WorldWideScience

Sample records for nonlaser-based 3d surface

  1. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  2. On drawing complicated 3D surfaces

    International Nuclear Information System (INIS)

    Nikitin, I.N.; Talanov, V.V.

    1994-01-01

    The problem of constructing images of complicated 3D surfaces - world sheet of strings is considered. The world sheet representation in the form of a frame of points determined with a specified supporting curve is described. The images of the world sheets of free string are constructed using various graphical technologies. 15 refs., 6 figs

  3. 3D geophysical inversion for contact surfaces

    Science.gov (United States)

    Lelièvre, Peter; Farquharson, Colin

    2014-05-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure volumetric inversions (performed on meshes of space-filling cells) recover smooth models inconsistent with such interpretations. There are several approaches through which geophysical inversion can help recover models with the desired characteristics. Some authors have developed iterative strategies in which several volumetric inversions are performed with regularization parameters changing to achieve sharper interfaces at automatically determined locations. Another approach is to redesign the regularization to be consistent with the desired model characteristics, e.g. L1-like norms or compactness measures. A few researchers have taken approaches that limit the recovered values to lie within particular ranges, resulting in sharp discontinuities; these include binary inversion, level set methods and clustering strategies. In most of the approaches mentioned above, the model parameterization considers the physical properties in each of the many space-filling cells within the volume of interest. The exception are level set methods, in which a higher dimensional function is parameterized and the contact surface is determined from the zero-level of that function. However, even level-set methods rely on an underlying volumetric mesh. We are researching a fundamentally different type of inversion that parameterizes the Earth in terms of the contact surfaces between rock units. 3D geological Earth models typically comprise wireframe surfaces of tessellated triangles or other polygonal planar facets. This wireframe representation allows for flexible and efficient generation of complicated geological structures. Therefore, a natural approach for representing a geophysical model in an inversion is to parameterize the wireframe contact surfaces as the coordinates of the nodes (facet vertices). The geological and

  4. 3D silicon breast surface mapping via structured light profilometry

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Shahimin, M. M.; Alcain, J. B.; Lai, S. L.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Digital fringe projection technique is one of the promising optical methods for 3D surface imaging as it demonstrates non contact and non invasive characteristics. The potential of this technique matches the requirement for human body evaluation, as it is vital for disease diagnosis and for treatment option selection. Thus, the digital fringe projection has addressed this requirement with its wide clinical related application and studies. However, the application of this technique for 3D surface mapping of the breast is very minimal. Hence, in this work, the application of digital fringe projection for 3D breast surface mapping is reported. Phase shift fringe projection technique was utilized to perform the 3D breast surface mapping. Maiden results have confirmed the feasibility of using the digital fringe projection method for 3D surface mapping of the breast and it can be extended for breast cancer detection.

  5. PLOT-3D, Graphics Subroutines for 3-D Surface Plots with Arbitrary Rotations

    International Nuclear Information System (INIS)

    Basinger, D.; Gvildys, J.

    1975-01-01

    1 - Description of problem or function: PLOT-3D is a package of sub- programs designed to draw three-dimensional surfaces from arrays of points (x,y,z). The surfaces can be drawn after arbitrary rotations about the three coordinate axes. 2 - Method of solution: PLOT-3D is a computer program to plot any surface for which each coordinate pair (x,y) is associated with a unique z in the set of points (x,y,z). It uses matrix transformation of the points to generate different views of the surface after arbitrary rotations about the three coordinate axes. Four versions of PLOT-3D are available. Output of version 1 and 3 is by film recorder. Output of version 2 and 4 is by CalComp plotter. Versions 3 and 4 do not draw lines which would be invisible to a viewer looking at an opaque surface, whereas versions 1 and 2 draw every line on the surface. 3 - Restrictions on the complexity of the problem: Versions 3 and 4 limit number of rows in arrays (x,y,z) to 100 and also number of columns in arrays (x,y,z) to 100

  6. NASA-VOF3D, 3-D Transient, Free Surface, Incompressible Fluid Dynamic

    International Nuclear Information System (INIS)

    Torrey, M.D.

    1992-01-01

    1 - Description of program or function: NASA-VOF3D is a three- dimensional, transient, free surface, incompressible fluid dynamics program. It is specifically designed to calculate confined flows in a low gravity environment in which surface physics must be accurately treated. It allows multiple free surfaces with surface tension and wall adhesion and includes a partial cell treatment that allows curved boundaries and internal obstacles. Variable mesh spacing is permitted in all three coordinate directions. Boundary conditions available are rigid free-slip wall, rigid no-slip, wall, continuative, periodic, and specified pressure outflow boundary. 2 - Method of solution: NASA-VOF3D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The free surfaces are treated by introducing a function defined to be unity at any point occupied by the fluid and zero elsewhere. The complete Navier- Stokes equations for an incompressible fluid are solved by finite differences with surface tension effects included. Wall adhesion may be included or neglected as a user option. The pressures (and velocities) are advanced in time throughout the computing mesh by either a conjugate residual method or the successive over-relaxation (SOR) method. The conjugate residual method is vectorized for the Cray and uses a scaled coefficient matrix. 3 - Restrictions on the complexity of the problem: NASA-VOF3D is restricted to cylindrical coordinate representation of the geometry. A three-dimensional wall-adhesion procedure is available only for straight-walled containers

  7. Critical bifurcation surfaces of 3D discrete dynamics

    Directory of Open Access Journals (Sweden)

    Michael Sonis

    2000-01-01

    Full Text Available This paper deals with the analytical representation of bifurcations of each 3D discrete dynamics depending on the set of bifurcation parameters. The procedure of bifurcation analysis proposed in this paper represents the 3D elaboration and specification of the general algorithm of the n-dimensional linear bifurcation analysis proposed by the author earlier. It is proven that 3D domain of asymptotic stability (attraction of the fixed point for a given 3D discrete dynamics is bounded by three critical bifurcation surfaces: the divergence, flip and flutter surfaces. The analytical construction of these surfaces is achieved with the help of classical Routh–Hurvitz conditions of asymptotic stability. As an application the adjustment process proposed by T. Puu for the Cournot oligopoly model is considered in detail.

  8. 3D surface reconstruction using optical flow for medical imaging

    International Nuclear Information System (INIS)

    Weng, Nan; Yang, Yee-Hong; Pierson, R.

    1996-01-01

    The recovery of a 3D model from a sequence of 2D images is very useful in medical image analysis. Image sequences obtained from the relative motion between the object and the camera or the scanner contain more 3D information than a single image. Methods to visualize the computed tomograms can be divided into two approaches: the surface rendering approach and the volume rendering approach. A new surface rendering method using optical flow is proposed. Optical flow is the apparent motion in the image plane produced by the projection of the real 3D motion onto 2D image. In this paper, the object remains stationary while the scanner undergoes translational motion. The 3D motion of an object can be recovered from the optical flow field using additional constraints. By extracting the surface information from 3D motion, it is possible to get an accurate 3D model of the object. Both synthetic and real image sequences have been used to illustrate the feasibility of the proposed method. The experimental results suggest that the proposed method is suitable for the reconstruction of 3D models from ultrasound medical images as well as other computed tomograms

  9. 3D Human cartilage surface characterization by optical coherence tomography

    International Nuclear Information System (INIS)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Jahr, Holger; Nebelung, Sven; Truhn, Daniel; Pufe, Thomas

    2015-01-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  10. Recent advances in 3D SEM surface reconstruction.

    Science.gov (United States)

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Alavi, Zahrasadat; Owen, Heather A; Yu, Zeyun

    2015-11-01

    The scanning electron microscope (SEM), as one of the most commonly used instruments in biology and material sciences, employs electrons instead of light to determine the surface properties of specimens. However, the SEM micrographs still remain 2D images. To effectively measure and visualize the surface attributes, we need to restore the 3D shape model from the SEM images. 3D surface reconstruction is a longstanding topic in microscopy vision as it offers quantitative and visual information for a variety of applications consisting medicine, pharmacology, chemistry, and mechanics. In this paper, we attempt to explain the expanding body of the work in this area, including a discussion of recent techniques and algorithms. With the present work, we also enhance the reliability, accuracy, and speed of 3D SEM surface reconstruction by designing and developing an optimized multi-view framework. We then consider several real-world experiments as well as synthetic data to examine the qualitative and quantitative attributes of our proposed framework. Furthermore, we present a taxonomy of 3D SEM surface reconstruction approaches and address several challenging issues as part of our future work. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Calculated surface-energy anomaly in the 3d metals

    DEFF Research Database (Denmark)

    Aldén, M.; Skriver, Hans Lomholt; Mirbt, S.

    1992-01-01

    Local-spin-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method have been used to calculate the surface energy of the 3d metals. The theory explains the variation of the values derived from measurements of the surface tension of liquid metals including...... the pronounced anomaly occurring between vanadium and nickel in terms of a decrease in the d contribution caused by spin polarization....

  12. 3D topography for environmentally friendly machined surfaces

    International Nuclear Information System (INIS)

    Dudas, I; Varga, G

    2005-01-01

    Nowadays more and more scientific paper deals with drilling. In recent years there have been limited changes to the drill design but considerable improvements have been made in the selection of drill materials, drill coatings, flute design and the cutting fluid guiding methods. All of these improvements have been introduced to improve the surface finish of the drilled hole, reduce the energy during drilling process and to reduce ecological damage to the cutting fluids, which carry away heat and debris from the cutting zone. The paper briefly describes the development of surface characterization to its current 3D capability. It shows how selected parameters can assist with drill process analysis and how this can be supported through the introduction of the planned new ISO International Standard for 3D surface characterization. The paper is supported by a sample-drilling test to demonstrate the power of the proposed analysis

  13. Generation of 3D nanopatterns with smooth surfaces

    International Nuclear Information System (INIS)

    Waid, Simon; Wanzenboeck, Heinz D; Gavagnin, Marco; Bertagnolli, Emmerich; Muehlberger, Michael

    2014-01-01

    Ga implantation into Si and reactive ion etching has been previously identified as candidate techniques for the generation of 3D nanopatterns. However, the structures manufactured using these techniques exhibited impedingly high surface roughness. In this work, we investigate the source of roughness and introduce a new patterning process to solve this issue. The novel patterning process introduces an additional layer absorbing the implanted Ga, thus preventing the clustering of the implanted Ga observed with uncoated Si substrates. This process enables 3D nanopatterning with sub-100 nm lateral resolution in conjunction with smooth height transitions and surface roughness down to 4 nm root mean square. Such patterns are ideally suited for optical applications and enable the manufacturing of nanoimprint lithography templates for low-profile Fresnel lenses. (paper)

  14. Molecular cartography of the human skin surface in 3D

    Science.gov (United States)

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M.; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W.; Meehan, Michael J.; Dorrestein, Kathleen; Gallo, Richard L.; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C.

    2015-01-01

    The human skin is an organ with a surface area of 1.5–2 m2 that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health. PMID:25825778

  15. Design Application Translates 2-D Graphics to 3-D Surfaces

    Science.gov (United States)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  16. Determining the surface roughness coefficient by 3D Scanner

    Directory of Open Access Journals (Sweden)

    Karmen Fifer Bizjak

    2010-12-01

    Full Text Available Currently, several test methods can be used in the laboratory to determine the roughness of rock joint surfaces.However, true roughness can be distorted and underestimated by the differences in the sampling interval of themeasurement methods. Thus, these measurement methods produce a dead zone and distorted roughness profiles.In this paper a new rock joint surface roughness measurement method is presented, with the use of a camera-typethree-dimensional (3D scanner as an alternative to current methods. For this study, the surfaces of ten samples oftuff were digitized by means of a 3D scanner, and the results were compared with the corresponding Rock JointCoefficient (JRC values. Up until now such 3D scanner have been mostly used in the automotive industry, whereastheir use for comparison with obtained JRC coefficient values in rock mechanics is presented here for the first time.The proposed new method is a faster, more precise and more accurate than other existing test methods, and is apromising technique for use in this area of study in the future.

  17. Hand surface area estimation formula using 3D anthropometry.

    Science.gov (United States)

    Hsu, Yao-Wen; Yu, Chi-Yuang

    2010-11-01

    Hand surface area is an important reference in occupational hygiene and many other applications. This study derives a formula for the palm surface area (PSA) and hand surface area (HSA) based on three-dimensional (3D) scan data. Two-hundred and seventy subjects, 135 males and 135 females, were recruited for this study. The hand was measured using a high-resolution 3D hand scanner. Precision and accuracy of the scanner is within 0.67%. Both the PSA and HSA were computed using the triangular mesh summation method. A comparison between this study and previous textbook values (such as in the U.K. teaching text and Lund and Browder chart discussed in the article) was performed first to show that previous textbooks overestimated the PSA by 12.0% and HSA by 8.7% (for the male, PSA 8.5% and HSA 4.7%, and for the female, PSA 16.2% and HSA 13.4%). Six 1D measurements were then extracted semiautomatically for use as candidate estimators for the PSA and HSA estimation formula. Stepwise regressions on these six 1D measurements and variable dependency test were performed. Results show that a pair of measurements (hand length and hand breadth) were able to account for 96% of the HSA variance and up to 98% of the PSA variance. A test of the gender-specific formula indicated that gender is not a significant factor in either the PSA or HSA estimation.

  18. 3D Additive Construction with Regolith for Surface Systems

    Science.gov (United States)

    Mueller, Robert P.

    2014-01-01

    Planetary surface exploration on Asteroids, the Moon, Mars and Martian Moons will require the stabilization of loose, fine, dusty regolith to avoid the effects of vertical lander rocket plume impingement, to keep abrasive and harmful dust from getting lofted and for dust free operations. In addition, the same regolith stabilization process can be used for 3 Dimensional ( 3D) printing, additive construction techniques by repeating the 2D stabilization in many vertical layers. This will allow in-situ construction with regolith so that materials will not have to be transported from Earth. Recent work in the NASA Kennedy Space Center (KSC) Surface Systems Office (NE-S) Swamp Works and at the University of Southern California (USC) under two NASA Innovative Advanced Concept (NIAC) awards have shown promising results with regolith (crushed basalt rock) materials for in-situ heat shields, bricks, landing/launch pads, berms, roads, and other structures that could be fabricated using regolith that is sintered or mixed with a polymer binder. The technical goals and objectives of this project are to prove the feasibility of 3D printing additive construction using planetary regolith simulants and to show that they have structural integrity and practical applications in space exploration.

  19. Surface 3-D reflection seismics - implementation at the Olkiluoto site

    Energy Technology Data Exchange (ETDEWEB)

    Saksa, P.; Lehtimaeki, T.; Heikkinen, E. [Poeyry Environment Oy, Vantaa (Finland)

    2007-03-15

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to study the possibilities for surface 3-D seismics and to review experiences for design before field work. The physical parameters and geometric properties of the site, as well as efficient survey layout and source arrangements, were considered in this work. Reflection seismics is most used geophysical investigation method in oil exploration and earth studies in sedimentary environment. Recently method has also been applied in crystalline bedrock for ore exploration and nuclear waste disposal site investigations. The advantage of the method is high accuracy combined with large depth of investigation. The principles of seismic 2-D and 3-D soundings are well known and advanced. 3-D sounding is a straightforward expansion of 2-D line based surveying. In investigation of crystalline bedrock, the high frequency wave sources and receivers, their right use in measurements and careful processing procedure (refraction static corrections in particular) are important. Using the site parameters in 2-D numerical modeling, two cases of faulted thin layer at depths of 200, 400 and 600 meters were studied. The first case was a layer with vertical dislocation (a ramp) and the other a layer having limited width of dislocated part. Central frequencies were 100, 200, 400 and 700 Hz. Results indicate that 10 - 20 m dislocation is recognizable, but for depths greater than 600 m, over 20 meters is required. Width of the dislocated part will affect the detectability of vertical displacement. At depths of 200 m and 400 m 10 - 50 m wide parts appear as point-like scatterers, wider areas have more continuity. Dislocations larger than 20 m can be seen. From depth of 600 m over 100 m wide parts are discernible, narrower are visible

  20. Surface 3-D reflection seismics - implementation at the Olkiluoto site

    International Nuclear Information System (INIS)

    Saksa, P.; Lehtimaeki, T.; Heikkinen, E.

    2007-03-01

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to study the possibilities for surface 3-D seismics and to review experiences for design before field work. The physical parameters and geometric properties of the site, as well as efficient survey layout and source arrangements, were considered in this work. Reflection seismics is most used geophysical investigation method in oil exploration and earth studies in sedimentary environment. Recently method has also been applied in crystalline bedrock for ore exploration and nuclear waste disposal site investigations. The advantage of the method is high accuracy combined with large depth of investigation. The principles of seismic 2-D and 3-D soundings are well known and advanced. 3-D sounding is a straightforward expansion of 2-D line based surveying. In investigation of crystalline bedrock, the high frequency wave sources and receivers, their right use in measurements and careful processing procedure (refraction static corrections in particular) are important. Using the site parameters in 2-D numerical modeling, two cases of faulted thin layer at depths of 200, 400 and 600 meters were studied. The first case was a layer with vertical dislocation (a ramp) and the other a layer having limited width of dislocated part. Central frequencies were 100, 200, 400 and 700 Hz. Results indicate that 10 - 20 m dislocation is recognizable, but for depths greater than 600 m, over 20 meters is required. Width of the dislocated part will affect the detectability of vertical displacement. At depths of 200 m and 400 m 10 - 50 m wide parts appear as point-like scatterers, wider areas have more continuity. Dislocations larger than 20 m can be seen. From depth of 600 m over 100 m wide parts are discernible, narrower are visible

  1. A Lightweight Surface Reconstruction Method for Online 3D Scanning Point Cloud Data Oriented toward 3D Printing

    Directory of Open Access Journals (Sweden)

    Buyun Sheng

    2018-01-01

    Full Text Available The existing surface reconstruction algorithms currently reconstruct large amounts of mesh data. Consequently, many of these algorithms cannot meet the efficiency requirements of real-time data transmission in a web environment. This paper proposes a lightweight surface reconstruction method for online 3D scanned point cloud data oriented toward 3D printing. The proposed online lightweight surface reconstruction algorithm is composed of a point cloud update algorithm (PCU, a rapid iterative closest point algorithm (RICP, and an improved Poisson surface reconstruction algorithm (IPSR. The generated lightweight point cloud data are pretreated using an updating and rapid registration method. The Poisson surface reconstruction is also accomplished by a pretreatment to recompute the point cloud normal vectors; this approach is based on a least squares method, and the postprocessing of the PDE patch generation was based on biharmonic-like fourth-order PDEs, which effectively reduces the amount of reconstructed mesh data and improves the efficiency of the algorithm. This method was verified using an online personalized customization system that was developed with WebGL and oriented toward 3D printing. The experimental results indicate that this method can generate a lightweight 3D scanning mesh rapidly and efficiently in a web environment.

  2. 3D Printing of Molecular Potential Energy Surface Models

    Science.gov (United States)

    Lolur, Phalgun; Dawes, Richard

    2014-01-01

    Additive manufacturing, commonly known as 3D printing, is gaining popularity in a variety of applications and has recently become routinely available. Today, 3D printing services are not only found in engineering design labs and through online companies, but also in university libraries offering student access. In addition, affordable options for…

  3. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  4. High-speed 3D surface measurement with mechanical projector

    Science.gov (United States)

    Hyun, Jae-Sang; Zhang, Song

    2017-05-01

    This paper presents a method to overcome the light spectral range limitation of using digital-light-processing (DLP) projector for 3D shape measurement by developing a mechanical projector. The mechanical projector enables much broader spectral range of light than that the DLP projector allows. The rapidly spinning disk with binary structures can generate desired sinusoidal patterns at a frequency of 10 kHz or higher with a single DC motor. By precisely synchronizing the camera with the projector, phase-shifted fringe patterns can be accurately captured for high-accuracy 3D shape measurement. We further employed a computational framework that could enable absolute phase and thus absolute 3D shape measurement. We developed such prototype system that experimentally demonstrated the success of the proposed method.

  5. Surface Explorations : 3D Moving Images as Cartographies of Time

    NARCIS (Netherlands)

    Verhoeff, N.

    2016-01-01

    Moving images of travel and exploration have a long history. In this essay I will examine how the trope of navigation in 3D moving images can work towards an intimate and haptic encounter with other times and other places – elsewhen and elsewhere. The particular navigational construction of space in

  6. Isotropic 3D cardiac cine MRI allows efficient sparse segmentation strategies based on 3D surface reconstruction.

    Science.gov (United States)

    Odille, Freddy; Bustin, Aurélien; Liu, Shufang; Chen, Bailiang; Vuissoz, Pierre-André; Felblinger, Jacques; Bonnemains, Laurent

    2018-05-01

    Segmentation of cardiac cine MRI data is routinely used for the volumetric analysis of cardiac function. Conventionally, 2D contours are drawn on short-axis (SAX) image stacks with relatively thick slices (typically 8 mm). Here, an acquisition/reconstruction strategy is used for obtaining isotropic 3D cine datasets; reformatted slices are then used to optimize the manual segmentation workflow. Isotropic 3D cine datasets were obtained from multiple 2D cine stacks (acquired during free-breathing in SAX and long-axis (LAX) orientations) using nonrigid motion correction (cine-GRICS method) and super-resolution. Several manual segmentation strategies were then compared, including conventional SAX segmentation, LAX segmentation in three views only, and combinations of SAX and LAX slices. An implicit B-spline surface reconstruction algorithm is proposed to reconstruct the left ventricular cavity surface from the sparse set of 2D contours. All tested sparse segmentation strategies were in good agreement, with Dice scores above 0.9 despite using fewer slices (3-6 sparse slices instead of 8-10 contiguous SAX slices). When compared to independent phase-contrast flow measurements, stroke volumes computed from four or six sparse slices had slightly higher precision than conventional SAX segmentation (error standard deviation of 5.4 mL against 6.1 mL) at the cost of slightly lower accuracy (bias of -1.2 mL against 0.2 mL). Functional parameters also showed a trend to improved precision, including end-diastolic volumes, end-systolic volumes, and ejection fractions). The postprocessing workflow of 3D isotropic cardiac imaging strategies can be optimized using sparse segmentation and 3D surface reconstruction. Magn Reson Med 79:2665-2675, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. 3D SEM for surface topography quantification – a case study on dental surfaces

    International Nuclear Information System (INIS)

    Glon, F; Flys, O; Lööf, P-J; Rosén, B-G

    2014-01-01

    3D analysis of surface topography is becoming a more used tool for industry and research. New ISO standards are being launched to assist in quantifying engineering surfaces. The traditional optical measuring instrumentation used for 3D surface characterization has been optical interferometers and confocal based instrumentation. However, the resolution here is limited in the lateral dimension to the wavelength of visible light to about 500 nm. The great advantage using the SEM for topography measurements is the high flexibility to zoom from low magnifications and locating interesting areas to high magnification of down to nanometer large surface features within seconds. This paper presents surface characterization of dental implant micro topography. 3D topography data was created from SEM images using commercial photogrammetric software. A coherence scanning interferometer was used for reference measurements to compare with the 3D SEM measurements on relocated areas. As a result of this study, measurements emphasizes that the correlation between the accepted CSI measurements and the new technology represented by photogrammetry based on SEM images for many areal characterization parameters are around or less than 20%. The importance of selecting sampling and parameter sensitivity to varying sampling is high-lighted. Future work includes a broader study of limitations of the photogrammetry technique on certified micro-geometries and more application surfaces at different scales

  8. 3D Printing of Bio-inspired surfaces

    DEFF Research Database (Denmark)

    Méndez Ribó, Macarena; Islam, Aminul

    The ability of the gecko to scurry across smooth or rough surfaces, regardless of inclination (vertical or even upside down), has been traced to the multiscale hierarchical structures of the gecko toe [1 - 3]. Considering all the strategies to manufacture bio-inspired surfaces, the most common is...

  9. 3D Additive Construction with Regolith for Surface Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary surface exploration on Asteroids, the Moon, Mars and Martian Moons will require the stabilization of loose, fine, dusty regolith to avoid the effects of...

  10. 3D electric field calculation with surface charge method

    International Nuclear Information System (INIS)

    Yamada, S.

    1992-01-01

    This paper describes an outline and some examples of three dimensional electric field calculations with a computer code developed at NIRS. In the code, a surface charge method is adopted because of it's simplicity in the mesh establishing procedure. The charge density in a triangular mesh is assumed to distribute with a linear function of the position. The electric field distribution is calculated for a pair of drift tubes with the focusing fingers on the opposing surfaces. The field distribution in an acceleration gap is analyzed with a Fourier-Bessel series expansion method. The calculated results excellently reproduces the measured data with a magnetic model. (author)

  11. Determination of 3D Equilibria from Flux Surface Knowledge Only

    International Nuclear Information System (INIS)

    Mynick, H.E.; Pomphrey, N.

    2001-01-01

    We show that the method of Christiansen and Taylor, from which complete tokamak equilibria can be determined given only knowledge of the shape of the flux surfaces, can be extended to 3-dimensional equilibria, such as those of stellarators. As for the tokamak case, the given geometric knowledge has a high degree of redundancy, so that the full equilibrium can be obtained using only a small portion of that information

  12. 3D Interest Point Detection using Local Surface Characteristics with Application in Action Recognition

    DEFF Research Database (Denmark)

    Holte, Michael Boelstoft

    2014-01-01

    . The proposed Difference-of-Normals (DoN) 3D IP detector operates on the surface mesh, and evaluates the surface structure (curvature) locally (per vertex) in the mesh data. We present an exam- ple of application in action recognition from a sequence of 3-dimensional geometrical data, where local 3D motion de...

  13. Surface Finish Effects Using Coating Method on 3D Printing (FDM) Parts

    Science.gov (United States)

    Haidiezul, AHM; Aiman, AF; Bakar, B.

    2018-03-01

    One of three-dimensional (3-D) printing economical processes is by using Fused Deposition Modelling (FDM). The 3-D printed object was built using layer-by-layer approach which caused “stair stepping” effects. This situation leads to uneven surface finish which mostly affect the objects appearance for product designers in presenting their models or prototypes. The objective of this paper is to examine the surface finish effects from the application of XTC-3D coating developed by Smooth-On, USA on the 3D printed parts. From the experimental works, this study shows the application of XTC-3D coating to the 3-D printed parts has improve the surface finish by reducing the gap between the layer

  14. A monthly quality assurance procedure for 3D surface imaging.

    Science.gov (United States)

    Wooten, H Omar; Klein, Eric E; Gokhroo, Garima; Santanam, Lakshmi

    2010-12-21

    A procedure for periodic quality assurance of a video surface imaging system is introduced. AlignRT is a video camera-based patient localization system that captures and compares images of a patient's topography to a DICOM-formatted external contour, then calculates shifts required to accurately reposition the patient. This technical note describes the tools and methods implemented in our department to verify correct and accurate operation of the AlignRT hardware and software components. The procedure described is performed monthly and complements a daily calibration of the system.

  15. Surface gloss and color perception of 3D objects.

    Science.gov (United States)

    Xiao, Bei; Brainard, David H

    2008-01-01

    Two experiments explore the color perception of objects in complex scenes. The first experiment examines the color perception of objects across variation in surface gloss. Observers adjusted the color appearance of a matte sphere to match that of a test sphere. Across conditions we varied the body color and glossiness of the test sphere. The data indicate that observers do not simply match the average light reflected from the test. Indeed, the visual system compensates for the physical effect of varying the gloss, so that appearance is stabilized relative to what is predicted by the spatial average. The second experiment examines how people perceive color across locations on an object. We replaced the test sphere with a soccer ball that had one of its hexagonal faces colored. Observers were asked to adjust the match sphere have the same color appearance as this test patch. The test patch could be located at either an upper or lower location on the soccer ball. In addition, we varied the surface gloss of the entire soccer ball (including the test patch). The data show that there is an effect of test patch location on observers' color matching, but this effect is small compared to the physical change in the average light reflected from the test patch across the two locations. In addition, the effect of glossy highlights on the color appearance of the test patch was consistent with the results from Experiment 1.

  16. 3D-shaded surface rendering of gadolinium-enhanced MR angiography in congenital heart disease

    International Nuclear Information System (INIS)

    Okuda, S.; Kikinis, R.; Dumanli, H.; Geva, T.; Powell, A.J.; Chung, T.

    2000-01-01

    Background. Gadolinium-enhanced three-dimensional (3D) MR angiography is a useful imaging technique for patients with congenital heart disease. Objective. This study sought to determine the added value of creating 3D shaded surface displays compared to standard maximal intensity projection (MIP) and multiplanar reformatting (MPR) techniques when analyzing 3D MR angiography data. Materials and methods. Seventeen patients (range, 3 months to 51 years old) with a variety of congenital cardiovascular defects underwent gadolinium-enhanced 3D MR angiography of the thorax. Color-coded 3D shaded surface models were rendered from the image data using manual segmentation and computer-based algorithms. Models could be rotated, translocated, or zoomed interactively by the viewer. Information available from the 3D models was compared to analysis based on viewing standard MIP/MPR displays. Results. Median postprocessing time for the 3D models was 6 h (range, 3-25 h) compared to approximately 20 min for MIP/MPR viewing. No additional diagnostic information was gained from 3D model analysis. All major findings with MIP/MPR postprocessing were also apparent on the 3D models. Qualitatively, the 3D models were more easily interpreted and enabled adjacent vessels to be distinguished more readily. Conclusion. Routine use of 3D shaded surface reconstructions for visualization of contrast enhanced MR angiography in congenital heart disease cannot be recommended. 3D surface rendering may be more useful for presenting complex anatomy to an audience unfamiliar with congenital heart disease and as an educational tool. (orig.)

  17. 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Jensen, Rasmus Ramsbøl

    2013-01-01

    . The structured light system is equipped with a near infrared diode and uses phase-shift interferometry (PSI) to compute 3D point clouds of the forehead of the patient. These 3D point clouds are progressively aligned to a reference surface, thereby giving the head pose changes. The estimated pose changes are used...

  18. Diagnostic value of 3 D CT surface reconstruction in spinal fractures

    Energy Technology Data Exchange (ETDEWEB)

    Koesling, S. [Department of Radiology, Univ. of Leipzig (Germany); Dietrich, K. [Department of Radiology, Univ. of Leipzig (Germany); Steinecke, R. [Department of Radiology, Univ. of Leipzig (Germany); Kloeppel, R. [Department of Radiology, Univ. of Leipzig (Germany); Schulz, H.G. [Department of Radiology, Univ. of Leipzig (Germany)

    1997-02-01

    Our purpose was to evaluate the diagnostic value of three-dimensional (3 D) CT surface reconstruction in spinal fractures in comparison with axial and reformatted images. A total of 50 patients with different CT-proven spinal fractures were analysed retrospectively. Based on axial scans and reformatted images, the spinal fractures were classified according to several classifications as Magerl for the thoraco-lumbar and lower cervical spine by one radiologist. Another radiologist performed 3 D CT surface reconstructions with the aim of characterizing the different types of spinal fractures. A third radiologist classified the 3 D CT surface reconstruction according to the Magerl classification. The results of the blinded reading process were compared. It was checked to see in which type and subgroup 3 D surface reconstructions were helpful. Readers one and two obtained the same results in the classification. The 3 D surface reconstruction did not yield any additional diagnostic information concerning type A and B injuries. Indeed, the full extent of the fracture could be easier recognized with axial and reformatted images in all cases. In 10 cases of C injuries, the dislocation of parts of vertebrae could be better recognized with the help of 3 D reconstructions. A 3 D CT surface reconstruction is only useful in rotational and shear vertebral injuries (Magerl type C injury). (orig.). With 4 figs., 1 tab.

  19. Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Christine Cheng

    2017-08-01

    Full Text Available 3D printing is a useful fabrication technique because it offers design flexibility and rapid prototyping. The ability to functionalize the surfaces of 3D-printed objects allows the bulk properties, such as material strength or printability, to be chosen separately from surface properties, which is critical to expanding the breadth of 3D printing applications. In this work, we studied the ability of the initiated chemical vapor deposition (iCVD process to coat 3D-printed shapes composed of poly(lactic acid and acrylonitrile butadiene styrene. The thermally insulating properties of 3D-printed plastics pose a challenge to the iCVD process due to large thermal gradients along the structures during processing. In this study, processing parameters such as the substrate temperature and the filament temperature were systematically varied to understand how these parameters affect the uniformity of the coatings along the 3D-printed objects. The 3D-printed objects were coated with both hydrophobic and hydrophilic polymers. Contact angle goniometry and X-ray photoelectron spectroscopy were used to characterize the functionalized surfaces. Our results can enable the use of iCVD to functionalize 3D-printed materials for a range of applications such as tissue scaffolds and microfluidics.

  20. A novel binary shape context for 3D local surface description

    Science.gov (United States)

    Dong, Zhen; Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Li, Bijun; Zang, Yufu

    2017-08-01

    3D local surface description is now at the core of many computer vision technologies, such as 3D object recognition, intelligent driving, and 3D model reconstruction. However, most of the existing 3D feature descriptors still suffer from low descriptiveness, weak robustness, and inefficiency in both time and memory. To overcome these challenges, this paper presents a robust and descriptive 3D Binary Shape Context (BSC) descriptor with high efficiency in both time and memory. First, a novel BSC descriptor is generated for 3D local surface description, and the performance of the BSC descriptor under different settings of its parameters is analyzed. Next, the descriptiveness, robustness, and efficiency in both time and memory of the BSC descriptor are evaluated and compared to those of several state-of-the-art 3D feature descriptors. Finally, the performance of the BSC descriptor for 3D object recognition is also evaluated on a number of popular benchmark datasets, and an urban-scene dataset is collected by a terrestrial laser scanner system. Comprehensive experiments demonstrate that the proposed BSC descriptor obtained high descriptiveness, strong robustness, and high efficiency in both time and memory and achieved high recognition rates of 94.8%, 94.1% and 82.1% on the considered UWA, Queen, and WHU datasets, respectively.

  1. Real-time 3D-surface-guided head refixation useful for fractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Li Shidong; Liu Dezhi; Yin Gongjie; Zhuang Ping; Geng, Jason

    2006-01-01

    Accurate and precise head refixation in fractionated stereotactic radiotherapy has been achieved through alignment of real-time 3D-surface images with a reference surface image. The reference surface image is either a 3D optical surface image taken at simulation with the desired treatment position, or a CT/MRI-surface rendering in the treatment plan with corrections for patient motion during CT/MRI scans and partial volume effects. The real-time 3D surface images are rapidly captured by using a 3D video camera mounted on the ceiling of the treatment vault. Any facial expression such as mouth opening that affects surface shape and location can be avoided using a new facial monitoring technique. The image artifacts on the real-time surface can generally be removed by setting a threshold of jumps at the neighboring points while preserving detailed features of the surface of interest. Such a real-time surface image, registered in the treatment machine coordinate system, provides a reliable representation of the patient head position during the treatment. A fast automatic alignment between the real-time surface and the reference surface using a modified iterative-closest-point method leads to an efficient and robust surface-guided target refixation. Experimental and clinical results demonstrate the excellent efficacy of <2 min set-up time, the desired accuracy and precision of <1 mm in isocenter shifts, and <1 deg. in rotation

  2. AN INTEGRATED PHOTOGRAMMETRIC AND PHOTOCLINOMETRIC APPROACH FOR PIXEL-RESOLUTION 3D MODELLING OF LUNAR SURFACE

    Directory of Open Access Journals (Sweden)

    W. C. Liu

    2018-04-01

    Full Text Available High-resolution 3D modelling of lunar surface is important for lunar scientific research and exploration missions. Photogrammetry is known for 3D mapping and modelling from a pair of stereo images based on dense image matching. However dense matching may fail in poorly textured areas and in situations when the image pair has large illumination differences. As a result, the actual achievable spatial resolution of the 3D model from photogrammetry is limited by the performance of dense image matching. On the other hand, photoclinometry (i.e., shape from shading is characterised by its ability to recover pixel-wise surface shapes based on image intensity and imaging conditions such as illumination and viewing directions. More robust shape reconstruction through photoclinometry can be achieved by incorporating images acquired under different illumination conditions (i.e., photometric stereo. Introducing photoclinometry into photogrammetric processing can therefore effectively increase the achievable resolution of the mapping result while maintaining its overall accuracy. This research presents an integrated photogrammetric and photoclinometric approach for pixel-resolution 3D modelling of the lunar surface. First, photoclinometry is interacted with stereo image matching to create robust and spatially well distributed dense conjugate points. Then, based on the 3D point cloud derived from photogrammetric processing of the dense conjugate points, photoclinometry is further introduced to derive the 3D positions of the unmatched points and to refine the final point cloud. The approach is able to produce one 3D point for each image pixel within the overlapping area of the stereo pair so that to obtain pixel-resolution 3D models. Experiments using the Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC images show the superior performances of the approach compared with traditional photogrammetric technique. The results and findings from this

  3. 3D-SURFER: software for high-throughput protein surface comparison and analysis.

    Science.gov (United States)

    La, David; Esquivel-Rodríguez, Juan; Venkatraman, Vishwesh; Li, Bin; Sael, Lee; Ueng, Stephen; Ahrendt, Steven; Kihara, Daisuke

    2009-11-01

    We present 3D-SURFER, a web-based tool designed to facilitate high-throughput comparison and characterization of proteins based on their surface shape. As each protein is effectively represented by a vector of 3D Zernike descriptors, comparison times for a query protein against the entire PDB take, on an average, only a couple of seconds. The web interface has been designed to be as interactive as possible with displays showing animated protein rotations, CATH codes and structural alignments using the CE program. In addition, geometrically interesting local features of the protein surface, such as pockets that often correspond to ligand binding sites as well as protrusions and flat regions can also be identified and visualized. 3D-SURFER is a web application that can be freely accessed from: http://dragon.bio.purdue.edu/3d-surfer dkihara@purdue.edu Supplementary data are available at Bioinformatics online.

  4. A photogrammetry-based system for 3D surface reconstruction of prosthetics and orthotics.

    Science.gov (United States)

    Li, Guang-kun; Gao, Fan; Wang, Zhi-gang

    2011-01-01

    The objective of this study is to develop an innovative close range digital photogrammetry (CRDP) system using the commercial digital SLR cameras to measure and reconstruct the 3D surface of prosthetics and orthotics. This paper describes the instrumentation, techniques and preliminary results of the proposed system. The technique works by taking pictures of the object from multiple view angles. The series of pictures were post-processed via feature point extraction, point match and 3D surface reconstruction. In comparison with the traditional method such as laser scanning, the major advantages of our instrument include the lower cost, compact and easy-to-use hardware, satisfactory measurement accuracy, and significantly less measurement time. Besides its potential applications in prosthetics and orthotics surface measurement, the simple setup and its ease of use will make it suitable for various 3D surface reconstructions.

  5. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J; Sawant, Amit; Ruan, Dan

    2015-11-01

    reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μrecon=-2.7×10(-3) mm(-1), σrecon=7.0×10(-3) mm(-1)) and (μCT=-2.5×10(-3) mm(-1), σCT=5.3×10(-3) mm(-1)), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy.

  6. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, California 90095 (United States); Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2015-11-15

    achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μ{sub recon} = − 2.7 × 10{sup −3} mm{sup −1}, σ{sub recon} = 7.0 × 10{sup −3} mm{sup −1}) and (μ{sub CT} = − 2.5 × 10{sup −3} mm{sup −1}, σ{sub CT} = 5.3 × 10{sup −3} mm{sup −1}), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. Conclusions: The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy.

  7. On 3D Geo-visualization of a Mine Surface Plant and Mine Roadway

    Institute of Scientific and Technical Information of China (English)

    WANG Yunjia; FU Yongming; FU Erjiang

    2007-01-01

    Constructing the 3D virtual scene of a coal mine is the objective requirement for modernizing and processing information on coal mining production. It is also the key technology to establish a "digital mine". By exploring current worldwide research, software and hardware tools and application demands, combined with the case study site (the Dazhuang mine of Pingdingshan coal group), an approach for 3D geo-visualization of a mine surface plant and mine roadway is deeply discussed. In this study, the rapid modeling method for a large range virtual scene based on Arc/Info and SiteBuilder3D is studied, and automatic generation of a 3D scene from a 2D scene is realized. Such an automatic method which can convert mine roadway systems from 2D to 3D is realized for the Dazhuang mine. Some relevant application questions are studied, including attribute query, coordinate query, distance measure, collision detection and the dynamic interaction between 2D and 3D virtual scenes in the virtual scene of a mine surface plant and mine roadway. A prototype system is designed and developed.

  8. Research on the target coverage algorithms for 3D curved surface

    International Nuclear Information System (INIS)

    Sun, Shunyuan; Sun, Li; Chen, Shu

    2016-01-01

    To solve the target covering problems in three-dimensional space, putting forward a deployment strategies of the target points innovatively, and referencing to the differential evolution (DE) algorithm to optimize the location coordinates of the sensor nodes to realize coverage of all the target points in 3-D surface with minimal sensor nodes. Firstly, building the three-dimensional perception model of sensor nodes, and putting forward to the blind area existing in the process of the sensor nodes sensing the target points in 3-D surface innovatively, then proving the feasibility of solving the target coverage problems in 3-D surface with DE algorithm theoretically, and reflecting the fault tolerance of the algorithm.

  9. Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure.

    Science.gov (United States)

    Ouyang, Liping; Sun, Zhenjie; Wang, Donghui; Qiao, Yuqin; Zhu, Hongqin; Ma, Xiaohan; Liu, Xuanyong

    2018-03-01

    It is important to fabricate an implant possessing environment sensitive drug delivery. In this work, the construction of 3D porous structure on polyetheretherketone (PEEK) surface and pH sensitive polymer, chitosan, was introduced. The smart release of doxorubicin can be realized on the 3D porous surface of PEEK loading chitosan. We give a feasible explanation for the effect of chitosan on smart drug release according to Henderson-Hasselbalch equation. Furthermore, the intracellular drug content of the cell cultured on the samples with highest chitosan is significantly higher at pH 4.0, whereas lower at pH 7.4 than other samples. The smart release of doxorubicin via modification with chitosan onto 3D porous PEEK surface paves the way for the application of PEEK in drug loading platform for recovering bone defect caused by malignant bone tumor. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-10-04

    Arrays of gold quasi-3D nanoholes were proposed and fabricated as substrates for surface-enhanced Raman scattering (SERS). By detecting rhodamine 6G (R6G) molecules, the gold quasi-3D nanoholes demonstrated an SERS intensity that was 25-62 times higher than that of two-dimensional nanoholes with the same geometrical shapes and periodicities. The larger SERS enhancement of the quasi-3D nanoholes is attributed to the enhanced electromagnetic field on the top-layer nanohole, the bottom nanodiscs and the field coupling between the two layers. In addition, the investigation of the shape dependence of the SERS on the quasi-3D nanoholes demonstrated that the quadratic, circular, triangular and rhombic holes exhibited different SERS properties. Numerical simulations of the electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results agree with the experimental observations. © 2012 IOP Publishing Ltd.

  11. Two process chains for creating functional surfaces on mold for 3D geometry

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Pedersen, David Bue

    . This paper describes and compares 2 approaches for fabricating micro- structured surfaces suitable for patterning of 3D shape cavity for injection moulding. The application investigated for the research is a part of a fixture for electrodes to be implanted inside human body. It is a ring with four wings......Polymer products with functional surfaces are applied in many fields such as medical and bio technology [1][2]. It is believed that certain types of micro- or nano- structured surfaces can enhance tissue anchoring [3]. However, most technologies for the fabrication of micro-structured functional...... surfaces are still limited to flat geometries or geometries with constant curvature [4] . Typically products that need micro structuring on the surface have a three dimensional and complex geometry. There are huge demand for investigation in establishing the micro structures on the surface of a 3D mold...

  12. Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter

    Science.gov (United States)

    Belknap, Shannon; Zhang, Michael

    2013-01-01

    The 3D Automated Thermal Tool for Damaged Acreage Tile Math Model builder was developed to perform quickly and accurately 3D thermal analyses on damaged lower surface acreage tiles and structures beneath the damaged locations on a Space Shuttle Orbiter. The 3D model builder created both TRASYS geometric math models (GMMs) and SINDA thermal math models (TMMs) to simulate an idealized damaged cavity in the damaged tile(s). The GMMs are processed in TRASYS to generate radiation conductors between the surfaces in the cavity. The radiation conductors are inserted into the TMMs, which are processed in SINDA to generate temperature histories for all of the nodes on each layer of the TMM. The invention allows a thermal analyst to create quickly and accurately a 3D model of a damaged lower surface tile on the orbiter. The 3D model builder can generate a GMM and the correspond ing TMM in one or two minutes, with the damaged cavity included in the tile material. A separate program creates a configuration file, which would take a couple of minutes to edit. This configuration file is read by the model builder program to determine the location of the damage, the correct tile type, tile thickness, structure thickness, and SIP thickness of the damage, so that the model builder program can build an accurate model at the specified location. Once the models are built, they are processed by the TRASYS and SINDA.

  13. Whole object surface area and volume of partial-view 3D models

    International Nuclear Information System (INIS)

    Mulukutla, Gopal K; Proussevitch, Alexander A; Genareau, Kimberly D; Durant, Adam J

    2017-01-01

    Micro-scale 3D models, important components of many studies in science and engineering, are often used to determine morphological characteristics such as shape, surface area and volume. The application of techniques such as stereoscopic scanning electron microscopy on whole objects often results in ‘partial-view’ models with a portion of object not within the field of view thus not captured in the 3D model. The nature and extent of the surface not captured is dependent on the complex interaction of imaging system attributes (e.g. working distance, viewing angle) with object size, shape and morphology. As a result, any simplistic assumptions in estimating whole object surface area or volume can lead to significant errors. In this study, we report on a novel technique to estimate the physical fraction of an object captured in a partial-view 3D model of an otherwise whole object. This allows a more accurate estimate of surface area and volume. Using 3D models, we demonstrate the robustness of this method and the accuracy of surface area and volume estimates relative to true values. (paper)

  14. 3D facial expression recognition based on histograms of surface differential quantities

    KAUST Repository

    Li, Huibin

    2011-01-01

    3D face models accurately capture facial surfaces, making it possible for precise description of facial activities. In this paper, we present a novel mesh-based method for 3D facial expression recognition using two local shape descriptors. To characterize shape information of the local neighborhood of facial landmarks, we calculate the weighted statistical distributions of surface differential quantities, including histogram of mesh gradient (HoG) and histogram of shape index (HoS). Normal cycle theory based curvature estimation method is employed on 3D face models along with the common cubic fitting curvature estimation method for the purpose of comparison. Based on the basic fact that different expressions involve different local shape deformations, the SVM classifier with both linear and RBF kernels outperforms the state of the art results on the subset of the BU-3DFE database with the same experimental setting. © 2011 Springer-Verlag.

  15. Novel Low Cost 3D Surface Model Reconstruction System for Plant Phenotyping

    Directory of Open Access Journals (Sweden)

    Suxing Liu

    2017-09-01

    Full Text Available Accurate high-resolution three-dimensional (3D models are essential for a non-invasive analysis of phenotypic characteristics of plants. Previous limitations in 3D computer vision algorithms have led to a reliance on volumetric methods or expensive hardware to record plant structure. We present an image-based 3D plant reconstruction system that can be achieved by using a single camera and a rotation stand. Our method is based on the structure from motion method, with a SIFT image feature descriptor. In order to improve the quality of the 3D models, we segmented the plant objects based on the PlantCV platform. We also deducted the optimal number of images needed for reconstructing a high-quality model. Experiments showed that an accurate 3D model of the plant was successfully could be reconstructed by our approach. This 3D surface model reconstruction system provides a simple and accurate computational platform for non-destructive, plant phenotyping.

  16. Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation.

    Science.gov (United States)

    Di Luca, Andrea; de Wijn, Joost R; van Blitterswijk, Clemens A; Camarero-Espinosa, Sandra; Moroni, Lorenzo

    2017-08-01

    The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts (MC-3T3 cells) are cultured on these scaffolds, a significant increase in alkaline phosphatase activity is measured for submicron surface topography, suggesting a potential role on early cell differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement.

    Science.gov (United States)

    Li, Dong; Kofman, Jonathan

    2014-04-21

    In fringe-projection 3D surface-shape measurement, image saturation results in incorrect intensities in captured images of fringe patterns, leading to phase and measurement errors. An adaptive fringe-pattern projection (AFPP) method was developed to adapt the maximum input gray level in projected fringe patterns to the local reflectivity of an object surface being measured. The AFPP method demonstrated improved 3D measurement accuracy by avoiding image saturation in highly-reflective surface regions while maintaining high intensity modulation across the entire surface. The AFPP method can avoid image saturation and handle varying surface reflectivity, using only two prior rounds of fringe-pattern projection and image capture to generate the adapted fringe patterns.

  18. Surface Simplification of 3D Animation Models Using Robust Homogeneous Coordinate Transformation

    Directory of Open Access Journals (Sweden)

    Juin-Ling Tseng

    2014-01-01

    Full Text Available The goal of 3D surface simplification is to reduce the storage cost of 3D models. A 3D animation model typically consists of several 3D models. Therefore, to ensure that animation models are realistic, numerous triangles are often required. However, animation models that have a high storage cost have a substantial computational cost. Hence, surface simplification methods are adopted to reduce the number of triangles and computational cost of 3D models. Quadric error metrics (QEM has recently been identified as one of the most effective methods for simplifying static models. To simplify animation models by using QEM, Mohr and Gleicher summed the QEM of all frames. However, homogeneous coordinate problems cannot be considered completely by using QEM. To resolve this problem, this paper proposes a robust homogeneous coordinate transformation that improves the animation simplification method proposed by Mohr and Gleicher. In this study, the root mean square errors of the proposed method were compared with those of the method proposed by Mohr and Gleicher, and the experimental results indicated that the proposed approach can preserve more contour features than Mohr’s method can at the same simplification ratio.

  19. Controlled surface topography regulates collective 3D migration by epithelial-mesenchymal composite embryonic tissues.

    Science.gov (United States)

    Song, Jiho; Shawky, Joseph H; Kim, YongTae; Hazar, Melis; LeDuc, Philip R; Sitti, Metin; Davidson, Lance A

    2015-07-01

    Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry

    Energy Technology Data Exchange (ETDEWEB)

    Gontard, L.C., E-mail: lionelcg@gmail.com [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Puerto Real 11510 (Spain); López-Castro, J.D.; González-Rovira, L. [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Escuela Superior de Ingeniería, Laboratorio de Corrosión, Universidad de Cádiz, Puerto Real 11519 (Spain); Vázquez-Martínez, J.M. [Departamento de Ingeniería Mecánica y Diseño Industrial, Escuela Superior de Ingeniería, Universidad de Cádiz, Puerto Real 11519 (Spain); Varela-Feria, F.M. [Servicio de Microscopía Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de Sevilla, Av. Reina Mercedes 4b, 41012 Sevilla (Spain); Marcos, M. [Departamento de Ingeniería Mecánica y Diseño Industrial, Escuela Superior de Ingeniería, Universidad de Cádiz, Puerto Real 11519 (Spain); and others

    2017-06-15

    Highlights: • We describe a method to acquire a high-angle tilt series of SEM images that is symmetrical respect to the zero tilt of the sample stage. The method can be applied in any SEM microscope. • Using the method, high-resolution 3D SEM photogrammetry can be applied on planar surfaces. • 3D models of three surfaces patterned with grooves are reconstructed with high resolution using multi-view freeware photogrammetry software as described in LC Gontard et al. Ultramicroscopy, 2016. • From the 3D models roughness parameters are measured • 3D SEM high-resolution photogrammetry is compared with two conventional methods used for roughness characetrization: stereophotogrammetry and contact profilometry. • It provides three-dimensional information with high-resolution that is out of reach for any other metrological technique. - Abstract: We describe a methodology to obtain three-dimensional models of engineered surfaces using scanning electron microscopy and multi-view photogrammetry (3DSEM). For the reconstruction of the 3D models of the surfaces we used freeware available in the cloud. The method was applied to study the surface roughness of metallic samples patterned with parallel grooves by means of laser. The results are compared with measurements obtained using stylus profilometry (PR) and SEM stereo-photogrammetry (SP). The application of 3DSEM is more time demanding than PR or SP, but it provides a more accurate representation of the surfaces. The results obtained with the three techniques are compared by investigating the influence of sampling step on roughness parameters.

  1. The use of 3D surface scanning for the measurement and assessment of the human foot

    Directory of Open Access Journals (Sweden)

    Telfer Scott

    2010-09-01

    Full Text Available Abstract Background A number of surface scanning systems with the ability to quickly and easily obtain 3D digital representations of the foot are now commercially available. This review aims to present a summary of the reported use of these technologies in footwear development, the design of customised orthotics, and investigations for other ergonomic purposes related to the foot. Methods The PubMed and ScienceDirect databases were searched. Reference lists and experts in the field were also consulted to identify additional articles. Studies in English which had 3D surface scanning of the foot as an integral element of their protocol were included in the review. Results Thirty-eight articles meeting the search criteria were included. Advantages and disadvantages of using 3D surface scanning systems are highlighted. A meta-analysis of studies using scanners to investigate the changes in foot dimensions during varying levels of weight bearing was carried out. Conclusions Modern 3D surface scanning systems can obtain accurate and repeatable digital representations of the foot shape and have been successfully used in medical, ergonomic and footwear development applications. The increasing affordability of these systems presents opportunities for researchers investigating the foot and for manufacturers of foot related apparel and devices, particularly those interested in producing items that are customised to the individual. Suggestions are made for future areas of research and for the standardization of the protocols used to produce foot scans.

  2. Experimental 3-D modelling of surface subsidence affected by underground mining activities

    Czech Academy of Sciences Publication Activity Database

    Trčková, Jiřina

    2009-01-01

    Roč. 109, č. 12 (2009), s. 739-744 ISSN 0038-223X R&D Projects: GA AV ČR IAA2119402 Institutional research plan: CEZ:AV0Z30460519 Keywords : undermining * subsidence of surface * 3-D experimental model Subject RIV: DO - Wilderness Conservation Impact factor: 0.216, year: 2009

  3. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Longtao; Qin, Min; Wang, Kai; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo [Beijing Normal University, College of Nuclear Science and Technology, Beijing (China); Lin, Xue [Northwest University, School of Cultural Heritage, Xi' an (China)

    2016-09-15

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces. (orig.)

  4. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    International Nuclear Information System (INIS)

    Yi, Longtao; Qin, Min; Wang, Kai; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo; Lin, Xue

    2016-01-01

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces. (orig.)

  5. 3D skin surface reconstruction from a single image by merging global curvature and local texture using the guided filtering for 3D haptic palpation.

    Science.gov (United States)

    Lee, K; Kim, M; Kim, K

    2018-05-11

    Skin surface evaluation has been studied using various imaging techniques. However, all these studies had limited impact because they were performed using visual exam only. To improve on this scenario with haptic feedback, we propose 3D reconstruction of the skin surface using a single image. Unlike extant 3D skin surface reconstruction algorithms, we utilize the local texture and global curvature regions, combining the results for reconstruction. The first entails the reconstruction of global curvature, achieved by bilateral filtering that removes noise on the surface while maintaining the edge (ie, furrow) to obtain the overall curvature. The second entails the reconstruction of local texture, representing the fine wrinkles of the skin, using an advanced form of bilateral filtering. The final image is then composed by merging the two reconstructed images. We tested the curvature reconstruction part by comparing the resulting curvatures with measured values from real phantom objects while local texture reconstruction was verified by measuring skin surface roughness. Then, we showed the reconstructed result of our proposed algorithm via the reconstruction of various real skin surfaces. The experimental results demonstrate that our approach is a promising technology to reconstruct an accurate skin surface with a single skin image. We proposed 3D skin surface reconstruction using only a single camera. We highlighted the utility of global curvature, which has not been considered important in the past. Thus, we proposed a new method for 3D reconstruction that can be used for 3D haptic palpation, dividing the concepts of local and global regions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Active illumination based 3D surface reconstruction and registration for image guided medialization laryngoplasty

    Science.gov (United States)

    Jin, Ge; Lee, Sang-Joon; Hahn, James K.; Bielamowicz, Steven; Mittal, Rajat; Walsh, Raymond

    2007-03-01

    The medialization laryngoplasty is a surgical procedure to improve the voice function of the patient with vocal fold paresis and paralysis. An image guided system for the medialization laryngoplasty will help the surgeons to accurately place the implant and thus reduce the failure rates of the surgery. One of the fundamental challenges in image guided system is to accurately register the preoperative radiological data to the intraoperative anatomical structure of the patient. In this paper, we present a combined surface and fiducial based registration method to register the preoperative 3D CT data to the intraoperative surface of larynx. To accurately model the exposed surface area, a structured light based stereo vision technique is used for the surface reconstruction. We combined the gray code pattern and multi-line shifting to generate the intraoperative surface of the larynx. To register the point clouds from the intraoperative stage to the preoperative 3D CT data, a shape priori based ICP method is proposed to quickly register the two surfaces. The proposed approach is capable of tracking the fiducial markers and reconstructing the surface of larynx with no damage to the anatomical structure. We used off-the-shelf digital cameras, LCD projector and rapid 3D prototyper to develop our experimental system. The final RMS error in the registration is less than 1mm.

  7. 3D thermal model of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Naher, S.

    2017-10-01

    In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.

  8. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, Shweta; Kant, Rama, E-mail: rkant@chemistry.du.ac.in

    2013-10-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  9. 3D finite element model of elastoplastic contact on the double sinus rough surface

    International Nuclear Information System (INIS)

    Hagege, H; Bouvier, S; Mazeran, P-E; Bigerelle, M

    2011-01-01

    One of the objectives in the field of tribology is to solve the mechanical stress-displacement problem involved by rough contacts. In our approach, the surface chosen is a 256-256 μm 2 3D sinusoidal shape (amplitude 4.5μm, wavelength 50μm) with an elastoplastic constitutive behaviour. The constitutive law combines isotropic and kinematic hardening and is experimentally identified from 316L steel sheets. The FEM deformable surface is crushed then uncrushed by a rigid flat surface: stresses, contact pressure and plastic cumulated strain are computed. We investigate the results sensitivity with respect to the level of in-plane refinement. At last, we conclude on some guidelines for 3D finite elements modelling of rough surfaces.

  10. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    International Nuclear Information System (INIS)

    Dhillon, Shweta; Kant, Rama

    2013-01-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  11. Evolutionary computation applied to the reconstruction of 3-D surface topography in the SEM.

    Science.gov (United States)

    Kodama, Tetsuji; Li, Xiaoyuan; Nakahira, Kenji; Ito, Dai

    2005-10-01

    A genetic algorithm has been applied to the line profile reconstruction from the signals of the standard secondary electron (SE) and/or backscattered electron detectors in a scanning electron microscope. This method solves the topographical surface reconstruction problem as one of combinatorial optimization. To extend this optimization approach for three-dimensional (3-D) surface topography, this paper considers the use of a string coding where a 3-D surface topography is represented by a set of coordinates of vertices. We introduce the Delaunay triangulation, which attains the minimum roughness for any set of height data to capture the fundamental features of the surface being probed by an electron beam. With this coding, the strings are processed with a class of hybrid optimization algorithms that combine genetic algorithms and simulated annealing algorithms. Experimental results on SE images are presented.

  12. Simulation of Missing Pellet Surface thermal behavior with 3D dynamic gap element

    International Nuclear Information System (INIS)

    Kim, Hyo Chan; Yang, Yong Sik; Koo, Yang Hyun; Kang, Chang Hak; Lee Sung Uk; Yang, Dong Yol

    2014-01-01

    Most of the fuel performance codes that are able to simulate a multidimensional analysis are used to calculate the radial temperature distribution and perform a multidimensional mechanical analysis based on a one-dimensional (1D) temperature result. The FRAPCON-FRAPTRAN code system incorporates a 1D thermal module and two-dimensional (2D) mechanical module when FEM option is activated. In this method, the multidimensional gap conductance model is not required because one-dimensional thermal analysis is carried out. On the other hand, a gap conductance model for a multi-dimension should be developed in the code to perform a multidimensional thermal analysis. ALCYONE developed by CEA introduces an equivalent heat convection coefficient that represents the multidimensional gap conductance. However, the code does not employ dynamic gap conductance which is a function of gap thickness and gap characteristics in direct. The BISON code, which has been developed by INL (Idaho National Laboratory), employed a thermo-mechanical contact method that is specifically designed for tightly-coupled implicit solutions that employ Jacobian-free solution methods. Owing to tightly-coupled implicit solutions, the BISON code solves gap conductance and gap thickness simultaneously with given boundary conditions. In this paper, 3D dynamic gap element has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. To evaluate 3D dynamic gap element module, 3D thermomechanical module using FORTRAN77 has been implemented incorporating 3D dynamic gap element. To demonstrate effect of 3D dynamic gap element, thermal behavior of missing pellet surface (MPS) has been simulated by the developed module. LWR fuel performance codes should incorporate thermo-mechanical loop to solve gap conductance problem, iteratively. However, gap conductance in multidimensional model is difficult issue owing to its nonlinearity and convergence characteristics. In

  13. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach

    Directory of Open Access Journals (Sweden)

    Kelly de Jesus

    2015-01-01

    Full Text Available This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm with 236 markers (64 above and 88 underwater control points—with 8 common points at water surface—and 92 validation points was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.. Root Mean Square (RMS error with homography of control and validations points was lower than without it for surface and underwater cameras (P≤0.03. With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P≥0.47. Without homography, RMS error of control points was greater for underwater than surface cameras (P≤0.04 and the opposite was observed for validation points (P≤0.04. It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy.

  14. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.

    Science.gov (United States)

    Wang, Mian; Favi, Pelagie; Cheng, Xiaoqian; Golshan, Negar H; Ziemer, Katherine S; Keidar, Michael; Webster, Thomas J

    2016-12-01

    Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface. Water contact angles of a normal 3D printed poly-lactic-acid (PLA) scaffold dramatically dropped after CAP treatment from 70±2° to 24±2°. In addition, the nano-scale surface roughness (Rq) of the untreated 3D PLA scaffolds drastically increased (up to 250%) after 1, 3, and 5min of CAP treatment from 1.20nm to 10.50nm, 22.90nm, and 27.60nm, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that the ratio of oxygen to carbon significantly increased after CAP treatment, which indicated that the CAP treatment of PLA not only changed nano-scale roughness but also chemistry. Both changes in hydrophilicity and nano-scale roughness demonstrated a very efficient plasma treatment, which in turn significantly promoted both osteoblast (bone forming cells) and mesenchymal stem cell attachment and proliferation. These promising results suggest that CAP surface modification may have potential applications for enhancing 3D printed PLA bone tissue engineering materials (and all 3D printed materials) in a quick and an inexpensive manner and, thus, should be further studied. Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. Although their success is related to their ability to exactly mimic the structure of natural tissues and control mechanical

  15. 3D Imaging of Dielectric Objects Buried under a Rough Surface by Using CSI

    Directory of Open Access Journals (Sweden)

    Evrim Tetik

    2015-01-01

    Full Text Available A 3D scalar electromagnetic imaging of dielectric objects buried under a rough surface is presented. The problem has been treated as a 3D scalar problem for computational simplicity as a first step to the 3D vector problem. The complexity of the background in which the object is buried is simplified by obtaining Green’s function of its background, which consists of two homogeneous half-spaces, and a rough interface between them, by using Buried Object Approach (BOA. Green’s function of the two-part space with planar interface is obtained to be used in the process. Reconstruction of the location, shape, and constitutive parameters of the objects is achieved by Contrast Source Inversion (CSI method with conjugate gradient. The scattered field data that is used in the inverse problem is obtained via both Method of Moments (MoM and Comsol Multiphysics pressure acoustics model.

  16. 3D automatic segmentation method for retinal optical coherence tomography volume data using boundary surface enhancement

    Directory of Open Access Journals (Sweden)

    Yankui Sun

    2016-03-01

    Full Text Available With the introduction of spectral-domain optical coherence tomography (SD-OCT, much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, there is a critical need for the development of three-dimensional (3D segmentation methods for processing these data. We present here a novel 3D automatic segmentation method for retinal OCT volume data. Briefly, to segment a boundary surface, two OCT volume datasets are obtained by using a 3D smoothing filter and a 3D differential filter. Their linear combination is then calculated to generate new volume data with an enhanced boundary surface, where pixel intensity, boundary position information, and intensity changes on both sides of the boundary surface are used simultaneously. Next, preliminary discrete boundary points are detected from the A-Scans of the volume data. Finally, surface smoothness constraints and a dynamic threshold are applied to obtain a smoothed boundary surface by correcting a small number of error points. Our method can extract retinal layer boundary surfaces sequentially with a decreasing search region of volume data. We performed automatic segmentation on eight human OCT volume datasets acquired from a commercial Spectralis OCT system, where each volume of datasets contains 97 OCT B-Scan images with a resolution of 496×512 (each B-Scan comprising 512 A-Scans containing 496 pixels; experimental results show that this method can accurately segment seven layer boundary surfaces in normal as well as some abnormal eyes.

  17. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins

    Science.gov (United States)

    Pikul, J. H.; Li, S.; Bai, H.; Hanlon, R. T.; Cohen, I.; Shepherd, R. F.

    2017-10-01

    Technologies that use stretchable materials are increasingly important, yet we are unable to control how they stretch with much more sophistication than inflating balloons. Nature, however, demonstrates remarkable control of stretchable surfaces; for example, cephalopods can project hierarchical structures from their skin in milliseconds for a wide range of textural camouflage. Inspired by cephalopod muscular morphology, we developed synthetic tissue groupings that allowed programmable transformation of two-dimensional (2D) stretchable surfaces into target 3D shapes. The synthetic tissue groupings consisted of elastomeric membranes embedded with inextensible textile mesh that inflated to within 10% of their target shapes by using a simple fabrication method and modeling approach. These stretchable surfaces transform from flat sheets to 3D textures that imitate natural stone and plant shapes and camouflage into their background environments.

  18. SU-E-J-209: Verification of 3D Surface Registration Between Stereograms and CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Han, T; Gifford, K [UT MD Anderson Cancer Center, Houston, TX (United States); Smith, B [MD Anderson Cancer Center, Houston, TX (United States); Salehpour, M [M.D. Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: Stereography can provide a visualization of the skin surface for radiation therapy patients. The aim of this study was to verify the registration algorithm in a commercial image analysis software, 3dMDVultus, for the fusion of stereograms and CT images. Methods: CT and stereographic scans were acquired of a head phantom and a deformable phantom. CT images were imported in 3dMDVultus and the surface contours were generated by threshold segmentation. Stereograms were reconstructed in 3dMDVultus. The resulting surfaces were registered with Vultus algorithm and then exported to in-house registration software and compared with four algorithms: rigid, affine, non-rigid iterative closest point (ICP) and b-spline algorithm. RMS (root-mean-square residuals of the surface point distances) error between the registered CT and stereogram surfaces was calculated and analyzed. Results: For the head phantom, the maximum RMS error between registered CT surfaces to stereogram was 6.6 mm for Vultus algorithm, whereas the mean RMS error was 0.7 mm. For the deformable phantom, the maximum RMS error was 16.2 mm for Vultus algorithm, whereas the mean RMS error was 4.4 mm. Non-rigid ICP demonstrated the best registration accuracy, as the mean of RMS errors were both within 1 mm. Conclusion: The accuracy of registration algorithm in 3dMDVultus was verified and exceeded RMS of 2 mm for deformable cases. Non-rigid ICP and b-spline algorithms improve the registration accuracy for both phantoms, especially in deformable one. For those patients whose body habitus deforms during radiation therapy, more advanced nonrigid algorithms need to be used.

  19. Generating 3D and 3D-like animations of strongly uneven surface microareas of bloodstains from small series of partially out-of-focus digital SEM micrographs.

    Science.gov (United States)

    Hortolà, Policarp

    2010-01-01

    When dealing with microscopic still images of some kinds of samples, the out-of-focus problem represents a particularly serious limiting factor for the subsequent generation of fully sharp 3D animations. In order to produce fully-focused 3D animations of strongly uneven surface microareas, a vertical stack of six digital secondary-electron SEM micrographs of a human bloodstain microarea was acquired. Afterwards, single combined images were generated using a macrophotography and light microscope image post-processing software. Subsequently, 3D animations of texture and topography were obtained in different formats using a combination of software tools. Finally, a 3D-like animation of a texture-topography composite was obtained in different formats using another combination of software tools. By one hand, results indicate that the use of image post-processing software not concerned primarily with electron micrographs allows to obtain, in an easy way, fully-focused images of strongly uneven surface microareas of bloodstains from small series of partially out-of-focus digital SEM micrographs. On the other hand, results also indicate that such small series of electron micrographs can be utilized for generating 3D and 3D-like animations that can subsequently be converted into different formats, by using certain user-friendly software facilities not originally designed for use in SEM, that are easily available from Internet. Although the focus of this study was on bloodstains, the methods used in it well probably are also of relevance for studying the surface microstructures of other organic or inorganic materials whose sharp displaying is difficult of obtaining from a single SEM micrograph.

  20. Evaluation of cartilage surface injuries using 3D-double echo steady state (3D-DESS): Effect of changing flip angle from 40 deg to 90 deg

    International Nuclear Information System (INIS)

    Moriya, Susumu; Yokobayashi, Tsuneo; Ishikawa, Mitsunori; Miki, Yukio; Kanagaki, Mitsunori; Yamamoto, Akira; Okudaira, Shuzo; Nakamura, Shinichiro

    2011-01-01

    Background. In magnetic resonance imaging (MRI) with 3D-double-echo steady-state (3D-DESS) sequences, the cartilage-synovial fluid contrast is reported to be better with a flip angle of 90 deg than with the conventional flip angle of 40 deg, and the detection rate of knee cartilage injury may be improved. Purpose. To compare the diagnostic performance and certainty of diagnosis with 3D-DESS images made using two flip angle settings, 40 deg and 90 deg, for knee cartilage surface lesions of Grade 2 or above confirmed by arthroscopy. Material and Methods. Images were obtained with 3D-DESS flip angles of 40 deg and 90 deg at 1.0T in 13 consecutive patients (2 men, 11 women, age range 18-68 years) evaluated for superficial cartilage injury by arthroscopy. Two radiologists classified the presence or absence of cartilage damage of ≥Grade 2 as 'positive (p)' or 'negative (n)', respectively. The rate of agreement with arthroscopic diagnosis was then examined, and the diagnostic performance compared. Diagnostic confidence was assessed scoring the presence or absence of cartilage damage into three categories: 3 = can diagnose with absolute confidence; 2 = can diagnose with a level of certainty as probably present or probably absent; and 1 = cannot make a diagnosis. Results. In a comparison of the rate of agreement between diagnosis by 3D-DESS images and arthroscopy, the rate of agreement was significantly higher and diagnostic performance was better in 90 deg images for the medial femoral condyle only. Diagnostic confidence was significantly better with 90 deg flip angle images than with 40 deg flip angle images for all six cartilage surfaces. Conclusion. In evaluating knee cartilage surface lesions with 3D-DESS sequences, a flip angle setting of 90 deg is more effective than the conventional setting of 40 deg

  1. Evaluation of cartilage surface injuries using 3D-double echo steady state (3D-DESS): Effect of changing flip angle from 40 deg to 90 deg

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Susumu; Yokobayashi, Tsuneo; Ishikawa, Mitsunori (Ishikawa Clinic, Kyoto (Japan)), email: smoyari@yahoo.co.jp; Miki, Yukio (Dept. of Radiology, Osaka City Univ. Graduate School of Medicine, Osaka (Japan)); Kanagaki, Mitsunori; Yamamoto, Akira (Dept. of Diagnostic Imaging and Nuclear Medicine, Kyoto Univ., Kyoto (Japan)); Okudaira, Shuzo (Dept. of Orthopaedics, Kyoto Police Hospital, Kyoto (Japan)); Nakamura, Shinichiro (Center for Musculoskeletal Research, Univ. of Tennessee, Knoxville, TN (United States))

    2011-12-15

    Background. In magnetic resonance imaging (MRI) with 3D-double-echo steady-state (3D-DESS) sequences, the cartilage-synovial fluid contrast is reported to be better with a flip angle of 90 deg than with the conventional flip angle of 40 deg, and the detection rate of knee cartilage injury may be improved. Purpose. To compare the diagnostic performance and certainty of diagnosis with 3D-DESS images made using two flip angle settings, 40 deg and 90 deg, for knee cartilage surface lesions of Grade 2 or above confirmed by arthroscopy. Material and Methods. Images were obtained with 3D-DESS flip angles of 40 deg and 90 deg at 1.0T in 13 consecutive patients (2 men, 11 women, age range 18-68 years) evaluated for superficial cartilage injury by arthroscopy. Two radiologists classified the presence or absence of cartilage damage of >=Grade 2 as 'positive (p)' or 'negative (n)', respectively. The rate of agreement with arthroscopic diagnosis was then examined, and the diagnostic performance compared. Diagnostic confidence was assessed scoring the presence or absence of cartilage damage into three categories: 3 = can diagnose with absolute confidence; 2 = can diagnose with a level of certainty as probably present or probably absent; and 1 = cannot make a diagnosis. Results. In a comparison of the rate of agreement between diagnosis by 3D-DESS images and arthroscopy, the rate of agreement was significantly higher and diagnostic performance was better in 90 deg images for the medial femoral condyle only. Diagnostic confidence was significantly better with 90 deg flip angle images than with 40 deg flip angle images for all six cartilage surfaces. Conclusion. In evaluating knee cartilage surface lesions with 3D-DESS sequences, a flip angle setting of 90 deg is more effective than the conventional setting of 40 deg

  2. Evaluation of surface roughness of the bracket slot floor—a 3D perspective study

    Directory of Open Access Journals (Sweden)

    Chetankumar O. Agarwal

    2016-01-01

    Full Text Available Abstract Background An important constituent of an orthodontic appliance is orthodontic brackets. It is either the bracket or the archwire that slides through the bracket slot, during sliding mechanics. Overcoming the friction between the two surfaces demands an important consideration in an appliance design. The present study investigated the surface roughness of four different commercially available stainless steel brackets. Methods All tests were carried out to analyse quantitatively the morphological surface of the bracket slot floor with the help of scanning electron microscope (SEM machine and to qualitatively analyse the average surface roughness (Sa of the bracket slot floor with the help of a three-dimensional (3D non-contact optical surface profilometer machine. Results The SEM microphotographs were evaluated with the help of visual analogue scale, the surface roughness for group A = 0—very rough surface, group C = 1—rough surface, group B = 2—smooth surface, and group D = 3—very smooth surface. Surface roughness evaluation with the 3D non-contact optical surface profilometer machine was highest for group A, followed by group C, group B and group D. Groups B and D provided smooth surface roughness; however, group D had the very smooth surface with values 0.74 and 0.75 for mesial and distal slots, respectively. Conclusions Evaluation of surface roughness of the bracket slot floor with both SEM and profilometer machine led to the conclusion that the average surface roughness was highest for group A, followed by group C, group B and group D.

  3. Near-surface 3D reflections seismic survey; Sanjigen senso hanshaho jishin tansa

    Energy Technology Data Exchange (ETDEWEB)

    Nakahigashi, H; Mitsui, H; Nakano, O; Kobayashi, T [DIA Consultants Co. Ltd., Tokyo (Japan)

    1997-05-27

    Faults are being actively investigated across Japan since the Great Hanshin-Awaji Earthquake. Discussed in this report is the application of the 3D near-surface reflection seismic survey in big cities. Data from trenching and drilling is used for the geological interpretation of the surroundings of a fault, and the reflection seismic survey is used to identify the position, etc., of the fault. In this article, when the results obtained from the experimental field are examined, it is found that the conventional 2D imaging reflection survey betrays the limit of its capability when the geological structure is complicated, that the 3D reflection seismic survey, on the contrary, is capable of high-precision imaging and, when augmented by drilling, etc., becomes capable of a more detailed interpretation, and that it also contributes effectively to the improvement of local disaster prevention in big cities. Using as the model the Tachikawa fault that runs near JR Tachikawa Station, embodiment of the 3D reflection seismic survey is reviewed. For the acquisition of data excellent in quality in a 3D reflection seismic survey conducted utilizing the roads in the sector chosen for experiment in the urban area, the shock generating points and receiving points should be positioned by taking into account the parameters in the bin arranging process so that the mid-points will be regularly distributed on the surface. 3 refs., 11 figs., 1 tab.

  4. Comparison of 3 methods on fabricating micro- /nano- structured surface on 3D mold cavity

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2015-01-01

    The methods to manufacture micro- or nano- structures on surfaces have been an area of intense investigation. Demands are shown for technologies for surface structuring on real 3D parts in many fields. However, most technologies for the fabrication of micro-structured functional surfaces are still...... limited to flat or simple shaped geometries. In this paper, 3 approaches for fabricating micro and nano- structured surfaces on a mold cavity for injection moulding are investigated and compared. The first approach is to use pre-fabricated plate with micro-structured surface as an insert for the mold......, in this way micro holes (Ø4 μm) was obtained. The second approach is to produce the cavity part using anodizing process chain, and in this way sub-micro structures can be obtained all over the cavity surface. The third approach is to machine the surface inside the cavity directly by femtosecond laser combined...

  5. Optical Estimation of the 3D Shape of a Solar Illuminated, Reflecting Satellite Surface

    Science.gov (United States)

    Antolin, J.; Yu, Z.; Prasad, S.

    2016-09-01

    The spatial distribution of the polarized component of the power reflected by a macroscopically smooth but microscopically roughened curved surface under highly directional illumination, as characterized by an appropriate bi-directional reflectance distribution function (BRDF), carries information about the three-dimensional (3D) shape of the surface. This information can be exploited to recover the surface shape locally under rather general conditions whenever power reflectance data for at least two different illumination or observation directions can be obtained. We present here two different parametric approaches for surface reconstruction, amounting to the recovery of the surface parameters that are either the global parameters of the family to which the surface is known a priori to belong or the coefficients of a low-order polynomial that can be employed to characterize a smoothly varying surface locally over the observed patch.

  6. EVALUATION MODEL FOR PAVEMENT SURFACE DISTRESS ON 3D POINT CLOUDS FROM MOBILE MAPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Aoki

    2012-07-01

    Full Text Available This paper proposes a methodology to evaluate the pavement surface distress for maintenance planning of road pavement using 3D point clouds from Mobile Mapping System (MMS. The issue on maintenance planning of road pavement requires scheduled rehabilitation activities for damaged pavement sections to keep high level of services. The importance of this performance-based infrastructure asset management on actual inspection data is globally recognized. Inspection methodology of road pavement surface, a semi-automatic measurement system utilizing inspection vehicles for measuring surface deterioration indexes, such as cracking, rutting and IRI, have already been introduced and capable of continuously archiving the pavement performance data. However, any scheduled inspection using automatic measurement vehicle needs much cost according to the instruments’ specification or inspection interval. Therefore, implementation of road maintenance work, especially for the local government, is difficult considering costeffectiveness. Based on this background, in this research, the methodologies for a simplified evaluation for pavement surface and assessment of damaged pavement section are proposed using 3D point clouds data to build urban 3D modelling. The simplified evaluation results of road surface were able to provide useful information for road administrator to find out the pavement section for a detailed examination and for an immediate repair work. In particular, the regularity of enumeration of 3D point clouds was evaluated using Chow-test and F-test model by extracting the section where the structural change of a coordinate value was remarkably achieved. Finally, the validity of the current methodology was investigated by conducting a case study dealing with the actual inspection data of the local roads.

  7. A 3D edge detection technique for surface extraction in computed tomography for dimensional metrology applications

    DEFF Research Database (Denmark)

    Yagüe-Fabra, J.A.; Ontiveros, S.; Jiménez, R.

    2013-01-01

    Many factors influence the measurement uncertainty when using computed tomography for dimensional metrology applications. One of the most critical steps is the surface extraction phase. An incorrect determination of the surface may significantly increase the measurement uncertainty. This paper...... presents an edge detection method for the surface extraction based on a 3D Canny algorithm with sub-voxel resolution. The advantages of this method are shown in comparison with the most commonly used technique nowadays, i.e. the local threshold definition. Both methods are applied to reference standards...

  8. 3D scanning electron microscopy applied to surface characterization of fluorosed dental enamel.

    Science.gov (United States)

    Limandri, Silvina; Galván Josa, Víctor; Valentinuzzi, María Cecilia; Chena, María Emilia; Castellano, Gustavo

    2016-05-01

    The enamel surfaces of fluorotic teeth were studied by scanning electron stereomicroscopy. Different whitening treatments were applied to 25 pieces to remove stains caused by fluorosis and their surfaces were characterized by stereomicroscopy in order to obtain functional and amplitude parameters. The topographic features resulting for each treatment were determined through these parameters. The results obtained show that the 3D reconstruction achieved from the SEM stereo pairs is a valuable potential alternative for the surface characterization of this kind of samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Jensen, Rasmus Ramsbøl

    2011-01-01

    We present a complete system for motion correction in high resolution brain positron emission tomography (PET) imaging. It is based on a compact structured light scanner mounted above the patient tunnel of the Siemens High Resolution Research Tomograph PET brain scanner. The structured light system...... is equipped with a near infrared diode and uses phase-shift interferometry to compute 3D representations of the forehead of the patient. These 3D point clouds are progressively aligned to a reference surface and thereby giving the head pose changes. The estimated pose changes are used to reposition a sequence...... of recon- structed PET frames. To align the structured light system with the PET coordinate system a novel registration algorithm based on the PET trans- mission scan and an initial surface has been developed. The performance of the complete setup has been evaluated using a custom made phantom based...

  10. Robust Locally Weighted Regression For Ground Surface Extraction In Mobile Laser Scanning 3D Data

    Directory of Open Access Journals (Sweden)

    A. Nurunnabi

    2013-10-01

    Full Text Available A new robust way for ground surface extraction from mobile laser scanning 3D point cloud data is proposed in this paper. Fitting polynomials along 2D/3D points is one of the well-known methods for filtering ground points, but it is evident that unorganized point clouds consist of multiple complex structures by nature so it is not suitable for fitting a parametric global model. The aim of this research is to develop and implement an algorithm to classify ground and non-ground points based on statistically robust locally weighted regression which fits a regression surface (line in 2D by fitting without any predefined global functional relation among the variables of interest. Afterwards, the z (elevation-values are robustly down weighted based on the residuals for the fitted points. The new set of down weighted z-values along with x (or y values are used to get a new fit of the (lower surface (line. The process of fitting and down-weighting continues until the difference between two consecutive fits is insignificant. Then the final fit represents the ground level of the given point cloud and the ground surface points can be extracted. The performance of the new method has been demonstrated through vehicle based mobile laser scanning 3D point cloud data from urban areas which include different problematic objects such as short walls, large buildings, electric poles, sign posts and cars. The method has potential in areas like building/construction footprint determination, 3D city modelling, corridor mapping and asset management.

  11. A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis.

    Science.gov (United States)

    Cao, Yongqiang; Grossberg, Stephen

    2005-01-01

    A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model includes two main new developments: (1) It clarifies how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain data about stereopsis. This feedback has previously been used to explain data about 3D figure-ground perception. (2) It proposes that the binocular false match problem is subsumed under the Gestalt grouping problem. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The enhanced model explains all the psychophysical data previously simulated by Grossberg and Howe (2003), such as contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, and da Vinci stereopsis. It also explains psychophysical data about perceptual closure and variations of da Vinci stereopsis that previous models cannot yet explain.

  12. Using 3D Printers to Model Earth Surface Topography for Increased Student Understanding and Retention

    Science.gov (United States)

    Thesenga, David; Town, James

    2014-05-01

    In February 2000, the Space Shuttle Endeavour flew a specially modified radar system during an 11-day mission. The purpose of the multinational Shuttle Radar Topography Mission (SRTM) was to "obtain elevation data on a near-global scale to generate the most complete high-resolution digital topographic database of Earth" by using radar interferometry. The data and resulting products are now publicly available for download and give a view of the landscape removed of vegetation, buildings, and other structures. This new view of the Earth's topography allows us to see previously unmapped or poorly mapped regions of the Earth as well as providing a level of detail that was previously unknown using traditional topographic mapping techniques. Understanding and appreciating the geographic terrain is a complex but necessary requirement for middle school aged (11-14yo) students. Abstract in nature, topographic maps and other 2D renderings of the Earth's surface and features do not address the inherent spatial challenges of a concrete-learner and traditional methods of teaching can at times exacerbate the problem. Technological solutions such as 3D-imaging in programs like Google Earth are effective but lack the tactile realness that can make a large difference in learning comprehension and retention for these young students. First developed in the 1980's, 3D printers were not commercial reality until recently and the rapid rise in interest has driven down the cost. With the advent of sub US1500 3D printers, this technology has moved out of the high-end marketplace and into the local office supply store. Schools across the US and elsewhere in the world are adding 3D printers to their technological workspaces and students have begun rapid-prototyping and manufacturing a variety of projects. This project attempted to streamline the process of transforming SRTM data from a GeoTIFF format by way of Python code. The resulting data was then inputted into a CAD-based program for

  13. [Application of Fourier transform profilometry in 3D-surface reconstruction].

    Science.gov (United States)

    Shi, Bi'er; Lu, Kuan; Wang, Yingting; Li, Zhen'an; Bai, Jing

    2011-08-01

    With the improvement of system frame and reconstruction methods in fluorescent molecules tomography (FMT), the FMT technology has been widely used as an important experimental tool in biomedical research. It is necessary to get the 3D-surface profile of the experimental object as the boundary constraints of FMT reconstruction algorithms. We proposed a new 3D-surface reconstruction method based on Fourier transform profilometry (FTP) method under the blue-purple light condition. The slice images were reconstructed using proper image processing methods, frequency spectrum analysis and filtering. The results of experiment showed that the method properly reconstructed the 3D-surface of objects and has the mm-level accuracy. Compared to other methods, this one is simple and fast. Besides its well-reconstructed, the proposed method could help monitor the behavior of the object during the experiment to ensure the correspondence of the imaging process. Furthermore, the method chooses blue-purple light section as its light source to avoid the interference towards fluorescence imaging.

  14. A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Yiming Yan

    2017-01-01

    Full Text Available In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM, which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed ‘occlusions of random textures model’ are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images.

  15. 3D Surface Temperature Measurement of Plant Canopies Using Photogrammetry Techniques From A UAV.

    Science.gov (United States)

    Irvine, M.; Lagouarde, J. P.

    2017-12-01

    Surface temperature of plant canopies and within canopies results from the coupling of radiative and energy exchanges processes which govern the fluxes at the interface soil-plant-atmosphere. As a key parameter, surface temperature permits the estimation of canopy exchanges using processes based modeling methods. However detailed 3D surface temperature measurements or even profile surface temperature measurements are rarely made as they have inherent difficulties. Such measurements would greatly improve multi-level canopy models such as NOAH (Chen and Dudhia 2001) or MuSICA (Ogée and Brunet 2002, Ogée et al 2003) where key surface temperature estimations, at present, are not tested. Additionally, at larger scales, canopy structure greatly influences satellite based surface temperature measurements as the structure impacts the observations which are intrinsically made at varying satellite viewing angles and solar heights. In order to account for these differences, again accurate modeling is required such as through the above mentioned multi-layer models or with several source type models such as SCOPE (Van der Tol 2009) in order to standardize observations. As before, in order to validate these models, detailed field observations are required. With the need for detailed surface temperature observations in mind we have planned a series of experiments over non-dense plant canopies to investigate the use of photogrammetry techniques. Photogrammetry is normally used for visible wavelengths to produce 3D images using cloud point reconstruction of aerial images (for example Dandois and Ellis, 2010, 2013 over a forest). From these cloud point models it should be possible to establish 3D plant surface temperature images when using thermal infrared array sensors. In order to do this our experiments are based on the use of a thermal Infrared camera embarked on a UAV. We adapt standard photogrammetry to account for limits imposed by thermal imaginary, especially the low

  16. Efficient Measurement of Shape Dissimilarity between 3D Models Using Z-Buffer and Surface Roving Method

    Directory of Open Access Journals (Sweden)

    In Kyu Park

    2002-10-01

    Full Text Available Estimation of the shape dissimilarity between 3D models is a very important problem in both computer vision and graphics for 3D surface reconstruction, modeling, matching, and compression. In this paper, we propose a novel method called surface roving technique to estimate the shape dissimilarity between 3D models. Unlike conventional methods, our surface roving approach exploits a virtual camera and Z-buffer, which is commonly used in 3D graphics. The corresponding points on different 3D models can be easily identified, and also the distance between them is determined efficiently, regardless of the representation types of the 3D models. Moreover, by employing the viewpoint sampling technique, the overall computation can be greatly reduced so that the dissimilarity is obtained rapidly without loss of accuracy. Experimental results show that the proposed algorithm achieves fast and accurate measurement of shape dissimilarity for different types of 3D object models.

  17. Method of surface error visualization using laser 3D projection technology

    Science.gov (United States)

    Guo, Lili; Li, Lijuan; Lin, Xuezhu

    2017-10-01

    In the process of manufacturing large components, such as aerospace, automobile and shipping industry, some important mold or stamped metal plate requires precise forming on the surface, which usually needs to be verified, if necessary, the surface needs to be corrected and reprocessed. In order to make the correction of the machined surface more convenient, this paper proposes a method based on Laser 3D projection system, this method uses the contour form of terrain contour, directly showing the deviation between the actually measured data and the theoretical mathematical model (CAD) on the measured surface. First, measure the machined surface to get the point cloud data and the formation of triangular mesh; secondly, through coordinate transformation, unify the point cloud data to the theoretical model and calculate the three-dimensional deviation, according to the sign (positive or negative) and size of the deviation, use the color deviation band to denote the deviation of three-dimensional; then, use three-dimensional contour lines to draw and represent every coordinates deviation band, creating the projection files; finally, import the projection files into the laser projector, and make the contour line projected to the processed file with 1:1 in the form of a laser beam, compare the Full-color 3D deviation map with the projection graph, then, locate and make quantitative correction to meet the processing precision requirements. It can display the trend of the machined surface deviation clearly.

  18. A Two-stage Improvement Method for Robot Based 3D Surface Scanning

    Science.gov (United States)

    He, F. B.; Liang, Y. D.; Wang, R. F.; Lin, Y. S.

    2018-03-01

    As known that the surface of unknown object was difficult to measure or recognize precisely, hence the 3D laser scanning technology was introduced and used properly in surface reconstruction. Usually, the surface scanning speed was slower and the scanning quality would be better, while the speed was faster and the quality would be worse. In this case, the paper presented a new two-stage scanning method in order to pursuit the quality of surface scanning in a faster speed. The first stage was rough scanning to get general point cloud data of object’s surface, and then the second stage was specific scanning to repair missing regions which were determined by chord length discrete method. Meanwhile, a system containing a robotic manipulator and a handy scanner was also developed to implement the two-stage scanning method, and relevant paths were planned according to minimum enclosing ball and regional coverage theories.

  19. SU-E-J-128: 3D Surface Reconstruction of a Patient Using Epipolar Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kotoku, J; Nakabayashi, S; Kumagai, S; Ishibashi, T; Kobayashi, T [Teikyo University, Itabashi-ku, Tokyo (Japan); Haga, A; Saotome, N [University of Tokyo Hospital, Bunkyo-ku, Tokyo (Japan); Arai, N [Teikyo University Hospital, Itabashi-ku, Tokyo (Japan)

    2014-06-01

    Purpose: To obtain a 3D surface data of a patient in a non-invasive way can substantially reduce the effort for the registration of patient in radiation therapy. To achieve this goal, we introduced the multiple view stereo technique, which is known to be used in a 'photo tourism' on the internet. Methods: 70 Images were taken with a digital single-lens reflex camera from different angles and positions. The camera positions and angles were inferred later in the reconstruction step. A sparse 3D reconstruction model was locating by SIFT features, which is robust for rotation and shift variance, in each image. We then found a set of correspondences between pairs of images by computing the fundamental matrix using the eight-point algorithm with RANSAC. After the pair matching, we optimized the parameter including camera positions to minimize the reprojection error by use of bundle adjustment technique (non-linear optimization). As a final step, we performed dense reconstruction and associate a color with each point using the library of PMVS. Results: Surface data were reconstructed well by visual inspection. The human skin is reconstructed well, althogh the reconstruction was time-consuming for direct use in daily clinical practice. Conclusion: 3D reconstruction using multi view stereo geometry is a promising tool for reducing the effort of patient setup. This work was supported by JSPS KAKENHI(25861128)

  20. SU-E-J-128: 3D Surface Reconstruction of a Patient Using Epipolar Geometry

    International Nuclear Information System (INIS)

    Kotoku, J; Nakabayashi, S; Kumagai, S; Ishibashi, T; Kobayashi, T; Haga, A; Saotome, N; Arai, N

    2014-01-01

    Purpose: To obtain a 3D surface data of a patient in a non-invasive way can substantially reduce the effort for the registration of patient in radiation therapy. To achieve this goal, we introduced the multiple view stereo technique, which is known to be used in a 'photo tourism' on the internet. Methods: 70 Images were taken with a digital single-lens reflex camera from different angles and positions. The camera positions and angles were inferred later in the reconstruction step. A sparse 3D reconstruction model was locating by SIFT features, which is robust for rotation and shift variance, in each image. We then found a set of correspondences between pairs of images by computing the fundamental matrix using the eight-point algorithm with RANSAC. After the pair matching, we optimized the parameter including camera positions to minimize the reprojection error by use of bundle adjustment technique (non-linear optimization). As a final step, we performed dense reconstruction and associate a color with each point using the library of PMVS. Results: Surface data were reconstructed well by visual inspection. The human skin is reconstructed well, althogh the reconstruction was time-consuming for direct use in daily clinical practice. Conclusion: 3D reconstruction using multi view stereo geometry is a promising tool for reducing the effort of patient setup. This work was supported by JSPS KAKENHI(25861128)

  1. Cr 3d surface and bulk states in Sn1-xCrxTe/Cr crystals

    International Nuclear Information System (INIS)

    Guziewicz, E.; Szamota-Sadowska, K.; Kowalski, B.J.; Grodzicka, E.; Story, T.; Orlowski, B.A.; Johnson, R.L.

    1997-01-01

    We report a new approach to investigate metal-semiconductor interface formation. Photoemission spectroscopy was applied in order to investigate the clean surface of a Sn 0.97 Cr 0.03 Te crystal and to observe its changes under sequential deposition of small amounts of Cr atoms. In order to analyse the Cr 3d contribution to the valence band, the Fano-type resonance tuned to the Cr 3p-3d transmission was used. The experiment was designed to follow the Sn 0.97 Cr 0.03 Te/Cr interface formation process. At the clean Sn 0.97 Cr 0.03 Te surface, the Cr 3d states contribution to the valence band was found to be positioned 0.8 eV below Fermi level. After the Cr deposition processes the contribution shifted to a higher binding energy and another contribution 5.8 eV below the Fermi level also observed. (author)

  2. 3D transient model to predict temperature and ablated areas during laser processing of metallic surfaces

    Directory of Open Access Journals (Sweden)

    Babak. B. Naghshine

    2017-02-01

    Full Text Available Laser processing is one of the most popular small-scale patterning methods and has many applications in semiconductor device fabrication and biomedical engineering. Numerical modelling of this process can be used for better understanding of the process, optimization, and predicting the quality of the final product. An accurate 3D model is presented here for short laser pulses that can predict the ablation depth and temperature distribution on any section of the material in a minimal amount of time. In this transient model, variations of thermal properties, plasma shielding, and phase change are considered. Ablation depth was measured using a 3D optical profiler. Calculated depths are in good agreement with measured values on laser treated titanium surfaces. The proposed model can be applied to a wide range of materials and laser systems.

  3. Measuring Usewear on Black Gloss Pottery from Rome through 3D Surface Analysis

    Directory of Open Access Journals (Sweden)

    Laura M. Banducci

    2018-05-01

    Full Text Available Still image of 3D model of a representative vessel (Capitoline Museums catalog ID AntCom8626. (Image credit: © Damien Vurpillot/Rachel Opitz. CC BY-NC This project involves the high-resolution 3D laser scanning of a cache of Italian black gloss pottery from the Capitoline Museums in Rome. Our aim is to examine in detail the minute traces of production and use of these vessels and to produce a digital record of their form. We have experimented with several scanning devices in order to determine the optimal methods for capturing abrasions on pottery and are developing digital methods for surface analysis. The purpose of the analysis is to consider how black gloss vessels from ritual contexts (tomb and sanctuary deposits may have been used before they were deposited and to refine our understanding of vessel production methods.

  4. Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry.

    Science.gov (United States)

    Gontard, L C; López-Castro, J D; González-Rovira, L; Vázquez-Martínez, J M; Varela-Feria, F M; Marcos, M; Calvino, J J

    2017-06-01

    We describe a methodology to obtain three-dimensional models of engineered surfaces using scanning electron microscopy and multi-view photogrammetry (3DSEM). For the reconstruction of the 3D models of the surfaces we used freeware available in the cloud. The method was applied to study the surface roughness of metallic samples patterned with parallel grooves by means of laser. The results are compared with measurements obtained using stylus profilometry (PR) and SEM stereo-photogrammetry (SP). The application of 3DSEM is more time demanding than PR or SP, but it provides a more accurate representation of the surfaces. The results obtained with the three techniques are compared by investigating the influence of sampling step on roughness parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Exploring the surface reactivity of 3d metal endofullerenes: a density-functional theory study.

    Science.gov (United States)

    Estrada-Salas, Rubén E; Valladares, Ariel A

    2009-09-24

    Changes in the preferential sites of electrophilic, nucleophilic, and radical attacks on the pristine C60 surface with endohedral doping using 3d transition metal atoms were studied via two useful reactivity indices, namely the Fukui functions and the molecular electrostatic potential. Both of these were calculated at the density functional BPW91 level of theory with the DNP basis set. Our results clearly show changes in the preferential reactivity sites on the fullerene surface when it is doped with Mn, Fe, Co, or Ni atoms, whereas there are no significant changes in the preferential reactivity sites on the C60 surface upon endohedral doping with Cu and Zn atoms. Electron affinities (EA), ionization potentials (IP), and HOMO-LUMO gaps (Eg) were also calculated to complete the study of the endofullerene's surface reactivity. These findings provide insight into endofullerene functionalization, an important issue in their application.

  6. The 3D geological model of the 1963 Vajont rockslide, reconstructed with implicit surface methods

    Science.gov (United States)

    Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Taller, Claudio

    2015-04-01

    The Vajont rockslide has been the object of several studies because of its catastrophic consequences and of its particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all the relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along

  7. Analysis and 3D inspection system of drill holes in aeronautical surfaces

    Science.gov (United States)

    Rubio, R.; Granero, L.; Sanz, M.; García, J.; Micó, V.

    2017-06-01

    In aerospace industry, the structure of the aircraft is assembled using small parts or a combination of them that are made with different materials, such as for instance aluminium, titanium, composites or even 3D printed parts. The union between these small parts is a critical point for the integrity of the aircraft. The quality of this union will decide the fatigue of adjacent components and therefore the useful life of them. For the union process the most extended method is the rivets, mainly because their low cost and easy manufacturing. For this purpose it is necessary to made drill holes in the aeronautical surface to insert the rivets. In this contribution, we present the preliminary results of a 3D inspection system [1] for drill holes analysis in aeronautical surfaces. The system, based in optical triangulation, was developed by the Group of Optoelectronic Image Processing from the University of Valencia in the framework of the Airbus Defence and Space (AD&S), MINERVA project (Manufacturing industrial - means emerging from validated automation). The capabilities of the system permits to generate a point cloud with 3D information and GD&T (geometrical dimensions and tolerances) characteristics of the drill hole. For the inner surface defects detection, the system can generate an inner image of the drill hole with a scaled axis to obtain the defect position. In addition, we present the analysis performed for the drills in the wing station of the A-400 M. In this analysis the system was tested for diameters in the range of [10 - 15.96] mm, and for Carbon Fibre.

  8. Surface topography characterization using 3D stereoscopic reconstruction of SEM images

    Science.gov (United States)

    Vedantha Krishna, Amogh; Flys, Olena; Reddy, Vijeth V.; Rosén, B. G.

    2018-06-01

    A major drawback of the optical microscope is its limitation to resolve finer details. Many microscopes have been developed to overcome the limitations set by the diffraction of visible light. The scanning electron microscope (SEM) is one such alternative: it uses electrons for imaging, which have much smaller wavelength than photons. As a result high magnification with superior image resolution can be achieved. However, SEM generates 2D images which provide limited data for surface measurements and analysis. Often many research areas require the knowledge of 3D structures as they contribute to a comprehensive understanding of microstructure by allowing effective measurements and qualitative visualization of the samples under study. For this reason, stereo photogrammetry technique is employed to convert SEM images into 3D measurable data. This paper aims to utilize a stereoscopic reconstruction technique as a reliable method for characterization of surface topography. Reconstructed results from SEM images are compared with coherence scanning interferometer (CSI) results obtained by measuring a roughness reference standard sample. This paper presents a method to select the most robust/consistent surface texture parameters that are insensitive to the uncertainties involved in the reconstruction technique itself. Results from the two-stereoscopic reconstruction algorithms are also documented in this paper.

  9. 3D surface reconstruction and FIB microscopy of worn alumina hip prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, P; Inkson, B J; Rainforth, W M [Department of Engineering Materials, Mappin St., University of Sheffield, Sheffield, S1 3JD (United Kingdom); Stewart, T [School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT (United Kingdom)], E-mail: m.rainforth@sheffield.ac.uk

    2008-08-15

    Interest in alumina-on-alumina total hip replacements (THR) continues to grow for the young and active patient due to their superior wear performance and biocompatibility compared to the alternative traditional polymer/metal prostheses. While alumina on alumina bearings offer an excellent solution, a region of high wear, known as stripe wear, is commonly observed on retrieved alumina hip components that poses concern. These in-vivo stripe wear mechanisms can be replicated in vitro by the introduction of micro-separation during the simulated walking cycle in hip joint simulation. However, the understanding of the mechanisms behind the stripe wear processes is relatively poor. 3D topographic reconstructions of titled SEM stereo pairs from different zones have been obtained to determine the local worn surface topography. Focused ion beam (FIB) microscopy was applied to examine the subsurface damage across the stripe wear. The paper presents novel images of sub-surface microcracks in alumina along with 3D reconstructions of the worn ceramic surfaces and a classification of four distinct wear zones following microseparation in hip prostheses.

  10. Underwater 3D Surface Measurement Using Fringe Projection Based Scanning Devices.

    Science.gov (United States)

    Bräuer-Burchardt, Christian; Heinze, Matthias; Schmidt, Ingo; Kühmstedt, Peter; Notni, Gunther

    2015-12-23

    In this work we show the principle of optical 3D surface measurements based on the fringe projection technique for underwater applications. The challenges of underwater use of this technique are shown and discussed in comparison with the classical application. We describe an extended camera model which takes refraction effects into account as well as a proposal of an effective, low-effort calibration procedure for underwater optical stereo scanners. This calibration technique combines a classical air calibration based on the pinhole model with ray-based modeling and requires only a few underwater recordings of an object of known length and a planar surface. We demonstrate a new underwater 3D scanning device based on the fringe projection technique. It has a weight of about 10 kg and the maximal water depth for application of the scanner is 40 m. It covers an underwater measurement volume of 250 mm × 200 mm × 120 mm. The surface of the measurement objects is captured with a lateral resolution of 150 μm in a third of a second. Calibration evaluation results are presented and examples of first underwater measurements are given.

  11. Extended volume and surface scatterometer for optical characterization of 3D-printed elements

    Science.gov (United States)

    Dannenberg, Florian; Uebeler, Denise; Weiß, Jürgen; Pescoller, Lukas; Weyer, Cornelia; Hahlweg, Cornelius

    2015-09-01

    The use of 3d printing technology seems to be a promising way for low cost prototyping, not only of mechanical, but also of optical components or systems. It is especially useful in applications where customized equipment repeatedly is subject to immediate destruction, as in experimental detonics and the like. Due to the nature of the 3D-printing process, there is a certain inner texture and therefore inhomogeneous optical behaviour to be taken into account, which also indicates mechanical anisotropy. Recent investigations are dedicated to quantification of optical properties of such printed bodies and derivation of corresponding optimization strategies for the printing process. Beside mounting, alignment and illumination means, also refractive and reflective elements are subject to investigation. The proposed measurement methods are based on an imaging nearfield scatterometer for combined volume and surface scatter measurements as proposed in previous papers. In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. The device has been extended for observation of photoelasticity effects and therefore homogeneity of polarization behaviour. A refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of the layers of the surface under test, cross and parallel polarization techniques are applied. Practical examples from current research studies are included.

  12. Active optical system for advanced 3D surface structuring by laser remelting

    Science.gov (United States)

    Pütsch, O.; Temmler, A.; Stollenwerk, J.; Willenborg, E.; Loosen, P.

    2015-03-01

    Structuring by laser remelting enables completely new possibilities for designing surfaces since material is redistributed but not wasted. In addition to technological advantages, cost and time benefits yield from shortened process times, the avoidance of harmful chemicals and the elimination of subsequent finishing steps such as cleaning and polishing. The functional principle requires a completely new optical machine technology that maintains the spatial and temporal superposition and manipulation of three different laser beams emitted from two laser sources of different wavelength. The optical system has already been developed and demonstrated for the processing of flat samples of hot and cold working steel. However, since particularly the structuring of 3D-injection molds represents an application example of high innovation potential, the optical system has to take into account the elliptical beam geometry that occurs when the laser beams irradiate a curved surface. To take full advantage of structuring by remelting for the processing of 3D surfaces, additional optical functionality, called EPS (elliptical pre-shaping) has to be integrated into the existing set-up. The development of the beam shaping devices not only requires the analysis of the mechanisms of the beam projection but also a suitable optical design. Both aspects are discussed in this paper.

  13. Measuring surface topography with scanning electron microscopy. I. EZEImage: a program to obtain 3D surface data.

    Science.gov (United States)

    Ponz, Ezequiel; Ladaga, Juan Luis; Bonetto, Rita Dominga

    2006-04-01

    Scanning electron microscopy (SEM) is widely used in the science of materials and different parameters were developed to characterize the surface roughness. In a previous work, we studied the surface topography with fractal dimension at low scale and two parameters at high scale by using the variogram, that is, variance vs. step log-log graph, of a SEM image. Those studies were carried out with the FERImage program, previously developed by us. To verify the previously accepted hypothesis by working with only an image, it is indispensable to have reliable three-dimensional (3D) surface data. In this work, a new program (EZEImage) to characterize 3D surface topography in SEM has been developed. It uses fast cross correlation and dynamic programming to obtain reliable dense height maps in a few seconds which can be displayed as an image where each gray level represents a height value. This image can be used for the FERImage program or any other software to obtain surface topography characteristics. EZEImage also generates anaglyph images as well as characterizes 3D surface topography by means of a parameter set to describe amplitude properties and three functional indices for characterizing bearing and fluid properties.

  14. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Wu Wei; Hu Min; Ou Fungsuong; Li Zhiyong; Williams, R Stanley

    2010-01-01

    We demonstrated a cost-effective and deterministic method of patterning 3D cone arrays over a large area by using nanoimprint lithography (NIL). Cones with tip radius of less than 10 nm were successfully duplicated onto the UV-curable imprint resist materials from the silicon cone templates. Such cone structures were shown to be a versatile platform for developing reliable, highly sensitive surface enhanced Raman spectroscopy (SERS) substrates. In contrast to the silicon nanocones, the SERS substrates based on the Au coated cones made by the NIL offered significant improvement of the SERS signal. A further improvement of the SERS signal was observed when the polymer cones were imprinted onto a reflective metallic mirror surface. A sub-zeptomole detection sensitivity for a model molecule, trans-1,2-bis(4-pyridyl)-ethylene (BPE), on the Au coated NIL cone surfaces was achieved.

  15. Active surface model improvement by energy function optimization for 3D segmentation.

    Science.gov (United States)

    Azimifar, Zohreh; Mohaddesi, Mahsa

    2015-04-01

    This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Optimal combination of illusory and luminance-defined 3-D surfaces: A role for ambiguity.

    Science.gov (United States)

    Hartle, Brittney; Wilcox, Laurie M; Murray, Richard F

    2018-04-01

    The shape of the illusory surface in stereoscopic Kanizsa figures is determined by the interpolation of depth from the luminance edges of adjacent inducing elements. Despite ambiguity in the position of illusory boundaries, observers reliably perceive a coherent three-dimensional (3-D) surface. However, this ambiguity may contribute additional uncertainty to the depth percept beyond what is expected from measurement noise alone. We evaluated the intrinsic ambiguity of illusory boundaries by using a cue-combination paradigm to measure the reliability of depth percepts elicited by stereoscopic illusory surfaces. We assessed the accuracy and precision of depth percepts using 3-D Kanizsa figures relative to luminance-defined surfaces. The location of the surface peak was defined by illusory boundaries, luminance-defined edges, or both. Accuracy and precision were assessed using a depth-discrimination paradigm. A maximum likelihood linear cue combination model was used to evaluate the relative contribution of illusory and luminance-defined signals to the perceived depth of the combined surface. Our analysis showed that the standard deviation of depth estimates was consistent with an optimal cue combination model, but the points of subjective equality indicated that observers consistently underweighted the contribution of illusory boundaries. This systematic underweighting may reflect a combination rule that attributes additional intrinsic ambiguity to the location of the illusory boundary. Although previous studies show that illusory and luminance-defined contours share many perceptual similarities, our model suggests that ambiguity plays a larger role in the perceptual representation of illusory contours than of luminance-defined contours.

  17. 3D modeling to characterize lamina cribrosa surface and pore geometries using in vivo images from normal and glaucomatous eyes

    Science.gov (United States)

    Sredar, Nripun; Ivers, Kevin M.; Queener, Hope M.; Zouridakis, George; Porter, Jason

    2013-01-01

    En face adaptive optics scanning laser ophthalmoscope (AOSLO) images of the anterior lamina cribrosa surface (ALCS) represent a 2D projected view of a 3D laminar surface. Using spectral domain optical coherence tomography images acquired in living monkey eyes, a thin plate spline was used to model the ALCS in 3D. The 2D AOSLO images were registered and projected onto the 3D surface that was then tessellated into a triangular mesh to characterize differences in pore geometry between 2D and 3D images. Following 3D transformation of the anterior laminar surface in 11 normal eyes, mean pore area increased by 5.1 ± 2.0% with a minimal change in pore elongation (mean change = 0.0 ± 0.2%). These small changes were due to the relatively flat laminar surfaces inherent in normal eyes (mean radius of curvature = 3.0 ± 0.5 mm). The mean increase in pore area was larger following 3D transformation in 4 glaucomatous eyes (16.2 ± 6.0%) due to their more steeply curved laminar surfaces (mean radius of curvature = 1.3 ± 0.1 mm), while the change in pore elongation was comparable to that in normal eyes (−0.2 ± 2.0%). This 3D transformation and tessellation method can be used to better characterize and track 3D changes in laminar pore and surface geometries in glaucoma. PMID:23847739

  18. Optimization of the static occlusion by "occlusal surface settling" in the Cerec 3D software.

    Science.gov (United States)

    Späth, C; Kordass, B

    2006-04-01

    The adjustment of the static occlusion can be automated in computer-based systems. The Cerec 3D software makes it possible to take preformed occlusal surfaces from a database and adapt them to the antagonist. In this adaptation (settling), the CAD occlusal surface "settles" as whole or each cusp individually into the occlusal surface of the antagonist until stable occlusion is reached. Two occlusal surface shapes were compared: Vita Physiodens and Lee Culp. An index was formed from the number, quality, and position of the occlusal contacts for 35 model cases (25 molars, 10 premolars). With regard to the settling of the total occlusal surfaces, there were no differences between the two occlusal surface shapes. In "cusp settling" of the molars, Vita Physiodens performed significantly better. In the comparison of the 1st with the 3rd settling process, significant improvements occurred the 3rd time in many cases when settling individual cusps, but in clearly fewer cases in the settling process of the total occlusal surface. The Lee Culp tooth occlusion improved especially after the 3rd settling process of individual cusps. It is therefore expedient to combine both settling versions with one another.

  19. Persistent and automatic intraoperative 3D digitization of surfaces under dynamic magnifications of an operating microscope.

    Science.gov (United States)

    Kumar, Ankur N; Miga, Michael I; Pheiffer, Thomas S; Chambless, Lola B; Thompson, Reid C; Dawant, Benoit M

    2015-01-01

    One of the major challenges impeding advancement in image-guided surgical (IGS) systems is the soft-tissue deformation during surgical procedures. These deformations reduce the utility of the patient's preoperative images and may produce inaccuracies in the application of preoperative surgical plans. Solutions to compensate for the tissue deformations include the acquisition of intraoperative tomographic images of the whole organ for direct displacement measurement and techniques that combines intraoperative organ surface measurements with computational biomechanical models to predict subsurface displacements. The later solution has the advantage of being less expensive and amenable to surgical workflow. Several modalities such as textured laser scanners, conoscopic holography, and stereo-pair cameras have been proposed for the intraoperative 3D estimation of organ surfaces to drive patient-specific biomechanical models for the intraoperative update of preoperative images. Though each modality has its respective advantages and disadvantages, stereo-pair camera approaches used within a standard operating microscope is the focus of this article. A new method that permits the automatic and near real-time estimation of 3D surfaces (at 1 Hz) under varying magnifications of the operating microscope is proposed. This method has been evaluated on a CAD phantom object and on full-length neurosurgery video sequences (∼1 h) acquired intraoperatively by the proposed stereovision system. To the best of our knowledge, this type of validation study on full-length brain tumor surgery videos has not been done before. The method for estimating the unknown magnification factor of the operating microscope achieves accuracy within 0.02 of the theoretical value on a CAD phantom and within 0.06 on 4 clinical videos of the entire brain tumor surgery. When compared to a laser range scanner, the proposed method for reconstructing 3D surfaces intraoperatively achieves root mean square

  20. Persistent and automatic intraoperative 3D digitization of surfaces under dynamic magnifications of an operating microscope

    Science.gov (United States)

    Kumar, Ankur N.; Miga, Michael I.; Pheiffer, Thomas S.; Chambless, Lola B.; Thompson, Reid C.; Dawant, Benoit M.

    2014-01-01

    One of the major challenges impeding advancement in image-guided surgical (IGS) systems is the soft-tissue deformation during surgical procedures. These deformations reduce the utility of the patient’s preoperative images and may produce inaccuracies in the application of preoperative surgical plans. Solutions to compensate for the tissue deformations include the acquisition of intraoperative tomographic images of the whole organ for direct displacement measurement and techniques that combines intraoperative organ surface measurements with computational biomechanical models to predict subsurface displacements. The later solution has the advantage of being less expensive and amenable to surgical workflow. Several modalities such as textured laser scanners, conoscopic holography, and stereo-pair cameras have been proposed for the intraoperative 3D estimation of organ surfaces to drive patient-specific biomechanical models for the intraoperative update of preoperative images. Though each modality has its respective advantages and disadvantages, stereo-pair camera approaches used within a standard operating microscope is the focus of this article. A new method that permits the automatic and near real-time estimation of 3D surfaces (at 1Hz) under varying magnifications of the operating microscope is proposed. This method has been evaluated on a CAD phantom object and on full-length neurosurgery video sequences (~1 hour) acquired intraoperatively by the proposed stereovision system. To the best of our knowledge, this type of validation study on full-length brain tumor surgery videos has not been done before. The method for estimating the unknown magnification factor of the operating microscope achieves accuracy within 0.02 of the theoretical value on a CAD phantom and within 0.06 on 4 clinical videos of the entire brain tumor surgery. When compared to a laser range scanner, the proposed method for reconstructing 3D surfaces intraoperatively achieves root mean square

  1. 3D surface parameterization using manifold learning for medial shape representation

    Science.gov (United States)

    Ward, Aaron D.; Hamarneh, Ghassan

    2007-03-01

    The choice of 3D shape representation for anatomical structures determines the effectiveness with which segmentation, visualization, deformation, and shape statistics are performed. Medial axis-based shape representations have attracted considerable attention due to their inherent ability to encode information about the natural geometry of parts of the anatomy. In this paper, we propose a novel approach, based on nonlinear manifold learning, to the parameterization of medial sheets and object surfaces based on the results of skeletonization. For each single-sheet figure in an anatomical structure, we skeletonize the figure, and classify its surface points according to whether they lie on the upper or lower surface, based on their relationship to the skeleton points. We then perform nonlinear dimensionality reduction on the skeleton, upper, and lower surface points, to find the intrinsic 2D coordinate system of each. We then center a planar mesh over each of the low-dimensional representations of the points, and map the meshes back to 3D using the mappings obtained by manifold learning. Correspondence between mesh vertices, established in their intrinsic 2D coordinate spaces, is used in order to compute the thickness vectors emanating from the medial sheet. We show results of our algorithm on real brain and musculoskeletal structures extracted from MRI, as well as an artificial multi-sheet example. The main advantages to this method are its relative simplicity and noniterative nature, and its ability to correctly compute nonintersecting thickness vectors for a medial sheet regardless of both the amount of coincident bending and thickness in the object, and of the incidence of local concavities and convexities in the object's surface.

  2. An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

    International Nuclear Information System (INIS)

    Chang, Liang; Stacchiola, Dario J.; Hu, Yun Hang

    2017-01-01

    The efficient charge accumulation of an ideal supercapacitor electrode requires abundant micropores and its fast electrolyte-ions transport prefers meso/macropores. But, current electrode materials cannot meet both requirements, resulting in poor performance. We creatively constructed three-dimensional cabbage-coral-like graphene as an ideal electrode material, in which meso/macro channels are formed by graphene walls and rich micropores are incorporated in the surface layer of the graphene walls. The unique 3D graphene material can achieve a high gravimetric capacitance of 200 F/g with aqueous electrolyte, 3 times larger than that of commercially used activated carbon (70.8 F/g). Furthermore, it can reach an ultrahigh areal capacitance of 1.28 F/cm"2 and excellent rate capability (83.5% from 0.5 to 10 A/g) as well as high cycling stability (86.2% retention after 5000 cycles). The excellent electric double-layer performance of the 3D graphene electrode can be attributed to the fast electrolyte ion transport in the meso/macro channels and the rapid and reversible charge adsorption with negligible transport distance in the surface micropores.

  3. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    International Nuclear Information System (INIS)

    Fiereder, R; Riemann, S; Schilling, R

    2010-01-01

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  4. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    Energy Technology Data Exchange (ETDEWEB)

    Fiereder, R; Riemann, S; Schilling, R, E-mail: fiereder@lhm.mw.tum.d [Department of Fluid Mechanics, Technische Universitaet Muenchen Bolzmannstrasse 15, Garching, 85748 (Germany)

    2010-08-15

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  5. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    Science.gov (United States)

    Fiereder, R.; Riemann, S.; Schilling, R.

    2010-08-01

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  6. Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.

    Science.gov (United States)

    Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F

    2011-03-01

    This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.

  7. A time-reversal invariant topological phase at the surface of a 3D topological insulator

    International Nuclear Information System (INIS)

    Bonderson, Parsa; Nayak, Chetan; Qi, Xiao-Liang

    2013-01-01

    A 3D fermionic topological insulator has a gapless Dirac surface state protected by time-reversal symmetry and charge conservation symmetry. The surface state can be gapped by introducing ferromagnetism to break time-reversal symmetry, introducing superconductivity to break charge conservation, or entering a topological phase. In this paper, we construct a minimal gapped topological phase that preserves both time-reversal and charge conservation symmetries and supports Ising-type non-Abelian anyons. This phase can be understood heuristically as emerging from a surface s-wave superconducting state via the condensation of eight-vortex composites. The topological phase inherits vortices supporting Majorana zero modes from the surface superconducting state. However, since it is time-reversal invariant, the surface topological phase is a distinct phase from the Ising topological phase, which can be viewed as a quantum-disordered spin-polarized p x + ip y superconductor. We discuss the anyon model of this topological phase and the manner in which time-reversal symmetry is realized in it. We also study the interfaces between the topological state and other surface gapped phases. (paper)

  8. Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking.

    Science.gov (United States)

    Kihara, Daisuke; Sael, Lee; Chikhi, Rayan; Esquivel-Rodriguez, Juan

    2011-09-01

    The tertiary structures of proteins have been solved in an increasing pace in recent years. To capitalize the enormous efforts paid for accumulating the structure data, efficient and effective computational methods need to be developed for comparing, searching, and investigating interactions of protein structures. We introduce the 3D Zernike descriptor (3DZD), an emerging technique to describe molecular surfaces. The 3DZD is a series expansion of mathematical three-dimensional function, and thus a tertiary structure is represented compactly by a vector of coefficients of terms in the series. A strong advantage of the 3DZD is that it is invariant to rotation of target object to be represented. These two characteristics of the 3DZD allow rapid comparison of surface shapes, which is sufficient for real-time structure database screening. In this article, we review various applications of the 3DZD, which have been recently proposed.

  9. Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.

    Science.gov (United States)

    Liu, Shuang; Xie, Yiting; Reeves, Anthony P

    2016-05-01

    A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.

  10. 3D modeling of missing pellet surface defects in BWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov; Williamson, R.L.; Stafford, D.S.; Novascone, S.R.; Hales, J.D.; Pastore, G.

    2016-10-15

    Highlights: • A global/local analysis procedure for missing pellet surface defects is proposed. • This is applied to defective BWR fuel under blade withdrawal and high power ramp conditions. • Sensitivity of the cladding response to key model parameters is studied. - Abstract: One of the important roles of cladding in light water reactor fuel rods is to prevent the release of fission products. To that end, it is essential that the cladding maintain its integrity under a variety of thermal and mechanical loading conditions. Local geometric irregularities in fuel pellets caused by manufacturing defects known as missing pellet surfaces (MPS) can in some circumstances lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. The BISON nuclear fuel performance code developed at Idaho National Laboratory can be used to simulate the global thermo-mechanical fuel rod behavior, as well as the local response of regions of interest, in either 2D or 3D. In either case, a full set of models to represent the thermal and mechanical properties of the fuel, cladding and plenum gas is employed. A procedure for coupling 2D full-length fuel rod models to detailed 3D models of the region of the rod containing a MPS defect is detailed here. The global and local model each contain appropriate physics and behavior models for nuclear fuel. This procedure is demonstrated on a simulation of a boiling water reactor (BWR) fuel rod containing a pellet with an MPS defect, subjected to a variety of transient events, including a control blade withdrawal and a ramp to high power. The importance of modeling the local defect using a 3D model is highlighted by comparing 3D and 2D representations of the defective pellet region. Parametric studies demonstrate the effects of the choice of gaseous swelling model and of the depth and geometry of the MPS defect on the response of the cladding

  11. Design of an experimental four-camera setup for enhanced 3D surface reconstruction in microsurgery

    Directory of Open Access Journals (Sweden)

    Marzi Christian

    2017-09-01

    Full Text Available Future fully digital surgical visualization systems enable a wide range of new options. Caused by optomechanical limitations a main disadvantage of today’s surgical microscopes is their incapability of providing arbitrary perspectives to more than two observers. In a fully digital microscopic system, multiple arbitrary views can be generated from a 3D reconstruction. Modern surgical microscopes allow replacing the eyepieces by cameras in order to record stereoscopic videos. A reconstruction from these videos can only contain the amount of detail the recording camera system gathers from the scene. Therefore, covered surfaces can result in a faulty reconstruction for deviating stereoscopic perspectives. By adding cameras recording the object from different angles, additional information of the scene is acquired, allowing to improve the reconstruction. Our approach is to use a fixed four-camera setup as a front-end system to capture enhanced 3D topography of a pseudo-surgical scene. This experimental setup would provide images for the reconstruction algorithms and generation of multiple observing stereo perspectives. The concept of the designed setup is based on the common main objective (CMO principle of current surgical microscopes. These systems are well established and optically mature. Furthermore, the CMO principle allows a more compact design and a lowered effort in calibration than cameras with separate optics. Behind the CMO four pupils separate the four channels which are recorded by one camera each. The designed system captures an area of approximately 28mm × 28mm with four cameras. Thus, allowing to process images of 6 different stereo perspectives. In order to verify the setup, it is modelled in silico. It can be used in further studies to test algorithms for 3D reconstruction from up to four perspectives and provide information about the impact of additionally recorded perspectives on the enhancement of a reconstruction.

  12. Surface 3D nanostructuring by tightly focused laser pulse: simulations by Lagrangian code and molecular dynamics

    Science.gov (United States)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.

    2016-02-01

    There are many important applications in which the ultrashort diffraction-limited and therefore tightly focused laser pulses irradiates metal films mounted on dielectric substrate. Here we present the detailed picture of laser peeling and 3D structure formation of the thin (relative to a depth of a heat affected zone in the bulk targets) gold films on glass substrate. The underlying physics of such diffraction-limited laser peeling was not well understood previously. Our approach is based on a physical model which takes into consideration the new calculations of the two-temperature (2T) equation of state (2T EoS) and the two-temperature transport coefficients together with the coupling parameter between electron and ion subsystems. The usage of the 2T EoS and the kinetic coefficients is required because absorption of an ultrashort pulse with duration of 10-1000 fs excites electron subsystem of metal and transfers substance into the 2T state with hot electrons (typical electron temperatures 1-3 eV) and much colder ions. It is shown that formation of submicrometer-sized 3D structures is a result of the electron-ion energy transfer, melting, and delamination of film from substrate under combined action of electron and ion pressures, capillary deceleration of the delaminated liquid metal or semiconductor, and ultrafast freezing of molten material. We found that the freezing is going in non-equilibrium regime with strongly overcooled liquid phase. In this case the Stefan approximation is non-applicable because the solidification front speed is limited by the diffusion rate of atoms in the molten material. To solve the problem we have developed the 2T Lagrangian code including all this reach physics in. We also used the high-performance combined Monte- Carlo and molecular dynamics code for simulation of surface 3D nanostructuring at later times after completion of electron-ion relaxation.

  13. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    Science.gov (United States)

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  14. Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro

    Science.gov (United States)

    Ferraris, Sara; Vitale-Brovarone, Chiara; Bretcanu, Oana; Cassinelli, Clara; Vernè, Enrica

    2013-04-01

    Bone reconstruction after tissue loosening due to traumatic, pathological or surgical causes is in increasing demand. 3D scaffolds are a widely studied solution for supporting new bone growth. Bioactive glass-ceramic porous materials can offer a three-dimensional structure that is able to chemically bond to bone. The ability to surface modify these devices by grafting biologically active molecules represents a challenge, with the aim of stimulating physiological bone regeneration with both inorganic and organic signals. In this research work glass ceramic scaffolds with very high mechanical properties and moderate bioactivity have been functionalized with the enzyme alkaline phosphatase (ALP). The material surface was activated in order to expose hydroxyl groups. The activated surface was further grafted with ALP both via silanization and also via direct grafting to the surface active hydroxyl groups. Enzymatic activity of grafted samples were measured by means of UV-vis spectroscopy before and after ultrasonic washing in TRIS-HCl buffer solution. In vitro inorganic bioactivity was investigated by soaking the scaffolds after the different steps of functionalization in a simulated body fluid (SBF). SEM observations allowed the monitoring of the scaffold morphology and surface chemical composition after soaking in SBF. The presence of ALP enhanced the in vitro inorganic bioactivity of the tested material.

  15. 3D Surface Profile and Color Stability of Tooth Colored Filling Materials after Bleaching

    Directory of Open Access Journals (Sweden)

    Bryant Anthony Irawan

    2015-01-01

    Full Text Available This study aims to evaluate the effects of vital tooth bleaching with carbamide peroxide home bleaching and in-office bleaching on the color stability and 3D surface profile of dental restorative filling materials. Thirty discs (n=30 measure 6 mm in diameter and 2 mm thick for each of three restorative materials. These are nanofilled composite Filtek Z350 XT, the submicron composite Estelite Σ Quick, and nanofilled glass ionomer Ketac N100 nanoionomer and were fabricated in shade A2. Each group was further divided into three subgroups (n=10: subgroup A (Opalescence PF, subgroup B (Opalescence Boost in-office bleaching, and subgroup C (distilled water serving as control. Samples were bleached according to the manufacturer’s instructions for a period of two weeks. The Commission Internationale de L’Eclairage (CIE L*, a*, b* system was chosen for image processing, while 3D surface profile was tested with atomic force microscopy (AFM. Statistical analyses were performed with the Mann-Whitney tests and Krusal-Wallis with a P value of ≤0.05. The three restorative materials showed significant color changes (ΔE; P≤0.05. In diminishing order, the mean color changes recorded were Estelite Σ (3.82 ± 1.6 > Ketac Nano (2.97 ± 1.2 > Filtek Z350 XT (2.25 ± 1.0. However, none of the tested materials showed statistically significant changes in surface roughness; P>0.05.

  16. A method for the experimental determination of surface photoemission core-level shifts for 3d transition metals

    NARCIS (Netherlands)

    Shamsutdinov, N.R.; Sloof, W.G.; Böttger, A.J.

    2005-01-01

    A method is presented to determine the photoelectron surface core-level shift (SCLS) of 3d transition metals using x-ray photoelectron spectroscopy. The experimental difficulties arising from the relatively large broadening of photoemission lines in the 3d transition series can be overcome by the

  17. Segmentation process significantly influences the accuracy of 3D surface models derived from cone beam computed tomography

    NARCIS (Netherlands)

    Fourie, Zacharias; Damstra, Janalt; Schepers, Rutger H; Gerrits, Pieter; Ren, Yijin

    AIMS: To assess the accuracy of surface models derived from 3D cone beam computed tomography (CBCT) with two different segmentation protocols. MATERIALS AND METHODS: Seven fresh-frozen cadaver heads were used. There was no conflict of interests in this study. CBCT scans were made of the heads and 3D

  18. Fusion and display of 3D spect and MR images registered by a surface fitting method

    International Nuclear Information System (INIS)

    Oghabian, M.A.; Kaboli, P.

    2002-01-01

    Since 3D medical images such as SPECT and MRI are taken under different positioning and imaging parameters, interpretation of them, as reconstructed originally, dose not provide an easy and accurate understanding of similarities and differences between them. The problem becomes more crucial where a clinician would like to map accurately region of interest from one study to the other, by which some surgical or therapeutical planning may be based. the research presented here is an investigation into the problems of the registration and display of brain images obtained by different imaging modalities. Following the introduction of an efficient method some clinical useful application of the registration and superimposition were also defined. The various widely used registration algorithms were first studied and their advantages and disadvantages of each method were evaluated. In this approach, an edge-based algorithm (called surface fitting), which are based on a least-square-distance matching, were suggested for registering of brain images. This algorithm minimizes the sum of square-distances between the two surfaces obtained from two modalities. The minimization is performed to find a set of six geometrical transformation parameters (3 shifts and 3 rotations) which indicate how one surface should be transformed in order to match with the other surface

  19. Memory color of natural familiar objects: effects of surface texture and 3-D shape.

    Science.gov (United States)

    Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C

    2013-06-28

    Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.

  20. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud

    Science.gov (United States)

    Chen, Jianqin; Zhu, Hehua; Li, Xiaojun

    2016-10-01

    This paper presents a new method for extracting discontinuity orientation automatically from rock mass surface 3D point cloud. The proposed method consists of four steps: (1) automatic grouping of discontinuity sets using an improved K-means clustering method, (2) discontinuity segmentation and optimization, (3) discontinuity plane fitting using Random Sample Consensus (RANSAC) method, and (4) coordinate transformation of discontinuity plane. The method is first validated by the point cloud of a small piece of a rock slope acquired by photogrammetry. The extracted discontinuity orientations are compared with measured ones in the field. Then it is applied to a publicly available LiDAR data of a road cut rock slope at Rockbench repository. The extracted discontinuity orientations are compared with the method proposed by Riquelme et al. (2014). The results show that the presented method is reliable and of high accuracy, and can meet the engineering needs.

  1. Metal-mesh based transparent electrode on a 3-D curved surface by electrohydrodynamic jet printing

    International Nuclear Information System (INIS)

    Seong, Baekhoon; Yoo, Hyunwoong; Jang, Yonghee; Ryu, Changkook; Byun, Doyoung; Nguyen, Vu Dat

    2014-01-01

    Invisible Ag mesh transparent electrodes (TEs), with a width of 7 μm, were prepared on a curved glass surface by electrohydrodynamic (EHD) jet printing. With a 100 μm pitch, the EHD jet printed the Ag mesh on the convex glass which had a sheet resistance of 1.49 Ω/□. The printing speed was 30 cm s −1 using Ag ink, which had a 10 000 cPs viscosity and a 70 wt% Ag nanoparticle concentration. We further showed the performance of a 3-D transparent heater using the Ag mesh transparent electrode. The EHD jet printed an invisible Ag grid transparent electrode with good electrical and optical properties with promising applications on printed optoelectronic devices. (technical note)

  2. Accurate 3D reconstruction of bony surfaces using ultrasonic synthetic aperture techniques for robotic knee arthroplasty.

    Science.gov (United States)

    Kerr, William; Rowe, Philip; Pierce, Stephen Gareth

    2017-06-01

    Robotically guided knee arthroplasty systems generally require an individualized, preoperative 3D model of the knee joint. This is typically measured using Computed Tomography (CT) which provides the required accuracy for preoperative surgical intervention planning. Ultrasound imaging presents an attractive alternative to CT, allowing for reductions in cost and the elimination of doses of ionizing radiation, whilst maintaining the accuracy of the 3D model reconstruction of the joint. Traditional phased array ultrasound imaging methods, however, are susceptible to poor resolution and signal to noise ratios (SNR). Alleviating these weaknesses by offering superior focusing power, synthetic aperture methods have been investigated extensively within ultrasonic non-destructive testing. Despite this, they have yet to be fully exploited in medical imaging. In this paper, the ability of a robotic deployed ultrasound imaging system based on synthetic aperture methods to accurately reconstruct bony surfaces is investigated. Employing the Total Focussing Method (TFM) and the Synthetic Aperture Focussing Technique (SAFT), two samples were imaged which were representative of the bones of the knee joint: a human-shaped, composite distal femur and a bovine distal femur. Data were captured using a 5MHz, 128 element 1D phased array, which was manipulated around the samples using a robotic positioning system. Three dimensional surface reconstructions were then produced and compared with reference models measured using a precision laser scanner. Mean errors of 0.82mm and 0.88mm were obtained for the composite and bovine samples, respectively, thus demonstrating the feasibility of the approach to deliver the sub-millimetre accuracy required for the application. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. UAV based 3D digital surface model to estimate paleolandscape in high mountainous environment

    Science.gov (United States)

    Mészáros, János; Árvai, Mátyás; Kohán, Balázs; Deák, Márton; Nagy, Balázs

    2016-04-01

    Our method to present current state of a peat bog was focused on the possible use of a UAV-system and later Structure-from-motion algorithms as processing technique. The peat bog site is located on the Vinderel Plateau, Farcǎu Massif, Maramures Mountains (Romania). The peat bog (1530 m a.s.l., N47°54'11", E24°26'37") lies below Rugasu ridge (c. 1820 m a.s.l.) and the locality serves as a conservation area for fallen down coniferous trees. Peat deposits were formed in a landslide concavity on the western slope of Farcǎu Massif. Nowadays the site is surrounded by a completely deforested landscape, and Farcǎu Massif lies above the depressed treeline. The peat bog has an extraordinary geomorphological situation, because a gully reached the bog and drained the water. In the recent past sedimentological and dendrochronological researches have been initiated. However, an accurate 3D digital surface model also needed for a complex paleoenvironmental research. Last autumn the bog and its surroundings were finally surveyed by a multirotor UAV developed in-house based on an open-source flight management unit and its firmware. During this survey a lightweight action camera (mainly to decrease payload weight) was used to take aerial photographs. While our quadcopter is capable to fly automatically on a predefined flight route, several over- and sidelapping flight lines were generated prior to the actual survey on the ground using a control software running on a notebook. Despite those precautions, limited number of batteries and severe weather affected our final flights, resulting a reduced surveyed area around peat bog. Later, during the processing we looked for a reliable tool which powerful enough to process more than 500 photos taken during flights. After testing several software Agisoft PhotoScan was used to create 3D point cloud and mesh about bog and its environment. Due to large number of photographs PhotoScan had to be configured for network processing to get

  4. 3D registration of surfaces for change detection in medical images

    Science.gov (United States)

    Fisher, Elizabeth; van der Stelt, Paul F.; Dunn, Stanley M.

    1997-04-01

    Spatial registration of data sets is essential for quantifying changes that take place over time in cases where the position of a patient with respect to the sensor has been altered. Changes within the region of interest can be problematic for automatic methods of registration. This research addresses the problem of automatic 3D registration of surfaces derived from serial, single-modality images for the purpose of quantifying changes over time. The registration algorithm utilizes motion-invariant, curvature- based geometric properties to derive an approximation to an initial rigid transformation to align two image sets. Following the initial registration, changed portions of the surface are detected and excluded before refining the transformation parameters. The performance of the algorithm was tested using simulation experiments. To quantitatively assess the registration, random noise at various levels, known rigid motion transformations, and analytically-defined volume changes were applied to the initial surface data acquired from models of teeth. These simulation experiments demonstrated that the calculated transformation parameters were accurate to within 1.2 percent of the total applied rotation and 2.9 percent of the total applied translation, even at the highest applied noise levels and simulated wear values.

  5. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.

    Science.gov (United States)

    Chen, Yucong; Zhao, Junli; Deng, Qingqiong; Duan, Fuqing

    2017-01-01

    Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.

  6. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.

    Directory of Open Access Journals (Sweden)

    Yucong Chen

    Full Text Available Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF for the reference craniofacial model. Second, the thin-plate spline transform (TPST is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.

  7. Learning-based 3D surface optimization from medical image reconstruction

    Science.gov (United States)

    Wei, Mingqiang; Wang, Jun; Guo, Xianglin; Wu, Huisi; Xie, Haoran; Wang, Fu Lee; Qin, Jing

    2018-04-01

    Mesh optimization has been studied from the graphical point of view: It often focuses on 3D surfaces obtained by optical and laser scanners. This is despite the fact that isosurfaced meshes of medical image reconstruction suffer from both staircases and noise: Isotropic filters lead to shape distortion, while anisotropic ones maintain pseudo-features. We present a data-driven method for automatically removing these medical artifacts while not introducing additional ones. We consider mesh optimization as a combination of vertex filtering and facet filtering in two stages: Offline training and runtime optimization. In specific, we first detect staircases based on the scanning direction of CT/MRI scanners, and design a staircase-sensitive Laplacian filter (vertex-based) to remove them; and then design a unilateral filtered facet normal descriptor (uFND) for measuring the geometry features around each facet of a given mesh, and learn the regression functions from a set of medical meshes and their high-resolution reference counterparts for mapping the uFNDs to the facet normals of the reference meshes (facet-based). At runtime, we first perform staircase-sensitive Laplacian filter on an input MC (Marching Cubes) mesh, and then filter the mesh facet normal field using the learned regression functions, and finally deform it to match the new normal field for obtaining a compact approximation of the high-resolution reference model. Tests show that our algorithm achieves higher quality results than previous approaches regarding surface smoothness and surface accuracy.

  8. Tuning 3D topography on biomimetic surface for efficient self-cleaning and microfluidic manipulation

    International Nuclear Information System (INIS)

    Guan, Wei-Sheng; Huang, Han-Xiong; Chen, An-Fu

    2015-01-01

    Currently, micro-/nanotopography on polymeric replica is generally limited to 2D when a mechanical demolding approach is applied. In this work, one-step replication of bio-inspired 3D topography is achieved using microinjection compression molding with novel dual-layer molds. Using a proposed flexible template, the replica topography and wettability are highly tunable during molding. Moreover, dual-scale topography on the mold is developed by coating the micropatterned insert with submicron silica particles. Contact angle and roll-off angle measurements indicate the lotus leaf, rose petal and rice leaf effects on biomimetic surfaces. Among the three kinds of surfaces, the petal-inspired surface possesses the superior performance in self-cleaning submicron contaminants and mechanical robustness, which is highly correlated to the low roughness-induced adhesive superhydrophobicity and the absence of fragile submicron-/nanostructure, respectively. Furthermore, a multi-layer mold structure is proposed for fabricating the open microfluidic devices. The embedment of the hydrophilic and hydrophobic silica particles in the microstructured open channel and the hydrophobic silica particles in the background area during replication renders the wettability contrast sharp, realizing the self-driven flow of microfluid confined within the open microchannel. (paper)

  9. Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting

    Science.gov (United States)

    Hopp, T.; Zapf, M.; Ruiter, N. V.

    2014-03-01

    An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.

  10. Tuning 3D topography on biomimetic surface for efficient self-cleaning and microfluidic manipulation

    Science.gov (United States)

    Guan, Wei-Sheng; Huang, Han-Xiong; Chen, An-Fu

    2015-03-01

    Currently, micro-/nanotopography on polymeric replica is generally limited to 2D when a mechanical demolding approach is applied. In this work, one-step replication of bio-inspired 3D topography is achieved using microinjection compression molding with novel dual-layer molds. Using a proposed flexible template, the replica topography and wettability are highly tunable during molding. Moreover, dual-scale topography on the mold is developed by coating the micropatterned insert with submicron silica particles. Contact angle and roll-off angle measurements indicate the lotus leaf, rose petal and rice leaf effects on biomimetic surfaces. Among the three kinds of surfaces, the petal-inspired surface possesses the superior performance in self-cleaning submicron contaminants and mechanical robustness, which is highly correlated to the low roughness-induced adhesive superhydrophobicity and the absence of fragile submicron-/nanostructure, respectively. Furthermore, a multi-layer mold structure is proposed for fabricating the open microfluidic devices. The embedment of the hydrophilic and hydrophobic silica particles in the microstructured open channel and the hydrophobic silica particles in the background area during replication renders the wettability contrast sharp, realizing the self-driven flow of microfluid confined within the open microchannel.

  11. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    Science.gov (United States)

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.

  12. Reproducibility of 3D kinematics and surface electromyography measurements of mastication.

    Science.gov (United States)

    Remijn, Lianne; Groen, Brenda E; Speyer, Renée; van Limbeek, Jacques; Nijhuis-van der Sanden, Maria W G

    2016-03-01

    The aim of this study was to determine the measurement reproducibility for a procedure evaluating the mastication process and to estimate the smallest detectable differences of 3D kinematic and surface electromyography (sEMG) variables. Kinematics of mandible movements and sEMG activity of the masticatory muscles were obtained over two sessions with four conditions: two food textures (biscuit and bread) of two sizes (small and large). Twelve healthy adults (mean age 29.1 years) completed the study. The second to the fifth chewing cycle of 5 bites were used for analyses. The reproducibility per outcome variable was calculated with an intraclass correlation coefficient (ICC) and a Bland-Altman analysis was applied to determine the standard error of measurement relative error of measurement and smallest detectable differences of all variables. ICCs ranged from 0.71 to 0.98 for all outcome variables. The outcome variables consisted of four bite and fourteen chewing cycle variables. The relative standard error of measurement of the bite variables was up to 17.3% for 'time-to-swallow', 'time-to-transport' and 'number of chewing cycles', but ranged from 31.5% to 57.0% for 'change of chewing side'. The relative standard error of measurement ranged from 4.1% to 24.7% for chewing cycle variables and was smaller for kinematic variables than sEMG variables. In general, measurements obtained with 3D kinematics and sEMG are reproducible techniques to assess the mastication process. The duration of the chewing cycle and frequency of chewing were the best reproducible measurements. Change of chewing side could not be reproduced. The published measurement error and smallest detectable differences will aid the interpretation of the results of future clinical studies using the same study variables. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Electronic and spectroscopic properties of early 3d metal atoms on a graphite surface

    Science.gov (United States)

    Rakotomahevitra, A.; Garreau, G.; Demangeat, C.; Parlebas, J. C.

    1995-07-01

    High-sensitivity magneto-optic Kerr effect experiments failed to detect manifestations of magnetism in epitaxial films of V on Ag(100) substrates. More recently V 3s XPS of freshly evaporated V clusters on graphite exhibited the appearance of a satellite structure which has then been interpreted by the effect of surface magnetic moments on V. It is the absence of unambiguous results on the electronic properties of early 3d supported metals that prompts us to examine the problem. Our purpose is twofold. In a first part, after a total energy calculation within a tight-binding method which yields the equilibrium position of a given adatom, we use the Hartree-Fock approximation to find out a possible magnetic solution of V (or Cr) upon graphite for a reasonable value of the exchange integral Jdd. In a second part the informations given by the density of states of the graphite surface as well as the additional states of the adsorbed atom are taken into account through a generalised impurity Anderson Hamiltonian which incorporates the various Coulomb and exchange interactions necessary to analyse the 3s XPS results.

  14. Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2015-11-01

    This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.

  15. 3-D Surface Visualization of pH Titration "Topos": Equivalence Point Cliffs, Dilution Ramps, and Buffer Plateaus

    Science.gov (United States)

    Smith, Garon C.; Hossain, Md Mainul; MacCarthy, Patrick

    2014-01-01

    3-D topographic surfaces ("topos") can be generated to visualize how pH behaves during titration and dilution procedures. The surfaces are constructed by plotting computed pH values above a composition grid with volume of base added in one direction and overall system dilution on the other. What emerge are surface features that…

  16. 2D and 3D milled surface roughness of high volume fraction SiCp/Al composites

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2015-06-01

    Full Text Available This paper presents a study on surface roughness generated by high speed milling of high volume fraction (65% silicon carbide particle-reinforced aluminum matrix (SiCp/Al composites. Typical 2D (Ra and Rz and 3D (Sa and Sq surface roughness parameters were selected to evaluate the influence of the milling parameters on the surface quality in comparison with aluminum alloy. The 3D topography of the milled surface was studied as well. The results indicate that 3D parameters (Sa and Sq are more capable to describe the influence of the milling parameters on the surface quality, and among them Sq is preferable due to its good sensitivity. Sq decreases with milling speed and increases with feed rate. The influence of axial depth of cut (ADOC is negligible.

  17. Hands-On Data Analysis: Using 3D Printing to Visualize Reaction Progress Surfaces

    Science.gov (United States)

    Higman, Carolyn S.; Situ, Henry; Blacklin, Peter; Hein, Jason E.

    2017-01-01

    Advances in 3D printing technology over the past decade have led to its expansion into all subfields of science, including chemistry. This technology provides useful teaching tools that facilitate communication of difficult chemical concepts to students and researchers. Presented here is the use of 3D printing technology to create tangible models…

  18. Segmentation process significantly influences the accuracy of 3D surface models derived from cone beam computed tomography

    International Nuclear Information System (INIS)

    Fourie, Zacharias; Damstra, Janalt; Schepers, Rutger H.; Gerrits, Peter O.; Ren Yijin

    2012-01-01

    Aims: To assess the accuracy of surface models derived from 3D cone beam computed tomography (CBCT) with two different segmentation protocols. Materials and methods: Seven fresh-frozen cadaver heads were used. There was no conflict of interests in this study. CBCT scans were made of the heads and 3D surface models were created of the mandible using two different segmentation protocols. The one series of 3D models was segmented by a commercial software company, while the other series was done by an experienced 3D clinician. The heads were then macerated following a standard process. A high resolution laser surface scanner was used to make a 3D model of the macerated mandibles, which acted as the reference 3D model or “gold standard”. The 3D models generated from the two rendering protocols were compared with the “gold standard” using a point-based rigid registration algorithm to superimpose the three 3D models. The linear difference at 25 anatomic and cephalometric landmarks between the laser surface scan and the 3D models generate from the two rendering protocols was measured repeatedly in two sessions with one week interval. Results: The agreement between the repeated measurement was excellent (ICC = 0.923–1.000). The mean deviation from the gold standard by the 3D models generated from the CS group was 0.330 mm ± 0.427, while the mean deviation from the Clinician's rendering was 0.763 mm ± 0.392. The surface models segmented by both CS and DS protocols tend to be larger than those of the reference models. In the DS group, the biggest mean differences with the LSS models were found at the points ConLatR (CI: 0.83–1.23), ConMedR (CI: −3.16 to 2.25), CoLatL (CI: −0.68 to 2.23), Spine (CI: 1.19–2.28), ConAntL (CI: 0.84–1.69), ConSupR (CI: −1.12 to 1.47) and RetMolR (CI: 0.84–1.80). Conclusion: The Commercially segmented models resembled the reality more closely than the Doctor's segmented models. If 3D models are needed for surgical drilling

  19. Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability.

    Science.gov (United States)

    Lee, Kilsoo; Lee, Jaehong; Kim, Gwangmook; Kim, Youngjae; Kang, Subin; Cho, Sungjun; Kim, SeulGee; Kim, Jae-Kang; Lee, Wooyoung; Kim, Dae-Eun; Kang, Shinill; Kim, DaeEun; Lee, Taeyoon; Shim, Wooyoung

    2017-11-01

    Fabrication strategies that pursue "simplicity" for the production process and "functionality" for a device, in general, are mutually exclusive. Therefore, strategies that are less expensive, less equipment-intensive, and consequently, more accessible to researchers for the realization of omnipresent electronics are required. Here, this study presents a conceptually different approach that utilizes the inartificial design of the surface roughness of paper to realize a capacitive pressure sensor with high performance compared with sensors produced using costly microfabrication processes. This study utilizes a writing activity with a pencil and paper, which enables the construction of a fundamental capacitor that can be used as a flexible capacitive pressure sensor with high pressure sensitivity and short response time and that it can be inexpensively fabricated over large areas. Furthermore, the paper-based pressure sensors are integrated into a fully functional 3D touch-pad device, which is a step toward the realization of omnipresent electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. WE-DE-209-04: 3D Surface Image-Guided

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X. [Memorial Sloan Kettering Cancer Center (United States)

    2016-06-15

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  1. Comprehensive analysis of photonic nanojets in 3D dielectric cuboids excited by surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco-Pena, Victor [Antennas Group - TERALAB, Universidad Publica de Navarra, Campus Arrosadia, 31006, Pamplona (Spain); Minin, Igor V.; Minin, Oleg V. [National Research Tomsk State University, Lenina Ave., 36, Tomsk, 634050 (Russian Federation); Beruete, Miguel [Antennas Group - TERALAB, Universidad Publica de Navarra, Campus Arrosadia, 31006, Pamplona (Spain); Institute of Smart Cities, Public University of Navarra, 31006, Pamplona (Spain)

    2016-10-15

    In this paper we study the excitation of photonic nanojets (PNJ) in 3D dielectric cuboids by surface plasmons at telecommunication wavelengths. The analysis is done using the effective refractive index approach. It is shown that the refractive index contrast between the regions with and without cuboid should be roughly less than 2 in order to generate jets at the output of the cuboid. The best performance at λ{sub 0} = 1550 nm is obtained when the height of the cuboid is 160 nm producing a jet just at the output interface with a subwavelength resolution of 0.68λ{sub 0} and a high intensity enhancement (x 5) at the focus. The multi-wavelength response is also studied demonstrating that it is possible to use the proposed structure at different wavelengths. Finally, the backscattering enhancement is numerically evaluated by inserting a metal particle within the PNJ region, demonstrating a maximum value of ∝2.44 dB for a gold sphere of radius 0.1λ{sub 0}. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. The systematic and random errors determination using realtime 3D surface tracking system in breast cancer

    International Nuclear Information System (INIS)

    Kanphet, J; Suriyapee, S; Sanghangthum, T; Kumkhwao, J; Wisetrintong, M; Dumrongkijudom, N

    2016-01-01

    The purpose of this study to determine the patient setup uncertainties in deep inspiration breath-hold (DIBH) radiation therapy for left breast cancer patients using real-time 3D surface tracking system. The six breast cancer patients treated by 6 MV photon beams from TrueBeam linear accelerator were selected. The patient setup errors and motion during treatment were observed and calculated for interfraction and intrafraction motions. The systematic and random errors were calculated in vertical, longitudinal and lateral directions. From 180 images tracking before and during treatment, the maximum systematic error of interfraction and intrafraction motions were 0.56 mm and 0.23 mm, the maximum random error of interfraction and intrafraction motions were 1.18 mm and 0.53 mm, respectively. The interfraction was more pronounce than the intrafraction, while the systematic error was less impact than random error. In conclusion the intrafraction motion error from patient setup uncertainty is about half of interfraction motion error, which is less impact due to the stability in organ movement from DIBH. The systematic reproducibility is also half of random error because of the high efficiency of modern linac machine that can reduce the systematic uncertainty effectively, while the random errors is uncontrollable. (paper)

  3. A new method for automated discontinuity trace mapping on rock mass 3D surface model

    Science.gov (United States)

    Li, Xiaojun; Chen, Jianqin; Zhu, Hehua

    2016-04-01

    This paper presents an automated discontinuity trace mapping method on a 3D surface model of rock mass. Feature points of discontinuity traces are first detected using the Normal Tensor Voting Theory, which is robust to noisy point cloud data. Discontinuity traces are then extracted from feature points in four steps: (1) trace feature point grouping, (2) trace segment growth, (3) trace segment connection, and (4) redundant trace segment removal. A sensitivity analysis is conducted to identify optimal values for the parameters used in the proposed method. The optimal triangular mesh element size is between 5 cm and 6 cm; the angle threshold in the trace segment growth step is between 70° and 90°; the angle threshold in the trace segment connection step is between 50° and 70°, and the distance threshold should be at least 15 times the mean triangular mesh element size. The method is applied to the excavation face trace mapping of a drill-and-blast tunnel. The results show that the proposed discontinuity trace mapping method is fast and effective and could be used as a supplement to traditional direct measurement of discontinuity traces.

  4. 3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects

    International Nuclear Information System (INIS)

    Pupurs, A; Varna, J

    2012-01-01

    Fiber/matrix interface debond growth is one of the main mechanisms of damage evolution in unidirectional (UD) polymer composites. Because for polymer composites the fiber strain to failure is smaller than for the matrix multiple fiber breaks occur at random positions when high mechanical stress is applied to the composite. The energy released due to each fiber break is usually larger than necessary for the creation of a fiber break therefore a partial debonding of fiber/matrix interface is typically observed. Thus the stiffness reduction of UD composite is contributed both from the fiber breaks and from the interface debonds. The aim of this paper is to analyze the debond growth in carbon fiber/epoxy and glass fiber/epoxy UD composites using fracture mechanics principles by calculation of energy release rate G II . A 3-D FEM model is developed for calculation of energy release rate for fiber/matrix interface debonds at different locations in the composite including the composite surface region where the stress state differs from the one in the bulk composite. In the model individual partially debonded fiber is surrounded by matrix region and embedded in a homogenized composite.

  5. Exploring the 3D Surfaces with Modified Method of Steepest Descent

    Directory of Open Access Journals (Sweden)

    Wioletta GRZENDA

    2012-06-01

    Full Text Available Aim: To prove expediency of the steepest descent method to divide a given cloud of (Y, X1, X2 points into the spatial clusters with purpose to estimate a simple regression model Y = f(Z|X1,X2 at each cluster. Material and Method: The exemplary data sets {Y, X1, X2} were drawn randomly from assumed 3D surface: Y = f(X1,X2, and then a random noise was added to variable Y. A polynomial model Y = f(X1,X2 and a set of models Y = f(Z|X1,X2 were estimated separately, both under Akaike information criterion (AIC, and then compared with respect to their determination coefficients R-square, and the residuals’ distributions. Results: In the artificial data set studied, the both compared methods after several iterations can provide regression models of the quite similar quality. Conclusions: Because the proposed novel method seems to be more robust to outliers, and easier to graphical presentations and to intuitive understanding than the conventional way of building a regression model, the proposed novel method can be recommended to use by non-statisticians, especially in situation when, besides usual moderate noise, the sporadic but influential measurement errors can occur.

  6. From LIDAR Scanning to 3d FEM Analysis for Complex Surface and Underground Excavations

    Science.gov (United States)

    Chun, K.; Kemeny, J.

    2017-12-01

    Light detection and ranging (LIDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease to use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of three-dimensional numerical model that can be used in FEM analysis. To date, however, straightforward techniques in reconstructing numerical model from the scanned data of underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating from LIDAR scanning to finite element numerical analysis, specifically converting LIDAR 3D point clouds of object containing complex surface geometry into finite element model. This methodology has been applied to the Kartchner Caverns in Arizona for the stability analysis. Numerical simulations were performed using the finite element code ABAQUS. The results indicate that the highlights of our technologies obtained from LIDAR is effective and provide reference for other similar engineering project in practice.

  7. 3D printed glass: surface finish and bulk properties as a function of the printing process

    Science.gov (United States)

    Klein, Susanne; Avery, Michael P.; Richardson, Robert; Bartlett, Paul; Frei, Regina; Simske, Steven

    2015-03-01

    It is impossible to print glass directly from a melt, layer by layer. Glass is not only very sensitive to temperature gradients between different layers but also to the cooling process. To achieve a glass state the melt, has to be cooled rapidly to avoid crystallization of the material and then annealed to remove cooling induced stress. In 3D-printing of glass the objects are shaped at room temperature and then fired. The material properties of the final objects are crucially dependent on the frit size of the glass powder used during shaping, the chemical formula of the binder and the firing procedure. For frit sizes below 250 μm, we seem to find a constant volume of pores of less than 5%. Decreasing frit size leads to an increase in the number of pores which then leads to an increase of opacity. The two different binders, 2- hydroxyethyl cellulose and carboxymethylcellulose sodium salt, generate very different porosities. The porosity of samples with 2-hydroxyethyl cellulose is similar to frit-only samples, whereas carboxymethylcellulose sodium salt creates a glass foam. The surface finish is determined by the material the glass comes into contact with during firing.

  8. WE-DE-209-04: 3D Surface Image-Guided

    International Nuclear Information System (INIS)

    Tang, X.

    2016-01-01

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  9. Voice Morphing Using 3D Waveform Interpolation Surfaces and Lossless Tube Area Functions

    Directory of Open Access Journals (Sweden)

    Lavner Yizhar

    2005-01-01

    Full Text Available Voice morphing is the process of producing intermediate or hybrid voices between the utterances of two speakers. It can also be defined as the process of gradually transforming the voice of one speaker to that of another. The ability to change the speaker's individual characteristics and to produce high-quality voices can be used in many applications. Examples include multimedia and video entertainment, as well as enrichment of speech databases in text-to-speech systems. In this study we present a new technique which enables production of a given number of intermediate voices or of utterances which gradually change from one voice to another. This technique is based on two components: (1 creation of a 3D prototype waveform interpolation (PWI surface from the LPC residual signal, to produce an intermediate excitation signal; (2 a representation of the vocal tract by a lossless tube area function, and an interpolation of the parameters of the two speakers. The resulting synthesized signal sounds like a natural voice lying between the two original voices.

  10. Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures.

    Science.gov (United States)

    Joo, Woo-Deok; Kim, Seungman; Park, Jiyong; Lee, Keunwoo; Lee, Joohyung; Kim, Seungchul; Kim, Young-Jin; Kim, Seung-Woo

    2013-07-01

    Fast, precise 3-D measurement of discontinuous step-structures fabricated on microelectronic products is essential for quality assurance of semiconductor chips, flat panel displays, and photovoltaic cells. Optical surface profilers of low-coherence interferometry have long been used for the purpose, but the vertical scanning range and speed are limited by the micro-actuators available today. Besides, the lateral field-of-view extendable for a single measurement is restricted by the low spatial coherence of broadband light sources. Here, we cope with the limitations of the conventional low-coherence interferometer by exploiting unique characteristics of femtosecond laser pulses, i.e., low temporal but high spatial coherence. By scanning the pulse repetition rate with direct reference to the Rb atomic clock, step heights of ~69.6 μm are determined with a repeatability of 10.3 nm. The spatial coherence of femtosecond pulses provides a large field-of-view with superior visibility, allowing for a high volume measurement rate of ~24,000 mm3/s.

  11. Protein adsorption resistant surface on polymer composite based on 2D- and 3D-controlled grafting of phospholipid moieties

    International Nuclear Information System (INIS)

    Hoshi, Toru; Matsuno, Ryosuke; Sawaguchi, Takashi; Konno, Tomohiro; Takai, Madoka; Ishihara, Kazuhiko

    2008-01-01

    To prepare the biocompatible surface, a phosphorylcholine (PC) group was introduced on this hydroxyl group generated by surface hydrolysis on the polymer composite composed of polyethylene (PE) and poly (vinyl acetate) (PVAc) prepared by supercritical carbon dioxide. Two different procedures such as two-dimensional (2D) modification and three-dimensional (3D) modification were applied to obtain the steady biocompatible surface. 2D modification was that PC groups were directly anchored on the surface of the polymer composite. 3D modification was that phospholipid polymer was grafted from the surface of the polymer composite by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC). The surfaces were characterized by X-ray photoelectron spectroscopy, dynamic water contact angle measurements, and atomic force microscope. The effects of the poly(MPC) chain length on the protein adsorption resistivity were investigated. The protein adsorption on the polymer composite surface with PC groups modified by 2D or 3D modification was significantly reduced as compared with that on the unmodified PE. Further, the amount of protein adsorbed on the 3D modified surface that is poly(MPC)-grafted surface decreased with an increase in the chain length of the poly(MPC). The surface with an arbitrary structure and the characteristic can be constructed by using 2D and 3D modification. We conclude that the polymer composites of PE/PVAc with PC groups on the surface are useful for fabricating biomedical devices due to their good mechanical and surface properties

  12. New approach to accuracy verification of 3D surface models: An analysis of point cloud coordinates.

    Science.gov (United States)

    Lee, Wan-Sun; Park, Jong-Kyoung; Kim, Ji-Hwan; Kim, Hae-Young; Kim, Woong-Chul; Yu, Chin-Ho

    2016-04-01

    The precision of two types of surface digitization devices, i.e., a contact probe scanner and an optical scanner, and the trueness of two types of stone replicas, i.e., one without an imaging powder (SR/NP) and one with an imaging powder (SR/P), were evaluated using a computer-aided analysis. A master die was fabricated from stainless steel. Ten impressions were taken, and ten stone replicas were prepared from Type IV stone (Fujirock EP, GC, Leuven, Belgium). The precision of two types of scanners was analyzed using the root mean square (RMS), measurement error (ME), and limits of agreement (LoA) at each coordinate. The trueness of the stone replicas was evaluated using the total deviation. A Student's t-test was applied to compare the discrepancies between the CAD-reference-models of the master die (m-CRM) and point clouds for the two types of stone replicas (α=.05). The RMS values for the precision were 1.58, 1.28, and 0.98μm along the x-, y-, and z-axes in the contact probe scanner and 1.97, 1.32, and 1.33μm along the x-, y-, and z-axes in the optical scanner, respectively. A comparison with m-CRM revealed a trueness of 7.10μm for SR/NP and 8.65μm for SR/P. The precision at each coordinate (x-, y-, and z-axes) was revealed to be higher than the one assessed in the previous method (overall offset differences). A comparison between the m-CRM and 3D surface models of the stone replicas revealed a greater dimensional change in SR/P than in SR/NP. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  13. Segmentation, surface rendering, and surface simplification of 3-D skull images for the repair of a large skull defect

    Science.gov (United States)

    Wan, Weibing; Shi, Pengfei; Li, Shuguang

    2009-10-01

    Given the potential demonstrated by research into bone-tissue engineering, the use of medical image data for the rapid prototyping (RP) of scaffolds is a subject worthy of research. Computer-aided design and manufacture and medical imaging have created new possibilities for RP. Accurate and efficient design and fabrication of anatomic models is critical to these applications. We explore the application of RP computational methods to the repair of a pediatric skull defect. The focus of this study is the segmentation of the defect region seen in computerized tomography (CT) slice images of this patient's skull and the three-dimensional (3-D) surface rendering of the patient's CT-scan data. We see if our segmentation and surface rendering software can improve the generation of an implant model to fill a skull defect.

  14. The 3D Mesonet Concept: Extending Networked Surface Meteorological Tower Observations Through Unmanned Aircraft Systems

    Science.gov (United States)

    Chilson, P. B.; Fiebrich, C. A.; Huck, R.; Grimsley, J.; Salazar-Cerreno, J.; Carson, K.; Jacob, J.

    2017-12-01

    assess local weather conditions (visibility, surface winds, and cloud height) and the integrity of the vehicle (system diagnostics, fuel level) before takeoff. We provide a notional concept of operations for a 3D Mesonet being considered, describe the technical configuration for one station in the network, and discuss plans for future development.

  15. Fourier and granulometry methods on 3D images of soil surfaces for evaluating soil aggregate size distribution

    DEFF Research Database (Denmark)

    Jensen, T.; Green, O.; Munkholm, Lars Juhl

    2016-01-01

    The goal of this research is to present and compare two methods for evaluating soil aggregate size distribution based on high resolution 3D images of the soil surface. The methods for analyzing the images are discrete Fourier transform and granulometry. The results of these methods correlate...... with a measured weight distribution of the soil aggregates. The results have shown that it is possible to distinguish between the cultivated and the uncultivated soil surface. A sensor system suitable for capturing in-situ high resolution 3D images of the soil surface is also described. This sensor system...

  16. Sci-Thur PM – Brachytherapy 06: 3D Printed Surface Applicators for High Dose Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Scott; Yewondwossen, Mammo; Robar, James [Dalhousie University, Nova Scotia Cancer Centre, Capital District Health Authority (Canada)

    2016-08-15

    Purpose: The purpose of this work is to develop a new applicator for administering high dose rate (HDR) brachytherapy using 3D printing technology. Primary advantages of using a 3D printed applicator will be to offer a more streamlined approach for therapists and patients while achieving better conformity, reproducibility, and patient specific applicators. Methods: A phantom study was conducted to measure the effectiveness of a 3D printed surface applicator by analyzing tumours on three locations of the body: the foot, nose, and scalp. The applicator was designed using Eclipse and further modified using Blender to create the catheter tunnels before being printed on a Lulzbot Taz 5 3D printer. A radiation plan was made using Oncentra Brachytherapy for a control treatment option using Freiburg Flaps and one with the novel method of a 3D printed applicator. A comparative analysis was made using D90, D100, V100, V150, and V200 Results: The 3D printed applicator showed comparable dose coverage with significant improvements on highly irregular surfaces when analyzed against a plan made using Freiburg Flaps. Although both plans exhibited complete tumour coverage, the 3D applicator showed improvements in D90 and V150 and the 3D applicator had a dose homogeneity index (DHI) of 0.99 compared to a DHI of 0.97 for the control. Therapist prep time also dropped significantly due to the lack of need for a thermoplastic mesh. Conclusions: 3D printed applicators for treatment of superficial sites proved to offer more patient convenience, less prep time, better conformity and tighter margins.

  17. Sci-Thur PM – Brachytherapy 06: 3D Printed Surface Applicators for High Dose Rate Brachytherapy

    International Nuclear Information System (INIS)

    Clarke, Scott; Yewondwossen, Mammo; Robar, James

    2016-01-01

    Purpose: The purpose of this work is to develop a new applicator for administering high dose rate (HDR) brachytherapy using 3D printing technology. Primary advantages of using a 3D printed applicator will be to offer a more streamlined approach for therapists and patients while achieving better conformity, reproducibility, and patient specific applicators. Methods: A phantom study was conducted to measure the effectiveness of a 3D printed surface applicator by analyzing tumours on three locations of the body: the foot, nose, and scalp. The applicator was designed using Eclipse and further modified using Blender to create the catheter tunnels before being printed on a Lulzbot Taz 5 3D printer. A radiation plan was made using Oncentra Brachytherapy for a control treatment option using Freiburg Flaps and one with the novel method of a 3D printed applicator. A comparative analysis was made using D90, D100, V100, V150, and V200 Results: The 3D printed applicator showed comparable dose coverage with significant improvements on highly irregular surfaces when analyzed against a plan made using Freiburg Flaps. Although both plans exhibited complete tumour coverage, the 3D applicator showed improvements in D90 and V150 and the 3D applicator had a dose homogeneity index (DHI) of 0.99 compared to a DHI of 0.97 for the control. Therapist prep time also dropped significantly due to the lack of need for a thermoplastic mesh. Conclusions: 3D printed applicators for treatment of superficial sites proved to offer more patient convenience, less prep time, better conformity and tighter margins.

  18. High-precision surface formation and the 3-D shaded display of the brain obtained from CT images

    International Nuclear Information System (INIS)

    Niki, Noboru; Higuti, Kiyofumi; Takahashi, Yoshizo

    1986-01-01

    High-precision reconstruction of surface and 3-D shaded display of the target organ and lesions, obtained from CT images, aid in medical recognition. Firstly, this paper points out some problems of using a conventional method, in which brain surface is reconstructed from the known contour of brain slices, in 3-D shaded display of the brain in a dog. Secondly, a new high-precision technique for reconstructing complex brain surface from brain contour is proposed. The principle of the technique consists of extracting data of outline surface and fissures, smoothing of brain contour, and recomposition of the data of outline surface and fissures into a composite surface image. Finally, the validity of the method was verified by successfully reconstructing complex brain surface from the contour of dog brain slices. In addition, it was possible to cut brain surface, obtained by the newly developed technique, in any voluntary plane and to display CT values on the sections. (Namekawa, K.)

  19. Characterizing interstate vibrational coherent dynamics of surface adsorbed catalysts by fourth-order 3D SFG spectroscopy

    Science.gov (United States)

    Li, Yingmin; Wang, Jiaxi; Clark, Melissa L.; Kubiak, Clifford P.; Xiong, Wei

    2016-04-01

    We report the first fourth-order 3D SFG spectroscopy of a monolayer of the catalyst Re(diCN-bpy)(CO)3Cl on a gold surface. Besides measuring the vibrational coherences of single vibrational modes, the fourth-order 3D SFG spectrum also measures the dynamics of interstate coherences and vibrational coherences states between two vibrational modes. By comparing the 3D SFG to the corresponding 2D and third-order 3D IR spectroscopy of the same molecules in solution, we found that the interstate coherences exist in both liquid and surface systems, suggesting that the interstate coherence is not disrupted by surface interactions. However, by analyzing the 3D spectral lineshape, we found that the interstate coherences also experience non-negligible homogenous dephasing dynamics that originate from surface interactions. This unique ability of determining interstate vibrational coherence dynamics of the molecular monolayer can help in understanding of how energy flows within surface catalysts and other molecular monolayers.

  20. Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction

    Science.gov (United States)

    Chen, Liang-Chia; Ho, Hsuan-Wei; Nguyen, Xuan-Loc

    2010-02-01

    This article presents a novel band-pass filter for Fourier transform profilometry (FTP) for accurate 3-D surface reconstruction. FTP can be employed to obtain 3-D surface profiles by one-shot images to achieve high-speed measurement. However, its measurement accuracy has been significantly influenced by the spectrum filtering process required to extract the phase information representing various surface heights. Using the commonly applied 2-D Hanning filter, the measurement errors could be up to 5-10% of the overall measuring height and it is unacceptable to various industrial application. To resolve this issue, the article proposes an elliptical band-pass filter for extracting the spectral region possessing essential phase information for reconstructing accurate 3-D surface profiles. The elliptical band-pass filter was developed and optimized to reconstruct 3-D surface models with improved measurement accuracy. Some experimental results verify that the accuracy can be effectively enhanced by using the elliptical filter. The accuracy improvement of 44.1% and 30.4% can be achieved in 3-D and sphericity measurement, respectively, when the elliptical filter replaces the traditional filter as the band-pass filtering method. Employing the developed method, the maximum measured error can be kept within 3.3% of the overall measuring range.

  1. SU-E-T-04: 3D Printed Patient-Specific Surface Mould Applicators for Brachytherapy Treatment of Superficial Lesions

    International Nuclear Information System (INIS)

    Cumming, I; Lasso, A; Rankin, A; Fichtinger, G; Joshi, C P; Falkson, C; Schreiner, L John

    2014-01-01

    Purpose: Evaluate the feasibility of constructing 3D-printed patient-specific surface mould applicators for HDR brachytherapy treatment of superficial lesions. Methods: We propose using computer-aided design software to create 3D printed surface mould applicators for brachytherapy. A mould generation module was developed in the open-source 3D Slicer ( http://www.slicer.org ) medical image analysis platform. The system extracts the skin surface from CT images, and generates smooth catheter paths over the region of interest based on user-defined start and end points at a specified stand-off distance from the skin surface. The catheter paths are radially extended to create catheter channels that are sufficiently wide to ensure smooth insertion of catheters for a safe source travel. An outer mould surface is generated to encompass the channels. The mould is also equipped with fiducial markers to ensure its reproducible placement. A surface mould applicator with eight parallel catheter channels of 4mm diameters was fabricated for the nose region of a head phantom; flexible plastic catheters of 2mm diameter were threaded through these channels maintaining 10mm catheter separations and a 5mm stand-off distance from the skin surface. The apparatus yielded 3mm thickness of mould material between channels and the skin. The mould design was exported as a stereolithography file to a Dimension SST1200es 3D printer and printed using ABS Plus plastic material. Results: The applicator closely matched its design and was found to be sufficiently rigid without deformation during repeated application on the head phantom. Catheters were easily threaded into channels carved along catheter paths. Further tests are required to evaluate feasibility of channel diameters smaller than 4mm. Conclusion: Construction of 3D-printed mould applicators show promise for use in patient specific brachytherapy of superficial lesions. Further evaluation of 3D printing techniques and materials is required

  2. SU-E-T-04: 3D Printed Patient-Specific Surface Mould Applicators for Brachytherapy Treatment of Superficial Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, I; Lasso, A; Rankin, A; Fichtinger, G [Laboratory for Percutaneous Surgery, School of Computing, Queen' s University, Kingston, Ontario (Canada); Joshi, C P; Falkson, C; Schreiner, L John [CCSEO, Kingston General Hospital and Department of Oncology, Queen' s University, Kingston, Ontario (Canada)

    2014-06-01

    Purpose: Evaluate the feasibility of constructing 3D-printed patient-specific surface mould applicators for HDR brachytherapy treatment of superficial lesions. Methods: We propose using computer-aided design software to create 3D printed surface mould applicators for brachytherapy. A mould generation module was developed in the open-source 3D Slicer ( http://www.slicer.org ) medical image analysis platform. The system extracts the skin surface from CT images, and generates smooth catheter paths over the region of interest based on user-defined start and end points at a specified stand-off distance from the skin surface. The catheter paths are radially extended to create catheter channels that are sufficiently wide to ensure smooth insertion of catheters for a safe source travel. An outer mould surface is generated to encompass the channels. The mould is also equipped with fiducial markers to ensure its reproducible placement. A surface mould applicator with eight parallel catheter channels of 4mm diameters was fabricated for the nose region of a head phantom; flexible plastic catheters of 2mm diameter were threaded through these channels maintaining 10mm catheter separations and a 5mm stand-off distance from the skin surface. The apparatus yielded 3mm thickness of mould material between channels and the skin. The mould design was exported as a stereolithography file to a Dimension SST1200es 3D printer and printed using ABS Plus plastic material. Results: The applicator closely matched its design and was found to be sufficiently rigid without deformation during repeated application on the head phantom. Catheters were easily threaded into channels carved along catheter paths. Further tests are required to evaluate feasibility of channel diameters smaller than 4mm. Conclusion: Construction of 3D-printed mould applicators show promise for use in patient specific brachytherapy of superficial lesions. Further evaluation of 3D printing techniques and materials is required

  3. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    Energy Technology Data Exchange (ETDEWEB)

    Buice, E S; Alger, E T; Antipa, N A; Bhandarkar, S D; Biesiada, T A; Conder, A D; Dzenitis, E G; Flegel, M S; Hamza, A V; Heinbockel, C L; Horner, J; Johnson, M A; Kegelmeyer, L M; Meyer, J S; Montesanti, R C; Reynolds, J L; Taylor, J S; Wegner, P J

    2011-02-18

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 {micro}m diameter glass-core fill-tube that tapers down to a 10{micro} diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1{sigma}), which corresponds to approximately 5 {micro}m linear error on the capsule surface.

  4. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    International Nuclear Information System (INIS)

    Buice, E.S.; Alger, E.T.; Antipa, N.A.; Bhandarkar, S.D.; Biesiada, T.A.; Conder, A.D.; Dzenitis, E.G.; Flegel, M.S.; Hamza, A.V.; Heinbockel, C.L.; Horner, J.; Johnson, M.A.; Kegelmeyer, L.M.; Meyer, J.S.; Montesanti, R.C.; Reynolds, J.L.; Taylor, J.S.; Wegner, P.J.

    2011-01-01

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 (micro)m diameter glass-core fill-tube that tapers down to a 10(micro) diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1σ), which corresponds to approximately 5 (micro)m linear error on the capsule surface.

  5. Visualization of Buffer Capacity with 3-D "Topo" Surfaces: Buffer Ridges, Equivalence Point Canyons and Dilution Ramps

    Science.gov (United States)

    Smith, Garon C.; Hossain, Md Mainul

    2016-01-01

    BufCap TOPOS is free software that generates 3-D topographical surfaces ("topos") for acid-base equilibrium studies. It portrays pH and buffer capacity behavior during titration and dilution procedures. Topo surfaces are created by plotting computed pH and buffer capacity values above a composition grid with volume of NaOH as the x axis…

  6. 3D non-rigid surface-based MR-TRUS registration for image-guided prostate biopsy

    Science.gov (United States)

    Sun, Yue; Qiu, Wu; Romagnoli, Cesare; Fenster, Aaron

    2014-03-01

    Two dimensional (2D) transrectal ultrasound (TRUS) guided prostate biopsy is the standard approach for definitive diagnosis of prostate cancer (PCa). However, due to the lack of image contrast of prostate tumors needed to clearly visualize early-stage PCa, prostate biopsy often results in false negatives, requiring repeat biopsies. Magnetic Resonance Imaging (MRI) has been considered to be a promising imaging modality for noninvasive identification of PCa, since it can provide a high sensitivity and specificity for the detection of early stage PCa. Our main objective is to develop and validate a registration method of 3D MR-TRUS images, allowing generation of volumetric 3D maps of targets identified in 3D MR images to be biopsied using 3D TRUS images. Our registration method first makes use of an initial rigid registration of 3D MR images to 3D TRUS images using 6 manually placed approximately corresponding landmarks in each image. Following the manual initialization, two prostate surfaces are segmented from 3D MR and TRUS images and then non-rigidly registered using a thin-plate spline (TPS) algorithm. The registration accuracy was evaluated using 4 patient images by measuring target registration error (TRE) of manually identified corresponding intrinsic fiducials (calcifications and/or cysts) in the prostates. Experimental results show that the proposed method yielded an overall mean TRE of 2.05 mm, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm.

  7. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system.

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-05-01

    To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have

  8. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    International Nuclear Information System (INIS)

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-01-01

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced

  9. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Cheung, Yam [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas, 75390 and Department of Radiation Oncology, University of Maryland, College Park, Maryland 20742 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2016-05-15

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced

  10. Postoperative assessment of surgical results using three dimensional surface reconstruction CT (3D-CT) in a craniofacial anomaly

    International Nuclear Information System (INIS)

    Nishimura, Jiro; Sato, Kaoru; Nishimoto, Hiroshi; Tsukiyama, Takashi; Fujioka, Mutsuhisa; Akagawa, Tetsuya.

    1988-01-01

    In 1983, Michael W. Vannier and Jeffrey L. Marsh developed a computer method that reconstructs three dimensional (3D) born and soft tissue surfaces, given a high resolution CT scan-series of the facial skeleton. This method has been applied to craniofacial anomalies, basal encephaloceles, and musculoskeletal anomalies. In this study, a postoperative assessment of the craniofacial surgical results has been accomplished using this 3D-CT in 2 children with craniofacial dysmorphism. The authors discuss the advantages of this 3D-CT imaging method in the postoperative assessments of craniofacial anomalies. Results are detailed in the following listing : 1) a postoperative 3D-CT reveals the anatomical details corrected by the craniofacial surgery more precisely and stereographically than conventional radiological methods ; 2) secondary changes of the cranium after the surgery, such as bony formation in the area of the osteotomy and postoperative asymmetric deformities, are detected early by the 3D-CT imaging technique, and, 3) 3D-CT mid-sagittal and top axial views of the intracranial skull base are most useful in postoperative assessments of the surgical results. Basesd on our experience, we expect that three dimensional surface reconstructions from CT scans will become to be used widely in the postoperative assessments of the surgical results of craniofacial anomalies. (author)

  11. Expression robust 3D face recognition via mesh-based histograms of multiple order surface differential quantities

    KAUST Repository

    Li, Huibin

    2011-09-01

    This paper presents a mesh-based approach for 3D face recognition using a novel local shape descriptor and a SIFT-like matching process. Both maximum and minimum curvatures estimated in the 3D Gaussian scale space are employed to detect salient points. To comprehensively characterize 3D facial surfaces and their variations, we calculate weighted statistical distributions of multiple order surface differential quantities, including histogram of mesh gradient (HoG), histogram of shape index (HoS) and histogram of gradient of shape index (HoGS) within a local neighborhood of each salient point. The subsequent matching step then robustly associates corresponding points of two facial surfaces, leading to much more matched points between different scans of a same person than the ones of different persons. Experimental results on the Bosphorus dataset highlight the effectiveness of the proposed method and its robustness to facial expression variations. © 2011 IEEE.

  12. COMPUTER GRAPHICS MEETS IMAGE FUSION: THE POWER OF TEXTURE BAKING TO SIMULTANEOUSLY VISUALISE 3D SURFACE FEATURES AND COLOUR

    Directory of Open Access Journals (Sweden)

    G. J. Verhoeven

    2017-08-01

    Full Text Available Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM approaches are capable of providing a photo-realistic texture along the threedimensional (3D digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  13. Computer Graphics Meets Image Fusion: the Power of Texture Baking to Simultaneously Visualise 3d Surface Features and Colour

    Science.gov (United States)

    Verhoeven, G. J.

    2017-08-01

    Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM) approaches are capable of providing a photo-realistic texture along the threedimensional (3D) digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  14. Surface Explorations: 3D Moving Images as Cartographies of Time = Exploraciones de superficie: Imágenes 3D en movimiento como cartografiáis del tiempo

    Directory of Open Access Journals (Sweden)

    Nanna Verhoeff

    2016-05-01

    Full Text Available Moving images of travel and exploration have a long history. In this essay I will examine how the trope of navigation in 3D moving images can work towards an intimate and haptic encounter with other times and other places – elsewhen and elsewhere. The particular navigational construction of space in time afforded by 3D moving images can be considered a cartography of time. This is a haptic cartography of exploration of the surfaces on which this encounter takes place. Taking Werner Herzog’s film Cave of Forgotten Dreams (2010 as a theoretical object, the main question addressed is how the creative exploration of new technologies of visualization – here: from rock painting, principles of animation, to 3D moving images – entails an epistemological inquiry into, and statements about, the power of images, technologies of vision, and the media cartographies they make. These questions turn new technologies into relevant sources for cultural, historical and philosophical reflection.Las imágenes en movimiento del viaje y de la exploración tienen una larga tradición. En este artículo examinaré cómo el tropo de la navegación en las imágenes en tres dimensiones puede crear un encuentro íntimo y háptico con otros tiempos y otros lugares. La particular construcción relativa a la navegación del espacio en el tiempo en las imágenes en tres dimensiones puede ser considerada como una cartografía del tiempo. Esta es una cartografía háptica de la exploración de superficies en las cuales ese encuentro tiene lugar. Tomando el film de Werner Herzog Cueva de los sueños olvidados (2010 como un objeto teórico, la cuestión principal que se formula es cómo la exploración creativa de las nuevas tecnologías de la visualización – ya sea desde la pintura sobre rocas, y los principios de animación, hasta las imágenes en tres dimensiones – implica una investigación epistemológica, con las consecuentes afirmaciones, sobre el poder de

  15. An electron tomography algorithm for reconstructing 3D morphology using surface tangents of projected scattering interfaces

    Science.gov (United States)

    Petersen, T. C.; Ringer, S. P.

    2010-03-01

    range. The algorithm does not solve the tomographic back-projection problem but rather reconstructs the local 3D morphology of surfaces defined by varied scattering densities. Solution method: Reconstruction using differential geometry applied to image analysis computations. Restrictions: The code has only been tested with square images and has been developed for only single-axis tilting. Running time: For high quality reconstruction, 5-15 min

  16. On the evaluation of photogrammetric methods for dense 3D surface reconstruction in a metrological context

    Science.gov (United States)

    Toschi, I.; Capra, A.; De Luca, L.; Beraldin, J.-A.; Cournoyer, L.

    2014-05-01

    This paper discusses a methodology to evaluate the accuracy of recently developed image-based 3D modelling techniques. So far, the emergence of these novel methods has not been supported by the definition of an internationally recognized standard which is fundamental for user confidence and market growth. In order to provide an element of reflection and solution to the different communities involved in 3D imaging, a promising approach is presented in this paper for the assessment of both metric quality and limitations of an open-source suite of tools (Apero/MicMac), developed for the extraction of dense 3D point clouds from a set of unordered 2D images. The proposed procedural workflow is performed within a metrological context, through inter-comparisons with "reference" data acquired with two hemispherical laser scanners, one total station, and one laser tracker. The methodology is applied to two case studies, designed in order to analyse the software performances in dealing with both outdoor and environmentally controlled conditions, i.e. the main entrance of Cathédrale de la Major (Marseille, France) and a custom-made scene located at National Research Council of Canada 3D imaging Metrology Laboratory (Ottawa). Comparative data and accuracy evidence produced for both tests allow the study of some key factors affecting 3D model accuracy.

  17. Registration of 3D and Multispectral Data for the Study of Cultural Heritage Surfaces

    Science.gov (United States)

    Chane, Camille Simon; Schütze, Rainer; Boochs, Frank; Marzani, Franck S.

    2013-01-01

    We present a technique for the multi-sensor registration of featureless datasets based on the photogrammetric tracking of the acquisition systems in use. This method is developed for the in situ study of cultural heritage objects and is tested by digitizing a small canvas successively with a 3D digitization system and a multispectral camera while simultaneously tracking the acquisition systems with four cameras and using a cubic target frame with a side length of 500 mm. The achieved tracking accuracy is better than 0.03 mm spatially and 0.150 mrad angularly. This allows us to seamlessly register the 3D acquisitions and to project the multispectral acquisitions on the 3D model. PMID:23322103

  18. Shot noise limit of the optical 3D measurement methods for smooth surfaces

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Pavel; Pech, Miroslav

    2016-01-01

    Roč. 27, č. 3 (2016), 1-7, č. článku 035205. ISSN 0957-0233 R&D Projects: GA ČR GA13-12301S Institutional support: RVO:68378271 Keywords : measurement uncertainty * shot noise * 3D measurement * interferometry Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.585, year: 2016

  19. Structured Light Based 3d Scanning for Specular Surface by the Combination of Gray Code and Phase Shifting

    Science.gov (United States)

    Zhang, Yujia; Yilmaz, Alper

    2016-06-01

    Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new

  20. The use of consumer depth cameras for 3D surface imaging of people with obesity: A feasibility study.

    Science.gov (United States)

    Wheat, J S; Clarkson, S; Flint, S W; Simpson, C; Broom, D R

    2018-05-21

    Three dimensional (3D) surface imaging is a viable alternative to traditional body morphology measures, but the feasibility of using this technique with people with obesity has not been fully established. Therefore, the aim of this study was to investigate the validity, repeatability and acceptability of a consumer depth camera 3D surface imaging system in imaging people with obesity. The concurrent validity of the depth camera based system was investigated by comparing measures of mid-trunk volume to a gold-standard. The repeatability and acceptability of the depth camera system was assessed in people with obesity at a clinic. There was evidence of a fixed systematic difference between the depth camera system and the gold standard but excellent correlation between volume estimates (r 2 =0.997), with little evidence of proportional bias. The depth camera system was highly repeatable - low typical error (0.192L), high intraclass correlation coefficient (>0.999) and low technical error of measurement (0.64%). Depth camera based 3D surface imaging was also acceptable to people with obesity. It is feasible (valid, repeatable and acceptable) to use a low cost, flexible 3D surface imaging system to monitor the body size and shape of people with obesity in a clinical setting. Copyright © 2018 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  1. Evaluation of 3D laser device for characterizing shape and surface properties of aggregates used in pavements

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2010-08-01

    Full Text Available program for the 3D laser device using fifteen different spherical and twelve cubic shaped objects. The laser device was evaluated for accuracy and repeatability to compute aggregate surface area and volume properties. The results showed that the laser...

  2. Surface and 3D Quantum Hall Effects from Engineering of Exceptional Points in Nodal-Line Semimetals

    Science.gov (United States)

    Molina, Rafael A.; González, José

    2018-04-01

    We show that, under a strong magnetic field, a 3D nodal-line semimetal is driven into a topological insulating phase in which the electronic transport takes place at the surface of the material. When the magnetic field is perpendicular to the nodal ring, the surface states of the semimetal are transmuted into Landau states which correspond to exceptional points, i.e., branch points in the spectrum of a non-Hermitian Hamiltonian which arise upon the extension to complex values of the momentum. The complex structure of the spectrum then allows us to express the number of zero-energy flat bands in terms of a new topological invariant counting the number of exceptional points. When the magnetic field is parallel to the nodal ring, we find that the bulk states are built from the pairing of surfacelike evanescent waves, giving rise to a 3D quantum Hall effect with a flat level of Landau states residing in parallel 2D slices of the 3D material. The Hall conductance is quantized in either case in units of e2/h , leading in the 3D Hall effect to a number of channels growing linearly with the section of the surface and opening the possibility to observe a macroscopic chiral current at the surface of the material.

  3. AUTOJOM, Quadratic Equation Coefficient for Conic Volume, Parallelepipeds, Wedges, Pyramids. JOMREAD, Check of 3-D Geometry Structure from Quadratic Surfaces

    International Nuclear Information System (INIS)

    2005-01-01

    Nature of physical problem solved: AUTOJOM is a computer program that will generate the coefficients of any quadratic equation used to define conic volumes and also the coefficients of the planes needed to define parallelepipeds, wedges, and pyramids. JOMREAD is a computer code to check any 3D geometry composed of and constructed with quadratic surfaces

  4. Estimation of Atmospheric Methane Surface Fluxes Using a Global 3-D Chemical Transport Model

    Science.gov (United States)

    Chen, Y.; Prinn, R.

    2003-12-01

    Accurate determination of atmospheric methane surface fluxes is an important and challenging problem in global biogeochemical cycles. We use inverse modeling to estimate annual, seasonal, and interannual CH4 fluxes between 1996 and 2001. The fluxes include 7 time-varying seasonal (3 wetland, rice, and 3 biomass burning) and 3 steady aseasonal (animals/waste, coal, and gas) global processes. To simulate atmospheric methane, we use the 3-D chemical transport model MATCH driven by NCEP reanalyzed observed winds at a resolution of T42 ( ˜2.8° x 2.8° ) in the horizontal and 28 levels (1000 - 3 mb) in the vertical. By combining existing datasets of individual processes, we construct a reference emissions field that represents our prior guess of the total CH4 surface flux. For the methane sink, we use a prescribed, annually-repeating OH field scaled to fit methyl chloroform observations. MATCH is used to produce both the reference run from the reference emissions, and the time-dependent sensitivities that relate individual emission processes to observations. The observational data include CH4 time-series from ˜15 high-frequency (in-situ) and ˜50 low-frequency (flask) observing sites. Most of the high-frequency data, at a time resolution of 40-60 minutes, have not previously been used in global scale inversions. In the inversion, the high-frequency data generally have greater weight than the weekly flask data because they better define the observational monthly means. The Kalman Filter is used as the optimal inversion technique to solve for emissions between 1996-2001. At each step in the inversion, new monthly observations are utilized and new emissions estimates are produced. The optimized emissions represent deviations from the reference emissions that lead to a better fit to the observations. The seasonal processes are optimized for each month, and contain the methane seasonality and interannual variability. The aseasonal processes, which are less variable, are

  5. 3D-characterization method and morphological filtering for the assessment and the design of friction optimized surfaces

    International Nuclear Information System (INIS)

    Groeger, S; Dietzsch, M; Burkhardt, T

    2011-01-01

    For a specific manipulation of friction surfaces it is important to measure and calculate geometrical parameters to derive the tribological behavior. The new functional approach presented in this paper is the calculation of the characteristic lateral extension of the real contact surface as well as the representative contact radius by applying morphological filters to a 3D-set of data. All surface characteristics, including form, waviness, roughness as well as defined microstructures, are extracted holistically with a 3D Coordinate Measuring Instrument or a Form Measuring Instrument, but with the smallest available tip radius. The paper presents the benefit of this holistic extraction method and the application of morphological filtering for the description of the contact form (plateau or sphere), the real contact surface, number of contacts, the typical contact radius and the typical lateral extension of the micro contact plateaus.

  6. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering

    KAUST Repository

    Chirumamilla, Manohar

    2014-01-22

    Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering

    KAUST Repository

    Chirumamilla, Manohar; Toma, Andrea; Gopalakrishnan, Anisha; Das, Gobind; Proietti Zaccaria, Remo; Krahne, Roman; Rondanina, Eliana; Leoncini, Marco; Liberale, Carlo; De Angelis, Francesco De; Di Fabrizio, Enzo M.

    2014-01-01

    Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Influence of material surface on the scanning error of a powder-free 3D measuring system

    OpenAIRE

    Kurz, Michael; Attin, Thomas; Mehl, Albert

    2015-01-01

    OBJECTIVES This study aims to evaluate the accuracy of a powder-free three-dimensional (3D) measuring system (CEREC Omnicam, Sirona), when scanning the surface of a material at different angles. Additionally, the influence of water was investigated. MATERIALS AND METHODS Nine different materials were combined with human tooth surface (enamel) to create n = 27 specimens. These materials were: Controls (InCoris TZI and Cerec Guide Bloc), ceramics (Vitablocs® Mark II and IPS Empress CAD), met...

  9. 3D surface topography study of the biofunctionalized nanocrystalline Ti–6Zr–4Nb/Ca–P

    International Nuclear Information System (INIS)

    Jakubowicz, J.; Adamek, G.; Jurczyk, M.U.; Jurczyk, M.

    2012-01-01

    In this work surface of the sintered Ti–6Zr–4Nb nanocrystalline alloy was electrochemically biofunctionalized. The porous surface was produced by anodic oxidation in 1 M H 3 PO 4 + 2%HF electrolyte at 10 V for 30 min. Next the calcium–phosphate (Ca–P) layer was deposited, onto the formed porous surface, using cathodic potential − 5 V kept for 60 min in 0.042 M Ca(NO 3 ) 2 + 0.025 M (NH 4 ) 2 HPO 4 + 0.1 M HCl electrolyte. The deposited Ca–P layer anchored in the pores. The biofunctionalized surface was studied by XRD, SEM and EDS. In vitro tests culture of normal human osteoblast (NHOst) cells showed very good cells proliferation, colonization and multilayering. Using optical profiler, roughness and hybrid 3D surface topography parameters were estimated. Correlation between surface composition, morphology, roughness and biocompatibility results was done. It has been shown by us that surface with appropriate chemical composition and topography, after combined electrochemical anodic and cathodic surface treatment, supports osteoblast adhesion and proliferation. 3D topography measurements using optical profiler play a key role in the biomaterials surface analysis. - Highlights: ► Nanocrystalline Ti–6Zr–4Nb/Ca–P material was produced for hard tissue implant applications. ► Calcium-phosphate results in surface biofunctionalization. ► The biofunctionalized surface shows good in-vitro behavior.

  10. 3-D surface properties of glacier penitentes over an ablation season, measured using a Microsoft Xbox Kinect

    Directory of Open Access Journals (Sweden)

    L. I. Nicholson

    2016-09-01

    Full Text Available In this study, the first small-scale digital surface models (DSMs of natural penitentes on a glacier surface were produced using a Microsoft Xbox Kinect sensor on Tapado Glacier, Chile (30°08′ S, 69°55′ W. The surfaces produced by the complete processing chain were within the error of standard terrestrial laser scanning techniques, but insufficient overlap between scanned sections that were mosaicked to cover the sampled areas can result in three-dimensional (3-D positional errors of up to 0.3 m. Between November 2013 and January 2014 penitentes become fewer, wider and deeper, and the distribution of surface slope angles becomes more skewed to steep faces. Although these morphological changes cannot be captured by manual point measurements, mean surface lowering of the scanned areas was comparable to that derived from manual measurements of penitente surface height at a minimum density of 5 m−1 over a 5 m transverse profile. Roughness was computed on the 3-D surfaces by applying two previously published geometrical formulae: one for a 3-D surface and one for single profiles sampled from the surface. Morphometric analysis shows that skimming flow is persistent over penitentes, providing conditions conducive for the development of a distinct microclimate within the penitente troughs. For each method a range of ways of defining the representative roughness element height was used, and the calculations were done both with and without application of a zero displacement height offset to account for the likelihood of skimming air flow over the closely spaced penitentes. The computed roughness values are on the order of 0.01–0.10 m during the early part of the ablation season, increasing to 0.10–0.50 m after the end of December, in line with the roughest values previously published for glacier ice. Both the 3-D surface and profile methods of computing roughness are strongly dependent on wind direction. However, the two

  11. Investigations of Surface Topography of Hot Working Tool Steel Manufactured with the Use of 3D Print

    Directory of Open Access Journals (Sweden)

    Grobelny Pawel

    2017-01-01

    Full Text Available The paper presents the possibilities of 3D printing of chosen hot working tool steel for manufacturing ready made parts. Results of examination of the surface topography of material manufactured by the technology Laser CUSING®B (Laser melting with metals on the machine, Concept Laser M1 3D printing of metal parts has the potential to revolutionize the market of manufacturing and supplying parts. It makes it possible to dissipate manufacturing and to produce parts on request at lower cost and less energy consumption. The parameters of the surface topography of the hot working tool steel directly after printing can differ depending on the distance from the base plate. The differences of surface roughness values can amount from 32% to 85% for Ra and from 59% to 85% for Rz in comparison of the sample bottom to its top.

  12. 3D-SURFER 2.0: web platform for real-time search and characterization of protein surfaces.

    Science.gov (United States)

    Xiong, Yi; Esquivel-Rodriguez, Juan; Sael, Lee; Kihara, Daisuke

    2014-01-01

    The increasing number of uncharacterized protein structures necessitates the development of computational approaches for function annotation using the protein tertiary structures. Protein structure database search is the basis of any structure-based functional elucidation of proteins. 3D-SURFER is a web platform for real-time protein surface comparison of a given protein structure against the entire PDB using 3D Zernike descriptors. It can smoothly navigate the protein structure space in real-time from one query structure to another. A major new feature of Release 2.0 is the ability to compare the protein surface of a single chain, a single domain, or a single complex against databases of protein chains, domains, complexes, or a combination of all three in the latest PDB. Additionally, two types of protein structures can now be compared: all-atom-surface and backbone-atom-surface. The server can also accept a batch job for a large number of database searches. Pockets in protein surfaces can be identified by VisGrid and LIGSITE (csc) . The server is available at http://kiharalab.org/3d-surfer/.

  13. Combining 3D human in vitro methods for a 3Rs evaluation of novel titanium surfaces in orthopaedic applications.

    Science.gov (United States)

    Stevenson, G; Rehman, S; Draper, E; Hernández-Nava, E; Hunt, J; Haycock, J W

    2016-07-01

    In this study, we report on a group of complementary human osteoblast in vitro test methods for the preclinical evaluation of 3D porous titanium surfaces. The surfaces were prepared by additive manufacturing (electron beam melting [EBM]) and plasma spraying, allowing the creation of complex lattice surface geometries. Physical properties of the surfaces were characterized by SEM and profilometry and 3D in vitro cell culture using human osteoblasts. Primary human osteoblast cells were found to elicit greater differences between titanium sample surfaces than an MG63 osteoblast-like cell line, particularly in terms of cell survival. Surface morphology was associated with higher osteoblast metabolic activity and mineralization on rougher titanium plasma spray coated surfaces than smoother surfaces. Differences in osteoblast survival and metabolic activity on titanium lattice structures were also found, despite analogous surface morphology at the cellular level. 3D confocal microscopy identified osteoblast organization within complex titanium surface geometries, adhesion, spreading, and alignment to the biomaterial strut geometries. Mineralized nodule formation throughout the lattice structures was also observed, and indicative of early markers of bone in-growth on such materials. Testing methods such as those presented are not traditionally considered by medical device manufacturers, but we suggest have value as an increasingly vital tool in efficiently translating pre-clinical studies, especially in balance with current regulatory practice, commercial demands, the 3Rs, and the relative merits of in vitro and in vivo studies. Biotechnol. Bioeng. 2016;113: 1586-1599. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  14. Functionalization of titanium surface with chitosan via silanation: 3D CLSM imaging of cell biocompatibility behaviour.

    Science.gov (United States)

    Attik, G N; D'Almeida, M; Toury, B; Grosgogeat, B

    2013-09-16

    Biocompatibility ranks as one of the most important properties of dental materials. One of the criteria for biocompatibility is the absence of material toxicity to cells, according to the ISO 7405 and 10993 recommendations. Among numerous available methods for toxicity assessment; 3-dimensional Confocal Laser Scanning Microscopy (3D CLSM) imaging was chosen because it provides an accurate and sensitive index of living cell behavior in contact with chitosan coated tested implants. The purpose of this study was to investigate the in vitro biocompatibility of functionalized titanium with chitosan via a silanation using sensitive and innovative 3D CLSM imaging as an investigation method for cytotoxicity assessment. The biocompatibility of four samples (controls cells, TA6V, TA6V-TESBA and TA6V-TESBAChitosan) was compared in vitro after 24h of exposure. Confocal imaging was performed on cultured human gingival fibroblast (HGF1) like cells using Live/Dead® staining. Image series were obtained with a FV10i confocal biological inverted system and analyzed with FV10-ASW 3.1 Software (Olympus France). Image analysis showed no cytotoxicity in the presence of the three tested substrates after 24 h of contact. A slight decrease of cell viability was found in contact with TA6V-TESBA with and without chitosan compared to negative control cells. Our findings highlighted the use of 3D CLSM confocal imaging as a sensitive method to evaluate qualitatively and quantitatively the biocompatibility behavior of functionalized titanium with chitosan via a silanation. The biocompatibility of the new functionalized coating to HGF1 cells is as good as the reference in biomedical device implantation TA6V.

  15. Spatial Accuracy of Embedded Surface Coloring in Color 3D Printing

    DEFF Research Database (Denmark)

    Pedersen, David Bue; Hansen, Hans Nørgaard; Eiríksson, Eyþór Rúnar

    2015-01-01

    Measurement Machines(CMMʼs) and Machine Tools, that already hasbeen transferred to be applicable for AMmachine tools, [3] in order to determine the spatial accuracy of embedded color features to artifacts printed on a zCorp 650 color 3D Printer.The spatial color verification artifact is a flat platewith...... capable of full-color printing inpolymers[1]. Industrial service providers increasingly expand their product-range of full colorprint services, and as of today, the industry for full-color parts has grown rapidly, into a million-dollar industry [2]. With a new market emerging at such pace, it is believed...

  16. Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model.

    Science.gov (United States)

    Zhang, Wei; Chen, Jialin; Backman, Ludvig J; Malm, Adam D; Danielson, Patrik

    2017-03-01

    The optimal functionality of the native corneal stroma is mainly dependent on the well-ordered arrangement of extracellular matrix (ECM) and the pressurized structure. In order to develop an in vitro corneal model, it is crucial to mimic the in vivo microenvironment of the cornea. In this study, the influence of surface topography and mechanical strain on keratocyte phenotype and ECM formation within a biomimetic 3D corneal model is studied. By modifying the surface topography of materials, it is found that patterned silk fibroin film with 600 grooves mm -1 optimally supports cell alignment and ECM arrangement. Furthermore, treatment with 3% dome-shaped mechanical strain, which resembles the shape and mechanics of native cornea, significantly enhances the expression of keratocyte markers as compared to flat-shaped strain. Accordingly, a biomimetic 3D corneal model, in the form of a collagen-modified, silk fibroin-patterned construct subjected to 3% dome-shaped strain, is created. Compared to traditional 2D cultures, it supports a significantly higher expression of keratocyte and ECM markers, and in conclusion better maintains keratocyte phenotype, alignment, and fusiform cell shape. Therefore, the novel biomimetic 3D corneal model developed in this study serves as a useful in vitro 3D culture model to improve current 2D cultures for corneal studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of the Ultrasonic Nanocrystalline Surface Modification (UNSM on Bulk and 3D-Printed AISI H13 Tool Steels

    Directory of Open Access Journals (Sweden)

    In-Sik Cho

    2017-11-01

    Full Text Available A comparative study of the microstructure, hardness, and tribological properties of two different AISI H13 tool steels—classified as the bulk with no heat treatment steel or the 3D-printed steel—was undertaken. Both samples were subjected to ultrasonic nanocrystalline surface modification (UNSM to further enhance their mechanical properties and improve their tribological behavior. The objective of this study was to compare the mechanical properties and tribological behavior of these tool steels since steel can exhibit a wide variety of mechanical properties depending on different manufacturing processes. The surface hardness of the samples was measured using a micro-Vickers hardness tester. The hardness of the 3D-printed AISI H13 tool steel was found to be much higher than that of the bulk one. The surface morphology of the samples was characterized by electron backscattered diffraction (EBSD in order to analyze the grain size and number of fractions with respect to the misorientation angle. The results revealed that the grain size of the 3D-printed AISI H13 tool steel was less than 0.5 μm, whereas that of the bulk tool steel was greater than 4 μm. The number of fractions of the bulk tool steel was about 0.5 μm at a low misorientation angle, and it decreased gradually with increasing misorientation angle. The low-angle grain boundary (LAGB and high-angle grain boundary (HAGB of the bulk sample were about 21% and 79%, respectively, and those of the 3D-printed sample were about 8% and 92%, respectively. Moreover, the friction and wear behavior of the UNSM-treated AISI H13 tool steel specimen was better than those of the untreated one. This study demonstrated the capability of 3D-printed AISI H13 tool steel to exhibit excellent mechanical and tribological properties for industrial applications.

  18. EXAMINATION ABOUT INFLUENCE FOR PRECISION OF 3D IMAGE MEASUREMENT FROM THE GROUND CONTROL POINT MEASUREMENT AND SURFACE MATCHING

    Directory of Open Access Journals (Sweden)

    T. Anai

    2015-05-01

    Full Text Available As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results

  19. Examination about Influence for Precision of 3d Image Measurement from the Ground Control Point Measurement and Surface Matching

    Science.gov (United States)

    Anai, T.; Kochi, N.; Yamada, M.; Sasaki, T.; Otani, H.; Sasaki, D.; Nishimura, S.; Kimoto, K.; Yasui, N.

    2015-05-01

    As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching) by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results of analysis made

  20. Electrostatic and capillary force directed tunable 3D binary micro- and nanoparticle assemblies on surfaces

    International Nuclear Information System (INIS)

    Singh, G; Pillai, S; Arpanaei, A; Kingshott, P

    2011-01-01

    We report a simple, rapid and cost-effective method based on evaporation induced assembly to grow 3D binary colloidal assemblies on a hydrophobic/hydrophilic substrate by simple drop casting. The evaporation of a mixed colloidal drop results in ring-like or uniform area deposition depending on the concentration of particles, and thus assembly occurs at the periphery of a ring or uniformly all over the drop area. Binary colloidal assemblies of different crystal structure are successfully prepared over a wide range of size ratios (γ = small/large) from 0.06 to 0.30 by tuning the γ of the micro- and nanoparticles used during assembly. The growth mechanism of 3D binary colloidal assemblies is investigated and it is found that electrostatic forces facilitate assembly formation until the end of the evaporation process, with capillary forces also playing a role. In addition, the effects of solvent type, humidity, and salt concentration on crystal formation and ordering behaviour are also examined. Furthermore, long range, highly ordered binary colloidal assemblies can be fabricated by the choice of a low conducting solvent combined with evaporation induced assembly.

  1. Color 3D electronic imaging of the surface of the human body

    Science.gov (United States)

    Rioux, Marc

    1994-10-01

    The NRC laboratories have developed a laser scanning technique to digitize shapes and colors in registration. The technique, known as synchronized scanning, is capable of digitizing topography as small as the relief of a bare finger tip, showing a clear picture of the skin structure (essentially a clean fingerprint without distortion), as well as the shape and size of body components such as hands, face, and feet, and the full body of one or more subjects simultaneously. The laser scanner uses a RGB laser, coupled to an optical fiber, which is projected in the field of view. The 3D color measurements are made by optical triangulation to a resolution of 10 micrometers for finger tip scans and a resolution of 1 mm for whole body scans. Experimental results are presented and discussed. Potential applications of this technology in the field of identification and inspection of humans include face recognition, finger, foot and teeth print identification, and 3D mugshots that can be rapidly broadcast through satellite communication. One of the unique properties of this technology is that absolute measurements, not only appearance and relative position of features, can be used for identification purposes.

  2. Modeling of 3d Space-time Surface of Potential Fields and Hydrogeologic Modeling of Nuclear Waste Disposal Sites

    Science.gov (United States)

    Shestopalov, V.; Bondarenko, Y.; Zayonts, I.; Rudenko, Y.

    Introduction After the Chernobyl Nuclear Power Plant (CNPP) disaster (04.26.1986) a huge amount (over 2000 sq. km) of nuclear wastes appeared within so-called "Cher- nobyl Exclusion Zone" (CEZ). At present there are not enough storage facilities in the Ukraine for safe disposal of nuclear wastes and hazardous chemical wastes. The urgent problem now is safe isolation of these dangerous wastes. According to the developed state program of radioactive waste management, the construction of a na- tional storage facility of nuclear wastes is planned. It is also possible to create regional storage facilities for hazardous chemical wastes. The region of our exploration cov- ers the eastern part of the Korosten Plutone and its slope, reaching the CNPP. 3D Space-Time Surface Imaging of Geophysical Fields. There are only three direct meth- ods of stress field reconstruction in present practice, namely the field investigations based on the large-scale fracturing tests, petrotectonic and optical polarization meth- ods. Unfortunately, all these methods are extremely laborious and need the regular field tests, which is difficult to conduct in the areas of anisotropic rock outcrops. A compilation of magnetic and gravity data covering the CNPP area was carried out as a prelude to an interpretation study. More than thirty map products were generated from magnetic, gravity and geodesy data to prepare the 3D Space-Time Surface Images (3D STSI). Multi-layer topography and geophysic surfaces included: total magnetic intensity, isostatically-corrected Bouguer gravity, aspect and slope, first and second derivatives, vertical and horizontal curvature, histogram characteristics and space cor- relation coefficients between the gradient fields. Many maps shows the first and sec- ond derivatives of the potential fields, with the results of lineament (edge) structure detection superimposed. The lineament or edges of the potential fields are located from maximal gradient in many directions

  3. High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness.

    Science.gov (United States)

    Chen, Xiangfan; Liu, Wenzhong; Dong, Biqin; Lee, Jongwoo; Ware, Henry Oliver T; Zhang, Hao F; Sun, Cheng

    2018-05-01

    Advancements in three-dimensional (3D) printing technology have the potential to transform the manufacture of customized optical elements, which today relies heavily on time-consuming and costly polishing and grinding processes. However the inherent speed-accuracy trade-off seriously constrains the practical applications of 3D-printing technology in the optical realm. In addressing this issue, here, a new method featuring a significantly faster fabrication speed, at 24.54 mm 3 h -1 , without compromising the fabrication accuracy required to 3D-print customized optical components is reported. A high-speed 3D-printing process with subvoxel-scale precision (sub 5 µm) and deep subwavelength (sub 7 nm) surface roughness by employing the projection micro-stereolithography process and the synergistic effects from grayscale photopolymerization and the meniscus equilibrium post-curing methods is demonstrated. Fabricating a customized aspheric lens 5 mm in height and 3 mm in diameter is accomplished in four hours. The 3D-printed singlet aspheric lens demonstrates a maximal imaging resolution of 373.2 lp mm -1 with low field distortion less than 0.13% across a 2 mm field of view. This lens is attached onto a cell phone camera and the colorful fine details of a sunset moth's wing and the spot on a weevil's elytra are captured. This work demonstrates the potential of this method to rapidly prototype optical components or systems based on 3D printing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Matching Images to Models: Camera Calibration for 3-D Surface Reconstruction

    Science.gov (United States)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Cheeseman. Peter C.; Norvig, Peter (Technical Monitor)

    2001-01-01

    In a previous paper we described a system which recursively recovers a super-resolved three dimensional surface model from a set of images of the surface. In that paper we assumed that the camera calibration for each image was known. In this paper we solve two problems. Firstly, if an estimate of the surface is already known, the problem is to calibrate a new image relative to the existing surface model. Secondly, if no surface estimate is available, the relative camera calibration between the images in the set must be estimated. This will allow an initial surface model to be estimated. Results of both types of estimation are given.

  5. 3-D numerical simulation on the vibration of liquid sodium's free surface in sodium pool of FBR

    International Nuclear Information System (INIS)

    Han Biao; Yao Zhaohui; Ye Hongkai; Wang Xuefang

    1997-01-01

    This paper succeeds in simulating three-dimensional incompressible flows with free surface, complicated in-flow and out-flow boundary conditions and internal obstacles, and also can treat these fluid flows in arbitrary shape vessel using a partial cell. According to all kinds of the element influencing the free surface's vibration in sodium pool it may give the various wave's form, the highest and lowest position, and the amount of the vibration. This paper introduces the brief principle of VOF numerical method, develops the computational program based on NASA-VOF3D, provides some results about the free surface's vibration in sodium pool of FBR

  6. Large-Area Direct Laser-Shock Imprinting of a 3D Biomimic Hierarchical Metal Surface for Triboelectric Nanogenerators.

    Science.gov (United States)

    Jin, Shengyu; Wang, Yixiu; Motlag, Maithilee; Gao, Shengjie; Xu, Jin; Nian, Qiong; Wu, Wenzhuo; Cheng, Gary J

    2018-03-01

    Ongoing efforts in triboelectric nanogenerators (TENGs) focus on enhancing power generation, but obstacles concerning the economical and cost-effective production of TENGs continue to prevail. Micro-/nanostructure engineering of polymer surfaces has been dominantly utilized for boosting the contact triboelectrification, with deposited metal electrodes for collecting the scavenged energy. Nevertheless, this state-of-the-art approach is limited by the vague potential for producing 3D hierarchical surface structures with conformable coverage of high-quality metal. Laser-shock imprinting (LSI) is emerging as a potentially scalable approach for directly surface patterning of a wide range of metals with 3D nanoscale structures by design, benefiting from the ultrahigh-strain-rate forming process. Here, a TENG device is demonstrated with LSI-processed biomimetic hierarchically structured metal electrodes for efficient harvesting of water-drop energy in the environment. Mimicking and transferring hierarchical microstructures from natural templates, such as leaves, into these water-TENG devices is effective regarding repelling water drops from the device surface, since surface hydrophobicity from these biomicrostructures maximizes the TENG output. Among various leaves' microstructures, hierarchical microstructures from dried bamboo leaves are preferable regarding maximizing power output, which is attributed to their unique structures, containing both dense nanostructures and microscale features, compared with other types of leaves. Also, the triboelectric output is significantly improved by closely mimicking the hydrophobic nature of the leaves in the LSI-processed metal surface after functionalizing it with low-surface-energy self-assembled-monolayers. The approach opens doors to new manufacturable TENG technologies for economically feasible and ecologically friendly production of functional devices with directly patterned 3D biomimic metallic surfaces in energy

  7. Synthesis, surface group modification of 3D MnV2O6 nanostructures and adsorption effect on Rhodamine B

    International Nuclear Information System (INIS)

    Zhang, Wanqun; Shi, Lei; Tang, Kaibin; Liu, Zhongping

    2012-01-01

    Highlights: ► Fabrication of urchin-like MnV 2 O 6 with oxygen-containing surface groups. ► Mn 0.5 V 2 O 5 ·nH 2 O as an intermediate product holds the key to the final products. ► 3D architectures of MnV 2 O 6 with oxygen-containing surface groups as sorbent. ► The sorbent shows a good adsorption ability. -- Abstract: Highly uniform 3D MnV 2 O 6 nanostructures modified by oxygen functional groups (-COO-) were successfully prepared in large quantities by an approach involving preparation of vanadyl ethylene glycolate as the precursor. The growth and self-assembly of MnV 2 O 6 nanobelts and nanorods could be readily tuned by additive species and quantities, which brought different morphologies and sizes to the final products. With a focus on the regulation of structure, the formation process of 3D architectures of MnV 2 O 6 by self-assembly of nanobelts was followed by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The consecutive processes of vanadyl ethylene glycolate and benzoyl peroxide assisted formation of layered structure Mn 0.5 V 2 O 5 ·nH 2 O, growth of aligned MnV 2 O 6 nanobelts, and oriented assembly were proposed for the growth mechanism. The band gap vs. different morphology was also studied. Optical characterization of these MnV 2 O 6 with different morphologies showed direct bandgap energies at 1.8–1.95 eV. The adsorption properties of 3D MnV 2 O 6 nanostructures synthesized under different conditions were investigated through the removal test of Rhodamine B in aqueous water, and the 3D nanostructures synthesized with 30 g L −1 benzoyl peroxide showed good adsorption capability of Rhodamine B.

  8. Efficiency assessment of runoff harvesting techniques using a 3D coupled surface-subsurface hydrological model

    International Nuclear Information System (INIS)

    Verbist, K.; Cronelis, W. M.; McLaren, R.; Gabriels, D.; Soto, G.

    2009-01-01

    In arid and semi-arid zones runoff harvesting techniques are often applied to increase the water retention and infiltration on steep slopes. Additionally, they act as an erosion control measure to reduce land degradation hazards. Both in literature and in the field, a large variety of runoff collecting systems are found, as well as large variations in design and dimensions. Therefore, detailed measurements were performed on a semi-arid slope in central Chile to allow identification of the effect of a simple water harvesting technique on soil water availability. For this purpose, twenty two TDR-probes were installed and were monitored continuously during and after a simulated rainfall event. These data were used to calibrate the 3D distributed flow model HydroGeoSphere, to assess the runoff components and soil water retention as influenced by the water harvesting technique, both under simulated and natural rainfall conditions. (Author) 6 refs.

  9. Potential for protein surface shape analysis using spherical harmonics and 3D Zernike descriptors.

    Science.gov (United States)

    Venkatraman, Vishwesh; Sael, Lee; Kihara, Daisuke

    2009-01-01

    With structure databases expanding at a rapid rate, the task at hand is to provide reliable clues to their molecular function and to be able to do so on a large scale. This, however, requires suitable encodings of the molecular structure which are amenable to fast screening. To this end, moment-based representations provide a compact and nonredundant description of molecular shape and other associated properties. In this article, we present an overview of some commonly used representations with specific focus on two schemes namely spherical harmonics and their extension, the 3D Zernike descriptors. Key features and differences of the two are reviewed and selected applications are highlighted. We further discuss recent advances covering aspects of shape and property-based comparison at both global and local levels and demonstrate their applicability through some of our studies.

  10. Simulation of mirror surfaces for virtual estimation of visibility lines for 3D motor vehicle collision reconstruction.

    Science.gov (United States)

    Leipner, Anja; Dobler, Erika; Braun, Marcel; Sieberth, Till; Ebert, Lars

    2017-10-01

    3D reconstructions of motor vehicle collisions are used to identify the causes of these events and to identify potential violations of traffic regulations. Thus far, the reconstruction of mirrors has been a problem since they are often based on approximations or inaccurate data. Our aim with this paper was to confirm that structured light scans of a mirror improve the accuracy of simulating the field of view of mirrors. We analyzed the performances of virtual mirror surfaces based on structured light scans using real mirror surfaces and their reflections as references. We used an ATOS GOM III scanner to scan the mirrors and processed the 3D data using Geomagic Wrap. For scene reconstruction and to generate virtual images, we used 3ds Max. We compared the simulated virtual images and photographs of real scenes using Adobe Photoshop. Our results showed that we achieved clear and even mirror results and that the mirrors behaved as expected. The greatest measured deviation between an original photo and the corresponding virtual image was 20 pixels in the transverse direction for an image width of 4256 pixels. We discussed the influences of data processing and alignment of the 3D models on the results. The study was limited to a distance of 1.6m, and the method was not able to simulate an interior mirror. In conclusion, structured light scans of mirror surfaces can be used to simulate virtual mirror surfaces with regard to 3D motor vehicle collision reconstruction. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Surface Acoustic Waves (SAW-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2015-12-01

    Full Text Available Detection and quantification of cell viability and growth in two-dimensional (2D and three-dimensional (3D cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose–response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in

  12. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures.

    Science.gov (United States)

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-12-19

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose-response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  13. Pd surface functionalization of 3D electroformed Ni and Ni-Mo alloy metallic nanofoams for hydrogen production

    Science.gov (United States)

    Petica, A.; Brincoveanu, O.; Golgovici, F.; Manea, A. C.; Enachescu, M.; Anicai, L.

    2018-03-01

    The paper presents some experimental results regarding the functionalization of 3D electroformed Ni and Ni-Mo alloy nanofoams with Pd nanoclusters, as potential cathodic materials suitable for HER during seawater electrolysis. The electrodeposition from aqueous electrolytes containing NiCl2 and NH4Cl has been applied to prepare the 3D Ni nanofoams. Ni-Mo alloys have been electrodeposited involving aqueous ammonium citrate type electrolytes. Pd surface functionalization has been performed using both electroless and electrochemical procedures. Pd content varied in the range of 0.5 – 8 wt.%, depending on the applied procedure and the operation conditions. The use of a porous structure associated with alloying element (i.e. Mo) and Pd surface functionalization facilitated enhanced performances from HER view point in seawater electrolyte (lower Tafel slopes). The determined Tafel slope values ranged from 123 to 105 mV.dec-1, suggesting the Volmer step as rate determining step. The improvement of the HER catalytic activity may be ascribed to a synergistic effect between the high real active area of the 3D electroformed metallic substrate, Ni alloying with a left transition metal and surface modification using Pd noble metal.

  14. Observer success rates for identification of 3D surface reconstructed facial images and implications for patient privacy and security

    Science.gov (United States)

    Chen, Joseph J.; Siddiqui, Khan M.; Fort, Leslie; Moffitt, Ryan; Juluru, Krishna; Kim, Woojin; Safdar, Nabile; Siegel, Eliot L.

    2007-03-01

    3D and multi-planar reconstruction of CT images have become indispensable in the routine practice of diagnostic imaging. These tools cannot only enhance our ability to diagnose diseases, but can also assist in therapeutic planning as well. The technology utilized to create these can also render surface reconstructions, which may have the undesired potential of providing sufficient detail to allow recognition of facial features and consequently patient identity, leading to violation of patient privacy rights as described in the HIPAA (Health Insurance Portability and Accountability Act) legislation. The purpose of this study is to evaluate whether 3D reconstructed images of a patient's facial features can indeed be used to reliably or confidently identify that specific patient. Surface reconstructed images of the study participants were created used as candidates for matching with digital photographs of participants. Data analysis was performed to determine the ability of observers to successfully match 3D surface reconstructed images of the face with facial photographs. The amount of time required to perform the match was recorded as well. We also plan to investigate the ability of digital masks or physical drapes to conceal patient identity. The recently expressed concerns over the inability to truly "anonymize" CT (and MRI) studies of the head/face/brain are yet to be tested in a prospective study. We believe that it is important to establish whether these reconstructed images are a "threat" to patient privacy/security and if so, whether minimal interventions from a clinical perspective can substantially reduce this possibility.

  15. An Effective Approach of Teeth Segmentation within the 3D Cone Beam Computed Tomography Image Based on Deformable Surface Model

    Directory of Open Access Journals (Sweden)

    Xutang Zhang

    2016-01-01

    Full Text Available In order to extract the pixels of teeth from 3D Cone Beam Computed Tomography (CBCT image, in this paper, a novel 3D segmentation approach based on deformable surface mode is developed for 3D tooth model reconstruction. Different forces are formulated to handle the segmentation problem by using different strategies. First, the proposed method estimates the deformation force of vertex model by simulating the deformation process of a bubble under the action of internal pressure and external force field. To handle the blurry boundary, a “braking force” is proposed deriving from the 3D gradient information calculated by transforming the Sobel operator into three-dimension representation. In addition, a “border reinforcement” strategy is developed for handling the cases with complicate structures. Moreover, the proposed method combines affine cell image decomposition (ACID grid reparameterization technique to handle the unstable changes of topological structure and deformability during the deformation process. The proposed method was performed on 510 CBCT images. To validate the performance, the results were compared with those of two other well-studied methods. Experimental results show that the proposed approach had a good performance in handling the cases with complicate structures and blurry boundaries well, is effective to converge, and can successfully achieve the reconstruction task of various types of teeth in oral cavity.

  16. Surface roughness characterization of cast components using 3D optical methods

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Hansen, Hans Nørgaard

    scanning probe image processor (SPIP) software and the results of the surface roughness parameters obtained were subjected to statistical analyses. The bearing area ratio was introduced and applied to the surface roughness analysis. From the results, the surface quality of the standard comparators...... is successfully characterised and it was established that the areal parameters are more informative for sand cast components. The roughness values of the standard visual comparators can serve as a control for the cast components and for order specifications in the foundry industry. A series of iron castings were...... made in green sand moulds and the surface roughness parameter (Sa) values were compared with those of the standards. Sa parameter suffices for the evaluation of casting surface texture. The S series comparators showed a better description of the surface of castings after shot blasting than the A series...

  17. True-color 3D surface metrology for additive manufacturing using interference microscopy

    OpenAIRE

    DiSciacca, Jack; Gomez, Carlos; Thompson, Adam; Lawes, Simon; Leach, Richard; Colonna de Lega, Xavier; de Groot, Peter

    2017-01-01

    Coherence scanning interferometry (CSI) is widely used for surface topography characterisation. With the ability to measure both rough surfaces with the high slopes and optical finishes, CSI has made contibutions in fields from industrial machining to optical fabrication and polishing [1,2]. While the low coherence sources for CSI are typically broadband and suitable for color imaging, the metrology is usually performed without regards for the color information [3]. We present color surface t...

  18. Influence of material surface on the scanning error of a powder-free 3D measuring system.

    Science.gov (United States)

    Kurz, Michael; Attin, Thomas; Mehl, Albert

    2015-11-01

    This study aims to evaluate the accuracy of a powder-free three-dimensional (3D) measuring system (CEREC Omnicam, Sirona), when scanning the surface of a material at different angles. Additionally, the influence of water was investigated. Nine different materials were combined with human tooth surface (enamel) to create n = 27 specimens. These materials were: Controls (InCoris TZI and Cerec Guide Bloc), ceramics (Vitablocs® Mark II and IPS Empress CAD), metals (gold and amalgam) and composites (Tetric Ceram, Filtek Supreme A2B and A2E). The highly polished samples were scanned at different angles with and without water. The 216 scans were then analyzed and descriptive statistics were obtained. The height difference between the tooth and material surfaces, as measured with the 3D scans, ranged from 0.83 μm (±2.58 μm) to -14.79 μm (±3.45 μm), while the scan noise on the materials was between 3.23 μm (±0.79 μm) and 14.24 μm (±6.79 μm) without considering the control groups. Depending on the thickness of the water film, measurement errors in the order of 300-1,600 μm could be observed. The inaccuracies between the tooth and material surfaces, as well as the scan noise for the materials, were within the range of error for measurements used for conventional impressions and are therefore negligible. The presence of water, however, greatly affects the scan. The tested powder-free 3D measuring system can safely be used to scan different material surfaces without the prior application of a powder, although drying of the surface prior to scanning is highly advisable.

  19. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  20. A non-contact 3D method to characterize the surface roughness of castings

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Hansen, Hans Nørgaard

    2013-01-01

    that the surface quality of the standard comparators was successfully evaluated and it was established that the areal parameters are the most informative for cast components. The results from the surface comparators were compared with the results from a stylus instrument. Sand cast components were also evaluated...

  1. Technical validation of the Di3D stereophotogrammetry surface imaging system

    DEFF Research Database (Denmark)

    Winder, R.J.; Darvann, Tron Andre; McKnight, W.

    2008-01-01

    The purpose of this work was to assess the technical performance of a three-dimensional surface imaging system for geometric accuracy and maximum field of view. The system was designed for stereophotogrammetry capture of digital images from three-dimensional surfaces of the head, face, and neck...

  2. High-precision surface formation method and the 3-D shaded display of the brain obtained from CT images

    International Nuclear Information System (INIS)

    Niki, Noboru; Fukuda, Hiroshi

    1987-01-01

    Our aim is to display the precise 3-D appearance of the brain based on data provided by CT images. For this purpose, we have developed a method of precisely forming surfaces from brain contours. The method expresses the brain surface as the sum of several partial surfaces. Each partial surface is individually constructed from respective parts of brain contours. The brain surface is finally made up of a superposition of partial surfaces. Two surface formation algorithms based on this principle are presented. One expresses the brain surface as the sum of a brain outline surface and sulcus surfaces. The other expresses the brain surface as the sum of surfaces in the same part of the brain. The effectiveness of these algorithms is shown by evaluation of contours obtained from dog and human brain samples and CT images. The latter algorithm is shown to be superior for high-resolution CT images. Optional cut-away views of the brain constructed by these algorithms are also shown. (author)

  3. Adaptive Sampling based 3D Profile Measuring Method for Free-Form Surface

    Science.gov (United States)

    Duan, Xianyin; Zou, Yu; Gao, Qiang; Peng, Fangyu; Zhou, Min; Jiang, Guozhang

    2018-03-01

    In order to solve the problem of adaptability and scanning efficiency of the current surface profile detection device, a high precision and high efficiency detection approach is proposed for surface contour of free-form surface parts based on self- adaptability. The contact mechanical probe and the non-contact laser probe are synthetically integrated according to the sampling approach of adaptive front-end path detection. First, the front-end path is measured by the non-contact laser probe, and the detection path is planned by the internal algorithm of the measuring instrument. Then a reasonable measurement sampling is completed according to the planned path by the contact mechanical probe. The detection approach can effectively improve the measurement efficiency of the free-form surface contours and can simultaneously detect the surface contours of unknown free-form surfaces with different curvatures and even different rate of curvature. The detection approach proposed in this paper also has important reference value for free-form surface contour detection.

  4. Surfaces of Minimal Paths from Topological Structures and Applications to 3D Object Segmentation

    KAUST Repository

    Algarni, Marei

    2017-10-24

    Extracting surfaces, representing boundaries of objects of interest, from volumetric images, has important applications in various scientific domains, from medicine to geology. In this thesis, I introduce novel mathematical, computational, and algorithmic machinery for extraction of sheet-like surfaces (with boundary), whose boundary is unknown a-priori, a particularly important case in applications that has no convenient methods. This case of a surface with boundaries has applications in extracting faults (among other geological structures) from seismic images in geological applications. Another application domain is in the extraction of structures in the lung from computed tomography (CT) images. Although many methods have been developed in computer vision for extraction of surfaces, including level sets, convex optimization approaches, and graph cut methods, none of these methods appear to be applicable to the case of surfaces with boundary. The novel methods for surface extraction, derived in this thesis, are built on the theory of Minimal Paths, which has been used primarily to extract curves in noisy or corrupted images and have had wide applicability in 2D computer vision. This thesis extends such methods to surfaces, and it is based on novel observations that surfaces can be determined by extracting topological structures from the solution of the eikonal partial differential equation (PDE), which is the basis of Minimal Path theory. Although topological structures are known to be difficult to extract from images, which are both noisy and discrete, this thesis builds robust methods based on Morse theory and computational topology to address such issues. The algorithms have run-time complexity O(NlogN), less complex than existing approaches. The thesis details the algorithms, theory, and shows an extensive experimental evaluation on seismic images and medical images. Experiments show out-performance in accuracy, computational speed, and user convenience

  5. Novel transparent high-performance AgNWs/ZnO electrodes prepared on unconventional substrates with 3D structured surfaces

    Science.gov (United States)

    Lan, Wei; Yang, Zhiwei; Zhang, Yue; Wei, Yupeng; Wang, Pengxiang; Abas, Asim; Tang, Guomei; Zhang, Xuetao; Wang, Junya; Xie, Erqing

    2018-03-01

    With the development of optoelectronic devices with three-dimensional (3D) structured surfaces, transparent electrodes that can be deposited on non-plane substrates have become increasingly important. In this paper, novel transparent silver nanowire (AgNWs)/ZnO film electrodes were uniformly prepared on treated 3D glass and PET substrates with a combination of spin-coating and heat-welding. The AgNWs/ZnO films show a transmittance of ∼88% and a sheet resistance of ∼10 Ω/sq. They are comparable with commercial ITO films. Furthermore, only a small in-plane resistance variation of ∼1 Ω/sq was measured using four-point probe mapping in films with a 10 cm × 10 cm area. These results confirm that these novel film electrodes are very uniform. Both electrical resistance and optical transmittance of the films remain mostly intact after 1000 bending cycles and tape peeling-tests with 10 cycles. The films show high thermal stability for more than one month at 80 °C. The strategy provides a new route for the design and fabrication of optoelectronic devices with 3D structured surfaces.

  6. Surfaces of Minimal Paths from Topological Structures and Applications to 3D Object Segmentation

    KAUST Repository

    Algarni, Marei Saeed Mohammed

    2017-01-01

    Extracting surfaces, representing boundaries of objects of interest, from volumetric images, has important applications in various scientific domains, from medicine to geology. In this thesis, I introduce novel mathematical, computational

  7. 3D facial expression recognition based on histograms of surface differential quantities

    KAUST Repository

    Li, Huibin; Morvan, Jean-Marie; Chen, Liming

    2011-01-01

    . To characterize shape information of the local neighborhood of facial landmarks, we calculate the weighted statistical distributions of surface differential quantities, including histogram of mesh gradient (HoG) and histogram of shape index (HoS). Normal cycle

  8. Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing

    Science.gov (United States)

    Restrepo, S.; Ocampo, S.; Ramírez, J. A.; Paucar, C.; García, C.

    2017-12-01

    Repairing tissues and organs has been the main goal of surgical procedures. Since the 1990s, the main goal of tissue engineering has been reparation, using porous scaffolds that serve as a three-dimensional template for the initial fixation of cells and subsequent tissue formation both in vitro and in vivo. A scaffold must have specific characteristics of porosity, interconnectivity, surface area, pore volume, surface tortuosity, permeability and mechanical properties, which makes its design, manufacturing and characterization a complex process. Inspired by nature, triply periodic minimal surfaces (TPMS) have emerged as an alternative for the manufacture of porous pieces with design requirements, such as scaffolds for tissue repair. In the present work, we used the technique of 3D printing to obtain ceramic structures with Gyroid, Schwarz Primitive and Schwarz Diamond Surfaces shapes, three TPMS that fulfil the geometric requirements of a bone tissue scaffold. The main objective of this work is to compare the mechanical properties of ceramic pieces of three different forms of TPMS printed in 3D using a commercial ceramic paste. In this way it will be possible to clarify which is the TPMS with appropriate characteristics to construct scaffolds of ceramic materials for bone repair. A dependence of the mechanical properties with the geometry was found being the Primitive Surface which shows the highest mechanical properties.

  9. Differences in the surface texture of aggregate particles determined by 3D model derived from optic microscope measurements

    Directory of Open Access Journals (Sweden)

    Jozef Komačka

    2015-12-01

    Full Text Available The surface texture of aggregate particles was investigated based on the 3D model of surface generated from the measurements by optic microscope. New software MicroSYS was developed to determine the wrapping plane of 3D model of aggregate using the function called “Thin plate spline“. New parameter for evaluation of surface texture of aggregate particle was proposed as the volumetric difference between two planes (wrapping plane and aggregate surface. Applicability of this parameters was tested on two aggregate fractions (4/8 and 8/11 coming form 11 quarries in Slovakia. The tested aggregates differed from petrography point of view and ranged from soft to hard. The difference among the quarries and also between fractions of aggregate was found out. The better surface texture was observed for the finner fraction of aggregate. Simultaneously, the better results were determined in the case of aggregate produced from the ingeous intrusive or extrusive rocks comparing to the sedimentary carbonate rocks aggregate.

  10. A hybrid 3D SEM reconstruction method optimized for complex geologic material surfaces.

    Science.gov (United States)

    Yan, Shang; Adegbule, Aderonke; Kibbey, Tohren C G

    2017-08-01

    Reconstruction methods are widely used to extract three-dimensional information from scanning electron microscope (SEM) images. This paper presents a new hybrid reconstruction method that combines stereoscopic reconstruction with shape-from-shading calculations to generate highly-detailed elevation maps from SEM image pairs. The method makes use of an imaged glass sphere to determine the quantitative relationship between observed intensity and angles between the beam and surface normal, and the detector and surface normal. Two specific equations are derived to make use of image intensity information in creating the final elevation map. The equations are used together, one making use of intensities in the two images, the other making use of intensities within a single image. The method is specifically designed for SEM images captured with a single secondary electron detector, and is optimized to capture maximum detail from complex natural surfaces. The method is illustrated with a complex structured abrasive material, and a rough natural sand grain. Results show that the method is capable of capturing details such as angular surface features, varying surface roughness, and surface striations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Multiscale analysis of replication technique efficiency for 3D roughness characterization of manufactured surfaces

    Science.gov (United States)

    Jolivet, S.; Mezghani, S.; El Mansori, M.

    2016-09-01

    The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.

  12. Femtosecond laser surface texturing of 3D poly-ε-caprolactone matrices for bone tissue engineering applications

    Science.gov (United States)

    Daskalova, A.; Bliznakova, I.; Zhelyazkova, A.; Ostrowska, B.; Trifonov, A.; Buchvarov, I.; Avramov, L.; Husinsky, W.

    2018-03-01

    Fibrous 3D matrices were fabricated from poly-ɛ-caprolactone (PCL) by fused deposition modeling. Femtosecond laser irradiation was then used to demonstrate the possibility to affect the porosity of the 3D PCL fiber meshes. The surface characteristics were analyzed by scanning electron microscopy (SEM) and confocal microscopy. The interrelationship was examined between the laser processing parameters (number of pulses, pulse energy applied) and the response of the biomaterial. The formation was demonstrated of well-defined micropores, while the original fiber structure was retained. The study of cells cultivation on the laser-modified scaffolds showed good adhesion compared to a non-modified scaffold. The results obtained showed that femtosecond laser processing can be used as an alternative non-contact tool in enhancing the porosity of artificial constructs, thus influencing the cell adhesion into fibrous meshes.

  13. Comparison of surface extraction techniques performance in computed tomography for 3D complex micro-geometry dimensional measurements

    DEFF Research Database (Denmark)

    Torralba, Marta; Jiménez, Roberto; Yagüe-Fabra, José A.

    2018-01-01

    micro-geometries as well (i.e., in the sub-mm dimensional range). However, there are different factors that may influence the CT process performance, being one of them the surface extraction technique used. In this paper, two different extraction techniques are applied to measure a complex miniaturized......The number of industrial applications of computed tomography (CT) for dimensional metrology in 100–103 mm range has been continuously increasing, especially in the last years. Due to its specific characteristics, CT has the potential to be employed as a viable solution for measuring 3D complex...... dental file by CT in order to analyze its contribution to the final measurement uncertainty in complex geometries at the mm to sub-mm scales. The first method is based on a similarity analysis: the threshold determination; while the second one is based on a gradient or discontinuity analysis: the 3D...

  14. Orthogonal functionalization of nanoporous substrates: control of 3D surface functionality.

    Science.gov (United States)

    Lazzara, Thomas D; Kliesch, Torben-Tobias; Janshoff, Andreas; Steinem, Claudia

    2011-04-01

    Anodic aluminum oxide (AAO) membranes with aligned, cylindrical, nonintersecting pores were selectively functionalized in order to create dual-functionality substrates with different pore-rim and pore-interior surface functionalities, using silane chemistry. We used a two-step process involving an evaporated thin gold film to protect the underlying surface functionality of the pore rims. Subsequent treatment with oxygen plasma of the modified AAO membrane removed the unprotected organic functional groups, i.e., the pore-interior surface. After gold removal, the substrate became optically transparent, and displayed two distinct surface functionalities, one at the pore-rim surface and another at the pore-interior surface. We achieved a selective hydrophobic functionalization with dodecyl-trichlorosilane of either the pore rims or the pore interiors. The deposition of planar lipid membranes on the functionalized areas by addition of small unilamellar vesicles occurred in a predetermined fashion. Small unilamellar vesicles only ruptured upon contact with the hydrophobic substrate regions forming solid supported hybrid bilayers. In addition, pore-rim functionalization with dodecyl-trichlorosilane allowed the formation of pore-spanning hybrid lipid membranes as a result of giant unilamellar vesicle rupture. Confocal laser scanning microscopy was employed to identify the selective spatial localization of the adsorbed fluorescently labeled lipids. The corresponding increase in the AAO refractive index due to lipid adsorption on the hydrophobic regions was monitored by optical waveguide spectroscopy. This simple orthogonal functionalization route is a promising method to control the three-dimensional surface functionality of nanoporous films. © 2011 American Chemical Society

  15. 3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform

    Science.gov (United States)

    Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul

    2018-03-01

    This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.

  16. 3D Plasma Nanotextured® Polymeric Surfaces for Protein or Antibody Arrays, and Biomolecule and Cell Patterning.

    Science.gov (United States)

    Tsougeni, Katerina; Ellinas, Kosmas; Koukouvinos, George; Petrou, Panagiota S; Tserepi, Angeliki; Kakabakos, Sotirios E; Gogolides, Evangelos

    2018-01-01

    Plasma micro-nanotexturing is a generic technology for topographical and chemical modification of surfaces and their implementation in microfluidics and microarrays. Nanotextured surfaces with desirable chemical functionality (and wetting behavior) have shown excellent biomolecule immobilization and cell adhesion. Specifically, nanotextured hydrophilic areas show (a) strong binding of biomolecules and (b) strong adhesion of cells, while nanotextured superhydrophobic areas show null adsorption of (a) proteins and (b) cells. Here we describe the protocols for (a) biomolecule adsorption control on nanotextured surfaces for microarray fabrication and (b) cell adhesion on such surfaces. 3D plasma nanotextured® substrates are commercialized through Nanoplasmas private company, a spin-off of the National Centre for Scientific Research Demokritos.

  17. A Case Study of a Hybrid Parallel 3D Surface Rendering Graphics Architecture

    DEFF Research Database (Denmark)

    Holten-Lund, Hans Erik; Madsen, Jan; Pedersen, Steen

    1997-01-01

    This paper presents a case study in the design strategy used inbuilding a graphics computer, for drawing very complex 3Dgeometric surfaces. The goal is to build a PC based computer systemcapable of handling surfaces built from about 2 million triangles, andto be able to render a perspective view...... of these on a computer displayat interactive frame rates, i.e. processing around 50 milliontriangles per second. The paper presents a hardware/softwarearchitecture called HPGA (Hybrid Parallel Graphics Architecture) whichis likely to be able to carry out this task. The case study focuses ontechniques to increase...

  18. Energy of surface states for 3D magnetic Schrödinger operators

    DEFF Research Database (Denmark)

    Nasrallah, Marwa

    In this dissertation, we study the Schrödinger operator with magnetic field in a three dimensional domain with compact smooth boundary. Functions in the domain of the operator satisfy (magnetic) Neumann condition on the boundary. The operator depends on the semi-classical parameter....... As this parameter becomes small, certain eigenfunctions of the operator are localized near the boundary of the domain, hence they will be called surface states. The main result of this dissertation is the calculation of the leading order terms of the energy and the number of surface states when the semi-classical...

  19. [Hybrid 3-D rendering of the thorax and surface-based virtual bronchoscopy in surgical and interventional therapy control].

    Science.gov (United States)

    Seemann, M D; Gebicke, K; Luboldt, W; Albes, J M; Vollmar, J; Schäfer, J F; Beinert, T; Englmeier, K H; Bitzer, M; Claussen, C D

    2001-07-01

    The aim of this study was to demonstrate the possibilities of a hybrid rendering method, the combination of a color-coded surface and volume rendering method, with the feasibility of performing surface-based virtual endoscopy with different representation models in the operative and interventional therapy control of the chest. In 6 consecutive patients with partial lung resection (n = 2) and lung transplantation (n = 4) a thin-section spiral computed tomography of the chest was performed. The tracheobronchial system and the introduced metallic stents were visualized using a color-coded surface rendering method. The remaining thoracic structures were visualized using a volume rendering method. For virtual bronchoscopy, the tracheobronchial system was visualized using a triangle surface model, a shaded-surface model and a transparent shaded-surface model. The hybrid 3D visualization uses the advantages of both the color-coded surface and volume rendering methods and facilitates a clear representation of the tracheobronchial system and the complex topographical relationship of morphological and pathological changes without loss of diagnostic information. Performing virtual bronchoscopy with the transparent shaded-surface model facilitates a reasonable to optimal, simultaneous visualization and assessment of the surface structure of the tracheobronchial system and the surrounding mediastinal structures and lesions. Hybrid rendering relieve the morphological assessment of anatomical and pathological changes without the need for time-consuming detailed analysis and presentation of source images. Performing virtual bronchoscopy with a transparent shaded-surface model offers a promising alternative to flexible fiberoptic bronchoscopy.

  20. High resolution 3-D shear wave velocity structure in South China from surface wave tomography

    Science.gov (United States)

    Ning, S.; Guo, Z.; Chen, Y. J.

    2017-12-01

    Using continuous data from a total of 638 seismic stations, including 484 from CEArray between 2008 and 2013 and 154 from SINOPROBE between 2014 and 2015, we perform both ambient noise and earthquake Rayleigh wave tomography across South China. Combining Rayleigh wave phase velocity between 6and 40s periods from ambient noise tomography and Rayleigh wave phase velocity between 20and 140s from teleseismic two-plane-wave tomography, we obtain phase velocity maps between 6 and140 s periods. We then invert Rayleigh wave phase velocity to construct a 3-D shear wave velocity structure of South China by Markov Chain Monte Carlo method. Similar to other inversion results, our results correspond topography well. Moreover, our results also reveal that velocity structure of the eastern South China in mantle depth is similar to eastern North China, the core of the western South China, Sichuan Block (SB),still exists thick lithosphere. However, owing to much more data employed and some data quality control techniques in this research, our results reveal more detailed structures. Along Qinling-Dabie Orogenic Belt (QDOB), North-South Gravity Lineament (NSGL) and the Sichuan-Yunnan Rhombic Block (SYRB), there are obvious high speed anomalies in depths of 10-20 km, which possibly imply ancient intrusions. Moreover, it seems that Tancheng-Lujiang Fault Zone (TLFZ) has already cut through QDOB, forming a deep fracture cutting through the crust of the whole China continent. Although SB still exists thick lithosphere, there are indications for thermal erosion. At the same time, the lithosphere of the central SYRB seems to be experiencing delamination process, obviously forming a barrier to prevent the hot Tibetan Plateau (TP) mantle material from flowing further southeast. Upwelling hot mantle material possibly triggered by this delamination process might be the cause of the Emeishan Large Igneous Province. There exists an intercontinental low velocity layer in the crust of the TP

  1. Computation of 3D steady Navier-Stokes flow with free-surface gravity waves

    NARCIS (Netherlands)

    Lewis, M.R.; Koren, B.; Raven, H.C.; Armfield, S.; Morgan, P.; Srinivas, K,

    2003-01-01

    In this paper an iterative method for the computation of stationary gravity-wave solutions is investigated, using a novel formulation of the free-surface (FS) boundary-value problem. This method requires the solution of a sequence of stationary Reynolds-Averaged Navier-Stokes subproblems employing

  2. Computation of 3D steady Navier-Stokes flow with free-surface gravity waves

    NARCIS (Netherlands)

    M.R. Lewis; B. Koren (Barry); H.C. Raven

    2003-01-01

    textabstractIn this paper an iterative method for the computation of stationary gravity-wave solutions is investigated, using a novel formulation of the free-surface (FS) boundary-value problem. This method requires the solution of a sequence of stationary Reynolds-Averaged Navier-Stokes subproblems

  3. 3-D shape analysis of palatal surface in patients with unilateral complete cleft lip and palate

    Czech Academy of Sciences Publication Activity Database

    Rusková, H.; Bejdová, Š.; Peterka, Miroslav; Krajíček, V.; Velemínská, J.

    2014-01-01

    Roč. 42, č. 5 (2014), e140-e147 ISSN 1010-5182 Grant - others:GA UK(CZ) 309611 Institutional support: RVO:68378041 Keywords : unilateral cleft of lip and palate * palate shape * surface scanning Subject RIV: FF - HEENT, Dentistry Impact factor: 2.933, year: 2014

  4. A Unified 3D Spatial Data Model for Surface and Subsurface Spatial ...

    African Journals Online (AJOL)

    user

    can represent two different features on the surface of the Earth. There are .... advanced cadastral system like Multi-Purpose Ca- ... fields whilst the object view approach considers the space as .... type, colour type etc to make images real. In this.

  5. An Experimental Comparison of Similarity Assessment Measures for 3D Models on Constrained Surface Deformation

    Science.gov (United States)

    Quan, Lulin; Yang, Zhixin

    2010-05-01

    To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.

  6. Duo gating on a 3D topological insulator - independent tuning of both topological surface states

    Science.gov (United States)

    Li, Chuan; de Ronde, Bob; Snelder, Marieke; Stehno, Martin; Huang, Yingkai; Golden, Mark; Brinkman, Alexander; ICE Team; IOP Collaboration

    ABSTRACT: Topological insulators are associated with a trove of exciting physics, such as the ability to host robust anyons, Majorana Bound States, which can be used for quantum computation. For future Majorana devices it is desirable to have the Fermi energy tuned as close as possible to the Dirac point of the topological surface state. Based on previous work on gating BSTS, we report the experimental progress towards gate-tuning of the top and bottom topological surface states of BiSbTeSe2 crystal flakes. When the Fermi level is moved across the Dirac point conduction is shown to change from electron dominated transport to hole dominated transport independently for either surface. In the high magnetic field, one can tune the system precisely between the different landau levels of both surfaces, thus a full gating map of the possible landau levels combination is established. In addition, we provide a simple capacitance model to explain the general hysteresis behaviors in topological insulator systems.

  7. Simulation of RBS spectra with known 3D sample surface roughness

    Czech Academy of Sciences Publication Activity Database

    Malinský, Petr; Siegel, J.; Hnatowicz, Vladimír; Macková, Anna; Švorčík, V.

    2017-01-01

    Roč. 406, SEP (2017), s. 99-103 ISSN 0168-583X R&D Projects: GA MŠk LM2015056; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : computer simulation * surface roughness * AFM Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.109, year: 2016

  8. Quantification of the lift height for magnetic force microscopy using 3D surface parameters

    International Nuclear Information System (INIS)

    Nenadovic, M.; Strbac, S.; Rakocevic, Z.

    2010-01-01

    In this work, the quantitative conditions for the lift height for imaging of the magnetic field using magnetic force microscopy (MFM) were optimized. A thin cobalt film deposited on a monocrystalline silicon (1 0 0) substrate with a thickness of 55 nm and a thin nickel film deposited on a glass with a thickness of 600 nm were used as samples. The topography of the surface was acquired by tapping mode atomic force microscopy (AFM), while MFM imaging was performed in the lift mode for various lift heights. It was determined that the sensitivity of the measurements was about 10% higher for images obtained at a scan angle of 90 o compared to a scan angle of 0 deg. Therefore, the three-dimensional surface texture parameters, i.e., average roughness, skewness, kurtosis and the bearing ratio, were determined in dependence on the lift height for a scan angle of 90 deg. The results of the analyses of the surface parameters showed that the influence of the substrate and its texture on the magnetic force image could be neglected for lift heights above 40 nm and that the upper lift height limit is 100 nm. It was determined that the optimal values of the lift heights were in the range from 60 to 80 nm, depending on the nature of the sample and on the type of the tip used.

  9. Evaluation of patellar cartilage surface lesions: comparison of CT arthrography and fat-suppressed FLASH 3D MR imaging

    International Nuclear Information System (INIS)

    Daenen, B.R.; Ferrara, M.A.; Marcelis, S.; Dondelinger, R.F.

    1998-01-01

    The aim of this study was to evaluate the sensitivity and specificity of fat-suppressed fast low-angle shot (FLASH) 3D MR imaging in the detection of patellar cartilage surface lesions in comparison with CT arthrography. Fifty patients, with or without symptoms of chondromalacia, were prospectively examined by CT arthrography and fat-suppressed 3D gradient-echo MR imaging. All MR examinations were evaluated by three observers, two of them reaching a consensus interpretation. The lesions were graded according to their morphology and their extent. The CT arthrography was considered as the reference examination. For both sets of observers, the final diagnosis of chondromalacia was obtained in 92.5 %. The specificity was 60 % on a patient-by-patient basis. Fissures were missed in 83 and 60 %, respectively, but were isolated findings only in 2.5 % of the cases. Considering ulcers involving more than 50 % of the cartilage thickness, 65 and 88 %, respectively, were recognized. Fat-suppressed FLASH 3D is an adequate pulse sequence for the detection of patellar cartilage ulcers. It can be applied on a routine clinical basis, but it does not show as many fissures as CT arthrography and is less precise for grading of lesions. (orig.)

  10. Mapping porosity of the deep critical zone in 3D using near-surface geophysics, rock physics modeling, and drilling

    Science.gov (United States)

    Flinchum, B. A.; Holbrook, W. S.; Grana, D.; Parsekian, A.; Carr, B.; Jiao, J.

    2017-12-01

    Porosity is generated by chemical, physical and biological processes that work to transform bedrock into soil. The resulting porosity structure can provide specifics about these processes and can improve understanding groundwater storage in the deep critical zone. Near-surface geophysical methods, when combined with rock physics and drilling, can be a tool used to map porosity over large spatial scales. In this study, we estimate porosity in three-dimensions (3D) across a 58 Ha granite catchment. Observations focus on seismic refraction, downhole nuclear magnetic resonance logs, downhole sonic logs, and samples of core acquired by push coring. We use a novel petrophysical approach integrating two rock physics models, a porous medium for the saprolite and a differential effective medium for the fractured rock, that drive a Bayesian inversion to calculate porosity from seismic velocities. The inverted geophysical porosities are within about 0.05 m3/m3 of lab measured values. We extrapolate the porosity estimates below seismic refraction lines to a 3D volume using ordinary kriging to map the distribution of porosity in 3D up to depths of 80 m. This study provides a unique map of porosity on scale never-before-seen in critical zone science. Estimating porosity on these large spatial scales opens the door for improving and understanding the processes that shape the deep critical zone.

  11. Evaluation of patellar cartilage surface lesions: comparison of CT arthrography and fat-suppressed FLASH 3D MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Daenen, B.R.; Ferrara, M.A.; Marcelis, S.; Dondelinger, R.F. [Department of Medical Imaging, University Hospital Sart-Tilman, Liege (Belgium)

    1998-07-01

    The aim of this study was to evaluate the sensitivity and specificity of fat-suppressed fast low-angle shot (FLASH) 3D MR imaging in the detection of patellar cartilage surface lesions in comparison with CT arthrography. Fifty patients, with or without symptoms of chondromalacia, were prospectively examined by CT arthrography and fat-suppressed 3D gradient-echo MR imaging. All MR examinations were evaluated by three observers, two of them reaching a consensus interpretation. The lesions were graded according to their morphology and their extent. The CT arthrography was considered as the reference examination. For both sets of observers, the final diagnosis of chondromalacia was obtained in 92.5 %. The specificity was 60 % on a patient-by-patient basis. Fissures were missed in 83 and 60 %, respectively, but were isolated findings only in 2.5 % of the cases. Considering ulcers involving more than 50 % of the cartilage thickness, 65 and 88 %, respectively, were recognized. Fat-suppressed FLASH 3D is an adequate pulse sequence for the detection of patellar cartilage ulcers. It can be applied on a routine clinical basis, but it does not show as many fissures as CT arthrography and is less precise for grading of lesions. (orig.) With 4 figs., 3 tabs., 21 refs.

  12. 3-D Topo Surface Visualization of Acid-Base Species Distributions: Corner Buttes, Corner Pits, Curving Ridge Crests, and Dilution Plains

    Science.gov (United States)

    Smith, Garon C.; Hossain, Md Mainul

    2017-01-01

    Species TOPOS is a free software package for generating three-dimensional (3-D) topographic surfaces ("topos") for acid-base equilibrium studies. This upgrade adds 3-D species distribution topos to earlier surfaces that showed pH and buffer capacity behavior during titration and dilution procedures. It constructs topos by plotting…

  13. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity.

    Science.gov (United States)

    Ye, Xiaotong; Leeflang, Sander; Wu, Chengtie; Chang, Jiang; Zhou, Jie; Huan, Zhiguang

    2017-10-27

    Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM), having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability. Mesoporous bioactive glasses (MBGs) coating was applied on the strut surfaces of the SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that the coating could maintain the characteristic mesoporous structure and chemical composition of MBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSCs) on the MBG-coated Ti-6Al-4V scaffolds were improved as compared with those on the conventional bioactive glass (BG)-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG coating by using the spinning coating method could be an effective approach to achieving enhanced surface biofunctionalization for SLM Ti-6Al-4V scaffolds.

  14. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity

    Directory of Open Access Journals (Sweden)

    Xiaotong Ye

    2017-10-01

    Full Text Available Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM, having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability. Mesoporous bioactive glasses (MBGs coating was applied on the strut surfaces of the SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that the coating could maintain the characteristic mesoporous structure and chemical composition of MBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSCs on the MBG-coated Ti-6Al-4V scaffolds were improved as compared with those on the conventional bioactive glass (BG-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG coating by using the spinning coating method could be an effective approach to achieving enhanced surface biofunctionalization for SLM Ti-6Al-4V scaffolds.

  15. Frontonasal dysmorphology in bipolar disorder by 3D laser surface imaging and geometric morphometrics: comparisons with schizophrenia.

    LENUS (Irish Health Repository)

    Hennessy, Robin J

    2010-09-01

    Any developmental relationship between bipolar disorder and schizophrenia engenders continuing debate. As the brain and face emerge in embryological intimacy, brain dysmorphogenesis is accompanied by facial dysmorphogenesis. 3D laser surface imaging was used to capture the facial surface of 13 male and 14 female patients with bipolar disorder in comparison with 61 male and 75 female control subjects and with 37 male and 32 female patients with schizophrenia. Surface images were analysed using geometric morphometrics and 3D visualisations to identify domains of facial shape that distinguish bipolar patients from controls and bipolar patients from those with schizophrenia. Both male and female bipolar patients evidenced significant facial dysmorphology: common to male and female patients was overall facial widening, increased width of nose, narrowing of mouth and upward displacement of the chin; dysmorphology differed between male and female patients for nose length, lip thickness and tragion height. There were few morphological differences in comparison with schizophrenia patients. That dysmorphology of the frontonasal prominences and related facial regions in bipolar disorder is more similar to than different from that found in schizophrenia indicates some common dysmorphogenesis. Bipolar disorder and schizophrenia might reflect similar insult(s) acting over slightly differing time-frames or slightly differing insult(s) acting over a similar time-frame.

  16. 3D Crust and Uppermost Mantle Structure beneath Tian Shan Region from ambient noise and earthquake surface waves

    Science.gov (United States)

    Xiao, X.; Wen, L.

    2017-12-01

    As a typical active intracontinental mountain range in Central Asia, Tian Shan Mt serves as the prototype in studying geodynamic processes and mechanism of intracontinental mountain building. We study 3D crust and the uppermost mantle structure beneath Tian Shan region using ambient noise and earthquake surface waves. Our dataset includes vertical component records of 62 permanent broadband seismic stations operated by the Earthquake Administration of China. Firstly, we calculate two-year stacked Cross-Correlation Functions (CCFs) of ambient noise records between the stations. The CCFs are treated as the Empirical Green's Functions (EGFs) of each station pair, from which we measured phase velocities of fundamental-mode Rayleigh wave in the period of 3-40 s using a frequency-time analysis method. Secondly, we collect surface wave data from tele-seismic events with Mw > 5.5 and depth shallower than 200 km and measure phase velocities of the fundamental-mode of Rayleigh wave in the period of 30-150 s using a two-station method. Finally, we combine the phase velocity measurements from ambient noise and earthquake surface waves, obtain lateral isotropic phase velocity maps at different periods based on tomography and invert a 3D Vsv model of crust and uppermost mantle down to about 150 km using a Monte Carlo Inversion method. We will discuss our inversion results in detail, as well as their implications to the tectonics in the region.

  17. Thermoelectric properties of 3D topological insulator: Direct observation of topological surface and its gap opened states

    Science.gov (United States)

    Matsushita, Stephane Yu; Huynh, Khuong Kim; Yoshino, Harukazu; Tu, Ngoc Han; Tanabe, Yoichi; Tanigaki, Katsumi

    2017-10-01

    We report thermoelectric (TE) properties of topological surface Dirac states (TSDS) in three-dimensional topological insulators (3D-TIs) purely isolated from the bulk by employing single-crystal B i2 -xS bxT e3 -yS ey films epitaxially grown in the ultrathin limit. Two intrinsic nontrivial topological surface states, a metallic TSDS (m-TSDS) and a gap-opened semiconducting topological state (g-TSDS), are successfully observed by electrical transport, and important TE parameters [electrical conductivity (σ), thermal conductivity (κ), and thermopower (S )] are accurately determined. Pure m-TSDS gives S =-44 μ V K-1 , which is an order of magnitude higher than those of the conventional metals and the value is enhanced to -212 μ V K-1 for g-TSDS. It is clearly shown that the semiclassical Boltzmann transport equation (SBTE) in the framework of constant relaxation time (τ) most frequently used for conventional analysis cannot be valid in 3D-TIs and strong energy dependent relaxation time τ(E ) beyond the Born approximation is essential for making intrinsic interpretations. Although σ is protected on the m-TSDS, κ is greatly influenced by the disorder on the topological surface, giving a dissimilar effect between topologically protected electronic conduction and phonon transport.

  18. On-machine measurement of the grinding wheels' 3D surface topography using a laser displacement sensor

    Science.gov (United States)

    Pan, Yongcheng; Zhao, Qingliang; Guo, Bing

    2014-08-01

    A method of non-contact, on-machine measurement of three dimensional surface topography of grinding wheels' whole surface was developed in this paper, focusing on an electroplated coarse-grained diamond grinding wheel. The measuring system consists of a Keyence laser displacement sensor, a Keyence controller and a NI PCI-6132 data acquisition card. A resolution of 0.1μm in vertical direction and 8μm in horizontal direction could be achieved. After processing the data by LabVIEW and MATLAB, the 3D topography of the grinding wheel's whole surface could be reconstructed. When comparing the reconstructed 3D topography of the grinding wheel's marked area to its real topography captured by a high-depth-field optical digital microscope (HDF-ODM) and scanning electron microscope (SEM), they were very similar to each other, proving that this method is accurate and effective. By a subsequent data processing, the topography of every grain could be extracted and then the active grain number, the active grain volume and the active grain's bearing ration could be calculated. These three parameters could serve as the criterion to evaluate the grinding performance of coarse-grained diamond grinding wheels. Then the performance of the grinding wheel could be evaluated on-machine accurately and quantitatively.

  19. Quantitative evaluation for small surface damage based on iterative difference and triangulation of 3D point cloud

    Science.gov (United States)

    Zhang, Yuyan; Guo, Quanli; Wang, Zhenchun; Yang, Degong

    2018-03-01

    This paper proposes a non-contact, non-destructive evaluation method for the surface damage of high-speed sliding electrical contact rails. The proposed method establishes a model of damage identification and calculation. A laser scanning system is built to obtain the 3D point cloud data of the rail surface. In order to extract the damage region of the rail surface, the 3D point cloud data are processed using iterative difference, nearest neighbours search and a data registration algorithm. The curvature of the point cloud data in the damage region is mapped to RGB color information, which can directly reflect the change trend of the curvature of the point cloud data in the damage region. The extracted damage region is divided into three prism elements by a method of triangulation. The volume and mass of a single element are calculated by the method of geometric segmentation. Finally, the total volume and mass of the damage region are obtained by the principle of superposition. The proposed method is applied to several typical injuries and the results are discussed. The experimental results show that the algorithm can identify damage shapes and calculate damage mass with milligram precision, which are useful for evaluating the damage in a further research stage.

  20. Limitations on Inferring 3D Architecture and Dynamics From Surface Velocities in the India-Eurasia Collision Zone

    Science.gov (United States)

    Flesch, L.; Bendick, R.; Bischoff, S.

    2018-02-01

    Surface velocities derived from Global Positioning System observations and Quaternary fault slip rates measured throughout an extended region of high topography in South Asia vary smoothly over thousands of kilometers and are broadly symmetrical, with components of both north-south shortening and east-west extension relative to stable Eurasia. The observed velocity field does not contain discontinuities or steep gradients attributable to along-strike differences in collision architecture, despite the well-documented presence of a lithospheric slab beneath the Pamir but not the Tibetan Plateau. We use a modified Akaike information criterion (AICc) to show that surface velocities do not efficiently constrain 3D rheology, geometry, or force balance. Therefore, although other geophysical and geological observations may indicate the presence of mechanical or dynamic heterogeneities within the Indian-Asian collision, the surface Global Positioning System velocities contain little or no usable information about them.

  1. NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces

    Science.gov (United States)

    Torrey, M. D.; Mjolsness, R. C.; Stein, L. R.

    1987-07-01

    Presented is the NASA-VOF3D three-dimensional, transient, free-surface hydrodynamics program. This three-dimensional extension of NASA-VOF2D will, in principle, permit treatment in full three-dimensional generality of the wide variety of applications that could be treated by NASA-VOF2D only within the two-dimensional idealization. In particular, it, like NASA-VOF2D, is specifically designed to calculate confined flows in a low g environment. The code is presently restricted to cylindrical geometry. The code is based on the fractional volume-of-fluid method and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report provides a brief discussion of the numerical method, a code listing, and some sample problems.

  2. Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces

    Science.gov (United States)

    Altschuler, M. D.; Altschuler, B. R.; Taboada, J.

    1981-01-01

    It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.

  3. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  4. Microfabrication on a curved surface using 3D microlens array projection

    International Nuclear Information System (INIS)

    Li, Lei; Yi, Allen Y

    2009-01-01

    Accurate three-dimensional microstructures on silicon or other substrates are becoming increasingly important for optical, electronic, biomedical and medical applications. Traditional microfabrication processes based on cleanroom lithography and dry or wet etching processes are essentially two-dimensional methods. In the past, complicated procedures were designed to create some three-dimensional microstructures; however, these processes were mainly used to create features on planar silicon wafer substrates using the bulk silicon machining technique. In a major departure from previous micromachining processes, a microfabrication process based on microlens projection is presented in this paper. The proposed microfabrication system will have the capabilities of a typical conventional micromachining process plus the unique true three-dimensional replication features based on microlenses that were created on a steep curved substrate. These microlenses were precisely fabricated with a specific pattern on the curved surface that can be used to create microstructures on a pre-defined nonplanar substrate where a layer of photoresist was spin coated. After proper exposure and development, the desired micro patterns are created on the photoresist layer. These micro features can eventually be replicated on the substrate via wet or dry etching processes. The results show that the fabricated three-dimensional microlens array has very high dimensional accuracy and the profile error is less than 6 µm over the entire surface

  5. Importance of 3D Processes Near the Ocean's Surface for Material Transport

    Science.gov (United States)

    Ozgokmen, T. M.

    2014-12-01

    There are a number of practical problems that demand an accurate knowledge of ocean currents near the surface of the ocean. It is known that oceanic coherent features transport heat and carry out vertical exchange of biogeochemical tracers. Ocean currents can affect biological primary production, air-sea gas exchanges and global tracer budgets. Ocean currents are also important for the dispersion of substances that pose a danger to society, economy and human health. Examples of such events include algal blooms, the Fukushima nuclear plant incident in the Pacific Ocean in 2011, and repeated large oil spills in the Gulf of Mexico, namely the IXTOC in 1978 and the Deepwater Horizon event in 2010. Such incidents demand accurate answers to questions such as ``where will the pollutant go?", ``how fast will it get there?" and ``how much pollutant will arrive there?", and in some instances ``where did the pollutant come from?". The answers to these questions are critical to the allocation of limited response resources, and in determining the overall impact of the events. We will summarize the efforts by the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). One of the primary objectives of CARTHE is to improve predictive modeling capability for flows near the air-sea interface. In particular, two large experiments, Grand Lagrangian Deployment (GLAD) and Surf-zone and Coastal Oil Pathways Experiment (SCOPE), coordinated with real-time modeling were instructive on processes influencing near-surface material transport. Findings on submesoscale flows as well as model deficiencies to capture processes relevant to transport will be discussed. Insight into future modeling and observational plans will be provided.

  6. Precision 3d Surface Reconstruction from Lro Nac Images Using Semi-Global Matching with Coupled Epipolar Rectification

    Science.gov (United States)

    Hu, H.; Wu, B.

    2017-07-01

    The Narrow-Angle Camera (NAC) on board the Lunar Reconnaissance Orbiter (LRO) comprises of a pair of closely attached high-resolution push-broom sensors, in order to improve the swath coverage. However, the two image sensors do not share the same lenses and cannot be modelled geometrically using a single physical model. Thus, previous works on dense matching of stereo pairs of NAC images would generally create two to four stereo models, each with an irregular and overlapping region of varying size. Semi-Global Matching (SGM) is a well-known dense matching method and has been widely used for image-based 3D surface reconstruction. SGM is a global matching algorithm relying on global inference in a larger context rather than individual pixels to establish stable correspondences. The stereo configuration of LRO NAC images causes severe problem for image matching methods such as SGM, which emphasizes global matching strategy. Aiming at using SGM for image matching of LRO NAC stereo pairs for precision 3D surface reconstruction, this paper presents a coupled epipolar rectification methods for LRO NAC stereo images, which merges the image pair in the disparity space and in this way, only one stereo model will be estimated. For a stereo pair (four) of NAC images, the method starts with the boresight calibration by finding correspondence in the small overlapping stripe between each pair of NAC images and bundle adjustment of the stereo pair, in order to clean the vertical disparities. Then, the dominate direction of the images are estimated by project the center of the coverage area to the reference image and back-projected to the bounding box plane determined by the image orientation parameters iteratively. The dominate direction will determine an affine model, by which the pair of NAC images are warped onto the object space with a given ground resolution and in the meantime, a mask is produced indicating the owner of each pixel. SGM is then used to generate a disparity

  7. PRECISION 3D SURFACE RECONSTRUCTION FROM LRO NAC IMAGES USING SEMI-GLOBAL MATCHING WITH COUPLED EPIPOLAR RECTIFICATION

    Directory of Open Access Journals (Sweden)

    H. Hu

    2017-07-01

    Full Text Available The Narrow-Angle Camera (NAC on board the Lunar Reconnaissance Orbiter (LRO comprises of a pair of closely attached high-resolution push-broom sensors, in order to improve the swath coverage. However, the two image sensors do not share the same lenses and cannot be modelled geometrically using a single physical model. Thus, previous works on dense matching of stereo pairs of NAC images would generally create two to four stereo models, each with an irregular and overlapping region of varying size. Semi-Global Matching (SGM is a well-known dense matching method and has been widely used for image-based 3D surface reconstruction. SGM is a global matching algorithm relying on global inference in a larger context rather than individual pixels to establish stable correspondences. The stereo configuration of LRO NAC images causes severe problem for image matching methods such as SGM, which emphasizes global matching strategy. Aiming at using SGM for image matching of LRO NAC stereo pairs for precision 3D surface reconstruction, this paper presents a coupled epipolar rectification methods for LRO NAC stereo images, which merges the image pair in the disparity space and in this way, only one stereo model will be estimated. For a stereo pair (four of NAC images, the method starts with the boresight calibration by finding correspondence in the small overlapping stripe between each pair of NAC images and bundle adjustment of the stereo pair, in order to clean the vertical disparities. Then, the dominate direction of the images are estimated by project the center of the coverage area to the reference image and back-projected to the bounding box plane determined by the image orientation parameters iteratively. The dominate direction will determine an affine model, by which the pair of NAC images are warped onto the object space with a given ground resolution and in the meantime, a mask is produced indicating the owner of each pixel. SGM is then used to

  8. Development of dynamic 3-D surface profilometry using stroboscopic interferometric measurement and vertical scanning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K-C [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd, Taipei, 106, Taiwan (China); Lin, C-D [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chang, Calvin C [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Kuo, C-F [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Chou, J-T [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China)

    2005-01-01

    The main objective of this technical advance is to provide a single optical interferometric framework and methodology to be capable of delivering both nano-scale static and dynamic surface profilometry. Microscopic interferometry is a powerful technique for static and dynamic characterization of micro (opto) electromechanical systems (M (O) EMS). In view of this need, a microscopic prototype based on white-light stroboscopic interferometry and the white light vertical scanning principle, was developed to achieve dynamic full-field profilometry and characterization of MEMS devices. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterization of dynamic behaviours of the device. The full-field second-mode vibration at a vibratory frequency of 68.60 kHz can be fully characterized and 3-5 nm of vertical measurement resolution as well as tens of micrometers of vertical measurement range can be easily achieved.

  9. Computational Sensing of Staphylococcus aureus on Contact Lenses Using 3D Imaging of Curved Surfaces and Machine Learning.

    Science.gov (United States)

    Veli, Muhammed; Ozcan, Aydogan

    2018-03-27

    We present a cost-effective and portable platform based on contact lenses for noninvasively detecting Staphylococcus aureus, which is part of the human ocular microbiome and resides on the cornea and conjunctiva. Using S. aureus-specific antibodies and a surface chemistry protocol that is compatible with human tears, contact lenses are designed to specifically capture S. aureus. After the bacteria capture on the lens and right before its imaging, the captured bacteria are tagged with surface-functionalized polystyrene microparticles. These microbeads provide sufficient signal-to-noise ratio for the quantification of the captured bacteria on the contact lens, without any fluorescent labels, by 3D imaging of the curved surface of each lens using only one hologram taken with a lens-free on-chip microscope. After the 3D surface of the contact lens is computationally reconstructed using rotational field transformations and holographic digital focusing, a machine learning algorithm is employed to automatically count the number of beads on the lens surface, revealing the count of the captured bacteria. To demonstrate its proof-of-concept, we created a field-portable and cost-effective holographic microscope, which weighs 77 g, controlled by a laptop. Using daily contact lenses that are spiked with bacteria, we demonstrated that this computational sensing platform provides a detection limit of ∼16 bacteria/μL. This contact-lens-based wearable sensor can be broadly applicable to detect various bacteria, viruses, and analytes in tears using a cost-effective and portable computational imager that might be used even at home by consumers.

  10. 3D, chemical and electrochemical characterization of blasted TI6Al4V surfaces: Its influence on the corrosion behaviour

    International Nuclear Information System (INIS)

    Barranco, V.; Escudero, M.L.; Garcia-Alonso, M.C.

    2007-01-01

    The blasting process to increase the roughness of the surface of metallic biomaterials is widely used. As a consequence, one can produce a renewed surface with different topography and chemical composition compared to the original one, which can alter the general corrosion behaviour of the samples. With this idea, the aim of this work is not only the topographical and compositional characterization of blasted surfaces of Ti6Al4V alloy but mainly its influence on the corrosion behaviour of these modified surfaces. The surfaces of Ti6Al4V alloys were blasted with SiO 2 /ZrO 2 and Al 2 O 3 particles of different size in order to obtain different roughnesses. To carry out the microstructural and topographical characterization of the blasted surfaces, the scanning electron microscopy (SEM) coupled with an energy dispersive X-ray (EDX), the contact profilometry method and the 3D characterization by means of stereo-Fe-SEM have been used. By means of stereo-Fe-SEM, the roughness and the real surface area of the rough surfaces have been calculated. The microstructural, topographical and compositional results have been correlated with the corrosion behaviour of the samples immersed in Hank's solution and studied by means of electrochemical impedance spectroscopy (EIS). The blasting process alters topographical and chemically the surface of the samples. These modifications induce to an increase in the capacitance values of the roughened samples due to the prevalence of the effect of electrochemically active areas of Ti6Al4V surface over the effect of the presence of Al 2 O 3 and ZrO 2 particles on the blasted surfaces. However, the general corrosion behaviour of the samples is not drastically changed

  11. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: A validation study

    International Nuclear Information System (INIS)

    Zheng Guoyan; Schumann, Steffen

    2009-01-01

    Twenty-three femurs (one plastic bone and twenty-two cadaver bones) with both nonpathologic and pathologic cases were considered to validate a statistical shape model based technique for three-dimensional (3D) reconstruction of a patient-specific surface model from calibrated x-ray radiographs. The 3D reconstruction technique is based on an iterative nonrigid registration of the features extracted from a statistically instantiated 3D surface model to those interactively identified from the radiographs. The surface models reconstructed from the radiographs were compared to the associated ground truths derived either from a 3D CT-scan reconstruction method or from a 3D laser-scan reconstruction method and an average error distance of 0.95 mm were found. Compared to the existing works, our approach has the advantage of seamlessly handling both nonpathologic and pathologic cases even when the statistical shape model that we used was constructed from surface models of nonpathologic bones.

  12. Leaf Area Index Estimation in Vineyards from Uav Hyperspectral Data, 2d Image Mosaics and 3d Canopy Surface Models

    Science.gov (United States)

    Kalisperakis, I.; Stentoumis, Ch.; Grammatikopoulos, L.; Karantzalos, K.

    2015-08-01

    The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured LAI (ground truth) from several vines in Nemea, Greece. The overall evaluation indicated that the estimated canopy levels were correlated (r2 > 73%) with the in-situ, ground truth LAI measurements. As expected the lowest correlations were derived from the calculated greenness levels from the 2D RGB orthomosaics. The highest correlation rates were established with the hyperspectral canopy greenness and the 3D canopy surface models. For the later the accurate detection of canopy, soil and other materials in between the vine rows is required. All approaches tend to overestimate LAI in cases with sparse, weak, unhealthy plants and canopy.

  13. 3D strength surfaces for ankle plantar- and dorsi-flexion in healthy adults: an isometric and isokinetic dynamometry study.

    Science.gov (United States)

    Hussain, Sara J; Frey-Law, Laura

    2016-01-01

    The ankle is an important component of the human kinetic chain, and deficits in ankle strength can negatively impact functional tasks such as balance and gait. While peak torque is influenced by joint angle and movement velocity, ankle strength is typically reported for a single angle or movement speed. To better identify deficits and track recovery of ankle strength after injury or surgical intervention, ankle strength across a range of movement velocities and joint angles in healthy adults is needed. Thus, the primary goals of this study were to generate a database of strength values and 3-dimensional strength surface models for plantarflexion (PF) and dorsiflexion (DF) ankle strength in healthy men and women. Secondary goals were to develop a means to estimate ankle strength percentiles as well as examine predictors of maximal ankle strength in healthy adults. Using an isokinetic dynamometer, we tested PF and DF peak torques at five joint angles (-10° [DF], 0° [neutral], 10° [PF], 20° [PF] and 30° [PF]) and six velocities (0°/s, 30°/s, 60°/s, 90°/s, 120°/s and 180°/s) in 53 healthy adults. These data were used to generate 3D plots, or "strength surfaces", for males and females for each direction; surfaces were fit using a logistic equation. We also tested predictors of ankle strength, including height, weight, sex, and self-reported physical activity levels. Torque-velocity and torque-angle relationships at the ankle interact, indicating that these relationships are interdependent and best modeled using 3D surfaces. Sex was the strongest predictor of ankle strength over height, weight, and self-reported physical activity levels. 79 to 97 % of the variance in mean peak torque was explained by joint angle and movement velocity using logistic equations, for men and women and PF and DF directions separately. The 3D strength data and surface models provide a more comprehensive dataset of ankle strength in healthy adults than previously reported. These

  14. A Mathematical and Numerically Integrable Modeling of 3D Object Grasping under Rolling Contacts between Smooth Surfaces

    Directory of Open Access Journals (Sweden)

    Suguru Arimoto

    2011-01-01

    Full Text Available A computable model of grasping and manipulation of a 3D rigid object with arbitrary smooth surfaces by multiple robot fingers with smooth fingertip surfaces is derived under rolling contact constraints between surfaces. Geometrical conditions of pure rolling contacts are described through the moving-frame coordinates at each rolling contact point under the postulates: (1 two surfaces share a common single contact point without any mutual penetration and a common tangent plane at the contact point and (2 each path length of running of the contact point on the robot fingertip surface and the object surface is equal. It is shown that a set of Euler-Lagrange equations of motion of the fingers-object system can be derived by introducing Lagrange multipliers corresponding to geometric conditions of contacts. A set of 1st-order differential equations governing rotational motions of each fingertip and the object and updating arc-length parameters should be accompanied with the Euler-Lagrange equations. Further more, nonholonomic constraints arising from twisting between the two normal axes to each tangent plane are rewritten into a set of Frenet-Serre equations with a geometrically given normal curvature and a motion-induced geodesic curvature.

  15. WE-DE-201-09: Performance of HDR Ring Surface Applicator Printed by 3D Printer

    International Nuclear Information System (INIS)

    Xu, Z; Baker, J; Hsia, A; Ryu, S

    2016-01-01

    Purpose: The commercially available Leipzig-style Cone for High Dose Rate (HDR) Brachytherapy has a steep depth dose curve and a non-uniform dose distribution. This work shows the performance of a Ring Surface Applicator created using a 3D printer that can generate a better dose distribution. Calculated doses were verified with film measurement. Methods: The water equivalent red-ABS plastic was used to print the Ring Surface Applicator which hosts three catheters: a center piece with a straight catheter and two concentric rings with diameters of 3.5 and 5.5 cm. Gafchromic EBT2 film, Epson Expression 10000 flatbed scanner, and the online software at radiochromic.com were used to analyze the measured data. 10cm×10cm piece of film was sandwiched between two 15×10×5cm3 polystyrene phantoms. The applicator was positioned directly on top of the phantom. Measurement was done using dwell time and positions calculated by Eclipse BrachyVision treatment planning system (RTP). Results: Depth dose curve was generated from the plan and measurement. The results show that the measured and calculated depth dose were in agreement (<3%) from surface to 4mm depth. A discrepancy of 6% was observed at 5 mm depth, where the dose is typically prescribed to. For depths deeper than 5 mm, the measured doses were lower than those calculated by Eclipse BrachyVision. This can be attributed to a combination of simple calculation algorithm using TG-43 and the lack of inhomogeneity correction. Dose profiles at 5 mm depth were also generated from TPS calculation and measured with film. The measured and calculated profiles are similar. Consistent with the depth dose curve, the measured dose is lower than the calculated. Conclusion: Our results showed that the Ring Surface Applicator, printed using 3D printer, can generate more uniform dose distribution within the target volume and can be safely used in the clinic.

  16. WE-DE-201-09: Performance of HDR Ring Surface Applicator Printed by 3D Printer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z; Baker, J; Hsia, A; Ryu, S [Stony Brook University Medical Center, East Northport, NY (United States)

    2016-06-15

    Purpose: The commercially available Leipzig-style Cone for High Dose Rate (HDR) Brachytherapy has a steep depth dose curve and a non-uniform dose distribution. This work shows the performance of a Ring Surface Applicator created using a 3D printer that can generate a better dose distribution. Calculated doses were verified with film measurement. Methods: The water equivalent red-ABS plastic was used to print the Ring Surface Applicator which hosts three catheters: a center piece with a straight catheter and two concentric rings with diameters of 3.5 and 5.5 cm. Gafchromic EBT2 film, Epson Expression 10000 flatbed scanner, and the online software at radiochromic.com were used to analyze the measured data. 10cm×10cm piece of film was sandwiched between two 15×10×5cm3 polystyrene phantoms. The applicator was positioned directly on top of the phantom. Measurement was done using dwell time and positions calculated by Eclipse BrachyVision treatment planning system (RTP). Results: Depth dose curve was generated from the plan and measurement. The results show that the measured and calculated depth dose were in agreement (<3%) from surface to 4mm depth. A discrepancy of 6% was observed at 5 mm depth, where the dose is typically prescribed to. For depths deeper than 5 mm, the measured doses were lower than those calculated by Eclipse BrachyVision. This can be attributed to a combination of simple calculation algorithm using TG-43 and the lack of inhomogeneity correction. Dose profiles at 5 mm depth were also generated from TPS calculation and measured with film. The measured and calculated profiles are similar. Consistent with the depth dose curve, the measured dose is lower than the calculated. Conclusion: Our results showed that the Ring Surface Applicator, printed using 3D printer, can generate more uniform dose distribution within the target volume and can be safely used in the clinic.

  17. 3D strength surfaces for ankle plantar- and dorsi-flexion in healthy adults: an isometric and isokinetic dynamometry study

    Directory of Open Access Journals (Sweden)

    Sara J. Hussain

    2016-11-01

    Full Text Available Abstract Background The ankle is an important component of the human kinetic chain, and deficits in ankle strength can negatively impact functional tasks such as balance and gait. While peak torque is influenced by joint angle and movement velocity, ankle strength is typically reported for a single angle or movement speed. To better identify deficits and track recovery of ankle strength after injury or surgical intervention, ankle strength across a range of movement velocities and joint angles in healthy adults is needed. Thus, the primary goals of this study were to generate a database of strength values and 3-dimensional strength surface models for plantarflexion (PF and dorsiflexion (DF ankle strength in healthy men and women. Secondary goals were to develop a means to estimate ankle strength percentiles as well as examine predictors of maximal ankle strength in healthy adults. Methods Using an isokinetic dynamometer, we tested PF and DF peak torques at five joint angles (−10° [DF], 0° [neutral], 10° [PF], 20° [PF] and 30° [PF] and six velocities (0°/s, 30°/s, 60°/s, 90°/s, 120°/s and 180°/s in 53 healthy adults. These data were used to generate 3D plots, or “strength surfaces”, for males and females for each direction; surfaces were fit using a logistic equation. We also tested predictors of ankle strength, including height, weight, sex, and self-reported physical activity levels. Results Torque-velocity and torque-angle relationships at the ankle interact, indicating that these relationships are interdependent and best modeled using 3D surfaces. Sex was the strongest predictor of ankle strength over height, weight, and self-reported physical activity levels. 79 to 97 % of the variance in mean peak torque was explained by joint angle and movement velocity using logistic equations, for men and women and PF and DF directions separately. Conclusions The 3D strength data and surface models provide a more comprehensive dataset

  18. Shear waves in near surface 3D media-SH-wavefield separation, refraction time migration and tomography

    Science.gov (United States)

    Woelz, Susanne; Rabbel, Wolfgang; Mueller, Christof

    2009-05-01

    When investigating topographically irregular layers in the near surface with shear waves, it is of particular importance to consider the 3D-nature of wave propagation. Depending on the layer geometry and on the spatial arrangement of source- and receiver-points significant lateral ray bending can occur causing side-swipe traveltime effects and complicated polarisation patterns. As an example we present a study where 3D-shear wave refraction measurements were applied in order to reconstruct the geometry of a silted ancient harbour basin at the archaeological site of Miletus (West Turkey). Seismic signals were generated with a three-component vector force and recorded with three-component geophones arranged in 2D-arrays of 1 m grid spacing. Since a correct identification of refracted S-wave arrivals is a precondition to traveltime interpretation we investigated a method to decompose these wavefields with respect to their polarisation and azimuth of propagation. Taking advantage of the 2D-geophone arrangement we applied the following processing approach: In case of general lateral heterogeneity a decomposition can be performed by applying the curl and divergence operations to the vector wavefields recorded in 2D-arrays. The separated tangential and normal components to the wavefront in a plane are finally enhanced by combining the different force components in order to eliminate the radiation characteristics of the source. The decomposed wavefield was then the basis for 3D-refractor imaging through a newly formulated map migration of the refracted traveltime field. This technique was developed to map coherent basement structure on the meter-scale. Supplemental tomographic inversion using the refractor topography model as input provided a plausible velocity model, exhibiting characteristic anomalies such as a prominent low velocity zone overlain by a high velocity layer in the refractor. The seismic velocity structure suggests that the harbour basin was locally filled

  19. Heteroatom Polymer-Derived 3D High-Surface-Area and Mesoporous Graphene Sheet-Like Carbon for Supercapacitors.

    Science.gov (United States)

    Sheng, Haiyang; Wei, Min; D'Aloia, Alyssa; Wu, Gang

    2016-11-09

    Current supercapacitors suffer from low energy density mainly due to the high degree of microporosity and insufficient hydrophilicity of their carbon electrodes. Development of a supercapacitor capable of simultaneously storing as much energy as a battery, along with providing sufficient power and long cycle stability would be valued for energy storage applications and innovations. Differing from commonly studied reduced graphene oxides, in this work we identified an inexpensive heteroatom polymer (polyaniline-PANI) as a carbon/nitrogen precursor, and applied a controlled thermal treatment at elevated temperature to convert PANI into 3D high-surface-area graphene-sheet-like carbon materials. During the carbonization process, various transition metals including Fe, Co, and Ni were added, which play critical roles in both catalyzing the graphitization and serving as pore forming agents. Factors including post-treatments, heating temperatures, and types of metal were found crucial for achieving enhanced capacitance performance on resulting carbon materials. Using FeCl 3 as precursor along with optimal heating temperature 1000 °C and mixed acid treatment (HCl+HNO 3 ), the highest Brunauer-Emmett-Teller (BET) surface area of 1645 m 2 g -1 was achieved on the mesopore dominant graphene-sheet-like carbon materials. The unique morphologies featured with high-surface areas, dominant mesopores, proper nitrogen doping, and 3D graphene-like structures correspond to remarkably enhanced electrochemical specific capacitance up to 478 Fg -1 in 1.0 M KOH at a scan rate of 5 mV s -1 . Furthermore, in a real two-electrode system of a symmetric supercapacitor, a specific capacitance of 235 Fg -1 using Nafion binder is obtained under a current density of 1 Ag -1 by galvanostatic charge-discharge tests in 6.0 M KOH. Long-term cycle stability up to 5000 cycles by using PVDF binder in electrode was systematically evaluated as a function of types of metals and current densities.

  20. Dynamic 3D shape of the plantar surface of the foot using coded structured light: a technical report.

    Science.gov (United States)

    Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J

    2014-01-23

    The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environments.

  1. Dynamic 3D shape of the plantar surface of the foot using coded structured light: a technical report

    KAUST Repository

    Thabet, Ali Kassem

    2014-01-23

    Background The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Methods Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. Results The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). Conclusion The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environments.

  2. Aberration corrected and 3D cryo-tomography HAADF-STEM surface studies of ZnO tetrapods

    International Nuclear Information System (INIS)

    Ward, M R; Gai, P L; Boyes, E D; Sugiura, H; Tanaka, N; Yoshida, K

    2012-01-01

    We present a morphology study of ZnO tetrapods using aberration corrected TEM, HAADF-STEM and 3D HAADF-STEM cryotomography as an alternative to more conventional TEM and SEM techniques. We use 3D IMOD reconstructions to show that the {11-bar 0} facets dominate the total surface area of uniform hexagonal prism tetrapods. Using HRTEM we show that the small tetrapods have a zincblende phase core from which the four legs extend. The facets and the edges of these legs were found to be atomically clean and flat with the potential for ZnO tetrapods as model substrates. We deposited ultrafine Pt/Pd nanoparticles onto the tetrapods and investigated the resulting morphologies. We found using HAADF-STEM cryotomography and reconstruction techniques that the nanoparticle coverage gave separate nanoparticles and overall uniform coverage. We believe these techniques and the results from them could be useful for the development of nanoparticle-ZnO tetrapod composite systems with applications in optoelectronics, gas sensing and catalysis.

  3. GIS based 3D visualization of subsurface and surface lineaments / faults and their geological significance, northern tamil nadu, India

    Science.gov (United States)

    Saravanavel, J.; Ramasamy, S. M.

    2014-11-01

    The study area falls in the southern part of the Indian Peninsular comprising hard crystalline rocks of Archaeozoic and Proterozoic Era. In the present study, the GIS based 3D visualizations of gravity, magnetic, resistivity and topographic datasets were made and therefrom the basement lineaments, shallow subsurface lineaments and surface lineaments/faults were interpreted. These lineaments were classified as category-1 i.e. exclusively surface lineaments, category-2 i.e. surface lineaments having connectivity with shallow subsurface lineaments and category-3 i.e. surface lineaments having connectivity with shallow subsurface lineaments and basement lineaments. These three classified lineaments were analyzed in conjunction with known mineral occurrences and historical seismicity of the study area in GIS environment. The study revealed that the category-3 NNE-SSW to NE-SW lineaments have greater control over the mineral occurrences and the N-S, NNE-SSW and NE-SW, faults/lineaments control the seismicities in the study area.

  4. 3-D modeling of surface, borehole, and airborne EM methods; Chijo konai kuchu denjiho no sanjigen modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Y [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-22

    Three-dimensional modelling methods using the difference method and finite element method are applied to the simulations respectively of the surface electromagnetic method, borehole electromagnetic method, and airborne electromagnetic method, and they are compared with each other in point of accuracy and practicality. The object of calculation in this study is a 3-D model which is a semi-finite medium 100 ohm/m in resistivity that contains a rectangular parallelopiped 1 ohm/m in resistivity. A vertical magnetic dipole is installed on the surface in the surface electromagnetic method, providing a vertical magnetic field on the surface. In the borehole electromagnetic method, a vertical magnetic dipole is placed in a borehole and the resultant vertical magnetic field is measured at a station in another borehole. In the airborne electromagnetic method, the flight level is 20m high and the distance between the source and the receiving point is 10m. The results of calculation all agree well with the results of calculation previously made known. When the difference method and finite element method are compared, it is found that the finite element method requires calculation time and memory capacity two to three times more than the difference method. 5 refs., 9 figs.

  5. 3D Dynamics of the Near-Surface Layer of the Ocean in the Presence of Freshwater Influx

    Science.gov (United States)

    Dean, C.; Soloviev, A.

    2015-12-01

    Freshwater inflow due to convective rains or river runoff produces lenses of freshened water in the near surface layer of the ocean. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. The gravity current head can include the Kelvin-Helmholtz billows with vertical density inversions. In this work, we have conducted a series of numerical experiments using computational fluid dynamics tools. These numerical simulations were designed to elucidate the relationship between vertical mixing and horizontal advection of salinity under various environmental conditions and potential impact on the pollution transport including oil spills. The near-surface data from the field experiments in the Gulf of Mexico during the SCOPE experiment were available for validation of numerical simulations. In particular, we observed a freshwater layer within a few-meter depth range and, in some cases, a density inversion at the edge of the freshwater lens, which is consistent with the results of numerical simulations. In conclusion, we discuss applicability of these results to the interpretation of Aquarius and SMOS sea surface salinity satellite measurements. The results of this study indicate that 3D dynamics of the near-surface layer of the ocean are essential in the presence of freshwater inflow.

  6. Impacts of Built-Up Area Expansion in 2D and 3D on Regional Surface Temperature

    Directory of Open Access Journals (Sweden)

    Hongyan Cai

    2017-10-01

    Full Text Available Many studies have reported the thermal effects of urban expansion from non-built-up land; however, how changes in building height in built-up land influence the regional thermal environment is still uncertain. Thus, taking the transitional region between the Chinese megacities of Beijing and Tianjin as the study area, this study investigated the impacts of built-up land expansion in 2D and 3D on regional land surface temperature (LST. The expansion in 2D refers to the conversion from non-built-up land to built-up land, whereas the expansion in 3D characterized the building height change in the built-up land, referring to the conversion from low- and moderate-rise building (LMRB to high-rise building (HRB lands. The land use change from 2010 to 2015 was manually interpreted from high spatial resolution SPOT5 and Gaofen2 images, and the LST information in the corresponding period was derived from Landsat5/8 thermal images using an image-based method. The results showed that between 2010 and 2015, approximately 87.25 km2 non-built-up land was transformed to built-up land, and 13.21 km2 LMRB land was built into HRB land. These two types of built-up land expansions have induced opposing thermal effects in regard to regional surface temperature. The built-up land expansions from cropland and urban green land have raised the regional LST. However, the built-up land expansion from LMRB to HRB lands has induced a cooling effect. Thus, this study suggested that for the cooling urban design, the building height should also be considered. Furthermore, for future studies on thermal impacts of urbanization, it should be cautioned that, besides the urban area expansion, the building height change should also be emphasized due to its potential cooling effects.

  7. Empirical assessment of the validity limits of the surface wave full ray theory using realistic 3-D Earth models

    KAUST Repository

    Parisi, Laura

    2016-02-10

    The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of surface waves. It combines the concept of local modes with exact ray tracing as a function of frequency, providing a more complete description of surface wave propagation than the widely used great circle approximation (GCA). The purpose of this study is to evaluate the ability of the FRT approach to model teleseismic long-period surface waveforms (T ∼ 45–150 s) in the context of current 3-D Earth models to empirically assess its validity domain and its scope for future studies in seismic tomography. To achieve this goal, we compute vertical and horizontal component fundamental mode synthetic Rayleigh waveforms using the FRT, which are compared with calculations using the highly accurate spectral element method. We use 13 global earth models including 3-D crustal and mantle structure, which are derived by successively varying the strength and lengthscale of heterogeneity in current tomographic models. For completeness, GCA waveforms are also compared with the spectral element method. We find that the FRT accurately predicts the phase and amplitude of long-period Rayleigh waves (T ∼ 45–150 s) for almost all the models considered, with errors in the modelling of the phase (amplitude) of Rayleigh waves being smaller than 5 per cent (10 per cent) in most cases. The largest errors in phase and amplitude are observed for T ∼ 45 s and for the three roughest earth models considered that exhibit shear wave anomalies of up to ∼20 per cent, which is much larger than in current global tomographic models. In addition, we find that overall the GCA does not predict Rayleigh wave amplitudes well, except for the longest wave periods (T ∼ 150 s) and the smoothest models considered. Although the GCA accurately predicts Rayleigh wave phase for current earth models such as S20RTS and S40RTS, FRT\\'s phase errors are smaller, notably for the shortest wave periods considered (T

  8. Model-based inverse estimation for active contraction stresses of tongue muscles using 3D surface shape in speech production.

    Science.gov (United States)

    Koike, Narihiko; Ii, Satoshi; Yoshinaga, Tsukasa; Nozaki, Kazunori; Wada, Shigeo

    2017-11-07

    This paper presents a novel inverse estimation approach for the active contraction stresses of tongue muscles during speech. The proposed method is based on variational data assimilation using a mechanical tongue model and 3D tongue surface shapes for speech production. The mechanical tongue model considers nonlinear hyperelasticity, finite deformation, actual geometry from computed tomography (CT) images, and anisotropic active contraction by muscle fibers, the orientations of which are ideally determined using anatomical drawings. The tongue deformation is obtained by solving a stationary force-equilibrium equation using a finite element method. An inverse problem is established to find the combination of muscle contraction stresses that minimizes the Euclidean distance of the tongue surfaces between the mechanical analysis and CT results of speech production, where a signed-distance function represents the tongue surface. Our approach is validated through an ideal numerical example and extended to the real-world case of two Japanese vowels, /ʉ/ and /ɯ/. The results capture the target shape completely and provide an excellent estimation of the active contraction stresses in the ideal case, and exhibit similar tendencies as in previous observations and simulations for the actual vowel cases. The present approach can reveal the relative relationship among the muscle contraction stresses in similar utterances with different tongue shapes, and enables the investigation of the coordination of tongue muscles during speech using only the deformed tongue shape obtained from medical images. This will enhance our understanding of speech motor control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Measurement uncertainty associated with chromatic confocal profilometry for 3D surface texture characterization of natural human enamel.

    Science.gov (United States)

    Mullan, F; Bartlett, D; Austin, R S

    2017-06-01

    To investigate the measurement performance of a chromatic confocal profilometer for quantification of surface texture of natural human enamel in vitro. Contributions to the measurement uncertainty from all potential sources of measurement error using a chromatic confocal profilometer and surface metrology software were quantified using a series of surface metrology calibration artifacts and pre-worn enamel samples. The 3D surface texture analysis protocol was optimized across 0.04mm 2 of natural and unpolished enamel undergoing dietary acid erosion (pH 3.2, titratable acidity 41.3mmolOH/L). Flatness deviations due to the x, y stage mechanical movement were the major contribution to the measurement uncertainty; with maximum Sz flatness errors of 0.49μm. Whereas measurement noise; non-linearity's in x, y, z and enamel sample dimensional instability contributed minimal errors. The measurement errors were propagated into an uncertainty budget following a Type B uncertainty evaluation in order to calculate the Standard Combined Uncertainty (u c ), which was ±0.28μm. Statistically significant increases in the median (IQR) roughness (Sa) of the polished samples occurred after 15 (+0.17 (0.13)μm), 30 (+0.12 (0.09)μm) and 45 (+0.18 (0.15)μm) min of erosion (Pchromatic confocal profilometry was from flatness deviations however by optimizing measurement protocols the profilometer successfully characterized surface texture changes in enamel from erosive wear in vitro. Copyright © 2017 The Academy of Dental Materials. All rights reserved.

  10. The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons

    Science.gov (United States)

    Baik, H.; Kim, J.

    2017-07-01

    The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.

  11. Accuracy of a commercial optical 3D surface imaging system for realignment of patients for radiotherapy of the thorax

    International Nuclear Information System (INIS)

    Schoeffel, Philipp J; Harms, Wolfgang; Sroka-Perez, Gabriele; Schlegel, Wolfgang; Karger, Christian P

    2007-01-01

    Accurate and reproducible patient setup is a prerequisite to fractionated radiotherapy. To evaluate the applicability and technical performance of a commercial 3D surface imaging system for repositioning of breast cancer patients, measurements were performed in a rigid anthropomorphic phantom as well as in healthy volunteers. The camera system records a respiration-gated surface model of the imaged object, which may be registered to a previously recorded reference model. A transformation is provided, which may be applied to the treatment couch to correct the setup of the patient. The system showed a high stability and detected pre-defined shifts of phantoms and healthy volunteers with an accuracy of 0.40 ± 0.26 mm and 1.02 ± 0.51 mm, respectively (spatial deviation between pre-defined shift and suggested correction). The accuracy of the suggested rotational correction around the vertical axis was always better than 0.3 0 in phantom measurements and 0.8 0 in volunteers, respectively. Comparison of the suggested setup correction with that detected by a second and independently operated marker-based optical system provided consistent results. The results demonstrate that the camera system provides highly accurate setup corrections in a phantom and healthy volunteers. The most efficient use of the system for improving the setup accuracy in breast cancer patients has to be investigated in routine patient treatments

  12. Novel fabrication method for 3D microstructures using surface-activated bonding and its application to micro-mechanical parts

    Science.gov (United States)

    Yamada, Takayuki; Takahashi, Mutsuya; Ozawa, Takashi; Tawara, Satoshi; Goto, Takayuki

    2002-11-01

    The purpose of this work is to demonstrate that a novel fabrication method for 3-D microstructures (FORMULA) is applicable to fabrication of micro mechanical parts with a large flexibility. This method is a kind of layer manufacturing method of thin films for metallic or dielectric microstructures using surface-activated bonding (SAB). The bonding interfaces of thin films are investigated by transmission electron microscope (TEM). Voids were observed at the interfaces of both pure aluminum films and Al-Cu alloy films. The ratio of void on the Al-Cu/Al-Cu interface is much larger than that of Al/Al interface, although the films have the same surface roughness of 3nm in Ra (average roughness). And approximately 10nm-thick amorphous intermediate layers were found at the interfaces. Furthermore, we have fabricated a micro gear of 900μm in diameter and 200μm in height, which is about ten times as large as our previous test pieces. Overhung structures such as a bridge structure and a cantilever were also fabricated without supporting layers beneath them.

  13. Reconstruction of Magnetic Field Surfaces of the NOVILLO Tokamak by means of the 3D-MAPTOR Code

    International Nuclear Information System (INIS)

    Chavez-Alarcon, Esteban; Herrera-Velazquez, J. Julio E.

    2008-01-01

    A 3-D code has been developed in order to simulate the magnetic field lines in circular cross-section tokamaks. The toroidal magnetic field can be obtained from the individual fields of circular coils arranged around the torus, or alternatively, as a ripple-less field, as well as the vertical field coils, and divertor-like coils. The poloidal field is provided by a given toroidal current density profile. Proposing initial conditions for a magnetic filed line, it is integrated along the toroidal angle coordinate, and the Poincare maps can be obtained at any desired cross section plane along the torus. Following this procedure, the code allows to explore the necessary current values for the existence of magnetic field surfaces, allowing for deviations from axial symmetry, such as ripple effects. Therefore it is a good design instrument, in which different parameters and arrangements of coils can be tested. On the other hand, the current signals from experimental devices can be used in order to reconstruct the behaviour of the magnetic field surfaces, including the q(r) profiles. The reconstruction properties of the code are shown in this work

  14. Sea-town interactions over Marseille: 3D urban boundary layer and thermodynamic fields near the surface

    Science.gov (United States)

    Lemonsu, A.; Pigeon, G.; Masson, V.; Moppert, C.

    2006-02-01

    3D numerical simulations with the Meso-NH atmospheric model including the Town Energy Balance urban parameterization, are conducted over the south-east of France and the one million inhabitants city of Marseille in the frameworks of the ESCOMPTE-UBL program. The geographic situation of the area is relatively complex, because of the proximity of the Mediterranean Sea and the presence of numerous massifs, inducing complex meteorological flows. The present work is focused on six days of the campaign, characterized by the development of strong summer sea-breeze circulations. A complete evaluation of the model is initially realized at both regional- and city-scales, by using the large available database. The regional evaluation shows a good behavior of the model, during the six days of simulation, either for the parameters near the surface or for the vertical profiles describing the structure of the atmosphere. The urban-scale evaluation indicates that the fine structure of the horizontal fields of air temperature above the city is correctly simulated by the model. A specific attention is then pointed to the 250-m horizontal resolution outputs, focused on the Marseille area, for two days of the campaign. From the study of the vertical structure of the Urban Boundary Layer and the thermodynamic fields near the surface, one underscores the important differences due to the regional and local flows, and the complex interactions that occur between the urban effects and the effects of sea breezes.

  15. SU-E-J-55: End-To-End Effectiveness Analysis of 3D Surface Image Guided Voluntary Breath-Holding Radiotherapy for Left Breast

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M; Feigenberg, S [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patient position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures

  16. SU-E-J-55: End-To-End Effectiveness Analysis of 3D Surface Image Guided Voluntary Breath-Holding Radiotherapy for Left Breast

    International Nuclear Information System (INIS)

    Lin, M; Feigenberg, S

    2015-01-01

    Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patient position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures

  17. In vitro study of 3D PLGA/n-HAp/β-TCP composite scaffolds with etched oxygen plasma surface modification in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Hee-Sang [Department of Dental Materials, School of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452 (Korea, Republic of); Jung, Sang-Chul [Department of Environmental Engineering, Sunchon National University, 255 Jungang-ro, Sunchon 57922 (Korea, Republic of); Kook, Min-Suk [Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186 (Korea, Republic of); Kim, Byung-Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452 (Korea, Republic of)

    2016-12-01

    Highlights: • PLGA and PLGA/n-HAp/β-TCP scaffolds were successfully fabricated by 3D printing. • Oxygen plasma etching increases the wettability and surface roughness. • Bioceramics and oxygen plasma etching and could be used to improve the cell affinity. - Abstract: Three-dimensional (3D) scaffolds have many advantageous properties for bone tissue engineering application, due to its controllable properties such as pore size, structural shape and interconnectivity. In this study, effects on oxygen plasma surface modification and adding of nano-hydroxyapatite (n-HAp) and β-tricalcium phosphate (β-TCP) on the 3D PLGA/n-HAp/β-TCP scaffolds for improving preosteoblast cell (MC3T3-E1) adhesion, proliferation and differentiation were investigated. The 3D PLGA/n-HAp/β-TCP scaffolds were fabricated by 3D Bio-Extruder equipment. The 3D scaffolds were prepared with 0°/90° architecture and pore size of approximately 300 μm. In addition 3D scaffolds surface were etched by oxygen plasma to enhance the hydrophilic property and surface roughness. After oxygen plasma treatment, the surface chemistry and morphology were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. And also hydrophilic property was measured by contact angle. The MC3T3-E1 cell proliferation and differentiation were investigated by MTT assay and ALP activity. In present work, the 3D PLGA/HAp/beta-TCP composite scaffold with suitable structure for the growth of osteoblast cells was successfully fabricated by 3D rapid prototyping technique. The surface hydrophilicity and roughness of 3D scaffold increased by oxygen plasma treatment had a positive effect on cell adhesion, proliferation, and differentiation. Furthermore, the differentiation of MC3T3-E1 cell was significantly enhanced by adding of n-HAp and β-TCP on 3D PLGA scaffold. As a result, combination of bioceramics and oxygen plasma treatment showed a synergistic effect on

  18. VR-Planets : a 3D immersive application for real-time flythrough images of planetary surfaces

    Science.gov (United States)

    Civet, François; Le Mouélic, Stéphane

    2015-04-01

    During the last two decades, a fleet of planetary probes has acquired several hundred gigabytes of images of planetary surfaces. Mars has been particularly well covered thanks to the Mars Global Surveyor, Mars Express and Mars Reconnaissance Orbiter spacecrafts. HRSC, CTX, HiRISE instruments allowed the computation of Digital Elevation Models with a resolution from hundreds of meters up to 1 meter per pixel, and corresponding orthoimages with a resolution from few hundred of meters up to 25 centimeters per pixel. The integration of such huge data sets into a system allowing user-friendly manipulation either for scientific investigation or for public outreach can represent a real challenge. We are investigating how innovative tools can be used to freely fly over reconstructed landscapes in real time, using technologies derived from the game industry and virtual reality. We have developed an application based on a game engine, using planetary data, to immerse users in real martian landscapes. The user can freely navigate in each scene at full spatial resolution using a game controller. The actual rendering is compatible with several visualization devices such as 3D active screen, virtual reality headsets (Oculus Rift), and android devices.

  19. Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: a method for converting neural rate models into spiking models.

    Science.gov (United States)

    Cao, Yongqiang; Grossberg, Stephen

    2012-02-01

    A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model shows how spiking neurons that interact in hierarchically organized laminar circuits of the visual cortex can generate analog properties of 3D visual percepts. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model suggests how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain how computationally complementary boundary and surface formation properties lead to a single consistent percept, eliminate redundant 3D boundaries, and trigger figure-ground perception. The model also shows how false binocular boundary matches may be eliminated by Gestalt grouping properties. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The 3D sLAMINART model simulates 3D surface percepts that are consciously seen in 18 psychophysical experiments. These percepts include contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. The model hereby illustrates a general method of unlumping rate-based models that use the membrane equations of neurophysiology into models that use spiking neurons, and which may be embodied in VLSI chips that use spiking neurons to minimize heat production. Copyright

  20. A 3D regression surface for the room temperature tightness gasket data reduction and bolt load design

    International Nuclear Information System (INIS)

    Jolly, Pascal; Marchand, Luc

    2008-01-01

    The purpose of the present work is to propose a new approach for modelling the tightness behaviour of the gaskets used in bolted flange joints. This new approach consists of developing a mathematical model for a three-dimensional (3D) representation of the gasket tightness performance. Rather than considering a 2D graph for characterizing the complete gasket behaviour, a third axis is added to the S g vs. Tp plot to dissociate the unloading cycles from initial gasket tightening. This leads to the definition of a surface that is represented by a simple polynomial equation that contains six coefficients that are determined by a simple regression calculation. In the first part of the paper, the new approach is tested through a database of 406 room temperature tightness (ROTT) tests performed on different gasket styles. Then, a statistical analysis of the predictions made with the new model demonstrates its ability to predict gasket leak rates much more accurately than it was previously possible with the gasket constants derived from the ROTT Draft 9 or 10 methods. It is also demonstrated that the new approach can be used to model successfully complex gasket behaviours such as the tightness hardening phenomenon. Secondly, the effect of gas pressure change on the leak rate is analysed. It turns out that at high gasket stresses, the actual scheme of the ROTT tests may not allow enough time for reaching a stabilized leak rate value because of a transitory time effect in the porous structure of gaskets. Then, in order to evaluate the characteristic waiting period (dwell time) before a stabilized flow rate is achieved following a change in the gas pressure level, a simple phenomenological analysis of the flow is performed

  1. Guiding gate-etch process development using 3D surface reaction modeling for 7nm and beyond

    Science.gov (United States)

    Dunn, Derren; Sporre, John R.; Deshpande, Vaibhav; Oulmane, Mohamed; Gull, Ronald; Ventzek, Peter; Ranjan, Alok

    2017-03-01

    Increasingly, advanced process nodes such as 7nm (N7) are fundamentally 3D and require stringent control of critical dimensions over high aspect ratio features. Process integration in these nodes requires a deep understanding of complex physical mechanisms to control critical dimensions from lithography through final etch. Polysilicon gate etch processes are critical steps in several device architectures for advanced nodes that rely on self-aligned patterning approaches to gate definition. These processes are required to meet several key metrics: (a) vertical etch profiles over high aspect ratios; (b) clean gate sidewalls free of etch process residue; (c) minimal erosion of liner oxide films protecting key architectural elements such as fins; and (e) residue free corners at gate interfaces with critical device elements. In this study, we explore how hybrid modeling approaches can be used to model a multi-step finFET polysilicon gate etch process. Initial parts of the patterning process through hardmask assembly are modeled using process emulation. Important aspects of gate definition are then modeled using a particle Monte Carlo (PMC) feature scale model that incorporates surface chemical reactions.1 When necessary, species and energy flux inputs to the PMC model are derived from simulations of the etch chamber. The modeled polysilicon gate etch process consists of several steps including a hard mask breakthrough step (BT), main feature etch steps (ME), and over-etch steps (OE) that control gate profiles at the gate fin interface. An additional constraint on this etch flow is that fin spacer oxides are left intact after final profile tuning steps. A natural optimization required from these processes is to maximize vertical gate profiles while minimizing erosion of fin spacer films.2

  2. Quantitative Assessment of Variational Surface Reconstruction from Sparse Point Clouds in Freehand 3D Ultrasound Imaging during Image-Guided Tumor Ablation

    Directory of Open Access Journals (Sweden)

    Shuangcheng Deng

    2016-04-01

    Full Text Available Surface reconstruction for freehand 3D ultrasound is used to provide 3D visualization of a VOI (volume of interest during image-guided tumor ablation surgery. This is a challenge because the recorded 2D B-scans are not only sparse but also non-parallel. To solve this issue, we established a framework to reconstruct the surface of freehand 3D ultrasound imaging in 2011. The key technique for surface reconstruction in that framework is based on variational interpolation presented by Greg Turk for shape transformation and is named Variational Surface Reconstruction (VSR. The main goal of this paper is to evaluate the quality of surface reconstructions, especially when the input data are extremely sparse point clouds from freehand 3D ultrasound imaging, using four methods: Ball Pivoting, Power Crust, Poisson, and VSR. Four experiments are conducted, and quantitative metrics, such as the Hausdorff distance, are introduced for quantitative assessment. The experiment results show that the performance of the proposed VSR method is the best of the four methods at reconstructing surface from sparse data. The VSR method can produce a close approximation to the original surface from as few as two contours, whereas the other three methods fail to do so. The experiment results also illustrate that the reproducibility of the VSR method is the best of the four methods.

  3. 3D-Printed Bioactive Ca3SiO5 Bone Cement Scaffolds with Nano Surface Structure for Bone Regeneration.

    Science.gov (United States)

    Yang, Chen; Wang, Xiaoya; Ma, Bing; Zhu, Haibo; Huan, Zhiguang; Ma, Nan; Wu, Chengtie; Chang, Jiang

    2017-02-22

    Silicate bioactive materials have been widely studied for bone regeneration because of their eminent physicochemical properties and outstanding osteogenic bioactivity, and different methods have been developed to prepare porous silicate bioactive ceramics scaffolds for bone-tissue engineering applications. Among all of these methods, the 3D-printing technique is obviously the most efficient way to control the porous structure. However, 3D-printed bioceramic porous scaffolds need high-temperature sintering, which will cause volume shrinkage and reduce the controllability of the pore structure accuracy. Unlike silicate bioceramic, bioactive silicate cements such as tricalcium silicate (Ca 3 SiO 5 and C 3 S) can be self-set in water to obtain high mechanical strength under mild conditions. Another advantage of using C 3 S to prepare 3D scaffolds is the possibility of simultaneous drug loading. Herein, we, for the first time, demonstrated successful preparation of uniform 3D-printed C 3 S bone cement scaffolds with controllable 3D structure at room temperature. The scaffolds were loaded with two model drugs and showed a loading location controllable drug-release profile. In addition, we developed a surface modification process to create controllable nanotopography on the surface of pore wall of the scaffolds, which showed activity to enhance rat bone-marrow stem cells (rBMSCs) attachment, spreading, and ALP activities. The in vivo experiments revealed that the 3D-printed C 3 S bone cement scaffolds with nanoneedle-structured surfaces significantly improved bone regeneration, as compared to pure C 3 S bone cement scaffolds, suggesting that 3D-printed C 3 S bone cement scaffolds with controllable nanotopography surface are bioactive implantable biomaterials for bone repair.

  4. 3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy

    Directory of Open Access Journals (Sweden)

    N. Calonne

    2012-09-01

    Full Text Available We used three-dimensional (3-D images of snow microstructure to carry out numerical estimations of the full tensor of the intrinsic permeability of snow (K. This study was performed on 35 snow samples, spanning a wide range of seasonal snow types. For several snow samples, a significant anisotropy of permeability was detected and is consistent with that observed for the effective thermal conductivity obtained from the same samples. The anisotropy coefficient, defined as the ratio of the vertical over the horizontal components of K, ranges from 0.74 for a sample of decomposing precipitation particles collected in the field to 1.66 for a depth hoar specimen. Because the permeability is related to a characteristic length, we introduced a dimensionless tensor K*=K/res2, where the equivalent sphere radius of ice grains (res is computed from the specific surface area of snow (SSA and the ice density (ρi as follows: res=3/(SSA×ρi. We define K and K* as the average of the diagonal components of K and K*, respectively. The 35 values of K* were fitted to snow density (ρs and provide the following regression: K = (3.0 ± 0.3 res2 exp((−0.0130 ± 0.0003ρs. We noted that the anisotropy of permeability does not affect significantly the proposed equation. This regression curve was applied to several independent datasets from the literature and compared to other existing regression curves or analytical models. The results show that it is probably the best currently available simple relationship linking the average value of permeability, K, to snow density and specific surface area.

  5. Postoperative follow-up study of craniosynostosis using three-dimensional surface reconstruction CT (3D-CT)

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, Hiroshi; Tsukiyama, Takashi; Nishimura, Jiro; Fujioka, Mutsuhisa; Tsubokawa, Takashi.

    1988-12-01

    In 1983, Michael W. Vannier and Jeffrey L. Marsh developed a computer method that reconstructs three-dimensional images from high-resolution CT-scan series of the facial skeleton. This method has been applied to craniofacial anomalies, basal encephalocele, and other skeletal pathologies. In this study, the postoperative assessment of craniofacial surgical results has been accomplished using 3D-CT techniques in craniosynostosis. The results are as follows: (1) Postoperative 3D-CTs reveal the bony anatomical details corrected by the craniofacial surgery more precisely and more stereographically than do conventional radiological techniques. (2) Secondary changes in the cranium after the surgery, such as reossification at the area of osteotomies or postoperative asymmetric skull deformities, are more early detected by the 3D-CT imaging technique than by a craniogram. (3) In 3D-CT images, internal views of the skull, such mid-sagittal, rear internal, or top axial views of the intracranial skull base, are most useful in postoperative assessments of the surgical results and of postoperative secondary changes in the cranium. Based on our experience, we expect that 3D-CT imaging techniques will become more important in the management of craniosynostosis.

  6. Postoperative follow-up study of craniosynostosis using three-dimensional surface reconstruction CT (3D-CT)

    International Nuclear Information System (INIS)

    Nishimoto, Hiroshi; Tsukiyama, Takashi; Nishimura, Jiro; Fujioka, Mutsuhisa; Tsubokawa, Takashi.

    1988-01-01

    In 1983, Michael W. Vannier and Jeffrey L. Marsh developed a computer method that reconstructs three-dimensional images from high-resolution CT-scan series of the facial skeleton. This method has been applied to craniofacial anomalies, basal encephalocele, and other skeletal pathologies. In this study, the postoperative assessment of craniofacial surgical results has been accomplished using 3D-CT techniques in craniosynostosis. The results are as follows: 1) Postoperative 3D-CTs reveal the bony anatomical details corrected by the craniofacial surgery more precisely and more stereographically than do conventional radiological techniques. 2) Secondary changes in the cranium after the surgery, such as reossification at the area of osteotomies or postoperative asymmetric skull deformities, are more early detected by the 3D-CT imaging technique than by a craniogram. 3) In 3D-CT images, internal views of the skull, such mid-sagittal, rear internal, or top axial views of the intracranial skull base, are most useful in postoperative assessments of the surgical results and of postoperative secondary changes in the cranium. Based on our experience, we expect that 3D-CT imaging techniques will become more important in the management of craniosynostosis. (author)

  7. 3D cellular structures and co-cultures formed through the contactless magnetic manipulation of cells on adherent surfaces.

    Science.gov (United States)

    Abdel Fattah, Abdel Rahman; Mishriki, Sarah; Kammann, Tobias; Sahu, Rakesh P; Geng, Fei; Puri, Ishwar K

    2018-02-27

    A magnet array is employed to manipulate diamagnetic cells that are contained in paramagnetic medium to demonstrate for the first time the contactless bioprinting of three-dimensional (3D) cellular structures and co-cultures of breast cancer MCF-7 and endothelial HUVEC at prescribed locations on tissue culture treated well plates. Sequential seeding of different cell lines and the spatial displacement of the magnet array creates co-cultured cellular structures within a well without using physically intrusive well inserts. Both monotypic and co-culture experiments produce morphologically rich 3D cell structures that are otherwise absent in regular monolayer cell cultures. The magnetic contactless bioprinting of cells provides further insight into cell behaviour, invasion strategies and transformations that are useful for potential applications in drug screening, 3D cell culture formation and tissue engineering.

  8. Surface Roughness of a 3D-Printed Ni-Cr Alloy Produced by Selective Laser Melting: Effect of Process Parameters.

    Science.gov (United States)

    Hong, Min-Ho; Son, Jun Sik; Kwon, Tae-Yub

    2018-03-01

    The selective laser melting (SLM) process parameters, which directly determine the melting behavior of the metallic powders, greatly affect the nanostructure and surface roughness of the resulting 3D object. This study investigated the effect of various laser process parameters (laser power, scan rate, and scan line spacing) on the surface roughness of a nickel-chromium (Ni-Cr) alloy that was three-dimensionally (3D) constructed using SLM. Single-line formation tests were used to determine the optimal laser power of 200 W and scan rate of 98.8 mm/s, which resulted in beads with an optimal profile. In the subsequent multi-layer formation tests, the 3D object with the smoothest surface (Ra = 1.3 μm) was fabricated at a scan line spacing of 60 μm (overlap ratio = 73%). Narrow scan line spacing (and thus large overlap ratios) was preferred over wide scan line spacing to reduce the surface roughness of the 3D body. The findings of this study suggest that the laser power, scan rate, and scan line spacing are the key factors that control the surface quality of Ni-Cr alloys produced by SLM.

  9. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

    NARCIS (Netherlands)

    Swennen, G.R.J.; Mommaerts, M.Y.; Abeloos, J.V.S.; Clercq, C. De; Lamoral, P.; Neyt, N.; Casselman, J.W.; Schutyser, F.A.C.

    2009-01-01

    Cone-beam computed tomography (CBCT) is used for maxillofacial imaging. 3D virtual planning of orthognathic and facial orthomorphic surgery requires detailed visualisation of the interocclusal relationship. This study aimed to introduce and evaluate the use of a double CBCT scan procedure with a

  10. Facial recognition software success rates for the identification of 3D surface reconstructed facial images: implications for patient privacy and security.

    Science.gov (United States)

    Mazura, Jan C; Juluru, Krishna; Chen, Joseph J; Morgan, Tara A; John, Majnu; Siegel, Eliot L

    2012-06-01

    Image de-identification has focused on the removal of textual protected health information (PHI). Surface reconstructions of the face have the potential to reveal a subject's identity even when textual PHI is absent. This study assessed the ability of a computer application to match research subjects' 3D facial reconstructions with conventional photographs of their face. In a prospective study, 29 subjects underwent CT scans of the head and had frontal digital photographs of their face taken. Facial reconstructions of each CT dataset were generated on a 3D workstation. In phase 1, photographs of the 29 subjects undergoing CT scans were added to a digital directory and tested for recognition using facial recognition software. In phases 2-4, additional photographs were added in groups of 50 to increase the pool of possible matches and the test for recognition was repeated. As an internal control, photographs of all subjects were tested for recognition against an identical photograph. Of 3D reconstructions, 27.5% were matched correctly to corresponding photographs (95% upper CL, 40.1%). All study subject photographs were matched correctly to identical photographs (95% lower CL, 88.6%). Of 3D reconstructions, 96.6% were recognized simply as a face by the software (95% lower CL, 83.5%). Facial recognition software has the potential to recognize features on 3D CT surface reconstructions and match these with photographs, with implications for PHI.

  11. 3D Surgical Simulation

    OpenAIRE

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2010-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive ...

  12. Fixture-abutment connection surface and micro-gap measurements by 3D micro-tomographic technique analysis

    Directory of Open Access Journals (Sweden)

    Deborah Meleo

    2012-01-01

    Full Text Available X-ray micro-tomography (micro-CT is a miniaturized form of conventional computed axial tomography (CAT able to investigate small radio-opaque objects at a-few-microns high resolution, in a nondestructive, non-invasive, and tri-dimensional way. Compared to traditional optical and electron microscopy techniques, which provide two-dimensional images, this innovative investigation technology enables a sample tri-dimensional analysis without cutting, coating or exposing the object to any particular chemical treatment. X-ray micro-tomography matches ideal 3D microscopy features: the possibility of investigating an object in natural conditions and without any preparation or alteration; non-invasive, non-destructive, and sufficiently magnified 3D reconstruction; reliable measurement of numeric data of the internal structure (morphology, structure and ultra-structure. Hence, this technique has multi-fold applications in a wide range of fields, not only in medical and odontostomatologic areas, but also in biomedical engineering, materials science, biology, electronics, geology, archaeology, oil industry, and semi-conductors industry. This study shows possible applications of micro-CT in dental implantology to analyze 3D micro-features of dental implant to abutment interface. Indeed, implant-abutment misfit is known to increase mechanical stress on connection structures and surrounding bone tissue. This condition may cause not only screw preload loss or screw fracture, but also biological issues in peri-implant tissues.

  13. Dual-beam focused ion beam/electron microscopy processing and metrology of redeposition during ion-surface 3D interactions, from micromachining to self-organized picostructures.

    Science.gov (United States)

    Moberlychan, Warren J

    2009-06-03

    Focused ion beam (FIB) tools have become a mainstay for processing and metrology of small structures. In order to expand the understanding of an ion impinging a surface (Sigmund sputtering theory) to our processing of small structures, the significance of 3D boundary conditions must be realized. We consider ion erosion for patterning/lithography, and optimize yields using the angle of incidence and chemical enhancement, but we find that the critical 3D parameters are aspect ratio and redeposition. We consider focused ion beam sputtering for micromachining small holes through membranes, but we find that the critical 3D considerations are implantation and redeposition. We consider ion beam self-assembly of nanostructures, but we find that control of the redeposition by ion and/or electron beams enables the growth of nanostructures and picostructures.

  14. The effect of glycerin solution density and viscosity on vibration amplitude of oblique different piezoelectric MC near the surface in 3D modeling

    Science.gov (United States)

    Korayem, A. H.; Abdi, M.; Korayem, M. H.

    2018-06-01

    The surface topography in nanoscale is one of the most important applications of AFM. The analysis of piezoelectric microcantilevers vibration behavior is essential to improve the AFM performance. To this end, one of the appropriate methods to simulate the dynamic behavior of microcantilever (MC) is a numerical solution with FEM in the 3D modeling using COMSOL software. The present study aims to simulate different geometries of the four-layered AFM piezoelectric MCs in 2D and 3D modeling in a liquid medium using COMSOL software. The 3D simulation was done in a spherical container using FSI domain in COMSOL. In 2D modeling by applying Hamilton's Principle based on Euler-Bernoulli Beam theory, the governing motion equation was derived and discretized with FEM. In this mode, the hydrodynamic force was assumed with a string of spheres. The effect of this force along with the squeezed-film force was considered on MC equations. The effect of fluid density and viscosity on the MC vibrations that immersed in different glycerin solutions was investigated in 2D and 3D modes and the results were compared with the experimental results. The frequencies and time responses of MC close to the surface were obtained considering tip-sample forces. The surface topography of MCs different geometries were compared in the liquid medium and the comparison was done in both tapping and non-contact mode. Various types of surface roughness were considered in the topography for MC different geometries. Also, the effect of geometric dimensions on the surface topography was investigated. In liquid medium, MC is installed at an oblique position to avoid damaging the MC due to the squeezed-film force in the vicinity of MC surface. Finally, the effect of MC's angle on surface topography and time response of the system was investigated.

  15. Pulse electrochemical machining on Invar alloy: Optical microscopic/SEM and non-contact 3D measurement study of surface analyses

    International Nuclear Information System (INIS)

    Kim, S.H.; Choi, S.G.; Choi, W.K.; Yang, B.Y.; Lee, E.S.

    2014-01-01

    Highlights: • Invar alloy was electrochemically polished and then subjected to PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. • Optical microscopic/SEM and non-contact 3D measurement study of Invar surface analyses. • Analysis result shows that applied voltage and electrode shape are factors that affect the surface conditions. - Abstract: In this study, Invar alloy (Fe 63.5%, Ni 36.5%) was electrochemically polished by PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. A series of PECM experiments were carried out with different voltages and different electrode shapes, and then the surfaces of polished Invar alloy were investigated. The polished Invar alloy surfaces were investigated by optical microscope, scanning electron microscope (SEM), and non-contact 3D measurement (white light microscopes) and it was found that different applied voltages produced different surface characteristics on the Invar alloy surface because of the locally concentrated applied voltage on the Invar alloy surface. Moreover, we found that the shapes of electrode also have an effect on the surface characteristics on Invar alloy surface by influencing the applied voltage. These experimental findings provide fundamental knowledge for PECM of Invar alloy by surface analysis

  16. Computer aided display of multiple soft tissue anatomical surfaces for simultaneous structural and area-dose appreciation in 3D-radiationtherapy planning. 115

    International Nuclear Information System (INIS)

    Moore, C.J.; Mott, D.J.; Wilkinson, J.M.

    1987-01-01

    For radiotherapy applications a 3D display that includes soft tissues is required but the presentation of all anatomical structures is often unnecessary and is potentially confusing. A tumour volume and a small number of critical organs, usually embedded within other soft tissue anatomy, are likely to be all that can be clearly displayed when presented in a 3D format. The inclusion of dose data (in the form of isodose lines or surfaces) adds to the complication of any 3D display. A solution to this problem is to incorporate the presentation of dose distribution into the technique used to provide the illusion of 3D. This illusion can be provided by either depth cueing or by the hypothetical illumination of spatially defined object surfaces. The dose distribution from irradiation fields or, in the case of brachytherapy from radioactive sources, can be regarded as a source of illumination for tumour and critical organs. The intensity of illumination at any point on a tissue surface represents the dose at that point. Such an approach also allows the variation of dose over a given surface (and by extension, over the corresponding volume) to be quantified using histogram techniques. This may be of value in analysing and comparing techniques in which vulnerable tissue surfaces are irradiated. The planning of intracavitary treatments for cervical cancer is one application which might benefit from the display approach described above. Here the variation of dose over the mucosal surfaces of the bladder and the rectum is of particular interest, since dose related morbidity has often been reported following these treatments. 7 refs.; 8 figs

  17. Application of 3D documentation and geometric reconstruction methods in traffic accident analysis: with high resolution surface scanning, radiological MSCT/MRI scanning and real data based animation.

    Science.gov (United States)

    Buck, Ursula; Naether, Silvio; Braun, Marcel; Bolliger, Stephan; Friederich, Hans; Jackowski, Christian; Aghayev, Emin; Christe, Andreas; Vock, Peter; Dirnhofer, Richard; Thali, Michael J

    2007-07-20

    The examination of traffic accidents is daily routine in forensic medicine. An important question in the analysis of the victims of traffic accidents, for example in collisions between motor vehicles and pedestrians or cyclists, is the situation of the impact. Apart from forensic medical examinations (external examination and autopsy), three-dimensional technologies and methods are gaining importance in forensic investigations. Besides the post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) for the documentation and analysis of internal findings, highly precise 3D surface scanning is employed for the documentation of the external body findings and of injury-inflicting instruments. The correlation of injuries of the body to the injury-inflicting object and the accident mechanism are of great importance. The applied methods include documentation of the external and internal body and the involved vehicles and inflicting tools as well as the analysis of the acquired data. The body surface and the accident vehicles with their damages were digitized by 3D surface scanning. For the internal findings of the body, post-mortem MSCT and MRI were used. The analysis included the processing of the obtained data to 3D models, determination of the driving direction of the vehicle, correlation of injuries to the vehicle damages, geometric determination of the impact situation and evaluation of further findings of the accident. In the following article, the benefits of the 3D documentation and computer-assisted, drawn-to-scale 3D comparisons of the relevant injuries with the damages to the vehicle in the analysis of the course of accidents, especially with regard to the impact situation, are shown on two examined cases.

  18. 3D surface rendering of images from multiple MR pulse sequences in the pre-operative evaluation of hepatic lesions

    International Nuclear Information System (INIS)

    Bjerner, T.; Johansson, L.; Ahlstroem, H.; Haglund, U.

    1998-01-01

    Purpose: To develop a method for making three-dimensional (3D) reconstructions of liver vessels and hepatic lesions from different MR data sets. Material and Methods: To reduce the time required for segmentation and reconstructions, we used T1, T2 and phase contrast angiography, optimised for liver, lesion and vessels respectively. Following segmentation and reconstruction, the different volumes were combined on the same workstation and presented to the surgeon. Results and Conclusion: Segmentation and reconstruction took 1-2 h. To be able to combine the volumes from the different data sets, certain criteria had to be fulfilled: (a) the field of view had to be constant; (b) the same volume had to be scanned every time which meant that the slice thickness and the number of slices could be adjusted as long as the volume covered was the same; and (c) the positioning of each volume had to be identical between every scan. The resulting 3D reconstruction gave the surgeon a clear appreciation of the different lesions and their relation to the different liver segments in the pre-operative planning of hepatic resections. (orig.)

  19. A multi-level surface rebalancing approach for efficient convergence acceleration of 3D full core multi-group fine grid nodal diffusion iterations

    International Nuclear Information System (INIS)

    Geemert, René van

    2014-01-01

    Highlights: • New type of multi-level rebalancing approach for nodal transport. • Generally improved and more mesh-independent convergence behavior. • Importance for intended regime of 3D pin-by-pin core computations. - Abstract: A new multi-level surface rebalancing (MLSR) approach has been developed, aimed at enabling an improved non-linear acceleration of nodal flux iteration convergence in 3D steady-state and transient reactor simulation. This development is meant specifically for anticipating computational needs for solving envisaged multi-group diffusion-like SP N calculations with enhanced mesh resolution (i.e. 3D multi-box up to 3D pin-by-pin grid). For the latter grid refinement regime, the previously available multi-level coarse mesh rebalancing (MLCMR) strategy has been observed to become increasingly inefficient with increasing 3D mesh resolution. Furthermore, for very fine 3D grids that feature a very fine axial mesh as well, non-convergence phenomena have been observed to emerge. In the verifications pursued up to now, these problems have been resolved by the new approach. The novelty arises from taking the interface current balance equations defined over all Cartesian box edges, instead of the nodal volume-integrated process-rate balance equation, as an appropriate restriction basis for setting up multi-level acceleration of fine grid interface current iterations. The new restriction strategy calls for the use of a newly derived set of adjoint spectral equations that are needed for computing a limited set of spectral response vectors per node. This enables a straightforward determination of group-condensed interface current spectral coupling operators that are of crucial relevance in the new rebalancing setup. Another novelty in the approach is a new variational method for computing the neutronic eigenvalue. Within this context, the latter is treated as a control parameter for driving another, newly defined and numerically more fundamental

  20. Qademah Fault 3D Survey

    KAUST Repository

    Hanafy, Sherif M.

    2014-01-01

    Objective: Collect 3D seismic data at Qademah Fault location to 1. 3D traveltime tomography 2. 3D surface wave migration 3. 3D phase velocity 4. Possible reflection processing Acquisition Date: 26 – 28 September 2014 Acquisition Team: Sherif, Kai, Mrinal, Bowen, Ahmed Acquisition Layout: We used 288 receiver arranged in 12 parallel lines, each line has 24 receiver. Inline offset is 5 m and crossline offset is 10 m. One shot is fired at each receiver location. We use the 40 kgm weight drop as seismic source, with 8 to 15 stacks at each shot location.

  1. Empirical assessment of the validity limits of the surface wave full ray theory using realistic 3-D Earth models

    KAUST Repository

    Parisi, Laura; Ferreira, Ana M.G.

    2016-01-01

    The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of surface waves. It combines the concept of local modes with exact ray tracing as a function of frequency, providing a more complete description of surface

  2. Seismic behavior of NPP structures subjected to realistic 3D, inclined seismic motions, in variable layered soil/rock, on surface or embedded foundations

    International Nuclear Information System (INIS)

    Jeremić, B.; Tafazzoli, N.; Ancheta, T.; Orbović, N.; Blahoianu, A.

    2013-01-01

    Highlights: • Full 3D, inclined, incoherent seismic motions used for modeling SSI of an NPP. • Analyzed effects of variable and uniform soil/rock layering profiles on SSI. • Surface and embedded foundations were modeled and differences analyzed. - Abstract: Presented here is an investigation of the seismic response of a massive NPP structures due to full 3D, inclined, un-correlated input motions for different soil and rock profiles. Of particular interest are the effects of soil and rock layering on the response and the changes of input motions (frequency characteristics) due to such layering. In addition to rock/soil layering effects, investigated are also effects of foundation embedment on dynamic response. Significant differences were observed in dynamic response of containment and internal structure founded on surface and on embedded foundations. These differences were observed for both rock and soil profiles. Select results are used to present most interesting findings

  3. Comparison of distributed vortex receptivity coefficients at excitation of 3D TS-waves in presence and absence of surface waviness and pressure gradient

    Science.gov (United States)

    Borodulin, V. I.; Ivanov, A. V.; Kachanov, Y. S.; Mischenko, D. A.; Fedenkova, A. A.

    2016-10-01

    The paper is devoted to quantitative experimental investigation of effective mechanisms of excitation of 3D TS instability waves due to distributed boundary layer receptivity to free-stream vortices. Experiments carried out in a self-similar boundary layer with Hartree parameter βH = -0.115 and concentrated on studying two receptivity mechanisms connected with distributed scattering of 3D unsteady free-stream vortices both on the natural boundary layer nonuniformity (smooth surface) and on 2D surface nonuniformity (waviness). Obtained quantitative characteristics (distributed receptivity coefficients) are compared directly with those obtained in Blasius boundary layer. It is found that the adverse pressure gradient leads to reduction of efficiency of the vortex-roughness receptivity mechanism.

  4. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System

    Science.gov (United States)

    Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.

    2016-02-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  5. Characteristics of capacitance-micro-displacement for model of complex interior surface of the 3D Taiji ball and its applications

    Science.gov (United States)

    Zhu, Ruo-Gu; Jiang, Kun; Qing, Zhao-Bo; Liu, Yue-Hui; Yan, Jun

    2006-11-01

    Taiji image originated from ancient China. It is not only the Taoism emblem but also the ancient graphic presentation sign to everything origin. It either has a too far-reaching impact on traditional culture of China, or is influencing the development of current natural science. On the basis of analyzing the classical philosophic theory of two-dimensional (2-D) Taiji image, we developed it into the model of complex interior surface-three-dimensional (3-D) Taiji ball, and explored its possible applications. Combining modern mathematics and physics knowledge, we have studied on the physical meaning of 3-D Taiji ball, thus the plane change of original Taiji image is developed into space change which is more close to the real world. The change layers are obvious increased notably, and the amount of information included in this model increases correspondingly. We also realized a special paper 3-D Taiji ball whose surface is coved with metal foil by means of laser manufacture. A new experiment set-up for measuring micro displace has been designed and constituted thus the relation between capacitance and micro displacement for the 3-D Taiji ball has performed. Experimental and theoretical analyses are also finished. This models of 3-D Taiji ball for physical characteristics are the first time set up. Experimental data and fitting curves between capacitance and micro displacement for the special paper Taiji ball coved with metal foil are suggested. It is shown that the special Taiji ball has less leakage capacitance or more strengthen electric field than an ordinary half ball capacitance. Finally their potential applied values are explored.

  6. Fault-related dolomitization in the Vajont Limestone (Southern Alps, Italy): photogrammetric 3D outcrop reconstruction, visualization with textured surfaces, and structural analysis

    OpenAIRE

    Bistacchi, Andrea; Balsamo, Fabrizio; Storti, Fabrizio; Mozafari, Mahtab; Swennen, Rudy; Solum, John; Taberner, Conxita

    2013-01-01

    The Vajont Gorge (Dolomiti Bellunesi, Italy) provides spectacular outcrops of Jurassic limestones (Vajont Limestone Formation) in which Mesozoic and Alpine faults and fracture corridors are continuously exposed. Some of these faults acted as conduits for fluids, resulting in structurally-controlled dolomitization of the Vajont Limestone, associated with significant porosity increase. We carried out a 3D surface characterization of the outcrops, combining high resolution topography and imaging...

  7. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  8. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  9. Formation Dirac point and the topological surface states for HgCdTe-QW and mixed 3D HgCdTe TI

    Science.gov (United States)

    Marchewka, Michał

    2017-01-01

    In this paper the results of numerical calculations based on the finite difference method (FDM) for the 2D and 3D TI with and without uniaxial tensile strain for mixed Hg1-xCdxTe structures are presented. The numerical calculations were made using the 8×8 model for x from 0 up to 0.155 and for the wide range for the thickness from a few nm for 2D up to 150 nm for 3D TI as well as for different mismatch of the lattice constant and different barrier potential in the case of the QW. For the investigated region of the Cd composition (x value) the negative energy gap (Eg=Γ8-Γ6) in the Hg1-xCdxTe is smaller than in the case of pure HgTe which, as it turns out, has a significant influence on the topological surface states (TSS) and the position of the Dirac point for QW as well as for 3D TI. The results show that the strained gap and the position of the Dirac point against the Γ8 is a function of the x-Cd compounds in the case of the 3D TI as well as the critical width of the mixed Hg1-xCdxTe QW.

  10. Formation Dirac point and the topological surface states for HgCdTe-QW and mixed 3D HgCdTe TI

    International Nuclear Information System (INIS)

    Marchewka, Michał

    2017-01-01

    In this paper the results of numerical calculations based on the finite difference method (FDM) for the 2D and 3D TI with and without uniaxial tensile strain for mixed Hg_1_-_xCd_xTe structures are presented. The numerical calculations were made using the 8×8 model for x from 0 up to 0.155 and for the wide range for the thickness from a few nm for 2D up to 150 nm for 3D TI as well as for different mismatch of the lattice constant and different barrier potential in the case of the QW. For the investigated region of the Cd composition (x value) the negative energy gap (E_g=Γ_8-Γ_6) in the Hg_1_-_xCd_xTe is smaller than in the case of pure HgTe which, as it turns out, has a significant influence on the topological surface states (TSS) and the position of the Dirac point for QW as well as for 3D TI. The results show that the strained gap and the position of the Dirac point against the Γ_8 is a function of the x-Cd compounds in the case of the 3D TI as well as the critical width of the mixed Hg_1_-_xCd_xTe QW.

  11. SU-G-JeP4-07: Evaluation of Intrafraction Motion Using 3D Surface Guided Radiation Therapy in Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Jermoumi, M; Cao, D; Mehta, V; Shepard, D [Department of Radiation Oncology, Swedish Cancer Institute, Seattle, WA (United States)

    2016-06-15

    Purpose: Surface guided radiation therapy (SGRT) uses stereoscopic video images in combination with patterns projected onto the patient’s surface to dynamically capture and reconstruct a 3D surface map. In this work, we used a C-RAD Catalyst HD system (C-RAD) to evaluate intrafraction motion in the delivery of lung SBRT. Methods: The surface acquired from the 4DCT images from our preliminary cohort of eight lung cancer patients treated with SBRT were matched to the surface images acquired prior to each treatment. Additionally, a CBCT image set was acquired. A linear regression model was established between the external and internal motion of tumor during pretreatment and used to predict the CBCT deviation during treatment. The shifts determined from CBCT and the shifts from surface map imaging were compared and assessed using Bland-Altman method. For intrafraction motion, we assessed the percentage of mean errors that fell outside of the threshold of 2 mm, 3 mm, and 5 mm along the translational directions. The required PTV margin was quantified over the course of treatment. The correlation between intrafraction treatment time and mean error of 3D displacement was evaluated using the Pearson coefficient, r Results: A total of 7971 data points were analyzed. Deviations of 2mm, 3mm, and 5mm were observed less than 7%, 2 %, and 0 % of the time along the translational direction. CBCT and Catalyst showed close agreement during patient positioning. Furthermore, the calculated PTV margins were less than our clinical tolerance of 5 mm. Using the Pearson coefficient r,the mean error of 3D displacement showed significant correlation with treatment time (r=0.69, p= 0.000002). Conclusion: SGRT can be used to ensure accurate patient positioning during treatment without an additional delivery of dose to the patient. This study shows that importance of treatment time as a consideration during the treatment planning process.

  12. SU-G-JeP4-07: Evaluation of Intrafraction Motion Using 3D Surface Guided Radiation Therapy in Lung SBRT

    International Nuclear Information System (INIS)

    Jermoumi, M; Cao, D; Mehta, V; Shepard, D

    2016-01-01

    Purpose: Surface guided radiation therapy (SGRT) uses stereoscopic video images in combination with patterns projected onto the patient’s surface to dynamically capture and reconstruct a 3D surface map. In this work, we used a C-RAD Catalyst HD system (C-RAD) to evaluate intrafraction motion in the delivery of lung SBRT. Methods: The surface acquired from the 4DCT images from our preliminary cohort of eight lung cancer patients treated with SBRT were matched to the surface images acquired prior to each treatment. Additionally, a CBCT image set was acquired. A linear regression model was established between the external and internal motion of tumor during pretreatment and used to predict the CBCT deviation during treatment. The shifts determined from CBCT and the shifts from surface map imaging were compared and assessed using Bland-Altman method. For intrafraction motion, we assessed the percentage of mean errors that fell outside of the threshold of 2 mm, 3 mm, and 5 mm along the translational directions. The required PTV margin was quantified over the course of treatment. The correlation between intrafraction treatment time and mean error of 3D displacement was evaluated using the Pearson coefficient, r Results: A total of 7971 data points were analyzed. Deviations of 2mm, 3mm, and 5mm were observed less than 7%, 2 %, and 0 % of the time along the translational direction. CBCT and Catalyst showed close agreement during patient positioning. Furthermore, the calculated PTV margins were less than our clinical tolerance of 5 mm. Using the Pearson coefficient r,the mean error of 3D displacement showed significant correlation with treatment time (r=0.69, p= 0.000002). Conclusion: SGRT can be used to ensure accurate patient positioning during treatment without an additional delivery of dose to the patient. This study shows that importance of treatment time as a consideration during the treatment planning process.

  13. Setup errors and effectiveness of Optical Laser 3D Surface imaging system (Sentinel) in postoperative radiotherapy of breast cancer.

    Science.gov (United States)

    Wei, Xiaobo; Liu, Mengjiao; Ding, Yun; Li, Qilin; Cheng, Changhai; Zong, Xian; Yin, Wenming; Chen, Jie; Gu, Wendong

    2018-05-08

    Breast-conserving surgery (BCS) plus postoperative radiotherapy has become the standard treatment for early-stage breast cancer. The aim of this study was to compare the setup accuracy of optical surface imaging by the Sentinel system with cone-beam computerized tomography (CBCT) imaging currently used in our clinic for patients received BCS. Two optical surface scans were acquired before and immediately after couch movement correction. The correlation between the setup errors as determined by the initial optical surface scan and CBCT was analyzed. The deviation of the second optical surface scan from the reference planning CT was considered an estimate for the residual errors for the new method for patient setup correction. The consequences in terms for necessary planning target volume (PTV) margins for treatment sessions without setup correction applied. We analyzed 145 scans in 27 patients treated for early stage breast cancer. The setup errors of skin marker based patient alignment by optical surface scan and CBCT were correlated, and the residual setup errors as determined by the optical surface scan after couch movement correction were reduced. Optical surface imaging provides a convenient method for improving the setup accuracy for breast cancer patient without unnecessary imaging dose.

  14. An optimal analysis for Darcy-Forchheimer 3D flow of Carreau nanofluid with convectively heated surface

    Science.gov (United States)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    2018-06-01

    Darcy-Forchheimer three dimensional flow of Carreau nanoliquid induced by a linearly stretchable surface with convective boundary condition has been analyzed. Buongiorno model has been employed to elaborate thermophoresis and Brownian diffusion effects. Zero nanoparticles mass flux and convective surface conditions are implemented at the boundary. The governing problems are nonlinear. Optimal homotopic procedure has been used to tackle the governing mathematical system. Graphical results clearly depict the outcome of temperature and concentration fields. Surface drag coefficients and local Nusselt number are also plotted and discussed.

  15. The role of target 3D-reconstructions when analysyng qualitative characteristics of the surface of circular-shaped growth in the lungs

    Directory of Open Access Journals (Sweden)

    V. G. Kolmogorov

    2016-01-01

    Full Text Available The purpose of this paper is to improve the accuracy of X-ray diagnostics of circular-shaped growth (CSG by developing computed tomographic semiotics of qualitative characteristics of its surface and the state of the surrounding bronchi using target 3D-reconstruction.Material and methods. 560 patients at the age of 3–89 years were examined. Target 3D reconstruction was carried out with the use of 3D Fly Through program (Toshiba Medical Systems, Japan which removed the tissue surrounding CSG at a distance of 5–10 mm from the outer boundaries.CSG was inscribed into a cube. In case of the primary central and peripheral lung cancer a number of patients with severe rough surface of CSG prevailed over a number of patients with slightly rough surface was detected. In case of infiltrative tuberculosis, pneumonia, echinococcus, retention cysts the prevalence of a number of patients with slightly rough surface of CSG over a number of patients with rough surface was identified. In case of single cancer metastases, single and multiple tuberculomas the prevalence of a number of patients with non-uniform smooth surface of CSG over a number of patients with uniform smooth surface was identified. In case of multiple cancer metastasis, focal tuberculosis, cysticercosis the prevalence of a number of patients with a uniform smooth surface of CSG over a number of patients with uneven smooth surface was identified. In case of benign tumors, eosinophilic infiltrate, gamartohondroma, aspergilloma, chronic abscess, intrapulmonary hematoma there was not difference between the number of patients with a uniform smooth surface of CSG and a number of patients with uneven smooth surface. In case of primary lung cancer metastasis, single and multiple tuberkulomas, echinococcus, cysticercosis there was a prevalence of the number of patients with expressed deformed bronchi surrounding CSL over a number of patients with moderately deformed bronchi. In case of infiltrative

  16. Growth of porous anodized alumina on the sputtered aluminum films with 2D-3D morphology for high specific surface area

    Science.gov (United States)

    Liao, M. W.; Chung, C. K.

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D-3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W-185 W for 1 h at a working pressure of 2.5 × 10-1 Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  17. Growth of porous anodized alumina on the sputtered aluminum films with 2D–3D morphology for high specific surface area

    Energy Technology Data Exchange (ETDEWEB)

    Liao, M.W.; Chung, C.K., E-mail: ckchung@mail.ncku.edu.tw

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D–3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W–185 W for 1 h at a working pressure of 2.5 × 10⁻¹ Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  18. 3-D surface reconstruction of patient specific anatomic data using a pre-specified number of polygons.

    Science.gov (United States)

    Aharon, S; Robb, R A

    1997-01-01

    Virtual reality environments provide highly interactive, natural control of the visualization process, significantly enhancing the scientific value of the data produced by medical imaging systems. Due to the computational and real time display update requirements of virtual reality interfaces, however, the complexity of organ and tissue surfaces which can be displayed is limited. In this paper, we present a new algorithm for the production of a polygonal surface containing a pre-specified number of polygons from patient or subject specific volumetric image data. The advantage of this new algorithm is that it effectively tiles complex structures with a specified number of polygons selected to optimize the trade-off between surface detail and real-time display rates.

  19. 3D evaluation of the surface roughness using stereo images made in sem - influence on osteoblast cell growth

    Czech Academy of Sciences Publication Activity Database

    Douděrová, M.; Starý, V.; Tolde, Z.; Bačáková, Lucie

    2006-01-01

    Roč. 9, č. 58-60 (2006), s. 13-14 ISSN 1429-7248 R&D Projects: GA ČR(CZ) GA101/06/0226 Institutional research plan: CEZ:AV0Z50110509 Keywords : bone tissue engineering * carbon composites * surface modification Subject RIV: EI - Biotechnology ; Bionics

  20. ConoSurf: Open-source 3D scanning system based on a conoscopic holography device for acquiring surgical surfaces.

    Science.gov (United States)

    Brudfors, Mikael; García-Vázquez, Verónica; Sesé-Lucio, Begoña; Marinetto, Eugenio; Desco, Manuel; Pascau, Javier

    2017-09-01

    A difficulty in computer-assisted interventions is acquiring the patient's anatomy intraoperatively. Standard modalities have several limitations: low image quality (ultrasound), radiation exposure (computed tomography) or high costs (magnetic resonance imaging). An alternative approach uses a tracked pointer; however, the pointer causes tissue deformation and requires sterilizing. Recent proposals, utilizing a tracked conoscopic holography device, have shown promising results without the previously mentioned drawbacks. We have developed an open-source software system that enables real-time surface scanning using a conoscopic holography device and a wide variety of tracking systems, integrated into pre-existing and well-supported software solutions. The mean target registration error of point measurements was 1.46 mm. For a quick guidance scan, surface reconstruction improved the surface registration error compared with point-set registration. We have presented a system enabling real-time surface scanning using a tracked conoscopic holography device. Results show that it can be useful for acquiring the patient's anatomy during surgery. © 2016 The Authors. The International Journal of Medical Robotics and Computer Assisted Surgery Published by John Wiley & Sons Ltd.

  1. Mosaic amino acid conservation in 3D-structures of surface protein and polymerase of hepatitis B virus

    NARCIS (Netherlands)

    van Hemert, Formijn J.; Zaaijer, Hans L.; Berkhout, Ben; Lukashov, Vladimir V.

    2008-01-01

    Surface protein and polymerase of hepatitis B virus provide a striking example of gene overlap. Inclusion of more coding constraints in the phylogenetic analysis forces the tree toward accepted topology. Three-dimensional protein modeling demonstrates that participation in local protein function

  2. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  3. Ikh Turgen Mountain Glacier Change and 3d Surface Extents Prediction Using Long Term Landsat Image and Climate Data

    Science.gov (United States)

    Nasanbat, Elbegjargal; Erdenebat, Erdenetogtokh; Chogsom, Bolorchuluun; Lkhamjav, Ochirkhuyag; Nanzad, Lkhagvadorj

    2018-04-01

    The glacier is most important the freshwater resources and indicator of the climate change. The researchers noted that during last decades the glacier is melting due to global warming. The study calculates a spatial distribution of protentional change of glacier coverage in the Ikh Turgen mountain of Western Mongolia, and it integrates long-term climate data and satellite datasets. Therefore, in this experiment has tried to estimation three-dimensional surface area of the glacier. For this purpose, Normalized difference snow index (NDSI) was applied to decision tree approach, using Landsat MSS, TM, ETM+ and LC8 imagery for 1975-2016, a surface and slope for digital elevation model, precipitation and air temperature historical data of meteorological station. The potential volume area significantly changed glacier cover of the Ikh Turgen Mountain, and the area affected by highly variable precipitation and air temperature regimes. Between 1972 and 2016, a potential area of glacier area has been decreased in Ikh Turgen mountain region.

  4. A 3-D Approach for Teaching and Learning about Surface Water Systems through Computational Thinking, Data Visualization and Physical Models

    Science.gov (United States)

    Caplan, B.; Morrison, A.; Moore, J. C.; Berkowitz, A. R.

    2017-12-01

    Understanding water is central to understanding environmental challenges. Scientists use `big data' and computational models to develop knowledge about the structure and function of complex systems, and to make predictions about changes in climate, weather, hydrology, and ecology. Large environmental systems-related data sets and simulation models are difficult for high school teachers and students to access and make sense of. Comp Hydro, a collaboration across four states and multiple school districts, integrates computational thinking and data-related science practices into water systems instruction to enhance development of scientific model-based reasoning, through curriculum, assessment and teacher professional development. Comp Hydro addresses the need for 1) teaching materials for using data and physical models of hydrological phenomena, 2) building teachers' and students' comfort or familiarity with data analysis and modeling, and 3) infusing the computational knowledge and practices necessary to model and visualize hydrologic processes into instruction. Comp Hydro teams in Baltimore, MD and Fort Collins, CO are integrating teaching about surface water systems into high school courses focusing on flooding (MD) and surface water reservoirs (CO). This interactive session will highlight the successes and challenges of our physical and simulation models in helping teachers and students develop proficiency with computational thinking about surface water. We also will share insights from comparing teacher-led vs. project-led development of curriculum and our simulations.

  5. Quantifying Hyporheic Exchanges in a Large Scale River Reach Using Coupled 3-D Surface and Subsurface Computational Fluid Dynamics Simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Bao, J; Huang, M; Hou, Z; Perkins, W; Harding, S; Titzler, S; Ren, H; Thorne, P; Suffield, S; Murray, C; Zachara, J

    2017-03-01

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheic exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y+ wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results

  6. Synthesis, surface group modification of 3D MnV{sub 2}O{sub 6} nanostructures and adsorption effect on Rhodamine B

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wanqun, E-mail: wqz@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Micro-scale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Chemical Experimental Teaching Center, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Lei, E-mail: shil@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Micro-scale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Tang, Kaibin; Liu, Zhongping [Hefei National Laboratory for Physical Sciences at Micro-scale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2012-07-15

    Highlights: ► Fabrication of urchin-like MnV{sub 2}O{sub 6} with oxygen-containing surface groups. ► Mn{sub 0.5}V{sub 2}O{sub 5}·nH{sub 2}O as an intermediate product holds the key to the final products. ► 3D architectures of MnV{sub 2}O{sub 6} with oxygen-containing surface groups as sorbent. ► The sorbent shows a good adsorption ability. -- Abstract: Highly uniform 3D MnV{sub 2}O{sub 6} nanostructures modified by oxygen functional groups (-COO-) were successfully prepared in large quantities by an approach involving preparation of vanadyl ethylene glycolate as the precursor. The growth and self-assembly of MnV{sub 2}O{sub 6} nanobelts and nanorods could be readily tuned by additive species and quantities, which brought different morphologies and sizes to the final products. With a focus on the regulation of structure, the formation process of 3D architectures of MnV{sub 2}O{sub 6} by self-assembly of nanobelts was followed by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The consecutive processes of vanadyl ethylene glycolate and benzoyl peroxide assisted formation of layered structure Mn{sub 0.5}V{sub 2}O{sub 5}·nH{sub 2}O, growth of aligned MnV{sub 2}O{sub 6} nanobelts, and oriented assembly were proposed for the growth mechanism. The band gap vs. different morphology was also studied. Optical characterization of these MnV{sub 2}O{sub 6} with different morphologies showed direct bandgap energies at 1.8–1.95 eV. The adsorption properties of 3D MnV{sub 2}O{sub 6} nanostructures synthesized under different conditions were investigated through the removal test of Rhodamine B in aqueous water, and the 3D nanostructures synthesized with 30 g L{sup −1} benzoyl peroxide showed good adsorption capability of Rhodamine B.

  7. Oxidised zirconium versus cobalt alloy bearing surfaces in total knee arthroplasty: 3D laser scanning of retrieved polyethylene inserts.

    Science.gov (United States)

    Anderson, F L; Koch, C N; Elpers, M E; Wright, T M; Haas, S B; Heyse, T J

    2017-06-01

    We sought to establish whether an oxidised zirconium (OxZr) femoral component causes less loss of polyethylene volume than a cobalt alloy (CoCr) femoral component in total knee arthroplasty. A total of 20 retrieved tibial inserts that had articulated with OxZr components were matched with 20 inserts from CoCr articulations for patient age, body mass index, length of implantation, and revision diagnosis. Changes in dimensions of the articular surfaces were compared with those of pristine inserts using laser scanning. The differences in volume between the retrieved and pristine surfaces of the two groups were calculated and compared. The loss of polyethylene volume was 122 mm 3 (standard deviation (sd) 87) in the OxZr group and 170 mm 3 (sd 96) in the CoCr group (p = 0.033). The volume loss in the OxZr group was also lower in the medial (72 mm 3 (sd 67) versus 92 mm 3 (sd 60); p = 0.096) and lateral (49 mm 3 (sd 36) versus 79 mm 3 (sd 61); p = 0.096) compartments separately, but these differences were not significant. Our results corroborate earlier findings from in vitro testing and visual retrieval analysis which suggest that polyethylene volume loss is lower with OxZr femoral components. Since both OxZr and CoCr are hard surfaces that would be expected to create comparable amounts of polyethylene creep, the differences in volume loss may reflect differences in the in vivo wear of these inserts. Cite this article: Bone Joint J 2017;99-B:793-8. ©2017 The British Editorial Society of Bone & Joint Surgery.

  8. Self-Assembly of 3D Fennel-Like Co3O4 with Thirty-Six Surfaces for High Performance Supercapacitor

    Directory of Open Access Journals (Sweden)

    Yanfang Li

    2017-01-01

    Full Text Available Three-dimensional (3D fennel-like cobalt oxide (II, III (Co3O4 particles with thirty-six surfaces on nickel foams were prepared via a simple hydrothermal synthesis method and its growth process was also researched. The crystalline structure and morphology were investigated by X-ray diffraction (XRD, scanning electron microscopy (SEM, and Raman spectroscopy. The Brunauer-Emmett-Teller (BET analysis revealed that 3D fennel-like Co3O4 particles have high specific surface area. Therefore, the special structure with thirty-six surfaces indicates the good electrochemical performance of the micron-nanometer material as electrode material for supercapacitors. The cyclic voltammetry (CV, galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS were conducted to evaluate the electrochemical performances. Compared with other morphological materials of the similar sizes, the Co3O4 particles on nickel foam exhibit a high specific capacitance of 384.375 F·g−1 at the current density of 3 A·g−1 and excellent cycling stability of a capacitance retention of 96.54% after 1500 galvanostatic charge-discharge cycles in 6 M potassium hydroxide (KOH electrolyte.

  9. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    Science.gov (United States)

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

  10. Correction to: Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry.

    Science.gov (United States)

    Davidenko, Natalia; Schuster, Carlos F; Bax, Daniel V; Farndale, Richard W; Hamaia, Samir; Best, Serena M; Cameron, Ruth E

    2018-03-21

    The article "Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry", written by Natalia Davidenko, Carlos F. Schuster, Daniel V. Bax, Richard W. Farndale, Samir Hamaia, Serena M. Best and Ruth E. Cameron, was originally published Online First without open access. After publication in volume 27, issue 10, page 148 it was noticed that the copyright was wrong in the PDF version of the article. The copyright of the article should read as "© The Author(s) 2016". The Open Access license terms were also missing.

  11. Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth

    Directory of Open Access Journals (Sweden)

    Smita Mukherjee

    2015-12-01

    Full Text Available In order to form a nanostructured metallic layer below a Langmuir monolayer, radiolysis synthesis was carried out in an adapted geometry that we call surface X-ray radiolysis. In this procedure, an X-ray beam produced by a synchrotron beamline intercepts the surface of an aqueous metal-ion solution covered by a Langmuir monolayer at an angle of incidence below the critical angle for total internal reflection. Underneath the organic layer, the X-ray beam induces the radiolytic synthesis of a nanostructured metal–organic layer whose ultrathin thickness is defined by the vertical X-ray penetration depth. We have shown that increasing the X-ray flux on the surface, which considerably enhances the kinetics of the silver layer formation, results in a second growth regime of silver nanocrystals. Here the formation of the oriented thin layer is followed by the appearance of a 3D powder of silver clusters.

  12. Automating the design of resection guides specific to patient anatomy in knee replacement surgery by enhanced 3D curvature and surface modeling of distal femur shape models.

    Science.gov (United States)

    Cerveri, Pietro; Manzotti, Alfonso; Confalonieri, Norberto; Baroni, Guido

    2014-12-01

    Personalized resection guides (PRG) have been recently proposed in the domain of knee replacement, demonstrating clinical outcome similar or even superior to both manual and navigated interventions. Among the mandatory pre-surgical steps for PRG prototyping, the measurement of clinical landmarks (CL) on the bony surfaces is recognized as a key issue due to lack of standardized methodologies, operator-dependent variability and time expenditure. In this paper, we focus on the reliability and repeatability of an anterior-posterior axis, also known as Whiteside line (WL), of the distal femur proposing automatic surface processing and modeling methods aimed at overcoming some of the major concerns related to the manual identification of such CL on 2D images and 3D models. We show that the measurement of WL, exploiting the principle of mean-shifting surface curvature, is highly repeatable and coherent with clinical knowledge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  14. Spin-orbit torque in 3D topological insulator-ferromagnet heterostructure: crossover between bulk and surface transport

    KAUST Repository

    Ghosh, Sumit; Manchon, Aurelien

    2017-01-01

    Current-driven spin-orbit torques are investigated in a heterostructure composed of a ferromagnet deposited on top of a three dimensional topological insulator using the linear response formalism. We develop a tight-binding model of the heterostructure adopting a minimal interfacial hybridization scheme that promotes induced magnetic exchange on the topological surface states, as well as induced Rashba-like spin-orbit coupling in the ferromagnet. Therefore, our model accounts for spin Hall effect from bulk states together with inverse spin galvanic and magnetoelectric effects at the interface on equal footing. By varying the transport energy across the band structure, we uncover a crossover from surface-dominated to bulk-dominated transport regimes. We show that the spin density profile and the nature of the spin-orbit torques differ substantially in both regimes. Our results, which compare favorably with experimental observations, demonstrate that the large damping torque reported recently is more likely attributed to interfacial magnetoelectric effect, while spin Hall torque remains small even in the bulk-dominated regime.

  15. Spin-orbit torque in 3D topological insulator-ferromagnet heterostructure: crossover between bulk and surface transport

    KAUST Repository

    Ghosh, Sumit

    2017-11-29

    Current-driven spin-orbit torques are investigated in a heterostructure composed of a ferromagnet deposited on top of a three dimensional topological insulator using the linear response formalism. We develop a tight-binding model of the heterostructure adopting a minimal interfacial hybridization scheme that promotes induced magnetic exchange on the topological surface states, as well as induced Rashba-like spin-orbit coupling in the ferromagnet. Therefore, our model accounts for spin Hall effect from bulk states together with inverse spin galvanic and magnetoelectric effects at the interface on equal footing. By varying the transport energy across the band structure, we uncover a crossover from surface-dominated to bulk-dominated transport regimes. We show that the spin density profile and the nature of the spin-orbit torques differ substantially in both regimes. Our results, which compare favorably with experimental observations, demonstrate that the large damping torque reported recently is more likely attributed to interfacial magnetoelectric effect, while spin Hall torque remains small even in the bulk-dominated regime.

  16. Poincaré surfaces of section around a 3D irregular body: the case of asteroid 4179 Toutatis

    Science.gov (United States)

    Borderes-Motta, G.; Winter, O. C.

    2018-02-01

    In general, small bodies of the Solar system, e.g. asteroids and comets, have a very irregular shape. This feature affects significantly the gravitational potential around these irregular bodies, which hinders dynamical studies. The Poincaré surface of section technique is often used to look for stable and chaotic regions in two-dimensional dynamic cases. In this work, we show that this tool can be useful for exploring the surroundings of irregular bodies such as the asteroid 4179 Toutatis. Considering a rotating system with a particle, under the effect of the gravitational field computed three dimensionally, we define a plane in the phase space to build the Poincaré surface of section. Despite the extra dimension, the sections created allow us to find trajectories and classify their stabilities. Thus, we have also been able to map stable and chaotic regions, as well as to find correlations between those regions and the contribution of the third dimension of the system to the trajectory dynamics as well. As examples, we show details of periodic (resonant or not) and quasi-periodic trajectories.

  17. The effect of polishing technique on 3-D surface roughness and gloss of dental restorative resin composites.

    Science.gov (United States)

    Ereifej, N S; Oweis, Y G; Eliades, G

    2013-01-01

    The aim of this study was to compare surface roughness and gloss of resin composites polished using different polishing systems. Five resin composites were investigated: Filtek Silorane (FS), IPS Empress Direct (IP), Clearfil Majesty Posterior (CM), Premise (PM), and Estelite Sigma (ES). Twenty-five disk specimens were prepared from each material, divided into five groups, each polished with one of the following methods: Opti1Step (OS), OptiDisc (OD), Kenda CGI (KD), Pogo (PG), or metallurgical polishing (ML). Gloss and roughness parameters (Sa, Sz, Sq, and St) were evaluated by 60°-angle glossimetry and white-light interferometric profilometry. Two-way analysis of variance was used to detect differences in different materials and polishing techniques. Regression and correlation analyses were performed to examine correlations between roughness and gloss. Significant differences in roughness parameters and gloss were found according to the material, type of polishing, and material/polishing technique (pgloss was recorded for PM/ML (88.4 [2.3]) and lowest for FS/KD (30.3 [5.7]). All roughness parameters were significantly correlated with gloss (r= 0.871, 0.846, 0.713, and 0.707 for Sa, Sq, Sz, St, and gloss, respectively). It was concluded that the polishing procedure and the type of composite can have significant impacts on surface roughness and gloss of resin composites.

  18. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    Energy Technology Data Exchange (ETDEWEB)

    Pyka, Grzegorz, E-mail: gregory.pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Kerckhofs, Greet [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Biomechanics Research Unit, Université de Liege, Chemin des Chevreuils 1 - BAT 52/3, B-4000 Liège (Belgium); Schrooten, Jan; Wevers, Martine [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium)

    2014-01-15

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution

  19. Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model

    Directory of Open Access Journals (Sweden)

    X. Xiao

    2010-06-01

    Full Text Available Methyl chloride (CH3Cl is a chlorine-containing trace gas in the atmosphere contributing significantly to stratospheric ozone depletion. Large uncertainties in estimates of its source and sink magnitudes and temporal and spatial variations currently exist. GEIA inventories and other bottom-up emission estimates are used to construct a priori maps of the surface fluxes of CH3Cl. The Model of Atmospheric Transport and Chemistry (MATCH, driven by NCEP interannually varying meteorological data, is then used to simulate CH3Cl mole fractions and quantify the time series of sensitivities of the mole fractions at each measurement site to the surface fluxes of various regional and global sources and sinks. We then implement the Kalman filter (with the unit pulse response method to estimate the surface fluxes on regional/global scales with monthly resolution from January 2000 to December 2004. High frequency observations from the AGAGE, SOGE, NIES, and NOAA/ESRL HATS in situ networks and low frequency observations from the NOAA/ESRL HATS flask network are used to constrain the source and sink magnitudes. The inversion results indicate global total emissions around 4100 ± 470 Gg yr−1 with very large emissions of 2200 ± 390 Gg yr−1 from tropical plants, which turn out to be the largest single source in the CH3Cl budget. Relative to their a priori annual estimates, the inversion increases global annual fungal and tropical emissions, and reduces the global oceanic source. The inversion implies greater seasonal and interannual oscillations of the natural sources and sink of CH3Cl compared to the a priori. The inversion also reflects the strong effects of the 2002/2003 globally widespread heat waves and droughts on global emissions from tropical plants, biomass burning and salt marshes, and on the soil sink.

  20. 2D and 3D surface photopatterning via laser-promoted homopolymerization of a perfluorophenyl azide-substituted BODIPY.

    Science.gov (United States)

    Raffy, Guillaume; Bofinger, Robin; Tron, Arnaud; Guerzo, André Del; McClenaghan, Nathan D; Vincent, Jean-Marc

    2017-11-09

    An innovative photopatterning process is described that allows, in a single laser-promoted operation, the covalent attachment of a molecule on a surface (2D patterning - xy dimensions) and its photopolymerization to grow micro-/nanostructures with spatial control in a third z-dimension. The surface patterning process, based on nitrene reactivity, was harnessed using the highly fluorescent azide-substituted boron difluoride dipyrromethene (BODIPY) 1 that was prepared in a single synthetic step from the parent pentafluorophenyl BODIPY on reacting with NaN 3 . Using the laser of a fluorescence microscope (375 nm or 532 nm) 1 could be grafted on adapted surfaces and then homopolymerised. In this study we show that using glass coverslips coated with PEG/high density alkyne groups (density of ∼1 × 10 14 per cm 2 ), the patterning process was much more spatially confined than when using PEG only coating. Varying the irradiation time (1 to 15 s) or laser power (0.14-3.53 μW) allowed variation of the amount of deposited BODIPY to afford, in the extreme case, pillars of a height up to 800 nm. AFM and MS studies revealed that the nano/microstructures were formed of particles of photopolymerized 1 having a mean diameter of ca. 30 nm. The emission spectra and fluorescence lifetimes for the patterned structures were measured, revealing a red-shift (from ∼560 nm up to 620 nm) of the maximum emission and a shortening (from ∼6 ns to 0.8 ns) of the fluorescence lifetimes in areas where the density of BODIPY is high. As an application of the patterning process, a figure formed of 136 dots/pillars was prepared. The confocal hyperspectral fluorescence image revealed that the figure is clearly resolved and constituted by highly photoluminescent red dots whose fluorescence intensities and emission color proved to be highly reproducible. SEM and AFM studies showed that the luminescent dots were pillars with a conical shape, an average height of 710 ± 28 nm and a FWHM of 400 ± 20

  1. Integration of sparse electrophysiological measurements with preoperative MRI using 3D surface estimation in deep brain stimulation surgery

    Science.gov (United States)

    Husch, Andreas; Gemmar, Peter; Thunberg, Johan; Hertel, Frank

    2017-03-01

    Intraoperative microelectrode recordings (MER) have been used for several decades to guide neurosurgeons during the implantation of Deep Brain Stimulation (DBS) electrodes, especially when targeting the subthalamic nucleus (STN) to suppress the symptoms of Parkinson's Disease. The standard approach is to use an array of up to five MER electrodes in a fixed configuration. Interpretation of the recorded signals yields a spatially very sparse set of information about the morphology of the respective brain structures in the targeted area. However, no aid is currently available for surgeons to intraoperatively integrate this information with other data available on the patient's individual morphology (e.g. MR imaging data used for surgical planning). This integration might allow surgeons to better determine the most probable position of the electrodes within the target structure during surgery. This paper suggests a method for reconstructing a surface patch from the sparse MER dataset utilizing additional a priori knowledge about the geometrical configuration of the measurement electrodes. The conventional representation of MER measurements as intervals of target region/non-target region is therefore transformed into an equivalent boundary set representation, allowing ecient point-based calculations. Subsequently, the problem is to integrate the resulting patch with a preoperative model of the target structure, which can be formulated as registration problem minimizing a distance measure between the two surfaces. When restricting this registration procedure to translations, which is reasonable given certain geometric considerations, the problem can be solved globally by employing an exhaustive search with arbitrary precision in polynomial time. The proposed method is demonstrated using bilateral STN/Substantia Nigra segmentation data from preoperative MRIs of 17 Patients with simulated MER electrode placement. When using simulated data of heavily perturbed electrodes

  2. Open 3D Projects

    Directory of Open Access Journals (Sweden)

    Felician ALECU

    2010-01-01

    Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.

  3. Fortifying the Bone-Implant Interface Part 1: An In Vitro Evaluation of 3D-Printed and TPS Porous Surfaces.

    Science.gov (United States)

    MacBarb, Regina F; Lindsey, Derek P; Bahney, Chelsea S; Woods, Shane A; Wolfe, Mark L; Yerby, Scott A

    2017-01-01

    An aging society and concomitant rise in the incidence of impaired bone health have led to the need for advanced osteoconductive spinal implant surfaces that promote greater biological fixation ( e.g. for interbody fusion cages, sacroiliac joint fusion implants, and artificial disc replacements). Additive manufacturing, i.e. 3D-printing, may improve bone integration by generating biomimetic spinal implant surfaces that mimic bone morphology. Such surfaces may foster an enhanced cellular response compared to traditional implant surfacing processes. This study investigated the response of human osteoblasts to additive manufactured (AM) trabecular-like titanium implant surfaces compared to traditionally machined base material with titanium plasma spray (TPS) coated surfaces, with and without a nanocrystalline hydroxyapatite (HA) coating. For TPS-coated discs, wrought Ti6Al4V ELI was machined and TPS-coating was applied. For AM discs, Ti6Al4V ELI powder was 3D-printed to form a solid base and trabecular-like porous surface. The HA-coating was applied via a precipitation dip-spin method. Surface porosity, pore size, thickness, and hydrophilicity were characterized. Initial cell attachment, proliferation, alkaline phosphatase (ALP) activity, and calcium production of hFOB cells ( n =5 per group) were measured. Cells on AM discs exhibited expedited proliferative activity. While there were no differences in mean ALP expression and calcium production between TPS and AM discs, calcium production on the AM discs trended 48% higher than on TPS discs ( p =0.07). Overall, HA-coating did not further enhance results compared to uncoated TPS and AM discs. Results demonstrate that additive manufacturing allows for controlled trabecular-like surfaces that promote earlier cell proliferation and trends toward higher calcium production than TPS coating. Results further showed that nanocrystalline HA may not provide an advantage on porous titanium surfaces. Additive manufactured porous

  4. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  5. Optical 3D scans for orthodontic diagnostics performed on full-arch impressions. Completeness of surface structure representation.

    Science.gov (United States)

    Vogel, Annike B; Kilic, Fatih; Schmidt, Falko; Rübel, Sebastian; Lapatki, Bernd G

    2015-11-01

    The purpose of this work was to evaluate the completeness of surface structure representation offered by full-arch impression scans in different situations of tooth (mal)alignment and whether this completeness could be improved by performing rescans on the same impressions reduced sequentially to different levels of gingival height and by adding extra single scans to the number of single scans recommended by the manufacturer. Three pairs of full-arch resin models were used as reference, characterized either by normal occlusion, by anterior diastematic protrusion (and edentulous spaces in the lower posterior segments), or by anterior crowding. An alginate impression of each arch was taken and digitized with a structured-light scanner, followed by three rescans with the impression cut back to 10, 5, and 1 mm of gingival height. Both the initial scan and the rescans were performed both with 19 basic single scans and with 10 extra single scans. Each impression scan was analyzed for quantitative completeness relative to its homologous direct scan of the original resin model. In addition, the topography of voids in the resultant digital model was assessed by visual inspection. Compared to the homologous reference scans of the original resin models, completeness of the original impression scans--in the absence of both gingival cutback and extra single scans--was 97.23 ± 0.066% in the maxilla or 95.72 ± 0.070% in the mandible with normal occlusion, 91.11 ± 0.132% or 96.07 ± 0.109% in the arches with anterior diastematic protrusion, and 98.24 ± 0.085% or 93.39 ± 0.146% in those with anterior crowding. Gingival cutback and extra single scans were found to improve these values up to 100.35 ± 0.066% or 99.53 ± 0.070% in the arches with normal occlusion, 91.77 ± 0.132% or 97.95 ± 0.109% in those with anterior diastematic protrusion, and 98.59 ± 0.085% or 98.96 ± 0.146% in those with anterior crowding. In strictly quantitative terms, the impression scans did capture

  6. Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration.

    Science.gov (United States)

    Lin, Bojie; Miao, Yong; Wang, Jin; Fan, Zhexiang; Du, Lijuan; Su, Yongsheng; Liu, Bingcheng; Hu, Zhiqi; Xing, Malcolm

    2016-03-09

    Human dermal papilla (DP) cells have been studied extensively when grown in the conventional monolayer. However, because of great deviation from the real in vivo three-dimensional (3D) environment, these two-dimensional (2D) grown cells tend to lose the hair-inducible capability during passaging. Hence, these 2D caused concerns have motivated the development of novel 3D culture techniques to produce cellular microtissues with suitable mimics. The hanging-drop approach is based on surface tension-based technique and the interaction between surface tension and gravity field that makes a convergence of liquid drops. This study used this technique in a converged drop to form cellular spheroids of dermal papilla cells. It leads to a controllable 3Dspheroid model for scalable fabrication of inductive DP microtissues. The optimal conditions for culturing high-passaged (P8) DP spheroids were determined first. Then, the morphological, histological and functional studies were performed. In addition, expressions of hair-inductive markers including alkaline phosphatase, α-smooth muscle actin and neural cell adhesion molecule were also analyzed by quantitative RT-PCR, immunostaining and immunoblotting. Finally, P8-DP microtissues were coimplanted with newborn mouse epidermal cells (EPCs) into nude mice. Our results indicated that the formation of 3D microtissues not only endowed P8-DP microtissues many similarities to primary DP, but also confer these microtissues an enhanced ability to induce hair-follicle (HF) neogenesis in vivo. This model provides a potential to elucidate the native biology of human DP, and also shows the promising for the controllable and scalable production of inductive DP cells applied in future follicle regeneration.

  7. Formation of Dirac point and the topological surface states inside the strained gap for mixed 3D Hg1-xCdx Te

    Science.gov (United States)

    Marchewka, Michał

    2016-10-01

    In this paper the results of the numerical calculation obtained for the three-dimensional (3D) strained Hg1-xCdx Te layers for the x-Cd composition from 0.1 to 0.155 and a different mismatch of the lattice constant are presented. For the investigated region of the Cd composition (x value) the negative energy gap (Eg =Γ8 -Γ6) in the Hg1-xCdx Te is smaller than in the case of pure HgTe which, as it turns out, has a significant influence on the topological surface states (TSS) and the position of the Dirac point. The numerical calculation based on the finite difference method applied for the 8×8 kp model with the in-plane tensile strain for (001) growth oriented structure shows that the Dirac cone inside the induced insulating band gap for non zero of the Cd composition and a bigger strain caused by the bigger lattice mismatch (than for the 3D HgTe TI) can be obtained. It was also shown how different x-Cd compounds move the Dirac cone from the valence band into the band gap. The presented results show that 75 nm wide 3D Hg1-xCdx Te structures with x ≈ 0.155 and 1.6% lattice mismatch make the system a true topological insulator with the dispersion of the topological surface states similar to those ones obtained for the strained CdTe/HgTe QW.

  8. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors

    Science.gov (United States)

    Zhang, Long; Zhang, Fan; Yang, Xi; Long, Guankui; Wu, Yingpeng; Zhang, Tengfei; Leng, Kai; Huang, Yi; Ma, Yanfeng; Yu, Ao; Chen, Yongsheng

    2013-01-01

    Until now, few sp2 carbon materials simultaneously exhibit superior performance for specific surface area (SSA) and electrical conductivity at bulk state. Thus, it is extremely important to make such materials at bulk scale with those two outstanding properties combined together. Here, we present a simple and green but very efficient approach using two standard and simple industry steps to make such three-dimensional graphene-based porous materials at the bulk scale, with ultrahigh SSA (3523 m2/g) and excellent bulk conductivity. We conclude that these materials consist of mainly defected/wrinkled single layer graphene sheets in the dimensional size of a few nanometers, with at least some covalent bond between each other. The outstanding properties of these materials are demonstrated by their superior supercapacitor performance in ionic liquid with specific capacitance and energy density of 231 F/g and 98 Wh/kg, respectively, so far the best reported capacitance performance for all bulk carbon materials. PMID:23474952

  9. 3D spectrum imaging of multi-wall carbon nanotube coupled π-surface modes utilising electron energy-loss spectra acquired using a STEM/Enfina system

    International Nuclear Information System (INIS)

    Seepujak, A.; Bangert, U.; Gutierrez-Sosa, A.; Harvey, A.J.; Blank, V.D.; Kulnitskiy, B.A.; Batov, D.V.

    2005-01-01

    Numerous studies have utilised electron energy-loss (EEL) spectra acquired in the plasmon (2-10 eV) regime in order to probe delocalised π-electronic states of multi-wall carbon nanotubes (MWCNTs). Interpretation of electron energy loss (EEL) spectra of MWCNTs in the 2-10 eV regime. Carbon (accepted for publication); Blank et al. J. Appl. Phys. 91 (2002) 1657). In the present contribution, EEL spectra were acquired from a 2D raster defined on a bottle-shaped MWCNT, using a Gatan UHV Enfina system attached to a dedicated scanning transmission electron microscope (STEM). The technique utilised to isolate and sequentially filter each of the volume and surface resonances is described in detail. Utilising a scale for the intensity of a filtered mode enables one to 'see' the distribution of each resonance in the raster. This enables striking 3D resonance-filtered spectrum images (SIs) of π-collective modes to be observed. Red-shift of the lower energy split π-surface resonance provides explicit evidence of π-surface mode coupling predicted for thin graphitic films (Lucas et al. Phys. Rev. B 49 (1994) 2888). Resonance-filtered SIs are also compared to non-filtered SIs with suppressed surface contributions, acquired utilising a displaced collector aperture. The present filtering technique is seen to isolate surface contributions more effectively, and without the significant loss of statistics, associated with the displaced collector aperture mode. Isolation of collective modes utilising 3D resonance-filtered spectrum imaging, demonstrates a valuable method for 'pinpointing' the location of discrete modes in irregularly shaped nanostructures

  10. Influence of Head Motion on the Accuracy of 3D Reconstruction with Cone-Beam CT: Landmark Identification Errors in Maxillofacial Surface Model.

    Directory of Open Access Journals (Sweden)

    Kyung-Min Lee

    Full Text Available The purpose of this study was to investigate the influence of head motion on the accuracy of three-dimensional (3D reconstruction with cone-beam computed tomography (CBCT scan.Fifteen dry skulls were incorporated into a motion controller which simulated four types of head motion during CBCT scan: 2 horizontal rotations (to the right/to the left and 2 vertical rotations (upward/downward. Each movement was triggered to occur at the start of the scan for 1 second by remote control. Four maxillofacial surface models with head motion and one control surface model without motion were obtained for each skull. Nine landmarks were identified on the five maxillofacial surface models for each skull, and landmark identification errors were compared between the control model and each of the models with head motion.Rendered surface models with head motion were similar to the control model in appearance; however, the landmark identification errors showed larger values in models with head motion than in the control. In particular, the Porion in the horizontal rotation models presented statistically significant differences (P < .05. Statistically significant difference in the errors between the right and left side landmark was present in the left side rotation which was opposite direction to the scanner rotation (P < .05.Patient movement during CBCT scan might cause landmark identification errors on the 3D surface model in relation to the direction of the scanner rotation. Clinicians should take this into consideration to prevent patient movement during CBCT scan, particularly horizontal movement.

  11. High-frequency background modulation fringe patterns based on a fringe-wavelength geometry-constraint model for 3D surface-shape measurement.

    Science.gov (United States)

    Liu, Xinran; Kofman, Jonathan

    2017-07-10

    A new fringe projection method for surface-shape measurement was developed using four high-frequency phase-shifted background modulation fringe patterns. The pattern frequency is determined using a new fringe-wavelength geometry-constraint model that allows only two corresponding-point candidates in the measurement volume. The correct corresponding point is selected with high reliability using a binary pattern computed from intensity background encoded in the fringe patterns. Equations of geometry-constraint parameters permit parameter calculation prior to measurement, thus reducing measurement computational cost. Experiments demonstrated the ability of the method to perform 3D shape measurement for a surface with geometric discontinuity, and for spatially isolated objects.

  12. 3DSEM: A 3D microscopy dataset

    Directory of Open Access Journals (Sweden)

    Ahmad P. Tafti

    2016-03-01

    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. Keywords: 3D microscopy dataset, 3D microscopy vision, 3D SEM surface reconstruction, Scanning Electron Microscope (SEM

  13. Estimation of heart-position variability in 3D-surface-image-guided deep-inspiration breath-hold radiation therapy for left-sided breast cancer

    International Nuclear Information System (INIS)

    Alderliesten, Tanja; Betgen, Anja; Elkhuizen, Paula H.M.; Vliet-Vroegindeweij, Corine van; Remeijer, Peter

    2013-01-01

    Purpose: To investigate the heart position variability in deep-inspiration breath-hold (DIBH) radiation therapy (RT) for breast cancer when 3D surface imaging would be used for monitoring the BH depth during treatment delivery. For this purpose, surface setup data were compared with heart setup data. Materials and methods: Twenty patients treated with DIBH-RT after breast-conserving surgery were included. Retrospectively, heart registrations were performed for cone-beam computed tomography (CBCT) to planning CT. Further, breast-surface registrations were performed for a surface, captured concurrently with CBCT, to planning CT. The resulting setup errors were compared with linear regression analysis. Furthermore, geometric uncertainties of the heart (systematic [Σ] and random [σ]) were estimated relative to the surface registration. Based on these uncertainties planning organ at risk volume (PRV) margins for the heart were calculated: 1.3Σ − 0.5σ. Results: Moderate correlation between surface and heart setup errors was found: R 2 = 0.64, 0.37, 0.53 in left–right (LR), cranio-caudal (CC), and in anterior–posterior (AP) direction, respectively. When surface imaging would be used for monitoring, the geometric uncertainties of the heart (cm) are [Σ = 0.14, σ = 0.14]; [Σ = 0.66, σ = 0.38]; [Σ = 0.27, σ = 0.19] in LR; CC; AP. This results in PRV margins of 0.11; 0.67; 0.25 cm in LR; CC; AP. Conclusion: When DIBH-RT after breast-conserving surgery is guided by the breast-surface position then PRV margins should be used to take into account the heart-position variability relative to the breast-surface

  14. Refined 3d-3d correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; Loon, Mark van [Mathematical Institute, University of Oxford, Andrew Wiles Building,Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom)

    2017-04-28

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N=2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N=2 theories constructed from boundary conditions and interfaces in a 4d N=2{sup ∗} theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-’t Hooft loops in the 4d N=2{sup ∗} theory. In the presence of a mass parameter for the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  15. Validity of Intraoral Scans Compared with Plaster Models: An In-Vivo Comparison of Dental Measurements and 3D Surface Analysis.

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    Full Text Available Dental measurements have been commonly taken from plaster dental models obtained from alginate impressions can. Through the use of an intraoral scanner, digital impressions now acquire the information directly from the mouth. The purpose of this study was to determine the validity of the intraoral scans compared to plaster models.Two types of dental models (intraoral scan and plaster model of 20 subjects were included in this study. The subjects had impressions taken of their teeth and made as plaster model. In addition, their mouths were scanned with the intraoral scanner and the scans were converted into digital models. Eight transverse and 16 anteroposterior measurements, 24 tooth heights and widths were recorded on the plaster models with a digital caliper and on the intraoral scan with 3D reverse engineering software. For 3D surface analysis, the two models were superimposed by using best-fit algorithm. The average differences between the two models at all points on the surfaces were computed. Paired t-test and Bland-Altman plot were used to determine the validity of measurements from the intraoral scan compared to those from the plaster model.There were no significant differences between the plaster models and intraoral scans, except for one measurement of lower intermolar width. The Bland-Altman plots of all measurements showed that differences between the two models were within the limits of agreement. The average surface difference between the two models was within 0.10 mm.The results of the present study indicate that the intraoral scans are clinically acceptable for diagnosis and treatment planning in dentistry and can be used in place of plaster models.

  16. Validity of Intraoral Scans Compared with Plaster Models: An In-Vivo Comparison of Dental Measurements and 3D Surface Analysis

    Science.gov (United States)

    2016-01-01

    Purpose Dental measurements have been commonly taken from plaster dental models obtained from alginate impressions can. Through the use of an intraoral scanner, digital impressions now acquire the information directly from the mouth. The purpose of this study was to determine the validity of the intraoral scans compared to plaster models. Materials and Methods Two types of dental models (intraoral scan and plaster model) of 20 subjects were included in this study. The subjects had impressions taken of their teeth and made as plaster model. In addition, their mouths were scanned with the intraoral scanner and the scans were converted into digital models. Eight transverse and 16 anteroposterior measurements, 24 tooth heights and widths were recorded on the plaster models with a digital caliper and on the intraoral scan with 3D reverse engineering software. For 3D surface analysis, the two models were superimposed by using best-fit algorithm. The average differences between the two models at all points on the surfaces were computed. Paired t-test and Bland-Altman plot were used to determine the validity of measurements from the intraoral scan compared to those from the plaster model. Results There were no significant differences between the plaster models and intraoral scans, except for one measurement of lower intermolar width. The Bland-Altman plots of all measurements showed that differences between the two models were within the limits of agreement. The average surface difference between the two models was within 0.10 mm. Conclusions The results of the present study indicate that the intraoral scans are clinically acceptable for diagnosis and treatment planning in dentistry and can be used in place of plaster models. PMID:27304976

  17. A 3d-3d appetizer

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Du; Ye, Ke [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125 (United States)

    2016-11-02

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T[L(p,1)] and the partition function of complex Chern-Simons theory on L(p,1). In particular, for p=1, we show how the familiar S{sup 3} partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p,1)] becomes a constant independent of p. In addition, we study T[L(p,1)] on the squashed three-sphere S{sub b}{sup 3}. This enables us to see clearly, at the level of partition function, to what extent G{sub ℂ} complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  18. By All Means Necessary – 2.5D and 3D Recording of Surfaces in the Study of Southern Scandinavian Rock Art

    Directory of Open Access Journals (Sweden)

    Horn Christian

    2018-03-01

    Full Text Available Southern Scandinavia is Europe’s richest region in terms of figurative rock art. It is imperative to document this cultural heritage for future generations. To achieve this, researchers need to use the most objective recording methods available in order to eliminate human error and bias in the documentation. The ability to collect more data is better, not only for documentation, but also for research purposes. Recent years have seen the wider introduction of image based 2.5D and 3D modelling of rock art surfaces. These methods are Reflectance Transformation Imaging (RTI, Structure from Motion (SfM, and Optical Laser Scanning (OLS. Importantly, these approaches record depth difference and the structure of engraved lines. Therefore, they have clear advantages over older methods such as frottage (rubbings and tracing. Based on a number of short case studies, this paper argues that 2.5D and 3D methods should be used as a standard documentation techniques, but not in an exclusionary manner. The best documentation, enabling preservation and high-quality research, should employ all methods. Approaching rock art with all the research tools available we can re-appraise older documentation as well as investigate individual action and the transformation of rock art.

  19. Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave) as a means of improving monitoring of spoil tip stability

    Science.gov (United States)

    Lewińska, Paulina; Matuła, Rafał; Dyczko, Artur

    2018-01-01

    Spoil tips are anthropogenic terrain structures built of leftover (coal) mining materials. They consist mostly of slate and sandstone or mudstone but also include coal and highly explosive coal dust. Coal soil tip fires cause an irreversible degradation to the environment. Government organizations notice the potential problem of spoil tip hazard and are looking for ways of fast monitoring of their temperature and inside structure. In order to test new monitoring methods an experimental was performed in the area of spoil tip of Lubelski Węgiel "Bogdanka" S.A. A survey consisted of creating a 3D discreet thermal model. This was done in order to look for potential fire areas. MASW (Multichannel analysis of surface wave) was done in order to find potential voids within the body of a tip. Existing data was digitalized and a 3D model of object's outside and inside was produced. This article provides results of this survey and informs about advantages of such an approach.

  20. Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave as a means of improving monitoring of spoil tip stability

    Directory of Open Access Journals (Sweden)

    Lewińska Paulina

    2018-01-01

    Full Text Available Spoil tips are anthropogenic terrain structures built of leftover (coal mining materials. They consist mostly of slate and sandstone or mudstone but also include coal and highly explosive coal dust. Coal soil tip fires cause an irreversible degradation to the environment. Government organizations notice the potential problem of spoil tip hazard and are looking for ways of fast monitoring of their temperature and inside structure. In order to test new monitoring methods an experimental was performed in the area of spoil tip of Lubelski Węgiel „Bogdanka” S.A. A survey consisted of creating a 3D discreet thermal model. This was done in order to look for potential fire areas. MASW (Multichannel analysis of surface wave was done in order to find potential voids within the body of a tip. Existing data was digitalized and a 3D model of object’s outside and inside was produced. This article provides results of this survey and informs about advantages of such an approach.

  1. Small punch tensile/fracture test data and 3D specimen surface data on Grade 91 ferritic/martensitic steel from cryogenic to room temperature.

    Science.gov (United States)

    Bruchhausen, Matthias; Lapetite, Jean-Marc; Ripplinger, Stefan; Austin, Tim

    2016-12-01

    Raw data from small punch tensile/fracture tests at two displacement rates in the temperature range from -196 °C to room temperature on Grade 91 ferritic/martensitic steel are presented. A number of specimens were analyzed after testing by means of X-ray computed tomography (CT). Based on the CT volume data detailed 3D surface maps of the specimens were established. All data are open access and available from Online Data Information Network (ODIN)https://odin.jrc.ec.europa.eu. The data presented in the current work has been analyzed in the research article "On the determination of the ductile to brittle transition temperature from small punch tests on Grade 91 ferritic-martensitic steel" (M. Bruchhausen, S. Holmström, J.-M. Lapetite, S. Ripplinger, 2015) [1].

  2. 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface.

    Science.gov (United States)

    Shah, Furqan A; Snis, Anders; Matic, Aleksandar; Thomsen, Peter; Palmquist, Anders

    2016-01-01

    For load-bearing orthopaedic applications, metal implants having an interconnected pore structure exhibit the potential to facilitate bone ingrowth and the possibility for reducing the stiffness mismatch between the implant and bone, thus eliminating stress-shielding effects. 3D printed solid and macro-porous Ti6Al4V implants were evaluated after six-months healing in adult sheep femora. The ultrastructural composition of the bone-implant interface was investigated using Raman spectroscopy and electron microscopy, in a correlative manner. The mineral crystallinity and the mineral-to-matrix ratios of the interfacial tissue and the native bone were found to be similar. However, lower Ca/P ratios, lower carbonate content, but higher proline, phenylalanine and tyrosine levels indicated that the interfacial tissue remained less mature. Bone healing was more advanced at the porous implant surface (vs. the solid implant surface) based on the interfacial tissue ν1 CO3(2-)/ν2 PO4(3-) ratio, phenylalanine and tyrosine levels approaching those of the native bone. The mechanosensing infrastructure in bone, the osteocyte lacuno-canalicular network, retained ∼40% more canaliculi per osteocyte lacuna, i.e., a 'less aged' morphology at the interface. The osteocyte density per mineralised surface area was ∼36-71% higher at the interface after extended healing periods. In osseointegration research, the success of an implant surface or design is commonly determined by quantifying the amount of new bone, rather than its maturation, composition and structure. This work describes a novel correlative methodology to investigate the ultrastructure and composition of bone formed around and within 3D printed Ti6Al4V implants having an interconnected open-pore structure. Raman spectroscopy demonstrates that the molecular composition of the interfacial tissue at different implant surfaces may vary, suggesting differences in the extent to which bone maturation occurs even after long

  3. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  4. Improving osteoblasts cells proliferation via femtosecond laser surface modification of 3D-printed poly-ɛ-caprolactone scaffolds for bone tissue engineering applications

    Science.gov (United States)

    Daskalova, A.; Ostrowska, B.; Zhelyazkova, A.; Święszkowski, W.; Trifonov, A.; Declercq, H.; Nathala, C.; Szlazak, K.; Lojkowski, M.; Husinsky, W.; Buchvarov, I.

    2018-06-01

    Synthetic polymer biomaterials incorporating cells are a promising technique for treatment of orthopedic injuries. To enhance the integration of biomaterials into the human body, additional functionalization of the scaffold surface should be carried out that would assist one in mimicking the natural cellular environment. In this study, we examined poly-ɛ-caprolactone (PCL) fiber matrices in view of optimizing the porous properties of the constructs. Altering the porosity of a PCL scaffold is expected to improve the material's biocompatibility, thus influencing its osteoconductivity and osteointegration. We produced 3D poly-ɛ-caprolactone (PCL) matrices by a fused deposition modeling method for bone and cartilage tissue engineering and performed femtosecond (fs) laser modification experiments to improve the surface properties of the PCL construct. Femtosecond laser processing is one of the useful tools for creating a vast diversity of surface patterns with reproducibility and precision. The processed surface of the PCL matrix was examined to follow the effect of the laser parameters, namely the laser pulse energy and repetition rate and the number ( N) of applied pulses. The modified zones were characterized by scanning electron microscopy (SEM), confocal microscopy, X-ray computed tomography and contact angle measurements. The results obtained demonstrated changes in the morphology of the processed surface. A decrease in the water contact angle was also seen after fs laser processing of fiber meshes. Our work demonstrated that a precise control of material surface properties could be achieved by applying a different number of laser pulses at various laser fluence values. We concluded that the structural features of the matrix remain unaffected and can be successfully modified through laser postmodification. The cells tests indicated that the micro-modifications created induced MG63 and MC3T3 osteoblast cellular orientation. The analysis of the MG63 and MC3T3

  5. Underwater 3D filming

    Directory of Open Access Journals (Sweden)

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  6. Surface and bulk 3D analysis of natural and processed ruby using electron probe micro analyzer and X-ray micro CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Rakesh K., E-mail: rakesh.materialscience@gmail.com; Singh, Saroj K.; Mishra, B.K.

    2016-08-15

    Highlights: • Firm linking between two advance techniques: Micro-CT and EPMA for mineral analysis. • Attempt to identify and differentiate the treated gem stone from natural counterpart. • 3D structural and surface elemental analysis of the natural gem stone. - Abstract: The change in surface compositional and bulk structural characteristics of the natural ruby stone, before and after heat treatment with lead oxide has been analyzed using two advance characterization techniques like: X-ray micro CT scan (μ-CT) and electron probe micro analyzer (EPMA). The analytical correlation between these two techniques in identification as well as in depth study of the ores and minerals before and after processing has been presented. Also, we describe the aesthetic enhancement of a low quality defective ruby stone by lead oxide filling and the sequential analysis of this ruby stone before and after treatment using these two advanced techniques to identify and to confirm the change in its aesthetic value. The cracks healing and pores filling by the metal oxide on the surface of the ruby have been analyzed using μ-CT and EPMA. Moreover, in this work we describe the advance characterization of the repaired gem stones especially ruby stones. This work will light up the path for in-depth understanding of diffusion mechanism and abstract information of impurity particles inside the minerals. Based on these observations, EPMA and micro CT are shown to be powerful tools for the identification as well as research in gem stones.

  7. Effect of cold plasma pre-treatment on photocatalytic activity of 3D fabric loaded with nano-photocatalysts: Response surface methodology

    Science.gov (United States)

    Ghoreishian, Seyed Majid; Badii, Khashayar; Norouzi, Mohammad; Malek, Kaveh

    2016-03-01

    In this study, the physico-chemical effects occasioned by the cold plasma discharge (CPD) on the photo-decolorization of Reactive Orange 16 (RO16) by 3D fabrics (spacer fabrics) loaded with ZnO:TiO2 nano-photocatalysts (nphs) were optimized via response surface methodology (RSM). CPD was employed to improve the surface characteristics of the spacer fabrics for nphs loading. Surface morphology and color variation were studied utilizing scanning electron microscopy (SEM) and CIE-Lab system, respectively. The effect of CPD on the wetting ability of the spacer fabrics was examined using dynamic adsorption measurement (DAM). Also, X-ray fluorescence (XRF) was utilized to investigate the durability of the nphs on the spacer fabrics. All the experiments were implemented in a Box-Behnken design (BBD) with three independent variables (CPD treatment time, dye concentration and irradiation time) in order to optimize the decolorization of RO16. The anticipated values of the decolorization efficiency were found to be in excellent agreement with the experimental values (R2 = 0.9996, Adjusted R2 = 0.9992). The kinetic analysis demonstrated that the photocatalytic decolorization followed the Langmuir-Hinshelwood kinetic model. In conclusion, this heterogeneous photocatalytic process is capable of decolorizing and mineralizing azoic reactive dye in textile wastewater. Moreover, the results confirmed that RSM based on the BBD was a suitable method to optimize the operating conditions of RO16 degradation.

  8. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    Science.gov (United States)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  9. 3D accelerator magnet calculations using MAGNUS-3D

    International Nuclear Information System (INIS)

    Pissanetzky, S.; Miao, Y.

    1989-01-01

    The steady trend towards increased magnetic and geometric complexity in the design of accelerator magnets has caused a need for reliable 3D computer models and a better understanding of the behavior of magnetic system in three dimensions. The capabilities of the MAGNUS-3D family of programs are ideally suited to solve this class of problems and provide insight into 3D effects. MAGNUS-3D can solve any problem of magnetostatics involving permanent magnets, nonlinear ferromagnetic materials and electric conductors. MAGNUS-3D uses the finite element method and the two-scalar-potentials formulation of Maxwell's equations to obtain the solution, which can then be used interactively to obtain tables of field components at specific points or lines, plots of field lines, function graphs representing a field component plotted against a coordinate along any line in space (such as the beam line), and views of the conductors, the mesh and the magnetic bodies. The magnetic quantities that can be calculated include the force or torque on conductors or magnetic parts, the energy, the flux through a specified surface, line integrals of any field component along any line in space, and the average field or potential harmonic coefficients. We describe the programs with emphasis placed on their use for accelerator magnet design, and present an advanced example of actual calculations. (orig.)

  10. Underwater 3D filming

    OpenAIRE

    Rinaldi, Roberto

    2014-01-01

    After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” ) and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Unde...

  11. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  12. Seismic site characterization of an urban dedimentary basin, Livermore Valley, California: Site tesponse, basin-edge-induced surface waves, and 3D simulations

    Science.gov (United States)

    Hartzell, Stephen; Leeds, Alena L.; Ramirez-Guzman, Leonardo; Allen, James P.; Schmitt, Robert G.

    2016-01-01

    Thirty‐two accelerometers were deployed in the Livermore Valley, California, for approximately one year to study sedimentary basin effects. Many local and near‐regional earthquakes were recorded, including the 24 August 2014 Mw 6.0 Napa, California, earthquake. The resulting ground‐motion data set is used to quantify the seismic response of the Livermore basin, a major structural depression in the California Coast Range Province bounded by active faults. Site response is calculated by two methods: the reference‐site spectral ratio method and a source‐site spectral inversion method. Longer‐period (≥1  s) amplification factors follow the same general pattern as Bouguer gravity anomaly contours. Site response spectra are inverted for shallow shear‐wave velocity profiles, which are consistent with independent information. Frequency–wavenumber analysis is used to analyze plane‐wave propagation across the Livermore Valley and to identify basin‐edge‐induced surface waves with back azimuths different from the source back azimuth. Finite‐element simulations in a 3D velocity model of the region illustrate the generation of basin‐edge‐induced surface waves and point out strips of elevated ground velocities along the margins of the basin.

  13. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    Science.gov (United States)

    Cross, Alan; Collard, Mark; Nelson, Andrew

    2008-06-18

    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.

  14. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    Directory of Open Access Journals (Sweden)

    Alan Cross

    Full Text Available The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be

  15. DELTA 3D PRINTER

    Directory of Open Access Journals (Sweden)

    ȘOVĂILĂ Florin

    2016-07-01

    Full Text Available 3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been accomplished only in a large amount of time. In this paper, there are presented the stages of a 3D model execution, also the physical achievement after of a Delta 3D printer after the model.

  16. Professional Papervision3D

    CERN Document Server

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  17. Effect of cold plasma pre-treatment on photocatalytic activity of 3D fabric loaded with nano-photocatalysts: Response surface methodology

    International Nuclear Information System (INIS)

    Ghoreishian, Seyed Majid; Badii, Khashayar; Norouzi, Mohammad; Malek, Kaveh

    2016-01-01

    Graphical abstract: - Highlights: • The potential of immobilized TiO_2 and ZnO nanophotocatalysts for the removal of reactive dye was investigated. • Optimum decolorization conditions have been determined. • The immobilized nanophotocatalysts decolorized azo dyes completely from a textile effluent within 60 min. • Photocatalytic decolorization rates obeyed the pseudo-first-order rate. - Abstract: In this study, the physico-chemical effects occasioned by the cold plasma discharge (CPD) on the photo-decolorization of Reactive Orange 16 (RO16) by 3D fabrics (spacer fabrics) loaded with ZnO:TiO_2 nano-photocatalysts (nphs) were optimized via response surface methodology (RSM). CPD was employed to improve the surface characteristics of the spacer fabrics for nphs loading. Surface morphology and color variation were studied utilizing scanning electron microscopy (SEM) and CIE-Lab system, respectively. The effect of CPD on the wetting ability of the spacer fabrics was examined using dynamic adsorption measurement (DAM). Also, X-ray fluorescence (XRF) was utilized to investigate the durability of the nphs on the spacer fabrics. All the experiments were implemented in a Box–Behnken design (BBD) with three independent variables (CPD treatment time, dye concentration and irradiation time) in order to optimize the decolorization of RO16. The anticipated values of the decolorization efficiency were found to be in excellent agreement with the experimental values (R"2 = 0.9996, Adjusted R"2 = 0.9992). The kinetic analysis demonstrated that the photocatalytic decolorization followed the Langmuir–Hinshelwood kinetic model. In conclusion, this heterogeneous photocatalytic process is capable of decolorizing and mineralizing azoic reactive dye in textile wastewater. Moreover, the results confirmed that RSM based on the BBD was a suitable method to optimize the operating conditions of RO16 degradation.

  18. Effect of cold plasma pre-treatment on photocatalytic activity of 3D fabric loaded with nano-photocatalysts: Response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ghoreishian, Seyed Majid, E-mail: m.ghoreishian.1985@gmail.com [Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Badii, Khashayar [Department of Environmental Researches, Institute for Color Science and Technology (ICST), Tehran (Iran, Islamic Republic of); Norouzi, Mohammad [Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB (Canada); Malek, Kaveh [Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-03-01

    Graphical abstract: - Highlights: • The potential of immobilized TiO{sub 2} and ZnO nanophotocatalysts for the removal of reactive dye was investigated. • Optimum decolorization conditions have been determined. • The immobilized nanophotocatalysts decolorized azo dyes completely from a textile effluent within 60 min. • Photocatalytic decolorization rates obeyed the pseudo-first-order rate. - Abstract: In this study, the physico-chemical effects occasioned by the cold plasma discharge (CPD) on the photo-decolorization of Reactive Orange 16 (RO16) by 3D fabrics (spacer fabrics) loaded with ZnO:TiO{sub 2} nano-photocatalysts (nphs) were optimized via response surface methodology (RSM). CPD was employed to improve the surface characteristics of the spacer fabrics for nphs loading. Surface morphology and color variation were studied utilizing scanning electron microscopy (SEM) and CIE-Lab system, respectively. The effect of CPD on the wetting ability of the spacer fabrics was examined using dynamic adsorption measurement (DAM). Also, X-ray fluorescence (XRF) was utilized to investigate the durability of the nphs on the spacer fabrics. All the experiments were implemented in a Box–Behnken design (BBD) with three independent variables (CPD treatment time, dye concentration and irradiation time) in order to optimize the decolorization of RO16. The anticipated values of the decolorization efficiency were found to be in excellent agreement with the experimental values (R{sup 2} = 0.9996, Adjusted R{sup 2} = 0.9992). The kinetic analysis demonstrated that the photocatalytic decolorization followed the Langmuir–Hinshelwood kinetic model. In conclusion, this heterogeneous photocatalytic process is capable of decolorizing and mineralizing azoic reactive dye in textile wastewater. Moreover, the results confirmed that RSM based on the BBD was a suitable method to optimize the operating conditions of RO16 degradation.

  19. Accuracy and benefits of 3D bone surface modelling: a comparison of two methods of surface data acquisition reconstructed by laser scanning and computed tomography outputs

    Czech Academy of Sciences Publication Activity Database

    Brzobohatá, Hana; Prokop, J.; Horák, M.; Jančárek, A.; Velemínská, J.

    2012-01-01

    Roč. 36, č. 3 (2012), s. 801-806 ISSN 0350-6134 Grant - others:GA UK(CZ) 613012 Keywords : frontal bone * three-dimensional imaging * laser scanning * surface registration Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 0.414, year: 2012

  20. TH-AB-202-08: A Robust Real-Time Surface Reconstruction Method On Point Clouds Captured From a 3D Surface Photogrammetry System

    International Nuclear Information System (INIS)

    Liu, W; Sawant, A; Ruan, D

    2016-01-01

    Purpose: Surface photogrammetry (e.g. VisionRT, C-Rad) provides a noninvasive way to obtain high-frequency measurement for patient motion monitoring in radiotherapy. This work aims to develop a real-time surface reconstruction method on the acquired point clouds, whose acquisitions are subject to noise and missing measurements. In contrast to existing surface reconstruction methods that are usually computationally expensive, the proposed method reconstructs continuous surfaces with comparable accuracy in real-time. Methods: The key idea in our method is to solve and propagate a sparse linear relationship from the point cloud (measurement) manifold to the surface (reconstruction) manifold, taking advantage of the similarity in local geometric topology in both manifolds. With consistent point cloud acquisition, we propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, building the point correspondences by the iterative closest point (ICP) method. To accommodate changing noise levels and/or presence of inconsistent occlusions, we further propose a modified sparse regression (MSR) model to account for the large and sparse error built by ICP, with a Laplacian prior. We evaluated our method on both clinical acquired point clouds under consistent conditions and simulated point clouds with inconsistent occlusions. The reconstruction accuracy was evaluated w.r.t. root-mean-squared-error, by comparing the reconstructed surfaces against those from the variational reconstruction method. Results: On clinical point clouds, both the SR and MSR models achieved sub-millimeter accuracy, with mean reconstruction time reduced from 82.23 seconds to 0.52 seconds and 0.94 seconds, respectively. On simulated point cloud with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent performance despite the introduced occlusions. Conclusion: We have developed a real

  1. System and method for generating 3D images of non-linear properties of rock formation using surface seismic or surface to borehole seismic or both

    Science.gov (United States)

    Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.; Guyer, Robert A.; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2016-06-07

    A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acoustic waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.

  2. Wearable 3D measurement

    Science.gov (United States)

    Manabe, Yoshitsugu; Imura, Masataka; Tsuchiya, Masanobu; Yasumuro, Yoshihiro; Chihara, Kunihiro

    2003-01-01

    Wearable 3D measurement realizes to acquire 3D information of an objects or an environment using a wearable computer. Recently, we can send voice and sound as well as pictures by mobile phone in Japan. Moreover it will become easy to capture and send data of short movie by it. On the other hand, the computers become compact and high performance. And it can easy connect to Internet by wireless LAN. Near future, we can use the wearable computer always and everywhere. So we will be able to send the three-dimensional data that is measured by wearable computer as a next new data. This paper proposes the measurement method and system of three-dimensional data of an object with the using of wearable computer. This method uses slit light projection for 3D measurement and user"s motion instead of scanning system.

  3. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  4. Effect of river excavation on a bank filtration site - assessing transient surface water - groundwater interaction by 3D heat and solute transport modelling

    Science.gov (United States)

    Wang, W.; Oswald, S. E.; Munz, M.; Strasser, D.

    2017-12-01

    Bank filtration is widely used either as main- or pre-treatment process for water supply. The colmation of the river bottom as interface to groundwater plays a key role for hydraulic control of flow paths and location of several beneficial attenuation processes, such as pathogen filtration, mixing, biodegradation and sorption. Along the flow path, mixing happens between the `young' infiltrated water and ambient `old' groundwater. To clarify the mechanisms and their interaction, modelling is often used for analysing spatial and temporal distribution of the travelling time, quantifying mixing ratios, and estimating the biochemical reaction rates. As the most comprehensive tool, 2-D or 3-D spatially-explicit modelling is used in several studies, and for area with geological heterogeneity, the adaptation of different natural tracers could constrain the model in respect to model non-uniqueness and improve the interpretation of the flow field. In our study, we have evaluated the influence of a river excavation and bank reconstruction project on the groundwater-surface water exchange at a bank filtration site. With data from years of field site monitoring, we could include besides heads and temperature also the analysis of stable isotope data and ions to differentiate between infiltrated water and groundwater. Thus, we have set up a 3-D transient heat and mass transport groundwater model, taking the strong local geological heterogeneity into consideration, especially between river and water work wells. By transferring the effect of the river excavation into a changing hydraulic conductivity of the riverbed, model could be calibrated against both water head and temperature time-series observed. Finally, electrical conductivity dominated by river input was included as quasi-conservative tracer. The `triple' calibrated, transient model was then used to i) understand the flow field and quantify the long term changes in infiltration rate and distribution brought by the

  5. Which Fault Segments Ruptured in the 2008 Wenchuan Earthquake and Which Did Not? New Evidence from Near‐Fault 3D Surface Displacements Derived from SAR Image Offsets

    KAUST Repository

    Feng, Guangcai; Jonsson, Sigurjon; Klinger, Yann

    2017-01-01

    The 2008 Mw 7.9 Wenchuan earthquake ruptured a complex thrust‐faulting system at the eastern edge of the Tibetan plateau and west of Sichuan basin. Though the earthquake has been extensively studied, several details about the earthquake, such as which fault segments were activated in the earthquake, are still not clear. This is in part due to difficult field access to the fault zone and in part due to limited near‐fault observations in Interferometric Synthetic Aperture Radar (InSAR) observations because of decorrelation. In this study, we address this problem by estimating SAR image offsets that provide near‐fault ground displacement information and exhibit clear displacement discontinuities across activated fault segments. We begin by reanalyzing the coseismic InSAR observations of the earthquake and then mostly eliminate the strong ionospheric signals that were plaguing previous studies by using additional postevent images. We also estimate the SAR image offsets and use their results to retrieve the full 3D coseismic surface displacement field. The coseismic deformation from the InSAR and image‐offset measurements are compared with both Global Positioning System and field observations. The results indicate that our observations provide significantly better information than previous InSAR studies that were affected by ionospheric disturbances. We use the results to present details of the surface‐faulting offsets along the Beichuan fault from the southwest to the northeast and find that there is an obvious right‐lateral strike‐slip component (as well as thrust faulting) along the southern Beichuan fault (in Yingxiu County), which was strongly underestimated in earlier studies. Based on the results, we provide new evidence to show that the Qingchuan fault was not ruptured in the 2008 Wenchuan earthquake, a topic debated in field observation studies, but show instead that surface faulting occurred on a northward extension of the Beichuan fault during

  6. Which Fault Segments Ruptured in the 2008 Wenchuan Earthquake and Which Did Not? New Evidence from Near‐Fault 3D Surface Displacements Derived from SAR Image Offsets

    KAUST Repository

    Feng, Guangcai

    2017-03-15

    The 2008 Mw 7.9 Wenchuan earthquake ruptured a complex thrust‐faulting system at the eastern edge of the Tibetan plateau and west of Sichuan basin. Though the earthquake has been extensively studied, several details about the earthquake, such as which fault segments were activated in the earthquake, are still not clear. This is in part due to difficult field access to the fault zone and in part due to limited near‐fault observations in Interferometric Synthetic Aperture Radar (InSAR) observations because of decorrelation. In this study, we address this problem by estimating SAR image offsets that provide near‐fault ground displacement information and exhibit clear displacement discontinuities across activated fault segments. We begin by reanalyzing the coseismic InSAR observations of the earthquake and then mostly eliminate the strong ionospheric signals that were plaguing previous studies by using additional postevent images. We also estimate the SAR image offsets and use their results to retrieve the full 3D coseismic surface displacement field. The coseismic deformation from the InSAR and image‐offset measurements are compared with both Global Positioning System and field observations. The results indicate that our observations provide significantly better information than previous InSAR studies that were affected by ionospheric disturbances. We use the results to present details of the surface‐faulting offsets along the Beichuan fault from the southwest to the northeast and find that there is an obvious right‐lateral strike‐slip component (as well as thrust faulting) along the southern Beichuan fault (in Yingxiu County), which was strongly underestimated in earlier studies. Based on the results, we provide new evidence to show that the Qingchuan fault was not ruptured in the 2008 Wenchuan earthquake, a topic debated in field observation studies, but show instead that surface faulting occurred on a northward extension of the Beichuan fault during

  7. 3D ARCHITECTURAL VIDEOMAPPING

    Directory of Open Access Journals (Sweden)

    R. Catanese

    2013-07-01

    Full Text Available 3D architectural mapping is a video projection technique that can be done with a survey of a chosen building in order to realize a perfect correspondence between its shapes and the images in projection. As a performative kind of audiovisual artifact, the real event of the 3D mapping is a combination of a registered video animation file with a real architecture. This new kind of visual art is becoming very popular and its big audience success testifies new expressive chances in the field of urban design. My case study has been experienced in Pisa for the Luminara feast in 2012.

  8. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  9. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article ...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  10. Herramientas SIG 3D

    Directory of Open Access Journals (Sweden)

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  11. Bootstrapping 3D fermions

    Energy Technology Data Exchange (ETDEWEB)

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Kos, Filip; Poland, David [Department of Physics, Yale University, New Haven, CT 06520 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions 〈ψψψψ〉 in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ×ψ OPE, and also on the central charge C{sub T}. We observe features in our bounds that coincide with scaling dimensions in the Gross-Neveu models at large N. We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  12. THE APPLICATION OF STEREOLOGY METHOD FOR ESTIMATING THE NUMBER OF 3D BaTiO3 – CERAMIC GRAINS CONTACT SURFACES

    Directory of Open Access Journals (Sweden)

    Vojislav V Mitić

    2011-05-01

    Full Text Available Methods of stereological study are of great importance for structural research of electronic ceramic materials including BaTiO3-ceramic materials. The broad application of ceramics, based on barium-titanate, in advanced electronics nowadays demands a constant research of its structure, that through the correlation structureproperties, a fundamental in the basic materials properties prognosis triad (technology-structure-properties, leads to further prognosis and properties design of these ceramics. Microstructure properties of BaTiO3- ceramic material, expressed in grains' boundary contact, are of basic importance for electric properties of this material, particularly the capacity. In this paper, a significant step towards establishing control under capacitive properties of BaTiO3-ceramics is being done by estimating the number of grains contact surfaces. Defining an efficient stereology method for estimating the number of BaTiO3-ceramic grains contact surfaces, we have started from a mathematical model of mutual grains distribution in the prescribed volume of BaTiO3-ceramic sample. Since the real microstructure morphology of BaTiO3-ceramics is in some way disordered, spherical shaped grains, using computer-modelling methods, are approximated by polyhedra with a great number of small convex polygons. By dividing the volume of BaTiO3-ceramic sample with the definite number of parallel planes, according to a given pace, into the intersection plane a certain number of grains contact surfaces are identified. According to quantitative estimation of 2D stereological parameters the modelled 3D internal microstructure is obtained. Experiments were made by using the scanning electronic microscopy (SEM method with the ceramic samples prepared under pressing pressures up to 150 MPa and sintering temperature up to 1370°C while the obtained microphotographs were used as a base of confirming the validity of presented stereology method. This paper, by applying

  13. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  14. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  15. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...

  16. 3D Harmonic Echocardiography:

    NARCIS (Netherlands)

    M.M. Voormolen (Marco)

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  17. Pressure driven currents near magnetic islands in 3D MHD equilibria: Effects of pressure variation within flux surfaces and of symmetry

    Science.gov (United States)

    Reiman, Allan H.

    2016-07-01

    In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B

  18. 3D surface flow kinematics derived from airborne UAVSAR interferometric synthetic aperture radar to constrain the physical mechanisms controlling landslide motion

    Science.gov (United States)

    Delbridge, B. G.; Burgmann, R.; Fielding, E. J.; Hensley, S.; Schulz, W. H.

    2013-12-01

    This project focuses on improving our understanding of the physical mechanisms controlling landslide motion by studying the landslide-wide kinematics of the Slumgullion landslide in southwestern Colorado using interferometric synthetic aperture radar (InSAR) and GPS. The NASA/JPL UAVSAR airborne repeat-pass SAR interferometry system imaged the Slumgullion landslide from 4 look directions on eight flights in 2011 and 2012. Combining the four look directions allows us to extract the full 3-D velocity field of the surface. Observing the full 3-dimensional flow field allows us to extract the full strain tensor (assuming free surface boundary conditions and incompressible flow) since we have both the spatial resolution to take spatial derivates and full deformation information. COSMO-SkyMed(CSK) high-resolution Spotlight data was also acquired during time intervals overlapping with the UAVSAR one-week pairs, with intervals as short as one day. These observations allow for the quantitative testing of the deformation magnitude and estimated formal errors in the UAVSAR derived deformation field. We also test the agreement of the deformation at 20 GPS monitoring sites concurrently acquired by the USGS. We also utilize the temporal resolution of real-time GPS acquired by the UC Berkeley Active Tectonics Group during a temporary deployment from July 22nd - August 2nd. By combining this data with the kinematic data we hope to elucidate the response of the landslide to environmental changes such as rainfall, snowmelt, and atmospheric pressure, and consequently the mechanisms controlling the dynamics of the landslide system. To constrain the longer temporal dynamics, interferograms made from pairs of CSK images acquired in 2010, 2011, 2012 and 2013 reveal the slide deformation on a longer timescale by allowing us to measure meters of motion and see the average rates over year long intervals using pixel offset tracking of the high-resolution SAR amplitude images. The results of

  19. Forensic 3D Scene Reconstruction

    International Nuclear Information System (INIS)

    LITTLE, CHARLES Q.; PETERS, RALPH R.; RIGDON, J. BRIAN; SMALL, DANIEL E.

    1999-01-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene

  20. Surface-based 3D measurements of small aeolian bedforms on Mars and implications for estimating ExoMars rover traversability hazards

    Science.gov (United States)

    Balme, Matt; Robson, Ellen; Barnes, Rob; Butcher, Frances; Fawdon, Peter; Huber, Ben; Ortner, Thomas; Paar, Gerhard; Traxler, Christoph; Bridges, John; Gupta, Sanjeev; Vago, Jorge L.

    2018-04-01

    Recent aeolian bedforms comprising loose sand are common on the martian surface and provide a mobility hazard to Mars rovers. The ExoMars rover will launch in 2020 to one of two candidate sites: Mawrth Vallis or Oxia Planum. Both sites contain numerous aeolian bedforms with simple ripple-like morphologies. The larger examples are 'Transverse Aeolian Ridges' (TARs), which stereo imaging analyses have shown to be a few metres high and up to a few tens of metres across. Where they occur, TARs therefore present a serious, but recognized and avoidable, rover mobility hazard. There also exists a population of smaller bedforms of similar morphology, but it is unknown whether these bedforms will be traversable by the ExoMars rover. We informally refer to these bedforms as "mini-TARs", as they are about an order of magnitude smaller than most TARs observed to date. They are more abundant than TARs in the Oxia Planum site, and can be pervasive in areas. The aim of this paper is to estimate the heights of these features, which are too small to measured using High Resolution Imaging Science Experiment (HiRISE) Digital Elevation Models (DEMs), from orbital data alone. Thereby, we aim to increase our knowledge of the hazards in the proposed ExoMars landing sites. We propose a methodology to infer the height of these mini-TARs based on comparisons with similar features observed by previous Mars rovers. We use rover-based stereo imaging from the NASA Mars Exploration Rover (MER) Opportunity and PRo3D software, a 3D visualisation and analysis tool, to measure the size and height of mini-TARs in the Meridiani Planum region of Mars. These are good analogues for the smaller bedforms at the ExoMars rover candidate landing sites. We show that bedform height scales linearly with length (as measured across the bedform, perpendicular to the crest ridge) with a ratio of about 1:15. We also measured the lengths of many of the smaller aeolian bedforms in the ExoMars rover Oxia Planum

  1. 3D histomorphometric quantification from 3D computed tomography

    International Nuclear Information System (INIS)

    Oliveira, L.F. de; Lopes, R.T.

    2004-01-01

    The histomorphometric analysis is based on stereologic concepts and was originally applied to biologic samples. This technique has been used to evaluate different complex structures such as ceramic filters, net structures and cancellous objects that are objects with inner connected structures. The measured histomorphometric parameters of structure are: sample volume to total reconstructed volume (BV/TV), sample surface to sample volume (BS/BV), connection thickness (Tb Th ), connection number (Tb N ) and connection separation (Tb Sp ). The anisotropy was evaluated as well. These parameters constitute the base of histomorphometric analysis. The quantification is realized over cross-sections recovered by cone beam reconstruction, where a real-time microfocus radiographic system is used as tomographic system. The three-dimensional (3D) histomorphometry, obtained from tomography, corresponds to an evolution of conventional method that is based on 2D analysis. It is more coherent with morphologic and topologic context of the sample. This work shows result from 3D histomorphometric quantification to characterize objects examined by 3D computer tomography. The results, which characterizes the internal structures of ceramic foams with different porous density, are compared to results from conventional methods

  2. DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program

    International Nuclear Information System (INIS)

    Lin, J.

    2002-01-01

    1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve

  3. Analysis of linear measurements on 3D surface models using CBCT data segmentation obtained by automatic standard pre-set thresholds in two segmentation software programs: an in vitro study.

    Science.gov (United States)

    Poleti, Marcelo Lupion; Fernandes, Thais Maria Freire; Pagin, Otávio; Moretti, Marcela Rodrigues; Rubira-Bullen, Izabel Regina Fischer

    2016-01-01

    The aim of this in vitro study was to evaluate the reliability and accuracy of linear measurements on three-dimensional (3D) surface models obtained by standard pre-set thresholds in two segmentation software programs. Ten mandibles with 17 silica markers were scanned for 0.3-mm voxels in the i-CAT Classic (Imaging Sciences International, Hatfield, PA, USA). Twenty linear measurements were carried out by two observers two times on the 3D surface models: the Dolphin Imaging 11.5 (Dolphin Imaging & Management Solutions, Chatsworth, CA, USA), using two filters(Translucent and Solid-1), and in the InVesalius 3.0.0 (Centre for Information Technology Renato Archer, Campinas, SP, Brazil). The physical measurements were made by another observer two times using a digital caliper on the dry mandibles. Excellent intra- and inter-observer reliability for the markers, physical measurements, and 3D surface models were found (intra-class correlation coefficient (ICC) and Pearson's r ≥ 0.91). The linear measurements on 3D surface models by Dolphin and InVesalius software programs were accurate (Dolphin Solid-1 > InVesalius > Dolphin Translucent). The highest absolute and percentage errors were obtained for the variable R1-R1 (1.37 mm) and MF-AC (2.53 %) in the Dolphin Translucent and InVesalius software, respectively. Linear measurements on 3D surface models obtained by standard pre-set thresholds in the Dolphin and InVesalius software programs are reliable and accurate compared with physical measurements. Studies that evaluate the reliability and accuracy of the 3D models are necessary to ensure error predictability and to establish diagnosis, treatment plan, and prognosis in a more realistic way.

  4. Formation Dirac point and the topological surface states for HgCdTe-QW and mixed 3D HgCdTe TI

    OpenAIRE

    Marchewka Michał

    2017-01-01

    In this paper the results of numerical calculations based on the finite difference method (FDM) for the 2D and 3D TI with and without uniaxial tensile strain for mixed Hg1-xCdxTe structures are presented. The numerical calculations were made using the 8×8 model for x from 0 up to 0.155 and for the wide range for the thickness from a few nm for 2D up to 150 nm for 3D TI as well as for different mismatch of the lattice constant and different barrier potential in the case of the QW. For the inve...

  5. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...... facilitated discussions during the course as well as through a survey distributed to the participating students. The analysis of the experiences shows a mixed picture consisting of both benefits and limits to the experimental technique. A discussion about the applicability of the technique and about...

  6. Magmatic Systems in 3-D

    Science.gov (United States)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  7. Fast Simulation of 3-D Surface Flanging and Prediction of the Flanging Lines Based On One-Step Inverse Forming Algorithm

    International Nuclear Information System (INIS)

    Bao Yidong; Hu Sibo; Lang Zhikui; Hu Ping

    2005-01-01

    A fast simulation scheme for 3D curved binder flanging and blank shape prediction of sheet metal based on one-step inverse finite element method is proposed, in which the total plasticity theory and proportional loading assumption are used. The scheme can be actually used to simulate 3D flanging with complex curve binder shape, and suitable for simulating any type of flanging model by numerically determining the flanging height and flanging lines. Compared with other methods such as analytic algorithm and blank sheet-cut return method, the prominent advantage of the present scheme is that it can directly predict the location of the 3D flanging lines when simulating the flanging process. Therefore, the prediction time of flanging lines will be obviously decreased. Two typical 3D curve binder flanging including stretch and shrink characters are simulated in the same time by using the present scheme and incremental FE non-inverse algorithm based on incremental plasticity theory, which show the validity and high efficiency of the present scheme

  8. 3D CNT macrostructure synthesis catalyzed by MgFe2O4 nanoparticles-A study of surface area and spinel inversion influence

    Science.gov (United States)

    Zampiva, Rúbia Young Sun; Kaufmann Junior, Claudir Gabriel; Pinto, Juliano Schorne; Panta, Priscila Chaves; Alves, Annelise Kopp; Bergmann, Carlos Pérez

    2017-11-01

    The MgFe2O4 spinel exhibits remarkable magnetic properties that open up numerous applications in biomedicine, the environment and catalysis. MgFe2O4 nanoparticles are excellent catalyst for carbon nanotube (CNT) production. In this work, we proposed to use MgFe2O4 nanopowder as a catalyst in the production of 3D macroscopic structures based on CNTs. The creation of these nanoengineered 3D architectures remains one of the most important challenges in nanotechnology. These systems have high potential as supercapacitors, catalytic electrodes, artificial muscles and in environmental applications. 3D macrostructures are formed due to an elevated density of CNTs. The quantity and quality of the CNTs are directly related to the catalyst properties. A heat treatment study was performed to produce the most effective catalyst. Factors such as superficial area, spinel inversion, crystallite size, degree of agglomeration and its correlation with van der Waals forces were examined. As result, the ideal catalyst properties for CNT production were determined and high-density 3D CNT macrostructures were produced successfully.

  9. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  10. Analysis of 3-D images

    Science.gov (United States)

    Wani, M. Arif; Batchelor, Bruce G.

    1992-03-01

    Deriving generalized representation of 3-D objects for analysis and recognition is a very difficult task. Three types of representations based on type of an object is used in this paper. Objects which have well-defined geometrical shapes are segmented by using a fast edge region based segmentation technique. The segmented image is represented by plan and elevation of each part of the object if the object parts are symmetrical about their central axis. The plan and elevation concept enables representing and analyzing such objects quickly and efficiently. The second type of representation is used for objects having parts which are not symmetrical about their central axis. The segmented surface patches of such objects are represented by the 3-D boundary and the surface features of each segmented surface. Finally, the third type of representation is used for objects which don't have well-defined geometrical shapes (for example a loaf of bread). These objects are represented and analyzed from its features which are derived using a multiscale contour based technique. Anisotropic Gaussian smoothing technique is introduced to segment the contours at various scales of smoothing. A new merging technique is used which enables getting the current best estimate of break points at each scale. This new technique enables elimination of loss of accuracy of localization effects at coarser scales without using scale space tracking approach.

  11. VIRTOPSY--scientific documentation, reconstruction and animation in forensic: individual and real 3D data based geo-metric approach including optical body/object surface and radiological CT/MRI scanning.

    Science.gov (United States)

    Thali, Michael J; Braun, Marcel; Buck, Ursula; Aghayev, Emin; Jackowski, Christian; Vock, Peter; Sonnenschein, Martin; Dirnhofer, Richard

    2005-03-01

    Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.

  12. 3D composite image, 3D MRI, 3D SPECT, hydrocephalus

    International Nuclear Information System (INIS)

    Mito, T.; Shibata, I.; Sugo, N.; Takano, M.; Takahashi, H.

    2002-01-01

    2 by the use of a program prepared by combining the advantage of a surface rendering method with that of a volume rendering method by means of the general-purpose visualization software AVS-MV (Application Visualization System Medical Viewer). The AVS-MV permits production of semitransparent images as well, so that metabolic and physiological functions in internal tissues with the same threshold value can be seen through external tissues. The voxel and threshold distribution curve was plotted and analyzed by this software. The distribution of voxel in normal individuals shows such a bimodal curve that RI count presents a trough at a threshold value of 40% and a crest at 70%. In hydrocephalus, on the other hand, the 40% region showed an increase and 70% region showed a decrease . After shunt operation for hydrocephalus, with improvement in symptoms, the 40% region decreased and 70% region increased, so that a normal pattern was approached. This composite 3D MRI and SPECT imaging technique made it possible not only to establish an intracranial position in SPECT, but also to assess the profile of cerebral circulation around the cerebral venuicles. Analysis of these 3D composite images permits quantitative expression of brain volume in SPECT and extensive elucidation of the cerebral circulation profile in morphological detail. This analysis is, therefore, considered to contribute largely to the development of functional images

  13. In vitro selection of Plasmodium falciparum 3D7 for expression of variant surface antigens associated with severe malaria in African children

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Nielsen, Morten A; Vestergaard, Lasse S

    2003-01-01

    ) in older semi-immune children. Establishment of the genetic mechanism underlying changes in VSA expression in response to in vitro selective pressure is now possible because of the availability of the entire genomic sequence of the P. falciparum clone 3D7. As a first step towards direct molecular...... identification of VSASM-encoding genes in 3D7, we report here a method of enforcing expression of VSASM-like antigens in this parasite clone by a novel selection method using plasma from semi-immune children with low VSAUM-specific, but high VSASM-specific, IgG reactivity. In addition to the resulting increase...... and epidemiologically diverse areas of endemic parasite transmission. The described selection method appears a useful tool in the identification of genes encoding VSA involved in severe and life-threatening P. falciparum malaria....

  14. A simple and efficient feeder-free culture system to up-scale iPSCs on polymeric material surface for use in 3D<