-beam and space charge nonlinear forces in storage rings

    Institute of Scientific and Technical Information of China (English)

    GAO Jie

    2009-01-01

    In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC Ⅱ. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations.

  15. Two-dimensional nonlinear dynamics of bidirectional beam-plasma instability

    Science.gov (United States)

    Pavan, J.; Ziebell, L. F.; Gaelzer, R.; Yoon, P. H.

    2009-01-01

    Solar wind electrons near 1 AU feature wide-ranging asymmetries in the superthermal tail distribution. Gaelzer et al. (2008) recently demonstrated that a wide variety of asymmetric distributions results if one considers a pair of counterstreaming electron beams interacting with the core solar wind electrons. However, the nonlinear dynamics was investigated under the simplifying assumption of one dimensionality. In the present paper, this problem is revisited by extending the analysis to two dimensions. The classic bump-on-tail instability involves a single electron beam interacting with the background population. The bidirectional or counterstreaming beams excite Langmuir turbulence initially propagating in opposite directions. It is found that the nonlinear mode coupling leads to the redistribution of wave moments along concentric arcs in wave number space, somewhat similar to the earlier findings by Ziebell et al. (2008) in the case of one beam-plasma instability. However, the present result also shows distinctive features. The similarities and differences in the nonlinear wave dynamics are discussed. It is also found that the initial bidirectional beams undergo plateau formation and broadening in perpendicular velocity space. However, the anisotropy persists in the nonlinear stage, implying that an additional pitch angle scattering by transverse electromagnetic fluctuations is necessary in order to bring the system to a truly isotropic state.

  16. Influence of propagation in digital wireless beam, microwave links

    Science.gov (United States)

    Bursztejn, J.

    1984-10-01

    Methods are presented for determining the parameters which permit the prediction of the quality of tropospheric scattering and line of sight microwave links. Wireless beam, microwave links with tropospheric scattering are considered based on experiments for determining the coherence band which is the essential parameter for digital transmission by tropospheric scattering. The effects of propagation difficulties in line of sight links are discussed with focus on depolarization and selective fading. Experimental results are given which permit calculating the sensitivity of equipment and predicting the quality of the links.

  17. Real-time reconfigurable counter-propagating beam-traps

    DEFF Research Database (Denmark)

    Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin;

    2010-01-01

    We present a versatile technique that enhances the axial stability and range in counter-propagating (CP) beam-geometry optical traps. It is based on computer vision to track objects in unison with software implementation of feedback to stabilize particles. In this paper, we experimentally...... which simulates biosamples. By working on differences rather than absolute values, this feedback based technique makes CPtrapping nullify many of the commonly encountered pertubations such as fluctuations in the laser power, vibrations due to mechanical instabilities and other distortions emphasizing...

  18. Consequences of the angular spectrum decomposition of a focused beam, including slower than c beam propagation

    Science.gov (United States)

    Gouesbet, Gérard; Lock, James A.

    2016-07-01

    When dealing with light scattering and propagation of an electromagnetic beam, there are essentially two kinds of expansions which have been used to describe the incident beam (i) a discrete expansion involving beam shape coefficients and (ii) a continuous expansion in terms of an angular spectrum of plane waves. In this paper, we demonstrate that the angular spectrum decomposition readily leads to two important consequences, (i) laser light beams travel in free space with an effective velocity that is smaller than the speed of light c, and (ii) the optical theorem does not hold for arbitrary shaped beams, both in the case of electromagnetic waves and scalar waves, e.g. quantum and acoustical waves.

  19. Solution of Contact Problems for Nonlinear Gao Beam and Obstacle

    Directory of Open Access Journals (Sweden)

    J. Machalová

    2015-01-01

    Full Text Available Contact problem for a large deformed beam with an elastic obstacle is formulated, analyzed, and numerically solved. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao, while the obstacle is considered as the elastic foundation of Winkler’s type in some distance under the beam. The problem is static without a friction and modeled either using Signorini conditions or by means of normal compliance contact conditions. The problems are then reformulated as optimal control problems which is useful both for theoretical aspects and for solution methods. Discretization is based on using the mixed finite element method with independent discretization and interpolations for foundation and beam elements. Numerical examples demonstrate usefulness of the presented solution method. Results for the nonlinear Gao beam are compared with results for the classical Euler-Bernoulli beam model.

  20. Propagation of Bessel beams from a dielectric to a conducting medium.

    Science.gov (United States)

    Mugnai, D

    2011-06-10

    Recently, the use of Bessel beams in evaluating the possibility of using them for a new generation of ground penetrating radar systems has been considered. Therefore, an analysis of the propagation of Bessel beams in conducting media is worthwhile. We present here an analysis of this type. Specifically, for normal incidence we analyze the propagation of a Bessel beam coming from a perfect dielectric and impinging on a conducting medium, i.e., the propagation of a Bessel beam generated by refracted inhomogeneous waves. The remarkable and unexpected result is that the incident Bessel beam does not change its shape even when propagating in the conducting medium.

  1. Numerical simulation of broadband vortex terahertz beams propagation

    Science.gov (United States)

    Semenova, V. A.; Kulya, M. S.; Bespalov, V. G.

    2016-08-01

    Orbital angular momentum (OAM) represents new informational degree of freedom for data encoding and multiplexing in fiber and free-space communications. OAM-carrying beams (also called vortex beams) were successfully used to increase the capacity of optical, millimetre-wave and radio frequency communication systems. However, the investigation of the OAM potential for the new generation high-speed terahertz communications is also of interest due to the unlimited demand of higher capacity in telecommunications. Here we present a simulation-based study of the propagating in non-dispersive medium broadband terahertz vortex beams generated by a spiral phase plate (SPP). The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the vortex beam in the frequency range from 0.1 to 3 THz at the distances 20-80 mm from the SPP. The simulation results show that the amplitude and phase distributions without unwanted modulation are presented in the wavelengths ranges with centres on the wavelengths which are multiple to the SPP optical thickness. This fact may allow to create the high-capacity near-field communication link which combines OAM and wavelength-division multiplexing.

  2. Stability Analysis of Nonlinear Vibrations of a Deploying Flexible Beam

    Institute of Scientific and Technical Information of China (English)

    JunfengLI; ZhaolinWANG

    1996-01-01

    Consider a rigid-flexible coupled system which consists of a central rigid body deploying a flexible appendage,The appendage is modeled as a finite deflection beam having linear constitutive equations.By taking the energy integral as Lyapunov function,it is proved that nonlinear transverse vibrations of the beam undergoing uniform extension or retrieval are stable when there are not controlling moment in the central rigid body and driving force on the beam,according to the partial stablity theorem.

  3. Alternative modes for optical trapping and manipulation using counter-propagating shaped beams

    DEFF Research Database (Denmark)

    Palima, Darwin; Lindballe, T.B.; Kristensen, M.V.;

    2011-01-01

    -propagating shaped-beam traps that depart from the conventional geometry based on symmetric, coaxial counter-propagating beams. We show that projecting shaped beams with separation distances previously considered axially unstable can, in fact, enhance the axial and transverse trapping stiffnesses. We also show...

  4. Methodology for nonlinear quantification of a flexible beam with a local, strong nonlinearity

    Science.gov (United States)

    Herrera, Christopher A.; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-02-01

    This study presents a methodology for nonlinear quantification, i.e., the identification of the linear and nonlinear regimes and estimation of the degree of nonlinearity, for a cantilever beam with a local, strongly nonlinear stiffness element. The interesting feature of this system is that it behaves linearly in the limits of extreme values of the nonlinear stiffness. An Euler-Bernoulli cantilever beam with two nonlinear configurations is used to develop and demonstrate the methodology. One configuration considers a cubic spring attached at a distance from the beam root to achieve a smooth nonlinear effect. The other configuration considers a vibro-impact element that generates non-smooth effects. Both systems have the property that, in the limit of small and large values of a configuration parameter, the system is almost linear and can be modeled as such with negligible error. For the beam with a cubic spring attachment, the forcing amplitude is the varied parameter, while for the vibro-impact beam, this parameter is the clearance between the very stiff stops and the beam at static equilibrium. Proper orthogonal decomposition is employed to obtain an optimal orthogonal basis used to describe the nonlinear system dynamics for varying parameter values. The frequencies of the modes that compose the basis are then estimated using the Rayleigh quotient. The variations of these frequencies are studied to identify parameter values for which the system behaves approximately linearly and those for which the dynamical response is highly nonlinear. Moreover, a criterion based on the Betti-Maxwell reciprocity theorem is used to verify the existence of nonlinear behavior for the set of parameter values suggested by the described methodology. The developed methodology is general and applicable to discrete or continuous systems with smooth or nonsmooth nonlinearities.

  5. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka [Department of Physics, Laser-Plasma Computational Laboratory, DAV PG College, Dehradun, Uttarakhand (India); Chauhan, Prashant [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Uttar Pradesh (India); Mahmoud, Saleh T. [Department of Physics, College of Science, UAE University, PO Box 17551 Al-Ain (United Arab Emirates)

    2015-05-15

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.

  6. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.

    Science.gov (United States)

    Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua

    2015-08-01

    Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com [Department of Physics, National Institute of Technology Jalandhar (India); Singh, Navpreet, E-mail: navpreet.nit@gmail.com [Guru Nanak Dev University College, Kapurthala, Punjab (India)

    2015-11-15

    This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on a numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.

  8. Nonlinear images of scatterers in chirped pulsed laser beams

    Institute of Scientific and Technical Information of China (English)

    Hu Yong-Hua; Wang You-Wen; Wen Shuang-Chun; Fan Dian-Yuan

    2010-01-01

    The bandwidth and the duration of incident pulsed beam are proved to play important roles in modifying the nonlinear image of amplitude-type scatterer.It is found that the initially positive chirp-type bandwidth can suppress the nonlinear image,while the negative one can enhance it,and that both effects are inversely proportional to the incident pulse duration.Numerical simulations further demonstrate that the location of nonlinear image is at the conjugate plane of the scatterer and that,for negatively pre-chirped pulsed beam,the nonlinear image peak intensity can be higher than that in the corresponding monochromatic case under certain conditions.Moreover the effect of group velocity dispersion on nonlinear image is found to be similar to that of chirp-type bandwidth.

  9. Alternative modes for optical trapping and manipulation using counter-propagating shaped beams

    DEFF Research Database (Denmark)

    Palima, Darwin; Lindballe, T.B.; Kristensen, M.V.

    2011-01-01

    Counter-propagating beams have enabled the first stable three-dimensional optical trapping of microparticles and this procedure has been enhanced and developed over the years to achieve independent and interactive manipulation of multiple particles. In this work, we analyse counter-propagating sh......Counter-propagating beams have enabled the first stable three-dimensional optical trapping of microparticles and this procedure has been enhanced and developed over the years to achieve independent and interactive manipulation of multiple particles. In this work, we analyse counter......-propagating shaped-beam traps that depart from the conventional geometry based on symmetric, coaxial counter-propagating beams. We show that projecting shaped beams with separation distances previously considered axially unstable can, in fact, enhance the axial and transverse trapping stiffnesses. We also show...... for optical trapping and manipulation using patterned counter-propagating beams, which still remains to be fully tapped....

  10. A Modeling and Data Analysis of Laser Beam Propagation in the Maritime Domain

    Science.gov (United States)

    2015-05-18

    A TRIDENT SCHOLAR PROJECT REPORT NO. 433 A Modeling and Data Analysis of Laser Beam Propagation in the Maritime Domain by...433 (2015) A MODELING AND DATA ANALYSIS OF LASER BEAM PROPAGATION IN THE MARITIME DOMAIN by Midshipman 1/C Benjamin C. Etringer United States Naval...2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE A Modeling and Data Analysis of Laser Beam Propagation in the Maritime

  11. Laser Beam Propagation Through Inhomogeneous Media with Shock-Like Profiles: Modeling and Computing

    Science.gov (United States)

    Adamovsky, Grigory; Ida, Nathan

    1997-01-01

    Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of radiowaves in atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and others. In recent years an increased interest has been developed in wave propagation through shocks in supersonic flows. Results of experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and spreading. The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media. Numerical techniques are presented to compute the beam through such media. The results of computation are presented, discussed, and compared with experimental data.

  12. Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.

    Science.gov (United States)

    Camarena, Francisco; Adrián-Martínez, Silvia; Jiménez, Noé; Sánchez-Morcillo, Víctor

    2013-08-01

    The phenomenon of the displacement of the position along the axis of the pressure, intensity, and radiation force maxima of focused acoustic beams under increasing driving voltages (nonlinear focal shift) is studied for the case of a moderately focused beam. The theoretical and experimental results show the existence of this shift along the axis when the initial pressure in the transducer increases until the acoustic field reaches the fully developed nonlinear regime of propagation. Experimental data show that at high amplitudes and for moderate focusing, the position of the on-axis pressure maximum and radiation force maximum can surpass the geometrical focal length. On the contrary, the on-axis pressure minimum approaches the transducer under increasing driving voltages, increasing the distance between the positive and negative peak pressure in the beam. These results are in agreement with numerical KZK model predictions and the existed data of other authors and can be explained according to the effect of self-refraction characteristic of the nonlinear regime of propagation.

  13. Vortex beam generation based on a fiber array combining and propagation through a turbulent atmosphere

    Science.gov (United States)

    Aksenov, V. P.; Dudorov, V. V.; Kolosov, V. V.

    2016-09-01

    We suggest a technique for generation of optical vortex beams with a variable orbital angular momentum based on a fiber laser array. The technique uses the phase control of each single subbeam. Requirements for the number of subbeams and the spatial arrangement for the vortex beam generation are determined. The propagation dynamics of a vortex beam synthesized is compared with that of a continuous Laguerre-Gaussian beam in free space and in a turbulent atmosphere. Spectral properties of a beam synthesized, which is represented as a superposition of different azimuth modes, are determined during its free-space propagation. It is shown that energy and statistical parameters coincide for synthesized and continuous vortex beams when propagating through a turbulent medium. Probability density functions of the beam intensity fluctuations are well approximated to a gamma distribution in the cases where the scintillation index is lower than unity independently of the beam type and observation point position relative to the propagation axis.

  14. Optical Soliton Propagation in a Free-Standing Nonlinear Graphene Monolayer with Defects

    CERN Document Server

    Moxley, Frederick Ira; Radadia, Adarsh; Dai, Weizhong

    2013-01-01

    Recently, optical soliton propagation in an intrinsic nonlinear graphene monolayer configuration has been discovered. However, optical soliton behavior in a free-standing graphene monolayer with defects has not yet been studied. The objective of this article is to employ the generalized finite- difference time-domain (G-FDTD) method to efficiently simulate bright optical solitons, illustrating propagation of the electric field distribution in a free-standing nonlinear layer with variation in nonlinearity along its width. These variations of nonlinearity along the width represent graphene impurities, or defects. Results show that solitons propagate effectively even in the presence of strong spatial variations in the nonlinearity, implying the robustness of the medium with respect to optical propagation.

  15. Propagation of partially polarized Gaussian Schell-model beams through aligned and misaligned optical systems

    Institute of Scientific and Technical Information of China (English)

    戈迪; 蔡阳健; 林强

    2005-01-01

    By use of a tensor method, the transform formulae for the beam coherence-polarization matrix of the partially polarized Gaussian Schell-model (GSM) beams through aligned and misaligned optical systems are derived. As an example, the propagation properties of the partially polarized GSM beam passing through a misaligned thin lens are illustrated numerically and discussed in detail. The derived formulae provide a convenient way to study the propagation properties of the partially polarized GSM beams through aligned and misaligned optical systems.

  16. Propagation Effect of Hollow Gaussian Beams Passing through a Misaligned Optical System

    Institute of Scientific and Technical Information of China (English)

    ZHAO Cheng-Liang; WANG Li-Gang; LU Xuan-Hui; WANG Yu-Zhu

    2006-01-01

    @@ A generalized formula of hollow Gaussian beams through the first-order misaligned ABCD systems is derived by using the generalized diffraction integral formula. It is shown that the hollow Gaussian beam passing through the misaligned system becomes a decentred hollow Gaussian beam. The propagation properties of the output beam are investigated when it propagates through a simple misaligned lens system. These results provide a powerful theoretical tool for applications of optical traps.

  17. Possibilities and limitations of rod-beam theories. [nonlinear distortion tensor and nonlinear stress tensors

    Science.gov (United States)

    Peterson, D.

    1979-01-01

    Rod-beam theories are founded on hypotheses such as Bernouilli's suggesting flat cross-sections under deformation. These assumptions, which make rod-beam theories possible, also limit the accuracy of their analysis. It is shown that from a certain order upward terms of geometrically nonlinear deformations contradict the rod-beam hypotheses. Consistent application of differential geometry calculus also reveals differences from existing rod theories of higher order. These differences are explained by simple examples.

  18. Numerical study of propagation properties of surface plasmon polaritons in nonlinear media

    KAUST Repository

    Sagor, Rakibul Hasan

    2016-03-29

    We present a time-domain algorithm for simulating nonlinear propagation of surface plasmon polaritons (SPPs) in chalcogenide glass. Due to the high non-linearity property and strong dispersion and confinement chalcogenide glasses are widely known as ultrafast nonlinear materials. We have used the finite difference time domain (FDTD) method to develop the simulation algorithm for the current analysis. We have modeled the frequency dependent dispersion properties and third order nonlinearity property of chalcogenide glass utilizing the general polarization algorithm merged in the auxiliary differential equation (ADE) method. The propagation dynamics of the whole structure with and without third order nonlinearity property of chalcogenide glass have been simulated and the effect of nonlinearity on the propagation properties of SPP has been investigated. © 2016 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  19. Nonlinear Characteristics of an Intense Laser Pulse Propagating in Partially Stripped Plasmas

    Institute of Scientific and Technical Information of China (English)

    HU Qiang-Lin; LIU Shi-Bing; CHEN Tao; JIANG Yi-Jian

    2005-01-01

    The nonlinear optic characteristics of an intense laser pulse propagating in partially stripped plasmas are investigated analytically. The phase and group velocity of the laser pulse propagation as well as the three general expressions governing the nonlinear optic behavior, based on the photon number conservation, are obtained by considering the partially stripped plasma as a nonlinear optic medium. The numerical result shows that the presence of the bound electrons in partially stripped plasma can significantly change the propagating property of the intense laser pulse.

  20. Non-Linear Vibration of Euler-Bernoulli Beams

    DEFF Research Database (Denmark)

    Barari, Amin; Kaliji, H. D.; Domairry, G.

    2011-01-01

    In this paper, variational iteration (VIM) and parametrized perturbation (PPM)methods have been used to investigate non-linear vibration of Euler-Bernoulli beams subjected to the axial loads. The proposed methods do not require small parameter in the equation which is difficult to be found for no...... for nonlinear problems. Comparison of VIM and PPM with Runge-Kutta 4th leads to highly accurate solutions....

  1. The analysis of optical wave beams propagation in lens systems

    Science.gov (United States)

    Kazakov, I.; Mosentsov, S.; Moskaletz, O.

    2016-08-01

    In this paper some aspects of the formation and propagation of optical wave beams in lens systems were considered. As an example, the two-lens optical information processing system was considered. Analysis of the two-lens optical circuit has been made with a systems approach perspective. As part of the radio-optical analogies had been applied certain provisions of the theory of dynamical systems to the spatial optical system. The lens system is represented as a simple series-connected optical elements with known spatial impulse response. General impulse response of such a system has been received, as well as consider some special cases of the impulse response. The question of the relationship between the parameters and the size of the input aperture lenses for undistorted transmission of the optical signal has been considered. Analysis of the energy loss resulting from the finite aperture of the lens. It's based on an assessment of the fraction of radiation that propagates beyond the lens. Analysis showed that the energy losses depend explicitly on the following parameters: radiation wavelength, distance between input aperture and lens, and ratio of the input aperture and lens aperture. With the computer help simulation the dependence of losses was shown on the above parameters

  2. Suppressing Transverse Beam Halo with Nonlinear Magnetic Fields

    CERN Document Server

    Webb, Stephen D; Abell, Dan T; Danilov, Viatcheslav; Nagaitsev, Sergei; Valishev, Alexander; Danilov, Kirill; Cary, John R

    2012-01-01

    High intensity proton storage rings are central for the development of advanced neutron sources, drivers for the production of pions in neutrino factories or muon colliders, and transmutation of radioactive waste. Fractional proton loss from the beam must be very small to prevent radioac- tivation of nearby structures, but many sources of beam loss are driven by collective effects that increase with intensity. Recent theoretical work on the use of nonlinear magnetic fields to design storage rings with integrable transverse dynamics is extended here to include collective effects, with numerical results showing validity in the presence of very high beam current. Among these effects is the formation of beam halo, where particles are driven to large amplitude oscillations by coherent space charge forces. The strong variation of particle oscillation frequency with amplitude results in nonlinear decoherence that is observed to suppress transverse halo development in the case studied. We also present a necessary gen...

  3. Reflection of a Gaussian beam from a nonlinear interface.

    Science.gov (United States)

    Marcuse, D

    1980-09-15

    A numerical analysis of the reflection of a two dimensional Gaussian beam from the interface between a linear and a nonlinear medium is presented. The refractive index of the nonlinear medium is a function of the intensity of the radiation field, having a smaller value than the linear refractive index for zero field intensity. The Gaussian beam is incident from the linear medium and suffers total reflection at low intensity. At sufficiently high intensity nonlinear effects are observed. Above a threshold value the incident beam breaks up into a reflected wave and a surface wave. Once the beam is sufficiently strong for a surface wave to form, its interaction with the boundary becomes surprisingly independent of field intensity; but for very strong fields the reflectivity is increased at the expense of the surface wave. A very different behavior is observed when the refractive index is constrained to remain below a certain maximum value. Now the field detaches itself from the surface and penetrates into the nonlinear medium forming one or more distinct beams. The plane wave theory predicts the existence of hysteresis so that two different solutions should exist for the same physical parameters. A second solution was indeed found in one case with constrained refractive index, but its validity is somewhat uncertain at this time.

  4. Beam-excited whistler waves at oblique propagation with relation to STEREO radiation belt observations

    Directory of Open Access Journals (Sweden)

    K. Sauer

    2010-06-01

    Full Text Available Isotropic electron beams are considered to explain the excitation of whistler waves which have been observed by the STEREO satellite in the Earth's radiation belt. Aside from their large amplitudes (~240 mV/m, another main signature is the strongly inclined propagation direction relative to the ambient magnetic field. Electron temperature anisotropy with Te⊥>Te||, which preferentially generates parallel propagating whistler waves, can be excluded as a free energy source. The instability arises due to the interaction of the Doppler-shifted cyclotron mode ω=−Ωe+kVbcosθ with the whistler mode in the wave number range of kce≤1 (θ is the propagation angle with respect to the background magnetic field direction, ωe is the electron plasma frequency and Ωe the electron cyclotron frequency. Fluid and kinetic dispersion analysis have been used to calculate the growth rate of the beam-excited whistlers including the most important parameter dependencies. One is the beam velocity (Vb which, for instability, has to be larger than about 2VAe, where VAe is the electron Alfvén speed. With increasing VAe the propagation angle (θ of the fastest growing whistler waves shifts from θ~20° for Vb=2VAe to θ~80° for Vb=5VAe. The growth rate is reduced by finite electron temperatures and disappears if the electron plasma beta (βe exceeds βe~0.2. In addition, Gendrin modes (kce≈1 are analyzed to determine the conditions under which stationary nonlinear waves (whistler oscillitons can exist. The corresponding spatial wave profiles are calculated using the full nonlinear fluid approach. The results are compared with the STEREO satellite observations.

  5. Numerical investigation of flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere.

    Science.gov (United States)

    Zhang, Yalin; Ma, Donglin; Yuan, Xiuhua; Zhou, Zeyu

    2016-11-10

    In this paper, the aperture averaged scintillation, mean signal-to-noise ratio (SNR), and average bit error rate (BER) for both flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere are evaluated. Investigations are also made illustrating the variation of aperture averaged scintillation, mean SNR, and average BER against the beam type, propagation distance, and size of the receiver aperture. Compared with the flat-topped vortex hollow beams, the Bessel beams have a smaller aperture averaged scintillation, higher mean SNR, and lower average BER when the receiver aperture is relatively small under the same conditions.

  6. Intense DC beam nonlinear transport-analysis & simulation

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-Qin; ZHAO Xiao-Song

    2009-01-01

    The intense dc beam nonlinear transport was analyzed with the Lie algebraic method,and the particle trajectories of the second order approximation were obtained.Based on the theoretical analysis a computer code was designed.To get self-consistent solutions,iteration procedures were used in the code.As an example,we calculated a beam line(drift-electrostatic quadrupole doublet-drift).The results agree to the results calculated by using the PIC method.

  7. Finite rotation and nonlinear beam kinematics

    Science.gov (United States)

    Hodges, Dewey H.

    1987-01-01

    Standard means of representing finite rotation in rigid-body kinematics, including orientation angles, Euler parameters, and Rodrigues parameters, are reviewed and compared. General kinematical relations for a beam theory that treats arbitrarily large rotation are then presented. The standard methods of representing finite rotations are applied to these kinematical expressions, and comparison is made among the standard methods and additional methods found in the literature, such as quasi-coordinates and linear combinations of projection angles. The method of Rodrigues parameters is shown to stand out for both its simplicity and generality when applied to beam kinematics, a result that is really missing from the literature.

  8. Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide

    Science.gov (United States)

    Valovik, D. V.; Smol'kin, E. Yu.

    2017-08-01

    The problem of the propagation of coupled surface electromagnetic waves in a two-layer cylindrical circular waveguide filled with an inhomogeneous nonlinear medium is considered. A nonlinear coupled TE-TM wave is characterized by two (independent) frequencies ωe and ωm and two propagation constants {\\widehat γ _e} and {\\widehat γ _m}. The physical problem reduces to a nonlinear two-parameter eigenvalue problem for a system of nonlinear ordinary differential equations. The existence of eigenvalues ({\\widehat γ _e}, {\\widehat γ _m}) in proven and intervals of their localization are determined.

  9. Nonlinear analysis of lipid tubules by nonlocal beam model.

    Science.gov (United States)

    Shen, Hui-Shen

    2011-05-07

    Postbuckling, nonlinear bending and nonlinear vibration analyses are presented for lipid tubules. The lipid tubule is modeled as a nonlocal micro/nano-beam which contains small scale effect. The material properties are assumed to be size-dependent. The governing equation is solved by a two-step perturbation technique. The numerical results reveal that the small scale parameter e₀a reduces the postbuckling equilibrium paths, the static large deflections and natural frequencies of lipid tubules. In contrast, it increases the nonlinear to linear frequency ratios slightly for the lipid tubule with immovable end conditions.

  10. NON-LINEAR FORCED VIBRATION OF AXIALLY MOVING VISCOELASTIC BEAMS

    Institute of Scientific and Technical Information of China (English)

    Yang Xiaodong; Chen Li-Qun

    2006-01-01

    The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.

  11. Propagation of a cosh-Gaussian beam through an optical system in turbulent atmosphere.

    Science.gov (United States)

    Chu, Xiuxiang

    2007-12-24

    The propagation of a cosh-Gaussian beam through an arbitrary ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity at any receiver plane are obtained. As an elementary example, the average intensity and its radius at the image plane of a cosh-Gaussian beam through a thin lens are studied. To show the effects of a lens on the average intensity and the intensity radius of the laser beam in turbulent atmosphere, the properties of a collimated cosh-Gaussian beam and a focused cosh-Gaussian beam for direct propagation in turbulent atmosphere are studied and numerically calculated. The average intensity profiles of a cosh-Gaussian beam through a lens can have a shape similar to that of the initial beam for a longer propagation distance than that of a collimated cosh-Gaussian beam for direct propagation. With the increment in the propagation distance, the average intensity radius at the image plane of a cosh-Gaussian beam through a thin lens will be smaller than that at the focal plane of a focused cosh-Gaussian beam for direct propagation. Meanwhile, the intensity distributions at the image plane of a cosh-Gaussian beam through a lens with different w(0) and Omega(0) are also studied.

  12. An exact solution to paraxial propagation of laser beams in longitudinal inhomogeneous plasmas

    Institute of Scientific and Technical Information of China (English)

    Zhou Bing-Ju; Huang Zheng; Liu Ming-Wei; Liu Xiao-Juan

    2007-01-01

    An exact, general solution for laser beams propagating in longitudinally inhomogeneous plasmas is obtained in the form of the diffraction integral. The Gaussian beam and the Hermite-Gaussian beam are taken for example. In the case of an increasing plasma density along the propagation distance, natural diffraction of the Gaussian beam is retarded. This retardance has a less effect on the central part of the Hermite-Gaussian beam while a considerable rise of the power in bucket (PIB) occurs in the surrounding part of the beam.

  13. Nonlinearities and effects of transverse beam size in beam position monitors

    Science.gov (United States)

    Kurennoy, Sergey S.

    2001-09-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those produced by a pencil beam. The nonlinearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  14. Nonlinearities and effects of transverse beam size in beam position monitors

    Directory of Open Access Journals (Sweden)

    Sergey S. Kurennoy

    2001-09-01

    Full Text Available The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM are calculated and compared to those produced by a pencil beam. The nonlinearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  15. Propagation of partially coherent annular beams with decentered field in turbulence along a slant path.

    Science.gov (United States)

    Dou, Lingyu; Ji, Xiaoling; Li, Peiyun

    2012-04-09

    The model of partially coherent annular beams with linear non-uniformity field profile in the x direction is set up. The analytic expressions for the average intensity and the centre of gravity of partially coherent annular beams with decentered field propagating through atmospheric turbulence along a slant path are derived. The propagation equation governing the position of the intensity maximum is also given. It is found that the beam non-uniformity is amended gradually as the propagation distance and the strength of turbulence increase. The centre of beam gravity is independent of both the propagation distance and the turbulence. However, the position of the intensity maximum changes versus the propagation distance and the turbulence, and is farthest away from the propagation z-axis at a certain propagation distance. When the propagation distance is large enough, the position of the intensity maximum reaches an asymptotic value which increases with decreasing the zenith angle and is largest for the free space case. When the propagation distance is large enough, the position of the intensity maximum is not on the propagation z-axis, and is nearer to the propagation z-axis than the centre of beam gravity. On the other hand, changes in the intensity maximum in the far field are also examined in this paper.

  16. Propagation of Airy beams from right-handed material to left-handed material

    Institute of Scientific and Technical Information of China (English)

    Lin Hui-Chuan; Pu Ji-Xiong

    2012-01-01

    Based on the ABCD matrix formalism,the propagation property of an Airy beam from right-handed material(RHM)to left-handed material(LHM)is investigated.The result shows that when the Airy beam propagates in the LHM,the intensity self-bending due to its propagation in the RHM can be compensated.In particular,if the propagation distance in the RHM is equal to that in the LHM and the refractive index of the LHM is nL=-1,the transverse intensity distribution of the Airy beam can return to its original state.

  17. Non-linear wave propagation in acoustically lined circular ducts

    Science.gov (United States)

    Nayfeh, A. H.; Tsai, M.-S.

    1974-01-01

    An analysis is presented of the nonlinear effects of the gas motion as well as of the acoustic lining material on the transmission and attenuation of sound in a circular duct with a uniform cross-section and no mean flow. The acoustic material is characterized by an empirical, nonlinear impedance in which the instantaneous resistance is a nonlinear function of both the frequency and the acoustic velocity. The results show that there exist frequency bandwidths around the resonant frequencies in which the nonlinearity decreases the attenuation rate, and outside which the nonlinearity increases the attenuation rate, in qualitative agreement with experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.

  18. Non-Linear Vibration of Euler-Bernoulli Beams

    DEFF Research Database (Denmark)

    Barari, Amin; Kaliji, H. D.; Domairry, G.

    2011-01-01

    In this paper, variational iteration (VIM) and parametrized perturbation (PPM)methods have been used to investigate non-linear vibration of Euler-Bernoulli beams subjected to the axial loads. The proposed methods do not require small parameter in the equation which is difficult to be found...

  19. Bending of a nonlinear beam reposing on an unilateral foundation

    Directory of Open Access Journals (Sweden)

    Machalová J.

    2011-06-01

    Full Text Available This article is going to deal with bending of a nonlinear beam whose mathematical model was proposed by D. Y. Gao in (Gao, D. Y., Nonlinear elastic beam theory with application in contact problems and variational approaches,Mech. Research Communication, 23 (1 1996. The model is based on the Euler-Bernoulli hypothesis and under assumption of nonzero lateral stress component enables moderately large deflections but with small strains. This is here extended by the unilateralWinkler foundation. The attribution unilateral means that the foundation is not connected with the beam. For this problem we demonstrate a mathematical formulation resulting from its natural decomposition which leads to a saddle-point problem with a proper Lagrangian. Next we are concerned with methods of solution for our problem by means of the finite element method as the paper (Gao, D. Y., Nonlinear elastic beam theory with application in contact problems and variational approaches, Mech. Research Communication, 23 (1 1996 has no mention of it. The main alternatives are here the solution of a system of nonlinear nondifferentiable equations or finding of a saddle point through the use of the augmented Lagrangian method. This is illustrated by an example in the final part of the article.

  20. Effect of Physical Nonlinearity on Local Buckling in Sandwich Beams

    NARCIS (Netherlands)

    Koissin, Vitaly; Shipsha, Andrey; Skvortsov, Vitaly

    2010-01-01

    This article deals with experimental, theoretical, and FE characterization of the local buckling in foam-core sandwich beams. In the theoretical approach, this phenomena is considered in a periodic formulation (unbounded wrinkle wave); a nonlinear stress—strain response of the face material is accou

  1. Nonlinear Evolution of the Ion-Ion Beam Instability

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.

    1982-01-01

    The criterion for the existence of vortexlike ion phase-space configurations, as obtained by a standard pseudopotential method, is found to coincide with the criterion for the linear instability for two (cold) counterstreaming ion beams. A nonlinear equation is derived, which demonstrates...

  2. Effect of Physical Nonlinearity on Local Buckling in Sandwich Beams

    NARCIS (Netherlands)

    Koysin, V.; Shipsha, Andrey; Skvortsov, Vitaly

    2010-01-01

    This article deals with experimental, theoretical, and FE characterization of the local buckling in foam-core sandwich beams. In the theoretical approach, this phenomena is considered in a periodic formulation (unbounded wrinkle wave); a nonlinear stress—strain response of the face material is accou

  3. Simple and fast method for step size determination in computations of signal propagation through nonlinear fibres

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen

    2001-01-01

    Presents a simple and fast method for determination of the step size that exactly leads to a prescribed accuracy when signal propagation through nonlinear optical fibres is computed using the split-step Fourier method.......Presents a simple and fast method for determination of the step size that exactly leads to a prescribed accuracy when signal propagation through nonlinear optical fibres is computed using the split-step Fourier method....

  4. Nonlinear analysis of concrete beams strengthened by date palm fibers

    Science.gov (United States)

    Bouzouaid, Samia; Kriker, Abdelouahed

    2017-02-01

    The behaviour of concrete beams strengthened with date palm fibers was studied by Nonlinear Finite Element Analysis using ANSYS software. Five beams that were experimentally tested in a previous research were considered. The results obtained from the ANSYS finite element analysis are compared with the experimental data for the five beams with different amounts of fibres, ranging from 0.2% to 0.5% by a step equal to 0.1% and with a fibre length of 0.04 m. The results obtained by FEA showed good agreement with those obtained by the experimental program. This research demonstrates the ability of FEA in predicting the behaviour of beams strengthened with Date Palm fibers. It will help researchers in studying beams with different configurations without the need to go through the lengthy experimental testing programs.

  5. Experimental Dynamic Analysis of Nonlinear Beams under Moving Loads

    Directory of Open Access Journals (Sweden)

    A. Bellino

    2012-01-01

    Full Text Available It is well known that nonlinear systems, as well as linear time-varying systems, are characterized by non-stationary response signals. In this sense, they both show natural frequencies that are not constant over time; this variation has however different origins: for a time-varying system the mass, and possibly the stiffness distributions, are changing over time, while for a nonlinear system the natural frequencies are amplitude-dependent. An interesting case of time-varying system occurs when analyzing the transit of a train over a railway bridge, easily simulated by the crossing of a moving load over a beam. In this case, the presence of a nonlinearity in the beam behaviour can cause a significant alteration of the modal parameters extracted from the linearized model, such that the contributions of the two effects are no more distinguishable.

  6. Simulation of vortex laser beams propagation in parabolic index media based on fractional Fourier transform

    Science.gov (United States)

    Mossoulina, O. A.; Kirilenko, M. S.; Khonina, S. N.

    2016-08-01

    We use radial Fractional Fourier transform to model vortex laser beams propagation in optical waveguides with parabolic dependence of the refractive index. To overcome calculation difficulties at distances proportional to a quarter of the period we use varied calculation step. Numerical results for vortex modes superposition propagation in a parabolic optical fiber show that the transverse beam structure can be changed significantly during the propagation. To provide stable transverse distribution input scale modes should be in accordance with fiber parameters.

  7. Propagation dynamics of a light beam in fractional Schr\\"odinger equation

    CERN Document Server

    Zhang, Yiqi; Belić, Milivoj R; Zhong, Weiping; Zhang, Yanpeng; Xiao, Min

    2015-01-01

    Dynamics of wavepackets in fractional Schrodinger equation is still an open problem. The difficulty stems from the fact that the fractional Laplacian derivative is essentially a nonlocal operator. We investigate analytically and numerically the propagation of optical beams in fractional Schr\\"odinger equation with a harmonic potential. We find that the propagation of one- and two-dimensional (1D, 2D) input chirped Gaussian beams is not harmonic. In 1D, the beam propagates along a zigzag trajectory in the real space, which corresponds to a modulated anharmonic oscillation in the momentum space. In 2D, the input Gaussian beam evolves into a breathing ring structure in both real and momentum spaces, which forms a filamented funnel-like aperiodic structure. The beams remain localized in propagation, but with increasing distance display increasingly irregular behavior, unless both the linear chirp and the transverse displacement of the incident beam are zero.

  8. Control of Beam Halo-Chaos for an Intense Charged-Particle Beam Propagating Through Double Periodic Focusing Field by Soliton

    Institute of Scientific and Technical Information of China (English)

    BAI Long; ZHANG Rong; WENG Jia-Qiang; FANG Jin-Qing

    2008-01-01

    We study an intense beam propagating through the double periodic focusing channel by the particle-core model, and obtain the beam envelope equation. According to the Poincare-Lyapunov theorem, we analyze the stability of beam envelope equation and find the beam halo. The soliton control method for controlling the beam halo-chaos is put forward based on mechanism of halo formation and strategy of controlling beam halo-chaos, and we also prove the validity of the control method, and furthermore, the feasible experimental project is given. We perform multiparticle simulation to control the halo by using the soliton controller. It is shown that our control method is effective. We also find the radial ion density changes when the ion beam is in the channel, not only the halo-chaos and its regeneration can be eliminated by using the nonlinear control method, but also the density uniformity can be found at beam's centre as long as an appropriate control method is chosen.

  9. Nonlinear pulse propagation in a single- and a few-cycle regimes with Raman response

    Indian Academy of Sciences (India)

    Vimlesh Mishra; Ajit Kumar

    2010-09-01

    The propagation equation for a single- and a few-cycle pulses was derived in a cubic nonlinear medium including the Raman response. Using this equation, the propagation characteristics of a single- and a 4-cycle pulse, at 0.8 m wavelength, were studied numerically in one spatial dimension. It was shown that Raman term does influence the propagation characteristics of a single- as well as a few-cycle pulses by counteracting the self-steepening effect.

  10. Nonlinear propagation of strong-field THz pulses in doped semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2012-01-01

    We report on nonlinear propagation of single-cycle THz pulses with peak electric fields reaching 300 kV/cm in n-type semiconductors at room temperature. Dramatic THz saturable absorption effects are observed in GaAs, GaP, and Ge, which are caused by the nonlinear electron transport in THz fields....

  11. Exact solutions of optical pulse propagation in nonlinear meta-materials

    Science.gov (United States)

    Nanda, Lipsa

    2017-01-01

    An analytical and simulation based method has been used to exactly solve the nonlinear wave propagation in bulk media exhibiting frequency dependent dielectric susceptibility and magnetic permeability. The method has been further extended to investigate the intensity distribution in a nonlinear meta-material with negative refractive index where both ɛ and μ are dispersive and negative in nature.

  12. Focused ultrasonic beam behavior at a stress-free boundary and applicability for measuring nonlinear parameter in a reflection mode

    Science.gov (United States)

    Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing

    2017-02-01

    In this work, we employ a focused beam theory to modify the phase reversal at the stress-free boundary, and consequently enhance the second harmonic generation during its back-propagation toward the initial source position. We first confirmed this concept through experiment by using a spherically focused beam at the water-air interface, and measuring the reflected second harmonic and comparing with a planar wave reflected from the same stress-free or a rigid boundary. In order to test the feasibility of this idea for measuring the nonlinearity parameter of solids in a reflection mode, a focused nonlinear ultrasonic beam is modeled for focusing at and reflection from a stress-free boundary. A nonlinearity parameter expression is then defined together with diffraction and attenuation corrections.

  13. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  14. Free-Space Nonlinear Beam Combining Towards Filamentation

    CERN Document Server

    Rostami, Shermineh; Kepler, Daniel; Baudelet, Matthieu; Litchinitser, Natalia M; Richardson, Martin

    2016-01-01

    Multi-filamentation opens new degrees of freedom for manipulating electromagnetic waves in air. However, without control, multiple filament interactions, including attraction, repulsion or fusion often result in formation of complex disordered filament distributions. Moreover, high power beams conventionally used in multi-filament formation experiments often cause significant surface damage. The growing number of applications for laser filaments requires fine control of their formation and propagation. We demonstrate, experimentally and theoretically, that the attraction and fusion of ultrashort beams with initial powers below the critical value enable the eventual formation of a filament downstream. Filament formation is delayed to a predetermined distance in space, avoiding optical damage to external beam optics while still enabling robust filaments with controllable properties as if formed from a single high power beam. This paradigm introduces new opportunities for filament engineering eliminating the nee...

  15. Propagation of a general-type beam through a truncated fractional Fourier transform optical system.

    Science.gov (United States)

    Zhao, Chengliang; Cai, Yangjian

    2010-03-01

    Paraxial propagation of a general-type beam through a truncated fractional Fourier transform (FRT) optical system is investigated. Analytical formulas for the electric field and effective beam width of a general-type beam in the FRT plane are derived based on the Collins formula. Our formulas can be used to study the propagation of a variety of laser beams--such as Gaussian, cos-Gaussian, cosh-Gaussian, sine-Gaussian, sinh-Gaussian, flat-topped, Hermite-cosh-Gaussian, Hermite-sine-Gaussian, higher-order annular Gaussian, Hermite-sinh-Gaussian and Hermite-cos-Gaussian beams--through a FRT optical system with or without truncation. The propagation properties of a Hermite-cos-Gaussian beam passing through a rectangularly truncated FRT optical system are studied as a numerical example. Our results clearly show that the truncated FRT optical system provides a convenient way for laser beam shaping.

  16. Unknown parameter's variance-covariance propagation and calculation in generalized nonlinear least squares problem

    Institute of Scientific and Technical Information of China (English)

    TAO Hua-xue; GUO Jin-yun

    2005-01-01

    The unknown parameter's variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now,which didn't appear in the internal and external referencing documents. The unknown parameter's variance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source,multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.

  17. Non-linear Dynamics in ETG Mode Saturation and Beam-Plasma Instabilities

    Science.gov (United States)

    Tokluoglu, Erinc K.

    fields generated by beam-plasma instabilities can be responsible for defocusing and distorting beams propagating in background plasma. This can be problematic in inertial fusion applications where the beam is intended to propagate ballistically as the background plasma neutralizes the beam space charge and current. We used particle-in-cell (PIC) code LSP to numerically investigate the defocusing effects in an ion beam propagating in background plasma experiences as it is exposed to the non-linear fields generated by Two-Stream instability between beam ions and plasma electrons. Supported by theory and benchmarked by the numerical solutions of governing E&M equations, the simulations were used to find and check scaling laws for the defocusing forces in the parameter space of beam and plasma density as well as the beam ion mass. A transition region where the defocusing fields peak has been identified, which should be avoided in the design of experimental devices. We further proposed a diagnostic tool to identify the presence of the two-stream instability in a system with parameters similar to the National Drift Compression Experiment II (NDCX-II) and conducted proof-of concept simulations. In the case of electron beam propagating in background plasma instability driven collisionless scattering and plasma heating is observed. 1-D simulations conducted in EDIPIC were benchmarked in LSP to study the excitation and time-evolution of electron-electron Two-Stream instability. Coupling of electron dynamics via non-linear ponderomotive force created by instability generated fields with ion cavities and Ion-Acoustic mode excitation was observed. Furthermore 2-D simulations of an electron-beam in a background plasma was performed. Many of the effects in observed in 1-D simulations were replicated. Morever generation of oblique modes with transverse wave numbers were observed in the simulations, which resulted in significant transverse scattering of beam electrons and the time

  18. A Schr(o)idinger formulation research for light beam propagation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The wave equation of light beam propagation was written in the form of an axial-coordinate-dependent Schrdinger equation, and the expectation value of a dynamical variable, the trial function of variational approach and the ABCD law were discussed by use of quantum mechanics approach. In view of the evolution equations of expectation values of dynamical variables in the framework of quantum mechanics, the definition of a potential function representing the beam propagation stability and its universal formula with the quality factor, the universal formula of beam width and curvature radius for a paraxial beam and cylindrically symmetric non-paraxial beam, the general formula of second derivative of beam width with respect to the axial coordinate of beam for a paraxial beam, and the general criteria of the conservation of beam quality factor and the existence of a potential well of a potential function for a paraxial beam, were given or derived, respectively. Starting with the same trial function, the comparative research of our formulation with variational approach was done, which gave some further insight into the physical nature of a beam propagation parameters. The ABCD law of non-paraxial beam was discussed in terms of the definition of the non-paraxial expectation value of a dynamical variable for the first time. The applications to the media of constant second derivative of beam width with respect to the axial coordinate of a beam, square law media and the media of constant refractive index in the momentum representation were discussed, respectively.

  19. Nonlinear Response of Cantilever Beams to Combination and Subcombination Resonances

    Directory of Open Access Journals (Sweden)

    Ali H. Nayfeh

    1998-01-01

    Full Text Available The nonlinear planar response of cantilever metallic beams to combination parametric and external subcombination resonances is investigated, taking into account the effects of cubic geometric and inertia nonlinearities. The beams considered here are assumed to have large length-to-width aspect ratios and thin rectangular cross sections. Hence, the effects of shear deformations and rotatory inertia are neglected. For the case of combination parametric resonance, a two-mode Galerkin discretization along with Hamilton’s extended principle is used to obtain two second-order nonlinear ordinary-differential equations of motion and associated boundary conditions. Then, the method of multiple scales is applied to obtain a set of four first-order nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the two excited modes. For the case of subcombination resonance, the method of multiple scales is applied directly to the Lagrangian and virtual-work term. Then using Hamilton’s extended principle, we obtain a set of four first-order nonlinear ordinary-differential equations governing the amplitudes and phases of the two excited modes. In both cases, the modulation equations are used to generate frequency- and force-response curves. We found that the trivial solution exhibits a jump as it undergoes a subcritical pitchfork bifurcation. Similarly, the nontrivial solutions also exhibit jumps as they undergo saddle-node bifurcations.

  20. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence.

    Science.gov (United States)

    Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E

    2014-06-10

    The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.

  1. Characteristics of a partially coherent Gaussian Schell-model beam propagating in slanted atmospheric turbulence

    Institute of Scientific and Technical Information of China (English)

    Li Ya-Qing; Wu Zhen-Sen

    2012-01-01

    On the basis of the extended Huygens Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication Sector,the characteristics of the partially coherent Gaussian Schell-model(GSM)beams propagating in slanted atmospheric turbulence are studied.Using the cross-spectral density function(CSDF),we derive the expressions for the effective beam radius,the spreading angle,and the average intersity.The variance of the angle-of-arrival fluctuation and the wander effect of the GSM beam in the turbulence are calculated numerically.The influences of the coherence degree,the propagation distance,the propagation height,and the waist radius on the propagation characteristics of the partially coherent beams are discussed and compared with those of the fully coherent Gaussian beams.

  2. Practical calculation of the beam scintillation index based on the rigorous asymptotic propagation theory

    Science.gov (United States)

    Charnotskii, Mikhail; Baker, Gary J.

    2011-06-01

    Asymptotic theory of the finite beam scintillations (Charnotskii, WRM, 1994, JOSA A, 2010) provides an exhaustive description of the dependence of the beam scintillation index on the propagation conditions, beam size and focusing. However the complexity of the asymptotic configuration makes it difficult to apply these results for the practical calculations of the scintillation index (SI). We propose an estimation technique and demonstrate some examples of the calculations of the scintillation index dependence on the propagation path length, initial beam size, wavelength and turbulence strength for the beam geometries and propagation scenarios that are typical for applications. We suggest simple analytic bridging approximations that connect the specific asymptotes with the accuracy sufficient for the engineering estimates. Proposed technique covers propagation of the wide, narrow, collimated and focused beams under the weak and strong scintillation conditions. Direct numeric simulation of the beam waves propagation through turbulence expediently complements the asymptotic theory being most efficient when the governing scales difference is not very large. We performed numerical simulations of the beam wave propagation through turbulence for conditions that partially overlap with the major parameter space domains of the asymptotic theory. The results of the numeric simulation are used to confirm the asymptotic theory and estimate the accuracy of the bridging approximations.

  3. Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides.

    Science.gov (United States)

    Suzuki, Keijiro; Baba, Toshihiko

    2010-12-06

    Optical nonlinearity can be enhanced by the combination of highly nonlinear chalcogenide glass and photonic crystal waveguides (PCWs) providing strong optical confinement and slow-light effects. In a Ag-As(2)Se(3) chalcogenide PCW, the effective nonlinear parameter γeff reaches 6.3 × 10(4) W(-1)m(-1), which is 200 times larger than that in Si photonic wire waveguides. In this paper, we report the detailed design, fabrication process, and the linear and nonlinear characteristics of this waveguide at silica fiber communication wavelengths. We show that the waveguide exhibits negligible two-photon absorption, and also high-efficiency self-phase modulation and four-wave mixing, which are assisted by low-dispersion slow light.

  4. Modeling laser beam diffraction and propagation by the mode-expansion method.

    Science.gov (United States)

    Snyder, James J

    2007-08-01

    In the mode-expansion method for modeling propagation of a diffracted beam, the beam at the aperture can be expanded as a weighted set of orthogonal modes. The parameters of the expansion modes are chosen to maximize the weighting coefficient of the lowest-order mode. As the beam propagates, its field distribution can be reconstructed from the set of weighting coefficients and the Gouy phase of the lowest-order mode. We have developed a simple procedure to implement the mode-expansion method for propagation through an arbitrary ABCD matrix, and we have demonstrated that it is accurate in comparison with direct calculations of diffraction integrals and much faster.

  5. Berreman approach to electromagnetic wave and beam propagation in anisotropic metamaterials

    Science.gov (United States)

    Gnawali, Rudra; Banerjee, Partha

    2016-09-01

    The Berreman matrix method is used to analyze the polarization and propagation of electromagnetic waves and beams in anisotropic metamaterials. The metamaterial, comprising a multilayer structure of alternating metal and dielectric layers, is modeled as an effective anisotropic medium. The Maxwell's equations for electromagnetic propagation are then represented as a set of coupled differential equations using the Berreman matrix. These coupled equations are then solved analytically and cross checked numerically using MATLAB® for plane wave propagation. The analysis can be extended to Gaussian beam propagation through such anisotropic metamaterials using the angular plane wave spectral approach.

  6. Propagation properties of hollow sinh-Gaussian beams in quadratic-index medium

    Science.gov (United States)

    Zou, Defeng; Li, Xiaohui; Pang, Xingxing; Zheng, Hairong; Ge, Yanqi

    2017-10-01

    Based on the Collins integral formula, the analytical expression for a hollow sinh-Gaussian (HsG) beam propagating through the quadratic-index medium is derived. The propagation properties of a single HsG beam and their interactions have been studied in detail with numerical examples. The results show that inhomogeneity can support self-repeating intensity distributions of HsG beams. With high-ordered beam order n, HsG beams could maintain their initial dark hollow distributions for a longer distance. In addition, interference fringes appear at the interactional region. The central intensity is a prominent peak for two in-phase beams, which is zero for two out-of phase beams. By tuning the initial beam phase shift, the distribution of the fringes can be controlled.

  7. Average intensity and directionality of partially coherent model beams propagating in turbulent ocean.

    Science.gov (United States)

    Wu, Yuqian; Zhang, Yixin; Zhu, Yun

    2016-08-01

    We studied Gaussian beams with three different partially coherent models, including the Gaussian-Schell model (GSM), Laguerre-Gaussian Schell model (LGSM), and Bessel-Gaussian Schell model (BGSM), propagating through oceanic turbulence. The expressions of average intensity, beam spreading, and beam wander for GSM, LGSM, and BGSM beams in the paraxial channel are derived. We make a contrast for the three models in numerical simulations and find that the GSM beam has smaller spreading than the others, and the LGSM beam needs longer propagation distance to transform into a well-like profile of average intensity than the BGSM beam in the same conditions. The salinity fluctuation has a greater contribution to the wander of LGSM and BGSM beams than that of the temperature fluctuation. Our results can be helpful in the design of an optical wireless communication link operating in oceanic environment.

  8. Anharmonic propagation of two-dimensional beams carrying orbital angular momentum in a harmonic potential.

    Science.gov (United States)

    Zhang, Yiqi; Liu, Xing; Belić, Milivoj R; Zhong, Weiping; Wen, Feng; Zhang, Yanpeng

    2015-08-15

    We analytically and numerically investigate an anharmonic propagation of two-dimensional beams in a harmonic potential. We pick noncentrosymmetric beams of common interest that carry orbital angular momentum. The examples studied include superposed Bessel-Gauss (BG), Laguerre-Gauss (LG), and circular Airy (CA) beams. For the BG beams, periodic inversion, phase transition, and rotation with periodic angular velocity are demonstrated during propagation. For the LG and CA beams, periodic inversion and variable rotation are still there but not the phase transition. On the whole, the "center of mass" and the orbital angular momentum of a beam exhibit harmonic motion, but the motion of the beam intensity distribution in detail is subject to external and internal torques and forces, causing it to be anharmonic. Our results are applicable to other superpositions of finite circularly asymmetric beams.

  9. The damped oscillating propagation of the compensating self-accelerating beams

    CERN Document Server

    Liu, Wei-Wei; Yu, Pan-Pan; Wang, Hao-wei; Wang, Zi-qiang; Li, Yin-Mei

    2016-01-01

    We report a new form of compensating accelerating beam generated by amplitude modulation of the symmetric Airy beam (SAB) caustics with an exponential apodization mask. Our numerical study manifests that the compensating beam is with one main-lobe beam structure and can maintain the mean-intensity invariant both in the free space and loss media. Specially, the beam inherits the beamlets structure from the SAB and owns a novel damped oscillating propagation property. We also conduct a comparative study of its propagation property with that of the Airy beam theoretically. And by altering the signs of 2D masks, the main lobe of the compensating beam can be modulated to orientate in four different quadrants flexibly. The proposed compensating accelerating beam is anticipated to get special applications in particle manipulation or plasmas regions.

  10. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.

    Science.gov (United States)

    Zhou, Guoquan

    2011-11-21

    A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail.

  11. The research of propagation characteristic and formation of double half-Gaussian hollow beams

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new kind of hollow beams, double half-Gaussian hollow beams,was put forward. With the help of the Collins formula, the analytical equation of propagation and transformation of the hollow laser beams in free space was deduced. The simulation shows that the intensity exhibits the three-dimensional trap distribution in the near-field, while the double half-Gaussian hollow beams turn into solid laser beams when propagating a certain distance, which shows the characteristics of self-focus. The double half-Gaussian hollow beams were obtained by means of the dual-reflecting splitting optical system. The intensity of the vertical loop in different distances was tested, which shows that the analytical equation of propagation and transformation is in agreement with the result.

  12. The research of propagation characteristic and formation of double half-Gaussian hollow beams

    Institute of Scientific and Technical Information of China (English)

    DONG Yuan; ZHANG XiHe; NING GuoBin; JIN GuangYong; LIANG Wei; L(U) YanFei; ZHANG Kai

    2009-01-01

    A new kind of hollow beams, double half-Gaussian hollow beams, was put forward. With the help of the Collins formula, the analytical equation of propagation and transformation of the hollow laser beams in free space was deduced. The simulation shows that the intensity exhibits the three-dimensional trap distribution in the near-field, while the double half-Gaussian hollow beams turn into solid laser beams when propagating a certain distance, which shows the characteristics of self-focus. The double half-Gaussian hollow beams were obtained by means of the dual-reflecting splitting optical system. The intensity of the vertical loop in different distances was tested, which shows that the analytical equation of propagation and transformation is in agreement with the result.

  13. Nonlinear inverse modeling of sensor based on back-propagation fuzzy logical system

    Institute of Scientific and Technical Information of China (English)

    Li Jun; Liu Junhua

    2007-01-01

    Objective To correct the nonlinear error of sensor output, a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System (BP FS) is presented. Methods The BP FS is a computationally efficient nonlinear universal approximator, which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed. Results The neuro-fuzzy hybrid system, i.e. BP FS, is then applied to construct nonlinear inverse model of pressure sensor. The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation, and thus the performance of pressure sensor is significantly improved. Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.

  14. Non-Linear Piezoelectric Actuator with a Preloaded Cantilever Beam

    OpenAIRE

    Yue Wu; Jingshi Dong; Xinbo Li; Zhigang Yang; Qingping Liu

    2015-01-01

    Piezoelectric actuation is widely used for the active vibration control of smart structural systems, and corresponding research has largely focused on linear electromechanical devices. This paper investigates the design and analysis of a novel piezoelectric actuator that uses a piezoelectric cantilever beam with a loading spring to produce displacement outputs. This device has a special nonlinear property relating to converting between kinetic energy and potential energy, and it can be used t...

  15. Tracking control of a flexible beam by nonlinear boundary feedback

    Directory of Open Access Journals (Sweden)

    Bao-Zhu Guo

    1995-01-01

    Full Text Available This paper is concerned with tracking control of a dynamic model consisting of a flexible beam rotated by a motor in a horizontal plane at the one end and a tip body rigidly attached at the free end. The well-posedness of the closed loop systems considering the dissipative nonlinear boundary feedback is discussed and the asymptotic stability about difference energy of the hybrid system is also investigated.

  16. Development of atomic spectroscopy technologies - The characteristics of laser beam propagation in resonant and near-resonant atomic media

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Hyung; Chang, Joon Sung; Lee, Won Kyu; Jeon, Jin Ho [Seoul National University, Seoul (Korea)

    2000-04-01

    We studied the conical emission(CE) in samarium(Sm) vapor under the near-resonant condition. The incident dye laser was tuned to the transition line, 4f{sup 6}6s{sup 2} {sup 7}F{sub 0} {yields} 4f{sup 6}({sup 7})6s6p({sup 1}P{sup 0}), of Sm atom. Using a high temperature oven, we could obtain the atomic density of 8 x 10{sup 14} atoms/cm{sup 3} large enough to observe the CE. We observed 1 {approx} 3 rings around the original laser beam and the number of the rings depended on the laser intensity, the laser wavelength and the atomic density. These results are attributed to the self-phase-modulation of the laser beam interacting with the near-resonant atomic medium. We obtain a simple expression that describes the dependence of the locations of the rings on the laser intensity. We compare the experimental results with this expression quantitatively and then estimate the nonlinear susceptibility of Sm vapor. The laser beam propagating through the resonant medium undergo severe deformation because of nonlinear interaction such as self-focusing, self-defocusing, etc. When strong pump beam coexists with the probe beam, propagation characteristics can be changed. We use samarium(Sm) vapor as the nonlinear medium. Probe laser is tuned around 4f{sup 6}s{sup 2} {sup 7}F{sub 0} {yields} 4f{sup 6}({sup 7}F)6s6p({sup 1}P{sup 0}) transition line of Sm (562.601 nm). Pump laser is tuned around 4f{sup 6}s{sup 2} {sup 7}F{sub 1} {yields} 4f{sup 6}({sup 7}F)6s6p({sup 1}P{sup 0}) transition line of Sm (572.019 nm). The probe and the pump beams are {lambda} -type configuration. The transmission and beam width of the probe beam is changed as the intensity and the detuning of the probe beam are varied. 17 refs., 16 figs., 1 tab. (Author)

  17. Excitation of monochromatic and stable electron acoustic wave by two counter-propagating laser beams

    Science.gov (United States)

    Xiao, C. Z.; Liu, Z. J.; Zheng, C. Y.; He, X. T.

    2017-07-01

    The undamped electron acoustic wave is a newly-observed nonlinear electrostatic plasma wave and has potential applications in ion acceleration, laser amplification and diagnostics due to its unique frequency range. We propose to make the first attempt to excite a monochromatic and stable electron acoustic wave (EAW) by two counter-propagating laser beams. The matching conditions relevant to laser frequencies, plasma density, and electron thermal velocity are derived and the harmonic effects of the EAW are excluded. Single-beam instabilities, including stimulated Raman scattering and stimulated Brillouin scattering, on the excitation process are quantified by an interaction quantity, η =γ {τ }B, where γ is the growth rate of each instability and {τ }B is the characteristic time of the undamped EAW. The smaller the interaction quantity, the more successfully the monochromatic and stable EAW can be excited. Using one-dimensional Vlasov-Maxwell simulations, we excite EAW wave trains which are amplitude tunable, have a duration of thousands of laser periods, and are monochromatic and stable, by carefully controlling the parameters under the above conditions.

  18. Advanced simulations of x-ray beam propagation through CRL transfocators using ray-tracing and wavefront propagation methods

    DEFF Research Database (Denmark)

    Baltser, Jana; Bergbäck Knudsen, Erik; Vickery, Anette

    2011-01-01

    of X-ray beamline designs for particular user experiments. In this work we used the newly developed McXtrace ray-tracing package and the SRW wave-optics code to simulate the beam propagation of X-ray undulator radiation through such a "transfocator" as implemented at ID- 11 at ESRF. By applying two...

  19. Propagation of high-power partially coherent fibre laser beams in a real environment

    Institute of Scientific and Technical Information of China (English)

    Tao Ru-Mao; Si Lei; Ma Yan-Xing; Zou Yong-Chao; Zhou Pu

    2011-01-01

    The propagation performance of high-power partially coherent fibre laser beams in a real environment is investigated and the theoretical model of a high-power fibre laser propagating in a real environment is established. The influence of a collimating system and thermal blooming is considered together with atmospheric turbulence and mechanical jitter. The laser energy concentration of partially coherent beams in the far field is calculated and analysed based on the theoretical model. It is shown that the propagation performance of partially coherent beams depends on the collimating system,atmospheric turbulence,mechanical jitter and thermal blooming. The propagation performance of partially coherent beams and fully coherent beams is studied and the results show that partially coherent beams are less sensitive to the influence of thermal blooming,which results in that the energy degeneration for partially coherent beams is only 50%a of that for fully coherent beams. Both partially coherent beams and fully coherent beams become less sensitive to thermal blooming when the average structural constant of the refraction index fluctuations increases to 1.7x10-14 m-2/3. The investigation presents a reference for applications of a high-power fibre laser system.

  20. Propagation of ring Airy Gaussian beams with optical vortices through anisotropic non-Kolmogorov turbulence

    Science.gov (United States)

    Zhi, Dong; Tao, Rumao; Zhou, Pu; Ma, Yanxing; Wu, Wuming; Wang, Xiaolin; Si, Lei

    2017-03-01

    A new ring Airy Gaussian (RAiG) vortex beam generation method by coherent combination of Gaussian beam array has been proposed. To validate the feasibility of this method, the propagation properties of the RAiG vortex beam and the coherent combining beam in vacuum have been studied and analyzed. From the comparisons of the intensity distributions and phase patterns along the propagation path, we can conclude that the coherent combining beam has the same properties as those of the ideal RAiG vortex beam. So this method can be used to obtain RAiG vortex beam in practice. Then the general analytical expression of the root-mean-square (RMS) beam width of the RAiG vortex beam, which is appropriately generated by coherent combining method, through anisotropic non-Kolmogorov turbulence has been derived. The influence of anisotropic turbulence on RMS beam width of the generated RAiG vortex beam has been numerically calculated. This generation method has good appropriation to the ideal RAiG vortex beam and is very useful for deriving the analytical expression of propagation properties through a random media. The conclusions are useful in practical applications, such as laser communication and remote sensing systems.

  1. Extension of filament propagation in water with Bessel-Gaussian beams

    Directory of Open Access Journals (Sweden)

    G. Kaya

    2016-03-01

    Full Text Available We experimentally studied intense femtosecond pulse filamentation and propagation in water for Bessel-Gaussian beams with different numbers of radial modal lobes. The transverse modes of the incident Bessel-Gaussian beam were created from a Gaussian beam of a Ti:sapphire laser system by using computer generated hologram techniques. We found that filament propagation length increased with increasing number of lobes under the conditions of the same peak intensity, pulse duration, and the size of the central peak of the incident beam, suggesting that the radial modal lobes may serve as an energy reservoir for the filaments formed by the central intensity peak.

  2. Propagation property of the non-paraxial vector Lissajous singularity beams in free space

    Science.gov (United States)

    Chen, Haitao; Gao, Zenghui

    2016-12-01

    The analytic expressions for the free-space propagation of paraxial and non-paraxial vector Lissajous singularity beams are derived, and used to compare the propagation property of a Lissajous singularity carried by paraxial and non-paraxial vector beams in free space. It is found that the creation of a single Lissajous singularity, the creation and annihilation of pairs Lissajous singularities may take place for the both cases. However, after the annihilation of a pair of singularities, no Lissajous singularities appear in the output field for non-paraxial vector Lissajous singularity beams, which is different from the paraxial vector Lissajous singularity beams.

  3. Propagation of Quasi-plane Nonlinear Waves in Tubes

    Directory of Open Access Journals (Sweden)

    P. Koníček

    2002-01-01

    Full Text Available This paper deals with possibilities of using the generalized Burgers equation and the KZK equation to describe nonlinear waves in circular ducts. A new method for calculating of diffraction effects taking into account boundary layer effects is described. The results of numerical solutions of the model equations are compared. Finally, the limits of validity of the used model equations are discussed with respect to boundary conditions and the radius of the circular duct. The limits of applicability of the KZK equation and the GBE equation for describing nonlinear waves in tubes are discussed.

  4. Kinetic description of intense beam propagation through a periodic focusing field for uniform phase-space density

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    2002-08-01

    Full Text Available The Vlasov-Maxwell equations are used to investigate the nonlinear evolution of an intense sheet beam with distribution function f_{b}\\(x,x^{′},s\\ propagating through a periodic focusing lattice κ_{x}\\(s+S\\=κ_{x}\\(s\\, where S=const is the lattice period. The analysis considers the special class of distribution functions with uniform phase-space density f_{b}\\(x,x^{′},s\\=A=const inside of the simply connected boundary curves, x_{+}^{′}\\(x,s\\ and x_{-}^{′}\\(x,s\\, in the two-dimensional phase space \\(x,x^{′}\\. Coupled nonlinear equations are derived describing the self-consistent evolution of the boundary curves, x_{+}^{′}\\(x,s\\ and x_{-}^{′}\\(x,s\\, and the self-field potential ψ\\(x,s\\=e_{b}φ\\(x,s\\/γ_{b}m_{b}β_{b}^{2}c^{2}. The resulting model is shown to be exactly equivalent to a (truncated warm-fluid description with zero heat flow and triple-adiabatic equation of state with scalar pressure P_{b}\\(x,s\\=const[n_{b}\\(x,s\\]^{3}. Such a fluid model is amenable to direct analysis by transforming to Lagrangian variables following the motion of a fluid element. Specific examples of periodically focused beam equilibria are presented, ranging from a finite-emittance beam in which the boundary curves in phase space \\(x,x^{′}\\ correspond to a pulsating parallelogram, to a cold beam in which the number density of beam particles, n_{b}\\(x,s\\, exhibits large-amplitude periodic oscillations. For the case of a sheet beam with uniform phase-space density, the present analysis clearly demonstrates the existence of periodically focused beam equilibria without the undesirable feature of an inverted population in phase space that is characteristic of the Kapchinskij-Vladimirskij beam distribution.

  5. Propagation of Coherent Gaussian Schell-Model Beam Array in a Misaligned Optical System

    Institute of Scientific and Technical Information of China (English)

    ZHOU Pu; WANG Xiao-Lin; MA Yan-Xing; MA Hao-Tong; XU Xiao-Jun; LIU Ze-Jin

    2011-01-01

    @@ Based on a generalized Collins formula,the analytical formula for the propagation property of coherent Gaussian Schell-rnodel(GSM) beam array through a misaligned optical system is derived.As numerical examples,the propagation of a coherent GSM beam array in a typical misaligned optical system with a thin lens is evaluated.The influence of different misalignment parameters is calculated and the normalized-intensity distribution is graphically illustrated.%Based on a generalized Collins formula, the analytical formula for the propagation property of coherent Gaussian Schell-model (GSM) beam array through a misaligned optical system is derived. As numerical examples, the propagation of a coherent GSM beam array in a typical misaligned optical system with a thin lens is evaluated.The influence of different misalignment parameters is calculated and the normalized-intensity distribution is graphically illustrated.

  6. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    DEFF Research Database (Denmark)

    Bertelli, N.; Balakin, A.A.; Westerhof, E.

    2010-01-01

    A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...... are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi......-optical calculations are shown by using edge density fluctuations as calculated by two-dimensional interchange turbulence simulations and validated with the experimental data [O. E. Garcia et al, Nucl. Fusion 47 (2007) 667]...

  7. Estimation of propagation losses for infrared laser beam in turbulent atmosphere

    Science.gov (United States)

    Zaponov, A. E.; Sakharov, M. V.

    2016-11-01

    In present work, the radiation propagation in atmosphere from laser source to the receiver is considered by taking into account deviations of optical beam due to turbulence. The photon flux density on the receiver has been evaluated.

  8. Propagation of Nonlinear Waves in Waveguides and Application to Nondestructive Stress Measurement

    Science.gov (United States)

    Nucera, Claudio

    Propagation of nonlinear waves in waveguides is a field that has received an ever increasing interest in the last few decades. Nonlinear guided waves are excellent candidates for interrogating long waveguide like structures because they combine high sensitivity to structural conditions, typical of nonlinear parameters, with large inspection ranges, characteristic of wave propagation in bounded media. The primary topic of this dissertation is the analysis of ultrasonic waves, including ultrasonic guided waves, propagating in their nonlinear regime and their application to structural health monitoring problems, particularly the measurement of thermal stress in Continuous Welded Rail (CWR). Following an overview of basic physical principles generating nonlinearities in ultrasonic wave propagation, the case of higher-harmonic generation in multi-mode and dispersive guided waves is examined in more detail. A numerical framework is developed in order to predict favorable higher-order generation conditions (i.e. specific guided modes and frequencies) for waveguides of arbitrary cross-sections. This model is applied to various benchmark cases of complex structures. The nonlinear wave propagation model is then applied to the case of a constrained railroad track (CWR) subjected to thermal variations. This study is a direct response to the key need within the railroad transportation community to develop a technique able to measure thermal stresses in CWR, or determine the rail temperature corresponding to a null thermal stress (Neutral Temperature -- NT). The numerical simulation phase concludes with a numerical study performed using ABAQUS commercial finite element package. These analyses were crucial in predicting the evolution of the nonlinear parameter beta with thermal stress level acting in the rail. A novel physical model, based on interatomic potential, was developed to explain the origin of nonlinear wave propagation under constrained thermal expansion. In fact

  9. Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk

    ..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics

  10. Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele

    2016-01-01

    ). In the present paper we use a single layer of quadratic (in 2D) and prismatic (in 3D) elements. The model has been stabilized through a combination of over-integration of the Galerkin projections and a mild modal filter. We present numerical tests of nonlinear waves serving as a proof-of-concept validation...

  11. Quantitative study on propagation and healing of Airy beams under experimental conditions.

    Science.gov (United States)

    Zhuang, Fei; Zhu, Ziyi; Margiewicz, Jessica; Shi, Zhimin

    2015-03-01

    We investigate the propagation and healing of Airy beams in two dimensions that are obtainable under practical experimental conditions. We introduce an intensity similarity factor to quantitatively describe how an Airy beam retains its original shape. Based on such a figure of merit, we define a shape-retaining distance to quantify how far an Airy beam can keep the shape of its main lobe upon propagation and a healing distance to quantify how soon an initially partially blocked Airy beam can restore its main lobe profile. We perform an analysis on how these two distances scale with experimental parameters. We further use an interference picture to interpret the healing phenomenon of an Airy beam. Our work can serve as a guideline for quantitative performance analysis for applications of Airy beams and can be extended to other special beams in a straightforward fashion.

  12. Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere.

    Science.gov (United States)

    Eyyuboğlu, Halil Tanyer

    2005-08-01

    Hermite-cosine-Gaussian (HcosG) laser beams are studied. The source plane intensity of the HcosG beam is introduced and its dependence on the source parameters is examined. By application of the Fresnel diffraction integral, the average receiver intensity of HcosG beam is formulated for the case of propagation in turbulent atmosphere. The average receiver intensity is seen to reduce appropriately to various special cases. When traveling in turbulence, the HcosG beam initially experiences the merging of neighboring beam lobes, and then a TEM-type cosh-Gaussian beam is formed, temporarily leading to a plain cosh-Gaussian beam. Eventually a pure Gaussian beam results. The numerical evaluation of the normalized beam size along the propagation axis at selected mode indices indicates that relative spreading of higher-order HcosG beam modes is less than that of the lower-order counterparts. Consequently, it is possible at some propagation distances to capture more power by using higher-mode-indexed HcosG beams.

  13. Comparison between Bessel and Gaussian beam propagation for in-depth optogenetic stimulation

    Science.gov (United States)

    Tejeda, Hector; Li, Ting; Mohanty, Samarendra

    2013-03-01

    Optogenetics technology has opened new landscapes for neuroscience research. Due to its non-diffracting and selfhealing nature, Bessel beam has potential to improve in-depth optogenetic stimulation. A detailed understanding of Bessel beam propagation, as well as its superiority over commonly used Gaussian beam, is essential for delivery and control of light irradiation for optogenetics and other light stimulation approaches. We developed an algorithm for modeling Bessel beam propagation and then compared both beam propagations in two-layered mice brain under variance of multiple variables (i.e., wavelength, numerical aperture, and beam size). These simulations show that Bessel beam is significantly advantageous over Gaussian beam for in-depth optogenetic stimulation, leading to development of lessinvasive probes. While experimental measurements using single-photon Bessel-Gauss beam generated by axicon-tip fiber did not show improved stimulation-depth, near-infrared Bessel beam generated using free-space optics and an axicon led to better penetration than near-infrared Gaussian beam.

  14. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media

    Science.gov (United States)

    Fahrbach, Florian O.; Rohrbach, Alexander

    2012-01-01

    Laser beams that can self-reconstruct their initial beam profile even in the presence of massive phase perturbations are able to propagate deeper into inhomogeneous media. This ability has crucial advantages for light sheet-based microscopy in thick media, such as cell clusters, embryos, skin or brain tissue or plants, as well as scattering synthetic materials. A ring system around the central intensity maximum of a Bessel beam enables its self-reconstruction, but at the same time illuminates out-of-focus regions and deteriorates image contrast. Here we present a detection method that minimizes the negative effect of the ring system. The beam's propagation stability along one straight line enables the use of a confocal line principle, resulting in a significant increase in image contrast. The axial resolution could be improved by nearly 100% relative to the standard light-sheet techniques using scanned Gaussian beams, while demonstrating self-reconstruction also for high propagation depths.

  15. Linear and Nonlinear Infrasound Propagation to 1000 km

    Science.gov (United States)

    2015-12-15

    and is the specific heat ratio, which is 1.4 in air. Equations (1), (6) and (9) form a complete set of governing equations for acoustic...propagation in an isentropic medium. In what follows, the second set of equations (6 and 8) is used to derive the coupled differential equations for linear...solutions to differential equations by replacing derivatives of continuous functions by their finite difference approximations formed over sets of discrete

  16. Nonlinear Earthquake Analysis of Reinforced Concrete Frames with Fiber and Bernoulli-Euler Beam-Column Element

    Directory of Open Access Journals (Sweden)

    Muhammet Karaton

    2014-01-01

    Full Text Available A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.

  17. Nonlinear earthquake analysis of reinforced concrete frames with fiber and Bernoulli-Euler beam-column element.

    Science.gov (United States)

    Karaton, Muhammet

    2014-01-01

    A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.

  18. Vectorial beam propagation simulation of a novel polarization conversion waveguide structure

    Science.gov (United States)

    Li, Daoping; van Brug, Hedser H.; Frankena, Hans J.; van der Tol, Jos J.; Pedersen, Jorgen W.

    1995-02-01

    The vectorial beam propagation method has successfully been applied to a passive polarization converting waveguide structure. A complete polarization conversion has been simulated. The propagating fields are calculated and the power attenuation is evaluated. The influence of structural changes of the device on the polarization conversion is investigated.

  19. Nonlinear modal propagation analysis method in multimode interference coupler for operation development

    Science.gov (United States)

    Tajaldini, Mehdi; Mat Jafri, Mohd Zubir Mat

    2013-05-01

    In this study, we propose a novel approach that is called nonlinear modal propagation analysis method (NMPA) in MMI coupler via the enhances of nonlinear wave propagation in terms of guided modes interferences in nonlinear regimes, such that the modal fields are measurable at any point of coupler and output facets. Then, the ultra-short MMI coupler is optimized as a building block in micro ring resonator to investigate the method efficiency against the already used method. Modeling results demonstrate more efficiency and accuracy in shorter lengths of multimode interference coupler. Therefore, NMPA can be used as a method to study the compact dimension coupler and for developing the performance in applications. Furthermore, the possibility of access tothe all-optical switching is assumed due to one continuous MMI for proof of the development of performances in nonlinear regimes.

  20. Optimizing the Flexural Strength of Beams Reinforced with Fiber Reinforced Polymer Bars Using Back-Propagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Bahman O. Taha

    2015-06-01

    Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.

  1. Non-Markovian random walks and nonlinear reactions: Subdiffusion and propagating fronts

    Science.gov (United States)

    Fedotov, Sergei

    2010-01-01

    The main aim of the paper is to incorporate the nonlinear kinetic term into non-Markovian transport equations described by a continuous time random walk (CTRW) with nonexponential waiting time distributions. We consider three different CTRW models with reactions. We derive nonlinear Master equations for the mesoscopic density of reacting particles corresponding to CTRW with arbitrary jump and waiting time distributions. We apply these equations to the problem of front propagation in the reaction-transport systems with Kolmogorov-Petrovskii-Piskunov kinetics and anomalous diffusion. We have found an explicit expression for the speed of a propagating front in the case of subdiffusive transport.

  2. Propagation of Weakly Guided Waves in a Kerr Nonlinear Medium using a Perturbation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Dacles-Mariani, J; Rodrigue, G

    2004-10-06

    The equations are represented in a simplified format with only a few leading terms needed in the expansion. The set of equations are then solved numerically using vector finite element method. To validate the algorithm, they analyzed a two-dimensional rectangular waveguide consisting of a linear core and nonlinear identical cladding. The exact nonlinear solutions for three different modes of propagations, TE0, TE1, and TE2 modes are generated and compared with the computed solutions. Next, they investigate the effect of a more intense monochromatic field on the propagation of a 'weak' optical field in a fully three-dimensional cylindrical waveguide.

  3. Collisionless damping of circularly polarized nonlinear Alfvén waves in solar wind plasmas with and without beam protons

    Energy Technology Data Exchange (ETDEWEB)

    Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190, Toyama City, Toyama 930-8555 (Japan); Hada, T. [Department of Earth System Science and Technology, Kyushu University, 6-1, Kasuga City, Fukuoka 816-8580 (Japan); Tsubouchi, K., E-mail: nariyuki@edu.u-toyama.ac.jp [Graduate School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-10-01

    The damping process of field-aligned, low-frequency right-handed polarized nonlinear Alfvén waves (NAWs) in solar wind plasmas with and without proton beams is studied by using a two-dimensional ion hybrid code. The numerical results show that the obliquely propagating kinetic Alfvén waves (KAWs) excited by beam protons affect the damping of the low-frequency NAW in low beta plasmas, while the nonlinear wave-wave interaction between parallel propagating waves and nonlinear Landau damping due to the envelope modulation are the dominant damping process in high beta plasmas. The nonlinear interaction between the NAWs and KAWs does not cause effective energy transfer to the perpendicular direction. Numerical results suggest that while the collisionless damping due to the compressibility of the envelope-modulated NAW plays an important role in the damping of the field-aligned NAW, the effect of the beam instabilities may not be negligible in low beta solar wind plasmas.

  4. Quasi-periodic solutions of nonlinear beam equations with quintic quasi-periodic nonlinearities

    Directory of Open Access Journals (Sweden)

    Qiuju Tuo

    2015-01-01

    Full Text Available In this article, we consider the one-dimensional nonlinear beam equations with quasi-periodic quintic nonlinearities $$ u_{tt}+u_{xxxx}+(B+ \\varepsilon\\phi(tu^5=0 $$ under periodic boundary conditions, where B is a positive constant, $\\varepsilon$ is a small positive parameter, $\\phi(t$ is a real analytic quasi-periodic function in t with frequency vector $\\omega=(\\omega_1,\\omega_2,\\dots,\\omega_m$. It is proved that the above equation admits many quasi-periodic solutions by KAM theory and partial Birkhoff normal form.

  5. Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers

    OpenAIRE

    2011-01-01

    International audience; We study theoretically, numerically and experimentally the nonlinear propagation of partially incoherent optical waves in single mode optical fibers. We revisit the traditional treatment of the wave turbulence theory to provide a statistical kinetic description of the integrable scalar NLS equation. In spite of the formal reversibility and of the integrability of the NLS equation, the weakly nonlinear dynamics reveals the existence of an irreversible evolution toward a...

  6. Nonlinear unified equations for water waves propagating over uneven bottoms in the nearshore region

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Considering the continuous characteristics for water waves propagating over complex topography in the nearshore region, the unified nonlinear equations, based on the hypothesis for a typical uneven bottom, are presented by employing the Hamiltonian variational principle for water waves. It is verified that the equations include the following special cases: the extension of Airy's nonlinear shallow-water equations, the generalized mild-slope equation, the dispersion relation for the second-order Stokes waves and the higher order Boussinesq-type equations.

  7. Exact solutions of optical wave propagation in nonlinear negative refractive medium

    Science.gov (United States)

    Nanda, Lipsa

    2016-04-01

    An analytical and simulation based method has been used to exactly solve the nonlinear Schrödinger's equation (NLSE) and study the solitonic forms in a medium which exhibits frequency dependent dielectric permittivity (ɛ) and magnetic permeability (μ). The model has been extended to describe the propagation of a wave in a nonlinear negative refractive medium (NRM) which is dispersive and negative in nature.

  8. Average intensity and spreading of partially coherent model beams propagating in a turbulent biological tissue

    Science.gov (United States)

    Wu, Yuqian; Zhang, Yixin; Wang, Qiu; Hu, Zhengda

    2016-11-01

    For Gaussian beams with three different partially coherent models, including Gaussian-Schell model (GSM), Laguerre-Gaussian Schell-model (LGSM) and Bessel-Gaussian Schell-model (BGSM) beams propagating through a biological turbulent tissue, the expression of the spatial coherence radius of a spherical wave propagating in a turbulent biological tissue, and the average intensity and beam spreading for GSM, LGSM and BGSM beams are derived based on the fractal model of power spectrum of refractive-index variations in biological tissue. Effects of partially coherent model and parameters of biological turbulence on such beams are studied in numerical simulations. Our results reveal that the spreading of GSM beams is smaller than LGSM and BGSM beams on the same conditions, and the beam with larger source coherence width has smaller beam spreading than that with smaller coherence width. The results are useful for any applications involved light beam propagation through tissues, especially the cases where the average intensity and spreading properties of the light should be taken into account to evaluate the system performance and investigations in the structures of biological tissue.

  9. Propagation of a laser beam in a plasma

    Science.gov (United States)

    Chapman, J. M.; Kevorkian, J.; Steinhauer, L. C.; Vagners, J.

    1975-01-01

    This paper shows that for a nonabsorbing medium with a prescribed index of refraction, the effects of beam stability, line focusing, and beam distortion can be predicted from simple ray optics. When the paraxial approximation is used, diffraction effects are examined for Gaussian, Lorentzian, and square beams. Most importantly, it is shown that for a Gaussian beam, diffraction effects can be included simply by adding imaginary solutions to the paraxial ray equations. Also presented are several procedures to extend the paraxial approximation so that the solution will have a domain of validity of greater extent.

  10. Non-Linear Piezoelectric Actuator with a Preloaded Cantilever Beam

    Directory of Open Access Journals (Sweden)

    Yue Wu

    2015-08-01

    Full Text Available Piezoelectric actuation is widely used for the active vibration control of smart structural systems, and corresponding research has largely focused on linear electromechanical devices. This paper investigates the design and analysis of a novel piezoelectric actuator that uses a piezoelectric cantilever beam with a loading spring to produce displacement outputs. This device has a special nonlinear property relating to converting between kinetic energy and potential energy, and it can be used to increase the output displacement at a lower voltage. The system is analytically modeled with Lagrangian functional and Euler–Lagrange equations, numerically simulated with MATLAB, and experimentally realized to demonstrate its enhanced capabilities. The model is validated using an experimental device with several pretensions of the loading spring, therein representing three interesting cases: a linear system, a low natural frequency system with a pre-buckled beam, and a system with a buckled beam. The motivating hypothesis for the current work is that nonlinear phenomena could be exploited to improve the effectiveness of the piezoelectric actuator’s displacement output. The most practical configuration seems to be the pre-buckled case, in which the proposed system has a low natural frequency, a high tip displacement, and a stable balanced position.

  11. Invariance of spectrum and polarization of electromagnetic Gaussian Schell-model beams propagating in free space

    Institute of Scientific and Technical Information of China (English)

    Jixiong Pu

    2006-01-01

    @@ The propagation of polychromatic electromagnetic Gaussian Schell-model (EGSM) beams in free space is investigated. It is shown that the spectral degree of polarization, spectral degree of coherence, and normalized spectrum change generally on propagation. The conditions of keeping the spectral invariance and keeping polarization invariance for the polychromatic EGSM beams are derived respectively. The results indicate that the constraints on the parameters of EGSM source to keep polarization invariance on propagation are more rigorous than those to keep invariance of the normalized spectrum.

  12. Wave beam propagation in a weakly inhomogeneous isotropic medium: paraxial approximation and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bornatici, M [INFM, Physics Department ' A. Volta' , University of Pavia, I-27100 Pavia (Italy); Maj, O [INFM, Physics Department, University of Milan, I-20133 Milan (Italy)

    2003-05-01

    The various methods put forward for the description of paraxial wave beams propagating in weakly inhomogeneous media are shown to be equivalent to each other. This issue is discussed in terms of a comparative analysis with respect to the complex eikonal-based solution relevant to the propagation of a Gaussian wave beam in a lens-like isotropic medium (such a solution being readily extendible to the propagation in a plasma slab). The accuracy of the paraxial solution thus considered is assessed numerically in comparison with the corresponding exact solution of the Helmholtz equation.

  13. A finite element beam propagation method for simulation of liquid crystal devices.

    Science.gov (United States)

    Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal

    2009-06-22

    An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.

  14. Generation of non-classical optical fields by a beam splitter with second-order nonlinearity

    CERN Document Server

    Prakash, Hari

    2016-01-01

    We propose quantum-mechanical model of a beam splitter with second-order nonlinearity and show that non-classical features such as squeezing and sub-Poissonian photon statistics of optical fields can be generated in output fundamental and second harmonic modes when we mix coherent light beams via such a nonlinear beam splitter.

  15. Generation and propagation of a sine-azimuthal wavefront modulated Gaussian beam.

    Science.gov (United States)

    Lao, Guanming; Zhang, Zhaohui; Luo, Meilan; Zhao, Daomu

    2016-07-21

    We introduce a method for modulating the Gaussian beam by means of sine-azimuthal wavefront and carry out the experimental generation. The analytical propagation formula of such a beam passing through a paraxial ABCD optical system is derived, by which the intensity properties of the sine-azimuthal wavefront modulated Gaussian (SWMG) beam are examined both theoretically and experimentally. Both of the experimental and theoretical results show that the SWMG beam goes through the process from beam splitting to a Gaussian-like profile, which is closely determined by the phase factor and the propagation distance. Appropriate phase factor and short distance are helpful for the splitting of beam. However, in the cases of large phase factor and focal plane, the intensity distributions tend to take a Gaussian form. Such unique features may be of importance in particle trapping and medical applications.

  16. Propagation of Gaussian beams in the presence of gain and loss

    CERN Document Server

    Graefe, Eva-Maria; Schubert, Roman

    2016-01-01

    We consider the propagation of Gaussian beams in a waveguide with gain and loss in the paraxial approximation governed by the Schr\\"odinger equation. We derive equations of motion for the beam in the semiclassical limit that are valid when the waveguide profile is locally well approximated by quadratic functions. For Hermitian systems, without any loss or gain, these dynamics are given by Hamilton's equations for the center of the beam and its conjugate momentum. Adding gain and/or loss to the waveguide introduces a non-Hermitian component, causing the width of the Gaussian beam to play an important role in its propagation. Here we show how the width affects the motion of the beam and how this may be used to filter Gaussian beams located at the same initial position based on their width.

  17. Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals.

    Science.gov (United States)

    Shemer, Keren; Voloch-Bloch, Noa; Shapira, Asia; Libster, Ana; Juwiler, Irit; Arie, Ady

    2013-12-15

    We experimentally demonstrate that the orbital angular momentum (OAM) of a second harmonic (SH) beam, generated within twisted nonlinear photonic crystals, depends both on the OAM of the input pump beam and on the quasi-angular momentum of the crystal. In addition, when the pump's radial index is zero, the radial index of the SH beam is equal to that of the nonlinear crystal. Furthermore, by mixing two noncollinear pump beams in this crystal, we generate, in addition to the SH beams, a new "virtual beam" having multiple values of OAM that are determined by the nonlinear process.

  18. Modulation instability of broad optical beams in nonlinear media with general nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Hongcheng Wang; Weilong She

    2006-01-01

    @@ The modulation instability of quasi-plane-wave optical beams is investigated in the frame of generalized Schr(o)dinger equation with the nonlinear term of a general form. General expressions are derived for the dispersion relation, the critical transverse spatial frequency, as well as the instability growth rate.The analysis generalizes the known results reported previously. A detailed discussion on the modulation instability in biased centrosymmetric photorefractive media is also given.

  19. The complex Jacobi iterative method for three-dimensional wide-angle beam propagation.

    Science.gov (United States)

    Le, Khai Q; Godoy-Rubio, R; Bienstman, Peter; Hadley, G Ronald

    2008-10-13

    A new complex Jacobi iterative technique adapted for the solution of three-dimensional (3D) wide-angle (WA) beam propagation is presented. The beam propagation equation for analysis of optical propagation in waveguide structures is based on a novel modified Padé(1,1) approximant operator, which gives evanescent waves the desired damping. The resulting approach allows more accurate approximations to the true Helmholtz equation than the standard Padé approximant operators. Furthermore, a performance comparison of the traditional direct matrix inversion and this new iterative technique for WA-beam propagation method is reported. It is shown that complex Jacobi iteration is faster and better-suited for large problems or structures than direct matrix inversion.

  20. Selective propagation and beam splitting of surface plasmons on metallic nanodisk chains.

    Science.gov (United States)

    Hu, Yuhui; Zhao, Di; Wang, Zhenghan; Chen, Fei; Xiong, Xiang; Peng, Ruwen; Wang, Mu

    2017-05-01

    Manipulating the propagation of surface plasmons (SPs) on a nanoscale is a fundamental issue of nanophotonics. By using focused electron beam, SPs can be excited with high spatial accuracy. Here we report on the propagation of SPs on a chain of gold nanodisks with cathodoluminescence (CL) spectroscopy. Experimental evidence for the propagation of SPs excited by the focused electron beam is demonstrated. The wavelength of the transmitted SPs depends on the geometrical parameters of the nanodisk chain. Furthermore, we design and fabricate a beam splitter, which selectively transmits SPs of certain wavelengths to a specific direction. By scanning the sample surface point by point and collecting the CL spectra, we obtain the spectral mapping and identify that the chain of the smaller nanodisks can efficiently transport SPs at shorter wavelengths. This Letter provides a unique approach to manipulate in-plane propagation of SPs.

  1. Numerical Simulation of Non-Linear Wave Propagation in Waters of Mildly Varying Topography with Complicated Boundary

    Institute of Scientific and Technical Information of China (English)

    张洪生; 洪广文; 丁平兴; 曹振轶

    2001-01-01

    In this paper, the characteristics of different forms of mild slope equations for non-linear wave are analyzed, and new non-linear theoretic models for wave propagation are presented, with non-linear terms added to the mild slope equations for non-stationary linear waves and dissipative effects considered. Numerical simulation models are developed of non-linear wave propagation for waters of mildly varying topography with complicated boundary, and the effects are studied of different non-linear corrections on calculation results of extended mild slope equations. Systematical numerical simulation tests show that the present models can effectively reflect non-linear effects.

  2. Nonlinear propagation of focused ultrasound in layered biological tissues based on angular spectrum approach

    Institute of Scientific and Technical Information of China (English)

    Zhu Xiao-Feng; Zhou Lin; Zhang Dong; Gong Xiu-Fen

    2005-01-01

    Nonlinear propagation of focused ultrasound in layered biological tissues is theoretically studied by using the angular spectrum approach (ASA), in which an acoustic wave is decomposed into its angular spectrum, and the distribution of nonlinear acoustic fields is calculated in arbitrary planes normal to the acoustic axis. Several biological tissues are used as specimens inserted into the focusing region illuminated by a focused piston source. The second harmonic components within or beyond the biological specimens are numerically calculated. Validity of the theoretical model is examined by measurements. This approach employing the fast Fourier transformation gives a clear visualization of the focused ultrasound, which is helpful for nonlinear ultrasonic imaging.

  3. Second-order statistics of Gaussian Schell-model pulsed beams propagating through atmospheric turbulence.

    Science.gov (United States)

    Chen, Chunyi; Yang, Huamin; Lou, Yan; Tong, Shoufeng

    2011-08-01

    Novel analytical expressions for the cross-spectral density function of a Gaussian Schell-model pulsed (GSMP) beam propagating through atmospheric turbulence are derived. Based on the cross-spectral density function, the average spectral density and the spectral degree of coherence of a GSMP beam in atmospheric turbulence are in turn examined. The dependence of the spectral degree of coherence on the turbulence strength measured by the atmospheric spatial coherence length is calculated numerically and analyzed in depth. The results obtained are useful for applications involving spatially and spectrally partially coherent pulsed beams propagating through atmospheric turbulence.

  4. Propagation of specular and anti-specular Gaussian Schell-model beams in oceanic turbulence

    Science.gov (United States)

    Zhou, Zhaotao; Guo, Mengwen; Zhao, Daomu

    2017-01-01

    On the basis of the extended Huygens-Fresnel principle and the unified theory of coherence and polarization of light, we investigate the propagation properties of the specular and anti-specular Gaussian Schell-model (GSM) beams through oceanic turbulence. It is shown that the specularity of specular GSM beams and the anti-specularity of anti-specular GSM beams are destroyed on propagation in oceanic turbulence. The spectral density and the spectral degree of coherence are also studied in detail. The results may be helpful for underwater communication.

  5. Propagation of the Lissajous singularity dipole emergent from non-paraxial polychromatic beams

    Science.gov (United States)

    Haitao, Chen; Gao, Zenghui; Wang, Wanqing

    2017-06-01

    The propagation of the Lissajous singularity dipole (LSD) emergent from the non-paraxial polychromatic beams is studied. It is found that the handedness reversal of Lissajous singularities, the change in the shape of Lissajous figures, as well as the creation and annihilation of the LSD may take place by varying the propagation distance, off-axis parameter, wavelength, or amplitude factor. Comparing with the LSD emergent from paraxial polychromatic beams, the output field of non-paraxial polychromatic beams is more complicated, which results in some richer dynamic behaviors of Lissajous singularities, such as more Lissajous singularities and no vanishing of a single Lissajous singularity at the plane z>0.

  6. Quasi-periodic Solutions of the General Nonlinear Beam Equations

    Institute of Scientific and Technical Information of China (English)

    GAO YI-XIAN

    2012-01-01

    In this paper,one-dimensional (1D) nonlinear beam equations of the form utt - uxx + uxxxx + mu = f(u)with Dirichlet boundary conditions are considered,where the nonlinearity f is an analytic,odd function and f(u) = O(u3).It is proved that for all m ∈ (0,M*] (∈) R(M* is a fixed large number),but a set of small Lebesgue measure,the above equations admit small-amplitude quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dimensional dynamical system.The proof is based on an infinite dimensional KAM theory and a partial Birkhoff normal form technique.

  7. Propagation of Nonlinear Phenomena in a Measurement Sequence

    Directory of Open Access Journals (Sweden)

    Marija Marković

    2012-02-01

    Full Text Available Measurements provide one with results, in the form of both quantitative estimates of measured quantity along with attributed quantitative probabilistic analysis. Measurement is prescribed precisely in order to enable researchers, experts or other measurers to obtain maximum confidence in its results. In that way, the probability of obtaining unpredicted or unwanted consequences is minimised. Yet, owing to a rather large number of degrees of freedom in a typical measurement sequence, its nonlinear character and nonlinear couplings, in general it is not known in what amount a variation in measurement conditions brings about significantly larger variations in measured quantities or its derivatives.In this article we treat in some details the aforementioned influence of variations and argue about possible results. In order to illustrate the treated influences we present results of a rather simple and common measurement of surface roughness of solid state objects. It is argued that there is no significant augmentation of variations in results of initial measurements throughout measurement sequence.

  8. A Schrodinger formulation research for light beam propagation through the media of complex refractive index

    Institute of Scientific and Technical Information of China (English)

    刘承宜; 郭弘; 胡巍

    2002-01-01

    The Helmhotz equation of light beam propagating through a medium of complex refractive index is reduced to the axial-coordinate-dependent Schr?dinger equation of complex potential. The new bra vector, the new expectation value of a dynamical variable and the extended Heisenberg picture are defined by the inverse of the evolution operator instead of its Hermitian adjoint, and the complex beam propagation parameters defined in terms of the new expectation value, the complex ABCD law and the ABCD formulation of the Huygens' integral are discussed in terms of quantum mechanics. It is shown that the evolution equations of the complex beam propagation parameters are the same as those of the beam propagation parameters of beam propagating through a medium of real refractive index. The research on an optical system of the conservative complex beam quality factor shows that the complex ABCD law holds, the evolution of its coordinate operator and the momentum operator is linear, and the Huygens' integral is of the ABCD formulation.

  9. Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion

    Science.gov (United States)

    Chapman, J. M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.

  10. Review of intense-ion-beam propagation with a view toward measuring ion energy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.

    1982-08-25

    The subject of this review is intense ion beam propagation and the possibilities of measuring time dependent ion energy in the beam. Propagation effects discussed include charge separation, charge and current autoneutralization, electron thermalization and current neutralization decay. The interaction of a plasma beam with material obstacles, like collimators, and with transverse magnetic fields is also described. Depending on beam energy, density and pulse length, these interactions can include material ablation with plasmadynamic flow and undeflected propagation across transverse magnetic fields by a polarization drift. On the basis of this review I conclude that three diagnostics: a single floating potential probe, net current probes (Faraday cups) and a Rutherford scattering spectrometer appear capable of giving prompt, time dependent ion energy measurements.

  11. Off-axial elliptical cosine-Gaussian beams and their propagation properties

    Institute of Scientific and Technical Information of China (English)

    Lu Zhang-De

    2007-01-01

    In this paper, a new kind of light beam called off-axial elliptical cosine-Gaussian beam (ECosGBs) is denned by using the tensor method. An analytical propagation expression for the ECosGBs passing through axially nonsymmetrical optical systems is derived by using vector integration. The intensity distributions of ECosGBs on the input plane, on the output plane with the equivalent Presnel number being equal to 0.1 and on the focal plane are respectively illustrated for the propagation properties. The results indicate that an ECosGB is eventually transformed into an elliptical cosh-Gaussian beam. In other words, ECosGBs and cosh-Gaussian beams act in a reciprocal manner after propagation.

  12. Slant path average intensity of finite optical beam propagating in turbulent atmosphere

    Institute of Scientific and Technical Information of China (English)

    Yixin Zhang; Gaogang Wang

    2006-01-01

    The average intensity of finite laser beam propagating through turbulent atmosphere is calculated from the extended Huygens Fresnel principle. Formulas are presented for the slant path average intensity from an arbitrarily truncated Gaussian beam. The new expressions are derived from the modified von Karman spectrum for refractive-index fluctuations, quadratic approximation of the structure function,and Gaussian approximation for the product of Gaussian function and Bessel function. It is shown that the form of average intensity is not a Gaussian function but a polynomial of the power of the binomial function, Gaussian function, and the incomplete gamma function. The results also show that the mean irradiance of a finite optical beam propagating in slant path turbulent atmosphere not only depends on the effective beam radius at the transmitting aperture plane, propagation distance, and long-term lateral coherence length of spherical wave, but also on the radius of emit aperture.

  13. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    Science.gov (United States)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  14. Evolution of branch points for a laser beam propagating through an uplink turbulent atmosphere.

    Science.gov (United States)

    Ge, Xiao-Lu; Liu, Xuan; Guo, Cheng-Shan

    2014-03-24

    Evolution of branch points in the distorted optical field is studied when a laser beam propagates through turbulent atmosphere along an uplink path. Two categories of propagation events are mainly explored for the same propagation height: fixed wavelength with change of the turbulence strength and fixed turbulence strength with change of the wavelength. It is shown that, when the beam propagates to a certain height, the density of the branch-points reaches its maximum and such a height changes with the turbulence strength but nearly remains constant with different wavelengths. The relationship between the density of branch-points and the Rytov number is also given. A fitted formula describing the relationship between the density of branch-points and propagation height with different turbulence strength and wavelength is found out. Interestingly, this formula is very similar to the formula used for describing the Blackbody radiation in physics. The results obtained may be helpful for atmospheric optics, astronomy and optical communication.

  15. Nonlinear propagation of a wave packet in a hard-walled circular duct

    Science.gov (United States)

    Nayfeh, A. H.

    1975-01-01

    The method of multiple scales is used to derive a nonlinear Schroedinger equation for the temporal and spatial modulation of the amplitudes and the phases of waves propagating in a hard-walled circular duct. This equation is used to show that monochromatic waves are stable and to determine the amplitude dependance of the cutoff frequencies.

  16. The nonlinear propagation of acoustic waves in a viscoelastic medium containing cylindrical micropores

    Institute of Scientific and Technical Information of China (English)

    Feng Yu-Lin; Liu Xiao-Zhou; Liu Jie-Hui; Ma Li

    2009-01-01

    Based on an equivalent medium approach,this paper presents a model describing the nonlinear propagation of acoustic waves in a viscoelastic medium containing cylindrical micropores. The influences of pores' nonlinear oscillations on sound attenuation,sound dispersion and an equivalent acoustic nonlinearity parameter are discussed. The calculated results show that the attenuation increases with an increasing volume fraction of mieropores. The peak of sound velocity and attenuation occurs at the resonant frequency of the micropores while the peak of the equivalent acoustic nonlinearity parameter occurs at the half of the resonant frequency of the micropores. Furthermore,multiple scattering has been taken into account,which leads to a modification to the effective wave number in the equivalent medium approach. We find that these linear and nonlinear acoustic parameters need to be corrected when the volume fraction of micropores is larger than 0.1%.

  17. Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alex J. Dragt; Filippo Neri; Govindan Rangarajan; David Douglas; Liam M. Healy; Robert D. Ryne

    1988-12-01

    The purpose of this paper is to present a summary of new methods, employing Lie algebraic tools, for characterizing beam dynamics in charged-particle optical systems. These methods are applicable to accelerator design, charged-particle beam transport, electron microscopes, and also light optics. The new methods represent the action of each separate element of a compound optical system, including all departures from paraxial optics, by a certain operator. The operators for the various elements can then be concatenated, following well-defined rules, to obtain a resultant operator that characterizes the entire system. This paper deals mostly with accelerator design and charged-particle beam transport. The application of Lie algebraic methods to light optics and electron microscopes is described elsewhere (1, see also 44). To keep its scope within reasonable bounds, they restrict their treatment of accelerator design and charged-particle beam transport primarily to the use of Lie algebraic methods for the description of particle orbits in terms of transfer maps. There are other Lie algebraic or related approaches to accelerator problems that the reader may find of interest (2). For a general discussion of linear and nonlinear problems in accelerator physics see (3).

  18. On two transverse nonlinear models of axially moving beams

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Nonlinear models of transverse vibration of axially moving beams are computationally investigated. A partial-differential equation is derived from the governing equation of coupled planar motion by omit- ting its longitudinal terms. The model can be reduced to an integro-partial-differential equation by av- eraging the beam disturbed tension. Numerical schemes are respectively presented for the governing equations of coupled planar and the two governing equations of transverse motion via the finite dif- ference method and differential quadrature method under the fixed boundary and the simple support boundary. A steel beam and a copper beam are treated as examples to demonstrate the deviations of the solutions to the two transverse equations from the solution to the coupled equation. The numerical results indicate that the differences increase with the amplitude of vibration and the axial speed. Both models yield almost the same precision results for small amplitude vibration and the inte- gro-partial-differential equation gives better results for large amplitude vibration.

  19. On two transverse nonlinear models of axially moving beams

    Institute of Scientific and Technical Information of China (English)

    DING Hu; CHEN LiQun

    2009-01-01

    Nonlinear models of transverse vibration of axially moving beams are computationally investigated. A partial-differential equation is derived from the governing equation of coupled planar motion by omit-ting its longitudinal terms. The model can be reduced to an integro-partial-differential equation by av-eraging the beam disturbed tension. Numerical schemes are respectively presented for the governing equations of coupled planar and the two governing equations of transverse motion via the finite dif-ference method and differential quadrature method under the fixed boundary and the simple support boundary. A steel beam and a copper beam are treated as examples to demonstrate the deviations of the solutions to the two transverse equations from the solution to the coupled equation. The numerical results indicate that the differences increase with the amplitude of vibration and the axial speed. Both models yield almost the same precision results for small amplitude vibration and the inte-gro-partial-differential equation gives better results for large amplitude vibration.

  20. Active Signal Propagation and Imaging Using Vortex Beams

    Science.gov (United States)

    2014-08-01

    power tolerance (~500W/cm2). As shown in Fig. 1 a horizontally polarized continuous wave Gaussian beam (Coherent: Verdi-V18, 532 nm, 0-20 W) is expanded ...rectangular quart cell (1cm x 10 cm x 10cm). Various TM conditions are simulated inside the cell by diluting deionized water with polystyrene spheres...polarized Gaussian beam from a Helium-Neon laser cavity (633nm, ~5mW) is expanded and collimated to a beam waist of ~5mm and converted into an OV baring

  1. Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator

    Science.gov (United States)

    Del Bino, Leonardo; Silver, Jonathan M.; Stebbings, Sarah L.; Del'Haye, Pascal

    2017-01-01

    Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors. PMID:28220865

  2. Analytical Model for Fictitious Crack Propagation in Concrete Beams

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Krenk, Steen; Brincker, Rune

    1995-01-01

    An analytical model for load-displacement curves of concrete beams is presented. The load-displacement curve is obtained by combining two simple models. The fracture is modeled by a fictitious crack in an elastic layer around the midsection of the beam. Outside the elastic layer the deformations ...... starts to grow correspond to the same bending moment. Closed-form solutions for the maximum size of the fracture zone and the minimum slope on the load-displacement curve are given.......An analytical model for load-displacement curves of concrete beams is presented. The load-displacement curve is obtained by combining two simple models. The fracture is modeled by a fictitious crack in an elastic layer around the midsection of the beam. Outside the elastic layer the deformations...

  3. Nonlinear propagation of weakly relativistic ion-acoustic waves in electron–positron–ion plasma

    Indian Academy of Sciences (India)

    M G HAFEZ; M R TALUKDER; M HOSSAIN ALI

    2016-11-01

    This work presents theoretical and numerical discussion on the dynamics of ion-acoustic solitary wave for weakly relativistic regime in unmagnetized plasma comprising non-extensive electrons, Boltzmann positrons and relativistic ions. In order to analyse the nonlinear propagation phenomena, the Korteweg–de Vries(KdV) equation is derived using the well-known reductive perturbation method. The integration of the derived equation is carried out using the ansatz method and the generalized Riccati equation mapping method. The influenceof plasma parameters on the amplitude and width of the soliton and the electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves are described. The obtained results of the nonlinear low-frequencywaves in such plasmas may be helpful to understand various phenomena in astrophysical compact object and space physics.

  4. Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank.

    Science.gov (United States)

    Bardoscia, Marco; Caccioli, Fabio; Perotti, Juan Ignacio; Vivaldo, Gianna; Caldarelli, Guido

    2016-01-01

    We consider a dynamical model of distress propagation on complex networks, which we apply to the study of financial contagion in networks of banks connected to each other by direct exposures. The model that we consider is an extension of the DebtRank algorithm, recently introduced in the literature. The mechanics of distress propagation is very simple: When a bank suffers a loss, distress propagates to its creditors, who in turn suffer losses, and so on. The original DebtRank assumes that losses are propagated linearly between connected banks. Here we relax this assumption and introduce a one-parameter family of non-linear propagation functions. As a case study, we apply this algorithm to a data-set of 183 European banks, and we study how the stability of the system depends on the non-linearity parameter under different stress-test scenarios. We find that the system is characterized by a transition between a regime where small shocks can be amplified and a regime where shocks do not propagate, and that the overall stability of the system increases between 2008 and 2013.

  5. Propagation characteristics of Bessel beams generated by continuous, incoherent light sources.

    Science.gov (United States)

    Altıngöz, Ceren; Yalızay, Berna; Akturk, Selcuk

    2015-08-01

    We investigate the propagation behavior of Bessel beams generated by incoherent, continuous light sources. We perform experiments with narrowband and broadband light emitting diodes, and, for comparison, with a laser diode. We observe that the formation of Bessel beams is affected minimally by temporal coherence, while spatial coherence determines the longitudinal evolution of the beam profile. With spatially incoherent beams, the fringe contrast is comparable to the coherent case at the beginning of the Bessel zone, while it completely fades away by propagation, turning into a cylindrical light pipe. Our results show that beam shaping methods can be extended to cases of limited spatial coherence, paving the way for potential new uses and applications of such sources.

  6. Propagation of obstructed Bessel and Bessel–Gauss beams

    CSIR Research Space (South Africa)

    Litvin, IA

    2008-08-01

    Full Text Available . and Dholakia K., “Wavelength dependent propagation and reconstruction of white light Bessel beams”, J. Opt. A: Pure Appl. Opt., 8, 477, (2006) 10. Anguiano-Morales M., Mendez-Otero M. and Iturbe-Castillo D., “Conical dynamics of Bessel beams”, Opt. Eng., 46...

  7. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    Energy Technology Data Exchange (ETDEWEB)

    Dymnikov, A.D. [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process

    1993-12-31

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.

  8. Scintillation reduction using multi-beam propagating technique in atmospheric WOCDMA system

    Institute of Scientific and Technical Information of China (English)

    Yaqin Zhao; Danli Xu; Xin Zhong

    2011-01-01

    Wireless optical code division multiple access (WOCDMA) combines code division multiple access (CDMA) with wireless-optic communications.It can not only reserve the advantage of CDMA technology in radio frequency (RF) communication,but also use huge bandwidth and have simple network protocol,random access,and other characteristics.%We propose employing multi-beam propagating technology to mitigate the influence of atmospheric scintillation to the wireless optical code division multiple access (WOCDMA) system and then deduce the bit error rate (BER) formulas of systems in weak and strong scintillations, respectively. According to simulation experiment results, multi-beam propagation can improve the system performance very well compared with single-beam propagating technique. Moreover, the more beams we use, the better the performance we get. When the received optical power is -30 dBm, the BER of the system employing four beams is 5 and 1 dB lower than that of using single-beam propagating technique in weak and strong scintillations, respectively.

  9. Evaluation and Correction of the Non-linear Distortion of CEBAF Beam Position Monitors

    Energy Technology Data Exchange (ETDEWEB)

    M. Spata, T.L. Allison, K.E. Cole, J. Musson, J. Yan

    2011-09-01

    The beam position monitors at CEBAF have four antenna style pickups that are used to measure the location of the beam. There is a strong nonlinear response when the beam is far from the electrical center of the device. In order to conduct beam experiments at large orbit excitation we need to correct for this nonlinearity. The correction algorithm is presented and compared to measurements from our stretched wire BPM test stand.

  10. Dynamics of the off axis intense beam propagation in a spiral inflector

    Science.gov (United States)

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2017-01-01

    In this paper the dynamics of space charge dominated beam in a spiral inflector is discussed by developing equations of motion for centroid and beam envelope for the off axis beam propagation. Evolution of the beam centroid and beam envelope is studied as a function of the beam current for various input beam parameters. The transmission of beam through the inflector is also estimated as a function of the beam current for an on axis and off axis beam by tracking a large number of particles. Simulation studies show that shift of the centroid from the axis at the inflector entrance affects the centroid location at the exit of the inflector and causes reduction in the beam transmission. The centroid shift at the entrance in the horizontal plane (h plane) is more critical as it affects the centroid shift in the vertical plane (u plane) by a large amount near the inflector exit where the available aperture is small. The beam transmission is found to reduce with increase in the centroid shift as well as with the beam current.

  11. Impact of nonlinear absorption on propagation of microwave in a plasma filled rectangular waveguide

    Science.gov (United States)

    Sobhani, H.; Vaziri, M.; Rooholamininejad, H.; Bahrampour, A. R.

    2016-07-01

    In collisional and ponderomotive predominant regimes, the propagation of microwave in rectangular waveguide filled with collisional plasma is investigated numerically. The dominant mode is excited through an evacuated waveguide and then enters a similar and co-axis waveguide filled with plasma. In collisional predominant regime, the amplitude of electric field is oscillated along propagation path; outset of propagation path due to the electron-ion collision, the intensity oscillations are reduced. Afterward, under competition between the collisional nonlinearity and absorption, the intensity is increased, so the electron density peak is created in middle of waveguide. In ponderomotive predominant regime, the intensity is slowly decreased due to collision, so the electron density is ramped. Control parameters, like the frequency, input power, collision frequency, and background electron density are surveyed that can be used to control propagation characteristics of microwave. This method can be used to control heating of fusion plasma and accelerate charged particle.

  12. Pulse propagation in a two-pass optical amplifier with arbitrary laser beams overlap

    Directory of Open Access Journals (Sweden)

    AH Farahbod

    2011-09-01

    Full Text Available An analytical model for two-pass optical amplifier with arbitrary beams overlap has been developed which generalized the classical theory of Frantz-Nodvik for single pass amplifier. The effect of counterpropagating beams on gain and output energy fluence included in the model. Moreover, the appropriate limiting relations for two special cases of weak input signal and saturation state of the amplifier gain have been derived. The results indicate that for complete beams overlap, the gain and output energy have the least values. The model predictions are consistent with experimental observations and exact analytical model for two-pass amplifier when beam propagation paths are coincided.

  13. Propagation properties of partially coherent Hermite-Gaussian beams through non-Kolmogorov turbulence

    Institute of Scientific and Technical Information of China (English)

    He Xue-Mei; L(u) Bai-Da

    2011-01-01

    The propagation properties of partially coherent Hermite-Gaussian beams through non-Kolmogorov atmospheric turbulence are studied. The effects of non-Kolmogorov turbulence and beam nonparaxiality on the average intensity evolution and the beam-width spreading are stressed. It is found that the evolution of the average intensity distribution and the beam-width spreading depends on the generalized exponent factor,namely,on the non-Kolmogorov turbulence strength for the paraxial case. For the non-paraxial case the effect of the turbulence is negligible,while the beamwidth spreading becomes very large. The analytical results are illustrated numerically and interpreted physically.

  14. Analytical Model for Fictitious Crack Propagation in Concrete Beams

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Krenk, S.; Brincker, Rune

    -displacement curve where the fictitious crack starts to develope, and the point where the real crack starts to grow will always correspond to the same bending moment. Closed from solutions for the maximum size of the fracture zone and the minimum slope on the load-displacement curve is given. The latter result......An analytical model for load-displacement curves of unreinforced notched and un-notched concrete beams is presented. The load displacement-curve is obtained by combining two simple models. The fracture is modelled by a fictitious crack in an elastic layer around the mid-section of the beam. Outside...

  15. Propagation of surface SH waves on a nonlinear half space coated with a layer of nonuniform thickness

    Science.gov (United States)

    Deliktaş, Ekin; Teymür, Mevlüt

    2017-07-01

    In this study, the propagation of shear horizontal (SH) waves in a nonlinear elastic half space covered by a nonlinear elastic layer with a slowly varying interface is examined. The constituent materials are assumed to be homogenous, isotropic, elastic and having different mechanical properties. By employing the method of multiple scales, a nonlinear Schrödinger equation (NLS) with variable coefficients is derived for the nonlinear self-modulation of SH waves. We examine the effects of dispersion, irregularity of the interface and nonlinearity on the propagation characteristics of SH waves.

  16. Composite optical vortices in noncollinear Laguerre-Gaussian beams and their propagation in free space

    Institute of Scientific and Technical Information of China (English)

    Cheng Ke; Liu Pu-Sheng; Lü Bai-Da

    2008-01-01

    Taking two Laguerre-Gauasian beams with topological charge l=±1 as an example,this paper studies the composite optical vortices formed by two noncollinear Laguerre-Gaussian beams with different phases,amplitudes,waist widths,off-axis distances,and their propagation in flee space. It is shown by detailed numerical illustrative examples that the number and location of composite vortices at the waist plane are variable by varying the relative phase β,amplitude ratio η,waist width ratio ξ,or off-axis distance ratio μ.The net topological charge lnet is not always equal to the sum lsum of charges of the two component beams.The motion,creation and annihilation of composite vortices take place in the free-space propagation,and the net charge during the propagation remains unchanged and equals to the net charge at the waist plane.

  17. Harmonic Propagation and Interaction Evaluation between Small-Scale Wind Farms and Nonlinear Loads

    Directory of Open Access Journals (Sweden)

    Cheng-Xiong Mao

    2013-07-01

    Full Text Available Distributed generation is a flexible and effective way to utilize renewable energy. The dispersed generators are quite close to the load, and pose some power quality problems such as harmonic current emissions. This paper focuses on the harmonic propagation and interaction between a small-scale wind farm and nonlinear loads in the distribution grid. Firstly, by setting the wind turbines as P – Q(V nodes, the paper discusses the expanding Newton-Raphson power flow method for the wind farm. Then the generalized gamma mixture models are proposed to study the non-characteristic harmonic propagation of the wind farm, which are based on Gaussian mixture models, improved phasor clustering and generalized Gamma models. After the integration of the small-scale wind farm, harmonic emissions of nonlinear loads will become random and fluctuating due to the non-stationary wind power. Furthermore, in this paper the harmonic coupled admittance matrix model of nonlinear loads combined with a wind farm is deduced by rigorous formulas. Then the harmonic propagation and interaction between a real wind farm and nonlinear loads are analyzed by the harmonic coupled admittance matrix and generalized gamma mixture models. Finally, the proposed models and methods are verified through the corresponding simulation models in MATLAB/SIMULINK and PSCAD/EMTDC.

  18. Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation.

    Science.gov (United States)

    Eyyuboğlu, Halil T; Voelz, David; Xiao, Xifeng

    2013-11-20

    Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is found that in almost all circumstances studied, the zeroth-order Bessel beam will deliver the lowest scintillation. Low aperture averaged scintillation levels are also observed for the fourth-order Bessel beam truncated by a narrower source window. When assessed relative to the scintillation of a Gaussian beam of equal source power, Bessel beams generally have less scintillation, particularly at small receiver aperture sizes and small beam orders. Upon including in this relative performance measure the criteria of per unit received power, this advantageous position of Bessel beams mostly disappears, but zeroth- and first-order Bessel beams continue to offer some advantage for relatively smaller aperture sizes, larger source powers, larger source plane dimensions, and intermediate propagation lengths.

  19. Determination of the Mode I Interlaminar Fracture Toughness by Using a Nonlinear Double-Cantilever Beam Specimen

    Science.gov (United States)

    Pavelko, V.; Lapsa, K.; Pavlovskis, P.

    2016-07-01

    The aim of this study is estimation of the effect of large deflections of a double-cantilever beam (DCB) on the accuracy of determination of the mode I interlaminar fracture toughness GIc of layered composites by using the nonlinear theory of bending of beams. The differential equation of the deflection curve of arm of the DCB specimen in the natural form was used to analyze the strain energy of the specimen and its strain energy release rate GI upon propagation of delamination under the action of cleavage forces at the ends of cantilevers. An algorithm for calculating the strain energy and its release rate in the DCB specimens is realized in the form of a MATLAB code. An experimental study was carried out on DCB specimens of a highly flexible carbon/epoxy laminate. The validity of the nonlinear model developed is demonstrated. The standard methods used to determine GIc are refined for the case of highly flexible specimens.

  20. Motion-free hybrid design laser beam propagation analyzer using a digital micromirror device and a variable focus liquid lens.

    Science.gov (United States)

    Sheikh, Mumtaz; Riza, Nabeel A

    2010-06-01

    To the best of our knowledge, we propose the first motion-free laser beam propagation analyzer with a hybrid design using a digital micromirror device (DMD) and a liquid electronically controlled variable focus lens (ECVFL). Unlike prior analyzers that require profiling the beam at multiple locations along the light propagation axis, the proposed analyzer profiles the beam at the same plane for multiple values of the ECVFL focal length, thus eliminating beam profiler assembly motion. In addition to measuring standard Gaussian beam parameters, the analyzer can also be used to measure the M(2) beam propagation parameter of a multimode beam. Proof-of-concept beam parameter measurements with the proposed analyzer are successfully conducted for a 633 nm laser beam. Given the all-digital nature of the DMD-based profiling and all-analog motion-free nature of the ECVFL beam focus control, the proposed analyzer versus prior art promises better repeatability, speed, and reliability.

  1. Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides

    Science.gov (United States)

    Lysenko, Oleg; Bache, Morten; Malureanu, Radu; Lavrinenko, Andrei

    2016-04-01

    This paper is devoted to experimental and theoretical studies of nonlinear propagation of a long-range surface plasmon polariton (LRSPP) in gold strip waveguides. The plasmonic waveguides are fabricated in house, and contain a gold layer, tantalum pentoxide adhesion layers, and silicon dioxide cladding. The optical characterization was performed using a high power picosecond laser at 1064 nm. The experiments reveal two nonlinear optical effects: nonlinear power transmission and spectral broadening of the LRSPP mode in the waveguides. Both nonlinear optical effects depend on the gold layer thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrödinger equation is solved. The dispersion length is much larger than the waveguides length, and the chromatic dispersion does not affect the propagation of the plasmonic mode. We find that the third-order susceptibility of the gold layer has a dominant contribution to the effective third-order susceptibility of the LRSPP mode. The real part of the effective third-order susceptibility leads to the observed spectral broadening through the self-phase modulation effect, and its imaginary part determines the nonlinear absorption parameter and leads to the observed nonlinear power transmission. The experimental values of the third-order susceptibility of the gold layers are obtained. They indicate an effective enhancement of the third-order susceptibility for the gold layers, comparing to the bulk gold values. This enhancement is explained in terms of the change of the electrons motion.

  2. Accurate finite difference beam propagation method for complex integrated optical structures

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Povlsen, Jørn Hedegaard; Bjarklev, Anders Overgaard

    1993-01-01

    A simple and effective finite-difference beam propagation method in a z-varying nonuniform mesh is developed. The accuracy and computation time for this method are compared with a standard finite-difference method for both the 3-D and 2-D versions......A simple and effective finite-difference beam propagation method in a z-varying nonuniform mesh is developed. The accuracy and computation time for this method are compared with a standard finite-difference method for both the 3-D and 2-D versions...

  3. Propagation of broadband gaussian Schell-model beams in the apertured fractional Fourier transformation systems.

    Science.gov (United States)

    Mao, Haidan; Du, Xinyue; Chen, Linfei; Zhao, Daomu

    2011-06-01

    On the basis of the fact that a hard-edged aperture function can be expressed as finite matrices with different weighting coefficients, we obtain the analytical formula for the propagation of the broadband gaussian Schell-model (BGSM) beam through the apertured fractional Fourier transformation (AFrFT) system. It is shown by numerical examples that the intensity distribution in the plane of a small fractional order is obviously influenced by the bandwidth when the BGSM beams propagate through the AFrFT system. Further extensions are also pointed out.

  4. Vectorial Nonparaxial Four-Petal Gaussian Beams and Their Propagation in Free Space

    Institute of Scientific and Technical Information of China (English)

    GAO Zeng-Hui; L(U) Bai-Da

    2006-01-01

    @@ The vectorial nonparaxial four-petal Gaussian beam (FPGB) is introduced. The closed-form propagation expressions for the free-space propagation of FPGBs are derived and their more general applicable advantages are illustrated analytically and numerically. Some special interesting cases, in particular the paraxial one, are discussed. It is found that the parameter f = 1/kw0 with the k being the wave number and w0 being the waist width plays a crucial role in determining the nonparaxiallity of FPGBs. For small values of the f parameter the paraxial approximation is allowable. In the nonparaxial regime the beam order n additionally affects the vectorial and nonparaxial behaviour of FPGBs.

  5. Nonlinear wave propagation through a ferromagnet with damping in (2+1) dimensions

    Indian Academy of Sciences (India)

    S G Bindu; V C Kuriakose

    2000-02-01

    We investigate how dissipation and nonlinearity can affect the electromagnetic wave propagating through a saturated ferromagnet in the presence of an external magnetic field in (2+1) dimensions. The propagation of electromagnetic waves through a ferromagnet under an external magnetic field in the presence of dissipative effect has been studied using reductive perturbation method. It is found that to the lowest order of perturbation the system of equations for the electromagnetic waves in a ferromagnet can be reduced to an integro-differential equation.

  6. Enhancing the accelerated beam current in the booster synchrotron by optimizing the transport line beam propagation

    Indian Academy of Sciences (India)

    Saini R S; Tyagi Y; Ghodke A D; Puntambekar T A

    2016-04-01

    In this paper, we present the results of transverse beam emittance and twiss parameter measurement of an electron beam, delivered by a 20 MeV microtron which is used as a pre-injector system for a booster synchrotron in the Indus Accelerator Facility at RRCAT Indore. Based on these measured beam parameters, beam optics of a transport line was optimized and its results are alsodiscussed in this paper. This beam transport line is used to transport the electron beam from the 20MeV microtron to the booster synchrotron. The booster synchrotron works as a main injector for Indus-1 and Indus-2 synchrotron radiation facilities. To optimize the beam optics of a transport linefor proper beam transmission through the line as well as to match the beam twiss parameters at the beam injection point of another accelerator, it is necessary to know the transverse beam emittance and twiss parameters of the beam coming from the first one. A MATLAB-based GUI program has been developed to calculate the beam emittance and twiss parameters, using quadrupole scanmethod. The measured parameters have been used for beam transport line optimization and twiss parameters matching at booster injection point. After this optimization, an enhancement of ∼50% beam current has been observed in the booster synchrotron.

  7. Analysis of a Beam Made of Physical Nonlinear Material on Nonlinear Elastic Foundation under a Moving Concentrated Load

    Directory of Open Access Journals (Sweden)

    E. Mardani

    2008-01-01

    Full Text Available A prismatic beam made of a behaviorally nonlinear material was analyzed under a concentrated load moving with a known velocity on a nonlinear elastic foundation with a reaction the vibration equation of motion was derived using Hamilton principle and Euler Lagrange equation. The amplitude of vibration, circular frequency, bending moment, stress and deflection of the beam can be calculated by the presented solution. Considering the response of the beam, in the sense of its resonance, it was found that there is no critical velocity when the behavior of the beam and foundation material is assumed to be physically nonlinear and there are finite values for the deflection, stress and bending moment of the beam when

  8. Robustness of bipartite Gaussian entangled beams propagating in lossy channels

    CERN Document Server

    Barbosa, F A S; de Faria, A J; Cassemiro, K N; Villar, A S; Nussenzveig, P; Martinelli, M; 10.1038/nphoton.2010.222

    2010-01-01

    Subtle quantum properties offer exciting new prospects in optical communications. Quantum entanglement enables the secure exchange of cryptographic keys and the distribution of quantum information by teleportation. Entangled bright beams of light attract increasing interest for such tasks, since they enable the employment of well-established classical communications techniques. However, quantum resources are fragile and undergo decoherence by interaction with the environment. The unavoidable losses in the communication channel can lead to a complete destruction of useful quantum properties -- the so-called "entanglement sudden death". We investigate the precise conditions under which this phenomenon takes place for the simplest case of two light beams and demonstrate how to produce states which are robust against losses. Our study sheds new light on the intriguing properties of quantum entanglement and how they may be tamed for future applications.

  9. Effect of oceanic turbulence on the propagation of cosine-Gaussian-correlated Schell-model beams

    Science.gov (United States)

    Ding, Chaoliang; Liao, Lamei; Wang, Haixia; Zhang, Yongtao; Pan, Liuzhan

    2015-03-01

    On the basis of the extended Huygens-Fresnel principle, the analytic expression for the cross-spectral density function of the cosine-Gaussian-correlated Schell-model (CGSM) beams propagating in oceanic turbulence is derived and used to investigate the spectral density and spectral degree of coherence of CGSM beams. The dependence of the spectral density and spectral degree of coherence of CGSM beams on the oceanic turbulence parameters including temperature-salinity balance parameter ω, mean square temperature dissipation rate χT and energy dissipation rate per unit mass ɛ is stressed and illustrated numerically. It is shown that oceanic turbulence plays an important role in the evolution of spectral density and spectral degree of coherence of CGSM beams upon propagation.

  10. Scintillation reduction for combined Gaussian-vortex beam propagating through turbulent atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory; Gorshkov, V. N. [NATL' TECH. UNIV. OF UA; Torous, S. V. [NATL' TECH. UNIV. OF UA

    2010-12-14

    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams (PCBs), including the optical vortices, propagating in turbulent atmospheres, The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analyzed. A method for significantly reducing the SI, by averaging the signal at the detector over a set of PCBs, is described, This novel method is to generate the PCBs by combining two laser beams - Gaussian and vortex beams, with different frequencies (the difference between these two frequencies being significantly smaller than the frequencies themselves). In this case, the SI is effectively suppressed without any high-frequency modulators.

  11. Scintillation reduction for combined Gaussian-vortex beam propagating through turbulent atmosphere

    CERN Document Server

    Berman, G P; Torous, S V

    2011-01-01

    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams (PCBs), including the optical vortices, propagating in turbulent atmospheres. The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analyzed. A method for significantly reducing the SI, by averaging the signal at the detector over a set of PCBs, is described. This novel method is to generate the PCBs by combining two laser beams - Gaussian and vortex beams, with different frequencies (the difference between these two frequencies being significantly smaller than the frequencies themselves). In this case, the SI is effectively suppressed without any high-frequency modulators.

  12. A study of nondiffracting Lommel beams propagating in a medium containing spherical scatterers

    Science.gov (United States)

    Belafhal, A.; Ez-zariy, L.; Hricha, Z.

    2016-11-01

    By means of the expansion of the nondiffracting beams on plane waves with help of the Whittaker integral, an exact analytical expression of the far-field form function of the scattering of the acoustic and optical nondiffracting Lommel beams propagating in a medium containing spherical particles, considered as rigid and single spheres, is investigated in this work. The form function of the scattering of the high order Bessel beam by a rigid and isolated sphere is deduced, from our finding, as a special case. The effects of the wave number-sphere radius product (ka) , the polar angle (φ) , the propagation half-cone angle (β) and the scattering angle (θ) on the far-field form function of the scattered wave have been analyzed and discussed numerically. The numerical results show that the illumination of a rigid sphere by Lommel beams produces asymmetrical scattering.

  13. Scintillation reduction for combined Gaussian-vortex beam propagating through turbulent atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory; Gorshkov, V. N. [NATL' TECH. UNIV. OF UA; Torous, S. V. [NATL' TECH. UNIV. OF UA

    2010-12-14

    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams (PCBs), including the optical vortices, propagating in turbulent atmospheres, The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analyzed. A method for significantly reducing the SI, by averaging the signal at the detector over a set of PCBs, is described, This novel method is to generate the PCBs by combining two laser beams - Gaussian and vortex beams, with different frequencies (the difference between these two frequencies being significantly smaller than the frequencies themselves). In this case, the SI is effectively suppressed without any high-frequency modulators.

  14. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    WU Di; GONG Ye; LIU Jin-Yuan; WANG Xiao-Gang; LIU Yue; MA Teng-Cai

    2006-01-01

    @@ Taking the calculation results based on the established two-dimensional ablation model of the intense-pulsed-ion-beam (IPIB) irradiation process as initial conditions, we build a two-dimensional hydrodynamic ejection model of plasma produced by an IPIB-irradiated metal titanium target into ambient gas. We obtain the conclusions that shock waves generate when the background pressure is around 133 mTorr and also obtain the plume splitting phenomenon that has been observed in the experiments.

  15. Propagation of Polarization Modulated Beams Through a Turbulent Atmosphere

    Science.gov (United States)

    2014-11-24

    1012) range. The polarization is thus a convolution of the electric field at previous times with the time- dependent susceptibility. In the case of a...by the following: (a) Commence with () and cos(), separately , and delay each constituent beam by /2, separately , to...3.1, above). A example of continuation of the analysis procedure. Probability density measures were calculated based on a normal kernel function for

  16. Light propagation in a Cole-Cole nonlinear medium via Burgers-Hopf equation

    OpenAIRE

    Konopelchenko, Boris; Moro, Antonio

    2004-01-01

    Recently, a new model of propagation of the light through the so-called weakly three-dimensional Cole-Cole nonlinear medium with short-range nonlocality has been proposed. In particular, it has been shown that in the geometrical optics limit, the model is integrable and it is governed by the dispersionless Veselov-Novikov (dVN) equation. Burgers-Hopf equation can be obtained as 1+1-dimensional reduction of dVN equation. We discuss its properties in the specific context of nonlinear geometrica...

  17. Nonlinear Propagation of Coupling Optical Pulse under Compton Scattering in Laser Medium

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; ZHANG Xiao-fu

    2006-01-01

    After considering Kerr nonlinear effect,group velocity dispersion of host and gain distribution of active particle in laser amplifying medium,a basic equation describing propagation of the coupling optical pulse under the multi-photon nonlinear Compton scattering in the laser amplifying medium has been deduced. Besides,the profile and power spectrum of a picosecond-level super-Gaussian coupling pulse in the laser amplifying medium have been discussed when its central frequency coincides with the gain peak frequency of the laser amplifying medium.

  18. Wigner distribution function and kurtosis parameter of vortex beams propagating through turbulent atmosphere

    Science.gov (United States)

    Suo, Qiangbo; Han, Yiping; Cui, Zhiwei

    2017-09-01

    Based on the extended Huygens-Fresnel integral, the analytical expressions for the Wigner distribution function (WDF) and kurtosis parameter of partially coherent flat-topped vortex (PCFTV) beams propagating through atmospheric turbulence and free space are derived. The WDF and kurtosis parameter of PCFTV beams through turbulent atmosphere are discussed with numerical examples. The numerical results show that the beam quality depends on the structure constants, the inner scale turbulence, the outer scale turbulence, the spatial correlation length, the wave length and the beam order. PCFTV beams are less affected by turbulence than partially flat-topped coherent (PCFT) beams under the same conditions, and will be useful in free-space optical communications.

  19. COUNTER PROPAGATION OF ELECTRON AND CO2 LASER BEAMS IN A PLASMA CHANNEL.

    Energy Technology Data Exchange (ETDEWEB)

    HIROSE,T.; POGORELSKY,I.V.; BEN ZVI,I.; YAKIMENKO,V.; KUSCHE,K.; SIDDONS,P.; KUMITA,T.; KAMIYA,Y.; ZIGLER,A.; GREENBERG,B.; ET AL

    2002-11-12

    A high-energy CO{sub 2} laser is channeled in a capillary discharge. Occurrence of guiding conditions at a relatively low plasma density (<10{sup 18} cm{sup -3}) is confirmed by MHD simulations. Divergence of relativistic electron beam changes depending on the plasma density. Counter-propagation of the electron and laser beams inside the plasma channel results in intense x-ray generation.

  20. Study of the Impact of Non-linear Piezoelectric Constants on the Acoustic Wave Propagation on Lithium Niobate

    Directory of Open Access Journals (Sweden)

    C. Soumali

    2016-06-01

    Full Text Available Impact of nonlinear piezoelectric constants on surface acoustic wave propagation on a piezoelectric substrate is investigated in this work. Propagation of acoustic wave propagation under uniform stress is analyzed; the wave equation is obtained by incorporating the applied uniform stress in the equation of motion and taking account of the set of linear and nonlinear piezoelectric constants. A new method of separation between the different modes of propagation is proposed regarding the attenuation coefficients and not to the displacement vectors. Detail calculations and simulations have made for Lithium Niobate (LiNbO3; transformations between modes of propagation, under uniform stress, have been found. These results leads to conclusion that nonlinear terms affect the acoustic wave propagation and also we can make controllable acoustic devices.

  1. Finite Element Solution: Nonlinear Flapping Beams for Use with Micro Air Vehicle Design

    Science.gov (United States)

    2007-03-01

    used to approximate the nonlinearity in a beam is the SDOF Duffing Oscillator ӱ + C ẏ + ω0 2 y + βy3 = P sin(ωt...Hilbert Transform.......................................................................................................19 Duffing Equation...Amplitude vs Nonlinear Frequency: Fixed-Fixed Steel................................. 36 Figure 26. Duffing Equation Plot: Fixed-Fixed Steel Beam

  2. Nonlinear beam clean-up using resonantly enhanced sum-frequency mixing

    DEFF Research Database (Denmark)

    Karamehmedovic, Emir; Pedersen, Christian; Jensen, Ole Bjarlin;

    2009-01-01

    We investigate the possibility of improving the beam quality and obtaining high conversion efficiency in nonlinear sum-frequency generation. A 765 nm beam from an external cavity tapered diode laser is single-passed through a nonlinear crystal situated in the high intracavity field of a 1342 nm Nd...

  3. Propagation of partially coherent flat-topped beams through a turbulent atmosphere.

    Science.gov (United States)

    Dan, Youquan; Zhang, Bin; Pan, Pingping

    2008-09-01

    Based on the modified beam model for flat-topped beams and the Schell model for partially coherent light, an expression for partially coherent flat-topped (PCFT) beams has been proposed. The propagation characteristics of PCFT beams with circular symmetry through a turbulent atmosphere have been studied. By using the generalized Huygens-Fresnel integral and Fourier transform method, the expressions for the cross-spectral density function and the average intensity have been given and the analytical expression for the root-mean-square width has been derived. The effects of the beam order, the spatial coherence, and the turbulent parameter on the intensity distributions and beam spreading have been discussed in detail. Our results show that the on-axis intensity of the beams decreases with increasing turbulence and decreasing coherence of the source, whereas the on-axis intensity of the beams in the far field decreases slightly with increasing beam order. The relative spreading of PCFT beams is smaller for beams with a higher order, a lower degree of global coherence of the source, a larger inner scale, and a smaller outer scale of the turbulence.

  4. PetClaw: A scalable parallel nonlinear wave propagation solver for Python

    KAUST Repository

    Alghamdi, Amal

    2011-01-01

    We present PetClaw, a scalable distributed-memory solver for time-dependent nonlinear wave propagation. PetClaw unifies two well-known scientific computing packages, Clawpack and PETSc, using Python interfaces into both. We rely on Clawpack to provide the infrastructure and kernels for time-dependent nonlinear wave propagation. Similarly, we rely on PETSc to manage distributed data arrays and the communication between them.We describe both the implementation and performance of PetClaw as well as our challenges and accomplishments in scaling a Python-based code to tens of thousands of cores on the BlueGene/P architecture. The capabilities of PetClaw are demonstrated through application to a novel problem involving elastic waves in a heterogeneous medium. Very finely resolved simulations are used to demonstrate the suppression of shock formation in this system.

  5. Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers.

    Science.gov (United States)

    Hu, Xiaohong; Wang, Yishan; Zhao, Wei; Yang, Zhi; Zhang, Wei; Li, Cheng; Wang, Hushan

    2010-09-10

    Based on the generalized nonlinear Schrödinger equation and waveguiding properties typical of the photonic crystal fiber structure, nonlinear chirped-pulse propagation and supercontinua generation in the femtosecond and picosecond regimes are investigated numerically. The simulation results indicate that an input chirp parameter mainly affects the initial stage of spectral broadening caused by the self-phase modulation (SPM) effect. In the femtosecond regime where the SPM effect plays an important role in the process of spectral broadening, an input positive chirp can enhance the supercontinuum bandwidth through a modified pulse compression phase and a decreased propagation distance required by soliton fission. In the picosecond regime, where the SPM effect contributes less to the continuum bandwidth and four-wave mixing process or modulational instability dominates the initial stage of spectral and temporal evolution, the output spectral shape and bandwidths are less sensitive to the input chirp parameters.

  6. Nonlinear propagation of ion-acoustic waves through the Burgers equation in weakly relativistic plasmas

    Science.gov (United States)

    Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2017-04-01

    The Burgers equation is obtained to study the characteristics of nonlinear propagation of ionacoustic shock, singular kink, and periodic waves in weakly relativistic plasmas containing relativistic thermal ions, nonextensive distributed electrons, Boltzmann distributed positrons, and kinematic viscosity of ions using the well-known reductive perturbation technique. This equation is solved by employing the ( G'/ G)-expansion method taking unperturbed positron-to-electron concentration ratio, electron-to-positron temperature ratio, strength of electrons nonextensivity, ion kinematic viscosity, and weakly relativistic streaming factor. The influences of plasma parameters on nonlinear propagation of ion-acoustic shock, periodic, and singular kink waves are displayed graphically and the relevant physical explanations are described. It is found that these parameters extensively modify the shock structures excitation. The obtained results may be useful in understanding the features of small but finite amplitude localized relativistic ion-acoustic shock waves in an unmagnetized plasma system for some astrophysical compact objects and space plasmas.

  7. Time-Frequency (Wigner Analysis of Linear and Nonlinear Pulse Propagation in Optical Fibers

    Directory of Open Access Journals (Sweden)

    José Azaña

    2005-06-01

    Full Text Available Time-frequency analysis, and, in particular, Wigner analysis, is applied to the study of picosecond pulse propagation through optical fibers in both the linear and nonlinear regimes. The effects of first- and second-order group velocity dispersion (GVD and self-phase modulation (SPM are first analyzed separately. The phenomena resulting from the interplay between GVD and SPM in fibers (e.g., soliton formation or optical wave breaking are also investigated in detail. Wigner analysis is demonstrated to be an extremely powerful tool for investigating pulse propagation dynamics in nonlinear dispersive systems (e.g., optical fibers, providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.

  8. Gaussian beam propagation in anisotropic turbulence along horizontal links: theory, simulation, and laboratory implementation.

    Science.gov (United States)

    Xiao, Xifeng; Voelz, David G; Toselli, Italo; Korotkova, Olga

    2016-05-20

    Experimental and theoretical work has shown that atmospheric turbulence can exhibit "non-Kolmogorov" behavior including anisotropy and modifications of the classically accepted spatial power spectral slope, -11/3. In typical horizontal scenarios, atmospheric anisotropy implies that the variations in the refractive index are more spatially correlated in both horizontal directions than in the vertical. In this work, we extend Gaussian beam theory for propagation through Kolmogorov turbulence to the case of anisotropic turbulence along the horizontal direction. We also study the effects of different spatial power spectral slopes on the beam propagation. A description is developed for the average beam intensity profile, and the results for a range of scenarios are demonstrated for the first time with a wave optics simulation and a spatial light modulator-based laboratory benchtop counterpart. The theoretical, simulation, and benchtop intensity profiles show good agreement and illustrate that an elliptically shaped beam profile can develop upon propagation. For stronger turbulent fluctuation regimes and larger anisotropies, the theory predicts a slightly more elliptical form of the beam than is generated by the simulation or benchtop setup. The theory also predicts that without an outer scale limit, the beam width becomes unbounded as the power spectral slope index α approaches a maximum value of 4. This behavior is not seen in the simulation or benchtop results because the numerical phase screens used for these studies do not model the unbounded wavefront tilt component implied in the analytic theory.

  9. Adaptive control of the propagation of ultrafast light through random and nonlinear media

    Science.gov (United States)

    Moores, Mark David

    2001-12-01

    Ultrafast light sources generate coherent pulses with durations of less than one picosecond, and represent the next generation of illuminators for medical imaging and optical communications applications. Such sources are already widely used experimentally. Correction of temporal widths or pulse envelopes after traversal of optically non-ideal materials is critical for the delivery of optimal ultrashort pulses. It is important to investigate the physical mechanisms that distort pulses and to develop and implement methods for minimizing these effects. In this work, we investigate methods for characterizing and manipulating pulse propagation dynamics in random (scattering) and nonlinear optical media. In particular, we use pulse shaping to manipulate the light field of ultrashort infrared pulses. Application of spectral phase by a liquid crystal spatial light modulator is used to control the temporal pulse shape. The applied phase is controlled by a genetic algorithm that adaptively responds to the feedback from previous phase profiles. Experiments are detailed that address related aspects of the character of ultrafast pulses-the short timescales and necessarily wide frequency bandwidths. Material dispersion is by definition frequency dependent. Passage through an inhomogeneous system of randomly situated boundaries (scatterers) causes additional distortion of ballistic pulses due to multiple reflections. The reflected rays accumulate phase shifts that depend on the separation of the reflecting boundaries and the photon frequency. Ultrafast bandwidths present a wide range of frequencies for dispersion and interaction with macroscopic dielectric structure. The shaper and adaptive learning algorithm are used to reduce these effects, lessening the impact of the scattering medium on propagating pulses. The timescale of ultrashort pulses results in peak intensities that interact with the electronic structure of optical materials to induce polarization that is no longer

  10. An automatic domain splitting technique to propagate uncertainties in highly nonlinear orbital dynamics

    OpenAIRE

    Wittig, A; Di Lizia, P.; Armellin, R.; Zazzera, FB; Makino, K; Berzş, M

    2014-01-01

    Current approaches to uncertainty propagation in astrodynamics mainly refer to linearized models or Monte Carlo simulations. Naive linear methods fail in nonlinear dynamics, whereas Monte Carlo simulations tend to be computationally intensive. Differential algebra has already proven to be an efficient compromise by replacing thousands of pointwise integrations of Monte Carlo runs with the fast evaluation of the arbitrary order Taylor expansion of the flow of the dynamics. However, the current...

  11. The effects of nonlinear wave propagation on the stability of inertial cavitation

    OpenAIRE

    2009-01-01

    In the context of forecasting temperature and pressure fields in high-intensity focussed ultrasound, the accuracy of predictive models is critical for the safety and efficacy of treatment. In such fields inertial cavitation is often observed. Classically, estimations of cavitation thresholds have been based on the assumption that the incident wave at the surface of a bubble was the same as in the far-field, neglecting the effect of nonlinear wave propagation. By modelling the incident wave as...

  12. Propagation of Long-Wavelength Nonlinear Slow Sausage Waves in Stratified Magnetic Flux Tubes

    Science.gov (United States)

    Barbulescu, M.; Erdélyi, R.

    2016-05-01

    The propagation of nonlinear, long-wavelength, slow sausage waves in an expanding magnetic flux tube, embedded in a non-magnetic stratified environment, is discussed. The governing equation for surface waves, which is akin to the Leibovich-Roberts equation, is derived using the method of multiple scales. The solitary wave solution of the equation is obtained numerically. The results obtained are illustrative of a solitary wave whose properties are highly dependent on the degree of stratification.

  13. Model for Atmospheric Propagation of Spatially Combined Laser Beams

    Science.gov (United States)

    2016-09-01

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE Sept 2016 3. REPORT TYPE AND DATES COVERED Master’s Thesis 12-01-2015 to 09-23-2016 4. TITLE AND SUBTITLE...the thesis starts with an overview of DE weapons and end with the dierent types of available laser sources. In Chapter 3, the thesis discussed... fluoride to produce a 4 µm laser and was integrated with the SeaLite Beam director for operational testing. Due to MIRACL’s wavelength, it was prone to

  14. Computational study of nonlinear plasma waves: 1: Simulation model and monochromatic wave propagation

    Science.gov (United States)

    Matda, Y.; Crawford, F. W.

    1974-01-01

    An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.

  15. Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator

    CERN Document Server

    Del Bino, Leonardo; Stebbings, Sarah L; Del'Haye, Pascal

    2016-01-01

    Light is generally expected to travel through isotropic media independent of its direction. This makes it challenging to develop non-reciprocal optical elements like optical diodes or circulators, which currently rely on magneto-optical effects and birefringent materials. Here we present measurements of non-reciprocal transmission and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) light waves to circulate in the resonator. Equivalently, the symmetry breaking can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. This effect is expected to take place in any dielectric ring-resonator and might constitute one of the m...

  16. Tracing Analytic Ray Curves for Light and Sound Propagation in Non-Linear Media.

    Science.gov (United States)

    Mo, Qi; Yeh, Hengchin; Manocha, Dinesh

    2016-11-01

    The physical world consists of spatially varying media, such as the atmosphere and the ocean, in which light and sound propagates along non-linear trajectories. This presents a challenge to existing ray-tracing based methods, which are widely adopted to simulate propagation due to their efficiency and flexibility, but assume linear rays. We present a novel algorithm that traces analytic ray curves computed from local media gradients, and utilizes the closed-form solutions of both the intersections of the ray curves with planar surfaces, and the travel distance. By constructing an adaptive unstructured mesh, our algorithm is able to model general media profiles that vary in three dimensions with complex boundaries consisting of terrains and other scene objects such as buildings. Our analytic ray curve tracer with the adaptive mesh improves the efficiency considerably over prior methods. We highlight the algorithm's application on simulation of visual and sound propagation in outdoor scenes.

  17. Instability and dynamics of two nonlinearly coupled laser beams in a plasma

    CERN Document Server

    Shukla, P K; Marklund, M; Stenflo, L; Kourakis, I; Parviainen, M; Dieckmann, M E

    2006-01-01

    We investigate the nonlinear interaction between two laser beams in a plasma in the weakly nonlinear and relativistic regime. The evolution of the laser beams is governed by two nonlinear Schroedinger equations that are coupled with the slow plasma density response. We study the growth rates of the Raman forward and backward scattering instabilities as well of the Brillouin and self-focusing/modulational instabilities. The nonlinear evolution of the instabilities is investigated by means of direct simulations of the time-dependent system of nonlinear equations.

  18. On the accuracy of the finite difference method for applications in beam propagating techniques

    NARCIS (Netherlands)

    Hoekstra, Hugo; Krijnen, Gijsbertus J.M.; Lambeck, Paul

    1992-01-01

    In this paper it is shown that the inaccuracy in the beam propagation method based on the finite difference scheme, introduced by the use of the slowly varying envelope approximation, can be overcome in an effective way. By the introduction of a perturbation expansion the accuracy can be improved as

  19. Cylindrical Beam Propagation Modelling of Perturbed Whispering-Gallery Mode Microcavities

    CERN Document Server

    Shirazi, Mohammad Amin Cheraghi; Vincent, Serge; Lu, Tao

    2013-01-01

    We simulate light propagation in perturbed whispering-gallery mode microcavities using a two-dimensional finite-difference beam prop- agation method in a cylindrical coordinate system. Optical properties of whispering-gallery microcavities perturbed by polystyrene nanobeads are investigated through this formulation. The light perturbation as well as quality factor degradation arising from cavity ellipticity are also studied.

  20. Numerical Investigation of Statistical Turbulence Effects on Beam Propagation through 2-D Shear Mixing Layer

    Science.gov (United States)

    2010-03-01

    describe turbulence effects on optical beam propagation. [6] Toselli et al summarized recent experimental results that did not agree with analytical...Tennekes, H. and J. L. Lumley. A First Course in Turbulence. MIT Press, Cambridge, MA, First edition, 1972. [18] Toselli , Italo, Larry C. Andrews

  1. Weibel and Two-Stream Instabilities for Intense Charged Particle Beam Propagation through Neutralizing Background Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ronald C. Davidson; Igor Kaganovich; Edward A. Startsev

    2004-04-09

    Properties of the multi-species electromagnetic Weibel and electrostatic two-stream instabilities are investigated for an intense ion beam propagating through background plasma. Assuming that the background plasma electrons provide complete charge and current neutralization, detailed linear stability properties are calculated within the framework of a macroscopic cold-fluid model for a wide range of system parameters.

  2. Stable scalable control of soliton propagation in broadband nonlinear optical waveguides

    CERN Document Server

    Peleg, Avner; Huynh, Toan T

    2015-01-01

    We develop a method for achieving scalable transmission stabilization and switching of $N$ colliding soliton sequences in optical waveguides with broadband delayed Raman response and narrowband nonlinear gain-loss. We show that dynamics of soliton amplitudes in $N$-sequence transmission is described by a generalized $N$-dimensional predator-prey model. Stability and bifurcation analysis for the predator-prey model are used to obtain simple conditions on the physical parameters for robust transmission stabilization as well as on-off and off-on switching of $M$ out of $N$ soliton sequences. Numerical simulations with a system of $N$ coupled nonlinear Schr\\"odinger equations with $2 \\le N \\le 4$ show excellent agreement with the predator-prey model's predictions and stable propagation over significantly larger distances compared with other broadband nonlinear waveguides. Moreover, stable on-off and off-on switching of multiple soliton sequences and stable multiple transmission switching events are demonstrated b...

  3. Propagation of an Airy-Gaussian-Vortex beam in a chiral medium

    Science.gov (United States)

    Hua, Sen; Liu, Youwen; Zhang, Huijie; Tang, Liangzun; Feng, Yunxcai

    2017-04-01

    Based on the Huygens diffraction integral, the analytical expressions of electric field distribution of the Airy-Gaussian-Vortex (AiGV) beam in a chiral medium are derived, and its propagation properties are investigated. With increasing the value of chiral parameter γ, the parabolic deflection of the LCP light increases and the RCP light decreases respectively. For the first-order AiGV beam with only one positive or negative optical vortex (OV), a half-moon-shaped intensity profile can be observed because of overlap of the OV and the Airy main lobe, and then the main lobe will be reconstructed and the vortex could be recovered after the overlap position. The intensity distribution of AiGV beam, the deflection trajectories of central positions of Airy beam and OV under different competing parameters between Gaussian and Airy terms have been studied. Furthermore, for the second-order counterrotating AiGV beam with positive and negative vortexes, it could be considered the superposition of two first-order AiGV beams with respective positive and negative vortexes. Two vortexes can regenerate during propagation and the intensity distribution the AiGV beam in the far zone can be controlled by adjusting the coordinates of two vortexes.

  4. Modeling of Propagation and Transformation of Transient Nonlinear Waves on A Current

    Institute of Scientific and Technical Information of China (English)

    Wojciech Sulisz; Maciej Paprota

    2013-01-01

    A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.

  5. Theoretical and numerical investigation of HF elastic wave propagation in two-dimensional periodic beam lattices

    Science.gov (United States)

    Tie, B.; Tian, B. Y.; Aubry, D.

    2013-12-01

    The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in which, both the in-plane (with respect to the lattice plane) and out-of-plane waves are considered. The dispersion relations are obtained by calculating the Bloch eigenfrequencies and eigenmodes. The frequency bandgaps are observed and the influence of the elastic and geometric properties of the primitive cell on the bandgaps is studied. By analyzing the phase and the group velocities of the Bloch wave modes, the anisotropic behaviors and the dispersive characteristics of the hexagonal beam lattice with respect to the wave propagation are highlighted in high frequency domains. One important result presented herein is the comparison between the first Bloch wave modes to the membrane and bending/transverse shear wave modes of the classical equivalent homogenized orthotropic plate model of the hexagonal beam lattice. It is shown that, in low frequency ranges, the homogenized plate model can correctly represent both the in-plane and out-of-plane dynamic behaviors of the beam lattice, its frequency validity domain can be precisely evaluated thanks to the Bloch modal analysis. As another important and original result, we have highlighted the existence of the retropropagating Bloch wave modes with a negative group velocity, and of the corresponding "retro-propagating" frequency bands.

  6. Suppression of space charge induced beam halo in nonlinear focusing channel

    Science.gov (United States)

    Batygin, Yuri K.; Scheinker, Alexander; Kurennoy, Sergey; Li, Chao

    2016-04-01

    An intense non-uniform particle beam exhibits strong emittance growth and halo formation in focusing channels due to nonlinear space charge forces of the beam. This phenomenon limits beam brightness and results in particle losses. The problem is connected with irreversible distortion of phase space volume of the beam in conventional focusing structures due to filamentation in phase space. Emittance growth is accompanied by halo formation in real space, which results in inevitable particle losses. A new approach for solving a self-consistent problem for a matched non-uniform beam in two-dimensional geometry is discussed. The resulting solution is applied to the problem of beam transport, while avoiding emittance growth and halo formation by the use of nonlinear focusing field. Conservation of a beam distribution function is demonstrated analytically and by particle-in-cell simulation for a beam with a realistic beam distribution.

  7. Suppression of Space Charge Induced Beam Halo in Nonlinear Focusing Channel

    CERN Document Server

    Batygin, Yuri K; Kurennoy, Sergey; Li, Chao

    2016-01-01

    An intense non-uniform particle beam exhibits strong emittance growth and halo formation in focusing channels due to nonlinear space charge forces of the beam. This phenomenon limits beam brightness and results in particle losses. The problem is connected with irreversible distortion of phase space volume of the beam in conventional focusing structures due to filamentation in phase space. Emittance growth is accompanied by halo formation in real space, which results in inevitable particle losses. A new approach for solving a self-consistent problem for a matched non-uniform beam in two-dimensional geometry is discussed. The resulting solution is applied to the problem of beam transport, while avoiding emittance growth and halo formation by the use of nonlinear focusing field. Conservation of a beam distribution function is demonstrated analytically and by particle-in-cell simulation for a beam with a realistic beam distribution.

  8. Stress wave propagation in a composite beam subjected to transverse impact.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang; Song, Bo; Jin, Huiqing

    2010-08-01

    Composite materials, particularly fiber reinforced plastic composites, have been extensively utilized in many military and industrial applications. As an important structural component in these applications, the composites are often subjected to external impact loading. It is desirable to understand the mechanical response of the composites under impact loading for performance evaluation in the applications. Even though many material models for the composites have been developed, experimental investigation is still needed to validate and verify the models. It is essential to investigate the intrinsic material response. However, it becomes more applicable to determine the structural response of composites, such as a composite beam. The composites are usually subjected to out-of-plane loading in applications. When a composite beam is subjected to a sudden transverse impact, two different kinds of stress waves, longitudinal and transverse waves, are generated and propagate in the beam. The longitudinal stress wave propagates through the thickness direction; whereas, the propagation of the transverse stress wave is in-plane directions. The longitudinal stress wave speed is usually considered as a material constant determined by the material density and Young's modulus, regardless of the loading rate. By contrast, the transverse wave speed is related to structural parameters. In ballistic mechanics, the transverse wave plays a key role to absorb external impact energy [1]. The faster the transverse wave speed, the more impact energy dissipated. Since the transverse wave speed is not a material constant, it is not possible to be calculated from stress-wave theory. One can place several transducers to track the transverse wave propagation. An alternative but more efficient method is to apply digital image correlation (DIC) to visualize the transverse wave propagation. In this study, we applied three-pointbending (TPB) technique to Kolsky compression bar to facilitate

  9. Nonhydrostatic effects of nonlinear internal wave propagation in the South China Sea

    Science.gov (United States)

    Zhang, Z.; Fringer, O. B.

    2007-05-01

    It is well known that internal tides are generated over steep topography at the Luzon Strait on the eastern boundary of the South China Sea. These internal tides propagate westward and steepen into trains of weakly nonlinear internal waves that propagate relatively free of dissipation until they interact with the continental shelf on the western side of the South China Sea, some 350 km from their generation point. The rate at which the internal tide transforms into trains of nonlinear waves depends on the Froude number at the generation site, which is defined as the ratio of the barotropic current speed to the local internal wave speed. Large Froude numbers lead to rapid evolution of wave trains while low Froude numbers generate internal tides that may not evolve into wave trains before reaching the continental shelf. Although the evolution into trains of weakly nonlinear waves results from the delicate interplay between nonlinear steepening and nonhydrostatic dispersion, the steepening process is represented quite well, at least from a qualitative standpoint, by hydrostatic models, which contain no explicit nonhydrostatic dispersion. Furthermore, hydrostatic models predict the propagation speed of the leading wave in wave trains extremely well, indicating that its propagation speed depends very weakly on nonlinear or dispersive effects. In order to examine how hydrostatic models introduce dispersion that leads to the formation of wave trains, we simulate the generation and evolution of nonlinear waves in the South China Sea with and without the hydrostatic approximation using the nonhydrostatic model SUNTANS, which can be run in either hydrostatic or nonhydrostatic mode. We show that the dispersion leading to the formation of wave trains in the hydrostatic model results from numerically-induced dispersion that is implicit in the numerical formulation of the advection terms. While the speed of the leading wave in the wave trains is correct, the amplitude and number

  10. Studies of beam propagation characteristics on apertured fractional Fourier transforming systems

    Institute of Scientific and Technical Information of China (English)

    Hongjie Liu(刘红婕); Daomu Zhao(赵道木); Haidan Mao(毛海丹); Shaomin Wang(王绍民); Feng Jing(景峰); Qihua Zhu(朱启华); Xiaofeng Wei(魏晓峰); Xiaomin Zhang(张小民)

    2004-01-01

    Based on the principle that a rectangular function can be expanded into a sum of complex Gaussian functions with finite numbers, propagation characteristics of a Gaussian beam or a plane wave passing through apertured fractional Fourier transforming systems are analyzed and corresponding analytical formulae are obtained. Analytical formulae in different fractional orders are numerically simulated and compared with the diffraction integral formulae, the applicable range and exactness of analytical formulae are confirmed.It is shown that the calculating speed of using the obtained approximate analytical formulae, is several hundred times faster than that of using diffraction integral directly. Meanwhile, by using analytical formulae the effect of different aperture sizes on Gaussian beam propagation characteristics is numerically simulated, it is shown that the diffraction effect can be neglected when the aperture size is 5 times larger than the beam waist size.

  11. More on analyzing the reflection of a laser beam by a deformed highly reflective volume Bragg grating using iteration of the beam propagation method.

    Science.gov (United States)

    Shu, Hong; Mokhov, Sergiy; Zeldovich, Boris Ya; Bass, Michael

    2009-01-01

    A further extension of the iteration method for beam propagation calculation is presented that can be applied for volume Bragg gratings (VBGs) with extremely large grating strength. A reformulation of the beam propagation formulation is presented for analyzing the reflection of a laser beam by a deformed VBG. These methods will be shown to be very accurate and efficient. A VBG with generic z-dependent distortion has been analyzed using these methods.

  12. Propagation characteristics of annular laser beams passing through the reflection Bragg grating with deformation

    Science.gov (United States)

    Yin, Suqin; Zhang, Bin; Dan, Youquan

    2011-06-01

    When high-power annular laser beams produced by the unstable resonator pass through the volume Bragg grating (VBG), absorption of light in the VBG will induce a temperature increment, resulting in changes in surface distortion. Considering that the surface distortion of the grating induces index and period differences, the scalar wave equations for the annular laser beams propagating in the VBG have been solved numerically and iteratively using finite-difference and sparse matrix methods. The variation in intensity distributions, the total power reflection coefficient, and the power in the bucket (PIB) for the annular laser beams passing through the reflection VBG with deformation have been analyzed quantitatively. It can be shown that the surface distortion of the VBG and the beam orders of the annular beams affect evidently the intensity distributions, the power reflection coefficient, and the PIB of the output beam. The peak intensity decreases as the deformation of the VBG increases. The total power reflection efficiency decreases significantly with the increase in deformations of the VBG. The PIB of the output beam decreases as the obscuration ratio β and the deformation of the VBG increase. For the given obscuration ratio β, the influence of deformation of reflection VBG on the PIB of the annular beams is more sensitive with increase in distortion of the VBG and decrease in beam order.

  13. A Modified Beam Propagation Method Based on the Galerkin Method with Hermite-Gauss Basis Functions

    Institute of Scientific and Technical Information of China (English)

    Xiao Jinbiao; Liu Xu; Cai Chun; Fan Hehong; Sun Xiaohan

    2006-01-01

    A beam propagation method based on the Galerkin method with Hermite-Gauss basis functions for studying optical field propagation in weakly guiding dielectric structures is described. The selected basis functions naturally satisfy the required boundary conditions at infinity so that the boundary truncation is avoided. The paraxial propagation equation is converted into a set of first-order ordinary differential equations,which are solved by means of standard numerical library routines. Besides, the calculation is efficient due to its small resulted matrix. The evolution of the injected field and its normalized power along the propagation distance in an asymmetric slab waveguide and directional coupler are presented, and the solutions are good agreement with those obtained by finite difference BPM, which tests the validity of the present approach.

  14. Unified nonlinear analysis for nonhomogeneous anisotropic beams with closed cross sections

    Science.gov (United States)

    Atilgan, Ali R.; Hodges, Dewey H.

    1991-01-01

    A unified methodology for geometrically nonlinear analysis of nonhomogeneous, anisotropic beams is presented. A 2D cross-sectional analysis and a nonlinear 1D global deformation analysis are derived from the common framework of a 3D, geometrically nonlinear theory of elasticity. The only restrictions are that the strain and local rotation are small compared to unity and that warping displacements are small relative to the cross-sectional dimensions. It is concluded that the warping solutions can be affected by large deformation and that this could alter the incremental stiffnes of the section. It is shown that sectional constants derived from the published, linear analysis can be used in the present nonlinear, 1D analysis governing the global deformation of the beam, which is based on intrinsic equations for nonlinear beam behavior. Excellent correlation is obtained with published experimental results for both isotropic and anisotropic beams undergoing large deflections.

  15. Nonlinear effects in the propagation of optically generated magnetostatic volume mode spin waves

    Science.gov (United States)

    van Tilburg, L. J. A.; Buijnsters, F. J.; Fasolino, A.; Rasing, T.; Katsnelson, M. I.

    2017-08-01

    Recent experimental work has demonstrated optical control of spin wave emission by tuning the shape of the optical pulse [Satoh et al., Nat. Photon. 6, 662 (2012), 10.1038/nphoton.2012.218]. We reproduce these results and extend the scope of the control by investigating nonlinear effects for large amplitude excitations. We observe an accumulation of spin wave power at the center of the initial excitation combined with short-wavelength spin waves. These kinds of nonlinear effects have not been observed in earlier work on nonlinearities of spin waves. Our observations pave the way for the manipulation of magnetic structures at a smaller scale than the beam focus, for instance in devices with all-optical control of magnetism.

  16. A new theoretical paradigm to describe hysteresis, discrete memory and nonlinear elastic wave propagation in rock

    Directory of Open Access Journals (Sweden)

    K. R. McCall

    1996-01-01

    Full Text Available The velocity of sound in rock is a strong function of pressure, indicating that wave propagation in rocks is very nonlinear. The quasistatic elastic properties of rocks axe hysteretic, possessing discrete memory. In this paper a new theory is developed, placing all of these properties (nonlinearity, hysteresis, and memory on equal footing. The starting point of the new theory is closer to a microscopic description of a rock than the starting point of the traditional five-constant theory of nonlinear elasticity. However, this starting point (the number density Ï? of generic mechanical elements in an abstract space is deliberately independent of a specific microscopic model. No prejudice is imposed as to the mechanism causing nonlinear response in the microscopic mechanical elements. The new theory (1 relates suitable stress-strain measurements to the number density Ï? and (2 uses the number density Ï? to find the behaviour of nonlinear elastic waves. Thus the new theory provides for the synthesis of the full spectrum of elastic behaviours of a rock. Early development of the new theory is sketched in this contribution.

  17. Stable scalable control of soliton propagation in broadband nonlinear optical waveguides

    Science.gov (United States)

    Peleg, Avner; Nguyen, Quan M.; Huynh, Toan T.

    2017-02-01

    We develop a method for achieving scalable transmission stabilization and switching of N colliding soliton sequences in optical waveguides with broadband delayed Raman response and narrowband nonlinear gain-loss. We show that dynamics of soliton amplitudes in N-sequence transmission is described by a generalized N-dimensional predator-prey model. Stability and bifurcation analysis for the predator-prey model are used to obtain simple conditions on the physical parameters for robust transmission stabilization as well as on-off and off-on switching of M out of N soliton sequences. Numerical simulations for single-waveguide transmission with a system of N coupled nonlinear Schrödinger equations with 2 ≤ N ≤ 4 show excellent agreement with the predator-prey model's predictions and stable propagation over significantly larger distances compared with other broadband nonlinear single-waveguide systems. Moreover, stable on-off and off-on switching of multiple soliton sequences and stable multiple transmission switching events are demonstrated by the simulations. We discuss the reasons for the robustness and scalability of transmission stabilization and switching in waveguides with broadband delayed Raman response and narrowband nonlinear gain-loss, and explain their advantages compared with other broadband nonlinear waveguides.

  18. Study of Gaussian and Bessel beam propagation using a new analytic approach

    Science.gov (United States)

    Dartora, C. A.; Nobrega, K. Z.

    2012-03-01

    The main feature of Bessel beams realized in practice is their ability to resist diffractive effects over distances exceeding the usual diffraction length. The theory and experimental demonstration of such waves can be traced back to the seminal work of Durnin and co-workers already in 1987. Despite that fact, to the best of our knowledge, the study of propagation of apertured Bessel beams found no solution in closed analytic form and it often leads to the numerical evaluation of diffraction integrals, which can be very awkward. In the context of paraxial optics, wave propagation in lossless media is described by an equation similar to the non-relativistic Schrödinger equation of quantum mechanics, but replacing the time t in quantum mechanics by the longitudinal coordinate z. Thus, the same mathematical methods can be employed in both cases. Using Bessel functions of the first kind as basis functions in a Hilbert space, here we present a new approach where it is possible to expand the optical wave field in a series, allowing to obtain analytic expressions for the propagation of any given initial field distribution. To demonstrate the robustness of the method two cases were taken into account: Gaussian and zeroth-order Bessel beam propagation.

  19. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    Science.gov (United States)

    Gao, Q. D.; Budny, R. V.

    2015-03-01

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  20. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies.

    Science.gov (United States)

    Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan

    2016-05-01

    Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz.

  1. A flexible genuinely nonlinear approach for nonlinear wave propagation, breaking and run-up

    Science.gov (United States)

    Filippini, A. G.; Kazolea, M.; Ricchiuto, M.

    2016-04-01

    In this paper we evaluate hybrid strategies for the solution of the Green-Naghdi system of equations for the simulation of fully nonlinear and weakly dispersive free surface waves. We consider a two step solution procedure composed of: a first step where the non-hydrostatic source term is recovered by inverting the elliptic coercive operator associated to the dispersive effects; a second step which involves the solution of the hyperbolic shallow water system with the source term, computed in the previous phase, which accounts for the non-hydrostatic effects. Appropriate numerical methods, that can be also generalized on arbitrary unstructured meshes, are used to discretize the two stages: the standard C0 Galerkin finite element method for the elliptic phase; either third order Finite Volume or third order stabilized Finite Element method for the hyperbolic phase. The discrete dispersion properties of the fully coupled schemes obtained are studied, showing accuracy close to or better than that of a fourth order finite difference method. The hybrid approach of locally reverting to the nonlinear shallow water equations is used to recover energy dissipation in breaking regions. To this scope we evaluate two strategies: simply neglecting the non-hydrostatic contribution in the hyperbolic phase; imposing a tighter coupling of the two phases, with a wave breaking indicator embedded in the elliptic phase to smoothly turn off the dispersive effects. The discrete models obtained are thoroughly tested on benchmarks involving wave dispersion, breaking and run-up, showing a very promising potential for the simulation of complex near shore wave physics in terms of accuracy and robustness.

  2. Intermittent Giant Goos-Hanchen shifts from Airy beams at nonlinear interfaces

    CERN Document Server

    Chamorro-Posada, Pedro; Aceves, Alejandro B; McDonald, Graham S

    2013-01-01

    We study the giant Goos-Hanchen shift obtained from an Airy beam impinging on a nonlinear interface. To avoid any angular restriction associated with the paraxial approximation, the analysis is based on the numerical solution of the nonlinear Helmholtz equation. We report the existence of non-standard intermittent and oscillatory regimes for the nonlinear Goos-Hanchen shifts which can be explained in terms of the competition between the critical coupling to a surface mode of the reflected component of the Airy beam and the soliton emission from the refracted beam component.

  3. Widely varying giant Goos-Hänchen shifts from Airy beams at nonlinear interfaces.

    Science.gov (United States)

    Chamorro-Posada, Pedro; Sánchez-Curto, Julio; Aceves, Alejandro B; McDonald, Graham S

    2014-03-15

    We present a numerical study of the giant Goos-Hänchen shifts (GHSs) obtained from an Airy beam impinging on a nonlinear interface. To avoid any angular restriction associated with the paraxial approximation, the analysis is based on the nonlinear Helmholtz equation. We report the existence of nonstandard nonlinear GHSs displaying an extreme sensitivity to the input intensity and the existence of multiple critical values. These intermittent and oscillatory regimes can be explained in terms of competition between critical coupling to a surface mode and soliton emission from the refracted beam component and how this interplay varies with localization of the initial Airy beam.

  4. Nonlinear heat-transport equation beyond Fourier law: application to heat-wave propagation in isotropic thin layers

    Science.gov (United States)

    Sellitto, A.; Tibullo, V.; Dong, Y.

    2017-03-01

    By means of a nonlinear generalization of the Maxwell-Cattaneo-Vernotte equation, on theoretical grounds we investigate how nonlinear effects may influence the propagation of heat waves in isotropic thin layers which are not laterally isolated from the external environment. A comparison with the approach of the Thermomass Theory is made as well.

  5. Propagation of the off-axis superposition of partially coherent beams through atmospheric turbulence

    Institute of Scientific and Technical Information of China (English)

    Zhang En-Tao; Ji Xiao-Ling; Lü Bai-Da

    2009-01-01

    The propagation properties of the off-axis superposition of partially coherent beams through atmospheric tur-bulence and their beam quality in terms of the mean-squared beam width w(z) and the power in the bucket (PIB)are studied in detail, where the effects of partial coherence, off-axis beam superposition and atmospheric turbulence are considered. The analytical expressions for the intensity, the beam width and the PIB are derived, and illustrative examples are given numerically. It is shown that the maximum intensity/max and the PIB decrease and ω(z) increases as the refraction index structure constant C2n increases. Therefore, the turbulence results in a degradation of the beam quality. However, the resulting partially coherent beam with a smaller value of spatial correlation parameter γ and larger values of separate distance Xd and beam number M is less affected by the turbulence than that with a larger value of γ and smaller values of xd and M. The main results obtained in this paper are explained physically.

  6. Beam-displacement ray-mode theory of sound propagation in shallow water

    Institute of Scientific and Technical Information of China (English)

    张仁和; 李风华

    1999-01-01

    A normal mode method for propagation modeling in common horizontally stratified shallow water, which is called beam-displacement ray-mode (BDRM) theory, is introduced. The peculiarity of this method is that the boundary effects on the sound field can be expressed by the equivalent boundary reflection coefficient, so BDRM theory can be extended to elastic bottom easily. Theoretical calculations of shallow-water sound field show that BDRM has high accuracy and fast speed. The pulse propagation in shallow water is also calculated by BDRM, and the calculated waveforms are in good agreement with the measured waveforms.

  7. Beam propagation modeling of modified volume Fresnel zone plates fabricated by femtosecond laser direct writing.

    Science.gov (United States)

    Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan

    2009-01-01

    Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more comprehensive studies of the VFZP parameters to achieve higher diffraction efficiency.

  8. Self-action of propagating and standing Lamb waves in the plates exhibiting hysteretic nonlinearity: Nonlinear zero-group velocity modes.

    Science.gov (United States)

    Gusev, Vitalyi E; Lomonosov, Alexey M; Ni, Chenyin; Shen, Zhonghua

    2017-09-01

    An analytical theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous plate material on the Lamb waves near the S1 zero group velocity point is developed. The theory predicts that the main effect of the hysteretic quadratic nonlinearity consists in the modification of the frequency and the induced absorption of the Lamb modes. The effects of the nonlinear self-action in the propagating and standing Lamb waves are expected to be, respectively, nearly twice and three times stronger than those in the plane propagating acoustic waves. The theory is restricted to the simplest hysteretic nonlinearity, which is influencing only one of the Lamé moduli of the materials. However, possible extensions of the theory to the cases of more general hysteretic nonlinearities are discussed as well as the perspectives of its experimental testing. Applications include nondestructive evaluation of micro-inhomogeneous and cracked plates. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Propagation of bright femtosecond pulses in a nonlinear optical fibre with the third-and fourth-order dispersions

    Institute of Scientific and Technical Information of China (English)

    Ao Sheng-Mei; Yan Jia-Ren; Yu Hui-You

    2007-01-01

    We solve the generalized nonlinear Schrodinger equation describing the propagation of femtosecond pulses in a nonlinear optical fibre with higher-order dispersions by using the direct approach to perturbation for bright solitons, and discuss the combined effects of the third- and fourth-order dispersions on velocity, temporal intensity distribution and peak intensity of femtosecond pulses. It is noticeable that the combined effects of the third- and fourth-order dispersions on an initial propagated soliton can partially compensate each other, which seems to be significant for the stability controlling of soliton propagation features.

  10. Characterizing the propagation of gravity waves in 3D nonlinear simulations of solar-like stars

    CERN Document Server

    Alvan, L; Brun, A S; Mathis, S; Garcia, R A

    2015-01-01

    The revolution of helio- and asteroseismology provides access to the detailed properties of stellar interiors by studying the star's oscillation modes. Among them, gravity (g) modes are formed by constructive interferences between progressive internal gravity waves (IGWs), propagating in stellar radiative zones. Our new 3D nonlinear simulations of the interior of a solar-like star allows us to study the excitation, propagation, and dissipation of these waves. The aim of this article is to clarify our understanding of the behavior of IGWs in a 3D radiative zone and to provide a clear overview of their properties. We use a method of frequency filtering that reveals the path of {individual} gravity waves of different frequencies in the radiative zone. We are able to identify the region of propagation of different waves in 2D and 3D, to compare them to the linear raytracing theory and to distinguish between propagative and standing waves (g modes). We also show that the energy carried by waves is distributed in d...

  11. Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index

    CERN Document Server

    Rosenthal, E W; Jhajj, N; Zahedpour, S; Wahlstrand, J K; Milchberg, H M

    2014-01-01

    The axial dependence of femtosecond filamentation in air is measured under conditions of varying laser pulsewidth, energy, and focusing f-number. Filaments are characterized by the ultrafast z-dependent absorption of energy from the laser pulse and diagnosed by measuring the local single cycle acoustic wave generated. Results are compared to 2D+1 simulations of pulse propagation, whose results are highly sensitive to the instantaneous (electronic) part of the nonlinear response of $N_2$ and $O_2$. We find that recent measurements of the nonlinear refractive index ($n_2$) in [J.K. Wahlstrand et al., Phys. Rev. A. 85, 043820 (2012)] provide the best match and an excellent fit between experiments and simulations.

  12. Simulation of "Tsunami Waves" Propagating along Non-Linear Transmission Lines

    Directory of Open Access Journals (Sweden)

    J. Valsa

    2005-09-01

    Full Text Available The paper compares three methods for computer simulation oftransients on transmission lines with losses and nonlinear behavior,namely distributed LC model, FDTD (Finite-Difference Time-Domainmethod, and a new and very effective Method of Slices. The losses areresponsible for attenuation and shape changes of the waves as functionof time and distance from the source. Special behavior of the line dueto voltage-dependent capacitance of the line is considered in detail.The non-linear nature of the line causes that the higher is the voltagethe higher is the velocity of propagation. Then, the waves tend to tiltover so that their top moves faster than their base. As a result"tsunami waves" are created on the line. Fundamental algorithms arepresented in Matlab language. Several typical situations are solved asan illustration of individual methods.

  13. Giant narrowband twin-beam generation along the pump-energy propagation direction

    Science.gov (United States)

    Pérez, Angela M.; Spasibko, Kirill Yu; Sharapova, Polina R.; Tikhonova, Olga V.; Leuchs, Gerd; Chekhova, Maria V.

    2015-07-01

    Walk-off effects, originating from the difference between the group and phase velocities, limit the efficiency of nonlinear optical interactions. While transverse walk-off can be eliminated by proper medium engineering, longitudinal walk-off is harder to avoid. In particular, ultrafast twin-beam generation via pulsed parametric down-conversion and four-wave mixing is only possible in short crystals or fibres. Here we show that in high-gain parametric down-conversion, one can overcome the destructive role of both effects and even turn them into useful tools for shaping the emission. In our experiment, one of the twin beams is emitted along the pump Poynting vector or its group velocity matches that of the pump. The result is markedly enhanced generation of both twin beams, with the simultaneous narrowing of angular and frequency spectrum. The effect will enable efficient generation of ultrafast twin photons and beams in cavities, waveguides and whispering-gallery mode resonators.

  14. EXPERIMENTAL STUDY ON CRACK CURVING PROPAGATION IN BENDING BEAMS UNDER IMPULSIVE LOAD

    Institute of Scientific and Technical Information of China (English)

    Fang Jing; Yao Xuefeng; Xiong Chunyang

    2000-01-01

    Dynamic fracture behaviour of crack curving in bent beams has been investigated.In order to understand the propagation mechanism of such cracks under impact,an experimental method is used that combines dynamic photoelasticity with dynamic caustics to study the interaction of the flexural waves and the crack.From the state change of the transient stresses in polymer specimen,the curving fracture in the impulsively loaded beams is analyzed.The dynamic responses of crack tips are evaluated by the stress intensity factors for the cracks running in varying curvature paths under bending stress wave.

  15. Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.

    Science.gov (United States)

    Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H

    2008-02-01

    We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.

  16. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber.

    Science.gov (United States)

    Hanson, Frank; Lasher, Mark

    2010-06-01

    We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.

  17. Nonlinear propagation of ion-acoustic waves in a degenerate dense plasma

    Indian Academy of Sciences (India)

    M M Masud; A A Mamun

    2013-07-01

    Nonlinear propagation of ion-acoustic (IA) waves in a degenerate dense plasma (with all the constituents being degenerate, for both the non-relativistic or ultrarelativistic cases) have been investigated by the reductive perturbation method. The linear dispersion relation and Korteweg de Vries (KdV) equation have been derived, and the numerical solutions of KdV equation have been analysed to identify the basic features of electrostatic solitary structures that may form in such a degenerate dense plasma. The implications of our results in compact astrophysical objects, particularly, in white dwarfs and neutron stars, have been briefly discussed.

  18. Propagation of flat-topped multi-Gaussian beams through a double-lens system with apertures.

    Science.gov (United States)

    Gao, Yanqi; Zhu, Baoqiang; Liu, Daizhong; Lin, Zunqi

    2009-07-20

    A general model for different apertures and flat-topped laser beams based on the multi-Gaussian function is developed. The general analytical expression for the propagation of a flat-topped beam through a general double-lens system with apertures is derived using the above model. Then, the propagation characteristics of the flat-topped beam through a spatial filter are investigated by using a simplified analytical expression. Based on the Fluence beam contrast and the Fill factor, the influences of a pinhole size on the propagation of the flat-topped multi-Gaussian beam (FMGB) through the spatial filter are illustrated. An analytical expression for the propagation of the FMGB through the spatial filter with a misaligned pinhole is presented, and the influences of the pinhole offset are evaluated.

  19. Nonlinear propagation of high-frequency energy from blast waves as it pertains to bat hearing

    Science.gov (United States)

    Loubeau, Alexandra

    Close exposure to blast noise from military weapons training can adversely affect the hearing of both humans and wildlife. One concern is the effect of high-frequency noise from Army weapons training on the hearing of endangered bats. Blast wave propagation measurements were conducted to investigate nonlinear effects on the development of blast waveforms as they propagate from the source. Measurements were made at ranges of 25, 50, and 100 m from the blast. Particular emphasis was placed on observation of rise time variation with distance. Resolving the fine shock structure of blast waves requires robust transducers with high-frequency capability beyond 100 kHz, hence the limitations of traditional microphones and the effect of microphone orientation were investigated. Measurements were made with a wide-bandwidth capacitor microphone for comparison with conventional 3.175-mm (⅛-in.) microphones with and without baffles. The 3.175-mm microphone oriented at 90° to the propagation direction did not have sufficient high-frequency response to capture the actual rise times at a range of 50 m. Microphone baffles eliminate diffraction artifacts on the rise portion of the measured waveform and therefore allow for a more accurate measurement of the blast rise time. The wide-band microphone has an extended high-frequency response and can resolve shorter rise times than conventional microphones. For a source of 0.57 kg (1.25 lb) of C-4 plastic explosive, it was observed that nonlinear effects steepened the waveform, thereby decreasing the shock rise time, from 25 to 50 m. At 100m, the rise times had increased slightly. For comparison to the measured blast waveforms, several models of nonlinear propagation are applied to the problem of finite-amplitude blast wave propagation. Shock front models, such as the Johnson and Hammerton model, and full-waveform marching algorithms, such as the Anderson model, are investigated and compared to experimental results. The models

  20. Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor.

    Science.gov (United States)

    Dogan, Hakan; Popov, Viktor

    2016-05-01

    We investigate the acoustic wave propagation in bubbly liquid inside a pilot sonochemical reactor which aims to produce antibacterial medical textile fabrics by coating the textile with ZnO or CuO nanoparticles. Computational models on acoustic propagation are developed in order to aid the design procedures. The acoustic pressure wave propagation in the sonoreactor is simulated by solving the Helmholtz equation using a meshless numerical method. The paper implements both the state-of-the-art linear model and a nonlinear wave propagation model recently introduced by Louisnard (2012), and presents a novel iterative solution procedure for the nonlinear propagation model which can be implemented using any numerical method and/or programming tool. Comparative results regarding both the linear and the nonlinear wave propagation are shown. Effects of bubble size distribution and bubble volume fraction on the acoustic wave propagation are discussed in detail. The simulations demonstrate that the nonlinear model successfully captures the realistic spatial distribution of the cavitation zones and the associated acoustic pressure amplitudes.

  1. Fully Nonlinear Boussinesq-Type Equations with Optimized Parameters for Water Wave Propagation

    Institute of Scientific and Technical Information of China (English)

    荆海晓; 刘长根; 龙文; 陶建华

    2015-01-01

    For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with padé approximation.

  2. Fully nonlinear Boussinesq-type equations with optimized parameters for water wave propagation

    Science.gov (United States)

    Jing, Hai-xiao; Liu, Chang-gen; Long, Wen; Tao, Jian-hua

    2015-06-01

    For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with padé approximation.

  3. Nonlinear Wave Propagation and Solitary Wave Formation in Two-Dimensional Heterogeneous Media

    KAUST Repository

    Luna, Manuel

    2011-05-01

    Solitary wave formation is a well studied nonlinear phenomenon arising in propagation of dispersive nonlinear waves under suitable conditions. In non-homogeneous materials, dispersion may happen due to effective reflections between the material interfaces. This dispersion has been used along with nonlinearities to find solitary wave formation using the one-dimensional p-system. These solitary waves are called stegotons. The main goal in this work is to find two-dimensional stegoton formation. To do so we consider the nonlinear two-dimensional p-system with variable coefficients and solve it using finite volume methods. The second goal is to obtain effective equations that describe the macroscopic behavior of the variable coefficient system by a constant coefficient one. This is done through a homogenization process based on multiple-scale asymptotic expansions. We compare the solution of the effective equations with the finite volume results and find a good agreement. Finally, we study some stability properties of the homogenized equations and find they and one-dimensional versions of them are unstable in general.

  4. Propagation of multi-Gaussian Schell-model vortex beams in isotropic random media.

    Science.gov (United States)

    Tang, Miaomiao; Zhao, Daomu

    2015-12-14

    The effect of isotropic and homogeneous random media on propagation characteristics of recently introduced multi-Gaussian Schell-model (MGSM) vortex beams is investigated. The analytical formula for the cross-spectral density function of such a beam propagating in random turbulent media is derived and used to explore the evolution of the spectral density, the degree of coherence and the turbulence-induced spreading. An example illustrates the fact that, at sufficiently large distance from the source, the source correlations modulation of the spectral distribution in free space is shown to be suppressed by the uniformly correlated turbulence. The impacts, arising from the index M, the correlation width of the source and the properties of the medium on such characteristics are analyzed in depth.

  5. Tunable nonlinear beam defocusing in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H; Neshev, Dragomir N.;

    2007-01-01

    We demonstrate a novel experimental platform for discrete nonlinear optics based on infiltrated photonic crystal fibers. We observe tunable discrete diffraction and nonlinear self-defocusing, and apply the effects to realize a compact all-optical power limiter....

  6. Nonlinear dynamic analysis of damaged Reddy-Bickford beams supported on an elastic Pasternak foundation

    Science.gov (United States)

    Stojanović, Vladimir; Petković, Marko D.

    2016-12-01

    Geometrically nonlinear free and forced vibrations of damaged high order shear deformable beams resting on a nonlinear Pasternak foundation are investigated in this paper. Equations of motion are derived for the beam which is under subjected combined action of arbitrarily distributed or concentrated transverse loading as well as axial loading. To account for shear deformations, the concept of high order shear deformation is used in comparison with the concept of first order shear deformation theory. Analyses are performed to investigate the effects of the specific stiffness of the foundation on the damaged beam frequencies and displacements with the aim of equalising the response of a damaged and an intact beam. According to that, functions of the foundation stiffness are determined depending on the location and size of the damage as a result of the possibility for the damaged beam to behave like one that is intact. An advanced p-version of the finite element method is developed for geometrically nonlinear vibrations of damaged Reddy-Bickford beams. The present study gives a clear view of the nonlinear dynamical behaviour of four types of beams according to high order shear deformation theory - an intact beam, a damaged beam, a damaged beam on an elastic foundation and intact beam on elastic foundation. The paper also presents the derivation of a new set of two nonlinear partial differential equations where only the transverse and axial displacements figure. The forced nonlinear vibrations problem is solved in the time domain using the Newmark integration method. Free vibration analysis carried out by harmonic balance and the use of continuation methods and backbone curves are constructed.

  7. Suppression of beam halo-chaos using nonlinear feedback discrete control method

    CERN Document Server

    Fang Jin Qing; Chen Guan Rong; Luo Xiao Shu; Weng Jia Qiang

    2002-01-01

    Based on nonlinear feedback control method, wavelet-based feedback controller as a especial nonlinear feedback function is designed for controlling beam halo-chaos in high-current accelerators of driven clean nuclear power system. PIC simulations show that suppression of beam halo-chaos are realized effectively after discrete control of wavelet-based feed-back is applied to five kinds of the initial proton beam distributions, respectively. The beam halo strength factor is quickly reduced to zero, and other statistical physical quantities of beam halo-chaos are more than doubly reduced. These performed PIC simulation results demonstrate that the developed methods are very effective for control of beam halo-chaos. Potential application of the beam halo-chaos control methods is discussed finally

  8. Modeling and measurement of angle-beam wave propagation in a scatterer-free plate

    Science.gov (United States)

    Dawson, Alexander J.; Michaels, Jennifer E.; Michaels, Thomas E.

    2017-02-01

    Wavefield imaging has been shown to be a powerful tool for improving the understanding and characterization of wave propagation and scattering in plates. The complete measurement of surface displacement over a 2-D grid provided by wavefield imaging has the potential to serve as a useful means of validating ultrasonic models. Here, a preliminary study of ultrasonic angle-beam wave propagation in a scatterer-free plate using a combination of wavefield measurements and 2-D finite element models is described. Both wavefield imaging and finite element analysis are used to study the propagation of waves at a refracted angle of 56.8° propagating in a 6.35 mm thick aluminum plate. Wavefield imaging is performed using a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. The commercial finite element software package, PZFlex, which is specifically designed to handle large, complex ultrasonic problems, is used to create a 2-D cross-sectional model of the transducer and plate. For model validation, vertical surface displacements from both the wavefield measurements and the PZFlex finite element model are compared and found to be in excellent agreement. The validated PZFlex model is then used to explain the mechanism of Rayleigh wave generation by the angle-beam wedge. Since the wavefield measurements are restricted to the specimen surface, the cross-sectional PZFlex model is able to provide insights the wavefield data cannot. This study illustrates how information obtained from ultrasonic experiments and modeling results can be combined to improve understanding of angle-beam wave generation and propagation.

  9. The characteristics of an intense laser beam propagating in a corrugated plasma channel

    Science.gov (United States)

    Tian, Jian-Min; Tang, Rong-An; Hong, Xue-Ren; Yang, Yang; Wang, Li; Zhou, Wei-Jun; Xue, Ju-Kui

    2016-12-01

    The propagation of an intense laser beam in a corrugated plasma channel is investigated. By using the source-dependent expansion technique, an evolution equation of the laser spot size is derived. The behaviors including aperiodic oscillation, resonance, beat-like wave, and periodic oscillation with multipeak are found and analyzed. The formula for the instantaneous wave numbers of these oscillations is obtained. These theoretical findings are confirmed by the final numerical simulation.

  10. Two spatial light modulator system for laboratory simulation of random beam propagation in random media.

    Science.gov (United States)

    Wang, Fei; Toselli, Italo; Korotkova, Olga

    2016-02-10

    An optical system consisting of a laser source and two independent consecutive phase-only spatial light modulators (SLMs) is shown to accurately simulate a generated random beam (first SLM) after interaction with a stationary random medium (second SLM). To illustrate the range of possibilities, a recently introduced class of random optical frames is examined on propagation in free space and several weak turbulent channels with Kolmogorov and non-Kolmogorov statistics.

  11. Fundamental algorithm and computational codes for the light beam propagation in high power laser system

    Institute of Scientific and Technical Information of China (English)

    GUO; Hong

    2001-01-01

    [1]Sacks, R. A., The PROP 92 Fourier Beam Propagation Code, UCRL-LR-105821-96-4.[2]Williams, W. H., Modeling of Self-Focusing Experiments by Beam Propagation Codes, UCRL-LR-105821-96-1.[3]User guide for FRESNEL software.[4]Hunt, J. H., Renard, P. A., Simmons, W. W., Improved performance of fusion lasers using the imaging properties of multiple spatial filters, Appl. Opt., 1977, 16: 779.[5]Deng Ximing, Guo Hong, Cao Qing, Invariant integral and statistical equations for the paraxial beam propagation in free space, Science in China (in Chinese) Ser. A, 1997, 27(1): 64.[6]Goodman, J. W., Introduction to Fourier Optics, New York: McGraw-Hill, 1968.[7]Born, M., Wolf, E., Principles of Optics, New York: Pergamon Press, 1975.[8]Siegman, A. E., Lasers, New York: Mill Valley CA, 1986.[9]Fan Dianyuan, Fresnel number of complex system, Optica Sinica (in Chinese), 1983, 3(4): 319.[10]L

  12. Propagation based on second-order moments for partially coherent Laguerre-Gaussian beams through atmospheric turbulence

    Science.gov (United States)

    Xu, Yonggen; Li, Yude; Dan, Youquan; Du, Quan; Wang, Shijian

    2016-07-01

    The Wigner distribution function (WDF) has been used to study the propagation properties of partially coherent Laguerre Gaussian (PCLG) beams through atmospheric turbulence. Based on the extended Huygens-Fresnel principle, an analytical formula of the propagation matrixes in terms of the second-order moments of the WDF for PCLG Beams in the receiving plane is derived. And then the analytical formulae for the curvature radii of PCLG Beams propagating in turbulence are given by the second-order moments of the WDF. The numerical results indicate that the curvature radius of PCLG Beams changes more rapidly in turbulence than that in the free space. The influence of the transverse coherence width and the beam waist width on the curvature radius of PCLG Beams is obvious, while the laser wavelength and the inner scale of turbulence have a slight effect. The study results may be useful for remote sensing and free space optical communications.

  13. Properties of vortex beams formed by an array of fibre lasers and their propagation in a turbulent atmosphere

    Science.gov (United States)

    Aksenov, V. P.; Dudorov, V. V.; Kolosov, V. V.

    2016-08-01

    Using a numerical simulation, we investigate the possibility of synthesising vortex laser beams with a variable orbital angular momentum by a hexagonal array of fibre lasers under a phase control of individual subapertures of the array. We report the requirements to the parameters of the device generating a vortex beam (number and size of subapertures, as well as their mutual arrangement). The propagation dynamics of synthesised vortex beams is compared with that of conventional Laguerre-Gaussian beams in free space and in a turbulent atmosphere. The spectral properties of the synthesised beam, represented as a superposition of different azimuthal modes, are determined during its propagation in free space. The energy and statistical parameters of the synthesised and Laguerre-Gaussian vortex beams are shown to coincide with increasing propagation distance in a turbulent medium.

  14. Pulsed electron beam propagation in gases under pressure of 6.6 kPa in drift tube

    Science.gov (United States)

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Poloskov, A. V.

    2017-02-01

    This paper presents the results of an investigation of pulsed electron beam transport propagated in a drift tube filled with different gases (He, H2, N2, Ar, SF6, and CO2). The total pressure in the drift tube was 6.6 kPa. The experiments were carried out using a TEA-500 pulsed electron accelerator. The electron beam was propagated in the drift tube composed of two sections equipped with reverse current shunts. Under a pressure of 6.6 kPa, the maximum value of the electron beam charge closed on the walls of the drift tube was recorded when the beam was propagated in hydrogen and carbon dioxide. The minimum value of the electron beam charge closed on the walls of the drift tube was recorded for sulfur hexafluoride. The visualization of the pulsed electron beam energy losses onto the walls of the drift chamber was carried out using radiation-sensitive film.

  15. Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel

    Science.gov (United States)

    Wang, Li; Hong, Xue-Ren; Sun, Jian-An; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan

    2017-07-01

    The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam.

  16. Non-linear Ion-Wake Excitation by Plasma Electron Wakefields of an Electron or Positron Beam for Positron Acceleration

    Science.gov (United States)

    Katsouleas, Thomas; Sahai, Aakash

    2015-11-01

    The excitation of a non-linear ion-wake by a train of non-linear electron wake of an electron and a positron beam is modeled and its use for positron acceleration is explored. The ion-wake is shown to be a driven non-linear ion-acoustic wave in the form of a cylindrical ion-soliton similar to the solution of the cKdV equation. The phases of the oscillating radial electric fields of the slowly-propagating electron wake are asymmetric in time and excite time-averaged inertial ion motion radially. The radial field of the electron compression region sucks-in the ions and the field of space-charge region of the wake expels them, driving a cylindrical ion-soliton structure with on-axis and bubble-edge density-spikes. Once formed, the channel-edge density-spike is driven radially outwards by the thermal pressure of the thermalized wake energy. Its channel-like structure due to the flat-residue left behind by the propagating ion-soliton, is independent of the energy-source driving the non-linear electron wake. We explore the use of the partially-filled channel formed by the cylindrical ion-soliton for a novel regime of positron acceleration. PIC simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration (arXiv:1504.03735). Work supported by the US Department of Energy under DE-SC0010012 and the National Science Foundation under NSF-PHY-0936278.

  17. Notes on the nonlinear beam dynamics with strong damping in the CLIC Damping Ring

    CERN Document Server

    Levichev, Eugene; Shatilov, Dmitry

    2010-01-01

    The beam is injected into the CLIC damping ring with the relatively large emittance and energy spread and then is damped to the extremely low phase volume. During the damping process the betatron frequency of each particle changes due to the space charge tune shift and nonlinear dependence of the betatron tune on the amplitude. This nonlinearity is produced by the strong chromatic sextupoles, wiggler nonlinear field components and, again, by the space charge force. During the damping, the particle cross resonances, which can trap some fraction of the beam, cause the loss of intensity, the beam blow up and degrade the beam quality. In this paper we study the evolution of the beam distribution in time during the damping for the original lattice of the CLIC DR (May 2005). Geneva, Switzerland June 2010 CLIC – Note – 850

  18. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital-angular-momemtum

    CERN Document Server

    Chaitanya, N Apurv; Banerji, J; Samanta, G K

    2016-01-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  19. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum

    Science.gov (United States)

    Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.

    2016-09-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  20. Effects of nonlinear sound propagation on the characteristic timbres of brass instruments.

    Science.gov (United States)

    Myers, Arnold; Pyle, Robert W; Gilbert, Joël; Campbell, D Murray; Chick, John P; Logie, Shona

    2012-01-01

    The capacity of a brass instrument to generate sounds with strong high-frequency components is dependent on the extent to which its bore profile supports nonlinear sound propagation. At high dynamic levels some instruments are readily sounded in a "cuivré" (brassy) manner: this phenomenon is due to the nonlinear propagation of sound in ducts of the proportions typical of labrosones (lip-reed aerophones). The effect is also evident at lower dynamic levels and contributes to the overall tonal character of the various kinds of brass instrument. This paper defines a brassiness potential parameter derived from the bore geometries of brass instruments. The correlation of the brassiness potential parameter with spectral enrichment as measured by the spectral centroid of the radiated sound is examined in playing tests using musicians, experiments using sine-wave excitation of instruments, and simulations using a computational tool. The complementary effects of absolute bore size on spectral enrichment are investigated using sine-wave excitation of cylindrical tubes and of instruments, establishing the existence of a trade-off between bore size and brassiness potential. The utility of the brassiness potential parameter in characterizing labrosones is established, and the graphical presentation of results in a 2D space defined by bore size and brassiness potential demonstrated.

  1. Analysis of S Wave Propagation Through a Nonlinear Joint with the Continuously Yielding Model

    Science.gov (United States)

    Cui, Zhen; Sheng, Qian; Leng, Xianlun

    2017-01-01

    Seismic wave propagation through joints that are embedded in a rock mass is a critical issue for aseismic issues of underground rock engineering. Few studies have investigated nonlinear joints with a continuously yielding model. In this paper, a time-domain recursive method (TDRM) for an S wave across a nonlinear Mohr-Coulomb (MC) slip model is extended to a continuously yielding (CY) model. Verification of the TDRM-based results is conducted by comparison with the simulated results via a built-in model of 3DEC code. Using parametric studies, the effect of normal stress level, amplitude of incident wave, initial joint shear stiffness, and joint spacing is discussed and interpreted for engineering applications because a proper in situ stress level (overburden depth) and acceptable quality of surrounding rock mass are beneficial for seismic stability issues of underground rock excavation. Comparison between the results from the MC model and the CY model is presented both for an idealized impulse excitation and a real ground motion record. Compared with the MC model, complex joint behaviors, such as tangential stiffness degradation, normal stress dependence, and the hysteresis effect, that occurred in the wave propagation can be described with the CY model. The MC model seems to underestimate the joint shear displacement in a high normal stress state and in a real ground motion excitation case.

  2. Optical Connecting of Fibers by Laser Beams Propagating from the Fibers Edges

    Directory of Open Access Journals (Sweden)

    Sergey Nikolayevich Mensov

    2008-01-01

    Full Text Available A possibility to connect nonprecise positioned fibers in photopolymerizable compositions is under discussion in this paper. The processes of optical synthesis of connective waveguiding structures forming in such mediums directly by the radiation leaving the edges of connecting fibers are investigated numerically and experimentally as well. It was shown that nonlinear interaction of the light beams allows to connect misaligned and transversally shifted fibers with high efficiency.

  3. Filamentation with nonlinear Bessel vortices.

    Science.gov (United States)

    Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A

    2014-10-20

    We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics.

  4. Nonlinear dynamic characteristic analysis of jointed beam with clearance

    Science.gov (United States)

    Zhang, Jing; Guo, Hong-Wei; Liu, Rong-Qiang; Wu, Juan; Kou, Zi-Ming; Deng, Zong-Quan

    2016-12-01

    The impact and elasticity of discontinuous beams with clearance frequently affect the dynamic response of structures used in space missions. This study investigates the dynamic response of jointed beams which are the periodic units of deployable structures. The vibration process of jointed beams includes free-play and impact stages. A method for the dynamic analysis of jointed beams with clearance is proposed based on mode superposition and instantaneous static deformation. Transfer matrix, which expresses the relationship of the responses before and after the impact of jointed beams, is derived to calculate the response of the jointed beams after a critical position. The dynamic responses of jointed beams are then simulated. The effects of various parameters on the displacement and velocity of beams are investigated.

  5. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler

    Science.gov (United States)

    Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-01-01

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media. PMID:28225007

  6. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler.

    Science.gov (United States)

    Kardaś, Tomasz M; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-22

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  7. Ideal laser-beam propagation through high-temperature ignition Hohlraum plasmas.

    Science.gov (United States)

    Froula, D H; Divol, L; Meezan, N B; Dixit, S; Moody, J D; Neumayer, P; Pollock, B B; Ross, J S; Glenzer, S H

    2007-02-23

    We demonstrate that a blue (3omega, 351 nm) laser beam with an intensity of 2 x 10(15) W cm(-2) propagates nearly within the original beam cone through a millimeter scale, T(e)=3.5 keV high density (n(e)=5 x 10(20) cm(-3)) plasma. The beam produced less than 1% total backscatter at these high temperatures and densities; the resulting transmission is greater than 90%. Scaling of the electron temperature in the plasma shows that the plasma becomes transparent for uniform electron temperatures above 3 keV. These results are consistent with linear theory thresholds for both filamentation and backscatter instabilities inferred from detailed hydrodynamic simulations. This provides a strong justification for current inertial confinement fusion designs to remain below these thresholds.

  8. Quantification of optical turbulence in the ocean and its effects on beam propagation.

    Science.gov (United States)

    Nootz, Gero; Jarosz, Ewa; Dalgleish, Fraser R; Hou, Weilin

    2016-11-01

    The influence of optically active turbulence on the propagation of laser beams is investigated in clear ocean water over a path length of 8.75 m. The measurement apparatus is described and the effects of optical turbulence on the laser beam are presented. The index of refraction structure constant is extracted from the beam deflection and the results are compared to independently made measures of the turbulence strength (Cn2) by a vertical microstructure profiler. Here we present values of Cn2 taken from aboard the R/V Walton Smith during the Bahamas optical turbulence exercise (BOTEX) in the Tongue of the Ocean between June 30 and July 12, 2011, spanning a range from 10-14 to 10-10  m-2/3. To the best of our knowledge, this is the first time such measurements are reported for the ocean.

  9. Propagation of Gaussian Schell-model Array beams in free space and atmospheric turbulence

    Science.gov (United States)

    Mao, Yonghua; Mei, Zhangrong; Gu, Juguan

    2016-12-01

    Based on the extended Huygens-Fresnel principle, the evolution behavior of the spectral density and the spectral degree of coherence of the beam produced by a recently introduced novel class of Gaussian Schell-model Arrays (GSMA) source in free space and turbulence atmospheric are explored and comparatively analyzed. And the influence of the fractal constant of the atmospheric power spectrum and refractive-index structure constant on the spectral density and the spectral degree of coherence of beams are analyzed. It is shown that the optical lattice profile is stable when beams propagate in free space, but the spectral density eventually is suppressed and transformed into a Gaussian profiles when it passes at sufficiently large distances through the turbulent atmosphere. The distributions of the spectral degree of coherence in far field eventually transformed into a shrink Gaussian profile relative to free space which means that the degree of spatial coherence turns worse.

  10. Propagation of a Pearcey-Gaussian-vortex beam in free space and Kerr media

    Science.gov (United States)

    Peng, Yulian; Chen, Chidao; Chen, Bo; Peng, Xi; Zhou, Meiling; Zhang, Liping; Li, Dongdong; Deng, Dongmei

    2016-12-01

    The propagation of a Pearcey-Gaussian-vortex beam (PGVB) has been investigated numerically in free space and Kerr media. In addition, we have done a numerical experiment for the beam in free space. A PGVB maintains the characteristics of auto-focusing, self-healing and form-invariance which are possessed by a Pearcey beam and a Pearcey-Gaussian beam. Due to the influence of the optical vortex, a bright speck occurs in front of the main lobe. Compared with a Pearcey beam and a Pearcey-Gaussian beam, a PGVB has the most remarkable intensity singularity and the phase singularity. It is worth noting that the impact of the vortex at the coordinate origins means that a PGVB in the vicinity carries no angular momentum or transverse energy flow. We have investigated and numerically simulated the transverse intensity of a PGVB in Kerr media. We find that the auto-focusing of a PGVB in a Kerr medium becomes stronger with increasing power.

  11. Nonlinear physics of electrical wave propagation in the heart: a review

    Science.gov (United States)

    Alonso, Sergio; Bär, Markus; Echebarria, Blas

    2016-09-01

    The beating of the heart is a synchronized contraction of muscle cells (myocytes) that is triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media with applications to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact for cardiac arrhythmias.

  12. Geometrically Nonlinear Static Analysis of Edge Cracked Timoshenko Beams Composed of Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Şeref Doğuşcan Akbaş

    2013-01-01

    Full Text Available Geometrically nonlinear static analysis of edge cracked cantilever Timoshenko beams composed of functionally graded material (FGM subjected to a nonfollower transversal point load at the free end of the beam is studied with large displacements and large rotations. Material properties of the beam change in the height direction according to exponential distributions. The cracked beam is modeled as an assembly of two subbeams connected through a massless elastic rotational spring. In the study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The nonlinear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The convergence study is performed for various numbers of finite elements. In the study, the effects of the location of crack, the depth of the crack, and various material distributions on the nonlinear static response of the FGM beam are investigated in detail. Also, the difference between the geometrically linear and nonlinear analysis of edge cracked FGM beam is investigated in detail.

  13. Nonlinear simulations of beam-driven compressional Alfvén eigenmodes in NSTX

    Science.gov (United States)

    Belova, E. V.; Gorelenkov, N. N.; Crocker, N. A.; Lestz, J. B.; Fredrickson, E. D.; Tang, S.; Tritz, K.

    2017-04-01

    Results of 3D nonlinear simulations of neutral-beam-driven compressional Alfvén eigenmodes (CAEs) in the National Spherical Torus Experiment (NSTX) are presented. Hybrid MHD-particle simulations for the H-mode NSTX discharge (shot 141398) using the HYM code show unstable CAE modes for a range of toroidal mode numbers, n =4 -9 , and frequencies below the ion cyclotron frequency. It is found that the essential feature of CAEs is their coupling to kinetic Alfvén wave (KAW) that occurs on the high-field side at the Alfvén resonance location. High-frequency Alfvén eigenmodes are frequently observed in beam-heated NSTX plasmas, and have been linked to flattening of the electron temperature profiles at high beam power. Coupling between CAE and KAW suggests an energy channeling mechanism to explain these observations, in which beam-driven CAEs dissipate their energy at the resonance location, therefore significantly modifying the energy deposition profile. Nonlinear simulations demonstrate that CAEs can channel the energy of the beam ions from the injection region near the magnetic axis to the location of the resonant mode conversion at the edge of the beam density profile. A set of nonlinear simulations show that the CAE instability saturates due to nonlinear particle trapping, and a large fraction of beam energy can be transferred to several unstable CAEs of relatively large amplitudes and absorbed at the resonant location. Absorption rate shows a strong scaling with the beam power.

  14. Transverse instabilities and pattern formation in two-beam-excited nonlinear optical interactions in liquids.

    Science.gov (United States)

    Bentley, Sean J; Heebner, John E; Boyd, Robert W

    2006-04-01

    We describe observations of various transverse instabilities that occur when two laser beams intersect in nonlinear optical liquids. Patterns that we observe include two types of conical emission and the generation of a linear array of spots. These results can be understood in terms of the physical processes of self-diffraction, two-beam-excited conical emission, and seeded modulational instability.

  15. Management of the orbital angular momentum of vortex beams in a quadratic nonlinear interaction

    CERN Document Server

    Bovino, Fabio A; Bertolotti, Mario; Sibilia, Concita

    2011-01-01

    Light intensity control of the orbital angular momentum of the fundamental beam in a quadratic nonlinear process is theoretically and numerically presented. In particular we analyzed a seeded second harmonic generation process in presence of orbital angular momentum of the interacting beams due both to on axis and off axis optical vortices. Examples are proposed and discussed.

  16. Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation

    NARCIS (Netherlands)

    Voss, Thomas; Scherpen, Jacquelien M. A.

    2014-01-01

    In this paper we develop a mathematical model for the dynamics of a nonlinear Timoshenko beam with piezoelectric actuation. This model can then be used to design controllers with the goal of achieving a desired shape of the beam. The control scheme can be used for several applications, e. g., vibrat

  17. Nonlinear Alfvén wave propagating in ideal MHD plasmas

    Science.gov (United States)

    Zheng, Jugao; Chen, Yinhua; Yu, Mingyang

    2016-01-01

    The behavior of nonlinear Alfvén waves propagating in ideal MHD plasmas is investigated numerically. It is found that in a one-dimensional weakly nonlinear system an Alfvén wave train can excite two longitudinal disturbances, namely an acoustic wave and a ponderomotively driven disturbance, which behave differently for β \\gt 1 and β \\lt 1, where β is the ratio of plasma-to-magnetic pressures. In a strongly nonlinear system, the Alfvén wave train is modulated and can steepen to form shocks, leading to significant dissipation due to appearance of current sheets at magnetic-pressure minima. For periodic boundary condition, we find that the Alfvén wave transfers its energy to the plasma and heats it during the shock formation. In two-dimensional systems, fast magneto-acoustic wave generation due to Alfvén wave phase mixing is considered. It is found that the process depends on the amplitude and frequency of the Alfvén waves, as well as their speed gradients and the pressure of the background plasma.

  18. SOME PROBLEMS CONCERNING FREE NON-LINEAR VIBRATIONS OF BEAM STRUCTURES

    Directory of Open Access Journals (Sweden)

    S. V. Bosakov

    2008-01-01

    Full Text Available The paper analyzes an influence of physical non-linearity material account on vibrations of single beams with various support fixing. The authors also analyze power criteria for existing stable periodic vibrations and dependence of vibration period on initial power is determined in the paper. Accurate values of an amplitude and non-linear bending vibration period of beams have been also determined as a conservative system with due account of initial conditions. A number of examples are given that clearly illustrate the obtained solutions and show an influence rate of the mentioned effects on amplitude-frequency characteristics of non-linear systems. 

  19. Nonlinear Absolute Nodal Coordinate Formulation of a Flexible Beam Considering Shear Effect

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-yang; SHEN Ling-jie; HONG Jia-zhen

    2005-01-01

    Nonlinear modeling of a flexible beam with large deformation was investigated. Absolute nodal cooridnate formulation is employed to describe the motion, and Lagrange equations of motion of a flexible beam are derived based on the geometric nonlinear theory. Different from the previous nonlinear formulation with EulerBernoulli assumption, the shear strain and transverse normal strain are taken into account. Computational example of a flexible pendulum with a tip mass is given to show the effects of the shear strain and transverse normal strain. The constant total energy verifies the correctness of the present formulation.

  20. A study on the quintic nonlinear beam vibrations using asymptotic approximate approaches

    Science.gov (United States)

    Sedighi, Hamid M.; Shirazi, Kourosh H.; Attarzadeh, Mohammad A.

    2013-10-01

    This paper intends to promote the application of modern analytical approaches to the governing equation of transversely vibrating quintic nonlinear beams. Four new studied methods are Stiffness analytical approximation method, Homotopy Perturbation Method with an Auxiliary Term, Max-Min Approach (MMA) and Iteration Perturbation Method (IPM). The powerful analytical approaches are used to obtain the nonlinear frequency-amplitude relationship for dynamic behavior of vibrating beams with quintic nonlinearity. It is demonstrated that the first terms in series expansions of all methods are sufficient to obtain a highly accurate solution. Finally, a numerical example is conducted to verify the integrity of the asymptotic methods.

  1. Lie algebraic analysis for the nonlinear transport of intense bunched beam in electrostatic quadrupoles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhuo; L(U) Jian-Qin

    2008-01-01

    In this paper, the nonlinear transport of intense bunched beams in electrostatic quadrupoles is analyzed using the Lie algebraic method, and the results are briefly presented of the linear matrix approximation and the second order correction of particle trajectory in the state space. Beam having K-V distribution and Gaussian distribution approximation are respectively considered. A brief discussion is also given of the total effects of the quadrupole and the space charge forces on the evolution of the beam envelope.

  2. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation

    Science.gov (United States)

    Mitri, F. G.

    2016-08-01

    In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser

  3. Effect of transverse shears on complex nonlinear vibrations of elastic beams

    Science.gov (United States)

    Krysko, V. A.; Zhigalov, M. V.; Saltykova, O. A.; Krysko, A. V.

    2011-09-01

    Models of geometrically nonlinear Euler-Bernoulli, Timoshenko, and Sheremet'ev-Pelekh beams under alternating transverse loading were constructed using the variational principle and the hypothesis method. The obtained differential equation systems were analyzed based on nonlinear dynamics and the qualitative theory of differential equations with using the finite difference method with the approximation O(h2) and the Bubnov-Galerkin finite element method. It is shown that for a relative thickness λ ⩽ 50, accounting for the rotation and bending of the beam normal leads to a significant change in the beam vibration modes.

  4. Nonlinear fracture mechanics investigation on the ductility of reinforced concrete beams

    Directory of Open Access Journals (Sweden)

    A. Carpinteri

    Full Text Available In the present paper, a numerical algorithm based on the finite element method is proposed for the prediction of the mechanical response of reinforced concrete (RC beams under bending loading. The main novelty of such an approach is the introduction of the Overlapping Crack Model, based on nonlinear fracture mechanics concepts, to describe concrete crushing. According to this model, the concrete dam- age in compression is represented by means of a fictitious interpenetration. The larger is the interpenetration, the lower are the transferred forces across the damaged zone. The well-known Cohesive Crack Model in tension and an elastic-perfectly plastic stress versus crack opening displacement relationship describing the steel reinforcement behavior are also integrated into the numerical algorithm. The application of the proposed Cohesive-Overlapping Crack Model to the assessment of the minimum reinforcement amount neces- sary to prevent unstable tensile crack propagation and to the evaluation of the rotational capacity of plastic hinges, permits to predict the size-scale effects evidenced by several experimental programs available in the literature. According to the obtained numerical results, new practical design formulae and diagrams are proposed for the improvement of the current code provisions which usually disregard the size effects.

  5. Determining critical load in the multispan beams with the nonlinear model

    Science.gov (United States)

    DemÑ-r, D. Dönmez; Sinir, B. G.; Usta, L.

    2017-01-01

    The beams which are one of the most commonly used structural members are quite important for many researchers. Mathematical models determining the response of beams under external loads are concluded from elasticity theory through a series of assumptions concerning the kinematics of deformation and constitutive behavior. In this study, the derivation of the nonlinear model is introduced to determine the critical load in the multispan beams. Since the engineering practice of this kind of problems is very common, determining the critical load is quite important. For this purpose, the nonlinear mathematical model of the multispan Euler-Bernoulli beam is firstly obtained. To be able to obtain the independent of the material and the geometry, the present model are became dimensionless. Then, the critical axial load can be determined via the nonlinear solution of the governing equation.

  6. A simple numerical model of a geometrically nonlinear Timoshenko beam

    NARCIS (Netherlands)

    Keijdener, C.; Metrikine, A.

    2015-01-01

    In the original problem for which this model was developed, onedimensional flexible objects interact through a non-linear contact model. Due to the non-linear nature of the contact model, a numerical time-domain approach was adopted. One of the goals was to see if the coupling between axial and tran

  7. Generation and propagation of high-brightness electron beams from a magnetically crowbarred injector

    Science.gov (United States)

    Humphries, S., Jr.; Len, L. K.; Allen, C. B.

    1987-05-01

    Tests of a 300-keV electrostatic electron beam injector with a magnetic crowbar switch are described. The saturable ferrite core switch allows generation of a constant voltage, 80-ns pulse directly from a Marx generator. Inductive isolation in the switch permits direct access to the high-voltage electrode for thermionic or active plasma cathode experiments. The pulse modulator can drive a 1.5-kA load. A high brightness 290-A beam from a felt plasma-emission cathode was extracted and propagated in vacuum. Because of the reliability of the magnetic crowbar switch, more than 500 shots were accumulated on the cathode at over 1 kA/sq cm with no degradation of the output. The output beam had a normalized brightness of 2.6 x 10 to the 8th A/(m rad) sq. A solenoidal lens was used to match the space-charge-dominated beam into a 1-m-long periodic focusing system with 25 reversing solenoidal coils. A beam current of 150 A was successfully transported through the 1.7-cm radius tube.

  8. Controlling Beam Halo-chaos Using a Special Nonlinear Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Beam halo-chaos in high-current accelerators has become a key concerned issue because it can cause excessive radioactivity from the accelerators therefore significantly limits their applications in industry,medicine, and national defense. Some general engineering methods for chaos control have been developedin recent years, but they generally are unsuccessful for beam halo-chaos suppression due to manytechnical constraints. Beam halo-chaos is essentially a spatotemporal chaotic motion within a high power

  9. Dynamical Behavior of Nonlinear Viscoelastic Timoshenko Beams with Damage on a Viscoelastic Foundation

    Institute of Scientific and Technical Information of China (English)

    盛冬发; 张燕; 程昌钧

    2004-01-01

    Based on convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams with large deflections, the nonlinear equations governing dynamical behavior of Timoshenko beams with damage on viscoelastic foundation were firstly derived. By using the Galerkin method in spatial domain, the nonlinear integro-partial differential equations were transformed into a set of integro-ordinary differential equations. The numerical methods in nonlinear dynamical systems, such as the phase-trajectory diagram, Poincare section and bifurcation figure, were used to solve the simplified systems of equations. It could be seen that simplified dynamical systems possess the plenty of nonlinear dynamical properties. The influence of load and material parameters on the dynamic behavior of nonlinear system were investigated in detail.

  10. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingnan [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based

  11. Two-dimensional wave propagation in an elastic half-space with quadratic nonlinearity: a numerical study.

    Science.gov (United States)

    Küchler, Sebastian; Meurer, Thomas; Jacobs, Laurence J; Qu, Jianmin

    2009-03-01

    This study investigates two-dimensional wave propagation in an elastic half-space with quadratic nonlinearity. The problem is formulated as a hyperbolic system of conservation laws, which is solved numerically using a semi-discrete central scheme. These numerical results are then analyzed in the frequency domain to interpret the nonlinear effects, specifically the excitation of higher-order harmonics. To quantify and compare the nonlinearity of different materials, a new parameter is introduced, which is similar to the acoustic nonlinearity parameter beta for one-dimensional longitudinal waves. By using this new parameter, it is found that the nonlinear effects of a material depend on the point of observation in the half-space, both the angle and the distance to the excitation source. Furthermore it is illustrated that the third-order elastic constants have a linear effect on the acoustic nonlinearity of a material.

  12. Temporal analysis of laser beam propagation in the atmosphere using computer-generated long phase screens.

    Science.gov (United States)

    Dios, Federico; Recolons, Jaume; Rodríguez, Alejandro; Batet, Oscar

    2008-02-04

    Temporal analysis of the irradiance at the detector plane is intended as the first step in the study of the mean fade time in a free optical communication system. In the present work this analysis has been performed for a Gaussian laser beam propagating in the atmospheric turbulence by means of computer simulation. To this end, we have adapted a previously known numerical method to the generation of long phase screens. The screens are displaced in a transverse direction as the wave is propagated, in order to simulate the wind effect. The amplitude of the temporal covariance and its power spectrum have been obtained at the optical axis, at the beam centroid and at a certain distance from these two points. Results have been worked out for weak, moderate and strong turbulence regimes and when possible they have been compared with theoretical models. These results show a significant contribution of beam wander to the temporal behaviour of the irradiance, even in the case of weak turbulence. We have also found that the spectral bandwidth of the covariance is hardly dependent on the Rytov variance.

  13. On the Forms of Nonlinear Propagation of High-Frequency Perturbation in a Thermal Relaxing Gas-Liquid mixture

    Directory of Open Access Journals (Sweden)

    Ohanyan G.G.

    2010-09-01

    Full Text Available The quasi-adiabatic and quasi-isotherm regimes of propagation of high-frequency perturbation are considered in a thermal relaxing gas–fluid mixture. The simplified non-linear equations are obtained. It is shown that in the absence of heat transfer and under the quasi-adiabatic regime the form of propagation is soliton, or the shock wave in quasi-isotherm regime.

  14. On the Forms of Nonlinear Propagation of High-Frequency Perturbation in a Thermal Relaxing Gas-Liquid mixture

    OpenAIRE

    Ohanyan G.G.

    2010-01-01

    The quasi-adiabatic and quasi-isotherm regimes of propagation of high-frequency perturbation are considered in a thermal relaxing gas–fluid mixture. The simplified non-linear equations are obtained. It is shown that in the absence of heat transfer and under the quasi-adiabatic regime the form of propagation is soliton, or the shock wave in quasi-isotherm regime.

  15. Generation, compression, and propagation of pulse trains in the nonlinear Schrödinger equation with distributed coefficients.

    Science.gov (United States)

    Wang, Luyun; Li, Lu; Li, Zhonghao; Zhou, Guosheng; Mihalache, Dumitru

    2005-09-01

    The generalized nonlinear Schrödinger model with distributed dispersion, nonlinearity, and gain or loss is considered and the explicit, analytical solutions describing the dynamics of bright solitons on a continuous-wave background are obtained in quadratures. Then, the generation, compression, and propagation of pulse trains are discussed in detail. The numerical results show that solitons can be compressed by choosing the appropriate control fiber system, and pulse trains generated by modulation instability can propagate undistorsted along fibers with distributed parameters by controlling appropriately the energy of each pulse in the pulse train.

  16. Nonlinear dynamic response of beam and its application in nanomechanical resonator

    Institute of Scientific and Technical Information of China (English)

    Yin Zhang; Yun Liu; Kevin D. Murphy

    2012-01-01

    Nonlinear dynamic response of nanomechanical resonator is of very important characteristics in its application.Two categories of the tension-dominant and curvaturedominant nonlinearities are analyzed.The dynamic nonlinearity of four beam structures of nanomechanical resonator is quantitatively studied via a dimensional analysis approach.The dimensional analysis shows that for the nanomechanical resonator of tension-dominant nonlinearity,its dynamic nonlinearity decreases monotonically with increasing axial loading and increases monotonically with the increasing aspect ratio of length to thickness; the dynamic nonlinearity can only result in the hardening effects.However,for the nanomechanical resonator of the curvature-dominant nonlinearity,its dynamic nonlinearity is only dependent on axial loading.Compared with the tension-dominant nonlinearity,the curvature-dominant nonlinearity increases monotonically with increasing axial loading; its dynamic nonlinearity can result in both hardening and softening effects.The analysis on the dynamic nonlinearity can be very helpful to the tuning application of the nanomechanical resonator.

  17. Three-dimensional beam propagation method based on the variable transformed Galerkin's method

    Institute of Scientific and Technical Information of China (English)

    XIAO Jinbiao; SUN Xiaohan; ZHANG Mingde

    2004-01-01

    A novel three-dimensional beam propagation method (BPM) based on the variable transformed Galerkin's method is introduced for simulating optical field propagation in three-dimensional dielectric structures. The infinite Cartesian x-y plane is mapped into a unit square by a tangent-type function transformation. Consequently, the infinite region problem is converted into the finite region problem. Thus, the boundary truncation is eliminated and the calculation accuracy is promoted. The three-dimensional BPM basic equation is reduced to a set of first-order ordinary differential equations through sinusoidal basis function, which fits arbitrary cladding optical waveguide, then direct solution of the resulting equations by means of the Runge-Kutta method. In addition,the calculation is efficient due to the small matrix derived from the present technique.Both z-invariant and z-variant examples are considered to test both the accuracy and utility of this approach.

  18. A 2D spring model for the simulation of ultrasonic wave propagation in nonlinear hysteretic media.

    Science.gov (United States)

    Delsanto, P P; Gliozzi, A S; Hirsekorn, M; Nobili, M

    2006-07-01

    A two-dimensional (2D) approach to the simulation of ultrasonic wave propagation in nonclassical nonlinear (NCNL) media is presented. The approach represents the extension to 2D of a previously proposed one dimensional (1D) Spring Model, with the inclusion of a PM space treatment of the intersticial regions between grains. The extension to 2D is of great practical relevance for its potential applications in the field of quantitative nondestructive evaluation and material characterization, but it is also useful, from a theoretical point of view, to gain a better insight of the interaction mechanisms involved. The model is tested by means of virtual 2D experiments. The expected NCNL behaviors are qualitatively well reproduced.

  19. Nonlinear propagation of vector extremely short pulses in a medium of symmetric and asymmetric molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sazonov, S. V., E-mail: sazonov.sergey@gmail.com [National Research Centre “Kurchatov Institute,” (Russian Federation); Ustinov, N. V., E-mail: n-ustinov@mail.ru [Moscow State University of Railways, Kaliningrad Branch (Russian Federation)

    2017-02-15

    The nonlinear propagation of extremely short electromagnetic pulses in a medium of symmetric and asymmetric molecules placed in static magnetic and electric fields is theoretically studied. Asymmetric molecules differ in that they have nonzero permanent dipole moments in stationary quantum states. A system of wave equations is derived for the ordinary and extraordinary components of pulses. It is shown that this system can be reduced in some cases to a system of coupled Ostrovsky equations and to the equation intagrable by the method for an inverse scattering transformation, including the vector version of the Ostrovsky–Vakhnenko equation. Different types of solutions of this system are considered. Only solutions representing the superposition of periodic solutions are single-valued, whereas soliton and breather solutions are multivalued.

  20. Nonlinear Dynamic Analysis of Functionally Graded Timoshenko Beam fixed to a Rotating Hub

    Science.gov (United States)

    Panigrahi, B.; Pohit, G.

    2016-08-01

    The present work accounts centrifugal stiffening effect on the nonlinear vibration response of an FGM Timoshenko beam. Analysis is carried out for a cantilever beam fixed with a rotating hub. Material is assumed to have a gradation relation along the depth of the beam. Centrifugal force and axial displacement raised due to the rotating hub is incorporated in the strain energy equations. Subsequent to this, an iterative technique is employed to obtain amplitude dependent vibration response of a rotating Timoshenko beam while material follows a gradation relation along the beam depth. Main objective of the work is to obtain the effects of rotational speeds, hub radius, and different gradation relations on the linear as well as nonlinear frequencies and mode shapes.

  1. Propagation properties of off-axis Hermite-cosh-Gaussian beam combinations through a first-order optical system

    Institute of Scientific and Technical Information of China (English)

    Tang Qian-Jin; Chen Da-Ming; Yu Yong-Ai; Hu Qi-Quan

    2006-01-01

    Based on the Collins integral formula, the analytic expressions of propagation of the coherent and the incoherent off-axis Hermite-cosh-Gaussian (HChG) beam combinations with rectangular symmetry passing through a paraxial first-order optical system are derived, and corresponding numerical examples are given and analysed. The resulting beam quality is discussed in terms of power in the bucket (PIB). The study suggests that the resulting beam cannot keep the initial intensity shape during the propagation and the beam quality for coherent mode is not always better than that for incoherent mode. Reviewing the numerical simulations of Gaussian, Hermite-Gaussian (HG) and cosh-Gaussian (ChG) beam combinations indicates that the Hermite polynomial exerts a chief influence on the irradiance profile of composite beam and far field power concentration.

  2. Effects of propagation conditions on radar beam-ground interaction: impact on data quality

    Directory of Open Access Journals (Sweden)

    A. Fornasiero

    2005-01-01

    Full Text Available A large part of the research in the radar meteorology is devoted to the evaluation of the radar data quality and to the radar data processing. Even when, a set of absolute quality indexes can be produced (like as ground clutter presence, beam blockage rate, distance from radar, etc., the final product quality has to be determined as a function of the task and of all the processing steps. In this paper the emphasis lies on the estimate of the rainfall at the ground level taking extra care for the correction for ground clutter and beam blockage, that are two main problems affecting radar reflectivity data in complex orography. In this work a combined algorithm is presented that avoids and/or corrects for these two effects. To achieve this existing methods are modified and integrated with the analysis of radar signal propagation in different atmospheric conditions. The atmospheric refractivity profile is retrieved from the nearest in space and time radiosounding. This measured profile is then used to define the `dynamic map' used as a declutter base-field. Then beam blockage correction is applied to the data at the scan elevations computed from this map. Two case studies are used to illustrate the proposed algorithm. One is a summer event with anomalous propagation conditions and the other one is a winter event. The new algorithm is compared to a previous method of clutter removal based only on static maps of clear air and vertical reflectivity continuity test. The improvement in rain estimate is evaluated applying statistical analysis and using rain gauges data. The better scores are related mostly to the ``optimum" choice of the elevation maps, introduced by the more accurate description of the signal propagation. Finally, a data quality indicator is introduced as an output of this scheme. This indicator has been obtained from the general scheme, which takes into account all radar data processing steps.

  3. A numerical study on nonlinear propagation and short-term variability of the migrating diurnal and semidiurnal tides

    Institute of Scientific and Technical Information of China (English)

    HUANG Chunming; ZHANG Shaodong; YI Fan

    2005-01-01

    By using a three-dimensional fully nonlinear numerical model in spherical coordinates and taking the linear steady solutions of the migrating diurnal and semidiurnal tides in January from the Global-Scale Wave Model (GSWM) as the initial values, we simulate the linear and nonlinear propagations of the migrating diurnal and semidiurnal tides in the atmosphere from the ground to the lower thermosphere. A comparison of our simulations with the results of GSWM is also presented. The simulation results show that affected by the nonlinearity, the migrating diurnal and semidiurnal tides propagating in the middle and upper atmosphere exhibit evident short-term variability. The nonlinear interactions between the migrating tides and the background atmosphere can obviously alter the background wind and temperature fields, which suggests that the nonlinear propagations of the migrating diurnal and semidiurnal tides impact significantly on the transient dynamical and thermal structures of the background middle and upper atmosphere and the nonlinear effect is an important cause of the difference between the results of GSWM and observations.

  4. Nonlinear Control of Beam Halo-Chaos in Accelerator-Driven Clean Nuclear Power System

    Institute of Scientific and Technical Information of China (English)

    FANG JinQing; CHEN GuanRong; ZHOU LiuLai; WENG JiaQiang

    2002-01-01

    Beam halo-chaos in high-current accelerators has become a key concerned issue because it can cause excessive radioactivity from the accelerators therefore significantly limits their applications in industry, medicine, and national defense. Some general engineering methods for chaos control have been developed in recent years, but they generally are unsuccessful for beam halo-chaos suppression due to many technical constraints. Beam halo-chaos is essentially a spatiotemporal chaotic motion within a high power proton accelerator. In this paper, some efficient nonlinear control methods, including wavelet function feedback control as a special nonlinear control method, are proposed for controlling beam halo-chaos under five kinds of the initial proton beam distributions (i.e., Kapchinsky-Vladimirsky, full Gauss,3-sigma Gauss, water-bag, and parabola distributions) respectively. Particles-in-cell simulations show that after control of beam halo-chaos, the beam halo strength factor is reduced to zero, and other statistical physical quantities of beam halo-chaos are doubly reduced. The methods we developed is very effective for suppression of proton beam halo-chaos in a periodic focusing channel of accelerator. Some potential application of the beam halo-chaos control in experiments is finally pointed out.

  5. One-dimensional kinetic description of nonlinear traveling-pulse and traveling-wave disturbances in long coasting charged particle beams

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    2015-09-01

    Full Text Available This paper makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal dynamics of a long coasting beam propagating through a perfectly conducting circular pipe with radius r_{w}. The average axial electric field is expressed as ⟨E_{z}⟩=-(∂/∂z⟨ϕ⟩=-e_{b}g_{0}∂λ_{b}/∂z-e_{b}g_{2}r_{w}^{2}∂^{3}λ_{b}/∂z^{3}, where g_{0} and g_{2} are constant geometric factors, λ_{b}(z,t=∫dp_{z}F_{b}(z,p_{z},t is the line density of beam particles, and F_{b}(z,p_{z},t satisfies the 1D Vlasov equation. Detailed nonlinear properties of traveling-wave and traveling-pulse (soliton solutions with time-stationary waveform are examined for a wide range of system parameters extending from moderate-amplitudes to large-amplitude modulations of the beam charge density. Two classes of solutions for the beam distribution function are considered, corresponding to: (i the nonlinear waterbag distribution, where F_{b}=const in a bounded region of p_{z}-space; and (ii nonlinear Bernstein-Green-Kruskal (BGK-like solutions, allowing for both trapped and untrapped particle distributions to interact with the self-generated electric field ⟨E_{z}⟩.

  6. Wave propagation in fractal-inspired self-similar beam lattices

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Qi Jian [Engineering Science Programme, National University of Singapore, Singapore 117576 (Singapore); Wang, Pai [Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Koh, Soo Jin Adrian [Engineering Science Programme, National University of Singapore, Singapore 117576 (Singapore); Department of Mechanical Engineering, National University of Singapore, Singapore 117576 (Singapore); Khoo, Eng Huat [Engineering Science Programme, National University of Singapore, Singapore 117576 (Singapore); A*STAR Institute of High Performance Computing, Singapore 138632 (Singapore); Bertoldi, Katia [Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Kavli Institute, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-11-30

    We combine numerical analysis and experiments to investigate the effect of hierarchy on the propagation of elastic waves in triangular beam lattices. While the response of the triangular lattice is characterized by a locally resonant band gap, both Bragg-type and locally resonant gaps are found for the hierarchical lattice. Therefore, our results demonstrate that structural hierarchy can be exploited to introduce an additional type of band gaps, providing a robust strategy for the design of lattice-based metamaterials with hybrid band gap properties (i.e., possessing band gaps that arises from both Bragg scattering and localized resonance)

  7. Dynamic Characteristics of Growing Modes of Raman Instability from Intense Laser Beam Propagating Through Plasma

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-Bing; CHEN Tao; CHEN Shi-Gang

    2004-01-01

    An essential dispersion relation,which can describe the dynamic properties of stimulated Raman scattering instability as a laser beam propagates through plasmas,is derived analytically.The development of growth mode,angle distribution,and temperature dependence of the instabilities are presented by solving this dispersion relation numerically.A significant dynamic characteristic has been revealed that the temperature increasing of the electron would result in redshift of scattered spectrum at high laser intensities.Furthermore,a novel modulational instability with double-peak temporal structure appears in a limited density region because of the coupling of scattered upshift and downshift waves.

  8. Fundamental algorithm and computational codes for the light beam propagation in high power laser system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fundamental algorithm of light beam propagation in high powerlaser system is investigated and the corresponding computational codes are given. It is shown that the number of modulation ring due to the diffraction is related to the size of the pinhole in spatial filter (in terms of the times of diffraction limitation, i.e. TDL) and the Fresnel number of the laser system; for the complex laser system with multi-spatial filters and free space, the system can be investigated by the reciprocal rule of operators.

  9. Ultrawideband doublet pulse generation based on nonlinear polarization rotation of an elliptically polarized beam and its distribution over a fiber/wireless link.

    Science.gov (United States)

    Chang, You Min; Lee, Junsu; Lee, Ju Han

    2010-09-13

    Proposed herein is an alternative photonic scheme for the generation of a doublet UWB pulse, which is based on the nonlinear polarization rotation of an elliptically polarized probe beam. The proposed scheme is a modified optical-fiber Kerr shutter that uses an elliptically polarized probe beam together with a linearly polarized control beam. Through theoretical analysis, it was shown that the optical-fiber-based Kerr shutter is capable of producing an ideal transfer function for the successful conversion of input Gaussian pulses into doublet pulses under special elliptical polarization states of the probe beam. An experimental verification was subsequently carried out to verify the working principle. Finally, the system performance of the generated UWB doublet pulses was assessed by propagating them over a 25-km-long standard single-mode fiber link, followed by wireless transmission. Error-free transmission was successfully achieved.

  10. Beam filter and splitter based on surface plasmon propagation in ring metal heterowaveguide

    Indian Academy of Sciences (India)

    Gaige Zheng; Linhua Xu; Yunyun Chen; Wei Su; Yuzhu Liu

    2014-12-01

    Surface plasmon polaritons (SPPs) beam filter (BF) and beam splitter (BS) constructed using metal heterostructures are proposed and demonstrated numerically. Both structures have a ring metal heterowaveguide, which is constructed by a metal cylinder and a ring dielectric cladding. The two-dimensional finite-difference time-domain (2D-FDTD) method is employed to study the properties of the proposed BF and BS, and the results show that SPPs can effectively propagate on bended plasmonic waveguides with dielectric claddings. By introducing dielectric and plasmonic waveguides on both sides of the resonant ring, SPPs can be efficiently excited at the output of the waveguide ring resonator (WRR) through mode coupling. The planar metal heterostructures provide a way for constructing various nanoscale counterparts of conventional planar integrated devices such as filters, splitters, resonators, sensors, optical switches, and so on.

  11. Nonlinear propagation of positron-acoustic waves in a four component space plasma

    Science.gov (United States)

    Shah, M. G.; Hossen, M. R.; Mamun, A. A.

    2015-10-01

    > The nonlinear propagation of positron-acoustic waves (PAWs) in an unmagnetized, collisionless, four component, dense plasma system (containing non-relativistic inertial cold positrons, relativistic degenerate electron and hot positron fluids as well as positively charged immobile ions) has been investigated theoretically. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV) and further mK-dV (fmK-dV) equations have been derived by using reductive perturbation technique. Their solitary wave solutions have been numerically analysed in order to understand the localized electrostatic disturbances. It is observed that the relativistic effect plays a pivotal role on the propagation of positron-acoustic solitary waves (PASW). It is also observed that the effects of degenerate pressure and the number density of inertial cold positrons, hot positrons, electrons and positively charged static ions significantly modify the fundamental features of PASW. The basic features and the underlying physics of PASW, which are relevant to some astrophysical compact objects (such as white dwarfs, neutron stars etc.), are concisely discussed.

  12. Ultra-fast pulse propagation in nonlinear graphene/silicon ridge waveguide.

    Science.gov (United States)

    Liu, Ken; Zhang, Jian Fa; Xu, Wei; Zhu, Zhi Hong; Guo, Chu Cai; Li, Xiu Jian; Qin, Shi Qiao

    2015-11-18

    We report the femtosecond laser propagation in a hybrid graphene/silicon ridge waveguide with demonstration of the ultra-large Kerr coefficient of graphene. We also fabricated a slot-like graphene/silicon ridge waveguide which can enhance its effective Kerr coefficient 1.5 times compared with the graphene/silicon ridge waveguide. Both transverse-electric-like (TE-like) mode and transverse-magnetic-like (TM-like) mode are experimentally measured and numerically analyzed. The results show nonlinearity dependence on mode polarization not in graphene/silicon ridge waveguide but in slot-like graphene/silicon ridge waveguide. Great spectral broadening was observed due to self-phase modulation (SPM) after propagation in the hybrid waveguide with length of 2 mm. Power dependence property of the slot-like hybrid waveguide is also measured and numerically analyzed. The results also confirm the effective Kerr coefficient estimation of the hybrid structures. Spectral blue shift of the output pulse was observed in the slot-like graphene/silicon ridge waveguide. One possible explanation is that the blue shift was caused by the ultra-fast free carrier effect with the optical absorption of the doped graphene. This interesting effect can be used for soliton compression in femtosecond region. We also discussed the broadband anomalous dispersion of the Kerr coefficient of graphene.

  13. Nonlinear delta f Simulations of Collective Effects in Intense Charged Particle Beams

    CERN Document Server

    Hong Qi

    2003-01-01

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, ...

  14. Nonlinear phenomena in RF wave propagation in magnetized plasma: A review

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, Miklos

    2015-12-10

    Nonlinear phenomena in RF wave propagation has been observed from the earliest days in basic laboratory experiments going back to the 1960s [1], followed by observations of parametric instability (PDI) phenomena in large scale RF heating experiments in magnetized fusion plasmas in the 1970s and beyond [2]. Although not discussed here, the importance of PDI phenomena has also been central to understanding anomalous absorption in laser-fusion experiments (ICF) [3]. In this review I shall discuss the fundamentals of nonlinear interactions among waves and particles, and in particular, their role in PDIs. This phenomenon is distinct from quasi-linear phenomena that are often invoked in calculating absorption of RF power in wave heating experiments in the core of magnetically confined plasmas [4]. Indeed, PDIs are most likely to occur in the edge of magnetized fusion plasmas where the electron temperature is modest and hence the oscillating quiver velocity of charged particles can be comparable to their thermal speeds. Specifically, I will review important aspects of PDI theory and give examples from past experiments in the ECH/EBW, lower hybrid (LHCD) and ICRF/IBW frequency regimes. Importantly, PDI is likely to play a fundamental role in determining the so-called “density limit” in lower hybrid experiments that has persisted over the decades and still central to understanding present day experiments [5-7].

  15. Properties and stability of freely propagating nonlinear density waves in accretion disks

    CERN Document Server

    Fromang, S

    2007-01-01

    In this paper, we study the propagation and stability of nonlinear sound waves in accretion disks. Using the shearing box approximation, we derive the form of these waves using a semi-analytic approach and go on to study their stability. The results are compared to those of numerical simulations performed using finite difference approaches such as employed by ZEUS as well as Godunov methods. When the wave frequency is between Omega and two Omega (where Omega is the disk orbital angular velocity), it can couple resonantly with a pair of linear inertial waves and thus undergo a parametric instability. Neglecting the disk vertical stratification, we derive an expression for the growth rate when the amplitude of the background wave is small. Good agreement is found with the results of numerical simulations performed both with finite difference and Godunov codes. During the nonlinear phase of the instability, the flow remains well organised if the amplitude of the background wave is small. However, strongly nonlin...

  16. Nonlinear acoustic propagation in bubbly liquids: Multiple scattering, softening and hardening phenomena.

    Science.gov (United States)

    Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel

    2016-04-01

    The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials.

  17. The propagation and growth of whistler mode waves generated by electron beams in earth's bow shock

    Science.gov (United States)

    Tokar, R. L.; Gurnett, D. A.

    1985-01-01

    In this study, the propagation and growth of whistler mode waves generated by electron beams within earth's bow shock is investigated using a planar model for the bow shock and a model electron distribution function. Within the shock, the model electron distribution function possesses a field-aligned T greater than T beam that is directed toward the magnetosheath. Waves with frequencies between about 1 and 100 Hz with a wide range of wave normal angles are generated by the beam via Landau and anomalous cyclotron resonances. However, because the growth rate is small and because the wave packets traverse the shock quickly, these waves do not attain large amplitudes. Waves with frequencies between about 30 and 150 Hz with a wide range of wave normal angles are generated by the beam via the normal cyclotron resonance. The ray paths for most of these waves are directed toward the solar wind although some wave packets, due to plasma convection travel transverse to the shock normal. These wave packets grow to large amplitudes because they spend a long time in the growth region. The results suggest that whistler mode noise within the shock should increase in amplitude with increasing upstream theta sub Bn. The study provides an explanation for the origin of much of the whistler mode turbulence observed at the bow shock.

  18. Analysis of Nonlinear Thermoelastic Dissipation in Euler-Bernoulli Beam Resonators.

    Science.gov (United States)

    Nourmohammadi, Zahra; Joshi, Surabhi; Vengallatore, Srikar

    2016-01-01

    The linear theory of thermoelastic damping (TED) has been extensively developed over the past eight decades, but relatively little is known about the different types of nonlinearities that are associated with this fundamental mechanism of material damping. Here, we initiate the study of a dissipative nonlinearity (also called thermomechanical nonlinearity) whose origins reside at the heart of the thermomechanical coupling that gives rise to TED. The finite difference method is used to solve the nonlinear governing equation and estimate nonlinear TED in Euler-Bernoulli beams. The maximum difference between the nonlinear and linear estimates ranges from 0.06% for quartz and 0.3% for silicon to 7% for aluminum and 28% for zinc.

  19. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Q. D., E-mail: qgao@swip.ac.cn [Southwestern Institute of Physics, Chengdu 610041 (China); Budny, R. V. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2015-03-15

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  20. Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Hong, Xue-Ren, E-mail: hxr_nwnu@163.com; Sun, Jian-An, E-mail: sunja@nwnu.edu.cn; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan

    2017-07-12

    The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam. - Highlights: • Some behaviors for Gaussian laser are also found for q-Gaussian one. • The parameter regions corresponding to different laser behaviors are given. • Influence of q on the laser propagation behavior is obvious. • The q-Gaussian laser beam is easier to focus than the Gaussian one.