WorldWideScience

Sample records for noninvasive cardiac flow

  1. Noninvasive PET quantitative myocardial blood flow with regadenoson for assessing cardiac allograft vasculopathy in orthotopic heart transplantation patients.

    Science.gov (United States)

    Pampaloni, Miguel Hernandez; Shrestha, Uttam M; Sciammarella, Maria; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H

    2017-08-01

    Risk stratification and early detection of cardiac allograft vasculopathy (CAV) is essential in orthotopic heart transplantation (OHT) patients. This study assesses the changes in myocardial blood flow (MBF) noninvasively in OHT patients using quantitative cardiac PET with regadenoson. Twelve patients (Group 1) (8 males, 4 females, mean age 55 ± 7 years) with no history of post OHT myocardial ischemia were enrolled 5.4 ± 2.0 years after OHT. Fifteen patients (Group 2) (9 males, 6 females, mean age 71 ± 9 years) with intermediate pretest probability but not documented evidence for coronary artery disease (CAD) were also included to serve as control. Global and regional MBFs were assessed using dynamic 13 N-NH 3 PET at rest and during regadenoson-induced hyperemia. The coronary flow reserve (CFR) was also calculated as the ratio of hyperemic to resting MBF. Mean regadenoson-induced rate-pressure products were similar in both groups, while there was an increase in resting rate-pressure product in Group 1 patients. Both mean and median values of resting MBF were higher in Group 1 than Group 2 patients (1.33 ± 0.31 and 1.01 ± 0.21 mL/min/g for Groups 1 and 2, respectively, P < .001), while mean hyperemic MBF values were similar in both Groups (2.68 ± 0.84 and 2.64 ± 0.94 mL/min/g, P = NS) but median hyperemic MBF values were lower in Group 1 than Group 2 patients (2.0 vs. 2.60 mL/min/g, P = .018). Both mean and median CFR values demonstrated a significant reduction for Group 1 compared to Group 2 patients (2.07 ± 0.74 vs 2.63 ± 0.48, P = .025). This study suggests that the MBF in OHT patients may be abnormal at resting state with diminished CFR. This hints that the epicardial and microvascular coronary subsystem may be exacerbated after OHT leading to the gradual progression of CAV.

  2. 21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended to...

  3. MODELS OF MAJOR ADVERSE CARDIAC EVENT RISK USING RESULTS OF EXERCISE STRESS ECHOCARDIOGRAPHY WITH NONINVASIVE CORONARY ARTERY FLOW ASSESSMENT IN PATIENTS WITH ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    A. V. Zagatina

    2017-01-01

    Full Text Available Ultrasound non-invasive coronary artery imaging contributes to the diagnosis of ischemic heart disease (IHD in clinical practice. However, data of the prognostic value obtained from a complex analysis of contractility disorders and coronary blood flow parameters during exercise tests in the world literature are still not available. Aim. To develop risk models for adverse outcomes in patients with probable or definite IHD based on the results of a stress test with a noninvasive coronary blood flow study. Material and methods. Medical data of 689 patients with probable or definite IHD who underwent stress echocardiography with satisfactory visualization of the anterior interventricular artery (AIVA were included in the analysis. All patients had stress echocardiography on a horizontal bicycle ergometer. Registration of coronary blood flow in the middle third of the AIVA was performed at rest and at the peak of the load with calculation of the coronary reserve value. Further patient follow-up lasted 3 years. Models of further negative outcomes were developed on the basis of the stress echocardiography results and of coronary blood flow parameters. Results. Three models that take into account the factors associated with further mortality, mortality/myocardial infarction and sum of negative outcomes were developed in the study. These models divide a cohort of patients with probable or definite IHD into groups of low, medium and very high risks. Factors associated with the risk of death include: age >56 years, load power <100 W, breach of contractility in the blood supply zone of the circumflex artery initially and during exercise, the difference in blood flow velocities in the AIVA<10 cm/s, coronary reserve of AIVA<2. The risk model of death, taking into account these factors, suggests dividing patients into low-risk group if there are ≤2 factors (mortality 0.6% for 3 years, medium risk – from 2 to 4 factors (mortality 1.8%, high risk – ≥5

  4. Noninvasive external cardiac pacing for thallium-201 scintigraphy

    International Nuclear Information System (INIS)

    Feldman, M.D.; Warren, S.E.; Gervino, E.V.

    1988-01-01

    Improvements in noninvasive external cardiac pacing have led to a technique with reliable electrical capture and tolerable patient discomfort. To assess the use of this modality of pacing in combination with thallium scintigraphy as a noninvasive pacing stress test, we applied simultaneous noninvasive cardiac pacing, hemodynamic monitoring, and thallium-201 scintigraphy in 14 patients undergoing cardiac catheterization for chest pain syndromes. Two patients had normal coronary arteries, while the remaining 12 had significant coronary artery disease. Thallium scintigraphic responses to pacing were compared to routine exercise thallium stress testing in nine of these 14 patients. All patients were noninvasively paced to more than 85% of the age-predicted maximum heart rate. Twelve patients demonstrated reversible thallium defects, which corresponded in 11 cases to significant lesions seen on coronary angiography. Of nine patients who underwent both pacing and exercise thallium stress tests, comparable maximal rate-pressure products were achieved. Moreover, thallium imaging at peak pacing and during delayed views did not differ significantly from exercise thallium scintigraphy. A limiting factor associated with the technique was local patient discomfort, which occurred to some degree in all patients. We conclude that noninvasive external cardiac pacing together with thallium scintigraphy is capable of detecting significant coronary artery disease and may be comparable to routine exercise thallium stress testing. This new modality of stress testing could be useful in patients unable to undergo the exercise required for standard exercise tolerance testing, particularly if improvements in the technology can be found to reduce further the local discomfort

  5. Noninvasive measurement of blood flow and extraction fraction

    Energy Technology Data Exchange (ETDEWEB)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-10-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen.

  6. Noninvasive measurement of blood flow and extraction fraction

    International Nuclear Information System (INIS)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-01-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen. (author)

  7. Noninvasive physiologic assessment of coronary stenoses using cardiac CT.

    Science.gov (United States)

    Xu, Lei; Sun, Zhonghua; Fan, Zhanming

    2015-01-01

    Coronary CT angiography (CCTA) has become an important noninvasive imaging modality in the diagnosis of coronary artery disease (CAD). CCTA enables accurate evaluation of coronary artery stenosis. However, CCTA provides limited information on the physiological significance of stenotic lesions. A noninvasive "one-stop-shop" diagnostic test that can provide both anatomical significance and functional significance of stenotic lesions would be beneficial in the diagnosis and management of CAD. Recently, with the introduction of novel techniques, such as myocardial CT perfusion, CT-derived fractional flow reserve (FFRCT), and transluminal attenuation gradient (TAG), CCTA has emerged as a noninvasive method for the assessment of both anatomy of coronary lesions and its physiological consequences during a single study. This review provides an overview of the current status of new CT techniques for the physiologic assessments of CAD.

  8. Noninvasive Physiologic Assessment of Coronary Stenoses Using Cardiac CT

    Directory of Open Access Journals (Sweden)

    Lei Xu

    2015-01-01

    Full Text Available Coronary CT angiography (CCTA has become an important noninvasive imaging modality in the diagnosis of coronary artery disease (CAD. CCTA enables accurate evaluation of coronary artery stenosis. However, CCTA provides limited information on the physiological significance of stenotic lesions. A noninvasive “one-stop-shop” diagnostic test that can provide both anatomical significance and functional significance of stenotic lesions would be beneficial in the diagnosis and management of CAD. Recently, with the introduction of novel techniques, such as myocardial CT perfusion, CT-derived fractional flow reserve (FFRCT, and transluminal attenuation gradient (TAG, CCTA has emerged as a noninvasive method for the assessment of both anatomy of coronary lesions and its physiological consequences during a single study. This review provides an overview of the current status of new CT techniques for the physiologic assessments of CAD.

  9. Noninvasive arterial blood pressure waveforms in patients with continuous-flow left ventricular assist devices

    NARCIS (Netherlands)

    Martina, Jerson R.; Westerhof, Berend E.; de Jonge, Nicolaas; van Goudoever, Jeroen; Westers, Paul; Chamuleau, Steven; van Dijk, Diederik; Rodermans, Ben F. M.; de Mol, Bas A. J. M.; Lahpor, Jaap R.

    2014-01-01

    Arterial blood pressure and echocardiography may provide useful physiological information regarding cardiac support in patients with continuous-flow left ventricular assist devices (cf-LVADs). We investigated the accuracy and characteristics of noninvasive blood pressure during cf-LVAD support.

  10. Non-invasive cardiac output monitoring in neonates using bioreactance: a comparison with echocardiography.

    LENUS (Irish Health Repository)

    Weisz, Dany E

    2012-01-01

    Non-invasive cardiac output monitoring is a potentially useful clinical tool in the neonatal setting. Our aim was to evaluate a new method of non-invasive continuous cardiac output (CO) measurement (NICOM™) based on the principle of bioreactance in neonates.

  11. Fetal motion estimation from noninvasive cardiac signal recordings.

    Science.gov (United States)

    Biglari, Hadis; Sameni, Reza

    2016-11-01

    Fetal motility is a widely accepted indicator of the well-being of a fetus. In previous research, it has be shown that fetal motion (FM) is coherent with fetal heart rate accelerations and an indicator for active/rest cycles of the fetus. The most common approach for FM and fetal heart rate (FHR) assessment is by Doppler ultrasound (DUS). While DUS is the most common approach for studying the mechanical activities of the heart, noninvasive fetal electrocardiogram (ECG) and magnetocardiogram (MCG) recording and processing techniques have been considered as a possible competitor (or complement) for the DUS. In this study, a fully automatic and robust framework is proposed for the extraction, ranking and alignment of fetal QRS-complexes from noninvasive fetal ECG/MCG. Using notions from subspace tracking, two measures, namely the actogram and rotatogram, are defined for fetal motion tracking. The method is applied to four fetal ECG/MCG databases, including twin MCG recordings. By defining a novel measure of causality, it is shown that there is significant coherency and causal relationship between the actogram/rotatogram and FHR accelerations/decelerations. Using this measure, it is shown that in many cases, the actogram and rotatogram precede the FHR variations, which supports the idea of motion-induced FHR accelerations/decelerations for these cases and raises attention for the non-motion-induced FHR variations, which can be associated to the fetal central nervous system developments. The results of this study can lead to novel perspectives of the fetal sympathetic and parasympathetic brain systems and future requirements of fetal cardiac monitoring.

  12. Computing volume potentials for noninvasive imaging of cardiac excitation.

    Science.gov (United States)

    van der Graaf, A W Maurits; Bhagirath, Pranav; van Driel, Vincent J H M; Ramanna, Hemanth; de Hooge, Jacques; de Groot, Natasja M S; Götte, Marco J W

    2015-03-01

    In noninvasive imaging of cardiac excitation, the use of body surface potentials (BSP) rather than body volume potentials (BVP) has been favored due to enhanced computational efficiency and reduced modeling effort. Nowadays, increased computational power and the availability of open source software enable the calculation of BVP for clinical purposes. In order to illustrate the possible advantages of this approach, the explanatory power of BVP is investigated using a rectangular tank filled with an electrolytic conductor and a patient specific three dimensional model. MRI images of the tank and of a patient were obtained in three orthogonal directions using a turbo spin echo MRI sequence. MRI images were segmented in three dimensional using custom written software. Gmsh software was used for mesh generation. BVP were computed using a transfer matrix and FEniCS software. The solution for 240,000 nodes, corresponding to a resolution of 5 mm throughout the thorax volume, was computed in 3 minutes. The tank experiment revealed that an increased electrode surface renders the position of the 4 V equipotential plane insensitive to mesh cell size and reduces simulated deviations. In the patient-specific model, the impact of assigning a different conductivity to lung tissue on the distribution of volume potentials could be visualized. Generation of high quality volume meshes and computation of BVP with a resolution of 5 mm is feasible using generally available software and hardware. Estimation of BVP may lead to an improved understanding of the genesis of BSP and sources of local inaccuracies. © 2014 Wiley Periodicals, Inc.

  13. Relationship between cardiac output and effective renal plasma flow in patients with cardiac disease

    Energy Technology Data Exchange (ETDEWEB)

    McGriffin, D; Tauxe, W N; Lewis, C; Karp, R; Mantle, J

    1984-12-01

    The relationship between effective renal plasma flow (ERPF) and cardiac output was examined in 46 patients (22 with congestive heart failure and 24 following cardiac surgical procedures) by simultaneously measuring the global ERPF by the single-injection method and cardiac output by the thermodilution method. Of the patients in the heart-failure group, 21 also had pulmonary artery end diastolic pressure (PAEDP) recorded at the same time. ERPF and cardiac output were found to be related by the regression equations: cardiac output = 2.08 + 0.0065 ERPF (r, 080), with a SE of estimate of 0.81 l/min. ERPF and PAEDP were related by the regression equation: PAEDP = 42.02 - 0.0675 ERPF (r, 0.86), with a SE of estimate of 5.5 mm Hg. ERPF may be a useful noninvasive method of estimating cardiac output if it is known that no intrinsic kidney disease is present, and if the error of 0.81 l/min (1 SE of estimate) is within the range of clinical usefulness. The error is principally attributable to the determination of cardiac output by the thermodilution method.

  14. 5th German cardiodiagnostic meeting 2013 with the 6th Leipzig Symposium on non-invasive cardiovascular imaging. Challenges and limit of the non-invasive cardiac imaging

    International Nuclear Information System (INIS)

    2013-01-01

    The proceedings on the German cardiodiagnostic meeting 2013 together with the 6th Leipzig Symposium on non-invasive cardiovascular imaging include abstracts concerning the following topics: Imaging in the rhythmology; adults with congenital cardiac defects; cardiac myopathies - myocarditis; cardiac valves (before and after transcutaneous valve replacement); coronary heart diseases; technical developments.

  15. Noninvasive measurement of an index of renal blood flow

    International Nuclear Information System (INIS)

    Powers, T.A.; Rees, R.S.; Bowen, R.D.

    1983-01-01

    A new technique for the noninvasive measurement of an index of renal blood flow is described. The method utilizes ultrasound determined renal volume and radionuclide assessment of the mean transit time of a pertechnetate bolus through the kidneys. From this information a value for flow is calculated according to compartmental analysis principles. There is good correlation between renal blood flow estimated by this technique and that determined by microsphere injection

  16. Non-invasive cardiac imaging. Spectrum, methodology, indication and interpretation

    International Nuclear Information System (INIS)

    Schaefers, Michael; Flachskampf, Frank; Sechtem, Udo; Achenbach, Stephan; Krause, Bernd J.; Schwaiger, Markus; Breithardt, Guenter

    2008-01-01

    The book contains 13 contributions concerning the following chapters: (1)methodology: echo cardiography; NMR imaging; nuclear medicine; computer tomography, (2) clinical protocols: contraction; cardiac valve function; perfusion and perfusion reserve; vitality; corona imaging; transmitters, receptors, enzymes; (3) clinic: coronary heart diseases; non-ischemic heart diseases. The appendix contains two contributions on future developments and certification/standardization

  17. Left coronary arterial blood flow: Noninvasive detection by Doppler US

    International Nuclear Information System (INIS)

    Gramiak, R.; Holen, J.; Moss, A.J.; Gutierrez, O.H.; Picone, A.L.; Roe, S.A.

    1986-01-01

    Continuous wave (CW) and pulsed Doppler ultrasound studies with spectral analysis were used to detect the left coronary arterial blood flow in patients who were undergoing routine echocardiography. The pulmonary artery is a stable ultrasonic landmark from which detection of the blood flow can be effected. The left coronary artery can be distinguished by its blood flow toward the cardiac apex and by specific, functional flow features. Flow patterns vary among the left main, circumflex, and anterior descending arteries; patterns also vary with respiration cycles. In the present study, coronary arterial blood flow was detected in 58 of 70 patients (83%). Findings were validated by selectively injecting an agitated saline contrast medium into the left coronary artery and, in another study, by comparing human Doppler phasic flow waveforms with electromagnetic flowmeter recordings obtained in dogs

  18. Cardiac abnormalities assessed by non-invasive techniques in patients with newly diagnosed idiopathic inflammatory myopathies

    DEFF Research Database (Denmark)

    Diederichsen, Louise Pyndt; Simonsen, Jane Angel; Diederichsen, Axel Cosmus Pyndt

    2015-01-01

    inflammatory myopathies (IIM) by means of non-invasive techniques. METHODS: Fourteen patients with IIM (8 polymyositis, 4 dermatomyositis, 2 cancer-associated dermatomyositis) and 14 gender- and age- matched healthy control subjects were investigated. Participant assessments included a cardiac questionnaire...... in 8 (57%) of the patients compared to none of the controls (pgroup (p=0.01). Two patients had systolic dysfunction, and one diastolic dysfunction...

  19. Fluid challenge: tracking changes in cardiac output with blood pressure monitoring (invasive or non-invasive).

    Science.gov (United States)

    Lakhal, Karim; Ehrmann, Stephan; Perrotin, Dominique; Wolff, Michel; Boulain, Thierry

    2013-11-01

    To assess whether invasive and non-invasive blood pressure (BP) monitoring allows the identification of patients who have responded to a fluid challenge, i.e., who have increased their cardiac output (CO). Patients with signs of circulatory failure were prospectively included. Before and after a fluid challenge, CO and the mean of four intra-arterial and oscillometric brachial cuff BP measurements were collected. Fluid responsiveness was defined by an increase in CO ≥10 or ≥15% in case of regular rhythm or arrhythmia, respectively. In 130 patients, the correlation between a fluid-induced increase in pulse pressure (Δ500mlPP) and fluid-induced increase in CO was weak and was similar for invasive and non-invasive measurements of BP: r² = 0.31 and r² = 0.29, respectively (both p area under the receiver-operating curve (AUC) of 0.82 (0.74-0.88), similar (p = 0.80) to that of non-invasive Δ500mlPP [AUC of 0.81 (0.73-0.87)]. Outside large gray zones of inconclusive values (5-23% for invasive Δ500mlPP and 4-35% for non-invasive Δ500mlPP, involving 35 and 48% of patients, respectively), the detection of responsiveness or unresponsiveness to fluid was reliable. Cardiac arrhythmia did not impair the performance of invasive or non-invasive Δ500mlPP. Other BP-derived indices did not outperform Δ500mlPP. As evidenced by large gray zones, BP-derived indices poorly reflected fluid responsiveness. However, in our deeply sedated population, a high increase in invasive pulse pressure (>23%) or even in non-invasive pulse pressure (>35%) reliably detected a response to fluid. In the absence of a marked increase in pulse pressure (<4-5%), a response to fluid was unlikely.

  20. Clinical Validation of Non-Invasive Cardiac Output Monitoring in Healthy Pregnant Women.

    Science.gov (United States)

    McLaughlin, Kelsey; Wright, Stephen P; Kingdom, John C P; Parker, John D

    2017-11-01

    Non-invasive hemodynamic monitoring has the potential to be a valuable clinical tool for the screening and management of hypertensive disorders of pregnancy. The objective of this study was to validate the clinical utility of the non-invasive cardiac output monitoring (NICOM) system in pregnant women. Twenty healthy pregnant women with a singleton pregnancy at 22 to 26 weeks' gestation were enrolled in this study. Measures of heart rate, stroke volume, and cardiac output were obtained through NICOM and compared with Doppler echocardiography. NICOM significantly overestimated measures of both stroke volume and cardiac output compared with Doppler echocardiography (95 ± 4 vs. 73 ± 4 mL, P gold standard for the measurement of cardiac output in the setting of pregnancy. However, once normal values have been established, NICOM has the potential to be a useful clinical tool for monitoring maternal hemodynamics in pregnant women. Further investigation regarding the validity of NICOM is required in larger populations of healthy and hypertensive pregnant women to determine whether this device is appropriate for maternal hemodynamic assessment during pregnancy. Copyright © 2017 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada. Published by Elsevier Inc. All rights reserved.

  1. CARDIAC TRANSPLANT REJECTION AND NON-INVASIVE COMON CAROTID ARTERY WALL FUNCTIONAL INDICES

    Directory of Open Access Journals (Sweden)

    A. O. Shevchenko

    2015-01-01

    Full Text Available Allograft rejection would entail an increase in certain blood biomarkers and active substances derived from activated inflammatory cells which could influence entire vascular endothelial function and deteriorate arterial wall stiffness. We propose that carotid wall functional indices measured with non-invasive ultrasound could we valuable markers of the subclinical cardiac allograft rejection. Aim. Our goal was to analyze the clinical utility of functional common carotid wall (CCW variables measured with high-resolution Doppler ultrasound as a non-invasive screening tool for allograft rejection in cardiac transplant patients (pts. Methods. One hundred and seventy one pts included 93 cardiac recipients, 30 dilated cardiomyopathy waiting list pts, and 48 stable coronary artery disease (SCAD pts without decompensated heart failure were included. Along with resistive index (Ri, pulsative index (Pi, and CCW intima-media thickness (IMT, CCW rigidity index (iRIG was estimated using empirical equation. Non-invasive evaluation was performed in cardiac transplant recipients prior the endomyo- cardial biopsy. Results. Neither of Ri, Pi, or CCW IMT were different in studied subgroups. iRIG was signifi- cantly lower in SCAD pts when compared to the dilated cardiomyopathy subgroup. The later had similar values with cardiac transplant recipients without rejection. Antibody-mediated and cellular rejection were found in 22 (23.7% and 17 (18.3% cardiac recipients, respectively. Mean iRIG in pts without rejection was significantly lower in comparison to antibody-mediated rejection and cell-mediated (5514.7 ± 2404.0 vs 11856.1 ± 6643.5 and 16071.9 ± 10029.1 cm/sec2, respectively, p = 0.001. Area under ROC for iRIG was 0.90 ± 0.03 units2. Analysis showed that iRIG values above estimated treshold 7172 cm/sec2 suggested relative risk of any type of rejection 17.7 (95%CI = 6.3–49.9 sensitivity 80.5%, specificity – 81.1%, negative predictive value – 84

  2. Regional myocardial blood flow, metabolism and function assessed noninvasively by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schelbert, H.R.; Phelps, M.E.; Hoffman, E.; Huang, S.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography is a new technique for the noninvasive measure of myocardial blood flow, mechanical function and, in particular, metabolism. The capability of this new study means is due to the technological innovations of the imaging device and the availability of radioactive tracers that are specific for blood flow and metabolism. The device permits recording of cross-sectional images of the left ventricular myocardium that reflect quantitatively regional tracer tissue concentrations. By employing tracer kinetic models this new technique permits the measurement of regional glucose and fatty acid metabolism of the heart. While already an important new tool for investigative studies into cardiac physiology and pathophysiology, the clinical utility of positron emission tomography remains to be defined.

  3. Regional myocardial blood flow, metabolism and function assessed noninvasively by positron emission tomography

    International Nuclear Information System (INIS)

    Schelbert, H.R.; Phelps, M.E.; Hoffman, E.; Huang, S.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography is a new technique for the noninvasive measure of myocardial blood flow, mechanical function and, in particular, metabolism. The capability of this new study means is due to the technological innovations of the imaging device and the availability of radioactive tracers that are specific for blood flow and metabolism. The device permits recording of cross-sectional images of the left ventricular myocardium that reflect quantitatively regional tracer tissue concentrations. By employing tracer kinetic models this new technique permits the measurement of regional glucose and fatty acid metabolism of the heart. While already an important new tool for investigative studies into cardiac physiology and pathophysiology, the clinical utility of positron emission tomography remains to be defined

  4. Electro-resistive bands for non-invasive cardiac and respiration monitoring, a feasibility study

    International Nuclear Information System (INIS)

    Gargiulo, Gaetano D; Breen, Paul P; O’Loughlin, Aiden

    2015-01-01

    Continuous unobtrusive monitoring of tidal volume, particularly for critical care patients (i.e. neonates and patients in intensive care) during sleep studies and during daily activities, is still an unresolved monitoring need. Also a successful monitoring solution is yet to be proposed for continuous non-invasive cardiac stroke volume monitoring that is a novel clinical need. In this paper we present the feasibility study for a wearable, non-invasive, non-contact and unobtrusive sensor (embedded in a standard T-shirt) based on four electro-resistive bands that simultaneously monitors tidal volume and cardiac stroke volume changes. This low power sensor system (requires only 100 mW and accepts a wide power supply range up to ±18 V); thus the sensor can be easily embedded in existing wearable solutions (i.e. Holter monitors). Moreover, being contactless, it can be worn over bandages or electrodes, and as it does not rely over the integrity of the garment to work, it allows practitioners to perform procedures during monitoring. For this preliminary evaluation, one subject has worn the sensor over the period of 24 h (removing it only to shower); the accuracy of the tidal volume tested against a portable spirometer reported a precision of ±10% also during physical activity; accuracy tests for cardiac output (as it may require invasive procedure) have not been carried out in this preliminary trial. (note)

  5. Noninvasive tomographic and velocimetric monitoring of multiphase flows

    International Nuclear Information System (INIS)

    Chaouki, J.; Dudukovic, M.P.

    1997-01-01

    A condensed review of recent advances accomplished in the development and the applications of noninvasive tomographic and velocimetric measurement techniques to multiphase flows and systems is presented. In recent years utilization of such noninvasive techniques has become widespread in many engineering disciplines that deal with systems involving two immiscible phases or more. Tomography provides concentration, holdup, or 2D or 3D density distribution of at least one component of the multiphase system, whereas velocimetry provides the dynamic features of the phase of interest such as the flow pattern, the velocity field, the 2D or 3D instantaneous movements, etc. The following review is divided into two parts. The first part summarizes progress and developments in flow imaging techniques using γ-ray and X-ray transmission tomography; X-ray radiography; neutron transmission tomography and radiography; positron emission tomography; X-ray diffraction tomography; nuclear magnetic resonance imaging; electrical capacitance tomography; optical tomography; microwave tomography; and ultrasonic tomography. The second part of the review summarizes progress and developments in the following velocimetry techniques: positron emission particle tracking; radioactive particle tracking; cinematography; laser-Doppler anemometry; particle image velocimetry; and fluorescence particle image velocimetry. The basic principles of tomography and velocimetry techniques are outlined, along with advantages and limitations inherent to each technique. The hydrodynamic and structural information yielded by these techniques is illustrated through a literature survey on their successful applications to the study of multiphase systems in such fields as particulate solids processes, fluidization engineering, porous media, pipe flows, transport within packed beds and sparged reactors, etc

  6. Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia.

    Science.gov (United States)

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin

    2011-08-01

    Imaging cardiac excitation within ventricular myocardium is important in the treatment of cardiac arrhythmias and might help improve our understanding of arrhythmia mechanisms. This study sought to rigorously assess the imaging performance of a 3-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of 3D intracardiac mapping from up to 216 intramural sites during paced rhythm and norepinephrine (NE)-induced ventricular tachycardia (VT) in the rabbit heart. Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in 13 healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous NE. Computed tomography images were obtained to construct geometry models. The noninvasively imaged activation sequence correlated well with invasively measured counterpart, with a correlation coefficient of 0.72 ± 0.04, and a relative error of 0.30 ± 0.02 averaged over 520 paced beats as well as 73 NE-induced PVCs and VT beats. All PVCs and VT beats initiated in the subendocardium by a nonreentrant mechanism. The averaged distance from the imaged site of initial activation to the pacing site or site of arrhythmias determined from intracardiac mapping was ∼5 mm. For dual-site pacing, the double origins were identified when they were located at contralateral sides of ventricles or at the lateral wall and the apex. 3DCEI can noninvasively delineate important features of focal or multifocal ventricular excitation. It offers the potential to aid in localizing the origins and imaging activation sequences of ventricular arrhythmias, and to provide noninvasive assessment of the underlying arrhythmia mechanisms. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. Noninvasive arterial blood pressure waveforms in patients with continuous-flow left ventricular assist devices.

    Science.gov (United States)

    Martina, Jerson R; Westerhof, Berend E; de Jonge, Nicolaas; van Goudoever, Jeroen; Westers, Paul; Chamuleau, Steven; van Dijk, Diederik; Rodermans, Ben F M; de Mol, Bas A J M; Lahpor, Jaap R

    2014-01-01

    Arterial blood pressure and echocardiography may provide useful physiological information regarding cardiac support in patients with continuous-flow left ventricular assist devices (cf-LVADs). We investigated the accuracy and characteristics of noninvasive blood pressure during cf-LVAD support. Noninvasive arterial pressure waveforms were recorded with Nexfin (BMEYE, Amsterdam, The Netherlands). First, these measurements were validated simultaneously with invasive arterial pressures in 29 intensive care unit patients. Next, the association between blood pressure responses and measures derived by echocardiography, including left ventricular end-diastolic dimensions (LVEDDs), left ventricular end-systolic dimensions (LVESDs), and left ventricular shortening fraction (LVSF) were determined during pump speed change procedures in 30 outpatients. Noninvasive arterial blood pressure waveforms by the Nexfin monitor slightly underestimated invasive measures during cf-LVAD support. Differences between noninvasive and invasive measures (mean ± SD) of systolic, diastolic, mean, and pulse pressures were -7.6 ± 5.8, -7.0 ± 5.2, -6.9 ± 5.1, and -0.6 ± 4.5 mm Hg, respectively (all blood pressure responses did not correlate with LVEDD, LVESD, or LVSF, while LVSF correlated weakly with both pulse pressure (r = 0.24; p = 0.005) and (dP(art)/dt)max (r = 0.25; p = 0.004). The dicrotic notch in the pressure waveform was a better predictor of aortic valve opening (area under the curve [AUC] = 0.87) than pulse pressure (AUC = 0.64) and (dP(art)/dt)max (AUC = 0.61). Patients with partial support rather than full support at 9,000 rpm had a significant change in systolic pressure, pulse pressure, and (dP(art)/dt)max during ramp studies, while echocardiographic measures did not change. Blood pressure measurements by Nexfin were reliable and may thereby act as a compliment to the assessment of the cf-LVAD patient.

  8. 2017 multimodality appropriate use criteria for noninvasive cardiac imaging: Export consensus of the Asian society of cardiovascular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Kyong Min Sarah [Dept. of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Kim, Jeong A [Dept. of Radiology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang (Korea, Republic of); Choe, Yeon Hyeon [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); and others

    2017-11-15

    In 2010, the Asian Society of Cardiovascular Imaging (ASCI) provided recommendations for cardiac CT and MRI, and this document reflects an update of the 2010 ASCI appropriate use criteria (AUC). In 2016, the ASCI formed a new working group for revision of AUC for noninvasive cardiac imaging. A major change that we made in this document is the rating of various noninvasive tests (exercise electrocardiogram, echocardiography, positron emission tomography, single-photon emission computed tomography, radionuclide imaging, cardiac magnetic resonance, and cardiac computed tomography/angiography), compared side by side for their applications in various clinical scenarios. Ninety-five clinical scenarios were developed from eight selected pre-existing guidelines and classified into four sections as follows: 1) detection of coronary artery disease, symptomatic or asymptomatic; 2) cardiac evaluation in various clinical scenarios; 3) use of imaging modality according to prior testing; and 4) evaluation of cardiac structure and function. The clinical scenarios were scored by a separate rating committee on a scale of 1–9 to designate appropriate use, uncertain use, or inappropriate use according to a modified Delphi method. Overall, the AUC ratings for CT were higher than those of previous guidelines. These new AUC provide guidance for clinicians choosing among available testing modalities for various cardiac diseases and are also unique, given that most previous AUC for noninvasive imaging include only one imaging technique. As cardiac imaging is multimodal in nature, we believe that these AUC will be more useful for clinical decision making.

  9. Non-invasive cardiac output trending during exercise recovery on a bathroom-scale-based ballistocardiograph

    International Nuclear Information System (INIS)

    Inan, O T; Etemadi, M; Giovangrandi, L; Kovacs, G T A; Paloma, A

    2009-01-01

    Cardiac ejection of blood into the aorta generates a reaction force on the body that can be measured externally via the ballistocardiogram (BCG). In this study, a commercial bathroom scale was modified to measure the BCGs of nine healthy subjects recovering from treadmill exercise. During the recovery, Doppler echocardiogram signals were obtained simultaneously from the left ventricular outflow tract of the heart. The percentage changes in root-mean-square (RMS) power of the BCG were strongly correlated with the percentage changes in cardiac output measured by Doppler echocardiography (R 2 = 0.85, n = 275 data points). The correlation coefficients for individually analyzed data ranged from 0.79 to 0.96. Using Bland–Altman methods for assessing agreement, the mean bias was found to be −0.5% (±24%) in estimating the percentage changes in cardiac output. In contrast to other non-invasive methods for trending cardiac output, the unobtrusive procedure presented here uses inexpensive equipment and could be performed without the aid of a medical professional

  10. Non-invasive cardiac output trending during exercise recovery on a bathroom-scale-based ballistocardiograph.

    Science.gov (United States)

    Inan, O T; Etemadi, M; Paloma, A; Giovangrandi, L; Kovacs, G T A

    2009-03-01

    Cardiac ejection of blood into the aorta generates a reaction force on the body that can be measured externally via the ballistocardiogram (BCG). In this study, a commercial bathroom scale was modified to measure the BCGs of nine healthy subjects recovering from treadmill exercise. During the recovery, Doppler echocardiogram signals were obtained simultaneously from the left ventricular outflow tract of the heart. The percentage changes in root-mean-square (RMS) power of the BCG were strongly correlated with the percentage changes in cardiac output measured by Doppler echocardiography (R(2) = 0.85, n = 275 data points). The correlation coefficients for individually analyzed data ranged from 0.79 to 0.96. Using Bland-Altman methods for assessing agreement, the mean bias was found to be -0.5% (+/-24%) in estimating the percentage changes in cardiac output. In contrast to other non-invasive methods for trending cardiac output, the unobtrusive procedure presented here uses inexpensive equipment and could be performed without the aid of a medical professional.

  11. Relationship between cardiac function and resting cerebral blood flow

    DEFF Research Database (Denmark)

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja

    2014-01-01

    ) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P...... = 0.008) and furthermore lower in males than in females (8.6% versus 12.5%, P = 0.003). Fractional brain flow was also inversely correlated with cerebral white matter lesion grade, although this effect was not significant when adjusted for age. Frequency analysis of heart rate variability showed...

  12. Functional Relevance of Coronary Artery Disease by Cardiac Magnetic Resonance and Cardiac Computed Tomography: Myocardial Perfusion and Fractional Flow Reserve

    Directory of Open Access Journals (Sweden)

    Gianluca Pontone

    2015-01-01

    Full Text Available Coronary artery disease (CAD is one of the leading causes of morbidity and mortality and it is responsible for an increasing resource burden. The identification of patients at high risk for adverse events is crucial to select those who will receive the greatest benefit from revascularization. To this aim, several non-invasive functional imaging modalities are usually used as gatekeeper to invasive coronary angiography, but the diagnostic yield of elective invasive coronary angiography remains unfortunately low. Stress myocardial perfusion imaging by cardiac magnetic resonance (stress-CMR has emerged as an accurate technique for diagnosis and prognostic stratification of the patients with known or suspected CAD thanks to high spatial and temporal resolution, absence of ionizing radiation, and the multiparametric value including the assessment of cardiac anatomy, function, and viability. On the other side, cardiac computed tomography (CCT has emerged as unique technique providing coronary arteries anatomy and more recently, due to the introduction of stress-CCT and noninvasive fractional flow reserve (FFR-CT, functional relevance of CAD in a single shot scan. The current review evaluates the technical aspects and clinical experience of stress-CMR and CCT in the evaluation of functional relevance of CAD discussing the strength and weakness of each approach.

  13. Valveless pumping mechanics of the embryonic heart during cardiac looping: Pressure and flow through micro-PIV.

    Science.gov (United States)

    Bark, D L; Johnson, B; Garrity, D; Dasi, L P

    2017-01-04

    Cardiovascular development is influenced by the flow-induced stress environment originating from cardiac biomechanics. To characterize the stress environment, it is necessary to quantify flow and pressure. Here, we quantify the flow field in a developing zebrafish heart during the looping stage through micro-particle imaging velocimetry and by analyzing spatiotemporal plots. We further build upon previous methods to noninvasively quantify the pressure field at a low Reynolds number using flow field data for the first time, while also comparing the impact of viscosity models. Through this method, we show that the atrium builds up pressure to ~0.25mmHg relative to the ventricle during atrial systole and that atrial expansion creates a pressure difference of ~0.15mmHg across the atrium, resulting in efficient cardiac pumping. With these techniques, it is possible to noninvasively fully characterize hemodynamics during heart development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Noninvasive 133Xe inhalation method for cerebral blood flow measurement

    International Nuclear Information System (INIS)

    Takagi, Shigeharu; Kobatake, Keitaro; Shinohara, Yukito

    1991-01-01

    Recent development of the 133 Xe inhalation technique has made it possible to measure cerebral blood flow (CBF) noninvasively. Recording of the head curves from the frontal and temporal areas during inhalation of 133 Xe, however, is contaminated by the artifact from the air passages. A method based on Fourier transforms was reported to be able to eliminate air passage artifact (APA) effectively. However, it was pointed out that such an algorithm does not give a complete correction if the artifact seen by the head detectors differs in shape from that recorded from the airways at the mouth, which may happen when there is a slow isotope convection in the nasal and sinus cavities. The purpose of this study was to compare the CBF values calculated by the Fourier method with those by the conventional method of Obrist (VM method). Mean hemispheric gray matter flow (F 1 ) calculated by the VM method in 11 subjects, including normal volunteers and patients with various neurological diseases, was 69.2±13.2 mg/100 g brain/ min, whereas F 1 calculated by the Fourier method in the same subjects was 64.4±13.5, indicating that APA can be effectively eliminated by the Fourier method. The F 1 values calculated by the Fourier method from the frontal and temporal regions were relatively high, and closer to the F 1 values calculated by the VM method. The size of the APA was large in these regions. It was concluded that the deformed APA contaminated the results in these regions, and could not be eliminated effectively by the Fourier method. It is suggested that the shape of the head curve and the size of APA should be carefully examined to ensure that CBF data are reliable. (author)

  15. Noninvasive risk stratification of lethal ventricular arrhythmias and sudden cardiac death after myocardial infarction

    Directory of Open Access Journals (Sweden)

    Kenji Yodogawa, MD

    2014-08-01

    Full Text Available Prediction of lethal ventricular arrhythmias leading to sudden cardiac death is one of the most important and challenging problems after myocardial infarction (MI. Identification of MI patients who are prone to ventricular tachyarrhythmias allows for an indication of implantable cardioverter-defibrillator placement. To date, noninvasive techniques such as microvolt T-wave alternans (MTWA, signal-averaged electrocardiography (SAECG, heart rate variability (HRV, and heart rate turbulence (HRT have been developed for this purpose. MTWA is an indicator of repolarization abnormality and is currently the most promising risk-stratification tool for predicting malignant ventricular arrhythmias. Similarly, late potentials detected by SAECG are indices of depolarization abnormality and are useful in risk stratification. However, the role of SAECG is limited because of its low predictive accuracy. Abnormal HRV and HRT patterns reflect autonomic disturbances, which may increase the risk of lethal ventricular arrhythmias, but the existing evidence is insufficient. Further studies of noninvasive assessment may provide a new insight into risk stratification in post-MI patients.

  16. Non-invasive ventilation after cardiac surgery outside the Intensive Care Unit.

    Science.gov (United States)

    Olper, L; Cabrini, L; Landoni, G; Rossodivita, A; Nobile, L; Monti, G; Alfieri, O; Zangrillo, A

    2011-01-01

    Non-invasive ventilation (NIV) can prevent or treat postoperative acute respiratory failure. NIV after discharge from the Intensive Care Unit (ICU) has never been described in the setting of cardiac surgery. This study enrolled 85 patients who received NIV in the main ward as treatment for respiratory failure. The patients had the following conditions: atelectasis (45 patients), pleural effusion (20 patients), pulmonary congestion (13 patients), diaphragm hemiparesis (6 patients), pneumonia (4 patients) or a combination of these conditions. Eighty-three patients were discharged from the hospital in good condition and without need for further NIV treatment, while two died in-hospital. Four of the 85 patients had an immediate NIV failure, while eight patients had delayed NIV failure. Only one patient had a NIV-related complication represented by hypotension after NIV institution. In this patient, NIV was interrupted with no consequences. Major mistakes were mask malpositioning with excessive air leaks (7 patients), incorrect preparation of the circuit (one patient), and oxygen tube disconnection (one patient). Minor mistakes (sub-optimal positioning of the face mask without excessive air leaks) were noted by the respiratory therapists for all patients and were managed by slightly modifying the mask position. In our experience, postoperative NIV is feasible, safe and effective in treating postoperative acute respiratory failure when applied in the cardiac surgical ward, preserving intensive care unit beds for surgical activity. A respiratory therapy service managed the treatment in conjunction with ward nurses, while an anesthesiologist and a cardiologist served as consultants.

  17. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.

    Science.gov (United States)

    Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish

    2016-03-01

    OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml

  18. Noninvasive pulse contour analysis for determination of cardiac output in patients with chronic heart failure.

    Science.gov (United States)

    Roth, Sebastian; Fox, Henrik; Fuchs, Uwe; Schulz, Uwe; Costard-Jäckle, Angelika; Gummert, Jan F; Horstkotte, Dieter; Oldenburg, Olaf; Bitter, Thomas

    2018-05-01

    Determination of cardiac output (CO) is essential in diagnosis and management of heart failure (HF). The gold standard to obtain CO is invasive assessment via thermodilution (TD). Noninvasive pulse contour analysis (NPCA) is supposed as a new method of CO determination. However, a validation of this method in HF is pending and performed in the present study. Patients with chronic-stable HF and reduced left ventricular ejection fraction (LVEF ≤ 45%; HF-REF) underwent right heart catheterization including TD. NPCA using the CNAP Monitor (V5.2.14, CNSystems Medizintechnik AG) was performed simultaneously. Three standardized TD measurements were compared with simultaneous auto-calibrated NPCA CO measurements. In total, 84 consecutive HF-REF patients were enrolled prospectively in this study. In 4 patients (5%), TD was not successful and for 22 patients (26%, 18 with left ventricular assist device), no NPCA signal could be obtained. For the remaining 58 patients, Bland-Altman analysis revealed a mean bias of + 1.92 L/min (limits of agreement ± 2.28 L/min, percentage error 47.4%) for CO. With decreasing cardiac index, as determined by the gold standard of TD, there was an increasing gap between CO values obtained by TD and NPCA (r = - 0.75, p TD-CI classified 52 (90%) patients to have a reduced CI (REF patients, auto-calibrated NPCA systematically overestimates CO with decrease in cardiac function. Therefore, to date, NPCA cannot be recommended in this cohort.

  19. Patient management after noninvasive cardiac imaging results from SPARC (Study of myocardial perfusion and coronary anatomy imaging roles in coronary artery disease).

    NARCIS (Netherlands)

    Hachamovitch, R.; Nutter, B.; Hlatky, M.A.; Shaw, L.J.; Ridner, M.L.; Dorbala, S.; Beanlands, R.S.; Chow, B.J.; Branscomb, E.; Chareonthaitawee, P.; Weigold, W.G.; Voros, S.; Abbara, S.; Yasuda, T.; Jacobs, J.E.; Lesser, J.; Berman, D.S.; Thomson, L.E.; Raman, S.; Heller, G.V.; Schussheim, A.; Brunken, R.; Williams, K.A.; Farkas, S.; Delbeke, D.; Schoepf, U.J.; Reichek, N.; Rabinowitz, S.; Sigman, S.R.; Patterson, R.; Corn, C.R.; White, R.; Kazerooni, E.; Corbett, J.; Bokhari, S.; Machac, J.; Guarneri, E.; Borges-Neto, S.; Millstine, J.W.; Caldwell, J.; Arrighi, J.; Hoffmann, U.; Budoff, M.; Lima, J.; Johnson, J.R.; Johnson, B.; Gaber, M.; Williams, J.A.; Foster, C.; Hainer, J.; Carli, M.F. Di

    2012-01-01

    OBJECTIVES: This study examined short-term cardiac catheterization rates and medication changes after cardiac imaging. BACKGROUND: Noninvasive cardiac imaging is widely used in coronary artery disease, but its effects on subsequent patient management are unclear. METHODS: We assessed the 90-day

  20. Noninvasive Ambient Pressure Estimation using Ultrasound Contrast Agents -- Invoking Subharmonics for Cardiac and Hepatic Applications

    Science.gov (United States)

    Dave, Jaydev K.

    Ultrasound contrast agents (UCAs) are encapsulated microbubbles that provide a source for acoustic impedance mismatch with the blood, due to difference in compressibility between the gas contained within these microbubbles and the blood. When insonified by an ultrasound beam, these UCAs act as nonlinear scatterers and enhance the echoes of the incident pulse, resulting in scattering of the incident ultrasound beam and emission of fundamental (f0), subharmonic (f0/2), harmonic (n*f0; n ∈ N) and ultraharmonic (((2n-1)/2)*f0; n ∈ N & n > 1) components in the echo response. A promising approach to monitor in vivo pressures revolves around the fact that the ultrasound transmit and receive parameters can be selected to induce an ambient pressure amplitude dependent subharmonic signal. This subharmonic signal may be used to estimate ambient pressure amplitude; such technique of estimating ambient pressure amplitude is referred to as subharmonic aided pressure estimation or SHAPE. This project develops and evaluates the feasibility of SHAPE to noninvasively monitor cardiac and hepatic pressures (using commercially available ultrasound scanners and UCAs) because invasive catheter based pressure measurements are used currently for these applications. Invasive catheter based pressure measurements pose risk of introducing infection while the catheter is guided towards the region of interest in the body through a percutaneous incision, pose risk of death due to structural or mechanical failure of the catheter (which has also triggered product recalls by the USA Food and Drug Administration) and may potentially modulate the pressures that are being measured. Also, catheterization procedures require fluoroscopic guidance to advance the catheter to the site of pressure measurements and such catheterization procedures are not performed in all clinical centers. Thus, a noninvasive technique to obtain ambient pressure values without the catheterization process is clinically

  1. Noninvasive and invasive evaluation of cardiac dysfunction in experimental diabetes in rodents

    Directory of Open Access Journals (Sweden)

    Salemi Vera

    2007-04-01

    Full Text Available Abstract Background Because cardiomyopathy is the leading cause of death in diabetic patients, the determination of myocardial function in diabetes mellitus is essential. In the present study, we provide an integrated approach, using noninvasive echocardiography and invasive hemodynamics to assess early changes in myocardial function of diabetic rats. Methods Diabetes was induced by streptozotocin injection (STZ, 50 mg/kg. After 30 days, echocardiography (noninvasive at rest and invasive left ventricular (LV cannulation at rest, during and after volume overload, were performed in diabetic (D, N = 7 and control rats (C, N = 7. The Student t test was performed to compare metabolic and echocardiographic differences between groups at 30 days. ANOVA was used to compare LV invasive measurements, followed by the Student-Newman-Keuls test. Differences were considered significant at P Results Diabetes impaired LV systolic function expressed by reduced fractional shortening, ejection fraction, and velocity of circumferential fiber shortening compared with that in the control group. The diabetic LV diastolic dysfunction was evidenced by diminished E-waves and increased A-waves and isovolumic relaxation time. The myocardial performance index was greater in diabetic compared with control rats, indicating impairment in diastolic and systolic function. The LV systolic pressure was reduced and the LV end-diastolic pressure was increased at rest in diabetic rats. The volume overload increased LVEDP in both groups, while LVEDP remained increased after volume overload only in diabetic rats. Conclusion These results suggest that STZ-diabetes induces systolic and diastolic dysfunction at rest, and reduces the capacity for cardiac adjustment to volume overload. In addition, it was also demonstrated that rodent echocardiography can be a useful, clinically relevant tool for the study of initial diabetic cardiomyopathy manifestations in asymptomatic patients.

  2. Pyrophosphate scintigraphy and other non-invasive methods in the detection of cardiac involvement in some systemic connective tissue diseases

    Energy Technology Data Exchange (ETDEWEB)

    Duska, F.; Bradna, P.; Pospisil, M.; Kubicek, J.; Vizda, J.; Kafka, P.; Palicka, V.; Mazurova, Y.

    1987-02-01

    Thirteen patients with systemic lupus erythematosus, 8 patients with polymyositis, and 6 patients with spondylitis ankylopoetica (Bechterew's disease) underwent clinical cardiologic examination and scintigraphy of the myocardium (/sup 99m/Tc-pyrophosphate), ECG, echocardiography, polygraphy, and their blood pressure was taken. The aim of the study was to ascertain how such a combination of non-invasive examinations can help in recognizing a cardiac involvement. In systemic lupus erythematosus cases one or more positive findings were revealed in 9 patients (69%), in 4 patients all examinations were negative (31%). Four patients (50%) with polymyosits had positive findings. In patients with spondylitis ankylopoetica positive findings occurred in 2 cases (33%). The study has shown that a combination of non-invasive cardiologic methods increases the probability of detecting cardiac involvement in systemic connective tissue diseases.

  3. Pyrophosphate scintigraphy and other non-invasive methods in the detection of cardiac involvement in some systemic connective tissue diseases

    Energy Technology Data Exchange (ETDEWEB)

    Duska, F; Bradna, P; Pospisil, M; Kubicek, J; Vizda, J; Kafka, P; Palicka, V; Mazurova, Y

    1987-02-01

    Thirteen patients with systemic lupus erythematosus, 8 patients with polymyositis, and 6 patients with spondylitis ankylopoetica (Bechterew's disease) underwent clinical cardiologic examination and scintigraphy of the myocardium (/sup 99m/Tc-pyrophosphate), ECG, echocardiography, polygraphy, and their blood pressure was taken. The aim of the study was to ascertain how such a combination of non-invasive examinations can help in recognizing a cardiac involvement. In systemic lupus erythematosus cases one or more positive findings were revealed in 9 patients (69%), in 4 patients all examinations were negative (31%). Four patients (50%) with polymyosits had positive findings. In patients with spondylitis ankylopoetica positive findings occurred in 2 cases (33%). The study has shown that a combination of non-invasive cardiologic methods increases the probability of detecting cardiac involvement in systemic connective tissue diseases.

  4. Noninvasive Assisted Ventilation in Pulmonary Gas Exchange Dysfunctions in Cardiac Surgical Patients

    Directory of Open Access Journals (Sweden)

    V. N. Poptsov

    2008-01-01

    Full Text Available Background. Postextubation pulmonary gas exchange dysfunctions are a potential complication in the activation of cardio-surgical patients in the early periods after surgical intervention. Objective: to evaluate the efficiency of noninvasive assisted ventilation (NIAV as a method for correcting the pulmonary gas exchange disturbances developing after early activation of cardiosurgical patients. Subjects and methods. The study included 64 patients (36 males and 28 females aged 21 to 72 (54±2 years who had been operated on under extracorporeal circulation (EC. The duration of EC and myocardial ischemia was 104±6 and 73±4 min, respectively. The indications for NIAV were the clinical manifestations of acute respiratory failure (ARF and/or PaCO2>50 mm Hg and/or PaO2/FiO2Results. During NIAV, there was improvement (p<0.05 of lung oxygenizing function (the increase in PaO2/FiO2 was 23%, a reduction in Qs/Qt from 21.1±1.9 to 13.9±1.0% (p<0.05. NIAV was accompanied by a decrease in PaCO2 (p<0.05. Hypercapnia regressed in 7 patients with isolated lung ventilatory dysfunction (PaCO2>50 mm Hg an hour after initiation of NIAV. During and after NIAV, there were reductions in right atrial pressure, mean pulmonary pressure, indexed total pulmonary vascular resistance (ITPVR (p<0.05. Prior to, during, and following NIAV, mean blood pressure, cardiac index, and indexed total pulmonary vascular resstance did not change greatly. In hypercapnia, the duration of NIAV was significantly less than that in lung oxygenizing function (2.8±0.2 hours versus 4.7±0.5 hours. That of ICU treatment was 23±4 hours. Fifty-two (81% patients were transferred from ICUs to cardiosurgical units on the following day after surgery. Conclusion. In most cases, NIAV promotes a rapid and effective correction of postextubation lung ventilatory and oxygenizing dysfunctions occurring after early activation of cardiosurgical patients. Key words: non-invasive assisted ventilation, early

  5. Myocardial blood flow quantification for evaluation of coronary artery disease by positron emission tomography, cardiac magnetic resonance imaging, and computed tomography.

    Science.gov (United States)

    Waller, Alfonso H; Blankstein, Ron; Kwong, Raymond Y; Di Carli, Marcelo F

    2014-05-01

    The noninvasive detection of the presence and functional significance of coronary artery stenosis is important in the diagnosis, risk assessment, and management of patients with known or suspected coronary artery disease. Quantitative assessment of myocardial perfusion can provide an objective and reproducible estimate of myocardial ischemia and risk prediction. Positron emission tomography, cardiac magnetic resonance, and cardiac computed tomography perfusion are modalities capable of measuring myocardial blood flow and coronary flow reserve. In this review, we will discuss the technical aspects of quantitative myocardial perfusion imaging with positron emission tomography, cardiac magnetic resonance imaging, and computed tomography, and its emerging clinical applications.

  6. Prevalence of extra-cardiac findings on studies of noninvasive coronary angiography multidetector computed tomography 64 rows

    International Nuclear Information System (INIS)

    Carrascosa, Patricia M.; Capunay, Carlos M.; Deviggiano, A.; Melendez, F.; Carrascosa, Jorge M.; Garcia, M.

    2007-01-01

    The aim of this paper is to show the importance of evaluating in a full form images obtained from a studio of noninvasive coronary angiography by multidetector computed tomography (AC-TCMD). 90 users of AC-TCMD were evaluated retrospectively conducted between October 2006 and April 2007 with a multidetector tomography of 64-rows(Phillips Medical Systems) . The images were reprocessed with a maximum field of vision and determined the presence of extra-cardiac findings, which were classified according to their impact on the management and treatment of patient at 3 degrees: low, medium and high grade. The studies were assessed jointly by a cardiologist and a radiologist qualified for cardiac and corporal evaluation. Extra-cardiac findings were identified in 58 patients. There were 38 patients with findings of low grade, 31 medium grade and 1 high grade. It was recommended to 16 patients its monitoring by images on reasonable period of time [es

  7. The Role of Heated Humidified High-flow Nasal Cannula as Noninvasive Respiratory Support in Neonates

    Directory of Open Access Journals (Sweden)

    Ke-Yun Chao

    2017-08-01

    Full Text Available Recently, heated humidified high-flow nasal cannula (HHHFNC has been introduced and applied as a noninvasive respiratory support in neonates. Although HHHFNC is widely used in neonates presenting with respiratory distress, the efficiency and safety when compared with nasal continuous positive airway pressure or noninvasive positive pressure ventilation are still controversial. This review aims to evaluate the performance and applications of HHHFNC in neonates.

  8. Cine magnetic resonance imaging for evaluation of cardiac structure and flow dynamics in congenital heart disease

    International Nuclear Information System (INIS)

    Akagi, Teiji; Kiyomatsu, Yumi; Ohara, Nobutoshi; Takagi, Junichi; Sato, Noboru; Kato, Hirohisa; Eto, Takaharu.

    1989-01-01

    Cine magnetic resonance imaging (Cine MRI) was performed in 20 patients aged 19 days to 13 years (mean 4.0 years), who had congenital heart disease confirmed at echocardiography or angiography. Prior to cine MRI, gated MRI was performed to evaluate for cardiac structure. Cine MRI was demonstrated by fast low fip angle shot imaging technique with a 30deg flip angle, 15 msec echo time, 30-40 msec pulse repetition time, and 128 x 128 acquisition matrix. Abnormalities of cardiac structure were extremely well defined in all patients by gated MRI. Intracardiac or intravascular blood flow were visualized in 17 (85%) of 20 patients by cine MRI. Left to right shunt flow through ventricular septal defect, atrial septal defect, and endocardial cushion defect were visualized with low signal intensity area. Low intensity jets flow through the site of re-coarctation of the aorta were also visualized. However, the good recording of cine MRI was not obtained because of artifacts in 3 of 20 patients (15%) who had severe congestive heart failure or respiratory arrhythmia. Gated MRI provides excellent visualization of fine structure, and cine MRI can provide high spatial resolution imaging of flow dynamic in a variety of congenital heart disease, noninvasively. (author)

  9. An Outflow Boundary Condition Model for Noninvasive Prediction of Fractional Flow Reserve in Diseased Coronary Arteries.

    Science.gov (United States)

    Fayssal, Iyad A; Moukalled, Fadl; Alam, Samir; Isma'eel, Hussain

    2018-04-01

    This paper reports on a new boundary condition formulation to model the total coronary myocardial flow and resistance characteristics of the myocardial vascular bed for any specific patient when considered for noninvasive diagnosis of ischemia. The developed boundary condition model gives an implicit representation of the downstream truncated coronary bed. Further, it is based on incorporating patient-specific physiological parameters that can be noninvasively extracted to account for blood flow demand to the myocardium at rest and hyperemic conditions. The model is coupled to a steady three-dimensional (3D) collocated pressure-based finite volume flow solver and used to characterize the "functional significance" of a patient diseased coronary artery segment without the need for predicting the hemodynamics of the entire arterial system. Predictions generated with this boundary condition provide a deep understanding of the inherent challenges behind noninvasive image-based diagnostic techniques when applied to human diseased coronary arteries. The overall numerical method and formulated boundary condition model are validated via two computational-based procedures and benchmarked with available measured data. The newly developed boundary condition is used via a designed computational methodology to (a) confirm the need for incorporating patient-specific physiological parameters when modeling the downstream coronary resistance, (b) explain the discrepancies presented in the literature between measured and computed fractional flow reserve (FFRCT), and (c) discuss the current limitations and future challenges in shifting to noninvasive assessment of ischemia.

  10. Ocular Blood Flow Measured Noninvasively in Zero Gravity

    Science.gov (United States)

    Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.

    2003-01-01

    In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal blood flow is autoregulated in a reduced-gravity environment.

  11. Noninvasive cardiac activation imaging of ventricular arrhythmias during drug-induced QT prolongation in the rabbit heart.

    Science.gov (United States)

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; Zhou, Zhaoye; He, Bin

    2013-10-01

    Imaging myocardial activation from noninvasive body surface potentials promises to aid in both cardiovascular research and clinical medicine. To investigate the ability of a noninvasive 3-dimensional cardiac electrical imaging technique for characterizing the activation patterns of dynamically changing ventricular arrhythmias during drug-induced QT prolongation in rabbits. Simultaneous body surface potential mapping and 3-dimensional intracardiac mapping were performed in a closed-chest condition in 8 rabbits. Data analysis was performed on premature ventricular complexes, couplets, and torsades de pointes (TdP) induced during intravenous administration of clofilium and phenylephrine with combinations of various infusion rates. The drug infusion led to a significant increase in the QT interval (from 175 ± 7 to 274 ± 31 ms) and rate-corrected QT interval (from 183 ± 5 to 262 ± 21 ms) during the first dose cycle. All the ectopic beats initiated by a focal activation pattern. The initial beat of TdPs arose at the focal site, whereas the subsequent beats were due to focal activity from different sites or 2 competing focal sites. The imaged results captured the dynamic shift of activation patterns and were in good correlation with the simultaneous measurements, with a correlation coefficient of 0.65 ± 0.02 averaged over 111 ectopic beats. Sites of initial activation were localized to be ~5 mm from the directly measured initiation sites. The 3-dimensional cardiac electrical imaging technique could localize the origin of activation and image activation sequence of TdP during QT prolongation induced by clofilium and phenylephrine in rabbits. It offers the potential to noninvasively investigate the proarrhythmic effects of drug infusion and assess the mechanisms of arrhythmias on a beat-to-beat basis. © 2013 Heart Rhythm Society. All rights reserved.

  12. Cardiac Abnormalities in Adult Patients With Polymyositis or Dermatomyositis as Assessed by Noninvasive Modalities

    DEFF Research Database (Denmark)

    Diederichsen, L P; Simonsen, J A; Diederichsen, A C

    2016-01-01

    age (P = 0.001), disease duration (P = 0.004), presence of myositis-specific or -associated autoantibodies (P = 0.05), and high cardiac (99m) Tc-PYP uptake (P = 0.006). In multivariate analysis of the pooled data for patients and HCs, a diagnosis of PM/DM (P .... CONCLUSION: Patients with PM or DM had an increased prevalence of cardiac abnormalities compared to HCs. LVDD was a common occurrence in PM/DM patients and correlated to disease duration. In addition, the association of LVDD with myositis-specific or -associated autoantibodies and high cardiac (99m) Tc...

  13. Noninvasive determination of myocardial blood flow, oxygen consumption and efficiency in normal humans by carbon-11 acetate positron emission tomography imaging

    International Nuclear Information System (INIS)

    Porenta, G.; Cherry, S.; Czernin, J.; Brunken, R.; Kuhle, W.; Hashimoto, T.; Schelbert, H.R.

    1999-01-01

    The aims of this study were: (1) to measure noninvasively and near simultaneously myocardial blood flow, oxygen consumption, and contractile function and (2) to analyze myocardial energy expenditure and efficiency at rest and during dobutamine stress in normal humans. Dynamic and gated carbon-11 acetate positron emission tomography (PET) imaging was performed in 11 normal subjects. The initial uptake of 11 C-acetate was measured to estimate myocardial blood flow. Oxygen consumption was derived from the monoexponential slope of the 11 C-clearance curve recorded during myocardial washout. ECG-gated systolic and diastolic images were acquired during the peak myocardial 11 C activity to measure left ventricular radius, myocardial wall thickness, and long axis length. Myocardial oxygen consumption and parameters of cardiac geometry were used to determine myocardial energetics and cardiac efficiency by tension-area area analysis. Myocardial blood flow averaged 0.8±0.06 ml min -1 g -1 at rest and 1.48±0.15 ml min -1 g -1 during dobutamine stress. Oxygen delivery and consumption were 151±13 and 88±15 μl O 2 min -1 g -1 at rest and increased to 291±31 and 216±31 μl O 2 min -1 g -1 , respectively, during pharmacological stress (P 11 C acetate imaging provides the unique capability to study noninvasively determinants of myocardial energy delivery, expenditure, and efficiency. (orig.)

  14. A pilot study of the relationship between Doppler-estimated carotid and brachial artery flow and cardiac index.

    Science.gov (United States)

    Weber, U; Glassford, N J; Eastwood, G M; Bellomo, R; Hilton, A K

    2015-10-01

    We measured carotid and brachial artery blood flow by Doppler ultrasound in 11 human volunteers, and related these to cardiac index and to each other. The median (IQR [range]) carotid arterial blood flow was 0.334 (0.223-0.381 [0.052-0.563]) l.min(-1) on the right and 0.315 (0.223-0.369 [0.061-0.690]) l.min(-1) on the left. The brachial arterial blood flow was 0.049 (0.033-0.062 [0.015-0.204]) l.min(-1) on the right and 0.039 (0.027-0.054 [0.011-0.116]) on the left. Cardiac index was 3.2 (2.8-3.5 [1.9-5.4]) l.min(-1) .m(-2) . There was a moderate to good correlation between right-and left-sided flows (brachial: ρ = 0.45; carotid: ρ = 0.567). Brachial and carotid flow had no or a negative correlation with cardiac index (right brachial: ρ = -0.145, left brachial: ρ = -0.349; right carotid: ρ = -0.376, left carotid: ρ = -0.285). In contrast to some previous studies, we found that Doppler-estimated peripheral arterial blood flows only show a weak correlation with cardiac index and cannot be used to provide non-invasive estimates of cardiac index in man. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  15. Prediction of significant conduction disease through noninvasive assessment of cardiac calcification.

    Science.gov (United States)

    Mainigi, Sumeet K; Chebrolu, Lakshmi Hima Bindu; Romero-Corral, Abel; Mehta, Vinay; Machado, Rodolfo Rozindo; Konecny, Tomas; Pressman, Gregg S

    2012-10-01

    Cardiac calcification is associated with coronary artery disease, arrhythmias, conduction disease, and adverse cardiac events. Recently, we have described an echocardiographic-based global cardiac calcification scoring system. The objective of this study was to evaluate the severity of cardiac calcification in patients with permanent pacemakers as based on this scoring system. Patients with a pacemaker implanted within the 2-year study period with a previous echocardiogram were identified and underwent blinded global cardiac calcium scoring. These patients were compared to matched control patients without a pacemaker who also underwent calcium scoring. The study group consisted of 49 patients with pacemaker implantation who were compared to 100 matched control patients. The mean calcium score in the pacemaker group was 3.3 ± 2.9 versus 1.8 ± 2.0 (P = 0.006) in the control group. Univariate and multivariate analysis revealed glomerular filtration rate and calcium scoring to be significant predictors of the presence of a pacemaker. Echocardiographic-based calcium scoring correlates with the presence of severe conduction disease requiring a pacemaker. © 2012, Wiley Periodicals, Inc.

  16. Non-invasive measurements of cardiac output in atrial fibrillation: Inert gas rebreathing and impedance cardiography

    DEFF Research Database (Denmark)

    Osbak, Philip S; Henriksen, Jens Henrik Sahl; Kofoed, Klaus F

    2011-01-01

    Abstract Background. Atrial fibrillation (AF) is associated with significant morbidity and mortality. To test the effect of interventions, knowledge of cardiac output (CO) is important. However, the irregular heart rate might cause some methods for determination of CO to have inherent weaknesses....

  17. Investigating Cardiac MRI Based Right Ventricular Contractility As A Novel Non-Invasive Metric of Pulmonary Arterial Pressure

    Science.gov (United States)

    Menon, Prahlad G; Adhypak, Srilakshmi M; Williams, Ronald B; Doyle, Mark; Biederman, Robert WW

    2014-01-01

    BACKGROUND We test the hypothesis that cardiac magnetic resonance (CMR) imaging-based indices of four-dimensional (4D) (three dimensions (3D) + time) right ventricle (RV) function have predictive values in ascertaining invasive pulmonary arterial systolic pressure (PASP) measurements from right heart catheterization (RHC) in patients with pulmonary arterial hypertension (PAH). METHODS We studied five patients with idiopathic PAH and two age and sex-matched controls for RV function using a novel contractility index (CI) for amplitude and phase to peak contraction established from analysis of regional shape variation in the RV endocardium over 20 cardiac phases, segmented from CMR images in multiple orientations. RESULTS The amplitude of RV contractility correlated inversely with RV ejection fraction (RVEF; R2 = 0.64, P = 0.03) and PASP (R2 = 0.71, P = 0.02). Phase of peak RV contractility also correlated inversely to RVEF (R2 = 0.499, P = 0.12) and PASP (R2 = 0.66, P = 0.04). CONCLUSIONS RV contractility analyzed from CMR offers promising non-invasive metrics for classification of PAH, which are congruent with invasive pressure measurements. PMID:25624777

  18. Noninvasive measurements of cardiac high-energy phosphate metabolites in dilated cardiomyopathy by using 31P spectroscopic chemical shift imaging

    International Nuclear Information System (INIS)

    Hansch, A.; Rzanny, R.; Heyne, J.-P.; Reichenbach, J.R.; Kaiser, W.A.; Leder, U.

    2005-01-01

    Dilated cardiomyopathy (DCM) is accompanied by an impaired cardiac energy metabolism. The aim of this study was to investigate metabolic ratios in patients with DCM compared to controls by using spectroscopic two-dimensional chemical shift imaging (2D-CSI). Twenty volunteers and 15 patients with severe symptoms (left ventricular ejection fraction, LVEF 30%) of DCM were investigated. Cardiac 31 P MR 2D-CSI measurements (voxel size: 40 x 40 x 100 mm 3 ) were performed with a 1.5 T whole-body scanner. Measurement time ranged from 15 min to 30 min. Peak areas and ratios of different metabolites were evaluated, including high-energy phosphates (PCr, ATP), 2,3-diphosphoglycerate (2,3-DPG) and phosphodiesters (PDE). In addition, we evaluated how PCr/ATP ratios correlate with LVEF as an established prognostic factor of heart failure. The PCr/γ-ATP ratio was significantly decreased in patients with moderate and severe DCM and showed a linear correlation with reduced LVEFs. PDE/ATP ratios were significantly increased only in patients with severe DCM as compared to volunteers. Applying 31 P MRS with commonly-available 2D-CSI sequences is a valuable technique to evaluate DCM by determining PCr/ATP ratios noninvasively. In addition to reduced PCr/ATP ratios observed in patients suffering from DCM, significantly-increased PDE/ATP ratios were found in patients with severe DCM. (orig.)

  19. Transthoracic Doppler echocardiography – noninvasive diagnostic window for coronary flow reserve assessment

    Directory of Open Access Journals (Sweden)

    Dimitrow Paweł

    2003-04-01

    Full Text Available Abstract This review focuses on transthoracic Doppler echocardiography as noninvasive method used to assess coronary flow reserve (CFR in a wide spectrum of clinical settings. Transthoracic Doppler echocardiography is rapidly gaining appreciation as popular tool to measure CFR both in stenosed and normal epicardial coronary arteries (predominantly in left anterior descending coronary artery. Post-stenotic CFR measurement is helpful in: functional assessment of moderate stenosis, detection of significant or critical stenosis, monitoring of restenosis after revascularization. In the absence of stenosis in the epicardial coronary artery, decreased CFR enable to detect impaired microvascular vasodilatation in: reperfused myocardial infarct, arterial hypertension with or without left ventricular hypertrophy, diabetes mellitus, hypercholesterolemia, syndrome X, hypertrophic cardiomyopathy. In these diseases, noninvasive transthoracic Doppler echocardiography allows for serial CFR evaluations to explore the effect of various pharmacological therapies.

  20. Cardiac output and regional blood flow following trauma

    International Nuclear Information System (INIS)

    Malik, A.B.; Loegering, D.J.; Saba, T.M.; Kaplan, J.E.

    1978-01-01

    The changes in cardiac output (2), regional blood blow (2r) and regional vascular resistance, and arterial pressure were studied in rats subjected to moderate (LD0) or severe (LD50) traumatic shock. 2 and 2r were determined using microspheres at 15, 60 and 180 min posttrauma. Arterial pressure decreased in both groups at 15 min and recovered by 3 h after sublethal (LD0) trauma, while arterial pressure did not return to control levels after LD50 trauma. 2 decreased in both groups at 15 min and returned to control only in the LD0 trauma group by 3 h. Cerebral, coronary, and hepatic arterial flows and resistances were maintained in both groups. Renal, intestinal, and splenic flows decreased and resistances were maintained in both groups. Renal, intestinal, and splenic flows decreased and resistances increased in both groups by 15 min and returned to control levels by 3 h only in the LD0 trauma group. Total hepatic and hepatic portal flows decreased at 60 min and returned to control levels at 3 h after LD0 trauma, while there was significant depression in these parameters 3 h after LD50 trauma. Therefore, sublethal and severe trauma resulted in early redistribution of flow favoring the coronary, cerebral, and hepatic arterial beds. However, renal, intestinal, splenic, and portal flows remained depressed only in severely traumatized rats, suggesting that continued hypofusion is a factor in the multiple organ failure and death following severe traumatic injury

  1. The New Frontier of Cardiac Computed Tomography Angiography: Fractional Flow Reserve and Stress Myocardial Perfusion.

    Science.gov (United States)

    Pontone, Gianluca; Muscogiuri, Giuseppe; Andreini, Daniele; Guaricci, Andrea I; Guglielmo, Marco; Mushtaq, Saima; Baggiano, Andrea; Conte, Edoardo; Beltrama, Virginia; Annoni, Andrea; Formenti, Alberto; Mancini, Elisabetta; Rabbat, Mark G; Pepi, Mauro

    2016-12-01

    The increased number of patients with coronary artery disease (CAD) in developed countries is of great clinical relevance and involves a large burden of the healthcare system. The management of these patients is focused on relieving symptoms and improving clinical outcomes. Therefore the ideal test would provide the correct diagnosis and actionable information. To this aim, several non-invasive functional imaging modalities are usually used as gatekeeper to invasive coronary angiography (ICA), but their diagnostic yield remains low with limited accuracy when compared to obstructive CAD at the time of ICA or invasive fractional flow reserve (FFR). Invasive FFR is considered the gold standard for the evaluation of functionally relevant CAD. Therefore, an urgent need for non-invasive techniques that evaluate both the functional and morphological severity of CAD is growing. Coronary computed tomography angiography (CCTA) has emerged as a unique non-invasive technique providing coronary artery anatomic imaging. More recently, the evaluation of FFR with CCTA (FFR CT ) has demonstrated high diagnostic performance compared to invasive FFR. Additionally, stress myocardial computed tomography perfusion (CTP) represents a novel tool for the diagnosis of ischemia with high diagnostic accuracy. Compared to nuclear imaging and cardiac magnetic resonance imaging, both FFR CT and stress-CTP, allow us to integrate the anatomical evaluation of coronary arteries with the functional relevance of coronary artery lesions having the potential to revolutionize the diagnostic paradigm of suspected CAD. FFR CT and stress-CTP could be assimilated in diagnostic pathways of patients with stable CAD and will likely result in a decrease of invasive diagnostic procedures and costs. The current review evaluates the technical aspects and clinical experience of FFR CT and stress-CTP in the evaluation of functionally relevant CAD discussing the strengths and weaknesses of each approach.

  2. 5th German cardiodiagnostic meeting 2013 with the 6th Leipzig Symposium on non-invasive cardiovascular imaging. Challenges and limit of the non-invasive cardiac imaging; 5. Deutsche Kardiodiagnostik-Tage 2013 mit 6. Leipziger Symposium Nichtinvasive Kardiovaskulaere Bildgebung. Herausforderungen und Grenzen der nicht-invasiven kardialen Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-01

    The proceedings on the German cardiodiagnostic meeting 2013 together with the 6th Leipzig Symposium on non-invasive cardiovascular imaging include abstracts concerning the following topics: Imaging in the rhythmology; adults with congenital cardiac defects; cardiac myopathies - myocarditis; cardiac valves (before and after transcutaneous valve replacement); coronary heart diseases; technical developments.

  3. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept.

    Science.gov (United States)

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi; Chowienczyk, Phil

    2015-09-01

    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the

  4. High-flow nasal cannula: transient fashion or new method of non-invasive ventilatory assistance?

    Science.gov (United States)

    Mosca, F; Colnaghi, M; Agosti, M; Fumagalli, M

    2012-10-01

    Respiratory failure in the premature infants remains a difficult challenge. An alternative to the use of nasal continuous positive airway pressure (NCPAP) as a non-invasive modality to support respiratory distress in premature infants has been the recent introduction of high flow nasal cannula (HFNC) devices in many neonatal units. There has been increased use of HFNC presumably because of anecdotal reports and experience that it is easy to use, and well tolerated by the infants, while experiencing decreased nasal septumerosion. The paucity of evidence regarding its efficacy and safety, would support a caution approach to the use of HFNC. Particular concern has focused on the imprecise regulation and generation of pressure that may occur at higher flows especially in the smallest of infants.

  5. NONINVASIVE MEASUREMENT OF INTRARENAL BLOOD-FLOW DISTRIBUTION - KINETIC-MODEL OF RENAL I-123 HIPPURAN HANDLING

    NARCIS (Netherlands)

    JANSSEN, WMT; BEEKHUIS, H; DEBRUIN, R; DEJONG, PE; DEZEEUW, D

    1995-01-01

    A new technique for noninvasive measurement of intrarenal blood flow distribution over cortex and medulla is proposed. The tech nique involves analysis of I-123-labeled hippuran renography, according to a kinetic model that describes the flow of I-123- hippuran from the heart (input) through the

  6. [Non-invasive evaluation of the cardiac autonomic nervous system by PET

    International Nuclear Information System (INIS)

    1992-01-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data

  7. Non-Invasive Mapping of Intraventricular Flow Patterns in Patients Treated with Left Ventricular Assist Devices

    Science.gov (United States)

    Miramontes, Marissa; Rossini, Lorenzo; Braun, Oscar; Brambatti, Michela; Almeida, Shone; Mizeracki, Adam; Martinez-Legazpi, Pablo; Benito, Yolanda; Bermejo, Javier; Kahn, Andrew; Adler, Eric; Del Álamo, Juan C.

    2017-11-01

    In heart failure patients, left ventricular (LV) assist devices (LVADs) decrease mortality and improve quality of life. We hypothesize echo color Doppler velocimetry (echo-CDV), an echocardiographic flow mapping modality, can non-invasively characterize the effect of LVAD support, optimize the device, thereby decreasing the stoke rate present in these patients. We used echo-CDV to image LV flow at baseline LVAD speed and during a ramp test in LVAD patients (Heartmate II, N =10). We tracked diastolic vortices and mapped blood stasis and cumulative shear. Compared to dilated cardiomyopathy (DCM) patients without LVADs, the flow had a less prominent diastolic vortex ring, and transited directly from mitral valve to cannula. Residence time and shear were significantly lower compared to healthy controls and DCMs. Aortic regurgitation and a large LV vortex presence or a direct mitral jet towards the cannula affected blood stasis region location and size. Flow patterns, residence time and shear depended on LV geometry, valve function and LVAD speed in a patient specific manner. This new methodology could be used with standard echo, hemodynamics and clinical information to find the flow optimizing LAVD setting minimizing stasis for each patient.

  8. Impact of Cardiac Contractility during Cerebral Blood Flow in Ischemia

    Directory of Open Access Journals (Sweden)

    Silver, Brian

    2011-05-01

    Full Text Available Objective: In cerebral regions affected by ischemia, intrinsic vascular autoregulation is often lost. Blood flow delivery depends upon cardiac function and may be influenced by neuro-endocrine mediated myocardial suppression. Our objective is to evaluate the relation between ejection fraction (EF and transcranial doppler (TCD peak systolic velocities (PSV in patients with cerebral ischemic events.Methods: We conducted a retrospective cohort study from an existing TCD registry. We evaluated patients admitted within 24 hours of onset of a focal neurological deficit who had an echocardiogram and TCD performed within 72 hours of admission.Results: We identified 58 patients from March to October 2003. Eighty-one percent (n=47 had a hospital discharge diagnosis of ischemic stroke and 18.9% (n=11 had a diagnosis of transient ischemic attack. Fourteen patients had systolic dysfunction (EF50% compared to those with systolic dysfunction (EF<50% was as follows: middle cerebral artery 62.0 + 28.6 cm/s vs. 51.0 + 23.3 cm/s, p=0.11; anterior cerebral artery 52.1 + 21.6 cm/s vs. 45.9 + 22.7 cm/s, p=0.28; internal carotid artery 56.5 + 20.1 cm/s vs. 46.4 + 18.4 cm/s, p=0.04; ophthalmic artery 18.6 + 7.2 cm/s vs. 15.3 + 5.2 cm/s, p=0.11; vertebral artery 34.0 + 13.9 cm/s vs. 31.6 + 15.0 cm/s, p=0.44.Conclusion: Cerebral blood flow in the internal carotid artery territory appears to be higher in cerebral ischemia patients with preserved left ventricular contractility. Our study was unable to differentiate pre-existing cardiac dysfunction from neuro-endocrine mediated myocardial stunning. Future research is necessary to better understand heart-brain interactions in this setting and to further explore the underlying mechanisms and consequences of neuro-endocrine mediated cardiac dysfunction. [West J Emerg Med. 2011;12(2:227-232.

  9. Relationship between cardiac function and resting cerebral blood flow: MRI measurements in healthy elderly subjects.

    Science.gov (United States)

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja; Larsson, Henrik B W; Rostrup, Egill

    2014-11-01

    Although both impaired cardiac function and reduced cerebral blood flow are associated with ageing, current knowledge of the influence of cardiac function on resting cerebral blood flow (CBF) is limited. The aim of this study was to investigate the potential effects of cardiac function on CBF. CBF and cardiac output were measured in 31 healthy subjects 50-75 years old using magnetic resonance imaging techniques. Mean values of CBF, cardiac output and cardiac index were 43.6 ml per 100 g min(-1), 5.5 l min(-1) and 2.7 l min(-1) m(-2), respectively, in males, and 53.4 ml per 100 g min(-1), 4.3 l min(-1) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P = 0.008) and furthermore lower in males than in females (8.6% versus 12.5%, P = 0.003). Fractional brain flow was also inversely correlated with cerebral white matter lesion grade, although this effect was not significant when adjusted for age. Frequency analysis of heart rate variability showed a gender-related inverse association of increased low-to-high-frequency power ratio with CBF and fractional brain flow. The findings do not support a direct effect of cardiac function on CBF, but demonstrates gender-related differences in cardiac output distribution. We propose fractional brain flow as a novel index that may be a useful marker of adequate brain perfusion in the context of ageing as well as cardiovascular disease. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  10. Noninvasive assessment of left atrial maximum dP/dt by a combination of transmitral and pulmonary venous flow.

    Science.gov (United States)

    Nakatani, S; Garcia, M J; Firstenberg, M S; Rodriguez, L; Grimm, R A; Greenberg, N L; McCarthy, P M; Vandervoort, P M; Thomas, J D

    1999-09-01

    The study assessed whether hemodynamic parameters of left atrial (LA) systolic function could be estimated noninvasively using Doppler echocardiography. Left atrial systolic function is an important aspect of cardiac function. Doppler echocardiography can measure changes in LA volume, but has not been shown to relate to hemodynamic parameters such as the maximal value of the first derivative of the pressure (LA dP/dt(max)). Eighteen patients in sinus rhythm were studied immediately before and after open heart surgery using simultaneous LA pressure measurements and intraoperative transesophageal echocardiography. Left atrial pressure was measured with a micromanometer catheter, and LA dP/dt(max) during atrial contraction was obtained. Transmitral and pulmonary venous flow were recorded by pulsed Doppler echocardiography. Peak velocity, and mean acceleration and deceleration, and the time-velocity integral of each flow during atrial contraction was measured. The initial eight patients served as the study group to derive a multilinear regression equation to estimate LA dP/dt(max) from Doppler parameters, and the latter 10 patients served as the test group to validate the equation. A previously validated numeric model was used to confirm these results. In the study group, LA dP/dt(max) showed a linear relation with LA pressure before atrial contraction (r = 0.80, p LA. Among transmitral flow parameters, mean acceleration showed the strongest correlation with LA dP/dt(max) (r = 0.78, p LA dP/dt(max) with an r2 > 0.30. By stepwise and multiple linear regression analysis, LA dP/dt(max) was best described as follows: LA dP/dt(max) = 0.1 M-AC +/- 1.8 P-V - 4.1; r = 0.88, p LA dP/dt(max) correlated well (r = 0.90, p LA dP/dt(max) predicted by the above equation with r = 0.94. A combination of transmitral and pulmonary venous flow parameters can provide a hemodynamic assessment of LA systolic function.

  11. Noninvasive diffuse optical monitoring of head and neck tumor blood flow and oxygenation during radiation delivery

    Science.gov (United States)

    Dong, Lixin; Kudrimoti, Mahesh; Cheng, Ran; Shang, Yu; Johnson, Ellis L.; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang

    2012-01-01

    This study explored using a novel diffuse correlation spectroscopy (DCS) flow-oximeter to noninvasively monitor blood flow and oxygenation changes in head and neck tumors during radiation delivery. A fiber-optic probe connected to the DCS flow-oximeter was placed on the surface of the radiologically/clinically involved cervical lymph node. The DCS flow-oximeter in the treatment room was remotely operated by a computer in the control room. From the early measurements, abnormal signals were observed when the optical device was placed in close proximity to the radiation beams. Through phantom tests, the artifacts were shown to be caused by scattered x rays and consequentially avoided by moving the optical device away from the x-ray beams. Eleven patients with head and neck tumors were continually measured once a week over a treatment period of seven weeks, although there were some missing data due to the patient related events. Large inter-patient variations in tumor hemodynamic responses were observed during radiation delivery. A significant increase in tumor blood flow was observed at the first week of treatment, which may be a physiologic response to hypoxia created by radiation oxygen consumption. Only small and insignificant changes were found in tumor blood oxygenation, suggesting that oxygen utilizations in tumors during the short period of fractional radiation deliveries were either minimal or balanced by other effects such as blood flow regulation. Further investigations in a large patient population are needed to correlate the individual hemodynamic responses with the clinical outcomes for determining the prognostic value of optical measurements. PMID:22312579

  12. Does obesity affect the non-invasive measurement of cardiac output performed by electrical cardiometry in children and adolescents?

    Science.gov (United States)

    Altamirano-Diaz, Luis; Welisch, Eva; Rauch, Ralf; Miller, Michael; Park, Teresa Sohee; Norozi, Kambiz

    2018-02-01

    Electrical cardiometry (EC) is a non-invasive and inexpensive method for hemodynamic assessment and monitoring. However, its feasibility for widespread clinical use, especially for the obese population, has yet to be determined. In this study, we evaluated the agreement and reliability of EC compared to transthoracic Doppler echocardiography (TTE) in normal, overweight, and obese children and adolescents. We measured stroke volume (SV) and cardiac output (CO) of 131 participants using EC and TTE simultaneously. We further divided these participants according to BMI percentiles for subanalyses: 95% obese (n = 83). Due to small sample size of the overweight group, we combined overweight and obese groups (OW+OB) with no significant change in results (SV and CO) before and after combining groups. There were strong correlations between EC and TTE measurements of SV (r = 0.869 and r = 0.846; p < 0.0001) and CO (r = 0.831 and r = 0.815; p < 0.0001) in normal and OW+OB groups, respectively. Bias and percentage error for CO measurements were 0.240 and 29.7%, and 0.042 and 29.5% in the normal and OW+OB groups, respectively. Indexed values for SV were lower in the OW+OB group than in the normal weight group when measured by EC (p < 0.0001) but no differences were seen when measured by TTE (p = 0.096). In all weight groups, there were strong correlations and good agreement between EC and TTE. However, EC may underestimate hemodynamic measurements in obese participants due to fat tissue.

  13. Pulse Oximetry: A Non-Invasive, Novel Marker for the Quality of Chest Compressions in Porcine Models of Cardiac Arrest.

    Directory of Open Access Journals (Sweden)

    Jun Xu

    Full Text Available Pulse oximetry, which noninvasively detects the blood flow of peripheral tissue, has achieved widespread clinical use. We have noticed that the better the quality of cardiopulmonary resuscitation (CPR, the better the appearance of pulse oximetry plethysmographic waveform (POP. We investigated whether the area under the curve (AUC and/or the amplitude (Amp of POP could be used to monitor the quality of CPR.Prospective, randomized controlled study.Animal experimental center in Peking Union Medical Collage Hospital, Beijing, China.Healthy 3-month-old male domestic swine.34 local pigs were enrolled in this study. After 4 minutes of untreated ventricular fibrillation, animals were randomly assigned into two resuscitation groups: a "low quality" group (with a compression depth of 3cm and a "high quality" group (with a depth of 5cm. All treatments between the two groups were identical except for the depth of chest compressions. Hemodynamic parameters [coronary perfusion pressure (CPP, partial pressure of end-tidal carbon dioxide (PETCO2] as well as AUC and Amp of POP were all collected and analyzed.There were statistical differences between the "high quality" group and the "low quality" group in AUC, Amp, CPP and PETCO2 during CPR (P<0.05. AUC, Amp and CPP were positively correlated with PETCO2, respectively (P<0.01. There was no statistical difference between the heart rate calculated according to the POP (FCPR and the frequency of mechanical CPR at the 3rd minute of CPR. The FCPR was lower than the frequency of mechanical CPR at the 6th and the 9th minute of CPR.Both the AUC and Amp of POP correlated well with CPP and PETCO2 in animal models. The frequency of POP closely matched the CPR heart rate. AUC and Amp of POP might be potential noninvasive quality monitoring markers for CPR.

  14. Primary flow and temperature measurements in PWRS using non-invasive techniques

    International Nuclear Information System (INIS)

    Favennec, J.M.; Jossinet, G.; Thomas, P.

    1995-08-01

    PWR primary flow and temperature measurements are classically done with either indirect or invasive techniques. EDF has developed and installed non-invasive innovative techniques on an industrial nuclear power plant (Chooz N1 type PWR). Primary flow-rate is determined by measurement of velocity of primary water in the hot leg: the time fluctuation of γ-ray activity from Nitrogen-16 (produced by neutron activation of 016) is measured outside of the pipe by two specially-designed detectors. The signals from both detectors are then cross-correlated to determine the transit time of primary water between the two detectors; primary flow-rate is then deduced Primary temperature is determined by measurement of sound velocity in hot and cold leg: two pairs of ultrasonic transducers, installed on pipe outer wall, emit pulses periodically, for which the time of flight along the two pipes diameters are determined. The sound velocity thus computed (diameter over time of flight) is then converted into temperature, by use of a calibration formula relating sound velocity to temperature and pressure. This paper addresses metrological and technical aspects of the methods. Experience feedback on industrial PWRs is also presented. (author). 4 refs., 13 figs

  15. Low cerebral blood flow after cardiac arrest is not associated with anaerobic cerebral metabolism

    NARCIS (Netherlands)

    Hoedemaekers, C.W.E.; Ainslie, Philip N.; Hinssen, S.; Aries, M.J.; Bisschops, Laurens L.; Hofmeijer, Jeannette; van der Hoeven, J.G.

    2017-01-01

    Aim of the study Estimation of cerebral anaerobic metabolism in survivors and non-survivors after cardiac arrest. Methods We performed an observational study in twenty comatose patients after cardiac arrest and 19 healthy control subjects. We measured mean flow velocity in the middle cerebral artery

  16. Noninvasive estimation of pulmonary arterial pressure by analysis of pulmonary blood-flow distribution

    International Nuclear Information System (INIS)

    Konstam, M.A.; Strauss, H.W.; Alpert, N.M.; Miller, S.W.; Murphy, R.X.; Greene, R.E.; McKusick, K.A.

    1979-01-01

    To determine whether a correlation exists between pulmonary arterial (PA) pressure (P/sub a/) and the distribution of pulmonary blood flow, this distribution was measured in four upright dogs in the control state and during intravenous infusions of epinephrine or prostaglandin F/sub 2α/. During suspension of respiration, 15 mCi of Xe-133 were injected intravenously, and perfusion and equilibration lung images were recorded with a scintillation camera. The procedure was performed several times on each dog, with and without pharmacological elevation of PA pressure by 5 to 50 cm H 2 O. For each scintigram, the relative blood flow per unit ventilated lung volume (F) was plotted against centimeters above the hilum (h). Pulmonary arterial pressure was derived from each curve, assuming the relation F = B(P/sub a/ - hD) 2 , where B = constant and D = specific gravity of blood. Calculated PA pressure correlated strongly (r = 0.83) with measured PA pressure, suggesting a possible means of noninvasive estimation of PA pressure

  17. NONINVASIVE METHODS ASSESSMENT BLOOD FLOW IN ANTERIOR SEGMENT AND CLINICAL APPLICATION PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    T. N. Kiseleva

    2017-01-01

    Full Text Available The literature review contains information on the anatomical and physiological features of the vessels of the conjunctiva, iris, ciliary body. There are data on the development and application of new non-invasive methods for the study of hemodynamics in the microvessels of anterior eye segment. To study the blood flow of the anterior segment of the eye, biomycroscopy, photography and videobiomicroscopy, television biomicroscopy of vessels, darkfield visualization, application fluorescence angiography, photoacoustic angiography, orthogonal polarization spectroscopy, laser Doppler flowmetry and OCT-angiography were used in recent years. These methods allow to determine the qualitative and quantitative characteristics of conjunctiva, iris, ciliary body microcirculation. They are highly informative for assess of various drugs effect on the vascular eye system. Investigation of hemodynamics in the eye microvessels is necessary for a fundamental approach to the study of the pathophysiology of systemic circulatory pathologies (with arterial hypertension, diabetes, etc. and changes in regional blood flow in organ of vision disease. Monitoring of anterior segment microcirculation in clinical practice makes possible to monitor the effectiveness of drug and surgical treatment.

  18. Non-invasive Drosophila ECG recording by using eutectic gallium-indium alloy electrode: a feasible tool for future research on the molecular mechanisms involved in cardiac arrhythmia.

    Directory of Open Access Journals (Sweden)

    Po-Hung Kuo

    Full Text Available BACKGROUND: Drosophila heart tube is a feasible model for cardiac physiological research. However, obtaining Drosophila electrocardiograms (ECGs is difficult, due to the weak signals and limited contact area to apply electrodes. This paper presents a non-invasive Gallium-Indium (GaIn based recording system for Drosophila ECG measurement, providing the heart rate and heartbeat features to be observed. This novel, high-signal-quality system prolongs the recording time of insect ECGs, and provides a feasible platform for research on the molecular mechanisms involved in cardiovascular diseases. METHODS: In this study, two types of electrode, tungsten needle probes and GaIn electrodes, were used respectively to noiselessly conduct invasive and noninvasive ECG recordings of Drosophila. To further analyze electrode properties, circuit models were established and simulated. By using electromagnetic shielded heart signal acquiring system, consisted of analog amplification and digital filtering, the ECG signals of three phenotypes that have different heart functions were recorded without dissection. RESULTS AND DISCUSSION: The ECG waveforms of different phenotypes of Drosophila recorded invasively and repeatedly with n value (n>5 performed obvious difference in heart rate. In long period ECG recordings, non-invasive method implemented by GaIn electrodes acts relatively stable in both amplitude and period. To analyze GaIn electrode, the correctness of GaIn electrode model established by this paper was validated, presenting accuracy, stability, and reliability. CONCLUSIONS: Noninvasive ECG recording by GaIn electrodes was presented for recording Drosophila pupae ECG signals within a limited contact area and signal strength. Thus, the observation of ECG changes in normal and SERCA-depleted Drosophila over an extended period is feasible. This method prolongs insect survival time while conserving major ECG features, and provides a platform for

  19. Noninvasive measurement of renal blood flow by magnetic resonance imaging in rats.

    Science.gov (United States)

    Romero, Cesar A; Cabral, Glauber; Knight, Robert A; Ding, Guangliang; Peterson, Edward L; Carretero, Oscar A

    2018-01-01

    Renal blood flow (RBF) provides important information regarding renal physiology and nephropathies. Arterial spin labeling-magnetic resonance imaging (ASL-MRI) is a noninvasive method of measuring blood flow without exogenous contrast media. However, low signal-to-noise ratio and respiratory motion artifacts are challenges for RBF measurements in small animals. Our objective was to evaluate the feasibility and reproducibility of RBF measurements by ASL-MRI using respiratory-gating and navigator correction methods to reduce motion artifacts. ASL-MRI images were obtained from the kidneys of Sprague-Dawley (SD) rats on a 7-Tesla Varian MRI system with a spin-echo imaging sequence. After 4 days, the study was repeated to evaluate its reproducibility. RBF was also measured in animals under unilateral nephrectomy and in renal artery stenosis (RST) to evaluate the sensitivity in high and low RBF models, respectively. RBF was also evaluated in Dahl salt-sensitive (SS) rats and spontaneous hypertensive rats (SHR). In SD rats, the cortical RBFs (cRBF) were 305 ± 59 and 271.8 ± 39 ml·min -1 ·100 g tissue -1 in the right and left kidneys, respectively. Retest analysis revealed no differences ( P = 0.2). The test-retest reliability coefficient was 92 ± 5%. The cRBFs before and after the nephrectomy were 296.8 ± 30 and 428.2 ± 45 ml·min -1 ·100 g tissue -1 ( P = 0.02), respectively. The kidneys with RST exhibited a cRBF decrease compared with sham animals (86 ± 17.6 vs. 198 ± 33.7 ml·min -1 ·100 g tissue -1 ; P < 0.01). The cRBFs in SD, Dahl-SS, and SHR rats were not different ( P = 0.35). We conclude that ASL-MRI performed with navigator correction and respiratory gating is a feasible and reliable noninvasive method for measuring RBF in rats.

  20. Fractional flow reserve derived from coronary CT angiography in stable coronary disease: a new standard in non-invasive testing?

    International Nuclear Information System (INIS)

    Noergaard, B.L.; Jensen, J.M.; Leipsic, J.

    2015-01-01

    Fractional flow reserve (FFR) measured during invasive coronary angiography is the gold standard for lesion-specific decisions on coronary revascularization in patients with stable coronary artery disease (CAD). Current guidelines recommend non-invasive functional or anatomic testing as a gatekeeper to the catheterization laboratory. However, the ''holy grail'' in non-invasive testing of CAD is to establish a single test that quantifies both coronary lesion severity and the associated ischemia. Most evidence to date of such a test is based on the addition of computational analysis of FFR to the anatomic information obtained from standard-acquired coronary CTA data sets at rest (FFR CT ). This review summarizes the clinical evidence for the use of FFR CT in stable CAD in context to the diagnostic performance of other non-invasive testing modalities. (orig.)

  1. Effect of adjuvant noninvasive positive pressure ventilation on blood gas parameters, cardiac function and inflammatory state in patients with COPD and type II respiratory failure

    Directory of Open Access Journals (Sweden)

    You-Ming Zhu1

    2017-03-01

    Full Text Available Objective: T o analyze the effect of adjuvant noninvasive positive pressure ventilation on blood gas parameters, cardiac function and inflammatory state in patients with chronic obstructive pulmonary disease (COPD and type II respiratory failure. Methods: 90 patients with COPD and type II respiratory failure were randomly divided into observation group and control group (n=45. Control group received conventional therapy, observation group received conventional therapy + adjuvant noninvasive positive pressure ventilation, and differences in blood gas parameters, cardiac function, inflammatory state, etc., were compared between two groups of patients 2 weeks after treatment. Results: Arterial blood gas parameters pH and alveolar-arterial partial pressure of oxygen [P(A-aO2] levels of observation group were higher than those of control group while, potassium ion (K+, chloride ion (Cl﹣ and carbon dioxide combining power (CO2CP levels were lower than those of control group 2 weeks after treatment; echocardiography parameters Doppler-derived tricuspid lateral annular systolic velocity (DTIS and pulmonary arterial velocity (PAV levels were lower than those of control group (P<0.05 while pulmonary artery accelerating time (PAACT, left ventricular enddiastolic dimension (LVDd and right atrioventricular tricuspid annular plane systolic excursion (TAPSE levels were higher than those of control group (P<0.05; serum cardiac function indexes adiponectin (APN, Copeptin, N-terminal pro-B-type natriuretic peptide (NT-proBNP, cystatin C (CysC, growth differentiation factor-15 (GDF-15 and heart type fatty acid binding protein (H-FABP content were lower than those of control group (P<0.05; serum inflammatory factors hypersensitive C-reactive protein (hs-CRP, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, IL-8, IL-10, and transforming growth factor-β1 (TGF-β1 content were lower than those of control group (P<0.05. Conclusions: Adjuvant

  2. Effect of long-term non-invasive ventilation on quality of life and cardiac function of children's neuromuscular disorders with chronic respiratory failure: a clinical trial

    Directory of Open Access Journals (Sweden)

    Saeed Sadr

    2018-04-01

    Full Text Available Background: Use of long-term non-invasive positive pressure ventilation is increasing greatly worldwide in children with chronic respiratory failure (CRF of all ages. This treatment requires delivery of ventilation through a non-invasive interface. Cardiac function in majority of these children is impaired. The aim of this study was to assess the effect of institution of non-invasive ventilation (NIV on quality of life (QOL and cardiac function in children with CRF related to neuromuscular disorders. Methods: Information obtained from all of the children under 16 years old with CRF due to neuromuscular disorders who were on NIV for at least six months and that were referred to Mofid children's hospital, Tehran, Iran between September 1, 2013, to September 1, 2017.Based on previous studies they were assessed from the year prior to starting NIV and annually thereafter. Data obtained included diagnosis, pulmonary function test, echocardiographic data, length of hospitalizations, and health care costs. Patients and parents completed questionnaires assessing QOL with NIV and recalling QOL one year before commencing NIV. All results were recorded in information forms and data were analyzed with chi square and entered in SPSS 21. Results: Follow-up ranged from 6 to 36 months (median 18. Before and after NIV hospitalization rates (P<0.001, PICU admission (P<0.001 and health care costs decreased respectively. QOL remained stable after NIV despite disease progression (P<0.001. Systolic pulmonary arterial pressure (P=0.009 is diminished. Symptoms of daytime sleepiness (P<0.001 and headache (P<0.001 improved after initiation of NIV. Conclusions: This study revealed that use of NIV results in a reduction in PAH without adverse effects on quality of life and pulmonary function.

  3. Noninvasive detection of cardiac repair after acute myocardial infarction in rats by 111In fab fragment of monoclonal antibody specific for tenascin-C

    International Nuclear Information System (INIS)

    Okada, Kenichi; Uehara, Tomoya; Arano, Yasushi

    2008-01-01

    Left ventricular (LV) remodeling after acute myocardial infarction (MI) causes heart failure, and thus it is important to evaluate cardiac repair as the early stage of LV remodeling. Tenascin-C (TNC), an extracellular matrix glycoprotein, is transiently and abundantly expressed in the heart during the early stage of tissue remodeling after MI. However, it is not expressed in healthy adult heart. This study was undertaken to develop a new noninvasive diagnostic technique to detect cardiac repair after acute MI using 111 In Fab fragment of a monoclonal antibody specific for TNC. 111 In-anti-TNC-Fab was injected intravenously in 13 rats at 1 (D1, n=3), 3 (D3, n=5), and 5 (D5, n=5) days after producing MI and in 5 sham-operated rats (S). We performed autoradiography and dual-isotope single-photon emission computed tomography imaging (SPECT) of 111 In-anti-TNC-Fab and 99m Tc methoxyisobutyl isonitrile (MIBI). The radioactivity in the heart was significantly higher in D (D1, 0.45±0.06% injected-dose/g; D3, 0.64±0.12; D5, 0.38±0.07) than S (0.27±0.06, P 111 In-anti-TNC-Fab, which was complementary to the perfusion image. The results of the present study indicated that we can localize the infarcted region in the heart by ex vivo and in vivo imaging methods using 111 In-anti-TNC-Fab, and suggested the potential usefulness of noninvasive detection of cardiac repair. (author)

  4. Evaluation of Accordance of Magnetic Resonance Volumetric and Flow Measurements in Determining Ventricular Stroke Volume in Cardiac Patients

    International Nuclear Information System (INIS)

    Jeltsch, M.; Ranft, S.; Klass, O.; Aschoff, A.J.; Hoffmann, M.H.K.

    2008-01-01

    Background: Cardiovascular magnetic resonance imaging (CMR) has become an established noninvasive method for evaluating ventricular function utilizing three-dimensional volumetry. Postprocessing of volumetric measurements is still tedious and time consuming. Stroke volumes obtained by flow quantification across the aortic root or pulmonary trunk could be utilized to increase both speed of workflow and accuracy. Purpose: To assess accuracy of stroke volume quantification using MR volumetric imaging compared to flow quantification in patients with various cardiac diseases. Strategies for the augmentation of accuracy in clinical routine were deduced. Material and Methods: 78 patients with various cardiac diseases -excluding intra- or extracardiac shunts, regurgitant valvular defects, or heart rhythm disturbance -underwent cardiac function analysis with flow measurements across the aortic root and cine imaging of the left ventricle. Forty-six patients additionally underwent flow measurements in the pulmonary trunk and cine imaging of the right ventricle. Results: Left ventricular stroke volume (LVSV) and stroke volume of the aortic root (SVAo) correlated with r=0.97, and Bland-Altman analysis showed a mean difference of 0.11 ml and a standard error of estimation (SEE) of 4.31 ml. Ninety-two percent of the data were within the 95% limits of agreement. Right ventricular stroke volume (RVSV) and stroke volume of the pulmonary trunk (SVP) correlated with a factor of r=0.86, and mean difference in the Bland-Altman analysis was fixed at -2.62 ml (SEE 8.47 ml). For RVSV and SVP, we calculated r=0.82, and Bland-Altman analysis revealed a mean difference of 1.27 ml (SEE 9.89 ml). LVSV and RVSV correlated closely, with r=0.91 and a mean difference of 2.79 ml (SEE 7.17 ml). SVAo and SVP correlated with r=0.95 and a mean difference of 0.50 ml (SEE 5.56 ml). Conclusion: Flow quantification can be used as a guidance tool, providing accurate and reproducible stroke volumes of both

  5. Noninvasive diagnostic test choices for the evaluation of coronary artery disease in women: a multivariate comparison of cardiac fluoroscopy, exercise electrocardiography and exercise thallium myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Hung, J.; Chaitman, B.R.; Lam, J.; Lesperance, J.; Dupras, G.; Fines, P.; Bourassa, M.G.

    1984-01-01

    Several diagnostic noninvasive tests to detect coronary and multivessel coronary disease are available for women. However, all are imperfect and it is not yet clear whether one particular test provides substantially more information than others. The aim of this study was to evaluate clinical findings, exercise electrocardiography, exercise thallium myocardial scintigraphy and cardiac fluoroscopy in 92 symptomatic women without previous infarction and determine which tests were most useful in determining the presence of coronary disease and its severity. Univariate analysis revealed two clinical, eight exercise electrocardiographic, seven myocardial scintigraphic and seven fluoroscopic variables predictive of coronary or multivessel disease with 70% or greater stenosis. The multivariate discriminant function analysis selected a reversible thallium defect, coronary calcification and character of chest pain syndrome as the variables most predictive of presence or absence of coronary disease. The ranked order of variables most predictive of multivessel disease were cardiac fluoroscopy score, thallium score and extent of ST segment depression in 14 electrocardiographic leads. Each provided statistically significant information to the model. The estimate of predictive accuracy was 89% for coronary disease and 97% for multivessel coronary disease. The results suggest that cardiac fluoroscopy or thallium scintigraphy provide significantly more diagnostic information than exercise electrocardiography in women over a wide range of clinical patient subsets

  6. The feasibility of measuring renal blood flow using transesophageal echocardiography in patients undergoing cardiac surgery.

    Science.gov (United States)

    Yang, Ping-Liang; Wong, David T; Dai, Shuang-Bo; Song, Hai-Bo; Ye, Ling; Liu, Jin; Liu, Bin

    2009-05-01

    There is no reliable method to monitor renal blood flow intraoperatively. In this study, we evaluated the feasibility and reproducibility of left renal blood flow measurements using transesophageal echocardiography during cardiac surgery. In this prospective noninterventional study, left renal blood flow was measured with transesophageal echocardiography during three time points (pre-, intra-, and postcardiopulmonary bypass) in 60 patients undergoing cardiac surgery. Sonograms from 6 subjects were interpreted by 2 blinded independent assessors at the time of acquisition and 6 mo later. Interobserver and intraobserver reproducibility were quantified by calculating variability and intraclass correlation coefficients. Patients with Doppler angles of >30 degrees (20 of 60 subjects) were eliminated from renal blood flow measurements. Left renal blood flow was successfully measured and analyzed in 36 of 60 (60%) subjects. Both interobserver and intraobserver variability were renal blood flow measurements were good to excellent (intraclass correlation coefficients 0.604-0.999). Left renal arterial luminal diameter for the pre, intra, and postcardiopulmonary bypass phases, ranged from 3.8 to 4.1 mm, renal arterial velocity from 25 to 35 cm/s, and left renal blood flow from 192 to 299 mL/min. In patients undergoing cardiac surgery, it was feasible in 60% of the subjects to measure left renal blood flow using intraoperative transesophageal echocardiography. The interobserver and intraobserver reproducibility of renal blood flow measurements was good to excellent.

  7. Non-invasive measurement of cardiac output during anaesthesia. An evaluation of the soluble gas uptake method

    Energy Technology Data Exchange (ETDEWEB)

    Heneghan, C.P.; Branthwaite, M.A.

    1981-04-01

    A technique for measuring cardiac output which depends on the uptake of an inert soluble gas from the lungs has been evaluated during anesthesia. A respiratory mass spectrometer has been used to follow the concentrations of argon and freon-22 during passive rebreathing in anaesthetized patients before cardiopulmonary bypass. Values for cardiac output obtained with this technique are reproducible, but lower than those recorded using the direct Fick technique before and after the rebreathing manoeuvre. A reduction in cardiac output caused by vigorous rebreathing is the most likely explanation for the discrepancy and, although serial measurements of oxygen consumption may permit application of a correction factor, a method of measurement which causes significant haemodynamic disturbance cannot be recommended for widespread use.

  8. Regional cerebral blood flow measurements using noninvasive 133Xe clearance method in children

    International Nuclear Information System (INIS)

    Nishimoto, Hiroshi; Maeda, Koji; Kagawa, Yukihide; Morozumi, Kunihiko; Hashimoto, Manami; Tsubokawa, Takashi.

    1985-01-01

    The noninvasive 133-Xe clearance method of estimating rCBF has been widely used in adult clinical studies. It is safe, noninvasive and reproducible, and has provided valuable insight into adult cerebrovascular pathophysiology. However, in children, this technique has not been used to measure rCBF for some fundamental problems. This study was performed to clarify these fundamental problems for applications of noninvasive 133-Xe clearance technique to children. The results showed that three fundamental problems concerning; (1) volume of dead spaces in airway circuits of the system, (2) increasing of look-through phenomenon and (3) correction methods for recirculated 133-Xe and airway artifacts to estimate rCBF are important for applications to children. These problems should be improved to measure as correct rCBF in children as in adults. (author)

  9. Characterization of cardiac flow in heart disease patients by computational fluid dynamics and 4D flow MRI

    Science.gov (United States)

    Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino

    2017-11-01

    In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.

  10. Cardiac memory in patients with Wolff-Parkinson-White syndrome: noninvasive imaging of activation and repolarization before and after catheter ablation.

    Science.gov (United States)

    Ghosh, Subham; Rhee, Edward K; Avari, Jennifer N; Woodard, Pamela K; Rudy, Yoram

    2008-08-26

    Cardiac memory refers to a change in ventricular repolarization induced by and persisting for minutes to months after cessation of a period of altered ventricular activation (eg, resulting from pacing or preexcitation in patients with Wolff-Parkinson-White syndrome). ECG imaging (ECGI) is a novel imaging modality for noninvasive electroanatomic mapping of epicardial activation and repolarization. Fourteen pediatric patients with Wolff-Parkinson-White syndrome and no other congenital disease, were imaged with ECGI a day before and 45 minutes, 1 week, and 1 month after successful catheter ablation. ECGI determined that preexcitation sites were consistent with sites of successful ablation in all cases to within a 1-hour arc of each atrioventricular annulus. In the preexcited rhythm, activation-recovery interval (ARI) was the longest (349+/-6 ms) in the area of preexcitation leading to high average base-to-apex ARI dispersion of 95+/-9 ms (normal is approximately 40 ms). The ARI dispersion remained the same 45 minutes after ablation, although the activation sequence was restored to normal. ARI dispersion was still high (79+/-9 ms) 1 week later and returned to normal (45+/-6 ms) 1 month after ablation. The study demonstrates that ECGI can noninvasively localize ventricular insertion sites of accessory pathways to guide ablation and evaluate its outcome in pediatric patients with Wolff-Parkinson-White syndrome. Wolff-Parkinson-White is associated with high ARI dispersion in the preexcited rhythm that persists after ablation and gradually returns to normal over a period of 1 month, demonstrating the presence of cardiac memory. The 1-month time course is consistent with transcriptional reprogramming and remodeling of ion channels.

  11. Stable xenon CT measurement of cerebral blood flow in cardiac transplantation candidates: Correlation with cognitive function

    International Nuclear Information System (INIS)

    Bello, J.A.; Fink, M.E.; Hilal, S.K.; Rose, E.A.; Reemtsma, K.

    1987-01-01

    Thirteen consecutive unselected patients with NYHA class 4 cardiac failure referred for cardiac transplantation underwent neurologic examination and cerebral blood flow measurement (rCBF) using the stable xenon enhanced CT method on a GE9800 system. Eleven men and two women were studied (mean age = 43.8 +- 6.1). On neurological examination, six of the patients demonstrated normal mental function; the remaining seven patients demonstrated memory, language, or learning impairment. There was no difference in mean cardiac output between the groups (4.9 L/min +- 1.68 vs. 4.2L/min +- 1.57). rCBF was significantly reduced in the impaired group. Cognitive impairment in patients with cardiac failure can be correlated with cerebral ischemia. Stable xenon CT measurement of rCBF in transplant candidates may help identify patients requiring more rapid transplantation to prevent permanent cerebral injury

  12. Trigeminal cardiac reflex and cerebral blood flow regulation

    Directory of Open Access Journals (Sweden)

    Dominga Lapi

    2016-10-01

    Full Text Available The stimulation of some facial regions is known to trigger the trigemino-cardiac reflex: the main stimulus is represented by the contact of the face with water. This phenomenon called diving reflex induces a set of reactions in the cardiovascular and respiratory systems occurring in all mammals, especially marine (whales, seals. During the immersion of the face in the water, the main responses are aimed at reducing the oxygen consumption of the organism. Accordingly reduction in heart rate, peripheral vasoconstriction, blood pooling in certain organs, especially the heart and brain, and an increase in blood pressure have been reported. Moreover, the speed and intensity of the reflex is inversely proportional to the temperature of the water: more cold the water, more reactions as described are strong. In the case of deep diving an additional effect, such as blood deviation, has been reported: the blood is requested within the lungs, to compensate for the increase in the external pressure, preventing them from collapsing.The trigeminal-cardiac reflex is not just confined to the diving reflex; recently it has been shown that a brief proprioceptive stimulation (10 min by jaw extension in rats produces interesting effects both at systemic and cerebral level, reducing the arterial blood pressure and vasodilating the pial arterioles. The arteriolar dilation is associated with rhythmic diameter changes characterized by an increase in the endothelial activity. Fascinating the stimulation of trigeminal nerve is able to activated the nitric oxide release by vascular endothelial. Therefore the aim of this review was to highlight the effects due to trigeminal cardiac reflex induced by a simple mandibular extension, because produced opposite effects compared to those elicited by the diving reflex as it induces hypotension and modulation of cerebral arteriolar tone.

  13. Non-invasive estimation of pulsatile flow and differential pressure in an implantable rotary blood pump for heart failure patients

    International Nuclear Information System (INIS)

    AlOmari, A H; Savkin, A V; Karantonis, D M; Lim, E; Lovell, N H

    2009-01-01

    We propose dynamical models for pulsatile flow and head estimation in an implantable rotary blood pump. Pulsatile flow and head data were obtained using a circulatory mock loop where fluid solutions with different values of viscosities were used as a blood analogue with varying haematocrit (HCT). Noninvasive measurements of power and pump speed were used with HCT values as inputs to the flow model while the estimated flow was used with the speed as inputs to a head estimation model. Linear regression analysis between estimated and measured flows obtained from a mock loop resulted in a highly significant correlation (R 2 = 0.982) and a mean absolute error (e) of 0.323 L min −1 , while for head, R 2 = 0.933 and e = 7.682 mmHg were obtained. R 2 = 0.849 and e = 0.584 L min −1 were obtained when the same model derived in the mock loop was used for flow estimation in ex vivo porcine data (N = 6). Furthermore, in the steady state, the solution of the presented flow model can be described by a previously designed and verified static model. The models developed herein will play a vital role in developing a robust control system of the pump flow coping with changing physiological demands

  14. Identification of the State of Maximal Hyperemia in the Assessment of Coronary Fractional Flow Reserve Using Non-Invasive Electrical Velocimetry.

    Science.gov (United States)

    Murasawa, Takahide; Takahashi, Masao; Myojo, Masahiro; Kiyosue, Arihiro; Oguri, Atsushi; Ando, Jiro; Komuro, Issei

    2017-05-31

    Previous research revealed that, in patients with coronary pressure-derived fractional flow reserve (FFR) in the 'grey zone' (0.75-0.85), repeated FFR assessments sometimes yield conflicting results. One of the causes of the fluctuations in FFR values around the grey zone may be imprecise identification of the point where maximal hyperemia is achieved. Identification of the state of maximal hyperemia during assessment of FFR can be challenging. This study aimed to determine whether non-invasive electrical velocimetry (EV) can be used to identify the state of maximal hyperemia.Stroke volume (SV), SV variation (SVV), and systemic vascular resistance index (SVRI) were determined by EV in 15 patients who underwent FFR assessment. Time intervals from initiation of adenosine infusion to achieving maximal hyperemia (time mFRR ), as well as to achieving maximal cardiac output (CO), SV, SVV, and SVRI (time mCO , time mSV , time mSVV , and time mSVRI , respectively), were determined. Time mCO and time mSVV were closer to time mFRR than other values (time mSVV /time mFRR versus time mSVRI /time mFRR = 1.03 ± 0.2 versus 1.36 ± 0.4, P state of maximal hyperemia.

  15. Modeling the emergency cardiac in-patient flow: An application of queueing theory

    NARCIS (Netherlands)

    de Bruin, A.M.; van Rossum, A.C.; Visser, M.C.; Koole, G.M.

    2007-01-01

    This study investigates the bottlenecks in the emergency care chain of cardiac in-patient flow. The primary goal is to determine the optimal bed allocation over the care chain given a maximum number of refused admissions. Another objective is to provide deeper insight in the relation between natural

  16. Gingival blood flow under total combs by functional pressure evaluated with laser-Doppler flowmetry, a non-invasive method of blood flow measurement

    International Nuclear Information System (INIS)

    Hengl, St.

    1996-09-01

    Gingival blood flow under total-combs by functional pressure evaluated with Laser-Doppler Flowmetry, a non-invasive method of blood flow measurement. Microcirculation of gum's capillary system can be measured non-invasive by Laser-Doppler-Flowmetry (LDF). Circulation, defined by the number of floating erythrocytes per unit of time, is measured by a fibro-optical Laser-Doppler-Flowmetry. The task was to examine, if there is any change of gum's circulation during strain and relief. Circulation on defined measurepoints, divided on the four quadrants, was determined among maximal strain and subsequent relief, on one probationer (complete denture bearer). Before every measure session systemic pressure was taken. LDF-value was taken on top of jaw-comb, in doing so, to get reproducible result and a satisfying fixation of the probe, there was made an artificial limb of the upper and lower comb. In the upper comb a dynamometer-box, which determined minimal and maximal comb pressure, was integrated. The received results of the LDF-measurement, expressed as perfusion units (PU) were lower under applied pressure than by pressure points more distant. Hyperemia, resulting during relief, seemed the more intense, the less perfusion was before. This new, non-invasive kind of circulation measurement seems to be quite predestined to be used for gingival diagnostic under artificial limb in the future. (author)

  17. A noninvasive method for measuring the velocity of diffuse hydrothermal flow by tracking moving refractive index anomalies

    Science.gov (United States)

    Mittelstaedt, Eric; Davaille, Anne; van Keken, Peter E.; Gracias, Nuno; Escartin, Javier

    2010-10-01

    Diffuse flow velocimetry (DFV) is introduced as a new, noninvasive, optical technique for measuring the velocity of diffuse hydrothermal flow. The technique uses images of a motionless, random medium (e.g., rocks) obtained through the lens of a moving refraction index anomaly (e.g., a hot upwelling). The method works in two stages. First, the changes in apparent background deformation are calculated using particle image velocimetry (PIV). The deformation vectors are determined by a cross correlation of pixel intensities across consecutive images. Second, the 2-D velocity field is calculated by cross correlating the deformation vectors between consecutive PIV calculations. The accuracy of the method is tested with laboratory and numerical experiments of a laminar, axisymmetric plume in fluids with both constant and temperature-dependent viscosity. Results show that average RMS errors are ˜5%-7% and are most accurate in regions of pervasive apparent background deformation which is commonly encountered in regions of diffuse hydrothermal flow. The method is applied to a 25 s video sequence of diffuse flow from a small fracture captured during the Bathyluck'09 cruise to the Lucky Strike hydrothermal field (September 2009). The velocities of the ˜10°C-15°C effluent reach ˜5.5 cm/s, in strong agreement with previous measurements of diffuse flow. DFV is found to be most accurate for approximately 2-D flows where background objects have a small spatial scale, such as sand or gravel.

  18. Role of T1 mapping as a complementary tool to T2* for non-invasive cardiac iron overload assessment.

    Science.gov (United States)

    Torlasco, Camilla; Cassinerio, Elena; Roghi, Alberto; Faini, Andrea; Capecchi, Marco; Abdel-Gadir, Amna; Giannattasio, Cristina; Parati, Gianfranco; Moon, James C; Cappellini, Maria D; Pedrotti, Patrizia

    2018-01-01

    Iron overload-related heart failure is the principal cause of death in transfusion dependent patients, including those with Thalassemia Major. Linking cardiac siderosis measured by T2* to therapy improves outcomes. T1 mapping can also measure iron; preliminary data suggests it may have higher sensitivity for iron, particularly for early overload (the conventional cut-point for no iron by T2* is 20ms, but this is believed insensitive). We compared T1 mapping to T2* in cardiac iron overload. In a prospectively large single centre study of 138 Thalassemia Major patients and 32 healthy controls, we compared T1 mapping to dark blood and bright blood T2* acquired at 1.5T. Linear regression analysis was used to assess the association of T2* and T1. A "moving window" approach was taken to understand the strength of the association at different levels of iron overload. The relationship between T2* (here dark blood) and T1 is described by a log-log linear regression, which can be split in three different slopes: 1) T2* low, 30ms, weak relationship. All subjects with T2*20ms, 38% had low T1 with most of the subjects in the T2* range 20-30ms having a low T1. In established cardiac iron overload, T1 and T2* are concordant. However, in the 20-30ms T2* range, T1 mapping appears to detect iron. These data support previous suggestions that T1 detects missed iron in 1 out of 3 subjects with normal T2*, and that T1 mapping is complementary to T2*. The clinical significance of a low T1 with normal T2* should be further investigated.

  19. Pulmonary Artery Catheter (PAC Accuracy and Efficacy Compared with Flow Probe and Transcutaneous Doppler (USCOM: An Ovine Cardiac Output Validation

    Directory of Open Access Journals (Sweden)

    Robert A. Phillips

    2012-01-01

    Full Text Available Background. The pulmonary artery catheter (PAC is an accepted clinical method of measuring cardiac output (CO despite no prior validation. The ultrasonic cardiac output monitor (USCOM is a noninvasive alternative to PAC using Doppler ultrasound (CW. We compared PAC and USCOM CO measurements against a gold standard, the aortic flow probe (FP, in sheep at varying outputs. Methods. Ten conscious sheep, with implanted FPs, had measurements of CO by FP, USCOM, and PAC, at rest and during intervention with inotropes and vasopressors. Results. CO measurements by FP, PAC, and USCOM were 4.0±1.2 L/min, 4.8±1.5 L/min, and 4.0±1.4 L/min, respectively, (=280, range 1.9 L/min to 11.7 L/min. Percentage bias and precision between FP and PAC, and FP and USCOM was −17 and 47%, and 1 and 36%, respectively. PAC under-measured Dobutamine-induced CO changes by 20% (relative 66% compared with FP, while USCOM measures varied from FP by 3% (relative 10%. PAC reliably detected −30% but not +40% CO changes, as measured by receiver operating characteristic area under the curve (AUC, while USCOM reliably detected ±5% changes in CO (AUC>0.70. Conclusions. PAC demonstrated poor accuracy and sensitivity as a measure of CO. USCOM provided equivalent measurements to FP across a sixfold range of outputs, reliably detecting ±5% changes.

  20. Coronary flow response to remote ischemic preconditioning is preserved in old cardiac patients.

    Science.gov (United States)

    Santillo, Elpidio; Migale, Monica; Balestrini, Fabrizio; Postacchini, Demetrio; Bustacchini, Silvia; Lattanzio, Fabrizia; Antonelli-Incalzi, Raffaele

    2017-10-20

    The effect of remote ischemic preconditioning (RIPC) on coronary flow in elderly cardiac patients has not been investigated yet. Thus, we aimed to study the change of coronary flow subsequent to RIPC in old patients with heart diseases and to identify its main correlates. Ninety-five elderly patients (aged ≥ 65 years) accessing cardiac rehabilitation ward underwent transthoracic ultrasound evaluation of peak diastolic flow velocity of left anterior descending artery. Measurements of coronary flow velocity were performed on baseline and after an RIPC protocol (three cycles of 5 min ischemia of right arm alternating 5 min reperfusion). Differences between subjects with coronary flow velocity change over or equal the 75° percentile (high-responders) and subjects with a coronary flow velocity change under the 75° percentile (low-responders) were assessed. In enrolled elderly heart patients, coronary flow velocity significantly augmented from baseline after RIPC [0.23 m/s (0.18-0.28) vs 0.27 m/s (0.22-0.36); p < 0.001 by Wilcoxon test]. High-responders to RIPC were significantly younger and in better functional status than low-responders. Heart failure resulted as the main variable associated with impairment of RIPC responsiveness (R 2  = 0.202; p = 0.002)]. Our sample of old cardiac patients presented a significant median increment of coronary flow velocity after RIPC. The magnitude of the observed change of coronary flow velocity was comparable to that previously described in healthy subjects. The coronary response to RIPC was attenuated by heart failure. Further research should define whether such RIPC responsiveness is associated with cardioprotection and carries prognostic implications.

  1. Chronic hydrocephalus-induced changes in cerebral blood flow: mediation through cardiac effects.

    Science.gov (United States)

    Dombrowski, Stephen M; Schenk, Soren; Leichliter, Anna; Leibson, Zack; Fukamachi, Kiyotaka; Luciano, Mark G

    2006-10-01

    Decreased cerebral blood flow (CBF) in hydrocephalus is believed to be related to increased intracranial pressure (ICP), vascular compression as the result of enlarged ventricles, or impaired metabolic activity. Little attention has been given to the relationship between cardiac function and systemic blood flow in chronic hydrocephalus (CH). Using an experimental model of chronic obstructive hydrocephalus developed in our laboratory, we investigated the relationship between the duration and severity of hydrocephalus and cardiac output (CO), CBF, myocardial tissue perfusion (MTP), and peripheral blood flow (PBF). Blood flow measures were obtained using the microsphere injection method under controlled hemodynamic conditions in experimental CH (n=23) and surgical control (n=8) canines at baseline and at 2, 4, 8, 12, and 16 weeks. Cardiac output measures were made using the Swan-Ganz thermodilution method. Intracranial compliance (ICC) via cerebrospinal fluid (CSF) bolus removal and infusion, and oxygen delivery in CSF and prefrontal cortex (PFC) were also investigated. We observed an initial surgical effect relating to 30% CO reduction and approximately 50% decrease in CBF, MTP, and PBF in both groups 2 weeks postoperatively, which recovered in control animals but continued to decline further in CH animals at 16 weeks. Cerebral blood flow, which was positively correlated with CO (P=0.028), showed no significant relationship with either CSF volume or pressure. Decreased CBF correlated with oxygen deprivation in PFC (P=0.006). Cardiac output was inversely related with ventriculomegaly (P=0.019), but did not correlate with ICP. Decreased CO corresponded to increased ICC, as measured by CSF infusion (P=0.04). Our results suggest that CH may have more of an influence on CO and CBF in the chronic stage than in the early condition, which was dominated by surgical effect. The cause of this late deterioration of cardiac function in hydrocephalus is uncertain, but may reflect

  2. SU-C-303-06: Treatment Planning Study for Non-Invasive Cardiac Arrhythmia Ablation with Scanned Carbon Ions in An Animal Model

    International Nuclear Information System (INIS)

    Eichhorn, A; Constantinescu, A; Prall, M; Kaderka, R; Durante, M; Graeff, C; Lehmann, H I; Takami, M; Packer, D L; Lugenbiel, P; Thomas, D; Richter, D; Bert, C

    2015-01-01

    Purpose: Scanned carbon ion beams might offer a non-invasive alternative treatment for cardiac arrhythmia, which are a major health-burden. We studied the feasibility of this procedure in an animal model. The underlying treatment planning and motion mitigation strategies will be presented. Methods: The study was carried out in 15 pigs, randomly distributed to 3 target groups: atrioventricular node (AVN, 8 animals with 25, 40, and 55 Gy target dose), left ventricular free-wall (LV, 4 animals with 40 Gy) and superior pulmonary vein (SPV, 3 animals with 40 Gy). Breathing motion was suppressed by repeated enforced breathholds at end exhale. Cardiac motion was mitigated by an inhomogeneous rescanning scheme with up to 15 rescans. The treatment planning was performed using the GSI in-house software TRiP4D on cardiac-gated 4DCTs, applying a range-considering ITV based on an extended CTV. For AVN and SPV isotropic 5 mm margins were applied to the CTV, while for the LV 2mm+2% range margins were used. The opposing fields for AVN and LV targets were optimized independently (SFUD), while SPV treatments were optimized as IMPT deliveries, including dose restrictions to the radiosensitive AVN. Results: Median value of D 95 over all rescanning simulations was 99.1% (AVN), 98.0% (SPV) and 98.3% (LV) for the CTV and 94.7% (AVN) and 92.7% (SPV) for the PTV, respectively. The median D 5 -D 95 was improved with rescanning compared to unmitigated delivery from 13.3 to 6.5% (CTV) and from 23.4 to 11.6% (PTV). ICRP dose limits for aorta, trachea, esophagus and skin were respected. The maximal dose in the coronary arteries was limited to 30 Gy. Conclusion: We demonstrated the feasibility of a homogeneous dose delivery to different cardiac structures in a porcine model using a time-optimized inhomogeneous rescanning scheme. The presented treatment planning strategies were applied in a pig study with the analysis ongoing. Funding: This work was supported in part by the Helmholtz Association

  3. SU-C-303-06: Treatment Planning Study for Non-Invasive Cardiac Arrhythmia Ablation with Scanned Carbon Ions in An Animal Model

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, A; Constantinescu, A; Prall, M; Kaderka, R; Durante, M; Graeff, C [GSI Helmholtz Center, Darmstadt, DE (Germany); Lehmann, H I; Takami, M; Packer, D L [Mayo Clinic, Rochester, Minnesota (United States); Lugenbiel, P; Thomas, D [University of Heidelberg, Heidelberg, DE (Germany); Richter, D; Bert, C [University Clinic Erlangen, Erlagen, DE (Germany)

    2015-06-15

    Purpose: Scanned carbon ion beams might offer a non-invasive alternative treatment for cardiac arrhythmia, which are a major health-burden. We studied the feasibility of this procedure in an animal model. The underlying treatment planning and motion mitigation strategies will be presented. Methods: The study was carried out in 15 pigs, randomly distributed to 3 target groups: atrioventricular node (AVN, 8 animals with 25, 40, and 55 Gy target dose), left ventricular free-wall (LV, 4 animals with 40 Gy) and superior pulmonary vein (SPV, 3 animals with 40 Gy). Breathing motion was suppressed by repeated enforced breathholds at end exhale. Cardiac motion was mitigated by an inhomogeneous rescanning scheme with up to 15 rescans. The treatment planning was performed using the GSI in-house software TRiP4D on cardiac-gated 4DCTs, applying a range-considering ITV based on an extended CTV. For AVN and SPV isotropic 5 mm margins were applied to the CTV, while for the LV 2mm+2% range margins were used. The opposing fields for AVN and LV targets were optimized independently (SFUD), while SPV treatments were optimized as IMPT deliveries, including dose restrictions to the radiosensitive AVN. Results: Median value of D{sub 95} over all rescanning simulations was 99.1% (AVN), 98.0% (SPV) and 98.3% (LV) for the CTV and 94.7% (AVN) and 92.7% (SPV) for the PTV, respectively. The median D{sub 5}-D{sub 95} was improved with rescanning compared to unmitigated delivery from 13.3 to 6.5% (CTV) and from 23.4 to 11.6% (PTV). ICRP dose limits for aorta, trachea, esophagus and skin were respected. The maximal dose in the coronary arteries was limited to 30 Gy. Conclusion: We demonstrated the feasibility of a homogeneous dose delivery to different cardiac structures in a porcine model using a time-optimized inhomogeneous rescanning scheme. The presented treatment planning strategies were applied in a pig study with the analysis ongoing. Funding: This work was supported in part by the

  4. Forecasting pulsatory motion for non-invasive cardiac radiosurgery: an analysis of algorithms from respiratory motion prediction.

    Science.gov (United States)

    Ernst, Floris; Bruder, Ralf; Schlaefer, Alexander; Schweikard, Achim

    2011-01-01

    Recently, radiosurgical treatment of cardiac arrhythmia, especially atrial fibrillation, has been proposed. Using the CyberKnife, focussed radiation will be used to create ablation lines on the beating heart to block unwanted electrical activity. Since this procedure requires high accuracy, the inevitable latency of the system (i.e., the robotic manipulator following the motion of the heart) has to be compensated for. We examine the applicability of prediction algorithms developed for respiratory motion prediction to the prediction of pulsatory motion. We evaluated the MULIN, nLMS, wLMS, SVRpred and EKF algorithms. The test data used has been recorded using external infrared position sensors, 3D ultrasound and the NavX catheter systems. With this data, we have shown that the error from latency can be reduced by at least 10 and as much as 75% (44% average), depending on the type of signal. It has also been shown that, although the SVRpred algorithm was successful in most cases, it was outperformed by the simple nLMS algorithm, the EKF or the wLMS algorithm in a number of cases. We have shown that prediction of cardiac motion is possible and that the algorithms known from respiratory motion prediction are applicable. Since pulsation is more regular than respiration, more research will have to be done to improve frequency-tracking algorithms, like the EKF method, which performed better than expected from their behaviour on respiratory motion traces.

  5. Non-invasive and non-intrusive gas flow measurement based on the dynamic thermal characteristics of a pipeline

    Science.gov (United States)

    Fan, Zichuan; Cai, Maolin; Xu, Weiqing

    2012-10-01

    This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results.

  6. Non-invasive and non-intrusive gas flow measurement based on the dynamic thermal characteristics of a pipeline

    International Nuclear Information System (INIS)

    Fan, Zichuan; Cai, Maolin; Xu, Weiqing

    2012-01-01

    This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results. (paper)

  7. Non-invasive imaging of retinal blood flow in myeloproliferative neoplasms

    DEFF Research Database (Denmark)

    Willerslev, Anne; Hansen, Mathias M; Klefter, Oliver Niels

    2017-01-01

    PURPOSE: To study the circulation in the retinal vessels in patients with blood dyscrasia due to myeloproliferative neoplasms using non-invasive retinal imaging. METHODS: Prospective consecutive case series of seven treatment-naïve patients with chronic myeloid leukaemia (n = 2), polycythemia vera...... present at baseline in patients with chronic myeloid leukaemia and were replaced by normal patterns at follow-up. Retinopathy, in the form of cotton-wool spots and retinal haemorrhages, was found at presentation in the two patients with chronic myeloid leukaemia and in one patient with polycythemia vera...

  8. The use of the cardiopulmonary flow index to detect cardiac defects in man and animal

    International Nuclear Information System (INIS)

    Cilliers, G.D.

    1982-01-01

    The efficiency of the cardiopulmonary flow index (CPFI) to detect cardiac defects and to evaluate therapy in man and animal is tested. The CPFI seems to be sensitive enough to evaluate vasodilator and inotropic therapy during cardiac failure with 'gousiekte' sheep. Pulmonary emboli in sheep is induced by injecting coagulated blood into the pulmonary circulation. These pulmonary emboli caused a decrease in the CPFI. CPFI recordings were made on patients, before and after aorta- and mitralvalve replacements. The CPFI is sensitive enough to detect the valve inefficiency and also to detect the improvement in the pump efficiency of the heart after the double valve replacement. The results obtained prove that the CPFI could have a proper place in modern cardiology to evaluate therapy (clinical and surgical) and also to distinguish between cardiac defects and pulmonary emboli

  9. Cardiac transplantation after bridged therapy with continuous flow left ventricular assist devices.

    Science.gov (United States)

    Deo, Salil V; Sung, Kiick; Daly, Richard C; Shah, Ishan K; Altarabsheh, Salah E; Stulak, John M; Joyce, Lyle D; Boilson, Barry A; Kushwaha, Sudhir S; Park, Soon J

    2014-03-01

    Cardiac transplantation is an effective surgical therapy for end-stage heart failure. Patients (pts) may need to be bridged with a continuous flow left ventricular assist device (CF-LVAD) while on the transplant list as logistic factors like organ availability are unknown. Cardiac transplantation post-LVAD can be a surgically challenging procedure and outcome in these pts is perceived to be poorer based on experience with earlier generation pulsatile flow pumps. Data from a single institution comparing these pts with those undergoing direct transplantation in the present era of continuous flow device therapy are limited. Evaluate results of cardiac transplantation in pts bridged with a CF-LVAD (BTx) and compare outcomes with pts undergoing direct transplantation (Tx) in a single institution. From June 2007 till January 2012, 106 pts underwent cardiac transplantation. Among these, 37 (35%) pts (51±11 years; 85% male) were bridged with a CF-LVAD (BTx), while 70 (65%) comprised the Tx group (53±12 years; 72% males). The median duration of LVAD support was 227 (153,327) days. During the period of LVAD support, 10/37 (27%) pts were upgraded to status 1A and all were successfully transplanted. Median hospital stay in the BTx (14 days) was slightly longer than the Tx group (12 days) but not statistically significant (p=0.21). In-hospital mortality in the BTx (5%) and Tx (1%) were comparable (p=0.25). Estimated late survival in the BTx cohort was 94±7, 90±10 and 83±16% at the end of one, two and three years, respectively which was comparable to 97±4%, 93±6% and 89±9% for the Tx group (p=0.50). Cardiac transplantation after LVAD implant can be performed with excellent results. Patients can be supported on the left ventricular assist device even for periods close to a year with good outcome after cardiac transplantation. Copyright © 2013 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand

  10. Use of the cardiopulmonary flow index to evaluate cardiac function in thoroughbred horses

    International Nuclear Information System (INIS)

    Guthrie, A.J.; Killeen, V.M.; Grosskopf, J.F.W.

    1991-01-01

    The ratio of the cardiopulmonary blood volume to stroke volume is called the cardiopulmonary flow index (CPFI). The CPFI can be determined indirectly from the simultaneous recording of a radiocardiogram and an electrocardiogram. The CPFI and cardiac output were measured simultaneously in horses that were diagnosed as having cardiac disease. The results obtained from these subjects were compared with those from control animals and significant differences were found between the mean CPFI of the control horses and those with macroscopically visible myocardial fibrosis on post mortem examination. No significant differences were found between the means of the cardiac output measured in either of the groups of horses. The effect of pharmacological acceleration of the heart rate on the CPFI was also studied. Significant differences were found between the mean CPFI and the slopes of the regression lines of CPFI on heart rate of the control and principal groups of horses. These differences were greatest at heart rates near to the resting heart rates of the individuals. The CPFI was found to be a more sensitive measure of cardiac function than cardiac output, in the horses. 16 refs., 2 figs., 2 tabs

  11. Stress Perfusion Coronary Flow Reserve Versus Cardiac Magnetic Resonance for Known or Suspected CAD.

    Science.gov (United States)

    Kato, Shingo; Saito, Naka; Nakachi, Tatsuya; Fukui, Kazuki; Iwasawa, Tae; Taguri, Masataka; Kosuge, Masami; Kimura, Kazuo

    2017-08-15

    Phase-contrast (PC) cine magnetic resonance imaging (MRI) of the coronary sinus is a noninvasive method to quantify coronary flow reserve (CFR). This study sought to compare the prognostic value of CFR by cardiac magnetic resonance (CMR) and stress perfusion CMR to predict major adverse cardiac events (MACE). Participants included 276 patients with known coronary artery disease (CAD) and 400 with suspected CAD. CFR was calculated as myocardial blood flow during adenosine triphosphate infusion divided by myocardial blood flow at rest using PC cine MRI of the coronary sinus. During a median follow-up of 2.3 years, 47 patients (7%) experienced MACE. Impaired CFR (10% ischemia on stress perfusion CMR were significantly associated with MACE in patients with known CAD (hazard ratio [HR]: 5.17 and HR: 5.10, respectively) and suspected CAD (HR: 14.16 and HR: 6.50, respectively). The area under the curve for predicting MACE was 0.773 for CFR and 0.731 for stress perfusion CMR (p = 0.58) for patients with known CAD, and 0.885 for CFR and 0.776 for stress perfusion CMR (p = 0.059) in the group with suspected CAD. In patients with known CAD, sensitivity, specificity, and positive and negative predictive values to predict MACE were 64%, 91%, 38%, and 97%, respectively, for CFR, and 82%, 59%, 15%, and 97%, respectively, for stress perfusion CMR. In the suspected CAD group, these values were 65%, 99%, 80%, and 97%, respectively, for CFR, and 72%, 83%, 22%, and 98%, respectively, for stress perfusion CMR. The predictive values of CFR and stress perfusion CMR for MACE were comparable in patients with known CAD. In patients with suspected CAD, CFR showed higher HRs and areas under the curve than stress perfusion CMR, suggesting that CFR assessment by PC cine MRI might provide better risk stratification for patients with suspected CAD. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  12. Cardiorespiratory interactions and blood flow generation during cardiac arrest and other states of low blood flow.

    Science.gov (United States)

    Sigurdsson, Gardar; Yannopoulos, Demetris; McKnite, Scott H; Lurie, Keith G

    2003-06-01

    Recent advances in cardiopulmonary resuscitation have shed light on the importance of cardiorespiratory interactions during shock and cardiac arrest. This review focuses on recently published studies that evaluate factors that determine preload during chest compression, methods that can augment preload, and the detrimental effects of hyperventilation and interrupting chest compressions. Refilling of the ventricles, so-called ventricular preload, is diminished during cardiovascular collapse and resuscitation from cardiac arrest. In light of the potential detrimental effects and challenges of large-volume fluid resuscitations, other methods have increasing importance. During cardiac arrest, active decompression of the chest and impedance of inspiratory airflow during the recoil of the chest work by increasing negative intrathoracic pressure and, hence, increase refilling of the ventricles and increase cardiac preload, with improvement in survival. Conversely, increased frequency of ventilation has detrimental effects on coronary perfusion pressure and survival rates in cardiac arrest and severe shock. Prolonged interruption of chest compressions for delivering single-rescuer ventilation or analyzing rhythm before shock delivery is associated with decreased survival rate. Cardiorespiratory interactions are of profound importance in states of cardiovascular collapse in which increased negative intrathoracic pressure during decompression of the chest has a favorable effect and increased intrathoracic pressure with ventilation has a detrimental effect on survival rate.

  13. Chronic impairment of leg muscle blood flow following cardiac catheterization in childhood

    International Nuclear Information System (INIS)

    Skovranek, J.; Samanek, M.

    1979-01-01

    In 99 patients with congenital heart defects or chronic respiratory disease without clinical symptoms of disturbances in peripheral circulation, resting and maximal blood flow in the anterior tibial muscle of both extremities were investigated 2.7 yrs (average) after cardiac catheterization. The method used involved 133 Xe clearance. Resting blood flow was normal and no difference could be demonstrated between the extremity originally used for catheterization and the contralateral control extremity. No disturbance in maximal blood flow could be proved in the extremity used for catheterization by the venous route only. Maximal blood flow was significantly lower in that extremity where the femoral artery had been catheterized or cannulated for pressure measurement and blood sampling. The disturbance in maximal flow was shown regardless of whether the arterial catheterization involved the Seldinger percutaneous technique, arteriotomy, or mere cannulation of the femoral artery. The values in the involved extremity did not differ significantly from the values in a healthy population

  14. Relationship between signal intensity of blood flow in the pulmonary artery obtained by magnetic resonance imaging and results of right cardiac catheterization in patients with pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Yuguchi, Yasutoshi; Nagao, Keiichi; Kouno, Norihiro; Tanabe, Nobuhiro; Okita, Shinya; Tojima, Hirokazu; Okada, Osamu; Kuriyama, Takayuki [Chiba Univ. (Japan). School of Medicine; Yamaguchi, Tetsuo

    1992-08-01

    Electrocardiogram-gated spin-echo magnetic resonance (MR) images of the chest were obtained in five normal controls and 35 patients with pulmonary disease (11 chronic obstructive pulmonary disease, 6 pulmonary thromboembolism, 5 primary pulmonary hypertension, 4 interstitial pulmonary disease, 4 pulmonary hypertension with disturbance of portal circulation, and 5 other diseases) who underwent right cardiac catheterization. In transverse images at the level of the right main pulmonary artery (rPA) and sagittal images at the level through the midsternal line and the spinal cord, the signal intensity of blood flow in the rPA was quantitatively evaluated, and the correlations with the MR signal intensity of intravascular flow and the parameters of hemodynamics were studied. In diastole MR images of both normal controls and patients mostly showed a significant signal and visible flow images. In systolic MR images, the mean values of hemodynamic parameters (mean pulmonary arterial pressure (mPAP), pulmonary arteriolar resistance (PAR), and cardiac index (CI)) were abnormal in patients with significant signal intensity of flow compared with those in patients without sufficient MR signal. The signal intensity was not correlated with mPAP; however, it significantly increased as PAR increased, and it increased as CI decreased both in diastole and in systole. Especially in systole, there was good correlation between the signal intensity in transverse MR images and CI and between signal intensity in sagittal MR images and PAR . These results suggest that the signal intensity of blood flow in the rPA on MR images can be used as an index of the severity of right heart failure associated with pulmonary disease. MR imaging is a useful modality to evaluate pulmonary circulation disturbance because of its ability to assess blood flow in the pulmonary artery noninvasively without interference from other structures such as bone and normal lung. (J.P.N.).

  15. A comparison of dobutamine and levosimendan on hepatic blood flow in patients with a low cardiac output state after cardiac surgery: a randomised controlled study.

    Science.gov (United States)

    Alvarez, J; Baluja, A; Selas, S; Otero, P; Rial, M; Veiras, S; Caruezo, V; Taboada, M; Rodriguez, I; Castroagudin, J; Tome, S; Rodriguez, A; Rodriguez, J

    2013-11-01

    Liver dysfunction due to a low cardiac output state after cardiac surgery is associated with a poor prognosis, but whether one inotrope is superior to another in improving hepatic perfusion remains uncertain. This study compared the systemic and hepatic haemodynamic effects of levosimendan to dobutamine in patients with a low cardiac output state (cardiac index flow (ml/min): 614.0±124.7, 585.9±144.8; pulsatility index: 2.02±0,28, 2.98±0.27 versus the levosimendan group: cardiac index: 3.02± 0.27, 2.98± 0.30; portal vein flow: 723.0± 143.5, 702.9±117.8; pulsatility index: 1.71±0.26, 1.73±0.27). The improvement in portal vein blood flow at 48 hours was significantly better after levosimendan than dobutamine (41% vs. 11% increment from baseline, Pflow through both the hepatic artery and portal venous system, whereas dobutamine can only improve the portal venous blood flow without vasodilating the hepatic artery.

  16. Non-invasive measurement of cardiac output in heart failure patients using a new foreign gas rebreathing technique

    DEFF Research Database (Denmark)

    Gabrielsen, Anders; Videbaek, Regitze; Schou, Morten

    2002-01-01

    (FICK)) and thermodilution (CO(TD)) methods in patients with heart failure or pulmonary hypertension. In 11 patients, of which three had shunt flow through areas without significant gas exchange, the mean difference (bias) and limits of agreement (+/- 2 S.D.) were 0.6 +/- 1.2 litre x min(-1) when comparing CO(FICK) and Q...

  17. The non-invasive and continuous estimation of cardiac output using a photoplethysmogram and electrocardiogram during incremental exercise

    International Nuclear Information System (INIS)

    Wang, L; Poon, C C Y; Zhang, Y T

    2010-01-01

    Cardiac output (CO) monitoring is not only essential for critically ill patients in the hospital, but also for patients at home and those undergoing cardiopulmonary exercise testing. However, CO is difficult to monitor during daily activities and exercise. In this paper, we aim at developing a novel CO estimation method that can be used under these challenging conditions. The tube model was utilized to derive a CO index, namely the pulse time reflection ratio (PTRR) from an electrocardiogram and photoplethysmogram. After calibration, the PTRR can be used to estimate beat-to-beat CO. The proposed method was verified against CO measured by impedance cardiography on 19 healthy subjects in an incremental intensity exercise test. Results showed that there were strong correlations (r) between the PTRR and reference CO in 18 subjects (mean r: 0.88, n = 245 trials). Two calibration approaches reported in the literature were applied to the proposed method and the corresponding bias ± precisions of estimation errors were 0 ± 1.89 L min −1 and −0.22 ± 2.12 L min −1 , respectively. The percent errors were 21.94% and 24.90%, smaller than the clinical acceptance limit (30%). To conclude, after calibration, this method can be used to monitor CO on healthy subjects during incremental intensity exercise

  18. N-13 ammonia for the noninvasive evaluation of myocardial blood flow by positron emission computed tomography

    International Nuclear Information System (INIS)

    Schelbert, H.R.; Phelps, M.E.

    1979-01-01

    The kinetics and characteristics of nitrogen-13 labelled ammonia as an indicator of blood flow in the myocardium were evaluated in open-chest dogs. Its utility as an imaging agent was tested in animals and man

  19. Noninvasive evaluation of the cardiac autonomic nervous system. Final progress report, December 24, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    During the first year of funding, C-11 hydroxyephedrine has been introduced as the first clinically usable norepinephrine analogue. Studies in normal volunteers and patients with various cardiac disorders indicated the feasibility of this tracer for further evaluation. Simultaneously, animal studies have been used to assess the use of these radiopharmaceuticals in ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threo-hydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, the authors are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve their ability to identify abnormalities. They are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. In addition, they are participating in the development of radiopharmaceuticals for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in their institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by preliminary PET data. A compilation of all publications funded by this grant is presented in this report.

  20. Noninvasive evaluation of the cardiac autonomic nervous system. Final progress report, December 24, 1993--February 28, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    During the first year of funding, C-11 hydroxyephedrine has been introduced as the first clinically usable norepinephrine analogue. Studies in normal volunteers and patients with various cardiac disorders indicated the feasibility of this tracer for further evaluation. Simultaneously, animal studies have been used to assess the use of these radiopharmaceuticals in ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threo-hydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, the authors are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve their ability to identify abnormalities. They are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. In addition, they are participating in the development of radiopharmaceuticals for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in their institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by preliminary PET data. A compilation of all publications funded by this grant is presented in this report

  1. Noninvasive assessment of pulmonary arterial pressure by krypton-81m right cardiac ventriculography in patients with chronic obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, Shimpachi; Kuriyama, Takanobu; Hirai, Masashi; Nishimura, Kouichi; Kuno, Kenshi; Yonekura, Yoshiharu

    1987-10-01

    In twenty patients with COPD, the following pulmonary function test values were obtained (mean +- SD): FEV/sub 1.0/ = 1070 +- 490 ml;FEV/sub 1.0/ % = 47.7 +- 8.9 %;PaO/sub 2/ = 65.8 +- 8.4 torr;PaCO/sub 2/ = 39.7 +- 4.4 torr. All patients underwent right heart catheterization and pulmonary arterial mean pressures (PAMP) were obtained. The PAMP value was 20.2 +- 4.1 torr (range 12 - 28), RVEF was 52.2 +- 8.4 % (range 31 - 63) and RVRFR was 25.5 +- 4.7 %100 msec (range 18 - 34). The PAMP negatively correlated with the RVEF (r = -0.69, p < 0.001) and RVRFR (r = -0.82, p < 0.001). In ten healthy male subjects, the RVEF was 56.6 +- 5.1 % (range 50 - 64) and RVRFR was 37.7 +- 3.0 %100 msec (range 33 - 42). The lower limit of normal for the RVEF was regarded as 46.4 % and that of the RVRFR as 31.7 %100 msec;these are the values two standard deviations below the means. Nine of the twenty patients has a PAMP value of more than 20 torr (the sine qua non of cor pulmonale). Five of these nine patients had RVEF values less than 46.4 % and all of them had RVRFR values of less than 31.7 %100 msec. On the other hand, all of the remaining eleven patients (PAMP 20 torr or less) had RVEF values within the normal range, but ten of the eleven had RVRFR values of less than 31.7 %100 msec. Therefore, the RVRFR value, which showed excellent correlation with the PAMP, provided a noninvasive assessment of pulmonary arterial pressure with good sensitivity in detecting elevated pressure. The RVEF value supplemented the RVRFR with good specificity for detection of elevation of pressure;that is, it eliminated false positive results. (J.P.N.)

  2. Association of HeartMate II left ventricular assist device flow estimate with thermodilution cardiac output.

    Science.gov (United States)

    Hasin, Tal; Huebner, Marianne; Li, Zhuo; Brown, Daniel; Stulak, John M; Boilson, Barry A; Joyce, Lyle; Pereira, Naveen L; Kushwaha, Sudhir S; Park, Soon J

    2014-01-01

    Cardiac output (CO) assessment is important in treating patients with heart failure. Durable left ventricular assist devices (LVADs) provide essentially all CO. In currently used LVADs, estimated device flow is generated by a computerized algorithm. However, LVAD flow estimate may be inaccurate in tracking true CO. We correlated LVAD (HeartMate II) flow with thermodilution CO during postoperative care (day 2-10 after implant) in 81 patients (5,616 paired measurements). Left ventricular assist device flow and CO correlated with a low correlation coefficient (r = 0.42). Left ventricular assist device readings were lower than CO measurements by approximately 0.36 L/min, trending for larger difference with higher values. Left ventricular assist device flow measurements showed less temporal variability compared with CO. Grouping for simultaneous measured blood pressure (BP device flow generally trends with measured CO, but large variability exists, hence flow measures should not be assumed to equal with CO. Clinicians should take into account variables such as high CO, BP, and opening of the aortic valve when interpreting LVAD flow readout. Direct flow sensors incorporated in the LVAD system may allow for better estimation.

  3. Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI

    Science.gov (United States)

    Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger

    2015-03-01

    In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.

  4. [Computer cardiokymography. On its way to long-term noninvasive monitoring of cardiac performance in daly life].

    Science.gov (United States)

    Khaiutin, V M; Lukoshkova, E V; Sheroziia, G G

    2004-05-01

    stop veloergometry at lower loads, thus increasing the safety of the test. Since for large medical insurance companies very simple and inexpensive cardiokymograph are quite unprofitable, their commercially production in USA and in Germany has been stopped. However, the goal of cardiokymography: a real-time, beat-to-beat, long-term monitoring of cardiac function in daily life, remains the major factor determining the future of the method.

  5. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility.

    Science.gov (United States)

    Cutajar, Marica; Thomas, David L; Hales, Patrick W; Banks, T; Clark, Christopher A; Gordon, Isky

    2014-06-01

    To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min(-1) [100 ml tissue](-1), and using DCE MRI was 287 ± 70 ml min(-1) [100 ml tissue](-1). The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. Reliable non-invasive monitoring of renal blood flow is currently clinically unavailable. Renal arterial spin labelling MRI is robust and repeatable. Renal dynamic contrast-enhanced MRI is robust and repeatable. ASL blood flow values are similar to those obtained using DCE-MRI.

  6. In situ cardiac perfusion reveals interspecific variation of intraventricular flow separation in reptiles.

    Science.gov (United States)

    Joyce, William; Axelsson, Michael; Altimiras, Jordi; Wang, Tobias

    2016-07-15

    The ventricles of non-crocodilian reptiles are incompletely divided and provide an opportunity for mixing of oxygen-poor blood and oxygen-rich blood (intracardiac shunting). However, both cardiac morphology and in vivo shunting patterns exhibit considerable interspecific variation within reptiles. In the present study, we develop an in situ double-perfused heart approach to characterise the propensity and capacity for shunting in five reptile species: the turtle Trachemys scripta, the rock python Python sebae, the yellow anaconda Eunectes notaeus, the varanid lizard Varanus exanthematicus and the bearded dragon Pogona vitticeps To simulate changes in vascular bed resistance, pulmonary and systemic afterloads were independently manipulated and changes in blood flow distribution amongst the central outflow tracts were monitored. As previously demonstrated in Burmese pythons, rock pythons and varanid lizards exhibited pronounced intraventricular flow separation. As pulmonary or systemic afterload was raised, flow in the respective circulation decreased. However, flow in the other circulation, where afterload was constant, remained stable. This correlates with the convergent evolution of intraventricular pressure separation and the large intraventricular muscular ridge, which compartmentalises the ventricle, in these species. Conversely, in the three other species, the pulmonary and systemic flows were strongly mutually dependent, such that the decrease in pulmonary flow in response to elevated pulmonary afterload resulted in redistribution of perfusate to the systemic circuit (and vice versa). Thus, in these species, the muscular ridge appeared labile and blood could readily transverse the intraventricular cava. We conclude that relatively minor structural differences between non-crocodilian reptiles result in the fundamental changes in cardiac function. Further, our study emphasises that functionally similar intracardiac flow separation evolved independently in

  7. A comparison of volume clamp method-based continuous noninvasive cardiac output (CNCO) measurement versus intermittent pulmonary artery thermodilution in postoperative cardiothoracic surgery patients.

    Science.gov (United States)

    Wagner, Julia Y; Körner, Annmarie; Schulte-Uentrop, Leonie; Kubik, Mathias; Reichenspurner, Hermann; Kluge, Stefan; Reuter, Daniel A; Saugel, Bernd

    2018-04-01

    The CNAP technology (CNSystems Medizintechnik AG, Graz, Austria) allows continuous noninvasive arterial pressure waveform recording based on the volume clamp method and estimation of cardiac output (CO) by pulse contour analysis. We compared CNAP-derived CO measurements (CNCO) with intermittent invasive CO measurements (pulmonary artery catheter; PAC-CO) in postoperative cardiothoracic surgery patients. In 51 intensive care unit patients after cardiothoracic surgery, we measured PAC-CO (criterion standard) and CNCO at three different time points. We conducted two separate comparative analyses: (1) CNCO auto-calibrated to biometric patient data (CNCO bio ) versus PAC-CO and (2) CNCO calibrated to the first simultaneously measured PAC-CO value (CNCO cal ) versus PAC-CO. The agreement between the two methods was statistically assessed by Bland-Altman analysis and the percentage error. In a subgroup of patients, a passive leg raising maneuver was performed for clinical indications and we present the changes in PAC-CO and CNCO in four-quadrant plots (exclusion zone 0.5 L/min) in order to evaluate the trending ability of CNCO. The mean difference between CNCO bio and PAC-CO was +0.5 L/min (standard deviation ± 1.3 L/min; 95% limits of agreement -1.9 to +3.0 L/min). The percentage error was 49%. The concordance rate was 100%. For CNCOcal, the mean difference was -0.3 L/min (±0.5 L/min; -1.2 to +0.7 L/min) with a percentage error of 19%. In this clinical study in cardiothoracic surgery patients, CNCO cal showed good agreement when compared with PAC-CO. For CNCO bio , we observed a higher percentage error and good trending ability (concordance rate 100%).

  8. A new noninvasive device for measuring central ejection dP/dt mathematical foundation of cardiac dP/dt measurement using a model for a collapsible artery.

    Science.gov (United States)

    Gorenberg, Miguel; Rotztein, Hector; Marmor, Alon

    2009-03-01

    We have developed a novel non-invasive device for the measurement of one of the most sensitive indices of myocardial contractility as represented by the rate of increase of intraventricular pressure (left ventricular dP/dt and arterial dP/dt performance index (dP/dt(ejc)). Up till now, these parameters could be obtained only by invasive catheterization methods. The new technique is based on the concept of applying multiple successive occlusive pressures on the brachial artery from peak systole to diastole using a inflatable cuff and plotting the values against time intervals that leads to the reconstruction of the central aortic pressure noninvasively. The following describes the computer simulator developed for providing a mathematical foundation of the new sensor. At the core of the simulator lies a hemodynamic model of the blood flow on an artery under externally applied pressure. The purpose of the model is to reproduce the experimental results obtained in studies on patients (Gorenberg et al. in Cardiovasc Eng: 305-311, 2004; Gorenberg et al. in Emerg med J 22 (7): 486-489, 2005) and a animal model where ischemia resulted from balloon inflation during coronary catheterization (Gorenberg and Marmor in J Med Eng Technol, 2006) and to describe correlations between the dP/dt(ejc) and other hemodynamic variables. The model has successfully reproduced the trends observed experimentally, providing a solid in-depth understanding of the hemodynamics involved in the new measurement. A high correlation between the dP/dt(ejc) and the rate of pressure rise in the aorta during the ejection phase was observed. dP/dt(ejc) dependence on other hemodynamic parameters was also investigated.

  9. Noninvasive regional cerebral blood flow measurements at pre- and post-acetazolamide test using 99mTc-ECD

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Nakano, Seigo; Tanaka, Masaaki.

    1996-01-01

    A technique for serial noninvasive cerebral blood flow measurements at pre- and post-acetazolamide (Diamox) test was newly developed using 99m Tc-ECD without blood sampling. Baseline mean cerebral blood flow (mCBF) was measured from graphical analysis of time activity curves for brain and aortic arch obtained from radionuclide angiography by injection of 370-555 MBq 99m Tc-ECD. The first SPECT study was performed immediately after intravenous administration of 1 g of Diamox, then baseline regional cerebral blood flow (rCBF) was calculated using Lassen's correction algorithm. Immediately after the stop of the first SPECT study, additional 555-740 MBq of 99m Tc-ECD was administered, thereafter the second SPECT study was started. Post-Diamox SPECT images were obtained by subtraction of the first baseline images from the second images. Using Lassen's algorithm, post-Diamox mCBF was estimated from the baseline mCBF, the baseline mean SPECT counts, and post-Diamox mean SPECT counts corrected for administered dose and imaging time. Post-Diamox rCBF was obtained from the post-Diamox mCBF and the post-Diamox mean SPECT counts using Lassen's algorithm. Coefficient variation was shown 2.7% and 3.5%: mCBF and rCBF, respectively in test-retest results in six patients without Diamox administration. Nine demented patients without vascular disorders showed significant mCBF increase of 35.7% on the average by post-Diamox. In conclusion, this simplified method is practically useful for measuring CBF at pre- and post-Diamox test within short period of time without any blood sample. (author)

  10. Noninvasive parametric blood flow imaging of head and neck tumours using [15O]H2O and PET/CT.

    Science.gov (United States)

    Komar, Gaber; Oikonen, Vesa; Sipilä, Hannu; Seppänen, Marko; Minn, Heikki

    2012-11-01

    The aim of this study was to develop a simple noninvasive method for measuring blood flow using [15O]H2O PET/CT for the head and neck area applicable in daily clinical practice. Fifteen dynamic [15O]H2O PET emission scans with simultaneous online radioactivity measurements of radial arterial blood [Blood-input functions (IFs)] were performed. Two noninvasively obtained population-based input functions were calculated by averaging all Blood-IF curves corrected for patients' body mass and injected dose [standardized uptake value (SUV)-IF] and for body surface area (BSA-IF) and injected dose. Parametric perfusion images were calculated for each set of IFs using a linearized two-compartment model, and values for several tissues were compared using Blood-IF as the gold standard. On comparing all tissues, the correlation between blood flow obtained with the invasive Blood-IF and both SUV-IF and BSA-IF was significant (R2=0.785 with P<0.001 and R2=0.813 with P<0.001, respectively). In individual tissues, the performance of the two noninvasive methods was most reliable in resting muscle and slightly less reliable in tumour and cerebellar regions. In these two tissues, only BSA-IF showed a significant correlation with Blood-IF (R2=0.307 with P=0.032 in tumours and R2=0.398 with P<0.007 in the cerebellum). The BSA-based noninvasive method enables clinically relevant delineation between areas of low and high blood flow in tumours. The blood flow of low-perfusion tissues can be reliably quantified using either of the evaluated noninvasive methods.

  11. Observation of the lymph flow in the lower extremities of edematous patients with noninvasive methods

    International Nuclear Information System (INIS)

    Arai, Isao; Hirota, Akio; Watanabe, Sumio

    1983-01-01

    An RI-lymphography with a computer onlined gamma camera was used for observing the lymph flow of edematous patients without any invasive procedures and for estimating the active movement of lymph vessels. Subjects were composed of 8 normal volunteers (group 1), 41 non-edematous patients (group 2) and 26 edematous patients (group 3). Four mCi of Tc-99m-HSA in a volume of 0.1 ml was injected subcutaneously in the pretibial region of the lower extremity, and immediately after the injection scintigram was recorded on the thigh every 5 sec. for 30 min. Results: 1) Normal volunteers; Time-activity curves showed a gradual increase in RI activity in relation to time without remarkable spike-like fluctuations. The maximum count attained was less than 200 cps in all experiments. 2) Non-edematous patients; In 46 out of 57 experiments (80.8%), the similar time-activity curves were observed as those of the normal volunteers. On the other hand, time-activity curves in 11 out of 57 (19.2%) showed a much steeper stepwise-increase simultaneously with remarkable spike-waves. The maximum count was over 200 cps in these cases. 3) Edematous patients; In 12 out of 35 experiments (34.3%), the maximum count was over 200 cps. In these edematous diseases other than lymphedema and hyperthyroidism, time-activity curves showed a rapid stepwise increase with a lot of spikes, and the maximum count was over 500 cps in 6 experiments. In 23 out of 35 (65.7%), the maximum count was less than 200 cps. In these cases, edema was attributable to secondary lymphedema, hypothyroidism, aging and so on. 4) Relationship between edema and lymph flow: When subjects were divided into 3 groups (non-edema, mild and severe edema), the maximum count 200 cps was observed in 16.7% in non-edema group, 45.8% in mild and 9.1% in severe edema group

  12. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Rok Gaber

    2013-11-01

    Full Text Available To effectively fight against the human immunodeficiency virus infection/ acquired immunodeficiency syndrome (HIV/AIDS epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity.

  13. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Science.gov (United States)

    Gaber, Rok; Majerle, Andreja; Jerala, Roman; Benčina, Mojca

    2013-01-01

    To effectively fight against the human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET)-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity. PMID:24287545

  14. Cardiac vagal tone, a non-invasive measure of parasympathetic tone, is a clinically relevant tool in Type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Brock, C; Jessen, N; Brock, B

    2017-01-01

    AIMS: To compare a novel index of parasympathetic tone, cardiac vagal tone, with established autonomic variables and to test the hypotheses that (1) cardiac vagal tone would be associated with established time and frequency domain measures of heart rate and (2) cardiac vagal tone would be lower...... identification of people with Type 1 diabetes who should undergo formal autonomic function testing....

  15. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    Science.gov (United States)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  16. Noninvasive MRI measurement of the absolute cerebral blood volume-cerebral blood flow relationship during visual stimulation in healthy humans.

    Science.gov (United States)

    Ciris, Pelin Aksit; Qiu, Maolin; Constable, R Todd

    2014-09-01

    The relationship between cerebral blood volume (CBV) and cerebral blood flow (CBF) underlies blood oxygenation level-dependent functional MRI signal. This study investigates the potential for improved characterization of the CBV-CBF relationship in humans, and examines sex effects as well as spatial variations in the CBV-CBF relationship. Healthy subjects were imaged noninvasively at rest and during visual stimulation, constituting the first MRI measurement of the absolute CBV-CBF relationship in humans with complete coverage of the functional areas of interest. CBV and CBF estimates were consistent with the literature, and their relationship varied both spatially and with sex. In a region of interest with stimulus-induced activation in CBV and CBF at a significance level of the P < 0.05, a power function fit resulted in CBV = 2.1 CBF(0.32) across all subjects, CBV = 0.8 CBF(0.51) in females and CBV = 4.4 CBF(0.15) in males. Exponents decreased in both sexes as ROIs were expanded to include less significantly activated regions. Consideration for potential sex-related differences, as well as regional variations under a range of physiological states, may reconcile some of the variation across literature and advance our understanding of the underlying cerebrovascular physiology. Copyright © 2013 Wiley Periodicals, Inc.

  17. Impact of pacing modality and biventricular pacing on cardiac output and coronary conduit flow in the post-cardiotomy patient.

    LENUS (Irish Health Repository)

    Healy, David G

    2012-02-03

    We have previously demonstrated the role of univentricular pacing modalities in influencing coronary conduit flow in the immediate post-operative period in the cardiac surgery patient. We wanted to determine the mechanism of this improved coronary conduit and, in addition, to explore the possible benefits with biventricular pacing. Sixteen patients undergoing first time elective coronary artery bypass grafting who required pacing following surgery were recruited. Comparison of cardiac output and coronary conduit flow was performed between VVI and DDD pacing with a single right ventricular lead and biventricular pacing lead placement. Cardiac output was measured using arterial pulse waveform analysis while conduit flow was measured using ultrasonic transit time methodology. Cardiac output was greatest with DDD pacing using right ventricular lead placement only [DDD-univentricular 5.42 l (0.7), DDD-biventricular 5.33 l (0.8), VVI-univentricular 4.71 l (0.8), VVI-biventricular 4.68 l (0.6)]. DDD-univentricular pacing was significantly better than VVI-univentricular (P=0.023) and VVI-biventricular pacing (P=0.001) but there was no significant advantage to DDD-biventricular pacing (P=0.45). In relation to coronary conduit flow, DDD pacing again had the highest flow [DDD-univentricular 55 ml\\/min (24), DDD-biventricular 52 ml\\/min (25), VVI-univentricular 47 ml\\/min (23), VVI-biventricular 50 ml\\/min (26)]. DDD-univentricular pacing was significantly better than VVI-univentricular (P=0.006) pacing but not significantly different to VVI-biventricular pacing (P=0.109) or DDD-biventricular pacing (P=0.171). Pacing with a DDD modality offers the optimal coronary conduit flow by maximising cardiac output. Biventricular lead placement offered no significant benefit to coronary conduit flow or cardiac output.

  18. Coronary grafts flow and cardiac pacing modalities: how to improve perioperative myocardial perfusion.

    LENUS (Irish Health Repository)

    D'Ancona, Giuseppe

    2012-02-03

    OBJECTIVE: Aim of this study was to investigate modifications of coronary grafts flow during different pacing modalities after CABG. MATERIALS AND METHODS: Two separate prospective studies were conducted in patients undergoing CABG and requiring intraoperative epicardial pacing. In a first study (22 patients) coronary grafts flows were measured during dual chamber pacing (DDD) and during ventricular pacing (VVI). In a second study (10 patients) flows were measured during DDD pacing at different atrio-ventricular (A-V) delay periods. A-V delay was adjusted in 25 ms increments from 25 to 250 ms and flow measurements were performed for each A-V delay increment. A transit time flowmeter was used for the measurements. RESULTS: An average of 3.4 grafts\\/patient were performed. In the first study, average coronary graft flow was 47.4+\\/-20.8 ml\\/min during DDD pacing and 41.8+\\/-18.2 ml\\/min during VVI pacing (P = 0.0004). Furthermore average systolic pressure was 94.3+\\/-10.1 mmHg during DDD pacing and 89.6+\\/-12.2 mmHg during VVV pacing (P = 0.0007). No significant differences in diastolic pressure were recorded during the two different pacing modalities. In the second study, maximal flows were achieved during DDD pacing with an A-V delay of 175 ms (54+\\/-9.6 ml\\/min) and minimal flows were detected at 25 ms A-V delay (38.1+\\/-4.7 ml\\/min) (P=ns). No significant differences in systolic or diastolic blood pressure were noticed during the different A-V delays. CONCLUSION: Grafts flowmetry provides an extra tool to direct supportive measures such as cardiac pacing after CABG. DDD mode with A-V delay around 175 ms. should be preferred to allow for maximal myocardial perfusion via the grafts.

  19. Exploiting gas diffusion for non-invasive sampling in flow analysis: determination of ethanol in alcoholic beverages

    Directory of Open Access Journals (Sweden)

    Simone Vicente

    2006-03-01

    Full Text Available A tubular gas diffusion PTFE membrane is exploited for non-invasive sampling in flow analysis, aiming to develop an improved spectrophotometric determination of ethanol in alcoholic beverages. The probe is immersed into the sample, allowing ethanol to diffuse through the membrane. It is collected into the acceptor stream (acidic dichromate solution, leading to formation of Cr(III, monitored at 600 nm. The analytical curve is linear up to 50% (v/v ethanol, baseline drift is Uma membrana tubular de PTFE permeável a espécies gasosas foi empregada como sonda em sistemas de análises em fluxo visando a proposta de uma estratégia de amostragem não invasiva. Como aplicação, foi selecionada a determinação espectrofotométrica de etanol em bebidas alcoólicas. A sonda é imersa na amostra, permitindo que o analito se difunda através desta e seja coletado pelo fluxo aceptor (solução ácida de dicromato, levando à formação de Cr(III, o qual é monitorado a 600 nm. Linearidade da curva analítica é verificada até 50,0% (v/v de etanol (r > 0,998; n = 8, derivas de linha base são menores do que 0,005 absorbância durante períodos de 4 horas de operação e a velocidade analítica é de 30 h-1 o que corresponde a 0.6 mmol K2Cr2O7 por determinação. Os resultados são precisos (d.p.r. < 2% e concordantes com aqueles obtidos por um método oficial.

  20. Practical utility of on-line clearance and blood temperature monitors as noninvasive techniques to measure hemodialysis blood access flow.

    Science.gov (United States)

    Fontseré, Néstor; Blasco, Miquel; Maduell, Francisco; Vera, Manel; Arias-Guillen, Marta; Herranz, Sandra; Blanco, Teresa; Barrufet, Marta; Burrel, Marta; Montaña, Javier; Real, Maria Isabel; Mestres, Gaspar; Riambau, Vicenç; Campistol, Josep M

    2011-01-01

    Access blood flow (Qa) measurements are recommended by the current guidelines as one of the most important components in vascular access maintenance programs. This study evaluates the efficiency of Qa measurement with on-line conductivity (OLC-Qa) and blood temperature monitoring (BTM-Qa) in comparison with the gold standard saline dilution method (SDM-Qa). 50 long-term hemodialysis patients (42 arteriovenous fistulas/8 arteriovenous grafts) were studied. Bland-Altman and Lin's coefficient (ρ(c)) were used to study accuracy and precision. Mean values were 1,021.7 ± 502.4 ml/min SDM-Qa, 832.8 ± 574.3 ml/min OLC-Qa (p = 0.007) and 1,094.9 ± 491.9 ml/min with BTM-Qa (p = NS). Biases and ρ(c) obtained were -188.8 ml/min (ρ(c) 0.58) OLC-Qa and 73.2 ml/min (ρ(c) 0.89) BTM-Qa. The limits of agreement (bias ± 1.96 SD) obtained were from -1,119 to 741.3 ml/min (OLC-Qa) and -350.6 to 497.2 ml/min (BTM-Qa). BTM-Qa and OLC-Qa are valid noninvasive and practical methods to estimate Qa, although BTM-Qa was more accurate and had better concordance than OLC-Qa compared with SDM-Qa. Copyright © 2010 S. Karger AG, Basel.

  1. Fetal cardiac assessment

    International Nuclear Information System (INIS)

    Greene, K.R.

    1983-01-01

    The better understanding of fetal cardiovascular physiology coupled with improved technology for non-invasive study of the fetus now enable much more detailed assessment of fetal cardiac status than by heart rate alone. Even the latter, relatively simple, measurement contains much more information than was previously realized. It is also increasingly clear that no single measurement will provide the answer to all clinical dilemmas either on cardiac function or the welfare of the fetus as a whole. There are obvious clinical advantages in measuring several variables from one signal and the measurement of heart rate, heart rate variation and waveform from the ECG in labour is a potentially useful combination. Systolic time intervals or flow measurements could easily be added or used separately by combining real-time and Doppler ultrasound probes

  2. A quantitative index of regional blood flow in canine myocardium derived noninvasively with N-13 ammonia and dynamic positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nienaber, C.A.; Ratib, O.; Gambhir, S.S.; Krivokapich, J.; Huang, S.C.; Phelps, M.E.; Schelbert, H.R. (Univ. of California, Los Angeles School of Medicine (USA))

    1991-01-01

    To derive a quantitative index of regional myocardial blood flow, the arterial input function of the flow tracer N-13 ammonia and the regional myocardial N-13 activity concentrations were noninvasively determined in 29 experiments in eight dogs. N-13 ammonia was administered intravenously and cross-sectional images were acquired dynamically using an ECAT III positron emission tomograph with an effective in-plane resolution of 13.46 mm full-width half-maximum. Time-activity curves were derived from the serial images by assigning regions of interest to the left ventricular myocardium and left ventricular blood pool. Tracer net extractions were estimated from the myocardial time-activity concentrations at various times after tracer injection and the integral of the arterial input function. Myocardial blood flow was altered by intravenous dipyridamole, morphine, propranolol and partial or complete occlusion of the left anterior descending coronary artery, and ranged from 9 to 860 ml/min per 100 g. Estimates of tracer net extractions were most accurate when determined from the myocardial N-13 activity concentrations at 60 s divided by the integral of the arterial input function to that time. These estimates correlated with regional myocardial blood flows determined independently by the microsphere technique by y = x (1 - 0.64(e-114/x); SEE = 22.9; r = 0.94). First pass extraction fractions of N-13 ammonia determined noninvasively with this approach declined with higher flows in a nonlinear fashion and were similar to those determined invasively by direct intracoronary N-13 ammonia injections. The findings indicate that an accurate index of regional myocardial blood flow can be obtained noninvasively by high temporal sampling of arterial and myocardial tracer activity concentrations with positron emission tomography.

  3. Tuple image multi-scale optical flow for detailed cardiac motion extraction: Application to left ventricle rotation analysis

    NARCIS (Netherlands)

    Assen, van H.C.; Florack, L.M.J.; Westenberg, J.J.M.; Haar Romenij, ter B.M.; Hamarneh, G.; Abugharbieh, R.

    2008-01-01

    We present a new method for detailed tracking of cardiac motion based on MR-tagging imaging, multi-scale optical flow, and HARP-like image filtering.In earlier work, we showed that the results obtained with our method correlate very well with Phase Contrast MRI. In this paper we combine the

  4. Hemodynamic and regional blood flow distribution responses to dextran, hydralazine, isoproterenol and amrinone during experimental cardiac tamponade

    International Nuclear Information System (INIS)

    Millard, R.W.; Fowler, N.O.; Gabel, M.

    1983-01-01

    Four different interventions were examined in dogs with cardiac tamponade. Infusion of 216 to 288 ml saline solution into the pericardium reduced cardiac output from 3.5 +/- 0.3 to 1.7 +/- 0.2 liters/min as systemic vascular resistance increased from 4,110 +/- 281 to 6,370 +/- 424 dynes . s . cm-5. Left ventricular epicardial and endocardial blood flows were 178 +/- 13 and 220 +/- 12 ml/min per 100 g, respectively, and decreased to 72 +/- 14 and 78 +/- 11 ml/min per 100 g with tamponade. Reductions of 25 to 65% occurred in visceral and brain blood flows and in a composite brain sample. Cardiac output during tamponade was significantly increased by isoproterenol, 0.5 microgram/kg per min intravenously; hydralazine, 40 mg intravenously; dextran infusion or combined hydralazine and dextran, but not by amrinone. Total systemic vascular resistance was reduced by all interventions. Left ventricular epicardial flow was increased by isoproterenol, hydralazine and the hydralazine-dextran combination. Endocardial flow was increased by amrinone and the combination of hydralazine and dextran. Right ventricular myocardial blood flow increased with all interventions except dextran. Kidney cortical and composite brain blood flows were increased by both dextran alone and by the hydralazine-dextran combinations. Blood flow to small intestine was increased by all interventions as was that to large intestine by all except amrinone and hydralazine. Liver blood flow response was variable. The most pronounced hemodynamic and tissue perfusion improvements during cardiac tamponade were effected by combined vasodilation-blood volume expansion with a hydralazine-dextran combination. Isoproterenol had as dramatic an effect but it was short-lived. Amrinone was the least effective intervention

  5. The effect of halothane on the distribution of cardiac output and organ blood flows in the hemorrhagic, hypotensive dog

    International Nuclear Information System (INIS)

    Ahlgren, I.; Aronsen, K.F.; Bjoerkman, I.

    1978-01-01

    Halothane was given to dogs which had been bled to an arterial mean blood pressure of 60 mmHg, and the circulatory effects were studied with the aid of the radioactive microsphere technique. The cardiac output and coronary blood flow were well maintained, whereas the arterial mean blood pressure was slightly, and the stroke volume markedly increased, indicating an improved heart function. The blood flows to the brain, lungs, liver and kidneys were well preserved throughout the anesthesia. The effect of retransfusing the withdrawn blood was also studied, and it resulted in an increased cardiac output, arterial mean blood pressure and increased blood flows to the heart, lungs, spleen, bowel and liver. (author)

  6. Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    International Nuclear Information System (INIS)

    Abbagoni, Baba Musa; Yeung, Hoi

    2016-01-01

    success of a clamp-on ultrasound sensor for flow regime classification that would be possible in industry practice. It is considerably more promising than other techniques as it uses a non-invasive and non-radioactive sensor. (paper)

  7. Non-invasive classification of gas-liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    Science.gov (United States)

    Musa Abbagoni, Baba; Yeung, Hoi

    2016-08-01

    success of a clamp-on ultrasound sensor for flow regime classification that would be possible in industry practice. It is considerably more promising than other techniques as it uses a non-invasive and non-radioactive sensor.

  8. Non-invasive assessment of congenital pulmonary vein stenosis in children using cardiac-non-gated CT with 64-slice technology

    International Nuclear Information System (INIS)

    Ou, Phalla; Marini, Davide; Celermajer, David S.; Agnoletti, Gabriella; Vouhe, Pascal; Sidi, Daniel; Bonnet, Damien; Brunelle, Francis

    2009-01-01

    Background: Management of congenital pulmonary vein stenosis is a diagnostic challenge. Echocardiography may be insufficient and thus cardiac catheterization remains the reference standard in this setting. The aim of the study was to investigate the accuracy of cardiac-non-gated CT using 64-slice technology in detecting congenital pulmonary vein stenosis in children. Materials and methods: CT examinations were consecutively performed from May 2005 to December 2006 in 13 children aged 1.5-12 months (median 5 months) for suspected congenital pulmonary vein stenosis. Cardiac-non-gated CT acquisitions were performed after the peripheral injection of contrast agent. Pulmonary veins were evaluated for their pattern of connectivity from the lung to the left atrium and for the presence of stenosis. CT findings of pulmonary vein stenosis were compared with combined findings available from echocardiography, catheterization and surgery. Results: Pulmonary veins from the right lung (n = 29) and left lung (n = 26) were evaluated as separate structures (N = 55). Of the 55 structures, 32 had surgical and/or catheterization data and 45 had echocardiography for comparison. CT visualized 100% (55/55) of the investigated structures, while echocardiography visualized 82% (45/55). In the 13 subjects CT identified 10 stenotic pulmonary veins. CT confirmed the echocardiography suspicion of pulmonary vein stenosis in 100% (7/7) and established a new diagnosis in 3 other patients. CT agreed with surgery/catheterization in 100% (10/10) of the available comparisons. Conclusion: Cardiac-non-gated CT assessed the pulmonary veins more completely than echocardiography and should be considered as a viable alternative for invasive pulmonary venography for detecting pulmonary vein stenosis in children.

  9. Noninvasive ventilation.

    Science.gov (United States)

    Rabatin, J T; Gay, P C

    1999-08-01

    Noninvasive ventilation refers to the delivery of assisted ventilatory support without the use of an endotracheal tube. Noninvasive positive pressure ventilation (NPPV) can be delivered by using a volume-controlled ventilator, a pressure-controlled ventilator, a bilevel positive airway pressure ventilator, or a continuous positive airway pressure device. During the past decade, there has been a resurgence in the use of noninvasive ventilation, fueled by advances in technology and clinical trials evaluating its use. Several manufacturers produce portable devices that are simple to operate. This review describes the equipment, techniques, and complications associated with NPPV and also the indications for both short-term and long-term applications. NPPV clearly represents an important addition to the techniques available to manage patients with respiratory failure. Future clinical trials evaluating its many clinical applications will help to define populations of patients most apt to benefit from this type of treatment.

  10. Noninvasive in vivo optical characterization of blood flow and oxygen consumption in the superficial plexus of skin

    Science.gov (United States)

    Liasi, Faezeh Talebi; Samatham, Ravikant; Jacques, Steven L.

    2017-11-01

    Assessing the metabolic activity of a tissue, whether normal, damaged, aged, or pathologic, is useful for diagnosis and evaluating the effects of drugs. This report describes a handheld optical fiber probe that contacts the skin, applies pressure to blanch the superficial vascular plexus of the skin, then releases the pressure to allow refill of the plexus. The optical probe uses white light spectroscopy to record the time dynamics of blanching and refilling. The magnitude and dynamics of changes in blood content and hemoglobin oxygen saturation yield an estimate of the oxygen consumption rate (OCR) in units of attomoles per cell per second. The average value of OCR on nine forearm sites on five subjects was 10±5 (amol/cell/s). This low-cost, portable, rapid, noninvasive optical probe can characterize the OCR of a skin site to assess the metabolic activity of the epidermis or a superficial lesion.

  11. Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress

    NARCIS (Netherlands)

    Harms, M.P.M.; Wesseling, K.H.; Pott, F.; Jenstrup, M.; Goudoever, J. van; Secher, N.H.; Lieshout, J.J. van

    1999-01-01

    The relationship between aortic flow and pressure is described by a three-element model of the arterial input impedance, including continuous correction for variations in the diameter and the compliance of the aorta (Modelflow). We computed the aortic flow from arterial pressure by this model, and

  12. Regional cerebral blood flow measurements by a noninvasive microsphere method using 123I-IMP. Comparison with the modified fractional uptake method and the continuous arterial blood sampling method

    International Nuclear Information System (INIS)

    Nakano, Seigo; Matsuda, Hiroshi; Tanizaki, Hiroshi; Ogawa, Masafumi; Miyazaki, Yoshiharu; Yonekura, Yoshiharu

    1998-01-01

    A noninvasive microsphere method using N-isopropyl-p-( 123 I)iodoamphetamine ( 123 I-IMP), developed by Yonekura et al., was performed in 10 patients with neurological diseases to quantify regional cerebral blood flow (rCBF). Regional CBF values by this method were compared with rCBF values simultaneously estimated from both the modified fractional uptake (FU) method using cardiac output developed by Miyazaki et al. and the conventional method with continuous arterial blood sampling. In comparison, we designated the factor which converted raw SPECT voxel counts to rCBF values as a CBF factor. A highly significant correlation (r=0.962, p<0.001) was obtained in the CBF factors between the present method and the continuous arterial blood sampling method. The CBF factors by the present method were only 2.7% higher on the average than those by the continuous arterial blood sampling method. There were significant correlation (r=0.811 and r=O.798, p<0.001) in the CBF factor between modified FU method (threshold for estimating total brain SPECT counts; 10% and 30% respectively) and the continuous arterial blood sampling method. However, the CBF factors of the modified FU method showed 31.4% and 62.3% higher on the average (threshold; 10% and 30% respectively) than those by the continuous arterial blood sampling method. In conclusion, this newly developed method for rCBF measurements was considered to be useful for routine clinical studies without any blood sampling. (author)

  13. MR measures of renal perfusion, oxygen bioavailability and total renal blood flow in a porcine model: noninvasive regional assessment of renal function.

    Science.gov (United States)

    Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A

    2012-01-01

    Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all three parameters of kidney function in a single MRI examination and to evaluate the relationships between these functional parameters is potentially useful for evaluating the state of the human kidneys in situ in future studies.

  14. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].

    Science.gov (United States)

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C

    2018-06-01

    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as

  15. Peak negative myocardial velocity gradient in early diastole as a noninvasive indicator of left ventricular diastolic function: comparison with transmitral flow velocity indices.

    Science.gov (United States)

    Shimizu, Y; Uematsu, M; Shimizu, H; Nakamura, K; Yamagishi, M; Miyatake, K

    1998-11-01

    We sought to assess the clinical significance of peak negative myocardial velocity gradient (MVG) in early diastole as a noninvasive indicator of left ventricular (LV) diastolic function. Peak systolic MVG has been shown useful for the quantitative assessment of regional wall motion abnormalities, but limited data exist regarding the diastolic MVG as an indicator of LV diastolic function. Peak negative MVG was obtained from M-mode tissue Doppler imaging (TDI) in 43 subjects with or without impairment of systolic and diastolic performance: 12 normal subjects, 12 patients with hypertensive heart disease (HHD) with normal systolic performance and 19 patients with dilated cardiomyopathy (DCM), and was compared with standard Doppler transmitral flow velocity indices. In a subgroup of 30 patients, effects of preload increase on these indices were assessed by performing passive leg lifting. In an additional 11 patients with congestive heart failure at the initial examination, the measurements were repeated after 26+/-16 days of volume-reducing therapy. Peak negative MVG was significantly depressed both in HHD (-3.9+/-1.3/s, p indices failed to distinguish DCM from normal due to the pseudonormalization. Transmitral flow velocity indices were significantly altered (peak early/late diastolic filling velocity [E/A]=1.1+/-0.5 to 1.5+/-0.7, p indicator of LV diastolic function that is less affected by preload alterations than the transmitral flow velocity indices, and thereby could be used for the follow-up of patients with nonischemic LV dysfunction presenting congestive heart failure.

  16. Novel Approaches for the Use of Cardiac/Coronary Computed Tomography Angiography

    Directory of Open Access Journals (Sweden)

    Hadi Mirhedayati Roudsari, MD

    2016-12-01

    Full Text Available Recent developments in the novel imaging technology of cardiac computed tomography (CT not only permit detailed assessment of cardiac anatomy but also provide insight into cardiovascular physiology. Foremost, coronary CT angiography (CCTA enables direct noninvasive examination of both coronary artery stenoses and atherosclerotic plaque characteristics. Calculation of computational fluid dynamics by cardiac CT allows the noninvasive estimation of fractional flow reserve, which increases the diagnostic accuracy for detection of hemodynamically significant coronary artery disease. In addition, a combination of myocardial CT perfusion and CCTA can provide simultaneous anatomical and functional assessment of coronary artery disease. Finally, detailed anatomical evaluation of atrial, ventricular, and valvular anatomy provides diagnostic information and guidance for procedural planning, such as for transcatheter aortic valve replacement. The clinical applications of cardiac CT will be extended with the development of these novel modalities.

  17. Reduced peripheral arterial blood flow with preserved cardiac output during submaximal bicycle exercise in elderly heart failure

    Directory of Open Access Journals (Sweden)

    Leng Xiaoyan

    2009-11-01

    Full Text Available Abstract Background Older heart failure (HF patients exhibit exercise intolerance during activities of daily living. We hypothesized that reduced lower extremity blood flow (LBF due to reduced forward cardiac output would contribute to submaximal exercise intolerance in older HF patients. Methods and Results Twelve HF patients both with preserved and reduced left ventricular ejection fraction (LVEF (aged 68 ± 10 years without large (aorta or medium sized (iliac or femoral artery vessel atherosclerosis, and 13 age and gender matched healthy volunteers underwent a sophisticated battery of assessments including a peak exercise oxygen consumption (peak VO2, b physical function, c cardiovascular magnetic resonance (CMR submaximal exercise measures of aortic and femoral arterial blood flow, and d determination of thigh muscle area. Peak VO2 was reduced in HF subjects (14 ± 3 ml/kg/min compared to healthy elderly subjects (20 ± 6 ml/kg/min (p = 0.01. Four-meter walk speed was 1.35 ± 0.24 m/sec in healthy elderly verses 0.98 ± 0.15 m/sec in HF subjects (p p ≤ 0.03. Conclusion During CMR submaximal bike exercise in the elderly with heart failure, mechanisms other than low cardiac output are responsible for reduced lower extremity blood flow.

  18. Noninvasive, near infrared spectroscopic-measured muscle pH and PO2 indicate tissue perfusion for cardiac surgical patients undergoing cardiopulmonary bypass

    Science.gov (United States)

    Soller, Babs R.; Idwasi, Patrick O.; Balaguer, Jorge; Levin, Steven; Simsir, Sinan A.; Vander Salm, Thomas J.; Collette, Helen; Heard, Stephen O.

    2003-01-01

    OBJECTIVE: To determine whether near infrared spectroscopic measurement of tissue pH and Po2 has sufficient accuracy to assess variation in tissue perfusion resulting from changes in blood pressure and metabolic demand during cardiopulmonary bypass. DESIGN: Prospective clinical study. SETTING: Academic medical center. SUBJECTS: Eighteen elective cardiac surgical patients. INTERVENTION: Cardiac surgery under cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS: A near infrared spectroscopic fiber optic probe was placed over the hypothenar eminence. Reference Po2 and pH sensors were inserted in the abductor digiti minimi (V). Data were collected every 30 secs during surgery and for 6 hrs following cardiopulmonary bypass. Calibration equations developed from one third of the data were used with the remaining data to investigate sensitivity of the near infrared spectroscopic measurement to physiologic changes resulting from cardiopulmonary bypass. Near infrared spectroscopic and reference pH and Po2 measurements were compared for each subject using standard error of prediction. Near infrared spectroscopic pH and Po2 at baseline were compared with values during cardiopulmonary bypass just before rewarming commenced (hypotensive, hypothermic), after rewarming (hypotensive, normothermic) just before discontinuation of cardiopulmonary bypass, and at 6 hrs following cardiopulmonary bypass (normotensive, normothermic) using mixed-model analysis of variance. Near infrared spectroscopic pH and Po2 were well correlated with the invasive measurement of pH (R2 =.84) and Po2 (R 2 =.66) with an average standard error of prediction of 0.022 +/- 0.008 pH units and 6 +/- 3 mm Hg, respectively. The average difference between the invasive and near infrared spectroscopic measurement was near zero for both the pH and Po2 measurements. Near infrared spectroscopic Po2 significantly decreased 50% on initiation of cardiopulmonary bypass and remained depressed throughout the bypass and

  19. Noninvasive quantitative assessment of cerebral blood flow (CBF) using Tc-99m ECD SPECT with adjunctive radionuclide angiography in ischemic stroke

    International Nuclear Information System (INIS)

    Yim, Jun Sung; Choi, Yun Young; Kim, Seung Hyun; Kim, Myung Ho; Cho, Suk Shin

    1999-01-01

    Quantitative CBF measurements are essential for diagnosing ischemic lesion, evaluating the therapeutic effects and predicting the prognosis of cerebral ischemia. Even though several methods have been introduced, these techniques are too cumbersome and invasive to be applied to routine studies. In this study, a non-invasive simple method for the quantitative angiography. Fifteen normal controls and 27 patients with unilateral carotid ischemic stoke were selected. Brain perfusion index (BPI) of each hemisphere was measured in each subject by acquisition of serial radionuclide angiography after injection of 20mCi of Tc-99m ECD. With Lassen's correction algorithm of curve-linear relationship between the brain activity and blood flow, rCBF on transaxial SPECT slice corresponding with MRI lesion sites (ischemic core, border zone and contralateral mirror locus) were calculated. BPI values for normal controls showed a significant negative correlation with advantage age (r=-0.64, p=0.021) and hemisphric BPI were 11.02±1.6 and 7.8±1.4 for normal controls and patient, respectively. Significant differences were observed between two groups (p=0.0012). rCBF obtained from core zone (12±2.5 ml/100/min), boneder zone (29.2±8.1) and contralateral mirror locus (52.1±15.1) were clearly defined in each subject of patient group. Measurement of BPI and rCBF using Tc-99m ECD SPECT with adjunctive radionuclide angiography could be an useful, simple and non-invasive method in evaluation of the cerebral flood in the ischemic stroke

  20. Glomus caroticus, environment, time parameters of cardiac and pathogenic mechanisms of formation of somatogenic depression and mixed encephalopathies on the methodological grounds of non-invasive hemogram analyzer

    Directory of Open Access Journals (Sweden)

    Anatoly N. Malykhin

    2013-05-01

    Full Text Available Aims The aim is to determine interaction of risk factors (volume of ingested food and exogenous alcohol and their effects on thermal regulation of a body due to the changed activity of biochemical reactions of neuromediator regulatory systems, related to the synthesis of endogenous alcohol. Materials and methods Based on study of neurological status, biochemical and instrumental methods of precordial mapping, urine specific gravity and thermometry of five biologically active points, 1200 males were examined for pathogenic mechanisms of endogenous alcohol synthesis and formation of time parameters of cardiac and clinical manifestation of somatogenic depression, metabolic syndrome and alcohol abuse with formation of encephalopathies. Results The amount of endogenous alcohol determines disorders in the bradykininacetylcholine and dopamine-noradrenalin systems and formation of clinical syndromes in the continuum of somatogeny-psychogeny (according to the international classification of diseases (ICD-10. Conclusion Changes in thermal regulation were accompanied with changes of functional mechanisms of Glomus Caroticus, affecting erythrocyte and its receptors, related to atomic oxygen and hydrogen in atmosphere, with formation of relevant pH values of arterial and venous blood, amount of endogenous alcohol.

  1. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis.

    Science.gov (United States)

    Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino

    2018-01-01

    Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P  0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. In vitro study on work of breathing during non-invasive ventilation using a new variable flow generator.

    Science.gov (United States)

    Flink, Rutger C; van Kaam, Anton H; de Jongh, Frans H

    2015-07-01

    In an attempt to reduce the work of breathing (WOB) and the risk of respiratory failure, preterm infants are increasingly treated with nasal synchronised biphasic positive airway pressure (BPAP) via the Infant Flow SiPAP system. However, the relatively high resistance of the generator limits the pressure amplitude (PA) and pressure build-up (PB) of this system. This in vitro study investigates the impact of a new generator with improved fluid mechanics on the WOB, PA and PB during BPAP. Using a low compliance lung model, WOB, PA and PB, were measured during BPAP using the old and the new Infant Flow generators. Airway resistance (tube sizes 2.5 mm, 3.0 mm and 3.5 mm), nasal interface sizes (small, medium and large) and four different ventilator settings were used to mimic different clinical conditions. Compared with the old generator, the new generator significantly reduced the WOB between 10% and 70%, depending on the measurement configuration. The maximum PA was higher when using the new (6-7 cm H2O) generator versus the old (3-4 cm H2O) generator. During the first 100 ms of inspiration, the new generator reached between 33% and 40% of the peak pressure compared with 11-20% for the old generator. This in vitro study shows that a new generator of the Infant Flow SiPAP device results in a significant reduction in WOB and an increase in PA and PB during BPAP. The results of this study need to be confirmed under variable clinical conditions in preterm infants. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Cutajar, Marica; Hales, Patrick W.; Clark, Christopher A.; Gordon, Isky [UCL Institute of Child Health, Imaging and Biophysics Unit, London (United Kingdom); Thomas, David L. [UCL Institute of Neurology, Department of Brain Repair and Rehabilitation, London (United Kingdom); Banks, T. [Great Ormond Street Hospital, Department of Radiology, London (United Kingdom)

    2014-06-15

    To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min{sup -1} [100 ml tissue]{sup -1}, and using DCE MRI was 287 ± 70 ml min{sup -1} [100 ml tissue]{sup -1}. The group coefficient of variation (CV{sub g}) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CV{sub g}s of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. (orig.)

  4. Effects of levosimendan on glomerular filtration rate, renal blood flow, and renal oxygenation after cardiac surgery with cardiopulmonary bypass: a randomized placebo-controlled study.

    Science.gov (United States)

    Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2013-10-01

    Acute kidney injury develops in a large proportion of patients after cardiac surgery because of the low cardiac output syndrome. The inodilator levosimendan increases cardiac output after cardiac surgery with cardiopulmonary bypass, but a detailed analysis of its effects on renal perfusion, glomerular filtration, and renal oxygenation in this group of patients is lacking. We therefore evaluated the effects of levosimendan on renal blood flow, glomerular filtration rate, renal oxygen consumption, and renal oxygen demand/supply relationship, i.e., renal oxygen extraction, early after cardiac surgery with cardiopulmonary bypass. Prospective, placebo-controlled, and randomized trial. Cardiothoracic ICU of a tertiary center. Postcardiac surgery patients (n=30). The patients were randomized to receive levosimendan, 0.1 µg/kg/min after a loading dose of 12 µg/kg (n=15), or placebo (n=15). The experimental procedure started 4-6 hours after surgery in the ICU during propofol sedation and mechanical ventilation. Systemic hemodynamic were evaluated by a pulmonary artery thermodilution catheter. Renal blood flow and glomerular filtration rate were measured by the renal vein retrograde thermodilution technique and by renal extraction of Cr-EDTA, respectively. Central venous pressure was kept constant by colloid/crystalloid infusion. Compared to placebo, levosimendan increased cardiac index (22%), stroke volume index (15%), and heart rate (7%) and decreased systemic vascular resistance index (21%), whereas mean arterial pressure was not affected. Levosimendan induced significant increases in renal blood flow (12%, prenal vascular resistance (18%, prenal oxygen consumption, or renal oxygen extraction, compared to placebo. After cardiac surgery with cardiopulmonary bypass, levosimendan induces a vasodilation, preferentially of preglomerular resistance vessels, increasing both renal blood flow and glomerular filtration rate without jeopardizing renal oxygenation. Due to its

  5. Quantification of left ventricular volumes from cardiac cine MRI using active contour model combined with gradient vector flow

    International Nuclear Information System (INIS)

    Tanki, Nobuyoshi; Murase, Kenya; Kumashiro, Masayuki; Momoi, Risa; Yang, Xiaomei; Tabuchi, Takashi; Nagayama, Masako; Watanabe, Yuji

    2005-01-01

    We investigated the feasibility of combining the active contour model with gradient vector flow (Snakes-GVF) to estimate left ventricular (LV) volumes from cardiac cine magnetic resonance imaging (MRI). MRI data were acquired from 27 patients, including 14 adults (9 men, 5 women, 55.0±23.3 years) and 13 children (10 boys, 3 girls, 2.7±2.1 years) using Gyroscan Intera (1.5 Tesla, Philips Medical Systems). LV volumes were calculated by adding the areas surrounded by the contour extracted by Snakes-GVF and compared with volumes estimated by manual tracing. Those estimated by Snakes-GVF [y (mL)] correlated well with those estimated by manual tracing [x (mL)]. In adult cases, the regression equation and correlation coefficient were y=1.008x-0.517 and 0.996, respectively. In pediatric cases, they were y=1.174x-2.542 and 0.992, respectively. In conclusion, Snakes-GVF is a powerful and useful tool for quantifying LV volumes using cardiac MRI. (author)

  6. The effect of blood pressure on non-invasive fractional flow reserve derived from coronary computed tomography angiography

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, Akira [Ehime University Graduate School of Medicine, Department of Radiology, Toon, Ehime (Japan); Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Coenen, Adriaan; Lubbers, Marisa M.; Nieman, Koen [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Erasmus University Medical Center, Departmenet of Cardiology, Rotterdam (Netherlands); Kido, Teruhito; Mochizuki, Teruhito [Ehime University Graduate School of Medicine, Department of Radiology, Toon, Ehime (Japan); Kido, Tomoyuki [Matsuyama Saiseikai Hospital, Department of Radiology, Matsuyama, Ehime (Japan); Yamashita, Natsumi [Clinical Research Center, National Hospital Organization Shikoku Cancer Center, Division of Clinical Biostatistics, Section of Cancer Prevention and Epidemiology, Matsuyama, Ehime (Japan); Watanabe, Kouki [Matsuyama Saiseikai Hospital, Department of Cardiology, Matsuyama, Ehime (Japan); Krestin, Gabriel P. [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands)

    2017-04-15

    The aim of this study is to assess the effect of blood pressure (BP) on coronary computed tomography angiography (CTA) derived computational fractional flow reserve (CTA-FFR). Twenty-one patients who underwent coronary CTA and invasive FFR were retrospectively identified. Ischemia was defined as invasive FFR ≤0.80. Using a work-in-progress computational fluid dynamics algorithm, CTA-FFR was computed with BP measured before CTA, and simulated BPs of 60/50, 90/60, 110/70, 130/80, 150/90, and 180/100 mmHg respectively. Correlation between CTA-FFR and invasive FFR was assessed using Pearson test. The repeated measuring test was used for multiple comparisons of CTA-FFR values by simulated BP inputs. Twenty-nine vessels (14 with invasive FFR ≤0.80) were assessed. The average CTA-FFR for measured BP (134 ± 20/73 ± 12 mmHg) was 0.77 ± 0.12. Correlation between CTA-FFR by measured BP and invasive FFR was good (r = 0.735, P < 0.001). For simulated BPs of 60/50, 90/60, 110/70, 130/80, 150/90, and 180/100 mmHg, the CTA-FFR increased: 0.69 ± 0.13, 0.73 ± 0.12, 0.75 ± 0.12, 0.77 ± 0.11, 0.79 ± 0.11, and 0.81 ± 0.10 respectively (P < 0.05). Measurement of the BP just before CTA is preferred for accurate CTA-FFR simulation. BP variations in the common range slightly affect CTA-FFR. However, inaccurate BP assumptions differing from the patient-specific BP could cause misinterpretation of borderline significant lesions. (orig.)

  7. The effect of blood pressure on non-invasive fractional flow reserve derived from coronary computed tomography angiography

    International Nuclear Information System (INIS)

    Kurata, Akira; Coenen, Adriaan; Lubbers, Marisa M.; Nieman, Koen; Kido, Teruhito; Mochizuki, Teruhito; Kido, Tomoyuki; Yamashita, Natsumi; Watanabe, Kouki; Krestin, Gabriel P.

    2017-01-01

    The aim of this study is to assess the effect of blood pressure (BP) on coronary computed tomography angiography (CTA) derived computational fractional flow reserve (CTA-FFR). Twenty-one patients who underwent coronary CTA and invasive FFR were retrospectively identified. Ischemia was defined as invasive FFR ≤0.80. Using a work-in-progress computational fluid dynamics algorithm, CTA-FFR was computed with BP measured before CTA, and simulated BPs of 60/50, 90/60, 110/70, 130/80, 150/90, and 180/100 mmHg respectively. Correlation between CTA-FFR and invasive FFR was assessed using Pearson test. The repeated measuring test was used for multiple comparisons of CTA-FFR values by simulated BP inputs. Twenty-nine vessels (14 with invasive FFR ≤0.80) were assessed. The average CTA-FFR for measured BP (134 ± 20/73 ± 12 mmHg) was 0.77 ± 0.12. Correlation between CTA-FFR by measured BP and invasive FFR was good (r = 0.735, P < 0.001). For simulated BPs of 60/50, 90/60, 110/70, 130/80, 150/90, and 180/100 mmHg, the CTA-FFR increased: 0.69 ± 0.13, 0.73 ± 0.12, 0.75 ± 0.12, 0.77 ± 0.11, 0.79 ± 0.11, and 0.81 ± 0.10 respectively (P < 0.05). Measurement of the BP just before CTA is preferred for accurate CTA-FFR simulation. BP variations in the common range slightly affect CTA-FFR. However, inaccurate BP assumptions differing from the patient-specific BP could cause misinterpretation of borderline significant lesions. (orig.)

  8. Validity and reliability of a novel slow cuff-deflation system for noninvasive blood pressure monitoring in patients with continuous-flow left ventricular assist device.

    Science.gov (United States)

    Lanier, Gregg M; Orlanes, Khristine; Hayashi, Yacki; Murphy, Jennifer; Flannery, Margaret; Te-Frey, Rosie; Uriel, Nir; Yuzefpolskaya, Melana; Mancini, Donna M; Naka, Yoshifumi; Takayama, Hiroo; Jorde, Ulrich P; Demmer, Ryan T; Colombo, Paolo C

    2013-09-01

    Doppler ultrasound is the clinical gold standard for noninvasive blood pressure (BP) measurement among continuous-flow left ventricular assist device patients. The relationship of Doppler BP to systolic BP (SBP) and mean arterial pressure (MAP) is uncertain and Doppler measurements require a clinic visit. We studied the relationship between Doppler BP and both arterial-line (A-line) SBP and MAP. Validity and reliability of the Terumo Elemano BP Monitor, a novel slow cuff-deflation device that could potentially be used by patients at home, were assessed. Doppler and Terumo BP measurements were made in triplicate among 60 axial continuous-flow left ventricular assist device (HeartMate II) patients (30 inpatients and 30 outpatients) at 2 separate exams (360 possible measurements). A-line measures were also obtained among inpatients. Mean absolute differences (MADs) and correlations were used to determine within-device reliability (comparison of second and third BP measures) and between-device validity. Bland-Altman plots assessed BP agreement between A-line, Doppler BP, and Terumo Elemano. Success rates for Doppler and Terumo Elemano were 100% and 91%. Terumo Elemano MAD for repeat SBP and MAP were 4.6±0.6 and 4.2±0.6 mm Hg; repeat Doppler BP MAD was 2.9±0.2 mm Hg. Mean Doppler BP was lower than A-line SBP by 4.1 (MAD=6.4±1.4) mm Hg and higher than MAP by 9.5 (MAD=11.0±1.2) mm Hg; Terumo Elemano underestimated A-line SBP by 0.3 (MAD=5.6±0.9) mm Hg and MAP by 1.7 (MAD=6.0±1.0) mm Hg. Doppler BP more closely approximates SBP than MAP. Terumo Elemano was successful, reliable, and valid when compared with A-line and Doppler.

  9. Experimental study on the effect of an artificial cardiac valve on the left ventricular flow

    Science.gov (United States)

    Wang, JiangSheng; Gao, Qi; Wei, RunJie; Wang, JinJun

    2017-09-01

    The use of artificial valves to replace diseased human heart valves is currently the main solution to address the malfunctioning of these valves. However, the effect of artificial valves on the ventricular flow still needs to be understood in flow physics. The left ventricular flow downstream of a St. Jude Medical (SJM) bileaflet mechanical heart valve (BMHV), which is a widely implanted mechanical bileaflet valve, is investigated with time-resolved particle image velocimetry in the current work. A tilting-disk valve is installed on the aortic orifice to guarantee unidirectional flow. Several post-processing tools are applied to provide combined analyses of the physics involved in the ventricular flow. The triple jet pattern that is closely related to the characteristics of the bileaflet valve is discussed in detail from both Eulerian and Lagrangian views. The effects of large-scale vortices on the transportation of blood are revealed by the combined analysis of the tracking of Lagrangian coherent structures, the Eulerian monitoring of the shear stresses, and virtual dye visualization. It is found that the utilization of the SJM BMHV complicates the ventricular flow and could reduce the efficiency of blood transportation. In addition, the kinematics of the bileaflets is presented to explore the effects of flow structures on their motion. These combined analyses could elucidate the properties of SJM BMHV. Furthermore, they could provide new insights into the understanding of other complex blood flows.

  10. Myocardial blood flow quantification by Rb-82 cardiac PET/CT: A detailed reproducibility study between two semi-automatic analysis programs.

    OpenAIRE

    Dunet, V.; Klein, R.; Allenbach, G.; Renaud, J.; deKemp, R.A.; Prior, J.O.

    2016-01-01

    Background Several analysis software packages for myocardial blood flow (MBF) quantification from cardiac PET studies exist, but they have not been compared using concordance analysis, which can characterize precision and bias separately. Reproducible measurements are needed for quantification to fully develop its clinical potential. Methods Fifty-one patients underwent dynamic Rb-82 PET at rest and during adenosine stress. Data were processed with PMOD and FlowQuant (Lortie model). MBF and m...

  11. Duration of Untreated Cardiac Arrest and Clinical Relevance of Animal Experiments: The Relationship Between the "No-Flow" Duration and the Severity of Post-Cardiac Arrest Syndrome in a Porcine Model.

    Science.gov (United States)

    Babini, Giovanni; Grassi, Luigi; Russo, Ilaria; Novelli, Deborah; Boccardo, Antonio; Luciani, Anita; Fumagalli, Francesca; Staszewsky, Lidia; Fiordaliso, Fabio; De Maglie, Marcella; Salio, Monica; Zani, Davide D; Letizia, Teresa; Masson, Serge; Luini, Mario V; Pravettoni, Davide; Scanziani, Eugenio; Latini, Roberto; Ristagno, Giuseppe

    2018-02-01

    The study investigated the effect of untreated cardiac arrest (CA), that is, "no-flow" time, on postresuscitation myocardial and neurological injury, and survival in a pig model to identify an optimal duration that adequately reflects the most frequent clinical scenario. An established model of myocardial infarction followed by CA and cardiopulmonary resuscitation was used. Twenty-two pigs were subjected to three no-flow durations: short (8-10 min), intermediate (12-13 min), and long (14-15 min). Left ventricular ejection fraction (LVEF) was assessed together with thermodilution cardiac output (CO) and high sensitivity cardiac troponin T (hs-cTnT). Neurological impairment was evaluated by neurological scores, serum neuron specific enolase (NSE), and histopathology. More than 60% of animals survived when the duration of CA was ≤13 min, compared to only 20% for a duration ≥14 min. Neuronal degeneration and neurological scores showed a trend toward a worse recovery for longer no-flow durations. No animals achieved a good neurological recovery for a no-flow ≥14 min, in comparison to a 56% for a duration ≤13 min (P = 0.043). Serum NSE levels significantly correlated with the no-flow duration (r = 0.892). Longer durations of CA were characterized by lower LVEF and CO compared to shorter durations (P flow time, the higher was the number of defibrillations delivered (P = 0.043). The defibrillations delivered significantly correlated with LVEF and plasma hs-cTnT. Longer no-flow durations caused greater postresuscitation myocardial and neurological dysfunction and reduced survival. An untreated CA of 12-13 min may be an optimal choice for a clinically relevant model.

  12. Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop.

    Science.gov (United States)

    Tuzun, Egemen; Rutten, Marcel; Dat, Marco; van de Vosse, Frans; Kadipasaoglu, Cihan; de Mol, Bas

    2011-12-01

    As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve. To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber). We operated the LVAD at 8000 to 12,000 rpm, changing the speed in 1000-rpm increments. At each speed, we first varied the outflow resistance at a constant stroke volume, then varied the stroke volume at a constant outflow resistance. We measured the left ventricular pressure, aortic pressure, pump flow, and total flow, and used these values to compute the change, if any, in the aortic duty cycle (aortic valve open time) and transvalvular aortic pressure loads. Validation of the MCS was demonstrated by the simulation of physiologic pressure and flow waveforms. At increasing LVAD speeds, the mean aortic pressure load steadily increased, while the aortic duty cycle steadily decreased. Changes were consistent for each MCS experimental setting, despite variations in stroke volume and outflow resistance. Increased LVAD flow results in an impaired aortic valve-open time due to a pressure overload above the aortic valve. Such an overload may initiate structural changes, causing aortic leaflet fusion and/or regurgitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Impact of extracorporeal blood flow rate on blood pressure, pulse rate and cardiac output during haemodialysis

    DEFF Research Database (Denmark)

    Schytz, Philip Andreas; Mace, Maria Lerche; Soja, Anne Merete Boas

    2015-01-01

    BACKGROUND: If blood pressure (BP) falls during haemodialysis (HD) [intradialytic hypotension (IDH)] a common clinical practice is to reduce the extracorporeal blood flow rate (EBFR). Consequently the efficacy of the HD (Kt/V) is reduced. However, only very limited knowledge on the effect...

  14. Continuous-flow cardiac assistance : effects on aortic valve function in a mock loop

    NARCIS (Netherlands)

    Tuzun, E.; Rutten, M.C.M.; Dat, M.; Kadipasaoglu, C.; Vosse, van de F.N.; Mol, de B.A.J.M.

    2011-01-01

    Background As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion—with resul-tant aortic regurgitation—has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we

  15. PET measurements of myocardial blood flow post myocardial infarction: Relationship to invasive and cardiac magnetic resonance studies and potential clinical applications.

    Science.gov (United States)

    Gewirtz, Henry

    2017-12-01

    This review focuses on clinical studies concerning assessment of coronary microvascular and conduit vessel function primarily in the context of acute and sub acute myocardial infarction (MI). The ability of quantitative PET measurements of myocardial blood flow (MBF) to delineate underlying pathophysiology and assist in clinical decision making in this setting is discussed. Likewise, considered are physiological metrics fractional flow reserve, coronary flow reserve, index of microvascular resistance (FFR, CFR, IMR) obtained from invasive studies performed in the cardiac catheterization laboratory, typically at the time of PCI for MI. The role both of invasive studies and cardiac magnetic resonance (CMR) imaging in assessing microvascular function, a key determinant of prognosis, is reviewed. The interface between quantitative PET MBF measurements and underlying pathophysiology, as demonstrated both by invasive and CMR methodology, is discussed in the context of optimal interpretation of the quantitative PET MBF exam and its potential clinical applications.

  16. Noninvasive ventilation in hypoxemic respiratory failure

    Directory of Open Access Journals (Sweden)

    Raja Dhar

    2016-01-01

    Full Text Available Noninvasive ventilation (NIV refers to positive pressure ventilation delivered through a noninvasive interface (nasal mask, facemask, or nasal plugs etc. Over the past decade its use has become more common as its benefits are increasingly recognized. This review will focus on the evidence supporting the use of NIV in various conditions resulting in acute hypoxemic respiratory failure (AHRF, that is, non-hypercapnic patients having acute respiratory failure in the absence of a cardiac origin or underlying chronic pulmonary disease. Outcomes depend on the patient's diagnosis and clinical characteristics. Patients should be monitored closely for signs of noninvasive ventilation failure and promptly intubated before a crisis develops. The application of noninvasive ventilation by a trained and experienced team, with careful patient selection, should optimize patient outcomes.

  17. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    International Nuclear Information System (INIS)

    Raffel, David M.; Wieland, Donald M.

    2001-01-01

    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation

  18. Candida glabrata binds to glycosylated and lectinic receptors on the coronary endothelial luminal membrane and inhibits flow sense and cardiac responses to agonists.

    Science.gov (United States)

    Torres-Tirado, David; Knabb, Maureen; Castaño, Irene; Patrón-Soberano, Araceli; De Las Peñas, Alejandro; Rubio, Rafael

    2016-01-01

    Candida glabrata (CG) is an opportunistic fungal pathogen that initiates infection by binding to host cells via specific lectin-like adhesin proteins. We have previously shown the importance of lectin-oligosaccharide binding in cardiac responses to flow and agonists. Because of the lectinic-oligosaccharide nature of CG binding, we tested the ability of CG to alter the agonist- and flow-induced changes in cardiac function in isolated perfused guinea pig hearts. Both transmission and scanning electron microscopy showed strong attachment of CG to the coronary endothelium, even after extensive washing. CG shifted the coronary flow vs. auricular-ventricular (AV) delay relationship upward, indicating that greater flow was required to achieve the same AV delay. This effect was completely reversed with mannose, partially reversed with galactose and N-acetylgalactosamine, but hyaluronan had no effect. Western blot analysis was used to determine binding of CG to isolated coronary endothelial luminal membrane (CELM) receptors, and the results indicate that flow-sensitive CELM receptors, ANG II type I, α-adrenergic 1A receptor, endothelin-2, and VCAM-1 bind to CG. In addition, CG inhibited agonist-induced effects of bradykinin, angiotensin, and phenylephrine on AV delay, coronary perfusion pressure, and left ventricular pressure. Mannose reversed the inhibitory effects of CG on the agonist responses. These results suggest that CG directly binds to flow-sensitive CELM receptors via lectinic-oligosaccharide interactions with mannose and disrupts the lectin-oligosaccharide binding necessary for flow-induced cardiac responses. Copyright © 2016 the American Physiological Society.

  19. Nuclear magnetic resonance in cardiology: cardiac MRI

    International Nuclear Information System (INIS)

    Fernandez, Claudio C.

    2003-01-01

    As a new gold standard for mass, volume and flow, the magnetic resonance imaging (MRI) is probably the most rapidly evolving technique in the cardiovascular diagnosis. An integrated cardiac MRI examination allows the evaluation of morphology, global and regional function, coronary anatomy, perfusion, viability and myocardial metabolism, all of them in only one diagnostic test and in a totally noninvasive manner. The surgeons can obtain relevant information on all aspects of diseases of the heart and great vessels, which include anatomical details and relationships with the greatest field of view, and may help to reduce the number of invasive procedures required in pre and postoperative evaluation. However, despite these excellent advantages the present clinical utilization of MRI is still too often restricted to few pathologies or case studies in which other techniques fail to identify the cardiac or cardiovascular abnormalities. If magnetic resonance is an excellent method for diagnosing so many different cardiac conditions, why is so little it used in routine cardiac practice? Cardiologists are still not very familiar with the huge possibilities or cardiovascular MRI utilities. Our intention is to give a comprehensive survey of many of the clinical applications of this challenger technique in the study of the heart and great vessels. Those who continue to ignore this important and mature imaging technique will rightly fail to benefit. (author) [es

  20. Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Cheng Shuk

    2009-02-01

    Full Text Available Abstract Background Zebrafish (Danio rerio, due to its optical accessibility and similarity to human, has emerged as model organism for cardiac research. Although various methods have been developed to assess cardiac functions in zebrafish embryos, there lacks a method to assess heartbeat regularity in blood vessels. Heartbeat regularity is an important parameter for cardiac function and is associated with cardiotoxicity in human being. Using stereomicroscope and digital video camera, we have developed a simple, noninvasive method to measure the heart rate and heartbeat regularity in peripheral blood vessels. Anesthetized embryos were mounted laterally in agarose on a slide and the caudal blood circulation of zebrafish embryo was video-recorded under stereomicroscope and the data was analyzed by custom-made software. The heart rate was determined by digital motion analysis and power spectral analysis through extraction of frequency characteristics of the cardiac rhythm. The heartbeat regularity, defined as the rhythmicity index, was determined by short-time Fourier Transform analysis. Results The heart rate measured by this noninvasive method in zebrafish embryos at 52 hour post-fertilization was similar to that determined by direct visual counting of ventricle beating (p > 0.05. In addition, the method was validated by a known cardiotoxic drug, terfenadine, which affects heartbeat regularity in humans and induces bradycardia and atrioventricular blockage in zebrafish. A significant decrease in heart rate was found by our method in treated embryos (p p Conclusion The data support and validate this rapid, simple, noninvasive method, which includes video image analysis and frequency analysis. This method is capable of measuring the heart rate and heartbeat regularity simultaneously via the analysis of caudal blood flow in zebrafish embryos. With the advantages of rapid sample preparation procedures, automatic image analysis and data analysis, this

  1. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods.

    Science.gov (United States)

    Barbosa, José Augusto A; Rodrigues, Alexandre B; Mota, Cleonice Carvalho C; Barbosa, Márcia M; Simões e Silva, Ana C

    2011-01-01

    Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.

  2. Current Roles and Future Applications of Cardiac CT: Risk Stratification of Coronary Artery Disease

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yeonyee Elizabeth [Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of); Lim, Tae-Hwan [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of)

    2014-07-01

    Cardiac computed tomography (CT) has emerged as a noninvasive modality for the assessment of coronary artery disease (CAD), and has been rapidly integrated into clinical cares. CT has changed the traditional risk stratification based on clinical risk to image-based identification of patient risk. Cardiac CT, including coronary artery calcium score and coronary CT angiography, can provide prognostic information and is expected to improve risk stratification of CAD. Currently used conventional cardiac CT, provides accurate anatomic information but not functional significance of CAD, and it may not be sufficient to guide treatments such as revascularization. Recently, myocardial CT perfusion imaging, intracoronary luminal attenuation gradient, and CT-derived computed fractional flow reserve were developed to combine anatomical and functional data. Although at present, the diagnostic and prognostic value of these novel technologies needs to be evaluated further, it is expected that all-in-one cardiac CT can guide treatment and improve patient outcomes in the near future.

  3. Novel axolotl cardiac function analysis method using magnetic resonance imaging

    NARCIS (Netherlands)

    Sanches, Pedro Gomes; Op 't Veld, Roel C.; de Graaf, Wolter; Strijkers, Gustav J.; Grüll, Holger

    2017-01-01

    The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a non-invasive technique to image heart function

  4. Novel axolotl cardiac function analysis method using magnetic resonance imaging

    NARCIS (Netherlands)

    Sanches, P.G.; Op ‘t Veld, R.C.; de Graaf, W.; Strijkers, G.J.; Grüll, H.

    2017-01-01

    The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a noninvasive technique to image heart function of

  5. Cardiac Computed Tomography (Multidetector CT, or MDCT)

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Cardiac Computed Tomography (Multidetector CT, or MDCT) Updated:Sep 19,2016 What is Computerized Tomography (CT)? CT is a noninvasive test that uses ...

  6. Effects of a mandatory basic life support training programme on the no-flow fraction during in-hospital cardiac resuscitation: an observational study.

    Science.gov (United States)

    Müller, Michael P; Richter, Torsten; Papkalla, Norbert; Poenicke, Cynthia; Herkner, Carsten; Osmers, Anne; Brenner, Sigrid; Koch, Thea; Schwanebeck, Uta; Heller, Axel R

    2014-07-01

    Many hospitals have basic life support (BLS) training programmes, but the effects on the quality of chest compressions are unclear. This study aimed to evaluate the no-flow fraction (NFF) during BLS provided by standard care nursing teams over a five-year observation period during which annual participation in the BLS training was mandatory. All healthcare professionals working at Dresden University Hospital were instructed in BLS and automated external defibrillator (AED) use according to the current European Resuscitation Council guidelines on an annual basis. After each cardiac arrest occurring on a standard care ward, AED data were analyzed. The time without chest compressions during the period without spontaneous circulation (i.e., the no-flow fraction) was calculated using thoracic impedance data. For each year of the study period (2008-2012), a total of 1454, 1466, 1487, 1432, and 1388 health care professionals, respectively, participated in the training. The median no-flow fraction decreased significantly from 0.55 [0.42; 0.57] (median [25‰; 75‰]) in 2008 to 0.3 [0.28; 0.35] in 2012. Following revision of the BLS curriculum after publication of the 2010 guidelines, cardiac arrest was associated with a higher proportion of patients achieving ROSC (72% vs. 48%, P=0.025) but not a higher survival rate to hospital discharge (35% vs. 19%, P=0.073). The NFF during in-hospital cardiac resuscitation decreased after establishment of a mandatory annual BLS training for healthcare professionals. Following publication of the 2010 guidelines, more patients achieved ROSC after in-hospital cardiac arrest. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. A practical review for cardiac rehabilitation professionals of continuous-flow left ventricular assist devices: historical and current perspectives.

    Science.gov (United States)

    Compostella, Leonida; Russo, Nicola; Setzu, Tiziana; Bottio, Tomaso; Compostella, Caterina; Tarzia, Vincenzo; Livi, Ugolino; Gerosa, Gino; Iliceto, Sabino; Bellotto, Fabio

    2015-01-01

    An increasing number of patients with end-stage heart failure are being treated with continuous-flow left ventricular assist devices (cf-LVADs). These patients provide new challenges to the staff in exercise-based cardiac rehabilitation (CR) programs. Even though experience remains limited, it seems that patients supported by cf-LVADs may safely engage in typical rehabilitative activities, provided that some attention is paid to specific aspects, such as the presence of a short external drive line. In spite of initial physical deconditioning, CR allows progressive improvement of symptoms such as fatigue and dyspnea. Intensity of rehabilitative activities should ideally be based on measured aerobic capacity and increased appropriately over time. Regular, long-term exercise training results in improved physical fitness and survival rates. Appropriate adjustment of cf-LVAD settings, together with maintenance of adequate blood volume, provides maximal output, while avoiding suction effects. Ventricular arrhythmias, although not necessarily constituting an immediate life-threatening situation, deserve treatment as they could lead to an increased rate of hospitalization and poorer quality of life. Atrial fibrillation may worsen symptoms of right ventricular failure and reduce exercise tolerance. Blood pressure measurements are possible in cf-LVAD patients only using a Doppler technique, and a mean blood pressure ≤80 mmHg is considered "ideal." Some patients may present with orthostatic intolerance, related to autonomic dysfunction. While exercise training constitutes the basic rehabilitative tool, a comprehensive intervention that includes psychological and social support could better meet the complex needs of patients in which cf-LVAD may offer prolonged survival.

  8. Cardiac gated ventilation

    International Nuclear Information System (INIS)

    Hanson, C.W. III; Hoffman, E.A.

    1995-01-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart

  9. New noninvasive diagnosis of myocardial ischemia of the left circumflex coronary artery using coronary flow reserve measurement by transthoracic Doppler echocardiography. Comparison with thallium-201 single photon emission computed tomography

    International Nuclear Information System (INIS)

    Fujimoto, Kohei; Watanabe, Hiroyuki; Hozumi, Takeshi; Otsuka, Ryo; Hirata, Kumiko; Yamagishi, Hiroyuki; Yoshiyama, Minoru; Yoshikawa, Junichi

    2004-01-01

    The usefulness of coronary flow reserve measurement in the left circumflex coronary artery by transthoracic Doppler echocardiography to detect myocardial ischemia was compared with exercise thallium-201 single photon emission computed tomography (SPECT). Transthoracic Doppler echocardiography was performed in 110 patients with suspected coronary artery disease. Color Doppler signals of the left circumflex coronary artery flow in the apical four-chamber view were identified, and the velocities at rest and during hyperemia recorded for calculation of coronary flow reserve by the pulsed Doppler method. All patients underwent SPECT within 1 week of the transthoracic Doppler echocardiographic study. Coronary flow reserve in the left circumflex coronary artery was measured in 79 (72%) of 110 patients. SPECT revealed reversible perfusion defect in the left circumflex coronary artery territories in 12 of 69 patients excluding those with multivessel disease. Coronary flow reserve <2.0 had a sensitivity of 92% and specificity of 96% for reversible perfusion defect detected by SPECT. Noninvasive coronary flow reserve measurement in the left circumflex coronary artery by transthoracic Doppler echocardiography can estimate myocardial ischemia in the left ventricular lateral regions. (author)

  10. The interactive effects of a gradual temperature decrease and long-term food deprivation on cardiac and hepatic blood flows in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Petersen, L H; Dzialowski, E; Huggett, D B

    2011-11-01

    The aim of the present study was to determine the extent to which the fish liver is perfused with blood. Transonic® flow probes were therefore implanted around the ventral aorta and hepatic vein(s) to record baseline blood flows in rainbow trout (Oncorhynchus mykiss) previously held under two different feeding regimes (food-deprived or fed to satiation, 8-12 weeks). Fish from both groups were exposed to a gradual temperature decrease (12°C to 5°C) and physical disturbance. Cardiac output (Q), stroke volume (Sv) and hepatic venous blood flow (HVBF) were significantly reduced in food-deprived trout at 12°C. Heart rate was not significantly affected by nutritional status, but was significantly reduced when temperature was decreased to 5°C. Physically disturbing each fish at 12°C and 5°C showed that the performance capacity of the heart was not affected by food deprivation as the capacity to increase Q and Sv was not reduced in the food-deprived group. Overall this study showed that food deprivation in rainbow trout reduced cardiac and hepatic blood flows. However, long-term food deprivation did not affect the capacity of the heart to acutely increase performance. Copyright © 2011. Published by Elsevier Inc.

  11. Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    OpenAIRE

    Abbagoni, Baba Musa; Yeung, Hoi

    2016-01-01

    The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas–liquid flow regimes objectively with the gas–liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase ...

  12. Invasive and noninvasive hemodynamic monitoring of patients with cerebrovascular accidents.

    Science.gov (United States)

    Velmahos, G C; Wo, C C; Demetriades, D; Bishop, M H; Shoemaker, W C

    1998-01-01

    Seventeen patients with hemodynamic instability from acute cerebrovascular accidents were evaluated shortly after arrival at the emergency department of a university-run county hospital with both invasive Swan-Ganz pulmonary artery catheter placement and a new, noninvasive, thoracic electrical bioimpedance device. Values were recorded and temporal patterns of survivors and nonsurvivors were described. Cardiac indices obtained simultaneously by the 2 techniques were compared. Of the 17 patients, 11 (65%) died. Survivors had higher values than nonsurvivors for mean arterial pressure, cardiac index, and oxygen saturation, delivery, and consumption at comparable times. Cardiac index values, as measured by invasive and noninvasive methods, were correlated. We concluded that hemodynamic monitoring in an acute care setting may recognize temporal circulatory patterns associated with outcome. Noninvasive electrical bioimpedance technology offers a new method for early hemodynamic evaluation. Further research in this area is warranted. PMID:9682626

  13. Automated Segmentation of Cardiac Magnetic Resonance Images

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Nilsson, Jens Chr.; Grønning, Bjørn A.

    2001-01-01

    Magnetic resonance imaging (MRI) has been shown to be an accurate and precise technique to assess cardiac volumes and function in a non-invasive manner and is generally considered to be the current gold-standard for cardiac imaging [1]. Measurement of ventricular volumes, muscle mass and function...

  14. Establishing a clinical cardiac MRI service

    International Nuclear Information System (INIS)

    O'Regan, D.P.; Schmitz, S.A.

    2006-01-01

    After several years of research development cardiovascular MRI has evolved into a widely accepted clinical tool. It offers important diagnostic and prognostic information for a variety of clinical indications, which include ischaemic heart disease, cardiomyopathies, valvular dysfunction and congenital heart disorders. It is a safe non-invasive technique that employs a variety of imaging sequences optimized for temporal or spatial resolution, tissue-specific contrast, flow quantification or angiography. Cardiac MRI offers specific advantages over conventional imaging techniques for a significant number of patients. The demand for cardiac MRI studies from cardiothoracic surgeons, cardiologists and other referrers is likely to continue to rise with pressure for more widespread local service provision. Setting up a cardiac MRI service requires careful consideration regarding funding issues and how it will be integrated with existing service provision. The purchase of cardiac phased array coils, monitoring equipment and software upgrades must also be considered, as well as the training needs of those involved. The choice of appropriate imaging protocols will be guided by operator experience, clinical indication and equipment capability, and is likely to evolve as the service develops. Post-processing and offline analysis form a significant part of the time taken to report studies and an efficient method of providing quantitative reports is an important requirement. Collaboration between radiologists and cardiologists is needed to develop a successful service and multi-disciplinary meetings are key component of this. This review will explore these issues from our perspective of a new clinical cardiac MRI service operating over its first year in a teaching hospital imaging department

  15. Usefulness of emergency ultrasound in nontraumatic cardiac arrest.

    Science.gov (United States)

    Volpicelli, Giovanni

    2011-02-01

    Treatment of nontraumatic cardiac arrest in the hospital setting depends on the recognition of heart rhythm and differential diagnosis of the underlying condition while maintaining a constant oxygenated blood flow by ventilation and chest compression. Diagnostic process relies only on patient's history, physical findings, and active electrocardiography. Ultrasound is not currently scheduled in the resuscitation guidelines. Nevertheless, the use of real-time ultrasonography during resuscitation has the potential to improve diagnostic accuracy and allows the physician a greater confidence in deciding aggressive life-saving therapeutic procedures. This article reviews the current opinions and literature about the use of emergency ultrasound during resuscitation of nontraumatic cardiac arrest. Cardiac and lung ultrasound have a great potential in identifying the reversible mechanical causes of pulseless electrical activity or asystole. Brief examination of the heart can even detect a real cardiac standstill regardless of electrical activity displayed on the monitor, which is a crucial prognostic indicator. Moreover, ultrasound can be useful to verify and monitor the tracheal tube placement. Limitation to the use of ultrasound is the need to minimize the no-flow intervals during mechanical cardiopulmonary resuscitation. However, real-time ultrasound can be successfully applied during brief pausing of chest compression and first pulse-check. Finally, lung sonographic examination targeted to the detection of signs of pulmonary congestion has the potential to allow hemodynamic noninvasive monitoring before and after mechanical cardiopulmonary maneuvers. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Trends in the utilization of computed tomography and cardiac catheterization among children with congenital heart disease

    Directory of Open Access Journals (Sweden)

    Justin Cheng-Ta Yang

    2015-11-01

    Conclusion: The use of noninvasive CT in children with selected heart conditions might reduce the use of diagnostic cardiac catheterization. This may release time and facilities within the catheterization laboratory to meet the increasing demand for cardiac interventions.

  17. Myocardial blood flow quantification by Rb-82 cardiac PET/CT: A detailed reproducibility study between two semi-automatic analysis programs.

    Science.gov (United States)

    Dunet, Vincent; Klein, Ran; Allenbach, Gilles; Renaud, Jennifer; deKemp, Robert A; Prior, John O

    2016-06-01

    Several analysis software packages for myocardial blood flow (MBF) quantification from cardiac PET studies exist, but they have not been compared using concordance analysis, which can characterize precision and bias separately. Reproducible measurements are needed for quantification to fully develop its clinical potential. Fifty-one patients underwent dynamic Rb-82 PET at rest and during adenosine stress. Data were processed with PMOD and FlowQuant (Lortie model). MBF and myocardial flow reserve (MFR) polar maps were quantified and analyzed using a 17-segment model. Comparisons used Pearson's correlation ρ (measuring precision), Bland and Altman limit-of-agreement and Lin's concordance correlation ρc = ρ·C b (C b measuring systematic bias). Lin's concordance and Pearson's correlation values were very similar, suggesting no systematic bias between software packages with an excellent precision ρ for MBF (ρ = 0.97, ρc = 0.96, C b = 0.99) and good precision for MFR (ρ = 0.83, ρc = 0.76, C b = 0.92). On a per-segment basis, no mean bias was observed on Bland-Altman plots, although PMOD provided slightly higher values than FlowQuant at higher MBF and MFR values (P < .0001). Concordance between software packages was excellent for MBF and MFR, despite higher values by PMOD at higher MBF values. Both software packages can be used interchangeably for quantification in daily practice of Rb-82 cardiac PET.

  18. Estimation of cardiac motion in cine-MRI sequences by correlation transform optical flow of monogenic features distance

    Science.gov (United States)

    Gao, Bin; Liu, Wanyu; Wang, Liang; Liu, Zhengjun; Croisille, Pierre; Delachartre, Philippe; Clarysse, Patrick

    2016-12-01

    Cine-MRI is widely used for the analysis of cardiac function in clinical routine, because of its high soft tissue contrast and relatively short acquisition time in comparison with other cardiac MRI techniques. The gray level distribution in cardiac cine-MRI is relatively homogenous within the myocardium, and can therefore make motion quantification difficult. To ensure that the motion estimation problem is well posed, more image features have to be considered. This work is inspired by a method previously developed for color image processing. The monogenic signal provides a framework to estimate the local phase, orientation, and amplitude, of an image, three features which locally characterize the 2D intensity profile. The independent monogenic features are combined into a 3D matrix for motion estimation. To improve motion estimation accuracy, we chose the zero-mean normalized cross-correlation as a matching measure, and implemented a bilateral filter for denoising and edge-preservation. The monogenic features distance is used in lieu of the color space distance in the bilateral filter. Results obtained from four realistic simulated sequences outperformed two other state of the art methods even in the presence of noise. The motion estimation errors (end point error) using our proposed method were reduced by about 20% in comparison with those obtained by the other tested methods. The new methodology was evaluated on four clinical sequences from patients presenting with cardiac motion dysfunctions and one healthy volunteer. The derived strain fields were analyzed favorably in their ability to identify myocardial regions with impaired motion.

  19. A fast analysis method for non-invasive imaging of blood flow in individual cerebral arteries using vessel-encoded arterial spin labelling angiography

    Science.gov (United States)

    Chappell, Michael A.; Okell, Thomas W.; Payne, Stephen J.; Jezzard, Peter; Woolrich, Mark W.

    2012-01-01

    Arterial spin labelling (ASL) MRI offers a non-invasive means to create blood-borne contrast in vivo for dynamic angiographic imaging. By spatial modulation of the ASL process it is possible to uniquely label individual arteries over a series of measurements, allowing each to be separately identified in the resulting angiographic images. This separation requires appropriate analysis for which a general Bayesian framework has previously been proposed. Here this framework is adapted for clinical dynamic angiographic imaging. This specifically addresses the issues of computational speed of the algorithm and the robustness required to deal with real patient data. An algorithm is proposed that can incorporate planning information about the arteries being imaged whilst adapting for subsequent patient movement. A fast maximum a posteriori solution is adopted and shown to be only marginally less accurate than Monte Carlo sampling under simulation. The final algorithm is demonstrated on in vivo data with analysis on a time scale of the order of 10 min, from both a healthy control and a patient with a vertebro-basilar occlusion. PMID:22322066

  20. Compromised Cerebral Blood Flow(CBF) in Congestive Heart Failure (CHB): non-invasive quantification with {sup 99m}Tc-ECD radionuclide angiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Seung; Kim, Jae Joong; Lim, Ki Chun; Lee, Hee Kyung; Moon, Dae Hyuk [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    Recent reports revealed that cerebral metabolism in CHF was abnormally deranged and proposed as a potential marker of disease severity. Since deranged cerebral metabolism in CHF may result from compromised cerebral perfusion, quantification of CHF may be useful for accurate risk stratification of CHF. Therefore, we investigated whether CHF in patients with CHF is compromised and correlated with clinical parameters. Fifteen patients (M/F:11/5, 45{+-}9yr) with CHF (LVEF<40%) and 7 healthy controls (M/F:5/2, 41{+-}8yr) were prospectively studied. All patients underwent radionuclide angiography including cerebral hemispheres and aortic arch using {sup 99m}Tc-ECD. Global CBF was measured non-invasively by the application of Patlak graphical plot analysis. All patients were also evaluated using a standardized protocol that included echocardiography and clinical evaluation. Global CBF (40.3{+-}5.2 ml/min/100g) of the patients with CHF were significantly lower than those (49.7{+-}2.4 ml/min/100g) of controls (p<0.01). Global CBF were correlated with NYHA functional class (r=-0.617, p=0.43), but not correlated with other clinical parameters such as age (r=-0.463, p=0.082), duration (r=0.237, p>0.1), systolic BP (r=-0.063, p>0.5), LVEF (r=-0.13, p>0.1), LV dimension(r=0.139, p>0.5), and PV pressure gradients (r=0.072, p>0.5). Cerebral perfusion of the patients with CHF was compromised and not correlated with cardiopulmonary hemodynamic parameters.

  1. Evaluation of left ventricular function by invasive and noninvasive methods

    Energy Technology Data Exchange (ETDEWEB)

    Kusukawa, R [Yamaguchi Univ., Ube (Japan). School of Medicine

    1982-06-01

    Noninvasive methods in cardiology have progressed very rapidly in recent years. Cardiac catheterization and angiocardiography are the standard methods for evaluating of cardiac performance, however, they need expensive apparatus and are time-consuming, arduous procedures which do not permit to repeat frequently, and sometimes risky. In this article, the indices of pump and muscle function of the heart obtained by invasive methods were compared to those indices obtained by noninvasive methods, and correlation between two groups and usefulness and limitation were discussed. Systolic time intervals are convenient and repeatable measures of left ventricular performance in clinical cardiology. There are significant correlations of PEP/LVET with stroke volume, ejection fraction and mean circumferential shortening velocity. Although some limitations are present in application of this method to certain diseases, these measures are useful in the evaluation of left ventricular performance. Echocardiography has made an era of the noninvasive cardiology. Left ventricular volume, ejection fraction, mean circumferential shortening velocity and PSP/ESVI are accurately calculated by echocardiographic measurement. Nuclear cardiology is also accurate noninvasive method in evaluation of cardiac performance. With this tremendous growth in this field, it will make next era of noninvasive cardiology.

  2. Cardiac radiology: centenary review.

    Science.gov (United States)

    de Roos, Albert; Higgins, Charles B

    2014-11-01

    During the past century, cardiac imaging technologies have revolutionized the diagnosis and treatment of acquired and congenital heart disease. Many important contributions to the field of cardiac imaging were initially reported in Radiology. The field developed from the early stages of cardiac imaging, including the use of coronary x-ray angiography and roentgen kymography, to nowadays the widely used echocardiographic, nuclear medicine, cardiac computed tomographic (CT), and magnetic resonance (MR) applications. It is surprising how many of these techniques were not recognized for their potential during their early inception. Some techniques were described in the literature but required many years to enter the clinical arena and presently continue to expand in terms of clinical application. The application of various CT and MR contrast agents for the diagnosis of myocardial ischemia is a case in point, as the utility of contrast agents continues to expand the noninvasive characterization of myocardium. The history of cardiac imaging has included a continuous process of advances in our understanding of the anatomy and physiology of the cardiovascular system, along with advances in imaging technology that continue to the present day.

  3. Effect of motion-induced PET-CT misalignment on cardiac function and myocardial blood flow measured using dynamic 15O-water PET

    DEFF Research Database (Denmark)

    Lubberink, Mark; Ebrahimi, M; Harms, Hans

    -CT misalignment on MBF, transmural MBF (MBFt), perfusable tissue fraction (PTF), cardiac output (CO), stroke volume (SV) and left-ventricular ejection fraction (LVEF) based on dynamic 15O-water scans. Methods: 10 patients underwent 6 min PET scans after injection of 400 MBq 15O-water at rest and during adenosine......Aim: Motion-induced PET-CT misalignment artifacts are common in myocardial blood flow (MBF) measurements with 82Rb and 13N-ammonia. For 15O-water, MBF is based on the clearance rate rather than uptake of the tracer. The clearance rate is determined by the shape of the time-activity curve, not its...... amplitude, and is thus not affected by attenuation correction errors. Hence, misalignment is hypothesized not to affect 15O-water-based MBF to any large extent, but it may affect cardiac function measures derived from 15O-water scans. The aim of the present work was to assess the effect of PET...

  4. Magnetic resonance imaging as a diagnostic method for assessing function. New procedures for the non-invasive quantification of cerebral blood volume and blood flow

    International Nuclear Information System (INIS)

    Gueckel, F.; Rempp, K.; Becker, G.; Koepke, J.; Loose, R.; Brix, G.

    1994-01-01

    This paper presents a brief introduction to the current status of cerebral blood volume and blood flow imaging with magnetic resonance imaging (MRI) techniques. A new method for the quantitative assessment of regional cerebral blood volume (rCBV) and regional cerebral blood flow (rCBF) on the basis of the indicator dilution theory is described and preliminary quantitative results from healthy volunteers are presented. The mean values for the rCBV are 8,27±1,85 ml/100 g for grey matter and 3,78±1,34 ml/100 g for white matter. The mean values for the rCBF are 44,8±11,29 ml/min/100 g for the grey matter and 20,88±8,42 ml/min/100 g for the white matter. These results are in good agreement with PET results from the literature. (orig.) [de

  5. Non-invasive assessment of coronary calcification

    International Nuclear Information System (INIS)

    Vliegenthart, Rozemarijn; Oei, Hok-Hay S.; Hofman, Albert; Oudkerk, Matthijs; Witteman, Jackqueline C. M.

    2004-01-01

    Electron-beam tomography (EBT) and multi-detector computed tomography (MDCT) enable the noninvasive assessment of coronary calcification. The amount of coronary calcification, as detected by EBT, has a close relation with the amount of coronary atherosclerosis, which is the substrate for the occurrence of myocardial infarction and sudden cardiac death. Calcification of the coronary arteries can be seen as a cumulative measure of life-time exposure to cardiovascular risk factors. Several studies have shown that the amount of coronary calcification is associated with the risk of coronary heart disease. Therefore, coronary calcification is a promising method for non-invasive detection of asymptomatic subjects at high risk of developing coronary heart disease. Whether measurement of coronary calcification also increases the predictive power of coronary events based on cardiovascular risk factors is topic of current research

  6. Determining the haemodynamic significance of arterial stenosis: the relationship between CT angiography, computational fluid dynamics, and non-invasive fractional flow reserve

    International Nuclear Information System (INIS)

    Pang, C.L.; Alcock, R.; Pilkington, N.; Reis, T.; Roobottom, C.

    2016-01-01

    Coronary artery disease causes significant morbidity and mortality worldwide. Invasive coronary angiography (ICA) is currently the reference standard investigation. Fractional flow reserve (FFR) complements traditional ICA by providing extra information on blood flow, which has convincingly led to better patient management and improved cost-effectiveness. Computed tomography coronary angiography (CTCA) is suitable for the investigation of chest pain, especially in the low- and intermediate-risk groups. FFR generated using CT data (producing FFR_C_T) may improve the positive predictive value of CTCA. The basic science of FFR_C_T is like a “black box” to most imaging professionals. A fundamental principle is that good quality CTCA is likely to make any post-processing easier and more reliable. Both diagnostic and observational studies have suggested that the accuracy and the short-term outcome of using FFR_C_T are both comparable with FFR in ICA. More multidisciplinary research with further refined diagnostic and longer-term observational studies will hopefully pinpoint the role of FFR_C_T in existing clinical pathways.

  7. Relationship between HgbA1c and myocardial blood flow reserve in patients with type 2 diabetes mellitus: noninvasive assessment using real-time myocardial perfusion echocardiography.

    Science.gov (United States)

    Huang, Runqing; Abdelmoneim, Sahar S; Nhola, Lara F; Mulvagh, Sharon L

    2014-01-01

    To study the relationship between glycosylated hemoglobin (HgbA1c) and myocardial perfusion in type 2 diabetes mellitus (T2DM) patients, we prospectively enrolled 24 patients with known or suspected coronary artery disease (CAD) who underwent adenosine stress by real-time myocardial perfusion echocardiography (RTMPE). HgbA1c was measured at time of RTMPE. Microbubble velocity (β min(-1)), myocardial blood flow (MBF, mL/min/g), and myocardial blood flow reserve (MBFR) were quantified. Quantitative MCE analysis was feasible in all patients (272/384 segments, 71%). Those with HgbA1c > 7.1% had significantly lower βreserve and MBFR than those with HgbA1c ≤ 7.1% (P relationship was not significant (r = -0.117, P = 0.129). Using a MBFR cutoff value > 2 as normal, HgbA1c > 7.1% significantly increased the risk for abnormal MBFR, (adjusted odds ratio: 1.92, 95% CI: 1.12-3.35, P = 0.02). Optimal glycemic control is associated with preservation of MBFR as determined by RTMPE, in T2DM patients at risk for CAD.

  8. Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney: correlation between intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle.

    Science.gov (United States)

    Wittsack, Hans-Jörg; Lanzman, Rotem S; Quentin, Michael; Kuhlemann, Julia; Klasen, Janina; Pentang, Gael; Riegger, Caroline; Antoch, Gerald; Blondin, Dirk

    2012-04-01

    To evaluate the influence of pulsatile blood flow on apparent diffusion coefficients (ADC) and the fraction of pseudodiffusion (F(P)) in the human kidney. The kidneys of 6 healthy volunteers were examined by a 3-T magnetic resonance scanner. Electrocardiogram (ECG)-gated and respiratory-triggered diffusion-weighted imaging (DWI) and phase-contrast flow measurements were performed. Flow imaging of renal arteries was carried out to quantify the dependence of renal blood flow on the cardiac cycle. ECG-triggered DWI was acquired in the coronal plane with 16 b values in the range of 0 s/mm(2) and 750 s/mm(2) at the time of minimum (MIN) (20 milliseconds after R wave) and maximum renal blood flow (MAX) (197 ± 24 milliseconds after R wave). The diffusion coefficients were calculated using the monoexponential approach as well as the biexponential intravoxel incoherent motion model and correlated to phase-contrast flow measurements. Flow imaging showed pulsatile renal blood flow depending on the cardiac cycle. The mean flow velocity at MIN was 45 cm/s as compared with 61 cm/s at MAX. F(p) at MIN (0.29) was significantly lower than at MAX (0.40) (P = 0.001). Similarly, ADC(mono), derived from the monoexponential model, also showed a significant difference (P renal blood flow and F(p) (r = 0.85) as well as ADC(mono) (r = 0.67) was statistically significant. Temporally resolved ECG-gated DWI enables for the determination of the diffusion coefficients at different time points of the cardiac cycle. ADC(mono) and FP vary significantly among acquisitions at minimum (diastole) and maximum (systole) renal blood flow. Temporally resolved ECG-gated DWI might therefore serve as a novel technique for the assessment of pulsatility in the human kidney.

  9. Influence of pre-infarction angina, collateral flow, and pre-procedural TIMI flow on myocardial salvage index by cardiac magnetic resonance in patients with ST-segment elevation myocardial infarction.

    Science.gov (United States)

    Lønborg, Jacob; Kelbæk, Henning; Vejlstrup, Niels; Bøtker, Hans Erik; Kim, Won Yong; Holmvang, Lene; Jørgensen, Erik; Helqvist, Steffen; Saunamäki, Kari; Thuesen, Leif; Krusell, Lars Romer; Clemmensen, Peter; Engstrøm, Thomas

    2012-05-01

    In patients with ST-segment elevation myocardial infarction (STEMI) pre-infarction angina, pre-procedural TIMI flow and collateral flow to the myocardium supplied by the infarct related artery are suggested to be cardioprotective. We evaluated the effect of these factors on myocardial salvage index (MSI) and infarct size adjusting for area at risk in patients with STEMI treated with primary percutaneous coronary intervention. Cardiac magnetic resonance (CMR) was used to measure myocardial area at risk within 1-7 days and final infarct size 90 ± 21 days after the STEMI in 200 patients. MSI was calculated as (area-at-risk infarct size) / area-at-risk. Patients with pre-infarction angina had a median MSI of 0.80 (IQR 0.67 to 0.86) versus 0.72 (0.61 to 0.80) in those without pre-infarction angina, P = 0.004). In a regression analysis of the infarct size plotted against the area-at-risk there was a strong trend that the line for the pre-infarction angina group was below the one for the non-angina group (P = 0.05). Patients with pre-procedural TIMI flow 0/1, 2 and 3 had a median MSI of (0.69 (IQR 0.59 to 0.76), 0.78 (0.68 to 0.86) and 0.85 (0.77 to 0.91), respectively (PCollateral flow did not change MSI (P = 0.45) nor area-at-risk (P = 0.40) and no significant difference in infarct size adjusted for area at risk (P = 0.25) was observed. Pre-infarction angina increases MSI in patients with STEMI supporting the theory that pre-infarction angina leads to ischemic preconditioning. As opposed to the presence of angiographically visible collateral flow to the infarct area pre-procedural TIMI flow is strongly associated with MSI.

  10. Cardiac rehabilitation

    Science.gov (United States)

    ... rehab; Heart failure - cardiac rehab References Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: ... of Medicine, Division of Cardiology, Harborview Medical Center, University of Washington Medical School, Seattle, WA. Also reviewed ...

  11. Observation of the lymph flow in the lower extremities of edematous patients with noninvasive methods. RI-lymphography with a computer onlined gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Isao; Hirota, Akio; Watanabe, Sumio (Toho Univ., Tokyo (Japan). School of Medicine)

    1983-09-01

    An RI-lymphography with a computer onlined gamma camera was used for observing the lymph flow of edematous patients without any invasive procedures and for estimating the active movement of lymph vessels. Subjects were composed of 8 normal volunteers (group 1), 41 non-edematous patients (group 2) and 26 edematous patients (group 3). Four mCi of Tc-99m-HSA in a volume of 0.1 ml was injected subcutaneously in the pretibial region of the lower extremity, and immediately after the injection scintigram was recorded on the thigh every 5 sec. for 30 min. Results: 1) Normal volunteers; Time-activity curves showed a gradual increase in RI activity in relation to time without remarkable spike-like fluctuations. The maximum count attained was less than 200 cps in all experiments. 2) Non-edematous patients; In 46 out of 57 experiments (80.8%), the similar time-activity curves were observed as those of the normal volunteers. On the other hand, time-activity curves in 11 out of 57 (19.2%) showed a much steeper stepwise-increase simultaneously with remarkable spike-waves. The maximum count was over 200 cps in these cases. 3) Edematous patients; In 12 out of 35 experiments (34.3%), the maximum count was over 200 cps. In these edematous diseases other than lymphedema and hyperthyroidism, time-activity curves showed a rapid stepwise increase with a lot of spikes, and the maximum count was over 500 cps in 6 experiments. In 23 out of 35 (65.7%), the maximum count was less than 200 cps. In these cases, edema was attributable to secondary lymphedema, hypothyroidism, aging and so on. 4) Relationship between edema and lymph flow: When subjects were divided into 3 groups (non-edema, mild and severe edema), the maximum count 200 cps was observed in 16.7% in non-edema group, 45.8% in mild and 9.1% in severe edema group.

  12. Calculation of portal contribution to hepatic blood flow with 99mTc-microcolloids. A noninvasive method to diagnose liver graft rejection

    International Nuclear Information System (INIS)

    Martin-Comin, J.; Mora, J.; Figueras, J.; Puchal, R.; Jaurrieta, E.; Badosa, F.; Ramos, M.

    1988-01-01

    The portal contribution (PC) to hepatic blood flow was calculated in 13 liver graft patients and 13 normal volunteers. The method is based on the quantification and normalization of the liver and spleen activity after the administration of 7 mCi (259 MBq) of 99mTc microcolloid. Forty examinations were performed in liver grafts and 13 in normal subjects. The PC was significantly higher in normal native liver (64.0 +/- 3.0%) than in functioning grafts (58.8 +/- 3.1%). In acutely rejecting patients, PC was significantly lower (52.4 +/- 2.0%) than in functioning grafts and similar to that observed in cholangitis (53.5 +/- 0.7%). The PC increases again once rejection has resolved (57.3 +/- 2.6%). During hepatitis post-transplant PC values (59.7 +/- 3.4%) were similar to those observed in functioning grafts. Overall, PC values over 55% are very unlikely to be due to rejection

  13. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: Method and validation.

    Science.gov (United States)

    Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares; Yeghiazarians, Yerem; Ellin, Justin; Verdin, Emily; Boyle, Andrew; Seo, Youngho; Botvinick, Elias H; Gullberg, Grant T

    2017-02-01

    The objective of this study was to measure myocardial blood flow (MBF) in humans using 99m Tc-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Dynamic SPECT using 99m Tc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99m Tc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99m Tc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curve [Formula: see text] for K 1 values estimated with 99m Tc-tefrofosmin using SPECT and MBF values estimated with 13 N-NH 3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13 N-NH 3 PET. The flow-dependent permeability surface-area product (PS) for 99m Tc-tefrofosmin was also estimated. The estimated flow-extraction parameters for 99m Tc-tefrofosmin were found to be A = 0.91 ± 0.11, B = 0.34 ± 0.20 (R 2  = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44-3.81 mL/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (P < .001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (P = .037). The PS for 99m Tc-tefrofosmin was (0.019 ± 0.10)*MBF + (0.32 ± 0.16). Dynamic cardiac SPECT using 99m Tc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF.

  14. Changes of cerebral blood flow during the secondary expansion of a cortical contusion assessed by 14C-iodoantipyrine autoradiography in mice using a non-invasive protocol.

    Science.gov (United States)

    Engel, Doortje C; Mies, Günter; Terpolilli, Nicole A; Trabold, Raimund; Loch, Alexander; De Zeeuw, Chris I; Weber, John T; Maas, Andrew I R; Plesnila, Nikolaus

    2008-07-01

    Although changes of cerebral blood flow (CBF) in and around traumatic contusions are well documented, the role of CBF for the delayed death of neuronal cells in the traumatic penumbra ultimately resulting in secondary contusion expansion remains unclear. The aim of the current study was therefore to investigate the relationship between changes of CBF and progressive peri-contusional cell death following traumatic brain injury (TBI). CBF and contusion size were measured in C57Bl6 mice under continuous on-line monitoring of (ETp)CO2 before, and at 15 min and 24 h following controlled cortical impact by 14C-iodoantipyrine autoradiography (IAP-AR; n = 5-6 per group) and by Nissl staining, respectively. Contused and ischemic (CBF < 10%) tissue volumes were calculated and compared over time. Cortical CBF in not injured mice varied between 69 and 93 mL/100mg/min depending on the anatomical location. Fifteen minutes after trauma, CBF decreased in the whole brain by approximately 50% (39 +/- 18 mL/100mg/min; p < 0.05), except in contused tissue where it fell by more than 90% (3 +/- 2 mL/100mg/min; p < 0.001). Within 24 h after TBI, CBF recovered to normal values in all brain areas except the contusion where it remained reduced by more than 90% (p < 0.001). Contusion volume expanded from 24.9 to 35.5 mm3 (p < 0.01) from 15 min to 24 h after trauma (+43%), whereas the area of severe ischemia (CBF < 10%) showed only a minimal (+13%) and not significant increase (22.3 to 25.1 mm3). The current data therefore suggest that the delayed secondary expansion of a cortical contusion following traumatic brain injury may not be caused by a reduction of CBF alone.

  15. In-vivo imaging of blood flow dynamics using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2000-04-01

    Noninvasive quantitation of blood flow in the retinal micro circulation may elucidate the progression and treatment of ocular disorders including diabetic retinopathy, age-related degeneration, and glaucoma. Color Doppler optical coherence tomography was recently introduced as a technique allowing simultaneous micron-scale resolution cross-sectional imaging of tissue micro structure and blood flow in the human retina. Here, time-resolved imaging of dynamics of blood flow profiles was performed to measure cardiac pulsatility within retinal vessels. Retinal pulsatility has been shown to decrease throughout the progression of diabetic retinopathy.

  16. Noninvasive Hemodynamic Measurements During Neurosurgical Procedures in Sitting Position.

    Science.gov (United States)

    Schramm, Patrick; Tzanova, Irene; Gööck, Tilman; Hagen, Frank; Schmidtmann, Irene; Engelhard, Kristin; Pestel, Gunther

    2017-07-01

    Neurosurgical procedures in sitting position need advanced cardiovascular monitoring. Transesophageal echocardiography (TEE) to measure cardiac output (CO)/cardiac index (CI) and stroke volume (SV), and invasive arterial blood pressure measurements for systolic (ABPsys), diastolic (ABPdiast) and mean arterial pressure (MAP) are established monitoring technologies for these kind of procedures. A noninvasive device for continuous monitoring of blood pressure and CO based on a modified Penaz technique (volume-clamp method) was introduced recently. In the present study the noninvasive blood pressure measurements were compared with invasive arterial blood pressure monitoring, and the noninvasive CO monitoring to TEE measurements. Measurements of blood pressure and CO were performed in 35 patients before/after giving a fluid bolus and a change from supine to sitting position, start of surgery, and repositioning from sitting to supine at the end of surgery. Data pairs from the noninvasive device (Nexfin HD) versus arterial line measurements (ABPsys, ABPdiast, MAP) and versus TEE (CO, CI, SV) were compared using Bland-Altman analysis and percentage error. All parameters compared (CO, CI, SV, ABPsys, ABPdiast, MAP) showed a large bias and wide limits of agreement. Percentage error was above 30% for all parameters except ABPsys. The noninvasive device based on a modified Penaz technique cannot replace arterial blood pressure monitoring or TEE in anesthetized patients undergoing neurosurgery in sitting position.

  17. Scintigraphic assessment of heterotopic cardiac transplants

    International Nuclear Information System (INIS)

    Wilson, M.A.; Kahn, D.R.

    1981-01-01

    Patients receiving heterotopic (''piggyback'') cardiac transplants, when the patient's own and transplanted donor hearts are connected in parallel, present special problems in determining their relative contributions to total cardiac function. Three patients who had transplants because of intractable heart failure were studied using first pass and gated equilibrium technetium-99m-labeled blood pool scintigraphy. In one patient, thallium-201 myocardial perfusion scans were obtained. These nuclear cardiology techniques provided anatomic and functional information noninvasively that proved helpful in patient management

  18. Noninvasive Urodynamic Evaluation

    Directory of Open Access Journals (Sweden)

    Carlos Arturo Levi D'Ancona

    2012-09-01

    Full Text Available The longevity of the world's population is increasing, and among male patients, complaints of lower urinary tract symptoms (LUTS are growing. Testing to diagnose LUTS and to differentiate between the various causes should be quick, easy, cheap, specific, not too bothersome for the patient, and noninvasive or minimally so. Urodynamic evaluation is the gold standard for diagnosing bladder outlet obstruction (BOO but presents some inconveniences such as embarrassment, pain, and dysuria; furthermore, 19% of cases experience urinary retention, macroscopic hematuria, or urinary tract infection. A greater number of resources in the diagnostic armamentarium could increase the opportunity for selecting less invasive tests. A number of groups have risen to this challenge and have formulated and developed ideas and technologies to improve noninvasive methods to diagnosis BOO. These techniques start with flowmetry, an increase in the interest of ultrasound, and finally the performance of urodynamic evaluation without a urethral catheter. Flowmetry is not sufficient for confirming a diagnosis of BOO. Ultrasound of the prostate and the bladder can help to assess BOO noninvasively in all men and can be useful for evaluating the value of BOO at assessment and during treatment of benign prostatic hyperplasia patients in the future. The great advantages of noninvasive urodynamics are as follows: minimal discomfort, minimal risk of urinary tract infection, and low cost. This method can be repeated many times, permitting the evaluation of obstruction during clinical treatment. A urethral connector should be used to diagnose BOO, in evaluation for surgery, and in screening for treatment. In the future, noninvasive urodynamics can be used to identify patients with BOO to initiate early medical treatment and evaluate the results. This approach permits the possibility of performing surgery before detrusor damage occurs.

  19. Neonatal cardiac emergencies

    African Journals Online (AJOL)

    flow) or require intervention (surgical or catheter) within the first ... Cardiac. History. Risk factors, e.g. meconium-stained liquor, prematurity, ... 'snowman' sign for supracardiac total anomalous pulmonary venous drainage (TAPVD), cardiomegaly with plethora for ... central cyanosis and on auscultation you hear no murmurs.

  20. Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: Comparison with coronary angiography, fractional flow reserve, and the SYNTAX score.

    Science.gov (United States)

    Miyagawa, Masao; Nishiyama, Yoshiko; Uetani, Teruyoshi; Ogimoto, Akiyoshi; Ikeda, Shuntaro; Ishimura, Hayato; Watanabe, Emiri; Tashiro, Rami; Tanabe, Yuki; Kido, Teruhito; Kurata, Akira; Mochizuki, Teruhito

    2017-10-01

    Quantitative assessment of myocardial flow reserve (MFR) by single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is challenging but may facilitate evaluation of multi-vessel coronary artery disease (CAD). We enrolled 153 patients with suspected or known CAD, referred for pharmacological stress MPI. They underwent a 99m Tc-perfusion stress/rest SPECT with an ultrafast cadmium-zinc-telluride (CZT) camera. Dynamic data were acquired and time-activity curves fitted to a 1-tissue compartment analysis with input function. K1 was assigned for stress and rest data. The MFR index (MFRi) was calculated as K1 stress/K1 at-rest. The findings were validated by invasive coronary angiography in 69 consecutive patients. The global MFRi was 1.46 (1.16-1.76), 1.33 (1.12-1.54), and 1.18 (1.01-1.35), for 1-vessel disease (VD), 2-VD, and 3-VD, respectively. In the 3-VD, global MFRi was lower than that in 0-VD (1.63 [1.22-2.04], Pfraction (OR: 61.6 [57.5-66.0]), and global MFRi (OR: 119.6 [111.5-127.7], P=0.002). A cut-off value of 1.3 yielded 93.3% sensitivity and 75.9% specificity for diagnosing 3-VD. Fractional flow reserve positively correlated with regional MFRi (r=0.62, P=0.008), and the SYNTAX score correlated negatively with global MFRi (r=0.567, P=0.0003). We developed and validated a clinically available method for MFR quantification by dynamic 99m Tc-perfusion SPECT utilizing a CZT camera, which improves the detectability of multi-vessel CAD. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. : ventilators for noninvasive ventilation

    OpenAIRE

    Fauroux , Brigitte; Leroux , Karl; Desmarais , Gilbert; Isabey , Daniel; Clément , Annick; Lofaso , Frédéric; Louis , Bruno

    2008-01-01

    International audience; The aim of the present study was to evaluate the performance characteristics of all the ventilators proposed for home noninvasive positive-pressure ventilation in children in France. The ventilators (one volume-targeted, 12 pressure-targeted and four dual) were evaluated on a bench which simulated six different paediatric ventilatory patterns. For each ventilator, the quality of the inspiratory and expiratory trigger and the ability to reach and maintain the preset pre...

  2. Multimodality cardiac imaging of a ventricular septal rupture post myocardial infarction: a case report

    Directory of Open Access Journals (Sweden)

    Dhaliwal Surinder

    2012-10-01

    Full Text Available Abstract Background Ventricular septal rupture (VSR, a mechanical complication following an acute myocardial infarction (MI, is thought to result from coagulation necrosis due to lack of collateral reperfusion. Although the gold standard test to confirm left-to-right shunting between ventricular cavities remains invasive ventriculography, two-dimensional transthoracic echocardiography (TTE with color flow Doppler and cardiac MRI (CMR are reliable tests for the non-invasive diagnosis of VSR. Case presentation A 62-year-old Caucasian female presented with a late case of a VSR post inferior MI diagnosed by multimodality cardiac imaging including TTE, CMR and ventriculography. Conclusion We review the presentation, diagnosis and management of VSR post MI.

  3. Microfluidic system for monitoring of cardiac (H9C2) cell proliferation

    Science.gov (United States)

    Kobuszewska, A.; Cwik, P.; Jastrzebska, E.; Brzozka, Z.; Chudy, M.; Renaud, P.; Dybko, A.

    2017-05-01

    The paper presents the application of electrical impedance spectroscopy (EIS) analysis for investigation of cardiac cell (H9C2 - rat cardiomyoblast) proliferation after verapamil hydrochloride exposure. For this purpose, two different PDMS/glass microsystems with circular microchamber and longitudinal microchannel integrated with Pt/Al electrodes were used. The microchambers were fabricated in PDMS using photolithography and replica moulding techniques. Pt/Al electrodes were fabricated on a 4-inch glass substrate using Physical Vapor Deposition (PVD). Solution of verapamil hydrochloride was continuously introduced into the microsystems with H9C2 cell culture (a flow rate of 1 μl/min) for 72 h. The impedance spectra were recorded from 100 Hz to 1 MHz. We confirmed that impedance spectroscopy can be used for non-invasive, label-free and real-time analysis of cardiac cells proliferation based on cells dielectric properties and biological structure.

  4. Improved Imaging in Cardiac Patients: echocardiography and CT-coronary angiography

    NARCIS (Netherlands)

    T.W. Galema (Tjebbe)

    2010-01-01

    textabstractDiff erent non-invasive imaging modalities are used for to assess cardiac anatomy and function. Echocardiography and MRI allow assessment of cardiac structures and function of the cardiac chambers and valves as well as perfusion of the left ventricular wall while CT-angiography in

  5. Non-invasive quick diagnosis of cardiovascular problems from visible and invisible abnormal changes with increased cardiac troponin I appearing on cardiovascular representation areas of the eyebrows, left upper lip, etc. of the face & hands: beneficial manual stimulation of hands for acute anginal chest pain, and important factors in safe, effective treatment.

    Science.gov (United States)

    Omura, Yoshiaki; Jones, Marilyn K; Duvvi, Harsha; Shimotsuura, Yasuhiro; Ohki, Motomu; Rodriques, Aaron

    2014-01-01

    Our previous study indicated that there are at least 7 cardiovascular representation areas on the face, including the "Eyebrows", both sides of the "Nose", "Lelt Upper Lip" and the "Outside of the corner of both sides of the mouth," in addition to 2 areas in each hand. When there are cardiovascular problems, some of the heart representation areas of these areas often show the following changes: 1) Most distinctive visible changes such as the initial whitening with or without long white hair, then hair loss and complete disappearance of the hairs of the heart representation area of "Eyebrows" 2) Invisible biochemical changes that happen in heart representation areas at the "Left Upper Lips", 3) "Nose" below eye level as well as 4) "3rd segment of Middle Finger of Hands." Most distinctive visible & invisible changes are found in heart representation areas on the "Eyebrow", located nearest to the midline of face, where the color of the hairs becomes white compared with the rest of the Eyebrow. Then the cardiovascular problem advances, and hair starts disappearing. When there are no hairs at the heart representation areas of the Eyebrow, usually Cardiac Troponin I is increased to a very serious, abnormal high value. Most of the cardiovascular representation areas of the face show, regardless of presence or absence of visible change. When there is a cardiovascular problem, not only simple Bi-Digital O-Ring Test can detect without using any instrument in several minutes but also, corresponding biochemical changes of abnormally increased Cardiac Troponin I level can often be detected non-invasively from these Organ Representation Areas of Face & Hands, although changes in Eyebrows, L-Upper Lip & 3rd segment of middle fingers are clinically the most reliable changes & easy to identify the locations. Manual Stimulation of Hand's heart representation areas often eliminated acute anginal chest pain before medical help became available. Important factors for safe, effective

  6. Imaging in cardiac mass lesions

    International Nuclear Information System (INIS)

    Mundinger, A.; Gruber, H.P.; Dinkel, E.; Geibel, A.; Beck, A.; Wimmer, B.; Schlosser, V.

    1992-01-01

    In 26 patients with cardiac mass lesions confirmed by surgery, diagnostic imaging was performed preoperatively by means of two-dimensional echocardiography (26 patients), angiography (12 patients), correlative computed tomography (CT, 8 patients), and magnetic resonance imaging (MRI, 3 patients). Two-dimensional echocardiography correctly identified the cardiac masses in all patients. Angiography missed two of 12 cardiac masses; CT missed one of eight. MRI identified three of three cardiac masses. Although the sensitivity of two-dimensional echocardiography was high (100%), all methods lacked specificity. None of the methods allowed differentiation between myxoma (n=13) and thrombus (n=7). Malignancy of the lesions was successfully predicted by noninvasive imaging methods in all six patients. However, CT and MRI provided additional information concerning cardiac mural infiltration, pericardial involvement, and extracardiac tumor extension, and should be integrated within a preoperative imaging strategy. Thus two-dimensional echocardiography is the method of choice for primary assessment of patients with suspected cardiac masses. Further preoperative imaging by CT or MRI can be limited to patients with malignancies suspected on the grounds of pericardial effusion or other clinical results. (author)

  7. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods

    Directory of Open Access Journals (Sweden)

    Barbosa JA

    2011-05-01

    Full Text Available José Augusto A Barbosa¹, Alexandre B Rodrigues¹, Cleonice Carvalho C Mota¹, Márcia M Barbosa², Ana C Simões e Silva¹¹Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG, Belo Horizonte, Minas Gerais, Brazil; ²Ecocenter, Socor Hospital, Belo Horizonte, Minas Gerais, BrazilAbstract: Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.Keywords: cardiovascular risk, endothelium dysfunction, obesity, strain and strain rate, tissue Doppler

  8. Cardiac tumours: non invasive detection and assessment by gated cardiac blood pool radionuclide imaging

    International Nuclear Information System (INIS)

    Pitcher, D.; Wainwright, R.; Brennand-Roper, D.; Deverall, P.; Sowton, E.; Maisey, M.

    1980-01-01

    Four patients with cardiac tumours were investigated by gated cardiac blood pool radionuclide imaging and echocardiography. Contrast angiocardiography was performed in three of the cases. Two left atrial tumours were detected by all three techniques. In one of these cases echocardiography alone showed additional mitral valve stenosis, but isotope imaging indicated tumour size more accurately. A large septal mass was detected by all three methods. In this patient echocardiography showed evidence of left ventricular outflow obstruction, confirmed at cardiac catheterisation, but gated isotope imaging provided a more detailed assessment of the abnormal cardiac anatomy. In the fourth case gated isotope imaging detected a large right ventricular tumour which had not been identified by echocardiography. Gated cardiac blood pool isotope imaging is a complementary technique to echocardiography for the non-invasive detection and assessment of cardiac tumours. (author)

  9. Do we need invasive confirmation of cardiac magnetic resonance results?

    Science.gov (United States)

    Siastała, Paweł; Kądziela, Jacek; Małek, Łukasz A; Śpiewak, Mateusz; Lech, Katarzyna; Witkowski, Adam

    2017-01-01

    Coronary artery revascularization is indicated in patients with documented significant obstruction of coronary blood flow associated with a large area of myocardial ischemia and/or untreatable symptoms. There are a few invasive or noninvasive methods that can provide information about the functional results of coronary artery narrowing. The application of more than one method of ischemia detection in one patient to reevaluate the indications for revascularization is used in case of atypical or no symptoms and/or borderline stenosis. To evaluate whether the results of cardiac magnetic resonance need to be reconfirmed by the invasive functional method. The hospital database revealed 25 consecutive patients with 29 stenoses who underwent cardiac magnetic resonance (CMR) and fractional flow reserve (FFR) between the end of 2010 and the end of 2014. The maximal time interval between CMR and FFR was 6 months. None of the patients experienced any clinical events or underwent procedures on coronary arteries between the studies. According to the analysis, the agreement of CMR perfusion with the FFR method was at the level of 89.7%. Assuming that FFR is the gold standard in assessing the severity of stenoses, the sensitivity of CMR perfusion was 90.9%. The percentage of non-severe lesions which were correctly identified in CMR was 88.9%. The study shows that CMR perfusion is a highly sensitive method to detect hemodynamically significant CAD and exclude nonsevere lesions. With FFR as the reference standard, the diagnostic accuracy of MR perfusion to detect ischemic CAD is high.

  10. Left Ventricular Stroke Volume Quantification by Contrast Echocardiography – Comparison of Linear and Flow-Based Methods to Cardiac Magnetic Resonance

    Science.gov (United States)

    Dele-Michael, Abiola O.; Fujikura, Kana; Devereux, Richard B; Islam, Fahmida; Hriljac, Ingrid; Wilson, Sean R.; Lin, Fay; Weinsaft, Jonathan W.

    2014-01-01

    Background Echocardiography (echo) quantified LV stroke volume (SV) is widely used to assess systolic performance after acute myocardial infarction (AMI). This study compared two common echo approaches – predicated on flow (Doppler) and linear chamber dimensions (Teichholz) – to volumetric SV and global infarct parameters quantified by cardiac magnetic resonance (CMR). Methods Multimodality imaging was performed as part of a post-AMI registry. For echo, SV was measured by Doppler and Teichholz methods. Cine-CMR was used for volumetric SV and LVEF quantification, and delayed-enhancement CMR for infarct size. Results 142 patients underwent same-day echo and CMR. On echo, mean SV by Teichholz (78±17ml) was slightly higher than Doppler (75±16ml; Δ=3±13ml, p=0.02). Compared to SV on CMR (78±18ml), mean difference by Teichholz (Δ=−0.2±14; p=0.89) was slightly smaller than Doppler (Δ−3±14; p=0.02) but limits of agreement were similar between CMR and echo methods (Teichholz: −28, 27 ml, Doppler: −31, 24ml). For Teichholz, differences with CMR SV were greatest among patients with anteroseptal or lateral wall hypokinesis (p<0.05). For Doppler, differences were associated with aortic valve abnormalities or root dilation (p=0.01). SV by both echo methods decreased stepwise in relation to global LV injury as assessed by CMR-quantified LVEF and infarct size (p<0.01). Conclusions Teichholz and Doppler calculated SV yield similar magnitude of agreement with CMR. Teichholz differences with CMR increase with septal or lateral wall contractile dysfunction, whereas Doppler yields increased offsets in patients with aortic remodeling. PMID:23488864

  11. Quantitative evaluation of myocardial perfusion and heart function using a non-invasive double isotope technique

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, W H; Doll, J; Georgi, P [Deutsches Krebsforschungszentrum, Heidelberg (Germany, F.R.). Inst. fuer Nuklearmedizin; Tillmanns, H [Heidelberg Univ. (Germany, F.R.). Innere Medizin 3

    1976-11-01

    This paper describes a non-invasive double nuclide technique for the simultaneous measurement of minimal cardiac transit times (MTT) and regional 'myocardial appearance times' (MAT) using gamma camera and computer. MAT is defined as the time lag between the appearance of an indicator with myocardial affinity in the aortic root and its extraction in the myocardial cells. The extraction can be identified as an increase of the ratio between the count rates of the two nuclides e.g. /sup 201/Tl-chloride and sup(113m)In DTPA. The clinical evaluation of this method allows the following conclusions: 1) MAT, determined over several circumscript myocardial regions permits the qualitative diagnosis of a coronary artery disease with high confidence. 2) Indices of nutritive myocardial blood flow (INF), derived by MAT using several representative areas of myocardium, show a definite correlation to the degree of coronary artery disease. In addition to the localization of infarction and the determination of infarct size, the technique described promises a quantitative evaluation of the regional myocardial perfusion. Simultaneously measured MTT help to assess segmental cardiac performance.

  12. Cardiac positron emission tomography

    International Nuclear Information System (INIS)

    Eftekhari, M.; Ejmalian, G.

    2003-01-01

    Positron emission tomography is an intrinsically tool that provide a unique and unparalleled approach for clinicians and researchers to interrogate the heart noninvasively. The ability to label substances of physiological interest with positron-emitting radioisotopes has permitted insight into normal blood flow and metabolism and the alterations that occur with disease states. Positron emission tomography of the heart has evolved as a unique, noninvasive approach for the assessment of myocardial perfusion, metabolism, and function. Because of the intrinsic quantitative nature of positron emission tomography measurements as well as the diverse compounds that can be labeled with positron- emitting radioisotopes, studies with positron emission tomography have provided rich insight into the physiology of the heart under diverse conditions

  13. Cardiac arrest

    Science.gov (United States)

    ... magnesium. These minerals help your heart's electrical system work. Abnormally high or low levels can cause cardiac arrest. Severe physical stress. Anything that causes a severe stress on your ...

  14. Cardiac Ochronosis

    Science.gov (United States)

    Erek, Ersin; Casselman, Filip P.A.; Vanermen, Hugo

    2004-01-01

    We report the case of 67-year-old woman who underwent aortic valve replacement and mitral valve repair due to ochronotic valvular disease (alkaptonuria), which was diagnosed incidentally during cardiac surgery. PMID:15745303

  15. Cardiac catheterization

    Science.gov (United States)

    ... tests. However, it is very safe when done by an experienced team. The risks include: Cardiac tamponade Heart attack Injury to a coronary artery Irregular heartbeat Low blood pressure Reaction to the contrast dye Stroke Possible complications ...

  16. Nuclear cardiac

    International Nuclear Information System (INIS)

    Slutsky, R.; Ashburn, W.L.

    1982-01-01

    The relationship between nuclear medicine and cardiology has continued to produce a surfeit of interesting, illuminating, and important reports involving the analysis of cardiac function, perfusion, and metabolism. To simplify the presentation, this review is broken down into three major subheadings: analysis of myocardial perfusion; imaging of the recent myocardial infarction; and the evaluation of myocardial function. There appears to be an increasingly important relationship between cardiology, particularly cardiac physiology, and nuclear imaging techniques

  17. Neurally Adjusted Ventilatory Assist After Pediatric Cardiac Surgery: Clinical Experience and Impact on Ventilation Pressures.

    Science.gov (United States)

    Crulli, Benjamin; Khebir, Mariam; Toledano, Baruch; Vobecky, Suzanne; Poirier, Nancy; Emeriaud, Guillaume

    2018-02-01

    After pediatric cardiac surgery, ventilation with high airway pressures can be detrimental to right ventricular function and pulmonary blood flow. Neurally adjusted ventilatory assist (NAVA) improves patient-ventilator interactions, helping maintain spontaneous ventilation. This study reports our experience with the use of NAVA in children after a cardiac surgery. We hypothesize that using NAVA in this population is feasible and allows for lower ventilation pressures. We retrospectively studied all children ventilated with NAVA (invasively or noninvasively) after undergoing cardiac surgery between January 2013 and May 2015 in our pediatric intensive care unit. The number and duration of NAVA episodes were described. For the first period of invasive NAVA in each subject, detailed clinical and ventilator data in the 4 h before and after the start of NAVA were extracted. 33 postoperative courses were included in 28 subjects with a median age of 3 [interquartile range (IQR) 1-12] months. NAVA was used invasively in 27 courses for a total duration of 87 (IQR 15-334) h per course. Peak inspiratory pressures and mean airway pressures decreased significantly after the start of NAVA (mean differences of 5.8 cm H 2 O (95% CI 4.1-7.5) and 2.0 cm H 2 O (95% CI 1.2-2.8), respectively, P < .001 for both). There was no significant difference in vital signs or blood gas values. NAVA was used noninvasively in 14 subjects, over 79 (IQR 25-137) h. NAVA could be used in pediatric subjects after cardiac surgery. The significant decrease in airway pressures observed after transition to NAVA could have a beneficial impact in this specific population, which should be investigated in future interventional studies. Copyright © 2018 by Daedalus Enterprises.

  18. The ECG vertigo in diabetes and cardiac autonomic neuropathy.

    Science.gov (United States)

    Voulgari, Christina; Tentolouris, Nicholas; Stefanadis, Christodoulos

    2011-01-01

    The importance of diabetes in the epidemiology of cardiovascular diseases cannot be overemphasized. About one third of acute myocardial infarction patients have diabetes, and its prevalence is steadily increasing. The decrease in cardiac mortality in people with diabetes is lagging behind that of the general population. Cardiovascular disease is a broad term which includes any condition causing pathological changes in blood vessels, cardiac muscle or valves, and cardiac rhythm. The ECG offers a quick, noninvasive clinical and research screen for the early detection of cardiovascular disease in diabetes. In this paper, the clinical and research value of the ECG is readdressed in diabetes and in the presence of cardiac autonomic neuropathy.

  19. Preoperative Right-Sided Cardiac Congestion Is Associated with Gastrointestinal Bleeding in Patients with Continuous-Flow Left Ventricular Assist Devices.

    Science.gov (United States)

    Tomizawa, Yutaka; Tanaka, Akiko; Kitahara, Hiroto; Sakuraba, Atsushi; Uriel, Nir; Jeevanandam, Valluvan; Ota, Takeyoshi

    2018-06-01

    Large scale data on preoperative risk stratification for gastrointestinal bleeding (GIB) following continuous-flow left ventricular assist device (CF-LVAD) implantation are scarce. To identify independent predictors for GIB following CF-LVAD implantation. We conducted a retrospective cohort study of consecutive 243 patients who underwent CF-LVAD implantation (HeartMateII) from January 2009 to March 2015 at the University of Chicago Medical Center. GIB was defined as the presence of overt bleeding or occult GIB with ≥ 2 g/dl drop in hemoglobin (Hgb) from recorded baseline values and hemoccult-positive stool. The preoperative and postoperative data were reviewed. Within a median follow-up duration of 408 (IQR 113-954) days, 83 (34%) patients developed GIB after a median of 149 (IQR 27-615) days after implantation of CF-LVAD. There were no significant differences between the groups of GIB and non-GIB with respect to preoperative demographics and comorbidity except for ethnicity. The source of bleeding was identified in 39 (47%) patients and arteriovenous malformation or submucosal streaming vessel was the most frequent cause of bleeding (18/39, 46%). Multivariate-adjusted analysis demonstrated preoperative central venous pressure (CVP) ≥ 18 mmHg (HR 3.56; 95% CI 1.16-10.9; p = 0.026), mean pulmonary artery pressure (mPA) ≥ 36 mmHg (HR 4.14; 95% CI 1.35-12.7; p = 0.013), and the presence of moderate/severe tricuspid valve disease (HR 1.01; 95% CI 1.01-3.86; p = 0.046) were associated with the risk of GIB. In this study, preoperative right-sided cardiac congestion (i.e., increased CVP, mPA and the presence of moderate/severe tricuspid valve disease) was associated with GIB in patients with CF-LVAD.

  20. Endothelial dysfunction after non-cardiac surgery

    DEFF Research Database (Denmark)

    Søndergaard, E S; Fonnes, S; Gögenur, I

    2015-01-01

    was to systematically review the literature to evaluate the association between non-cardiac surgery and non-invasive markers of endothelial function. METHODS: A systematic search was conducted in MEDLINE, EMBASE and Cochrane Library Database according to the PRISMA guidelines. Endothelial dysfunction was described only...... transplantation and vascular surgery respectively) had an improvement in endothelial dysfunction 1 month after surgery. CONCLUSION: Endothelial function changes in relation to surgery. Assessment of endothelial function by non-invasive measures has the potential to guide clinicians in the prevention or treatment...

  1. Cardiac sympathetic neuronal imaging using PET

    International Nuclear Information System (INIS)

    Lautamaeki, Riikka; Tipre, Dnyanesh; Bengel, Frank M.

    2007-01-01

    Balance of the autonomic nervous system is essential for adequate cardiac performance, and alterations seem to play a key role in the development and progression of various cardiac diseases. PET imaging of the cardiac autonomic nervous system has advanced extensively in recent years, and multiple pre- and postsynaptic tracers have been introduced. The high spatial and temporal resolution of PET enables noninvasive quantification of neurophysiologic processes at the tissue level. Ligands for catecholamine receptors, along with radiolabeled catecholamines and catecholamine analogs, have been applied to determine involvement of sympathetic dysinnervation at different stages of heart diseases such as ischemia, heart failure, and arrhythmia. This review summarizes the recent findings in neurocardiological PET imaging. Experimental studies with several radioligands and clinical findings in cardiac dysautonomias are discussed. (orig.)

  2. Noninvasive Ventilation in Premature Neonates.

    Science.gov (United States)

    Flanagan, Keri Ann

    2016-04-01

    The use of noninvasive ventilation is a constantly evolving treatment option for respiratory disease in the premature infant. The goals of these noninvasive ventilation techniques are to improve gas exchange in the premature infant's lungs and to minimize the need for intubation and invasive mechanical ventilation. The goals of this article are to consider various uses of nasal interfaces, discuss skin care and developmental positioning concerns faced by the bedside nurse, and discuss the medical management aimed to reduce morbidity and mortality. This article explores the nursing role, the advances in medical strategies for noninvasive ventilation, and the team approach to noninvasive ventilation use in this population. Search strategy included a literature review on medical databases, such as EBSCOhost, CINAHL, PubMed, and NeoReviews. Innovative products, nursing research on developmental positioning and skin care, and advanced medical management have led to better and safer outcomes for premature infants requiring noninvasive ventilation. The medical focus of avoiding long-term mechanical ventilation would not be possible without the technology to provide noninvasive ventilation to these premature infants and the watchful eye of the nurse in terms of careful positioning, preventing skin breakdown and facial scarring, and a proper seal to maximize ventilation accuracy. This article encourages nursing-based research to quantify some of the knowledge about skin care and positioning as well as research into most appropriate uses for noninvasive ventilation devices.

  3. Cardiac CT

    International Nuclear Information System (INIS)

    Dewey, Marc

    2011-01-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  4. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  5. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  6. Advanced flow MRI: emerging techniques and applications

    International Nuclear Information System (INIS)

    Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A.J.; Robinson, J.D.; Rigsby, C.K.

    2016-01-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented.

  7. Arterial aging and arterial disease : interplay between central hemodynamics, cardiac work, and organ flow-implications for CKD and cardiovascular disease

    NARCIS (Netherlands)

    London, Gerard; Covic, Adrian; Goldsmith, David; Wiecek, Andrzej; Suleymanlar, Gultekin; Ortiz, Alberto; Massy, Ziad; Lindholm, Bengt; Martinez-Castelao, Alberto; Fliser, Danilo; Agarwal, Rajiv; Jager, Kitty J.; Dekker, Friedo W.; Blankestijn, Peter J.; Zoccali, Carmine

    Cardiovascular disease is an important cause of morbidity and mortality in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). All epidemiological studies have clearly shown that accelerated arterial and cardiac aging is characteristic of these populations. Arterial

  8. Cardiac magnetic resonance assessment of takotsubo cardiomyopathy

    International Nuclear Information System (INIS)

    Abbas, A.; Sonnex, E.; Pereira, R.S.; Coulden, R.A.

    2016-01-01

    Takotsubo cardiomyopathy is an important condition that can be difficult to differentiate from acute coronary syndrome on the basis of clinical, electrocardiogram, and cardiac enzyme assessment alone. Although coronary angiography remains important in the acute assessment of patients with suspected takotsubo cardiomyopathy, cardiac magnetic resonance (CMR) has emerged over the last decade as an important non-invasive imaging tool in the diagnosis and follow-up of this condition. We present a review highlighting the CMR features of takotsubo cardiomyopathy and its complications with particular focus on differentiating this condition from acute myocardial infarction and myocarditis.

  9. Direct numerical simulation of noninvasive channel healing in electrical field

    KAUST Repository

    Wang, Yi; Sun, Shuyu

    2017-01-01

    Noninvasive channel healing is a new idea to repair the broken pipe wall, using external electric fields to drive iron particles to the destination. The repair can be done in the normal operation of the pipe flow without any shutdown of the pipeline

  10. [Cardiac cachexia].

    Science.gov (United States)

    Miján, Alberto; Martín, Elvira; de Mateo, Beatriz

    2006-05-01

    Chronic heart failure (CHF), especially affecting the right heart, frequently leads to malnutrition. If the latter is severe and is combined to other factors, it may lead to cardiac cachexia. This one is associated to increased mortality and lower survival of patients suffering from it. The causes of cardiac cachexia are diverse, generally associated to maintenance of a negative energy balance, with increasing evidence of its multifactorial origin. Neurohumoral, inflammatory, immunological, and metabolic factors, among others, are superimposed in the patient with CHF, leading to involvement and deterioration of several organs and systems, since this condition affects both lean (or active cellular) mass and adipose and bone tissue osteoporosis. Among all, the most pronounced deterioration may be seen at skeletal muscle tissue, at both structural and functional levels, the heart not being spared. As for treatment, it should be based on available scientific evidence. Assessment of nutritional status of any patient with CHF is a must, with the requirement of nutritional intervention in case of malnutrition. In this situation, especially if accompanied by cardiac cachexia, it is required to modify energy intake and oral diet quality, and to consider the indication of specific complementary or alternative artificial nutrition. Besides, the causal relationship of the beneficial role of moderate physical exertion is increasing, as well as modulation of metabolic and inflammatory impairments observed in cardiac cachexia with several drugs, leading to a favorable functional and structural response in CHF patients.

  11. Cardiac Pacemakers

    International Nuclear Information System (INIS)

    Fiandra, O.; Espasandin, W.; Fiandra, H.

    1984-01-01

    A complete survey of physiological biophysical,clinical and engineering aspects of cardiac facing,including the history and an assessment of possible future developments.Among the topics studied are: pacemakers, energy search, heart stimulating with pacemakers ,mathematical aspects of the electric cardio stimulation chronic, pacemaker implants,proceeding,treatment and control

  12. Ultrasonography for Noninvasive Assessment of Portal Hypertension.

    Science.gov (United States)

    Maruyama, Hitoshi; Yokosuka, Osamu

    2017-07-15

    Portal hypertension is a major pathophysiology in patients with cirrhosis. Portal pressure is the gold standard to evaluate the severity of portal hypertension, and radiological intervention is the only procedure for pressure measurement. Ultrasound (US) is a simple and noninvasive imaging modality available worldwide. B-mode imaging allows broad applications for patients to detect and characterize chronic liver diseases and focal hepatic lesions. The Doppler technique offers real-time observation of blood flow with qualitative and quantitative assessments, and the application of microbubble-based contrast agents has improved the detectability of peripheral blood flow. In addition, elastography for the liver and spleen covers a wider field beyond the original purpose of fibrosis assessment. These developments enhance the practical use of US in the evaluation of portal hemodynamic abnormalities. This article reviews the recent progress of US in the assessment of portal hypertension.

  13. Echocardiographic and hemodynamic determinants of right coronary artery flow reserve and phasic flow pattern in advanced non-ischemic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Mady Charles

    2007-09-01

    Full Text Available Abstract Background In patients with advanced non-ischemic cardiomyopathy (NIC, right-sided cardiac disturbances has prognostic implications. Right coronary artery (RCA flow pattern and flow reserve (CFR are not well known in this setting. The purpose of this study was to assess, in human advanced NIC, the RCA phasic flow pattern and CFR, also under right-sided cardiac disturbances, and compare with left coronary circulation. As well as to investigate any correlation between the cardiac structural, mechanical and hemodynamic parameters with RCA phasic flow pattern or CFR. Methods Twenty four patients with dilated severe NIC were evaluated non-invasively, even by echocardiography, and also by cardiac catheterization, inclusive with Swan-Ganz catheter. Intracoronary Doppler (Flowire data was obtained in RCA and left anterior descendent coronary artery (LAD before and after adenosine. Resting RCA phasic pattern (diastolic/systolic was compared between subgroups with and without pulmonary hypertension, and with and without right ventricular (RV dysfunction; and also with LAD. RCA-CFR was compared with LAD, as well as in those subgroups. Pearson's correlation analysis was accomplished among echocardiographic (including LV fractional shortening, mass index, end systolic wall stress more hemodynamic parameters with RCA phasic flow pattern or RCA-CFR. Results LV fractional shortening and end diastolic diameter were 15.3 ± 3.5 % and 69.4 ± 12.2 mm. Resting RCA phasic pattern had no difference comparing subgroups with vs. without pulmonary hypertension (1.45 vs. 1.29, p = NS either with vs. without RV dysfunction (1.47 vs. 1.23, p = NS; RCA vs. LAD was 1.35 vs. 2.85 (p Conclusion In patients with chronic advanced NIC, RCA phasic flow pattern has a mild diastolic predominance, less marked than in LAD, with no effects from pulmonary artery hypertension or RV dysfunction. There is no significant correlation between any cardiac mechanical-structural or

  14. Korean guidelines for the appropriate use of cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin [Dept. of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul(Korea, Republic of); Yong, Hwan Seok [Dept. of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul(Korea, Republic of); Kim, Sung Mok [Dept. of Radiology, amsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Jung A [Dept. of Radiology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang (Korea, Republic of); Hong, Yoo Jin [Dept. of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-04-15

    The development of cardiac CT has provided a non-invasive alternative to echocardiography, exercise electrocardiogram, and invasive angiography and cardiac CT continues to develop at an exponential speed even now. The appropriate use of cardiac CT may lead to improvements in the medical performances of physicians and can reduce medical costs which eventually contribute to better public health. However, until now, there has been no guideline regarding the appropriate use of cardiac CT in Korea. We intend to provide guidelines for the appropriate use of cardiac CT in heart diseases based on scientific data. The purpose of this guideline is to assist clinicians and other health professionals in the use of cardiac CT for diagnosis and treatment of heart diseases, especially in patients at high risk or suspected of heart disease.

  15. Cardiac ablation

    Directory of Open Access Journals (Sweden)

    Kelly Ratheal

    2016-01-01

    Full Text Available Cardiac ablation is a procedure that uses either radiofrequency or cryothermal energy to destroy cells in the heart to terminate and/or prevent arrhythmias. The indications for cardiac catheter ablation include refractory, symptomatic arrhythmias, with more specific guidelines for atrial fibrillation in particular. The ablation procedure itself involves mapping the arrhythmia and destruction of the aberrant pathway in an effort to permanently prevent the arrhythmia. There are many types of arrhythmias, and they require individualized approaches to ablation based on their innately different electrical pathways. Ablation of arrhythmias, such as Wolff-Parkinson-White syndrome, AV nodal reentrant tachycardia, and atrial-fibrillation, is discussed in this review. Ablation has a high success rate overall and minimal complication rates, leading to improved quality of life in many patients.

  16. Cardiac fluid dynamics meets deformation imaging.

    Science.gov (United States)

    Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni

    2018-02-20

    Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.

  17. Cerebral oxygenation monitoring in patients with bilateral carotid stenosis undergoing urgent cardiac surgery: Observational case series

    Directory of Open Access Journals (Sweden)

    Dincer Aktuerk

    2016-01-01

    Full Text Available Background: Patients with significant bilateral carotid artery stenosis requiring urgent cardiac surgery have an increased risk of stroke and death. The optimal management strategy remains inconclusive, and the available evidence does not support the superiority of one strategy over another. Materials and Methods: A number of noninvasive strategies have been developed for minimizing perioperative stroke including continuous real-time monitoring of cerebral oxygenation with near-infrared spectroscopy (NIRS. The number of patients presenting with this combination (bilateral significant carotid stenosis requiring urgent cardiac surgery in any single institution will be small and hence there is a lack of large randomized studies. Results: This case series describes our early experience with NIRS in a select group of patients with significant bilateral carotid stenosis undergoing urgent cardiac surgery (n = 8. In contrast to other studies, this series is a single surgeon, single center study, where the entire surgery (both distal ends and proximal ends was performed during single aortic clamp technique, which effectively removes several confounding variables. NIRS monitoring led to the early recognition of decreased cerebral oxygenation, and corrective steps (increased cardiopulmonary bypass flow, increased pCO 2 , etc., were taken. Conclusion: The study shows good clinical outcome with the use of NIRS. This is our "work in progress," and we aim to conduct a larger study.

  18. Real-time 3D visualization of cellular rearrangements during cardiac valve formation.

    Science.gov (United States)

    Pestel, Jenny; Ramadass, Radhan; Gauvrit, Sebastien; Helker, Christian; Herzog, Wiebke; Stainier, Didier Y R

    2016-06-15

    During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/β-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process. © 2016. Published by The Company of Biologists Ltd.

  19. Non-invasive hemoglobin monitoring.

    Science.gov (United States)

    Joseph, Bellal; Haider, Ansab; Rhee, Peter

    2016-09-01

    Technology has transformed the practice of medicine and surgery in particular over the last several decades. This change in practice has allowed diagnostic and therapeutic tests to be performed less invasively. Hemoglobin monitoring remains one of the most commonly performed diagnostic tests in the United States. Recently, non-invasive hemoglobin monitoring technology has gained popularity. The aim of this article is to review the principles of how this technology works, pros and cons, and the implications of non-invasive hemoglobin technology particularly in trauma surgery. Copyright © 2015 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  20. Do we need invasive confirmation of cardiac magnetic resonance results?

    Directory of Open Access Journals (Sweden)

    Paweł Siastała

    2017-03-01

    Full Text Available Introduction : Coronary artery revascularization is indicated in patients with documented significant obstruction of coronary blood flow associated with a large area of myocardial ischemia and/or untreatable symptoms. There are a few invasive or noninvasive methods that can provide information about the functional results of coronary artery narrowing. The application of more than one method of ischemia detection in one patient to reevaluate the indications for revascularization is used in case of atypical or no symptoms and/or borderline stenosis. Aim : To evaluate whether the results of cardiac magnetic resonance need to be reconfirmed by the invasive functional method. Material and methods : The hospital database revealed 25 consecutive patients with 29 stenoses who underwent cardiac magnetic resonance (CMR and fractional flow reserve (FFR between the end of 2010 and the end of 2014. The maximal time interval between CMR and FFR was 6 months. None of the patients experienced any clinical events or underwent procedures on coronary arteries between the studies. Results: According to the analysis, the agreement of CMR perfusion with the FFR method was at the level of 89.7%. Assuming that FFR is the gold standard in assessing the severity of stenoses, the sensitivity of CMR perfusion was 90.9%. The percentage of non-severe lesions which were correctly identified in CMR was 88.9%. Conclusions : The study shows that CMR perfusion is a highly sensitive method to detect hemodynamically significant CAD and exclude nonsevere lesions. With FFR as the reference standard, the diagnostic accuracy of MR perfusion to detect ischemic CAD is high.

  1. The Use of Fetal Noninvasive Electrocardiography

    Directory of Open Access Journals (Sweden)

    Igor Lakhno

    2016-01-01

    Full Text Available Preeclampsia (PE is one of the severe complications of pregnancy that leads to fetal deterioration. The aim was to survey the validity of fetal distress diagnostics in case of Doppler ultrasonic umbilical vein and arteries blood flow velocity investigation and ECG parameters analysis obtained from maternal abdominal signal before labor in preeclamptic patients. Fetal noninvasive ECG and umbilical arterial and venous Doppler investigation were performed in 120 patients at 34–40 weeks of gestation. And 30 of them had physiological gestation and were involved in Group I. In Group II 52 pregnant women with mild-moderate PE were observed. 38 patients with severe PE were monitored in Group III. The most considerable negative correlation was determined in pair Apgar score 1 versus T/QRS (R=-0.50; p<0.05. So the increased T/QRS ratio was the most evident marker of fetal distress. Fetal noninvasive ECG showed sensitivity of 96.6% and specificity of 98.4% and, therefore, was determined as more accurate method for fetal monitoring.

  2. The potential of electrocardiographic markers to tune cardiac device therapy

    NARCIS (Netherlands)

    Wijers, S.C.

    2017-01-01

    In this thesis an effort was made to translate basic research into clinical practice to improve cardiac device therapy. We showed the electrocardiogram (ECG) is everything but obsolete or outdated and is of great value as a simple non-invasive tool in identifying individuals that can benefit from

  3. Noninvasive vaccination against infectious diseases.

    Science.gov (United States)

    Zheng, Zhichao; Diaz-Arévalo, Diana; Guan, Hongbing; Zeng, Mingtao

    2018-04-06

    The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future.

  4. Noninvasive imaging of coronary arteries: current and future role of multidetector row computer tomography

    International Nuclear Information System (INIS)

    Nedevska, M.; Stoinova, V.

    2006-01-01

    Full text: This review will present the current and future role of cardiac computer tomography (CCT), and particular multidetector CCT, for imaging of atherosclerotic pathologic changes of the coronary arteries. Atherosclerosis and its cardio-vascular complications represent one of the major issues of public health in industrial countries. Different imaging modalities, including invasive coronarography, have been aimed to the diagnosis of the disease, when it provokes symptomatic decrease of the blood flow. In spite of development of surgical and percutaneous methods for coronary revascularization, coronary artery disease remains the major cause of death in North America and Europe. This demonstrates the need of novel, complementary diagnostic strategies, aimed to identify asymptomatic stages as the basis of pharmacological interventions. Noninvasive coronary angiography with multidetector CT allows both assessment of luminal stenosis and subclinical disease of arterial wall. Large trails are missing now to understand and present what will be the role of this technology in the comprehensive assessment of patients, suspected of having CAD. Based on experience and current potentials we will describe how tomographic coronary imaging may eventually supplement traditional angiographic techniques in understanding the patterns of atherosclerotic CAD development

  5. NUCLEAR IMAGING IN THE DIAGNOSIS OF CARDIAC AMYLOIDOSIS

    Directory of Open Access Journals (Sweden)

    V. B. Sergienko

    2018-01-01

    Full Text Available Histological analysis of endomyocardial tissue is still the gold standard for the diagnosis of cardiac amyloidosis but has its limitations. Accordingly, there is a need for noninvasive techniques to cardiac amyloidosis diagnostics. Echocardiography and magnetic resonance imaging can show characteristics which may not be very specific for cardiac amyloid. Recently, new opportunities of nuclear imaging in risk stratification and assessment of prognosis for patients with cardiac amyloidosis have appeared. During the last two decades different classes of radiopharmaceuticals have been developed based on compounds tropic to the components of amyloid infiltrates. In this paper we describe the current possibilities and perspectives of nuclear medicine techniques in patients with cardiac amyloidosis, including osteotropic and neurotropic scintigraphy, single-photon and positron emission tomography

  6. Automated flow quantification in valvular heart disease based on backscattered Doppler power analysis: implementation on matrix-array ultrasound imaging systems.

    Science.gov (United States)

    Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A

    2008-06-01

    Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.

  7. Cardiac pacemaker

    International Nuclear Information System (INIS)

    Kolenik, S.A.

    1976-01-01

    The construction of a cardiac pacemaker is described which is characterized by particularly small dimensions, small weight and long life duration. The weight is under 100g, the specific weight under 1.7. Mass inertia forces which occur through acceleration and retardation processes, thus remain below the threshold values, above which one would have to reckon with considerable damaging of the surrounding body tissue. The maintaining of small size and slight weight is achieved by using an oscillator on COSMOS basis, where by considerably lower energy consumption, amongst others the lifetimes of the batteries used - a lithium anode with thionyl chloride electrolyte - is extended to over 5 years. The reliability can be increased by the use of 2 or more batteries. The designed dimension are 20x60x60 mm 3 . (ORU/LH) [de

  8. Cardiac ventriculography

    International Nuclear Information System (INIS)

    Hillis, L.D.; Grossman, W.

    1986-01-01

    Cardiac ventriculography has been used extensively to define the anatomy of the ventricles and related structures in patients with congenital, valvular, coronary, and cardiomyopathic heart disease. Specifically, left ventriculography may provide valuable information about global and segmental left ventricular function, mitral valvular incompetence, and the presence, location, and severity of a number of other abnormalities, including ventricular septal defect and hypertrophic cardiomyopathy. As a result, it should be a routine part of catheterization in patients being evaluated for coronary artery disease, aortic or mitral valvular disease, unexplained left ventricular failure, or congenital heart disease. Similarly, right ventriculography may provide information about global and segmental right ventricular function and can be especially helpful in patients with congenital heart disease

  9. An analytical phantom for the evaluation of medical flow imaging algorithms

    International Nuclear Information System (INIS)

    Pashaei, A; Fatouraee, N

    2009-01-01

    Blood flow characteristics (e.g. velocity, pressure, shear stress, streamline and volumetric flow rate) are effective tools in diagnosis of cardiovascular diseases such as atherosclerotic plaque, aneurism and cardiac muscle failure. Noninvasive estimation of cardiovascular blood flow characteristics is mostly limited to the measurement of velocity components by medical imaging modalities. Once the velocity field is obtained from the images, other flow characteristics within the cardiovascular system can be determined using algorithms relating them to the velocity components. In this work, we propose an analytical flow phantom to evaluate these algorithms accurately. The Navier-Stokes equations are used to derive this flow phantom. The exact solution of these equations obtains analytical expression for the flow characteristics inside the domain. Features such as pulsatility, incompressibility and viscosity of flow are included in a three-dimensional domain. The velocity domain of the resulted system is presented as reference images. These images could be employed to evaluate the performance of different flow characteristic algorithms. In this study, we also present some applications of the obtained phantom. The calculation of pressure domain from velocity data, volumetric flow rate, wall shear stress and particle trace are the characteristics whose algorithms are evaluated here. We also present the application of this phantom in the analysis of noisy and low-resolution images. The presented phantom can be considered as a benchmark test to compare the accuracy of different flow characteristic algorithms.

  10. Failure of Noninvasive Ventilation for De Novo Acute Hypoxemic Respiratory Failure: Role of Tidal Volume.

    Science.gov (United States)

    Carteaux, Guillaume; Millán-Guilarte, Teresa; De Prost, Nicolas; Razazi, Keyvan; Abid, Shariq; Thille, Arnaud W; Schortgen, Frédérique; Brochard, Laurent; Brun-Buisson, Christian; Mekontso Dessap, Armand

    2016-02-01

    A low or moderate expired tidal volume can be difficult to achieve during noninvasive ventilation for de novo acute hypoxemic respiratory failure (i.e., not due to exacerbation of chronic lung disease or cardiac failure). We assessed expired tidal volume and its association with noninvasive ventilation outcome. Prospective observational study. Twenty-four bed university medical ICU. Consecutive patients receiving noninvasive ventilation for acute hypoxemic respiratory failure between August 2010 and February 2013. Noninvasive ventilation was uniformly delivered using a simple algorithm targeting the expired tidal volume between 6 and 8 mL/kg of predicted body weight. Expired tidal volume was averaged and respiratory and hemodynamic variables were systematically recorded at each noninvasive ventilation session. Sixty-two patients were enrolled, including 47 meeting criteria for acute respiratory distress syndrome, and 32 failed noninvasive ventilation (51%). Pneumonia (n = 51, 82%) was the main etiology of acute hypoxemic respiratory failure. The median (interquartile range) expired tidal volume averaged over all noninvasive ventilation sessions (mean expired tidal volume) was 9.8 mL/kg predicted body weight (8.1-11.1 mL/kg predicted body weight). The mean expired tidal volume was significantly higher in patients who failed noninvasive ventilation as compared with those who succeeded (10.6 mL/kg predicted body weight [9.6-12.0] vs 8.5 mL/kg predicted body weight [7.6-10.2]; p = 0.001), and expired tidal volume was independently associated with noninvasive ventilation failure in multivariate analysis. This effect was mainly driven by patients with PaO2/FIO2 up to 200 mm Hg. In these patients, the expired tidal volume above 9.5 mL/kg predicted body weight predicted noninvasive ventilation failure with a sensitivity of 82% and a specificity of 87%. A low expired tidal volume is almost impossible to achieve in the majority of patients receiving noninvasive ventilation

  11. Noninvasive neuromodulation in cluster headache

    DEFF Research Database (Denmark)

    Láinez, Miguel J A; Jensen, Rigmor

    2015-01-01

    PURPOSE OF REVIEW: Neuromodulation is an alternative in the management of medically intractable cluster headache patients. Most of the techniques are invasive, but in the last 2 years, some studies using a noninvasive device have been presented. The objective of this article is to review the data...... using this approach. RECENT FINDINGS: Techniques as occipital nerve stimulation or sphenopalatine ganglion stimulation are recommended as first-line therapy in refractory cluster patients, but they are invasive and maybe associated with complications. Noninvasive vagal nerve stimulation with an external...... device has been tried in cluster patients. Results from clinical practice and a single randomized clinical trial have been presented showing a reduction of the number of cluster attacks/week in the patients treated with the device. The rate of adverse events was low and most of them were mild. SUMMARY...

  12. FET-biosensor for cardiac troponin biomarker

    Directory of Open Access Journals (Sweden)

    Md Arshad Mohd Khairuddin

    2017-01-01

    Full Text Available Acute myocardial infarction or myocardial infarction (MI is a major health problem, due to diminished flow of blood to the heart, leads to higher rates of mortality and morbidity. The most specific markers for cardiac injury are cardiac troponin I (cTnI and cardiac troponin T (cTnT which have been considered as ‘gold standard’. Due to higher specificity, determination of the level of cardiac troponins became a predominant indicator for MI. Currently, field-effect transistor (FET-based biosensors have been main interest to be implemented in portable sensors with the ultimate application in point-of-care testing (POCT. In this paper, we review on the FET-based biosensor based on its principle of operation, integration with nanomaterial, surface functionalization as well as immobilization, and the introduction of additional gate (for ambipolar conduction on the device architecture for the detection of cardiac troponin I (cTnI biomarker.

  13. Influence of pre-infarction angina, collateral flow, and pre-procedural TIMI flow on myocardial salvage index by cardiac magnetic resonance in patients with ST-segment elevation myocardial infarction

    DEFF Research Database (Denmark)

    Lønborg, Jacob Thomsen; Kelbæk, Henning Skov; Vejlstrup, Niels Grove

    2012-01-01

    BACKGROUND: In patients with ST-segment elevation myocardial infarction (STEMI) pre-infarction angina, pre-procedural TIMI flow and collateral flow to the myocardium supplied by the infarct related artery are suggested to be cardioprotective. We evaluated the effect of these factors on myocardial...

  14. Interpretation and value of MR CSF flow studies for paediatric neurosurgery

    Directory of Open Access Journals (Sweden)

    Samukelisiwe Sithembile Mbonane

    2013-03-01

    Full Text Available Imaging techniques may be underutilised when clinicians are unaware of the technique or do not recognise its potential. Phase-contrast MR imaging (PC-MRI is a rapid, simple and non-invasive technique that is sensitive to CSF flow. It demonstrates a mechanical coupling between cerebral blood and CSF flow throughout the cardiac cycle. Neurosurgeons should be able to request this procedure routinely as part of an MRI request. This paper gives an overview of the indications, technical requirements, technique and interpretation, using image examples. Indications for CSF flow studies include assessment and functionality of shunt treatment in patients with hydrocephalus; hydrocephalus associated with achondroplasia; Chiari I malformation; confirmation of aqueductal stenosis; and determining patency of a third ventriculostomy.

  15. Cardiac regeneration therapy: connections to cardiac physiology.

    Science.gov (United States)

    Takehara, Naofumi; Matsubara, Hiroaki

    2011-12-01

    Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.

  16. Positioning invasive versus noninvasive urodynamics in the assessment of bladder outlet obstruction

    NARCIS (Netherlands)

    Arnolds, Michiel; Oelke, Matthias

    2009-01-01

    Purpose of review To provide evidence of promising tests to noninvasively diagnose bladder outlet obstruction (800) in men with benign prostatic hyperplasia. Recent findings Pressure-flow studies are usually performed to prove BOO prior to prostatectomy. However, pressure-flow studies are invasive,

  17. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and99mTc-tetrofosmin: Method and validation

    OpenAIRE

    Shrestha, U; Sciammarella, M; Alhassen, F; Yeghiazarians, Y; Ellin, J; Verdin, E; Boyle, A; Seo, Y; Botvinick, EH; Gullberg, GT

    2017-01-01

    © 2015, American Society of Nuclear Cardiology. Background: The objective of this study was to measure myocardial blood flow (MBF) in humans using 99m Tc-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Methods: Dynamic SPECT using 99m Tc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients w...

  18. Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the rabbit heart.

    Science.gov (United States)

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin

    2011-01-01

    Ventricular arrhythmias represent one of leading causes for sudden cardiac death, a significant problem in public health. Noninvasive imaging of cardiac electric activities associated with ventricular arrhythmias plays an important role in better our understanding of the mechanisms and optimizing the treatment options. The present study aims to rigorously validate a novel three-dimensional (3-D) cardiac electrical imaging (3-DCEI) technique with the aid of 3-D intra-cardiac mapping during paced rhythm and ventricular tachycardia (VT) in the rabbit heart. Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in thirteen healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous norepinephrine (NE). The non-invasively imaged activation sequence correlated well with invasively measured counterparts, with a correlation coefficient of 0.72 and a relative error of 0.30 averaged over all paced beats and NE-induced PVCs and VT beats. The averaged distance from imaged site of initial activation to measured site determined from intra-cardiac mapping was ∼5mm. These promising results suggest that 3-DCEI is feasible to non-invasively localize the origins and image activation sequence of focal ventricular arrhythmias.

  19. Cardiac positron tomography

    International Nuclear Information System (INIS)

    Geltmann, E.M.; Roberts, R.; Sobel, B.E.

    1980-01-01

    Positron emission tomography (PET) performed after the administration of the positron-emitting radionuclides carbon-11 ( 11 C), nitrogen-13 ( 13 N), oxygen-15 ( 15 O) and fluorine-18 ( 18 F) has permitted the improved noninvasive assessment of the regional myocardial metabolism of normal physiologic substrates and intermediates and their cogeners. In experimental animals, the rate of oxidation of 11 C-palmitate correlates closely with other indexes of oxygen consumption, and the extraction of 11 C-palmitate (like that of 18 F-fatty acids and 18 F-fluoredoxyglucose) ist markedly diminished in regions of myocardial ischemia. In both experimental animals and in patients, myocardial infarct site and size, determined by positron emission tomography after the intravenous injection of 11 C-palmitate, correlate closely with the electrocardiographic infarct locus and enzymatically estimated infarct size as well as with the location and extent of regional left ventricular wall motion abnormalities. PET offers promise for assessment of flow as well despite the complexities involved. PET with 13 NH 3 appears to provide one useful qualitative index, although this tracer ist actively metabolized. Because of the quantitative capabilities of positron emission tomography and the rapid progress which is being made in the development of fast scan, multi-slice, and gated instrumentation, this technique is likely to facilitate improved understanding and characterization of regional myocardial metabolism and blood flow in man under physiological and pathophysiological conditions. (orig.) [de

  20. Estimation of coronary wave intensity analysis using noninvasive techniques and its application to exercise physiology.

    Science.gov (United States)

    Broyd, Christopher J; Nijjer, Sukhjinder; Sen, Sayan; Petraco, Ricardo; Jones, Siana; Al-Lamee, Rasha; Foin, Nicolas; Al-Bustami, Mahmud; Sethi, Amarjit; Kaprielian, Raffi; Ramrakha, Punit; Khan, Masood; Malik, Iqbal S; Francis, Darrel P; Parker, Kim; Hughes, Alun D; Mikhail, Ghada W; Mayet, Jamil; Davies, Justin E

    2016-03-01

    Wave intensity analysis (WIA) has found particular applicability in the coronary circulation where it can quantify traveling waves that accelerate and decelerate blood flow. The most important wave for the regulation of flow is the backward-traveling decompression wave (BDW). Coronary WIA has hitherto always been calculated from invasive measures of pressure and flow. However, recently it has become feasible to obtain estimates of these waveforms noninvasively. In this study we set out to assess the agreement between invasive and noninvasive coronary WIA at rest and measure the effect of exercise. Twenty-two patients (mean age 60) with unobstructed coronaries underwent invasive WIA in the left anterior descending artery (LAD). Immediately afterwards, noninvasive LAD flow and pressure were recorded and WIA calculated from pulsed-wave Doppler coronary flow velocity and central blood pressure waveforms measured using a cuff-based technique. Nine of these patients underwent noninvasive coronary WIA assessment during exercise. A pattern of six waves were observed in both modalities. The BDW was similar between invasive and noninvasive measures [peak: 14.9 ± 7.8 vs. -13.8 ± 7.1 × 10(4) W·m(-2)·s(-2), concordance correlation coefficient (CCC): 0.73, P Exercise increased the BDW: at maximum exercise peak BDW was -47.0 ± 29.5 × 10(4) W·m(-2)·s(-2) (P Physiological Society.

  1. Non-invasive neural stimulation

    Science.gov (United States)

    Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas

    2017-05-01

    Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.

  2. The ECG Vertigo in Diabetes and Cardiac Autonomic Neuropathy

    Directory of Open Access Journals (Sweden)

    Christina Voulgari

    2011-01-01

    Full Text Available The importance of diabetes in the epidemiology of cardiovascular diseases cannot be overemphasized. About one third of acute myocardial infarction patients have diabetes, and its prevalence is steadily increasing. The decrease in cardiac mortality in people with diabetes is lagging behind that of the general population. Cardiovascular disease is a broad term which includes any condition causing pathological changes in blood vessels, cardiac muscle or valves, and cardiac rhythm. The ECG offers a quick, noninvasive clinical and research screen for the early detection of cardiovascular disease in diabetes. In this paper, the clinical and research value of the ECG is readdressed in diabetes and in the presence of cardiac autonomic neuropathy.

  3. Cardiac surgery in the parturient.

    Science.gov (United States)

    Chandrasekhar, Shobana; Cook, Christopher R; Collard, Charles D

    2009-03-01

    Heart disease is the primary cause of nonobstetric mortality in pregnancy, occurring in 1%-3% of pregnancies and accounting for 10%-15% of maternal deaths. Congenital heart disease has become more prevalent in women of childbearing age, representing an increasing percentage (up to 75%) of heart disease in pregnancy. Untreated maternal heart disease also places the fetus at risk. Independent predictors of neonatal complications include a maternal New York Heart Association heart failure classification >2, anticoagulation use during pregnancy, smoking, multiple gestation, and left heart obstruction. Because cardiac surgical morbidity and mortality in the parturient is higher than nonpregnant patients, most parturients with cardiac disease are first managed medically, with cardiac surgery being reserved when medical management fails. Risk factors for maternal mortality during cardiac surgery include the use of vasoactive drugs, age, type of surgery, reoperation, and maternal functional class. Risk factors for fetal mortality include maternal age >35 yr, functional class, reoperation, emergency surgery, type of myocardial protection, and anoxic time. Nonetheless, acceptable maternal and fetal perioperative mortality rates may be achieved through such measures as early preoperative detection of maternal cardiovascular decompensation, use of fetal monitoring, delivery of a viable fetus before the operation and scheduling surgery on an elective basis during the second trimester. Additionally, fetal morbidity may be reduced during cardiopulmonary bypass by optimizing maternal oxygen-carrying capacity and uterine blood flow. Current maternal bypass recommendations include: 1) maintaining the pump flow rate >2.5 L x min(-1) x m(-2) and perfusion pressure >70 mm Hg; 2) maintaining the hematocrit > 28%; 3) using normothermic perfusion when feasible; 4) using pulsatile flow; and 5) using alpha-stat pH management.

  4. Quantification of brain perfusion SPECT with N-isopropyl-p-iodoamphetamine using noninvasive microsphere method. Estimation of arterial input by dynamic imaging

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Sugihara, Hideki; Taniguchi, Yoshimitsu; Aoki, Etsuo; Furuichi, Kenji; Miyazaki, Yoshiharu.

    1997-01-01

    We have developed a noninvasive method to quantify brain perfusion SPECT with 123 I-N-isopropyl-p-iodoamphetamine (IMP) using serial dynamic planar imaging of the initial transit phase. The method is based on the microsphere model, but does not require arterial sampling. Serial dynamic planar imaging was performed for 6 min after the bolus injection of IMP (167 MBq in 1.5 ml), followed by additional planar imaging at 20 min and SPECT scan thereafter. The total arterial input to the brain during the initial 5 min after injection was estimated by the injected dose, with the correction of the lung retention, divided by cardiac output (CO). CO was estimated from the initial transit of IMP in the right heart. Cardiac output index (COI), obtained from the integral of the first transit of IMP in the right heart divided by the injected dose, was calibrated by CO measured by Doppler ultrasonography. Regional cerebral blood flow (rCBF) obtained by this method in normal subjects was acceptable. However, the results may be influenced by the injection technique, and careful attention should be considered for clinical application of this method. (author)

  5. Noninvasive Test Detects Cardiovascular Disease

    Science.gov (United States)

    2007-01-01

    At NASA's Jet Propulsion Laboratory (JPL), NASA-developed Video Imaging Communication and Retrieval (VICAR) software laid the groundwork for analyzing images of all kinds. A project seeking to use imaging technology for health care diagnosis began when the imaging team considered using the VICAR software to analyze X-ray images of soft tissue. With marginal success using X-rays, the team applied the same methodology to ultrasound imagery, which was already digitally formatted. The new approach proved successful for assessing amounts of plaque build-up and arterial wall thickness, direct predictors of heart disease, and the result was a noninvasive diagnostic system with the ability to accurately predict heart health. Medical Technologies International Inc. (MTI) further developed and then submitted the technology to a vigorous review process at the FDA, which cleared the software for public use. The software, patented under the name Prowin, is being used in MTI's patented ArterioVision, a carotid intima-media thickness (CIMT) test that uses ultrasound image-capturing and analysis software to noninvasively identify the risk for the major cause of heart attack and strokes: atherosclerosis. ArterioVision provides a direct measurement of atherosclerosis by safely and painlessly measuring the thickness of the first two layers of the carotid artery wall using an ultrasound procedure and advanced image-analysis software. The technology is now in use in all 50 states and in many countries throughout the world.

  6. Interoception across modalities: on the relationship between cardiac awareness and the sensitivity for gastric functions.

    Directory of Open Access Journals (Sweden)

    Beate M Herbert

    Full Text Available The individual sensitivity for ones internal bodily signals ("interoceptive awareness" has been shown to be of relevance for a broad range of cognitive and affective functions. Interoceptive awareness has been primarily assessed via measuring the sensitivity for ones cardiac signals ("cardiac awareness" which can be non-invasively measured by heartbeat perception tasks. It is an open question whether cardiac awareness is related to the sensitivity for other bodily, visceral functions. This study investigated the relationship between cardiac awareness and the sensitivity for gastric functions in healthy female persons by using non-invasive methods. Heartbeat perception as a measure for cardiac awareness was assessed by a heartbeat tracking task and gastric sensitivity was assessed by a water load test. Gastric myoelectrical activity was measured by electrogastrography (EGG and subjective feelings of fullness, valence, arousal and nausea were assessed. The results show that cardiac awareness was inversely correlated with ingested water volume and with normogastric activity after water load. However, persons with good and poor cardiac awareness did not differ in their subjective ratings of fullness, nausea and affective feelings after drinking. This suggests that good heartbeat perceivers ingested less water because they subjectively felt more intense signals of fullness during this lower amount of water intake compared to poor heartbeat perceivers who ingested more water until feeling the same signs of fullness. These findings demonstrate that cardiac awareness is related to greater sensitivity for gastric functions, suggesting that there is a general sensitivity for interoceptive processes across the gastric and cardiac modality.

  7. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    Science.gov (United States)

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient's cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  8. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    LENUS (Irish Health Repository)

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient\\'s cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  9. Efficiency of Noninvasive Ventilation in Acute Heart Failure

    Directory of Open Access Journals (Sweden)

    Z. Z. Nadiradze

    2008-01-01

    Full Text Available Objective: to evaluate the efficiency of noninvasive supporting ventilation in patients with acute cardiorespiratory failure in the early postoperative period after cardiac surgery under extracorporeal circulation. Methods. Case histories of patients operated on the heart under extracorporeal circulation, who postoperatively developed acute car-diorespiratory failure requiring repeated artificial ventilation (AV, were retrospectively studied. According to the AV mode, the patients were divided into 2 groups. Non-invasive AV was carried out in Group 1 (a study group. In Group 2 (a control group, tracheal intubation and mechanical ventilation were performed when respiratory indices deteriorated. In both groups, anesthesia was maintained without deviating from the clinically accepted protocol. The indications for extubation were routine. Following 24—72 hours after extubation, the health status of patients became worse, as manifested in decreased circulatory performance, requiring that they be switched to AV. Clinical and laboratory findings were used to define indications for AV switching. The conditions for noninvasive ventilation were the close cooperation of a patient with medical personnel, the absence of significant hyperthermia, injury, operation or facial abnormally, which excluded intimate mating. Results. Analysis of gas exchange changes suggests that there are no differences between the groups both just after surgery and within 24 postperfusion hours after extubation. When the condition deteriorated, no differences in oxygen exchange and delivery were observed in the study and control groups. In the control group, PaO2, oxygenation index, and oxygen delivery index were significantly less than those in the study group. Analysis of the duration of assisted ventilation revealed that the study group patients were on a respirator significantly less than the controls. The length of intensive care unit stay also increased greatly in Group 2

  10. Physiologic stress interventions in cardiac imaging

    International Nuclear Information System (INIS)

    Buda, A.J.

    1985-01-01

    Physiologic stress interventions are designed to assess the reserve capability of coronary flow and myocardial function. In the normal individual, a sufficiently intense physiologic stress may increase coronary flow and cardiac output by 500% to 600%. However, in patients with cardiac disease, these reserve responses may be absent, or considerably blunted. Thus, physiologic stress testing has proved extremely helpful in detecting cardiac abnormalities when resting cardiac function appears normal. Although dynamic exercise remains the standard approach to physiologic stress testing, a number of other interventions have been used, including: (1) isometric exercise, (2) atrial pacing, (3) cold pressor testing, (4) postextrasystolic potentiation, (5) volume loading, and (6) negative intrathoracic pressure. Each of these may be considered an alternative physiologic intervention whenever dynamic exercise is not feasible. These alternative approaches are important since, in our experience, 20% to 30% of subjects are unable to perform dynamic exercise, or exercise inadequately to produce a sufficiently intense cardiac stress. This chapter reviews physiologic considerations, indications, contraindications, protocols, and results of these physiologic stress interventions when used in combination with cardiac radionuclide procedures

  11. Focused cardiac ultrasound is feasible in the general practice setting and alters diagnosis and management of cardiac disease

    Directory of Open Access Journals (Sweden)

    James Yates

    2016-08-01

    Full Text Available Background: Ultrasound-assisted examination of the cardiovascular system with focused cardiac ultrasound by the treating physician is non-invasive and changes diagnosis and management of patient’s with suspected cardiac disease. This has not been reported in a general practice setting. Aim: To determine whether focused cardiac ultrasound performed on patients aged over 50 years changes the diagnosis and management of cardiac disease by a general practitioner. Design and setting: A prospective observational study of 80 patients aged over 50 years and who had not received echocardiography or chest CT within 12 months presenting to a general practice. Method: Clinical assessment and management of significant cardiac disorders in patients presenting to general practitioners were recorded before and after focused cardiac ultrasound. Echocardiography was performed by a medical student with sufficient training, which was verified by an expert. Differences in diagnosis and management between conventional and ultrasound-assisted assessment were recorded. Results and conclusion: Echocardiography and interpretation were acceptable in all patients. Significant cardiac disease was detected in 16 (20% patients, including aortic stenosis in 9 (11% and cardiac failure in 7 (9%, which were missed by clinical examination in 10 (62.5% of these patients. Changes in management occurred in 12 patients (15% overall and 75% of those found to have significant cardiac disease including referral for diagnostic echocardiography in 8 (10%, commencement of heart failure treatment in 3 (4% and referral to a cardiologist in 1 patient (1%. Routine focused cardiac ultrasound is feasible and frequently alters the diagnosis and management of cardiac disease in patients aged over 50 years presenting to a general practice.

  12. Neurohumoral indicators of efficacy radiofrequency cardiac denervation

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, A. V., E-mail: ave@cardio-tomsk.ru; Evtushenko, V. V. [National Research Tomsk State University, Tomsk (Russian Federation); Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Saushkina, Yu. V.; Gusakova, A. M.; Suslova, T. E.; Dymbrylova, O. N.; Smyshlyaev, K. A.; Kurlov, I. O. [Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Lishmanov, Yu. B.; Anfinogenova, Ya. D. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Federal State Budgetary Scientific Institution “Research Institute for Cardiology”, Tomsk (Russian Federation); Sergeevichev, D. S. [Academician E.N. Meshalkin State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Bykov, A. N.; Syryamkin, V. I.; Kistenev, Yu. V. [National Research Tomsk State University, Tomsk (Russian Federation); Lotkov, A. I. [Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS, Tomsk (Russian Federation); Pokushalov, E. A.

    2015-11-17

    In this study, we compared pre- and postoperative parameters of the cardiac sympathetic innervation. The aim of the study was to examine the approaches to evaluating the quality of radiofrequency (RF)-induced cardiac denervation by using non-invasive and laboratory methods. The study included 32 people with long-lasting persistent atrial fibrillation (AF). The patients were divided into 2 groups according to the objectives of the study: group 1 (main) - 21 patients with mitral valve diseases, which simultaneously with radiofrequency ablation (RFA) AF carried out on the effects of the paraganglionic nervous plexuses by C. Pappone (2004) and N. Doll (2008) schemes. The second group (control) contained 11 patients with heart diseases in sinus rhythm (the RF denervation not been performed). All patients, who underwent surgical treatment, were received examination of cardiac sympathetic tone by using {sup 123}I-MIBG. All of them made blood analysis from ascending aorta and coronary sinus to determine the level of norepinephrine and its metabolites before and after cardiac denervation. Data of radionuclide examination are correlating with laboratory data.

  13. Antimyosin imaging in cardiac transplant rejection

    International Nuclear Information System (INIS)

    Johnson, L.L.; Cannon, P.J.

    1991-01-01

    Fab fragments of antibodies specific for cardiac myosin have been labeled with indium-111 and injected intravenously into animals and into patients with heart transplants. The antibodies, developed by Khaw, Haber, and co-workers, localize in cardiac myocytes that have been damaged irreversibly by ischemia, myocarditis, or the rejection process. After clearance of the labeled antibody from the cardiac blood pool, planar imaging or single photon emission computed tomography is performed. Scintigrams reveal the uptake of the labeled antimyosin in areas of myocardium undergoing transplant rejection. In animal studies, the degree of antimyosin uptake appears to correlate significantly with the degree of rejection assessed at necropsy. In patients, the correlation between scans and pathologic findings from endomyocardial biopsy is not as good, possibly because of sampling error in the endomyocardial biopsy technique. The scan results at 1 year correlate with either late complications (positive) or benign course (negative). Current limitations of the method include slow blood clearance, long half-life of indium-111, and hepatic uptake. Overcoming these limitations represents a direction for current research. It is possible that from these efforts a noninvasive approach to the diagnosis and evaluation of cardiac transplantation may evolve that will decrease the number of endomyocardial biopsies required to evaluate rejection. This would be particularly useful in infants and children. 31 references

  14. Functional cardiac imaging: positron emission tomography

    International Nuclear Information System (INIS)

    Mullani, N.A.; Gould, K.L.

    1984-01-01

    Dynamic cardiovascular imaging plays a vital role in the diagnosis and treatment of cardiac disease by providing information about the function of the heart. During the past 30 years, cardiovascular imaging has evolved from the simple chest x-ray and fluoroscopy to such sophisticated techniques as invasive cardiac angiography and cinearteriography and, more recently, to noninvasive cardiac CT scanning, nuclear magnetic resonance, and positron emission tomography, which reflect more complex physiologic functions. As research tools, CT, NMR, and PET provide quantitative information on global as well as regional ventricular function, coronary artery stenosis, myocardial perfusion, glucose and fatty acid metabolism, or oxygen utilization, with little discomfort or risk to the patient. As imaging modalities become more sophisticated and more oriented toward clinical application, the prospect of routinely obtaining such functional information about the heart is becoming realistic. However, these advances are double-edged in that the interpretation of functional data is more complex than that of the anatomic imaging familiar to most physicians. They will require an enhanced understanding of the physiologic and biochemical processes, as well as of the instrumentation and techniques for analyzing the data. Of the new imaging modalities that provide functional information about the heart, PET is the most useful because it quantitates the regional distribution of radionuclides in vivo. Clinical applications, interpretation of data, and the impact of PET on our understanding of cardiac pathophysiology are discussed. 5 figures

  15. Electromechanical vortex filaments during cardiac fibrillation

    Science.gov (United States)

    Christoph, J.; Chebbok, M.; Richter, C.; Schröder-Schetelig, J.; Bittihn, P.; Stein, S.; Uzelac, I.; Fenton, F. H.; Hasenfuß, G.; Gilmour, R. F., Jr.; Luther, S.

    2018-03-01

    The self-organized dynamics of vortex-like rotating waves, which are also known as scroll waves, are the basis of the formation of complex spatiotemporal patterns in many excitable chemical and biological systems. In the heart, filament-like phase singularities that are associated with three-dimensional scroll waves are considered to be the organizing centres of life-threatening cardiac arrhythmias. The mechanisms that underlie the onset, maintenance and control of electromechanical turbulence in the heart are inherently three-dimensional phenomena. However, it has not previously been possible to visualize the three-dimensional spatiotemporal dynamics of scroll waves inside cardiac tissues. Here we show that three-dimensional mechanical scroll waves and filament-like phase singularities can be observed deep inside the contracting heart wall using high-resolution four-dimensional ultrasound-based strain imaging. We found that mechanical phase singularities co-exist with electrical phase singularities during cardiac fibrillation. We investigated the dynamics of electrical and mechanical phase singularities by simultaneously measuring the membrane potential, intracellular calcium concentration and mechanical contractions of the heart. We show that cardiac fibrillation can be characterized using the three-dimensional spatiotemporal dynamics of mechanical phase singularities, which arise inside the fibrillating contracting ventricular wall. We demonstrate that electrical and mechanical phase singularities show complex interactions and we characterize their dynamics in terms of trajectories, topological charge and lifetime. We anticipate that our findings will provide novel perspectives for non-invasive diagnostic imaging and therapeutic applications.

  16. Diffuse infiltrative cardiac tuberculosis

    International Nuclear Information System (INIS)

    Gulati, Gurpreet S; Kothari, Shyam S

    2011-01-01

    We present the cardiac magnetic resonance images of an unusual form of cardiac tuberculosis. Nodular masses in a sheet-like distribution were seen to infiltrate the outer myocardium and pericardium along most of the cardiac chambers. The lesions showed significant resolution on antitubercular therapy

  17. Integrated circuits and electrode interfaces for noninvasive physiological monitoring.

    Science.gov (United States)

    Ha, Sohmyung; Kim, Chul; Chi, Yu M; Akinin, Abraham; Maier, Christoph; Ueno, Akinori; Cauwenberghs, Gert

    2014-05-01

    This paper presents an overview of the fundamentals and state of the-art in noninvasive physiological monitoring instrumentation with a focus on electrode and optrode interfaces to the body, and micropower-integrated circuit design for unobtrusive wearable applications. Since the electrode/optrode-body interface is a performance limiting factor in noninvasive monitoring systems, practical interface configurations are offered for biopotential acquisition, electrode-tissue impedance measurement, and optical biosignal sensing. A systematic approach to instrumentation amplifier (IA) design using CMOS transistors operating in weak inversion is shown to offer high energy and noise efficiency. Practical methodologies to obviate 1/f noise, counteract electrode offset drift, improve common-mode rejection ratio, and obtain subhertz high-pass cutoff are illustrated with a survey of the state-of-the-art IAs. Furthermore, fundamental principles and state-of-the-art technologies for electrode-tissue impedance measurement, photoplethysmography, functional near-infrared spectroscopy, and signal coding and quantization are reviewed, with additional guidelines for overall power management including wireless transmission. Examples are presented of practical dry-contact and noncontact cardiac, respiratory, muscle and brain monitoring systems, and their clinical applications.

  18. Noninvasive imaging of breast cancer

    International Nuclear Information System (INIS)

    Medarova, Z.

    2009-01-01

    With the development of molecularly targeted cancer therapies, it is highly advantageous to be able to determine their efficacy, to improve overall patient survival. Non-invasive imaging techniques are currently available for visualizing different pathological conditions of the human body, but their use for cancer monitoring is limited due to the lack of tumor-specific imaging probes. This review will attempt to summarize the current clinical diagnostic approaches for breast cancer detection, staging, and therapy assessment. In addition, I will present some novel concepts from the field of molecular imaging that form the basis of some of our research. We believe that this general imaging strategy has the potential of significantly advancing our ability to diagnose breast cancer at the earliest stages of the pathology, before any overt clinical symptoms have developed, as well as to better direct the development of molecularly-targeted individualized therapy protocols.

  19. Effects of coil closure of patent ductus arteriosus on left anterior descending coronary artery blood flow using transthoracic Doppler echocardiography.

    Science.gov (United States)

    Harada, Kenji; Toyono, Manotomo; Tamura, Masamichi

    2004-06-01

    Transthoracic Doppler echocardiography provides noninvasive measurements of coronary blood flow in the left anterior descending coronary artery (LAD). This method has the potential to show the effects of acute changes in loading conditions on blood flow. Coil closure of patent ductus arteriosus (PDA) is a model of acute changes in blood pressure and left ventricular (LV) preload that influences coronary blood flow. We applied this technique to assess the coronary blood flow changes for patients with PDA before and immediately after PDA coil closure. We examined 9 patients (1.8 +/- 1.1 years) with simple PDA and 8 age-matched healthy children. LV dimensions and LV mass were measured. Maximum peak flow velocity and flow volume in the LAD were measured. Pulmonary to systemic flow ratios (Qp/Qs) were obtained by cardiac catheterization. After PDA coil closure, LV end-diastolic dimension decreased, and systolic and diastolic blood pressures increased significantly. The maximum peak flow velocity, LAD flow volume, and the ratio of LAD flow volume to LV mass increased significantly. The changes in maximum peak flow velocity and the ratio of LAD flow volume to LV mass (F/M) correlated positively with the changes in diastolic pressure and Qp/Qs. In 5 patients who had Qp/Qs > 1.5, the mean F/M was significantly lower compared with control subjects, but they increased to normal values after coil closure of PDA. PDA coil closure increases diastolic pressure and decreases Qp/Qs, resulting in improvement of myocardial perfusion. These findings provide new insights into the relationship between cardiac function and coronary circulation in pediatric patients with heart diseases associated with PDA.

  20. Imaging the heart: cardiac scintigraphy and echocardiography in US hospitals (1983)

    International Nuclear Information System (INIS)

    McPhee, S.J.; Garnick, D.W.

    1986-01-01

    The rapid growth of cardiac catheterization has raised questions about the availability of less costly, noninvasive tests such as cardiac scintigraphy and echocardiography. To assess their availability and rates of use, we surveyed 3778 non-federal short-term US hospitals in June, 1983. Overall, 2605 hospitals (69%) offered 201 Tl myocardial perfusion scans, 2580 (68%) 99mTc equilibrium gated blood pool scans, and 2483 (67%) cardiac shunt scans; 1679 hospitals (44%) offered M-mode and/or 2-dimensional echocardiography, and 768 (20%) pulsed Doppler echocardiography. Volumes of procedures varied enormously among hospitals capable of performing them. High volumes of both scintigraphy and echocardiography were performed in a small number of hospitals. Larger, voluntary, and teaching hospitals performed higher volumes of both procedures. Despite widespread availability of these noninvasive technologies, high volumes of both cardiac scintigraphy and echocardiography procedures are concentrated in a small number of US hospitals

  1. Comparison of dye dilution method to radionuclide techniques for cardiac output determination in dogs

    International Nuclear Information System (INIS)

    Eng, S.S.; Robayo, J.R.; Porter, W.; Smith, R.E.

    1980-01-01

    A study was undertaken to identify the most accurate /sup 99m/Tc-labeled radiopharmaceutical and to determine the accuracy of a noninvasive radionuclide technique or cardiac output determinations. Phase I employed sodium pertechnetate, stannous pyrophosphate with sodium pertechnetate, /sup 99m/Tc red blood cells, and /sup 99m/Tc human serum albumin as radionuclide tracers. Cardiac output was determined by the dye dilution method and then by the invasive radionuclide technique. A pairied t test and regression analysis indicated that /sup 99m/Tc human serum albumin was the most accurate radiopharmaceutical for cardiac output determinations, and the results compared favorably to those obtained by the dye dilution method. In Phase II, /sup 99m/Tc human serum albumin was used as the radionuclide tracer for cardiac output determinations with the noninvasive technique. The results compared favorably to those obtained by the dye dilution method

  2. Cardiac autonomic and haemodynamic recovery after a single session of aerobic exercise with and without blood flow restriction in older adults.

    Science.gov (United States)

    Ferreira, Marina Lívia Venturini; Sardeli, Amanda Veiga; Souza, Giovana Vergínia De; Bonganha, Valéria; Santos, Lucas Do Carmo; Castro, Alex; Cavaglieri, Cláudia Regina; Chacon-Mikahil, Mara Patrícia Traina

    2017-12-01

    This study investigated the autonomic and haemodynamic responses to different aerobic exercise loads, with and without blood flow restriction (BFR). In a crossover study, 21 older adults (8 males and 13 females) completed different aerobic exercise sessions: low load without BFR (LL) (40% VO 2 max ), low load with BFR (LL-BFR) (40% VO 2 max + 50% BFR) and high load without BFR (HL) (70% VO 2 max ). Heart rate variability and haemodynamic responses were recorded during rest and throughout 30 min of recovery. HL reduced R-R interval, the root mean square of successive difference of R-R intervals and high frequency during 30 min of recovery at a greater magnitude compared with LL and LL-BFR. Sympathetic-vagal balance increased the values for HL during 30 min of recovery at a greater magnitude when compared with LL and LL-BFR. Post-exercise haemodynamic showed reduced values of double product at 30 min of recovery compared to rest in LL-BFR, while HL showed higher values compared to rest, LL-BFR and LL. Reduced systolic blood pressure was observed for LL-BFR (30 min) compared to rest. Autonomic and haemodynamic responses indicate lower cardiovascular stress after LL-BFR compared to HL, being this method, besides the functional adaptations, a potential choice to attenuate the cardiovascular stress after exercise in older adults.

  3. Cardiac computed tomography of an asymptomatic 48-year-old woman with ALCAPA syndrome.

    Science.gov (United States)

    Sajjadieh Khajouei, Amirreza; Samie-Nasab, Mohammadreza; Behjati, Mohaddeseh; Biederman, Robert W

    2016-12-01

    Untreated ALCAPA cases most often die in infancy. Adults with untreated ALCAPA commonly present with mitral regurgitation, severe left ventricular dysfunction, and sometimes myocardial infarction. Herein, we present an asymptomatic adult female with ALCAPA recognized through cardiac computed tomography (CT). In ALCAPA, like other coronary anomalies, cardiac CT is often instrumental in providing unique noninvasive and clinically relevant evaluation. Herein, we present an atypical presentation of an asymptomatic middle-aged adult female with ALCAPA. © 2016, Wiley Periodicals, Inc.

  4. Non-invasive red light optogenetic pacing and optical coherence microscopy (OCM) imaging for drosophila melanogaster (Conference Presentation)

    Science.gov (United States)

    Men, Jing; Li, Airong; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2017-02-01

    Cardiac pacing could be a powerful tool for investigating mammalian cardiac electrical conduction systems as well as for treatment of certain cardiac pathologies. However, traditional electrical pacing using pacemaker requires an invasive surgical procedure. Electrical currents from the implanted electrodes can also cause damage to heart tissue, further restricting its utility. Optogenetic pacing has been developed as a promising, non-invasive alternative to electrical stimulation for controlling animal heart rhythms. It induces heart contractions by shining pulsed light on transgene-generated microbial opsins, which in turn activate the light gated ion channels in animal hearts. However, commonly used opsins in optogenetic pacing, such as channelrhodopsin-2 (ChR2), require short light wavelength stimulation (475 nm), which is strongly absorbed and scattered by tissue. Here, we performed optogenetic pacing by expression of recently engineered red-shifted microbial opsins, ReaChR and CsChrimson, in a well-established animal model, Drosophila melanogaster, using the 617 nm stimulation light pulses. The OCM technique enables non-invasive optical imaging of animal hearts with high speed and ultrahigh axial and transverse resolutions. We integrated a customized OCM system with the optical stimulation system to monitor the optogenetic pacing noninvasively. The use of red-sifted opsins enabled deeper penetration of simulating light at lower power, which is promising for applications of optogenetic pacing in mammalian cardiac pathology studies or clinical treatments in the future.

  5. Noninvasive neuromodulation in migraine and cluster headache.

    Science.gov (United States)

    Starling, Amaal

    2018-06-01

    The purpose of this narrative review is to provide an overview of the currently available noninvasive neuromodulation devices for the treatment of migraine and cluster headache. Over the last decade, several noninvasive devices have undergone development and clinical trials to evaluate efficacy and safety. Based on this body of work, single-pulse transcranial magnetic stimulation, transcutaneous supraorbital neurostimulation, and noninvasive vagal nerve stimulation devices have been cleared by the United States Food and Drug Administration and are available for clinical use for the treatment of primary headache disorders. Overall, these novel noninvasive devices appear to be safe, well tolerated, and have demonstrated promising results in clinical trials in both migraine and cluster headache. This narrative review will provide a summary and update of the proposed mechanisms of action, evidence, safety, and future directions of various currently available modalities of noninvasive neuromodulation for the treatment of migraine and cluster headache.

  6. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    Science.gov (United States)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  7. 4D blood flow mapping using SPIM-microPIV in the developing zebrafish heart

    Science.gov (United States)

    Zickus, Vytautas; Taylor, Jonathan M.

    2018-02-01

    Fluid-structure interaction in the developing heart is an active area of research in developmental biology. However, investigation of heart dynamics is mostly limited to computational uid dynamics simulations using heart wall structure information only, or single plane blood ow information - so there is a need for 3D + time resolved data to fully understand cardiac function. We present an imaging platform combining selective plane illumination microscopy (SPIM) with micro particle image velocimetry (μPIV) to enable 3D-resolved flow mapping in a microscopic environment, free from many of the sources of error and bias present in traditional epi uorescence-based μPIV systems. By using our new system in conjunction with optical heart beat synchronization, we demonstrate the ability obtain non-invasive 3D + time resolved blood flow measurements in the heart of a living zebrafish embryo.

  8. Gated magnetic resonance imaging of congenital cardiac malformations

    International Nuclear Information System (INIS)

    Fletcher, B.D.; Jocobstein, M.D.; Nelson, A.D.; Riemenschneider, T.A.; Alfidi, R.J.

    1984-01-01

    Magnetic resonance (MR) images of a variety of cardiac malformations in 19 patients aged 1 week to 33 years were obtained using pulse plethysmographic- or ECG-gated spin echo pulse sequences. Coronal, axial, and sagittal images displaying intracardiac structures with excellent spatial and contrast resolution were acquired during systole or diastole. It is concluded that MR will be a valuable noninvasive method of diagnosing congenital heart disease

  9. Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation.

    Science.gov (United States)

    Prowle, John R; Molan, Maurice P; Hornsey, Emma; Bellomo, Rinaldo

    2012-06-01

    In septic patients, decreased renal perfusion is considered to play a major role in the pathogenesis of acute kidney injury. However, the accurate measurement of renal blood flow in such patients is problematic and invasive. We sought to overcome such obstacles by measuring renal blood flow in septic patients with acute kidney injury using cine phase-contrast magnetic resonance imaging. Pilot observational study. University-affiliated general adult intensive care unit. Ten adult patients with established septic acute kidney injury and 11 normal volunteers. Cine phase-contrast magnetic resonance imaging measurement of renal blood flow and cardiac output. The median age of the study patients was 62.5 yrs and eight were male. At the time of magnetic resonance imaging, eight patients were mechanically ventilated, nine were on continuous hemofiltration, and five required vasopressors. Cine phase-contrast magnetic resonance imaging examinations were carried out without complication. Median renal blood flow was 482 mL/min (range 335-1137) in septic acute kidney injury and 1260 mL/min (range 791-1750) in healthy controls (p = .003). Renal blood flow indexed to body surface area was 244 mL/min/m2 (range 165-662) in septic acute kidney injury and 525 mL/min/m2 (range 438-869) in controls (p = .004). In patients with septic acute kidney injury, median cardiac index was 3.5 L/min/m2 (range 1.6-8.7), and median renal fraction of cardiac output was only 7.1% (range 4.4-10.8). There was no rank correlation between renal blood flow index and creatinine clearance in patients with septic acute kidney injury (r = .26, p = .45). Cine phase-contrast magnetic resonance imaging can be used to noninvasively and safely assess renal perfusion during critical illness in man. Near-simultaneous accurate measurement of cardiac output enables organ blood flow to be assessed in the context of the global circulation. Renal blood flow seems consistently reduced as a fraction of cardiac output in

  10. Non-invasive coronary angiography with multislice computed tomography. Technology, methods, preliminary experience and prospects.

    Science.gov (United States)

    Traversi, Egidio; Bertoli, Giuseppe; Barazzoni, Giancarlo; Baldi, Maurizia; Tramarin, Roberto

    2004-02-01

    The recent technical developments in multislice computed tomography (MSCT), with ECG retro-gated image reconstruction, have elicited great interest in the possibility of accurate non-invasive imaging of the coronary arteries. The latest generation of MSCT systems with 8-16 rows of detectors permits acquisition of the whole cardiac volume during a single 15-20 s breath-hold with a submillimetric definition of the images and an outstanding signal-to-noise ratio. Thus the race which, between MSCT, electron beam computed tomography and cardiac magnetic resonance imaging, can best provide routine and reliable imaging of the coronary arteries in clinical practice has recommenced. Currently available MSCT systems offer different options for both cardiac image acquisition and reconstruction, including multiplanar and curved multiplanar reconstruction, three-dimensional volume rendering, maximum intensity projection, and virtual angioscopy. In our preliminary experience including 176 patients suffering from known or suspected coronary artery disease, MSCT was feasible in 161 (91.5%) and showed a sensitivity of 80.4% and a specificity of 80.3%, with respect to standard coronary angiography, in detecting critical stenosis in coronary arteries and artery or venous bypass grafts. These results correspond to a positive predictive value of 58.6% and a negative predictive value of 92.2%. The true role that MSCT is likely to play in the future in non-invasive coronary imaging is still to be defined. Nevertheless, the huge amount of data obtainable by MSCT along with the rapid technological advances, shorter acquisition times and reconstruction algorithm developments will make the technique stronger, and possible applications are expected not only for non-invasive coronary angiography, but also for cardiac function and myocardial perfusion evaluation, as an all-in-one examination.

  11. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    Science.gov (United States)

    Villagómez-Hoyos, Carlos A.; Stuart, Matthias B.; Bechsgaard, Thor; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis view (PLAX) are obtained, one centred at the aortic valve and another centred at the left ventricle. The acquisition sequence was composed of 3 diverging waves for high frame rate synthetic aperture flow imaging. For verification a phantom measurement is performed on a transverse straight 5 mm diameter vessel at a depth of 100 mm in a tissue-mimicking phantom. A flow pump produced a 2 ml/s constant flow with a peak velocity of 0.2 m/s. The average estimated flow angle in the ROI was 86.22° +/- 6.66° with a true flow angle of 90°. A relative velocity bias of -39% with a standard deviation of 13% was found. In-vivo acquisitions show complex flow patterns in the heart. In the aortic valve view, blood is seen exiting the left ventricle cavity through the aortic valve into the aorta during the systolic phase of the cardiac cycle. In the left ventricle view, blood flow is seen entering the left ventricle cavity through the mitral valve and splitting in two ways when approximating the left ventricle wall. The work presents 2-D velocity estimates on the heart from a non-invasive transthoracic scan. The ability of the method detecting flow regardless of the beam angle could potentially reveal a more complete view of the flow patterns presented on the heart.

  12. Low cardiac output as physiological phenomenon in hibernating, free-ranging Scandinavian brown bears (Ursus arctos) - an observational study.

    Science.gov (United States)

    Jørgensen, Peter Godsk; Arnemo, Jon; Swenson, Jon E; Jensen, Jan S; Galatius, Søren; Frøbert, Ole

    2014-09-16

    Despite 5-7 months of physical inactivity during hibernation, brown bears (Ursus arctos) are able to cope with physiological conditions that would be detrimental to humans. During hibernation, the tissue metabolic demands fall to 25% of the active state. Our objective was to assess cardiac function associated with metabolic depression in the hibernating vs. active states in free-ranging Scandinavian brown bears. We performed echocardiography on seven free-ranging brown bears in Dalarna, Sweden, anesthetized with medetomidine-zolazepam-tiletamine-ketamine during winter hibernation in February 2013 and with medetomidine-zolazepam-tiletamine during active state in June 2013. We measured cardiac output noninvasively using estimates of hemodynamics obtained by pulsed wave Doppler echocardiography and 2D imaging. Comparisons were made using paired T-tests. During hibernation, all hemodynamic indices were significantly decreased (hibernating vs. active state): mean heart rate was 26.0 (standard deviation (SD): 5.6) beats per min vs. 75.0 (SD: 17.1) per min (P=0.002), mean stroke volume 32.3 (SD: 5.2) ml vs. 47.1 (SD: 7.9) ml (P=0.008), mean cardiac output 0.86 (SD: 0.31) l/min vs. 3.54 (SD: 1.04) l/min (P=0.003), and mean cardiac index 0.63 (SD: 0.21) l/min/kg vs. 2.45 (SD: 0.52) l/min/ m2 (Pbears during hibernation, despite the absence of atrial arrhythmias and valvular disease. Free-ranging brown bears demonstrate hemodynamics comparable to humans during active state, whereas during hibernation, we documented extremely low-flow hemodynamics. Understanding these physiological changes in bears may help to gain insight into the mechanisms of cardiogenic shock and heart failure in humans.

  13. Non-invasive genetic censusing and monitoring of primate populations.

    Science.gov (United States)

    Arandjelovic, Mimi; Vigilant, Linda

    2018-03-01

    Knowing the density or abundance of primate populations is essential for their conservation management and contextualizing socio-demographic and behavioral observations. When direct counts of animals are not possible, genetic analysis of non-invasive samples collected from wildlife populations allows estimates of population size with higher accuracy and precision than is possible using indirect signs. Furthermore, in contrast to traditional indirect survey methods, prolonged or periodic genetic sampling across months or years enables inference of group membership, movement, dynamics, and some kin relationships. Data may also be used to estimate sex ratios, sex differences in dispersal distances, and detect gene flow among locations. Recent advances in capture-recapture models have further improved the precision of population estimates derived from non-invasive samples. Simulations using these methods have shown that the confidence interval of point estimates includes the true population size when assumptions of the models are met, and therefore this range of population size minima and maxima should be emphasized in population monitoring studies. Innovations such as the use of sniffer dogs or anti-poaching patrols for sample collection are important to ensure adequate sampling, and the expected development of efficient and cost-effective genotyping by sequencing methods for DNAs derived from non-invasive samples will automate and speed analyses. © 2018 Wiley Periodicals, Inc.

  14. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  15. Peripheral vasodilatation determines cardiac output in exercising humans

    DEFF Research Database (Denmark)

    Bada, A A; Svendsen, J H; Secher, N H

    2012-01-01

    In dogs, manipulation of heart rate has no effect on the exercise-induced increase in cardiac output. Whether these findings apply to humans remain uncertain, because of the large differences in cardiovascular anatomy and regulation. To investigate the role of heart rate and peripheral...... arterial ATP infusion at rest. Exercise and ATP infusion increased cardiac output, leg blood flow and vascular conductance (P heart rate by up to 54 beats min(−1), cardiac output did not change in any of the three...... demonstrate that the elevated cardiac output during steady-state exercise is regulated by the increase in skeletal muscle blood flow and venous return to the heart, whereas the increase in heart rate appears to be secondary to the regulation of cardiac output....

  16. Calculation of left ventricular volumes and ejection fraction from dynamic cardiac-gated 15O-water PET/CT: 5D-PET.

    Science.gov (United States)

    Nordström, Jonny; Kero, Tanja; Harms, Hendrik Johannes; Widström, Charles; Flachskampf, Frank A; Sörensen, Jens; Lubberink, Mark

    2017-11-14

    Quantitative measurement of myocardial blood flow (MBF) is of increasing interest in the clinical assessment of patients with suspected coronary artery disease (CAD). 15 O-water positron emission tomography (PET) is considered the gold standard for non-invasive MBF measurements. However, calculation of left ventricular (LV) volumes and ejection fraction (EF) is not possible from standard 15 O-water uptake images. The purpose of the present work was to investigate the possibility of calculating LV volumes and LVEF from cardiac-gated parametric blood volume (V B ) 15 O-water images and from first pass (FP) images. Sixteen patients with mitral or aortic regurgitation underwent an eight-gate dynamic cardiac-gated 15 O-water PET/CT scan and cardiac MRI. V B and FP images were generated for each gate. Calculations of end-systolic volume (ESV), end-diastolic volume (EDV), stroke volume (SV) and LVEF were performed with automatic segmentation of V B and FP images, using commercially available software. LV volumes and LVEF were calculated with surface-, count-, and volume-based methods, and the results were compared with gold standard MRI. Using V B images, high correlations between PET and MRI ESV (r = 0.89, p  0.86, p dynamic 15 O-water PET is feasible and shows good correlation with MRI. However, the analysis method is laborious, and future work is needed for more automation to make the method more easily applicable in a clinical setting.

  17. Quantification of absolute myocardial perfusion at rest and during exercise with positron emission tomography after human cardiac transplantation

    International Nuclear Information System (INIS)

    Krivokapich, J.; Stevenson, L.W.; Kobashigawa, J.; Huang, S.C.; Schelbert, H.R.

    1991-01-01

    The maximal exercise capacity of cardiac transplant recipients is reduced compared with that of normal subjects. To determine if this reduced exercise capacity is related to inadequate myocardial perfusion during exercise, myocardial perfusion was measured noninvasively with use of positron emission tomography and nitrogen (N)-13 ammonia. Twelve transplant recipients with no angiographic evidence of accelerated coronary atherosclerosis were studied. Serial N-13 ammonia imaging was performed at rest and during supine bicycle exercise. The results were compared with those from 10 normal volunteers with a low probability of having cardiac disease. A two-compartment kinetic model for estimating myocardial perfusion was applied to the data. Transplant recipients achieved a significant lower exercise work load than did the volunteers (42 ± 16 vs. 128 ± 22 W), but a higher venous lactate concentration (31.3 ± 14.9 vs. 13.7 ± 4.1 mg/100 ml). Despite the difference in exercise work load, there was no significant difference in the cardiac work achieved by transplant recipients and normal subjects as evidenced by similar rate-pressure products of 24,000 ± 3,400 versus 21,300 ± 2,800 betas/min per mm Hg, respectively. In addition, myocardial blood flow during exercise was not significantly different between the two groups (1.70 ± 0.60 vs. 1.56 ± 0.71 ml/min per g, respectively). This study demonstrates that the myocardial flow response to the physiologic stress of exercise is appropriate in transplant recipients and does not appear to explain the decreased exercise capacity in these patients

  18. Development and validation of a magneto-hydrodynamic solver for blood flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kainz, W; Guag, J; Krauthamer, V; Myklebust, J; Bassen, H; Chang, I [Center for Devices and Radiological Health, FDA, Silver Spring, MD (United States); Benkler, S; Chavannes, N [Schmid and Partner Engineering AG, Zurich (Switzerland); Szczerba, D; Neufeld, E; Kuster, N [Foundation for Research on Information Technology in Society (IT' IS), Zurich (Switzerland); Kim, J H; Sarntinoranont, M, E-mail: wolfgang.kainz@fda.hhs.go [Soft Tissue Mechanics and Drug Delivery Laboratory, Mechanical and Aerospace Engineering, University of Florida, FL (United States)

    2010-12-07

    The objective of this study was to develop a numerical solver to calculate the magneto-hydrodynamic (MHD) signal produced by a moving conductive liquid, i.e. blood flow in the great vessels of the heart, in a static magnetic field. We believe that this MHD signal is able to non-invasively characterize cardiac blood flow in order to supplement the present non-invasive techniques for the assessment of heart failure conditions. The MHD signal can be recorded on the electrocardiogram (ECG) while the subject is exposed to a strong static magnetic field. The MHD signal can only be measured indirectly as a combination of the heart's electrical signal and the MHD signal. The MHD signal itself is caused by induced electrical currents in the blood due to the moving of the blood in the magnetic field. To characterize and eventually optimize MHD measurements, we developed a MHD solver based on a finite element code. This code was validated against literature, experimental and analytical data. The validation of the MHD solver shows good agreement with all three reference values. Future studies will include the calculation of the MHD signals for anatomical models. We will vary the orientation of the static magnetic field to determine an optimized location for the measurement of the MHD blood flow signal.

  19. A new CFD based non-invasive method for functional diagnosis of coronary stenosis.

    Science.gov (United States)

    Xie, Xinzhou; Zheng, Minwen; Wen, Didi; Li, Yabing; Xie, Songyun

    2018-03-22

    Accurate functional diagnosis of coronary stenosis is vital for decision making in coronary revascularization. With recent advances in computational fluid dynamics (CFD), fractional flow reserve (FFR) can be derived non-invasively from coronary computed tomography angiography images (FFR CT ) for functional measurement of stenosis. However, the accuracy of FFR CT is limited due to the approximate modeling approach of maximal hyperemia conditions. To overcome this problem, a new CFD based non-invasive method is proposed. Instead of modeling maximal hyperemia condition, a series of boundary conditions are specified and those simulated results are combined to provide a pressure-flow curve for a stenosis. Then, functional diagnosis of stenosis is assessed based on parameters derived from the obtained pressure-flow curve. The proposed method is applied to both idealized and patient-specific models, and validated with invasive FFR in six patients. Results show that additional hemodynamic information about the flow resistances of a stenosis is provided, which cannot be directly obtained from anatomy information. Parameters derived from the simulated pressure-flow curve show a linear and significant correlations with invasive FFR (r > 0.95, P < 0.05). The proposed method can assess flow resistances by the pressure-flow curve derived parameters without modeling of maximal hyperemia condition, which is a new promising approach for non-invasive functional assessment of coronary stenosis.

  20. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ebbers, T.

    2001-01-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  1. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, T

    2001-05-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  2. Noninvasive Ventilation Intolerance: Characteristics, Predictors, and Outcomes.

    Science.gov (United States)

    Liu, Jinhua; Duan, Jun; Bai, Linfu; Zhou, Lintong

    2016-03-01

    Noninvasive ventilation (NIV) intolerance is one reason for NIV failure. However, the characteristics, predictors, and outcomes of NIV intolerance are unclear. A prospective observational study was performed in the respiratory intensive care unit of a teaching hospital. Subjects with acute respiratory failure who used NIV were enrolled. Initially, continuous use of NIV was encouraged. However, if the subject could not tolerate NIV, it was used intermittently. NIV intolerance was defined as termination of NIV due to subject refusal to receive it because of discomfort, even after intermittent use was attempted. A total of 961 subjects were enrolled in the study. Of these, 50 subjects (5.2%) experienced NIV intolerance after a median 2.4 h of NIV support. Age (OR = 0.98, 95% CI 0.963-0.996) and heart rate (OR = 1.02, 95% CI 1.006-1.030) measured before NIV were 2 independent risk factors of NIV intolerance. After 1-2 h of NIV, independent risk factors of NIV intolerance were heart rate (OR = 1.03, 95% CI 1.016-1.044) and breathing frequency (OR = 1.06, 95% CI 1.027-1.099). Intolerant subjects had no improvement in mean arterial pressure, heart rate, or breathing frequency after the NIV intervention. Moreover, intolerant subjects had a higher intubation rate (44.0% vs 25.8%, P = .008) and higher mortality (34.0% vs 22.4%, P = .08). The three most common complaints were that NIV worsened subjects' distress (46%), that NIV resulted in dyspnea (26%), and that the flow or pressure of NIV was too strong to bear (16%). NIV intolerance worsened subjects' outcomes. Younger subjects with a high heart rate and breathing frequency may be more likely to experience NIV intolerance. Copyright © 2016 by Daedalus Enterprises.

  3. Long-termserial non-invasive multislice computed tomography angiography with functional evaluation after coronary implantation of a bioresorbable everolimus-eluting scaffold: the ABSORB cohort BMSCT substudy

    NARCIS (Netherlands)

    Onuma, Yoshinobu; Collet, Carlos; van Geuns, Robert-Jan; de Bruyne, Bernard; Christiansen, Evald; Koolen, Jacques; Smits, Pieter; Chevalier, Bernard; McClean, Dougal; Dudek, Dariusz; Windecker, Stephan; Meredith, Ian; Nieman, Koen; Veldhof, Susan; Ormiston, John; Serruys, Patrick W.

    2017-01-01

    Aims Multimodality invasive imaging of the first-in-man cohort demonstrated at 5 years stable lumen dimensions and a low rate of major adverse cardiac events (MACE). However, the long-term non-invasive assessment of this device remains to be documented. The objective was to describe the 72-month

  4. Marketing cardiac CT programs.

    Science.gov (United States)

    Scott, Jason

    2010-01-01

    There are two components of cardiac CT discussed in this article: coronary artery calcium scoring (CACS) and coronary computed tomography angiography (CCTA).The distinctive advantages of each CT examination are outlined. In order to ensure a successful cardiac CT program, it is imperative that imaging facilities market their cardiac CT practices effectively in order to gain a competitive advantage in this valuable market share. If patients receive quality care by competent individuals, they are more likely to recommend the facility's cardiac CT program. Satisfied patients will also be more willing to come back for any further testing.

  5. Noninvasive Stimulation of the Human Brain

    DEFF Research Database (Denmark)

    Di Lazzaro, Vincenzo; Rothwell, John; Capogna, Marco

    2017-01-01

    Noninvasive brain stimulation methods, such as transcranial electric stimulation and transcranial magnetic stimulation are widely used tools for both basic research and clinical applications. However, the cortical circuits underlying their effects are poorly defined. Here we review the current...

  6. Acquisition, processing and display of gated cardiac scintigrams

    International Nuclear Information System (INIS)

    Alpert, N.M.; Chesler, D.A.; McKusick, K.A.; Potsaid, M.S.; Pohost, G.M.; Dinsmore, R.A.

    1974-01-01

    An improved method for non-traumatic and essentially noninvasive evaluation of left ventricular (LV) function with /sup 99m/Tc as the tracer was developed. This method combines previously used EKG gating techniques for cardiac blood pool visualization with new computerized acquisition, processing and display techniques. An Anger camera, a small computer, and a physiological synchronizer are used to acquire a sequence of eight scintigrams which span the entire cardiac cycle. Under our present protocol two twenty-minute sequences are obtained, one an LAO (50 0 ) projection, the other an RAO (30 0 ) projection. Subsequently these images are processed on-line with a digital filter to increase definition of the cardiac borders. The eight images are then displayed sequentially on a specially designed electronic monitor to give an impression of the beating heart somewhat analogous to that obtained with invasive contrast angiography

  7. Magnetic Resonance Imaging Evaluation of Cardiac Masses

    International Nuclear Information System (INIS)

    Braggion-Santos, Maria Fernanda; Koenigkam-Santos, Marcel; Teixeira, Sara Reis; Volpe, Gustavo Jardim; Trad, Henrique Simão; Schmidt, André

    2013-01-01

    Cardiac tumors are extremely rare; however, when there is clinical suspicion, proper diagnostic evaluation is necessary to plan the most appropriate treatment. In this context, cardiovascular magnetic resonance imaging (CMRI) plays an important role, allowing a comprehensive characterization of such lesions. To review cases referred to a CMRI Department for investigation of cardiac and paracardiac masses. To describe the positive case series with a brief review of the literature for each type of lesion and the role of cardiovascular magnetic resonance imaging in evaluation. Between August 2008 and December 2011, all cases referred for CMRI with suspicion of tumor involving the heart were reviewed. Cases with positive histopathological diagnosis, clinical evolution or therapeutic response compatible with the clinical suspicion and imaging findings were selected. Among the 13 cases included in our study, eight (62%) had histopathological confirmation. We describe five benign tumors (myxomas, rhabdomyoma and fibromas), five malignancies (sarcoma, lymphoma, Richter syndrome involving the heart and metastatic disease) and three non-neoplastic lesions (pericardial cyst, intracardiac thrombus and infectious vegetation). CMRI plays an important role in the evaluation of cardiac masses of non-neoplastic and neoplastic origin, contributing to a more accurate diagnosis in a noninvasive manner and assisting in treatment planning, allowing safe clinical follow-up with good reproducibility

  8. Diagnostic and prognostic value of non-invasive imaging in known or suspected coronary artery disease

    International Nuclear Information System (INIS)

    Schuijf, J.D.; Poldermans, D.; Shaw, L.J.; Jukema, J.W.; Wall, E.E. van der; Lamb, H.J.; Roos, A. de; Wijns, W.; Bax, J.J.

    2006-01-01

    The role of non-invasive imaging techniques in the evaluation of patients with suspected or known coronary artery disease (CAD) has increased exponentially over the past decade. The traditionally available imaging modalities, including nuclear imaging, stress echocardiography and magnetic resonance imaging (MRI), have relied on detection of CAD by visualisation of its functional consequences (i.e. ischaemia). However, extensive research is being invested in the development of non-invasive anatomical imaging using computed tomography or MRI to allow detection of (significant) atherosclerosis, eventually at a preclinical stage. In addition to establishing the presence of or excluding CAD, identification of patients at high risk for cardiac events is of paramount importance to determine post-test management, and the majority of non-invasive imaging tests can also be used for this purpose. The aim of this review is to provide an overview of the available non-invasive imaging modalities and their merits for the diagnostic and prognostic work-up in patients with suspected or known CAD. (orig.)

  9. Use of Doppler ultrasound for non-invasive urodynamic diagnosis

    Directory of Open Access Journals (Sweden)

    Hideo Ozawa

    2009-01-01

    Full Text Available Objectives: A totally non-invasive transperineal urodynamic technique using Doppler ultrasonography has been developed. Methods: Since normal urine does not have blood cells, urine was thought not to produce the Doppler effects. However, basic studies confirmed that the decrease of pressure at high velocity (Bernouilli effect caused dissolved gas to form microbubbles, which are detected by Doppler ultrasonography. Subjects sat and the probe was advanced via remote control to achieve gentle contact with the perineal skin. The digital uroflow data signals and the color Doppler ultrasound video images were processed on a personal computer. The flow-velocity curves from two sites; the distal prostatic urethra just above the external sphincter (V1 and the sphincteric urethra (V2 were plotted against time. The parameters of both the pressure-flow studies and the Doppler ultrasound urodynamic studies were compared in men who had various degrees of obstruction. Results: Functional cross-sectional area at prostatic urethra (A1, calculated by Q max /V1, was lower in the group of bladder outlet obstruction (BOO vs. control group. Velocity ratio (VR, which was calculated by V1/V2, was the parameter having the best correlation with BOO index, though A1 had a similar correlation. This method is viable to diagnose the degree of BOO. Conclusions: The development of non-invasive Doppler ultrasound videourodynamics (Doppler UDS will dramatically expand the information on voiding function.

  10. Comparison of different models for non-invasive FFR estimation

    Science.gov (United States)

    Mirramezani, Mehran; Shadden, Shawn

    2017-11-01

    Coronary artery disease is a leading cause of death worldwide. Fractional flow reserve (FFR), derived from invasively measuring the pressure drop across a stenosis, is considered the gold standard to diagnose disease severity and need for treatment. Non-invasive estimation of FFR has gained recent attention for its potential to reduce patient risk and procedural cost versus invasive FFR measurement. Non-invasive FFR can be obtained by using image-based computational fluid dynamics to simulate blood flow and pressure in a patient-specific coronary model. However, 3D simulations require extensive effort for model construction and numerical computation, which limits their routine use. In this study we compare (ordered by increasing computational cost/complexity): reduced-order algebraic models of pressure drop across a stenosis; 1D, 2D (multiring) and 3D CFD models; as well as 3D FSI for the computation of FFR in idealized and patient-specific stenosis geometries. We demonstrate the ability of an appropriate reduced order algebraic model to closely predict FFR when compared to FFR from a full 3D simulation. This work was supported by the NIH, Grant No. R01-HL103419.

  11. Noninvasive Methods to Evaluate Bladder Obstruction in Men

    Directory of Open Access Journals (Sweden)

    Dean S. Elterman

    2013-01-01

    Full Text Available Lower urinary tract symptoms (LUTS caused by benign prostatic hyperplasia (BPH commonly affect older men. Fifty percent of men in their sixties and 80% of men in their nineties will be affected. Many of these men will seek care for their bothersome symptoms and decreased quality of life. There is a poor association between LUTS and objective measures such as post void residual, voided volumes, or maximal flow. Pressure flow studies are considered the gold standard for detecting bladder outlet obstruction. These studies tend to be cumbersome, expensive, and have exposure to ionizing radiation. There are several techniques which may offer noninvasive methods of detecting bladder outlet obstruction (BOO in men.

  12. Validation of non-invasive haemodynamic methods in patients with liver disease

    DEFF Research Database (Denmark)

    Brittain, Jane M; Busk, Troels M; Møller, Søren

    2018-01-01

    Patients with advanced cirrhosis often present a hyperdynamic circulation characterized by a decrease in systolic and diastolic blood pressure (SBP and DBP), and an increase in heart rate (HR) and cardiac output (CO). Accurate assessment of the altered circulation can be performed invasively......; however, due to the disadvantages of this approach, non-invasive methods are warranted. The purpose of this study was to compare continuous non-invasive measurements of haemodynamic variables by the Finometer and the Task Force Monitor with simultaneous invasive measurements. In 25 patients with cirrhosis......, respectively; and CO: 0·1 ± 1·6 and -1·0 ± 2·0 L min(-1) , respectively. The study demonstrates that the overall performances of the Finometer and the Task Force Monitor in estimating absolute values of SBP, DBP, HR and CO in patients with cirrhosis are not equivalent to the gold standard, but may have...

  13. Noninvasive assessment of preclinical atherosclerosis

    Directory of Open Access Journals (Sweden)

    Helen A Lane

    2006-03-01

    Full Text Available Helen A Lane, Jamie C Smith, J Stephen DaviesDepartment of Endocrinology, University of Wales College of Medicine, Heath Park, Cardiff, Wales, UKAbstract: Initially considered as a semipermeable barrier separating lumen from vessel wall, the endothelium is now recognised as a complex endocrine organ responsible for a variety of physiological processes vital for vascular homeostasis. These include the regulation of vascular tone, luminal diameter, and blood flow; hemostasis and thrombolysis; platelet and leucocyte vessel-wall interactions; the regulation of vascular permeability; and tissue growth and remodelling. The endothelium modulates arterial stiffness, which precedes overt atherosclerosis and is an independent predictor of cardiovascular events. Unsurprisingly, dysfunction of the endothelium may be considered as an early and potentially reversible step in the process of atherogenesis and numerous methods have been developed to assess endothelial status and large artery stiffness. Methodology includes flow-mediated dilatation of the brachial artery, assessment of coronary flow reserve, carotid intimamedia thickness, pulse wave analysis, pulse wave velocity, and plethysmography. This review outlines the various modalities, indications, and limitations of available methods to assess arterial dysfunction and vascular risk.Keywords: endothelial function, vascular risk, vascular stiffness

  14. Influence of cardiac decentralization on cardioprotection.

    Directory of Open Access Journals (Sweden)

    John G Kingma

    Full Text Available The role of cardiac nerves on development of myocardial tissue injury after acute coronary occlusion remains controversial. We investigated whether acute cardiac decentralization (surgical modulates coronary flow reserve and myocardial protection in preconditioned dogs subject to ischemia-reperfusion. Experiments were conducted on four groups of anesthetised, open-chest dogs (n = 32: 1- controls (CTR, intact cardiac nerves, 2- ischemic preconditioning (PC; 4 cycles of 5-min IR, 3- cardiac decentralization (CD and 4- CD+PC; all dogs underwent 60-min coronary occlusion and 180-min reperfusion. Coronary blood flow and reactive hyperemic responses were assessed using a blood volume flow probe. Infarct size (tetrazolium staining was related to anatomic area at risk and coronary collateral blood flow (microspheres in the anatomic area at risk. Post-ischemic reactive hyperemia and repayment-to-debt ratio responses were significantly reduced for all experimental groups; however, arterial perfusion pressure was not affected. Infarct size was reduced in CD dogs (18.6 ± 4.3; p = 0.001, data are mean ± 1 SD compared to 25.2 ± 5.5% in CTR dogs and was less in PC dogs as expected (13.5 ± 3.2 vs. 25.2 ± 5.5%; p = 0.001; after acute CD, PC protection was conserved (11.6 ± 3.4 vs. 18.6 ± 4.3%; p = 0.02. In conclusion, our findings provide strong evidence that myocardial protection against ischemic injury can be preserved independent of extrinsic cardiac nerve inputs.

  15. Coronary Flow Reserve Predicts Cardiopulmonary Fitness in Patients with Coronary Artery Disease Independently of Systolic and Diastolic Function

    DEFF Research Database (Denmark)

    Snoer, Martin; Olsen, Rasmus Huan; Monk-Hansen, Tea

    2014-01-01

    Aims Despite revascularization and optimal medical treatment, patients with coronary artery disease (CAD) have reduced exercise capacity. In the absence of coronary artery stenosis, coronary flow reserve (CFR) is a measure of coronary microvascular function, and a marker of future poor outcome...... in CAD patients. The aim of this study was to examine the relationship among CFR, systolic and diastolic function, peripheral vascular function, and cardiopulmonary fitness in CAD patients. Methods and Results Forty patients with median left ventricular ejection fraction (LVEF) 49 (interquartile 46....... Conclusions Coronary flow reserve measured noninvasively predicts cardiopulmonary fitness independently of resting systolic and diastolic function in CAD patients, indicating that cardiac output during maximal exercise is dependent on the ability of the coronary circulation to adapt to the higher metabolic...

  16. Safety in cardiac surgery

    NARCIS (Netherlands)

    Siregar, S.

    2013-01-01

    The monitoring of safety in cardiac surgery is a complex process, which involves many clinical, practical, methodological and statistical issues. The objective of this thesis was to measure and to compare safety in cardiac surgery in The Netherlands using the Netherlands Association for

  17. Cardiac Catheterization (For Kids)

    Science.gov (United States)

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body Works ... Educators Search English Español Cardiac Catheterization KidsHealth / For Kids / Cardiac Catheterization What's in this article? What Is ...

  18. Pictorial review: Electron beam computed tomography and multislice spiral computed tomography for cardiac imaging

    International Nuclear Information System (INIS)

    Lembcke, Alexander; Hein, Patrick A.; Dohmen, Pascal M.; Klessen, Christian; Wiese, Till H.; Hoffmann, Udo; Hamm, Bernd; Enzweiler, Christian N.H.

    2006-01-01

    Electron beam computed tomography (EBCT) revolutionized cardiac imaging by combining a constant high temporal resolution with prospective ECG triggering. For years, EBCT was the primary technique for some non-invasive diagnostic cardiac procedures such as calcium scoring and non-invasive angiography of the coronary arteries. Multislice spiral computed tomography (MSCT) on the other hand significantly advanced cardiac imaging through high volume coverage, improved spatial resolution and retrospective ECG gating. This pictorial review will illustrate the basic differences between both modalities with special emphasis to their image quality. Several experimental and clinical examples demonstrate the strengths and limitations of both imaging modalities in an intraindividual comparison for a broad range of diagnostic applications such as coronary artery calcium scoring, coronary angiography including stent visualization as well as functional assessment of the cardiac ventricles and valves. In general, our examples indicate that EBCT suffers from a number of shortcomings such as limited spatial resolution and a low contrast-to-noise ratio. Thus, EBCT should now only be used in selected cases where a constant high temporal resolution is a crucial issue, such as dynamic (cine) imaging. Due to isotropic submillimeter spatial resolution and retrospective data selection MSCT seems to be the non-invasive method of choice for cardiac imaging in general, and for assessment of the coronary arteries in particular. However, technical developments are still needed to further improve the temporal resolution in MSCT and to reduce the substantial radiation exposure

  19. Delayed contrast-enhanced MRI: use in myocardial viability assessment and other cardiac pathology

    International Nuclear Information System (INIS)

    Bogaert, J.; Dymarkowski, S.

    2005-01-01

    As in other organs, tissue characterization is important for many cardiac diseases. For example, in ischemic heart disease, differentiation between reversibly and irreversibly damaged myocardium in patients with a prior myocardial infarction is crucial in determining disease severity, functional recovery and patient outcome. With the recent advent of the single inversion-recovery contrast-enhanced magnetic resonance imaging (MRI) sequence (delayed contrast-enhanced MRI), contrast between normal and abnormal tissues could be significantly enhanced compared with the conventional cardiac MRI sequences, enabling even subtle abnormalities to be visualized. Together with other advances in cardiac MRI (e.g. functional imaging, coronary artery imaging), MRI has become one of the preferred non-invasive modalities to study cardiac diseases. In this paper an overview of the versatility of delayed contrast-enhanced MRI for investigating cardiac diseases is given. (orig.)

  20. Sudden cardiac death

    Directory of Open Access Journals (Sweden)

    Neeraj Parakh

    2015-01-01

    Full Text Available Sudden cardiac death is one of the most common cause of mortality worldwide. Despite significant advances in the medical science, there is little improvement in the sudden cardiac death related mortality. Coronary artery disease is the most common etiology behind sudden cardiac death, in the above 40 years population. Even in the apparently healthy population, there is a small percentage of patients dying from sudden cardiac death. Given the large denominator, this small percentage contributes to the largest burden of sudden cardiac death. Identification of this at risk group among the apparently healthy individual is a great challenge for the medical fraternity. This article looks into the causes and methods of preventing SCD and at some of the Indian data. Details of Brugada syndrome, Long QT syndrome, Genetics of SCD are discussed. Recent guidelines on many of these causes are summarised.

  1. CARDIAC LYMPHOMA IN DOG

    Directory of Open Access Journals (Sweden)

    G. D. Cruz

    2016-11-01

    Full Text Available Lymphoma is a lymphoid tumor that originates in hematopoietic organs such as lymph node, spleen or liver. In dogs, the overall prevalence of cardiac tumors was estimated to be only 0.19% based on the results of the survey of a large database, and lymphomas accounts for approximately 2% of all cardiac tumors. In general, the involvement of the myocardium is rarely described in canine lymphoma. Currently, there is no evidence of a viral association with primary cardiac lymphoma in dogs, but other types of immunosuppression may contribute to abnormal events, such as involvement primary cardiac. The aim of this study was to analyze a case of sudden death of a bitch, SRD, aged 10, who had the final diagnosis of cardiac lymphoma.

  2. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  3. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  4. Effect of prophylactic non-invasive mechanical ventilation on functional capacity after heart valve replacement: a clinical trial

    Directory of Open Access Journals (Sweden)

    Amaro Afrânio de Araújo-Filho

    Full Text Available OBJECTIVE: During cardiac surgery, several factors contribute to the development of postoperative pulmonary complications. Non-invasive ventilation is a promising therapeutic tool for improving the functionality of this type of patient. The aim of this study is to evaluate the functional capacity and length of stay of patients in a nosocomial intensive care unit who underwent prophylactic non-invasive ventilation after heart valve replacement. METHOD: The study was a controlled clinical trial, comprising 50 individuals of both sexes who were allocated by randomization into two groups with 25 patients in each group: the control group and experimental group. After surgery, the patients were transferred to the intensive care unit and then participated in standard physical therapy, which was provided to the experimental group after 3 applications of non-invasive ventilation within the first 26 hours after extubation. For non-invasive ventilation, the positive pressure was 10 cm H2O, with a duration of 1 hour. The evaluation was performed on the 7th postoperative day/discharge and included a 6-minute walk test. The intensive care unit and hospitalization times were monitored in both groups. Brazilian Registry of Clinical Trials (REBeC: RBR number 8bxdd3. RESULTS: Analysis of the 6-minute walk test showed that the control group walked an average distance of 264.34±76 meters and the experimental group walked an average distance of 334.07±71 meters (p=0.002. The intensive care unit and hospitalization times did not differ between the groups. CONCLUSION: Non-invasive ventilation as a therapeutic resource was effective toward improving functionality; however, non-invasive ventilation did not influence the intensive care unit or hospitalization times of the studied cardiac patients.

  5. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.; Scacchi, S.; Verdi, C.; Zampieri, E.; Zampini, Stefano

    2017-01-01

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  6. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.

    2017-03-17

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  7. Current status and prospects of cardiac PET

    International Nuclear Information System (INIS)

    Yoshida, Katuya

    1999-01-01

    With positron emission tomography (PET), noninvasive measurements of myocardial blood flow and metabolism have now become possible. 1) Myocardial blood flow: We developed a high-resolution PET system for rabbits and showed that myocardial N-13 ammonnia uptake correlated well with flow measure with microspheres. We also demonstrated that a simplified PET protocol using N-13 ammonia or Rb-82 provide noninvasive measurement of coronary flow reserve in dog experiments. This protocol enables to produce estimates of myocardial blood flow in man and that are well correlated with the complex compartment model. 2) Myocardial glucose metabolism: We validated experimentally a simple method to quantify tissue glucose utilization with the brain reference index (BRI) using C-14 deoxyglucose and assessed its clinical feasibility for myocardial PET. 3) Membrane integrity: Loss of cell membrane integrity for trapping the potassium or it's analog is a market of myocardial necrosis/viability. We recently synthetized potassium-38 as a PET tracer and started an experimental study. (author)

  8. Noninvasive assessment of pulmonary vascular and airway response to physiologic stimuli with high-resolution CT

    International Nuclear Information System (INIS)

    Herold, C.J.; Wetzel, R.C.; Herold, S.M.; Martin, L.; Zerhouni, E.A.; Robotham, J.

    1990-01-01

    This paper reports on reactivity of pulmonary vasculature under various stimuli studied invasively with perfused isolated lung models. We used high- resolution CT (HRCT) to demonstrate noninvasively the effects of hypoxia and volume variation on pulmonary circulation and airways. Five anesthetized and ventilated pigs were examined with HRCT (10 contiguous 2-mm sections through the lower lobes) during varying oxygen tensions and intravascular volume states. Blood pressures, pulmonary artery pressures, blood gas levels, and cardiac indexes (thermodilution) were measured. HRCT scans were digitized, and vessel and airway areas were determined with use of a computer edging process

  9. Non-invasive electrocardiogram detection of in vivo zebrafish embryos using electric potential sensors

    Science.gov (United States)

    Rendon-Morales, E.; Prance, R. J.; Prance, H.; Aviles-Espinosa, R.

    2015-11-01

    In this letter, we report the continuous detection of the cardiac electrical activity in embryonic zebrafish using a non-invasive approach. We present a portable and cost-effective platform based on the electric potential sensing technology, to monitor in vivo electrocardiogram activity from the zebrafish heart. This proof of principle demonstration shows how electrocardiogram measurements from the embryonic zebrafish may become accessible by using electric field detection. We present preliminary results using the prototype, which enables the acquisition of electrophysiological signals from in vivo 3 and 5 days-post-fertilization zebrafish embryos. The recorded waveforms show electrocardiogram traces including detailed features such as QRS complex, P and T waves.

  10. Noninvasive characterization of carotid plaque strain.

    Science.gov (United States)

    Khan, Amir A; Sikdar, Siddhartha; Hatsukami, Thomas; Cebral, Juan; Jones, Michael; Huston, John; Howard, George; Lal, Brajesh K

    2017-06-01

    Current risk stratification of internal carotid artery plaques based on diameter-reducing percentage stenosis may be unreliable because ischemic stroke results from plaque disruption with atheroembolization. Biomechanical forces acting on the plaque may render it vulnerable to rupture. The feasibility of ultrasound-based quantification of plaque displacement and strain induced by hemodynamic forces and their relationship to high-risk plaques have not been determined. We studied the feasibility and reliability of carotid plaque strain measurement from clinical B-mode ultrasound images and the relationship of strain to high-risk plaque morphology. We analyzed carotid ultrasound B-mode cine loops obtained in patients with asymptomatic ≥50% stenosis during routine clinical scanning. Optical flow methods were used to quantify plaque motion and shear strain during the cardiac cycle. The magnitude (maximum absolute shear strain rate [MASSR]) and variability (entropy of shear strain rate [ESSR] and variance of shear strain rate [VSSR]) of strain were combined into a composite shear strain index (SSI), which was assessed for interscan repeatability and correlated with plaque echolucency. Nineteen patients (mean age, 70 years) constituting 36 plaques underwent imaging; 37% of patients (n = 7) showed high strain (SSI ≥0.5; MASSR, 2.2; ESSR, 39.7; VSSR, 0.03) in their plaques; the remaining clustered into a low-strain group (SSI routine B-mode imaging using clinical ultrasound machines. High plaque strain correlates with known high-risk echolucent morphology. Strain measurement can complement identification of patients at high risk for plaque disruption and stroke. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  11. Successful percutaneous coronary intervention significantly improves coronary sinus blood flow as assessed by transthoracic echocardiography.

    Science.gov (United States)

    Lyubarova, Radmila; Boden, William E; Fein, Steven A; Schulman-Marcus, Joshua; Torosoff, Mikhail

    2018-06-01

    Transthoracic echocardiography (TTE) has been used to assess coronary sinus blood flow (CSBF), which reflects total coronary arterial blood flow. Successful angioplasty is expected to improve coronary arterial blood flow. Changes in CSBF after percutaneous coronary intervention (PCI), as assessed by TTE, have not been systematically evaluated. TTE can be utilized to reflect increased CSBF after a successful, clinically indicated PCI. The study cohort included 31 patients (18 females, 62 ± 11 years old) referred for diagnostic cardiac catheterization for suspected coronary artery disease and possible PCI, when clinically indicated. All performed PCIs were successful, with good angiographic outcome. CSBF per cardiac cycle (mL/beat) was measured using transthoracic two-dimensional and Doppler flow imaging as the product of coronary sinus (CS) area and CS flow time-velocity integral. CSBF per minute (mL/min) was calculated as the product of heart rate and CSBF per cardiac cycle. In each patient, CSBF was assessed prospectively, before and after cardiac catheterization with and without clinically indicated PCI. Within- and between-group differences in CSBF before and after PCI were assessed using repeated measures analysis of variance. Technically adequate CSBF measurements were obtained in 24 patients (77%). In patients who did not undergo PCI, there was no significant change in CSBF (278.1 ± 344.1 versus 342.7 ± 248.5, p = 0.36). By contrast, among patients who underwent PCI, CSBF increased significantly (254.3 ± 194.7 versus 618.3 ± 358.5 mL/min, p < 0.01, p-interaction = 0.03). Other hemodynamic and echocardiographic parameters did not change significantly before and after cardiac catheterization in either treatment group. Transthoracic echocardiographic assessment can be employed to document CSBF changes after angioplasty. Future studies are needed to explore the clinical utility of this noninvasive metric.

  12. Cross sectional imaging of cardiac tumors

    International Nuclear Information System (INIS)

    Maksimovic, R.

    2012-01-01

    Full text: Primary cardiac tumors are a rare entity whose incidence, according to surgery and autopsy reports, is 0.3% to 0.7% of all cardiac tumors. Metastasis to the heart from other primary cancers is 30 times more common. Only 25% of primary cardiac tumors are malignant, and, of these, 75% are sarcomas. Malignant primary cardiac sarcomas are usually located in the right atrium and are most commonly angiosarcoma. In the left atrium, the most common malignant tumors are pleomorphic sarcoma and leiomyosarcoma. Symptom presentation for cardiac tumors is quite varied, but it is dependent upon tumor location and size, rather than upon histologic characteristics. Presentation includes congestive heart failure from intracardiac obstruction, systemic embolization, constitutional symptoms, and arrhythmias. Left atrial sarcomas tend to be more solid and less infiltrative than right-sided sarcomas; consequently, they tend to metastasize later. They usually present with symptoms of blood-flow obstruction and substantial, life-threatening congestive heart failure. Right-sided cardiac tumors are usually malignant and appear as bulky, infiltrative masses that grow in an outward pattern. These are usually fast-growing tumors that metastasize early and do not present with congestive heart failure until late in the disease. The diagnosis of cardiac tumors relies heavily on the use of multiple imaging techniques, including cardiac computed tomography (CT), cardiovascular magnetic resonance (CMR), and echocardiography. Important imaging data to collect include information on the size of the intracardiac mass, the mobility of the mass (an important predictor of prognosis and embolic potential), myocardial invasion, and cardiac chamber location. These factors will provide the means to diagnosis and prognosis. Other important data to collect include the mechanism of tumor implantation, the relationship of the tumor with adjacent structures, the surgeon route of access to the heart

  13. Cardiac norepinephrine kinetics in hypertrophic cardiomyopathy

    International Nuclear Information System (INIS)

    Brush, J.E. Jr.; Eisenhofer, G.; Garty, M.; Stull, R.; Maron, B.J.; Cannon, R.O. III; Panza, J.A.; Epstein, S.E.; Goldstein, D.S.

    1989-01-01

    We examined the uptake and release of norepinephrine in the cardiac circulation and other regional vascular beds in 11 patients with hypertrophic cardiomyopathy (HCM) and in 10 control subjects during simultaneous infusion of tracer-labeled norepinephrine and isoproterenol. Cardiac neuronal uptake of norepinephrine was assessed by comparing regional removal of tracer-labeled norepinephrine with that of tracer-labeled isoproterenol (which is not a substrate for neuronal uptake) and by the relation between production of dihydroxyphenylglycol (DHPG), an exclusively intraneuronal metabolite of norepinephrine, and regional spillover of norepinephrine. Cardiac extraction of norepinephrine averaged 59 +/- 17% in the patients with HCM, significantly less than in the control subjects (79 +/- 13%, p less than 0.05), whereas cardiac extraction of isoproterenol was similar in the two groups (13 +/- 23% versus 13 +/- 14%), indicating that neuronal uptake of norepinephrine was decreased in the patients with HCM. The cardiac arteriovenous difference in norepinephrine was significantly larger in the patients with HCM than in the control subjects (73 +/- 77 versus 13 +/- 50 pg/ml, p less than 0.05), as was the product of the arteriovenous difference in norepinephrine and coronary blood flow (7.3 +/- 7.3 versus 0.8 +/- 3.0 ng/min, p less than 0.05)

  14. Hemodynamic Effects of Noninvasive Ventilation in Patients with Venocapillary Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    André Moreira Bento

    2014-11-01

    Full Text Available Background: The hemodynamic effects of noninvasive ventilation with positive pressure in patients with pulmonary hypertension without left ventricular dysfunction are not clearly established. Objectives: Analyze the impact of increasing airway pressure with continuous positive airway pressure on hemodynamic parameters and, in particular, on cardiac output in patients with variable degrees of pulmonary hypertension. Methods: The study included 38 patients with pulmonary hypertension caused by mitral stenosis without left ventricular dysfunction or other significant valvulopathy. The hemodynamic state of these patients was analyzed in three conditions: baseline, after continuous positive pressure of 7 cmH2O and, finally, after pressure of 14 cmH2O. Results: The population was composed of predominantly young and female individuals with significant elevation in pulmonary arterial pressure (mean systolic pressure of 57 mmHg. Of all variables analyzed, only the right atrial pressure changed across the analyzed moments (from the baseline condition to the pressure of 14 cmH2O there was a change from 8 ± 4 mmHg to 11 ± 3 mmHg, respectively, p = 0.031. Even though there was no variation in mean cardiac output, increased values in pulmonary artery pressure were associated with increased cardiac output. There was no harmful effect or other clinical instability associated with use application of airway pressure. Conclusion: In patients with venocapillary pulmonary hypertension without left ventricular dysfunction, cardiac output response was directly associated with the degree of pulmonary hypertension. The application of noninvasive ventilation did not cause complications directly related to the ventilation systems.

  15. Role of Nuclear Medicine in the cardiac resinchronization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Giorgi, Maria Clementina Pinto; D' Orio, Silvana Angelina; Meneghetti, Jose Claudio [Instituto do Coracao (InCor/FM/USP), Sao Paulo, SP (Brazil)

    2011-10-15

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  16. Construction of cardiac anthropomorphic phantom for simulation of radiological exams

    International Nuclear Information System (INIS)

    Bandeira, C.K.; Vieira Neto, H.; Vieira, M.P.M.M.

    2017-01-01

    Phantoms are simulating objects of structures of the human body and can be applied in the quality control and calibration of radiological equipment. The aim of the work is the development of a cardiac anthropomorphic phantom to assist in the elaboration of protocols of dynamic studies that demonstrate the blood circulation inside the cardiac chambers. For the construction of the phantom was used latex, applied in layers on an anatomical model of heart, having been constructed the cardiac chambers and atrioventricular valves. Cardiac chambers were connected to the cannulas for fluid injection and simulation of the circulatory system. The constructed phantom presents anthropomorphic characteristics and allows the circulation of the fluid without reflux, but the thickness of the catheters used does not yet allow flows of greater order of magnitude. This phantom has the potential to be used in the dynamic simulation of cardiac exams, contributing to the elaboration and adequacy of computed tomography protocols

  17. Role of Nuclear Medicine in the cardiac resinchronization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Giorgi, Maria Clementina Pinto; D' Orio, Silvana Angelina; Meneghetti, Jose Claudio [Instituto do Coracao (InCor/FM/USP), Sao Paulo, SP (Brazil)

    2011-10-15

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  18. Comprehensive cardiac rehabilitation

    DEFF Research Database (Denmark)

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O

    2006-01-01

    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed...... and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  19. Dual energy cardiac CT.

    Science.gov (United States)

    Carrascosa, Patricia; Deviggiano, Alejandro; Rodriguez-Granillo, Gastón

    2017-06-01

    Conventional single energy CT suffers from technical limitations related to the polychromatic nature of X-rays. Dual energy cardiac CT (DECT) shows promise to attenuate and even overcome some of these limitations, and might broaden the scope of patients eligible for cardiac CT towards the inclusion of higher risk patients. This might be achieved as a result of both safety (contrast reduction) and physiopathological (myocardial perfusion and characterization) issues. In this article, we will review the main clinical cardiac applications of DECT, that can be summarized in two core aspects: coronary artery evaluation, and myocardial evaluation.

  20. Targeted, noninvasive blockade of cortical neuronal activity

    Science.gov (United States)

    McDannold, Nathan; Zhang, Yongzhi; Power, Chanikarn; Arvanitis, Costas D.; Vykhodtseva, Natalia; Livingstone, Margaret

    2015-11-01

    Here we describe a novel method to noninvasively modulate targeted brain areas through the temporary disruption of the blood-brain barrier (BBB) via focused ultrasound, enabling focal delivery of a neuroactive substance. Ultrasound was used to locally disrupt the BBB in rat somatosensory cortex, and intravenous administration of GABA then produced a dose-dependent suppression of somatosensory-evoked potentials in response to electrical stimulation of the sciatic nerve. No suppression was observed 1-5 days afterwards or in control animals where the BBB was not disrupted. This method has several advantages over existing techniques: it is noninvasive; it is repeatable via additional GABA injections; multiple brain regions can be affected simultaneously; suppression magnitude can be titrated by GABA dose; and the method can be used with freely behaving subjects. We anticipate that the application of neuroactive substances in this way will be a useful tool for noninvasively mapping brain function, and potentially for surgical planning or novel therapies.

  1. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue.

    Science.gov (United States)

    Mayorga, Maritza; Finan, Amanda; Penn, Marc

    2009-03-01

    Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.

  2. Noninvasive Measurement of EKG Properties of 3D Artificial Heart Muscle

    Directory of Open Access Journals (Sweden)

    Betsy H. Salazar

    2017-06-01

    Full Text Available Developing and testing a custom fabricated 16-electrode noninvasive direct contact system was necessary to assess the electrical properties of bioengineered heart muscle and to further evaluate the efficacy of cardiac constructs. By culturing neonatal rat primary cardiac cells on a fibrin gel, we constructed 3D artificial heart muscle (3D-AHM, as described in previous studies, which were used in validating this novel system. Electrical and mechanical functional assessment of the tissues was performed, which yielded contractile forces of the tissues, electrical field potential characteristics, and tissue conduction velocities (CV (20–170 cm/s. Immunohistological evaluation revealed the formation of cardiac tissue structures and cardiomyocyte proliferation. EKG data analysis also yielded time delays between signals in the range of 0–38 ms with electrical maps showing some evidence of synchronous contraction within the fabricated tissues. This study demonstrates the effectiveness and practicality of our novel EKG measuring system to acquire distinct electrical metrics of 3D-AHM, which will aid in increasing the viability and applicability of cardiac tissue constructs.

  3. Avaliação da ventilação não-invasiva com dois níveis de pressão positiva nas vias aéreas após cirurgia cardíaca Assessment of noninvasive ventilation with two levels of positive airway pressure in patients after cardiac surgery

    Directory of Open Access Journals (Sweden)

    Aline Marques Franco

    2011-12-01

    Full Text Available INTRODUÇÃO: A aplicação de ventilação por dois níveis de pressão positiva (BiPAP® associada à fisioterapia respiratória convencional (FRC no pós-operatório (PO imediato de cirurgia cardíaca pode contribuir para a diminuição das complicações pulmonares. OBJETIVO: Avaliar a segurança e a adesão da aplicação preventiva do BiPAP® associado a FRC no PO imediato de revascularização do miocárdio. MÉTODOS: Vinte e seis pacientes submetidos a revascularização do miocárdio foram aleatoriamente alocados. O Grupo Controle (GC foi tratado com FRC, o Grupo BiPAP (GB foi submetido a 30 minutos de BiPAP®, duas vezes ao dia, associado à FRC. A FRC foi realizada em ambos os grupos, duas vezes ao dia. Todos os pacientes foram avaliados quanto: capacidade vital, permeabilidade das vias aéreas, pressões respiratórias máximas, saturação de oxigênio, frequência cardíaca, frequência respiratória, volume minuto, volume corrente, pressões arteriais sistólica e diastólica. As avaliações foram realizadas durante a internação no pré-operatório, imediatamente após a extubação, e na 24ª e 48ª horas após extubação. RESULTADOS: No GC, 61,5% dos pacientes tiveram algum grau de atelectasias, no GB, 54% (P=0,691. A capacidade vital foi estatisticamente maior no GB no PO (PINTRODUCTION: The application of two levels of ventilation by positive pressure (BiPAP® associated with conventional respiratory therapy (CRT in postoperative periord of cardiac surgery may contribute to reduction of pulmonary complications. OBJECTIVES: To evaluate the safety and compliance of preventive application of BiPAP® CRT associated with immediate postoperative myocardial revascularization. METHODS: 26 patients undergoing coronary artery bypass grafting were randomly allocated in one of the groups. Patients of the Control Group (CG were treated only with conventional respiratory therapy, compared to BiPAP group (BG (in addition to conventional

  4. Noninvasive Body Contouring: A Male Perspective.

    Science.gov (United States)

    Wat, Heidi; Wu, Douglas C; Goldman, Mitchel P

    2018-01-01

    Noninvasive body contouring is an attractive therapeutic modality to enhance the ideal male physique. Men place higher value on enhancing a well-defined, strong, masculine jawline and developing a V-shaped taper through the upper body. An understanding of the body contour men strive for allows the treating physician to focus on areas that are of most concern to men, thus enhancing patient experience and satisfaction. This article discusses noninvasive body contouring techniques, taking into account the unique aesthetic concerns of the male patient by combining an analysis of the existing literature with our own clinical experience. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cardiac Catheterization (For Parents)

    Science.gov (United States)

    ... cases, the doctor might call for a cardiac magnetic resonance imaging (MRI) scan or a CAT scan . ... first couple of days. This means no heavy lifting (more than 10 pounds) and no sports. After ...

  6. Cardiac Catheterization (For Teens)

    Science.gov (United States)

    ... doctor may also call for a cardiac MRI (magnetic resonance imaging) scan or a CT (computerized tomography) ... first couple of days. This means no heavy lifting (nothing over 10 pounds) and no sports. After ...

  7. Detection of cardiac transplant rejection with radiolabeled lymphocytes

    International Nuclear Information System (INIS)

    Bergmann, S.R.; Lerch, R.A.; Carlson, E.M.; Saffitz, J.E.; Sobel, B.E.

    1982-01-01

    To determine whether rejections of cardiac transplants could be detected specifically and non-invasively by lymphocytes labeled with indium-111 (111In), we studied 36 allogeneic and 14 isogeneic heterotopic cardiac transplants in rats. Allogeneic grafts accumulated autologous 111In-lymphocytes, detectable scintigraphically 24 hours after i.v. injection of the labeled cells. At the time of peak histologic rejection, the allogeneic grafts accumulated 92. +/- 4.8 times more activity than the native hearts (determined by well counting). The tissue-to-blood ratio in the rejecting transplants was 3.7 +/- 2.2; total uptake by the graft was 2.9 +/- 2.1% of the injected dose. Autoradiography confirmed that graft radioactivity was associated with labeled lymphocytes. In contrast, isogeneic grafts showed no signs of rejection and did not accumulate radioactivity. Because conventionally isolated and labeled lymphocytes are often contaminated with platelets, we prepared both 111In-platelets and purified 111In-lymphocytes for use in additional experiments. Allogeneic grafts accumulated platelets and purified lymphocytes independently. Thus, deposition of immunologically active cells in the rejecting graft representing specific pathophysiologic events can be detected. The results suggest that rejection of cardiac transplants can be detected noninvasively, potentially facilitating objective early clinical detection of rejection and titration of antirejection therapy

  8. Study on the effect of hypoxia on apoptosis of cultured newly born rat cardiac myocytes

    International Nuclear Information System (INIS)

    Su Weidong; Li Huiqiang; Yao Zhi

    2005-01-01

    Objective: To investigate the possible hypoxia-mediated cellular apoptosis after ischemic cardiac injury via a model of cultured newly born rat cardiac myocytes. Methods: Cardiac myocytes cultures from newly born rats (1-3d) were examined for apoptosis with HE stain and flow cytometry after cultured 96h and again examined after exposure to hypoxic environment for 16h. Results: Apoptotic changes were evident in the hypoxic culture cells. The HE stain revealed cellular shrinkage, nuclear chromosomal condensation with cytoplasmic eosinophilia. Also, distinct apoptosis peak was observed in the flow cytometry. Conclusion: This experiment proved that hypoxic model of cardiac myocyte culture showed definite apoptosis of the cells. (authors)

  9. Direct numerical simulation of noninvasive channel healing in electrical field

    KAUST Repository

    Wang, Yi

    2017-11-25

    Noninvasive channel healing is a new idea to repair the broken pipe wall, using external electric fields to drive iron particles to the destination. The repair can be done in the normal operation of the pipe flow without any shutdown of the pipeline so that this method can be a potentially efficient and safe technology of pipe healing. However, the real application needs full knowledge of healing details. Numerical simulation is an effective method. Thus, in this research, we first established a numerical model for noninvasive channel healing technology to represent fluid–particle interaction. The iron particles can be attached to a cracking area by external electrostatic forces or can also be detached by mechanical forces from the fluid. When enough particles are permanently attached on the cracking area, the pipe wall can be healed. The numerical criterion of the permanent attachment is discussed. A fully three-dimensional finite difference framework of direct numerical simulation is established and applied to different cases to simulate the full process of channel healing. The impact of Reynolds number and particle concentration on the healing process is discussed. This numerical investigation provides valuable reference and tools for further simulation of real pipe healing in engineering.

  10. Clinical evaluation of non-invasive perfusion-weighted MRI

    International Nuclear Information System (INIS)

    Takasu, Miyuki

    2000-01-01

    A spin labeling method to measure cerebral blood flow without a contrast medium was developed and applied clinically to obtain a non-invasive perfusion-weighted image. The purpose of this study is to compare the non-invasive perfusion-weighted image using FAIR with the well-established PWI using a bolus injection of Gd-DTPA. Of 41 lesions which revealed decreased perfusion, 13 were shown to be low signal intensity areas on FAIR. Therefore, detection rate of FAIR for hypoperfusion was 32%. Of 8 lesions which revealed increased perfusion, 7 demonstrated high intensity on FAIR. Therefore, detection rate of FAIR for hyperperfusion was 88%. Seven lesions were found to have a mean pixel value of zero on PWI. Of these lesions, 5 lesions could be detected as high signal intensity area on FAIR. The rCBV- and rCBF index ratios of hypoperfused lesions detected on FAIR were significantly lower than those of lesions which were not detected on FAIR (p=0.007, p=0.01). As concerns the lesions detected of FAIR, there were positive correlation between rCBV- or rCBF index ratio and FAIR signal ratio (rCBV ratio: ρ=0.873, p=0.0002, rCBF index ratio: ρ=0.858, p=0.0003). FAIR is valuable clinical tool to detect perfusion abnormality semi-quantitatively without contrast medium, although it showed relatively low detection rate for hypoperfused lesions. (author)

  11. Measurement of cardiac output in man with MR imaging

    International Nuclear Information System (INIS)

    Lipton, M.J.; Weikl, A.; Mueller, E.; Reinhardt, E.R.

    1987-01-01

    Multiecho electrocardiogram-triggered imaging sequences were obtained in 15 patients to measure aortic blood flow velocity in a 6-cm thick section. The aortic area was calculated from MR images; cardiac output was calculated as the product of velocity and area and was expressed in liters per minute. MR imaging results were compared with measurements obtained by cardiac catheterization and thermodilution. A good correlation of 0.9 was found, with a slope approaching unity

  12. Autonomic cardiac innervation

    Science.gov (United States)

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.   Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory

  13. Cardiac imaging in adults

    International Nuclear Information System (INIS)

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority

  14. Cardiac imaging in adults

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  15. Cardiac biomarkers in Neonatology

    OpenAIRE

    Vijlbrief, D.C.

    2015-01-01

    In this thesis, the role for cardiac biomarkers in neonatology was investigated. Several clinically relevant results were reported. In term and preterm infants, hypoxia and subsequent adaptation play an important role in cardiac biomarker elevation. The elevated natriuretic peptides are indicative of abnormal function; elevated troponins are suggestive for cardiomyocyte damage. This methodology makes these biomarkers of additional value in the treatment of newborn infants, separate or as a co...

  16. Post cardiac injury syndrome

    DEFF Research Database (Denmark)

    Nielsen, S L; Nielsen, F E

    1991-01-01

    The post-pericardiotomy syndrome is a symptom complex which is similar in many respects to the post-myocardial infarction syndrome and these are summarized under the diagnosis of the Post Cardiac Injury Syndrome (PCIS). This condition, which is observed most frequently after open heart surgery, i...... on the coronary vessels, with cardiac tamponade and chronic pericardial exudate. In the lighter cases, PCIS may be treated with NSAID and, in the more severe cases, with systemic glucocorticoid which has a prompt effect....

  17. Awareness in cardiac anesthesia.

    LENUS (Irish Health Repository)

    Serfontein, Leon

    2010-02-01

    Cardiac surgery represents a sub-group of patients at significantly increased risk of intraoperative awareness. Relatively few recent publications have targeted the topic of awareness in this group. The aim of this review is to identify areas of awareness research that may equally be extrapolated to cardiac anesthesia in the attempt to increase understanding of the nature and significance of this scenario and how to reduce it.

  18. Cardiac amyloidosis detection with pyrophosphate-99mTc scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Souza, D.S.F.; Ichiki, W.A.; Coura Filho, G.B.; Izaki, M.; Giorgi, M.C.P.; Soares Junior, J; Meneghetti, J.C. [Universidade de Sao Paulo (FM/USP), SP (Brazil). Fac. de Medicina. Instituto do Coracao. Servico de Medicina Nuclear e Imagem Molecular

    2008-07-01

    . Cardiac amyloidosis is often under diagnosed due to unspecific and varied signs and symptoms. The diagnosis is confirmed by endomyocardial biopsy, an invasive procedure with inherent risks to this technique. Pyrophosphate-{sup 99m}Tc scintigraphy is a simple, non-invasive, low cost, with good sensitivity method for detection of cardiac amyloidosis. The scintigraphy pattern observed in cardiac amyloidosis cases is abnormal diffuse tracer uptake in both heart ventricles. Planar and/or tomographic imaging may be performed. It is considered a highly sensitive test, with low rates of false-negative results despite the existing little literature. Therefore the scintigraphy can be useful to select patients for biopsy. Conclusion: Scintigraphy can be of great assistance in cardiac amyloidosis, despite its low specificity. Due to its high sensibility, it can be a useful test to early discriminate patients who should undergo biopsy, allowing treatment optimization. (author)

  19. Cardiac amyloidosis detection with pyrophosphate-99mTc scintigraphy

    International Nuclear Information System (INIS)

    Souza, D.S.F.; Ichiki, W.A.; Coura Filho, G.B.; Izaki, M.; Giorgi, M.C.P.; Soares Junior, J; Meneghetti, J.C.

    2008-01-01

    amyloidosis is often under diagnosed due to unspecific and varied signs and symptoms. The diagnosis is confirmed by endomyocardial biopsy, an invasive procedure with inherent risks to this technique. Pyrophosphate- 99m Tc scintigraphy is a simple, non-invasive, low cost, with good sensitivity method for detection of cardiac amyloidosis. The scintigraphy pattern observed in cardiac amyloidosis cases is abnormal diffuse tracer uptake in both heart ventricles. Planar and/or tomographic imaging may be performed. It is considered a highly sensitive test, with low rates of false-negative results despite the existing little literature. Therefore the scintigraphy can be useful to select patients for biopsy. Conclusion: Scintigraphy can be of great assistance in cardiac amyloidosis, despite its low specificity. Due to its high sensibility, it can be a useful test to early discriminate patients who should undergo biopsy, allowing treatment optimization. (author)

  20. Imminent Cardiac Risk Assessment via Optical Intravascular Biochemical Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, D.; Wetzel, L; Wetzel, M; Lodder, R

    2009-01-01

    Heart disease is by far the biggest killer in the United States, and type II diabetes, which affects 8% of the U.S. population, is on the rise. In many cases, the acute coronary syndrome and/or sudden cardiac death occurs without warning. Atherosclerosis has known behavioral, genetic and dietary risk factors. However, our laboratory studies with animal models and human post-mortem tissue using FT-IR microspectroscopy reveal the chemical microstructure within arteries and in the arterial walls themselves. These include spectra obtained from the aortas of ApoE-/- knockout mice on sucrose and normal diets showing lipid deposition in the former case. Also pre-aneurysm chemical images of knockout mouse aorta walls, and spectra of plaque excised from a living human patient are shown for comparison. In keeping with the theme of the SPEC 2008 conference Spectroscopic Diagnosis of Disease this paper describes the background and potential value of a new catheter-based system to provide in vivo biochemical analysis of plaque in human coronary arteries. We report the following: (1) results of FT-IR microspectroscopy on animal models of vascular disease to illustrate the localized chemical distinctions between pathological and normal tissue, (2) current diagnostic techniques used for risk assessment of patients with potential unstable coronary syndromes, and (3) the advantages and limitations of each of these techniques illustrated with patent care histories, related in the first person, by the physician coauthors. Note that the physician comments clarify the contribution of each diagnostic technique to imminent cardiac risk assessment in a clinical setting, leading to the appreciation of what localized intravascular chemical analysis can contribute as an add-on diagnostic tool. The quality of medical imaging has improved dramatically since the turn of the century. Among clinical non-invasive diagnostic tools, laboratory tests of body fluids, EKG, and physical examination are

  1. Direct Cardiac Reprogramming: Advances in Cardiac Regeneration

    Directory of Open Access Journals (Sweden)

    Olivia Chen

    2015-01-01

    Full Text Available Heart disease is one of the lead causes of death worldwide. Many forms of heart disease, including myocardial infarction and pressure-loading cardiomyopathies, result in irreversible cardiomyocyte death. Activated fibroblasts respond to cardiac injury by forming scar tissue, but ultimately this response fails to restore cardiac function. Unfortunately, the human heart has little regenerative ability and long-term outcomes following acute coronary events often include chronic and end-stage heart failure. Building upon years of research aimed at restoring functional cardiomyocytes, recent advances have been made in the direct reprogramming of fibroblasts toward a cardiomyocyte cell fate both in vitro and in vivo. Several experiments show functional improvements in mouse models of myocardial infarction following in situ generation of cardiomyocyte-like cells from endogenous fibroblasts. Though many of these studies are in an early stage, this nascent technology holds promise for future applications in regenerative medicine. In this review, we discuss the history, progress, methods, challenges, and future directions of direct cardiac reprogramming.

  2. Echocardiographic Evaluation of Pulmonary Pressures and Right Ventricular Function after Pediatric Cardiac Surgery: A Simple Approach for the Intensivist

    Directory of Open Access Journals (Sweden)

    Maurice Beghetti

    2017-08-01

    Full Text Available Pulmonary hypertension (PH is diagnosed using cardiac catheterization and is defined as an elevation of mean pulmonary artery pressure (PAP greater than 25 mmHg. Although invasive hemodynamics remains the gold standard and is mandatory for disease confirmation, transthoracic echocardiography (TTE is an extremely useful non-invasive and widely available tool that allows for screening and follow-up, in particular, in the acute setting. TTE may be a valuable alternative, allowing for direct measurement and/or indirect assessment of PAP. Because of the complex geometric shape and pattern of contraction of the right ventricle (RV, as well as the inherent complexity of cardiac repair, no single view or measurement can provide definite information on RV function and PAP and/or pulmonary vascular resistance. In addition, specific training and expertise may be necessary to obtain the views and measurements required. Some simple measurements may be of help when rapid evaluation is mandatory and potentially life saving: the assessment of tricuspid and/or pulmonary valve regurgitant jet and the use of the Bernoulli equation allow for measurement of PAP. Measurements such as the analysis of the pulmonary Doppler wave flow, the septal curvature, or the eccentricity index, assessing ventricular interdependence, are useful for indirect assessment. A four-chamber view of the RV gives information on its size, hypertrophy, function (fractional area change, and tricuspid annular plane systolic excursion as an evaluation of the longitudinal function. Based on these simple measurements, TTE can provide detection of PH, measurement or estimation of PAP, and assessment of cardiac function. TTE is also of importance in follow up of PH as well as providing an assessment of therapeutic strategies in the postoperative setting of cardiac surgery. However, PAP may be misleading as it is dependent on cardiac output and requires accurate measurements. In the presence of

  3. Noninvasive Quantification of Pancreatic Fat in Humans

    OpenAIRE

    Lingvay, Ildiko; Esser, Victoria; Legendre, Jaime L.; Price, Angela L.; Wertz, Kristen M.; Adams-Huet, Beverley; Zhang, Song; Unger, Roger H.; Szczepaniak, Lidia S.

    2009-01-01

    Objective: To validate magnetic resonance spectroscopy (MRS) as a tool for non-invasive quantification of pancreatic triglyceride (TG) content and to measure the pancreatic TG content in a diverse human population with a wide range of body mass index (BMI) and glucose control.

  4. Noninvasive wearable sensor for indirect glucometry.

    Science.gov (United States)

    Zilberstein, Gleb; Zilberstein, Roman; Maor, Uriel; Righetti, Pier Giorgio

    2018-04-02

    A noninvasive mini-sensor for blood glucose concentration assessment has been developed. The monitoring is performed by gently pressing a wrist or fingertip onto the chemochromic mixture coating a thin glass or polymer film positioned on the back panel of a smart watch with PPG/HRM (photoplethysmographic/heart rate monitoring sensor). The various chemochromic components measure the absolute values of the following metabolites present in the sweat: acetone, acetone beta-hydroxybutirate, aceto acetate, water, carbon dioxide, lactate anion, pyruvic acid, Na and K salts. Taken together, all these parameters give information about blood glucose concentration, calculated via multivariate analysis based on neural network algorithms built into the sensor. The Clarke Error Grid shows an excellent correlation between data measured by the standard invasive glucose analyser and the present noninvasive sensor, with all points aligned along a 45-degree diagonal and contained almost exclusively in sector A. Graphs measuring glucose levels five times a day (prior, during and after breakfast and prior, during and after lunch), for different individuals (males and females) show a good correlation between the two curves of conventional, invasive meters vs. the noninvasive sensor, with an error of ±15%. This novel, noninvasive sensor for indirect glucometry is fully miniaturized, easy to use and operate and could represent a valid alternative in clinical settings and for individual, personal users, to current, invasive tools. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Noninvasive imaging of experimental lung fibrosis.

    Science.gov (United States)

    Zhou, Yong; Chen, Huaping; Ambalavanan, Namasivayam; Liu, Gang; Antony, Veena B; Ding, Qiang; Nath, Hrudaya; Eary, Janet F; Thannickal, Victor J

    2015-07-01

    Small animal models of lung fibrosis are essential for unraveling the molecular mechanisms underlying human fibrotic lung diseases; additionally, they are useful for preclinical testing of candidate antifibrotic agents. The current end-point measures of experimental lung fibrosis involve labor-intensive histological and biochemical analyses. These measures fail to account for dynamic changes in the disease process in individual animals and are limited by the need for large numbers of animals for longitudinal studies. The emergence of noninvasive imaging technologies provides exciting opportunities to image lung fibrosis in live animals as often as needed and to longitudinally track the efficacy of novel antifibrotic compounds. Data obtained by noninvasive imaging provide complementary information to histological and biochemical measurements. In addition, the use of noninvasive imaging in animal studies reduces animal usage, thus satisfying animal welfare concerns. In this article, we review these new imaging modalities with the potential for evaluation of lung fibrosis in small animal models. Such techniques include micro-computed tomography (micro-CT), magnetic resonance imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and multimodal imaging systems including PET/CT and SPECT/CT. It is anticipated that noninvasive imaging will be increasingly used in animal models of fibrosis to gain insights into disease pathogenesis and as preclinical tools to assess drug efficacy.

  6. Estimation of blood pressure from non-invasive data.

    Science.gov (United States)

    Shukla, Satya Narayan

    2017-07-01

    Blood pressure (BP) is one of the most important physiological parameter that can provide crucial information for health care. The widely used cuff based technology is not very convenient or comfortable as it occludes the blood flow in the arteries during the time of measurement. In past, Phonocardiogram (PCG), Electrocardiogram (ECG) and Photoplethysmogram (PPG) signals have been used to predict the BP values. In this paper, we propose to estimate the blood pressure from PPG using Multi Task Gaussian Processes (MTGPs) and compare with Artificial Neural networks (ANNs). Both MTGPs and ANNs are evaluated on the clinical data obtained from MIMIC Database. The performance of the proposed method is found to be comparable or better than the existing methods of computing BP from non-invasive data.

  7. Non-invasive examination method for cerebrovascular diseases

    International Nuclear Information System (INIS)

    Chiba, Kazuo

    1979-01-01

    CT is superior in the diagnosis of the characteristics and the region of cerebrovascular diseases (CVD) to the examination with RI. The RI examination can only demonstrate the cerebrovascular diseases with large area disturbance of the cerebral cortex, that passed some days after the attack. Moreover, it is difficult to detect the small lesions or the lesions localized in the deep area such as the basal nucleus and the internal capsule by this method. A slight decrease and retardation in unilateral cerebral blood flow (under 20%, within 1.5 second) found by RI-angiography does not always indicate the side of the lesion of cerebrovascular diseases. It is expected that non-invasive examination method for CVD is improved more, and that more precise estimation method for regional cerebral circulation is developed. (Tsunoda, M.)

  8. Is humidification always necessary during noninvasive ventilation in the hospital?

    Science.gov (United States)

    Branson, Richard D; Gentile, Michael A

    2010-02-01

    Noninvasive ventilation (NIV) is a standard of care for the treatment of exacerbation of chronic obstructive pulmonary disease, to prevent intubation and reduce morbidity and mortality. The need for humidification of NIV gas is controversial. Some unique aspects of NIV conspire to alter the delivered humidity and airway function. In the presence of air leaks, unidirectional air flow dries the airways and increases airway resistance. Patient comfort is also a critical issue, as tolerance of NIV is often tied to patient comfort. This paper provides the arguments for and against routine humidification during NIV in the hospital setting. Data from clinical research demonstrate the effects of delivered humidification on relevant physiologic variables. The impact of humidification on NIV success/failure remains speculative.

  9. Treatment of Neck Pain: Noninvasive Interventions

    Science.gov (United States)

    Carragee, Eugene J.; van der Velde, Gabrielle; Carroll, Linda J.; Nordin, Margareta; Guzman, Jaime; Peloso, Paul M.; Holm, Lena W.; Côté, Pierre; Hogg-Johnson, Sheilah; Cassidy, J. David; Haldeman, Scott

    2008-01-01

    Study Design. Best evidence synthesis. Objective. To identify, critically appraise, and synthesize literature from 1980 through 2006 on noninvasive interventions for neck pain and its associated disorders. Summary of Background Data. No comprehensive systematic literature reviews have been published on interventions for neck pain and its associated disorders in the past decade. Methods. We systematically searched Medline and screened for relevance literature published from 1980 through 2006 on the use, effectiveness, and safety of noninvasive interventions for neck pain and associated disorders. Consensus decisions were made about the scientific merit of each article; those judged to have adequate internal validity were included in our best evidence synthesis. Results. Of the 359 invasive and noninvasive intervention articles deemed relevant, 170 (47%) were accepted as scientifically admissible, and 139 of these related to noninvasive interventions (including health care utilization, costs, and safety). For whiplash-associated disorders, there is evidence that educational videos, mobilization, and exercises appear more beneficial than usual care or physical modalities. For other neck pain, the evidence suggests that manual and supervised exercise interventions, low-level laser therapy, and perhaps acupuncture are more effective than no treatment, sham, or alternative interventions; however, none of the active treatments was clearly superior to any other in either the short-or long-term. For both whiplash-associated disorders and other neck pain without radicular symptoms, interventions that focused on regaining function as soon as possible are relatively more effective than interventions that do not have such a focus. Conclusion. Our best evidence synthesis suggests that therapies involving manual therapy and exercise are more effective than alternative strategies for patients with neck pain; this was also true of therapies which include educational interventions

  10. Modeling and analysis of dynamic scintigraphic data for measurement of cardiac perfusion and performance

    International Nuclear Information System (INIS)

    Twieg, D.B.

    1977-01-01

    Clinical scintigraphy is the technique of imaging the distributions of gamma-ray-emitting tracers within a patient's body. The increasingly popular small nuclear medicine computer has greatly facilitated the use of mathematical models for interpretation of scintigraphic data, and has made it possible for the clinician and the researcher to extract from the scintigraphic data information not otherwise available. The purpose of this work was to investigate several models used in dynamic scintigraphic studies of the heart. The Xenon washout method of measuring myocardial perfusion is discussed. The use of single-compartment, multi-compartment, and noncompartmental models are critically examined, and the influence of multiexponential components on monoexponential fits for perfusion measurement from Xenon washouts is investigated. A model of cardiac pump function is developed which allows for incompetent valves at the input and output of the ventricular chamber. An iterative method is used in conjunction with the model to estimate forward and regurgitant flows from simulated noisy scintigraphic data and from patient data. Unlike previously available methods, the method presented here was developed to allow noninvasive determination of both mitral and aortic regurgitation. Simulation results were successful, and preliminary studies in a few patients were encouraging. An investigation is presented into the relationship between the count-volume and geometric scintigraphic methods of estimating left ventricular ejection fraction, an important index of the contractile state of the myocardial muscle. A bias due to failure to account for the effects of Poisson noise was found in one popular method for ejection measurement

  11. Connective tissue diseases and noninvasive evaluation of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Ardita G

    2014-06-01

    Full Text Available Giorgio Ardita, Giacomo Failla, Paolo Maria Finocchiaro, Francesco Mugno, Luigi Attanasio, Salvatore Timineri, Michelangelo Maria Di SalvoCardiovascular Department, Angiology Unit, Ferrarotto Hospital, Catania, ItalyAbstract: Connective tissue diseases (CTDs are associated with increased risk of cardiovascular disease due to accelerated atherosclerosis. In patients with autoimmune disorders, in addition to traditional risk factors, an immune-mediated inflammatory process of the vasculature seems to contribute to atherogenesis. Several pathogenetic mechanisms have been proposed, including chronic inflammation and immunologic abnormalities, both able to produce vascular damage. Macrovascular atherosclerosis can be noninvasively evaluated by ultrasound measurement of carotid or femoral plaque. Subclinical atherosclerosis can be evaluated by well-established noninvasive techniques which rely on ultrasound detection of carotid intima-media thickness. Flow-mediated vasodilatation and arterial stiffness are considered markers of endothelial dysfunction and subclinical atherosclerosis, respectively, and have been recently found to be impaired early in a wide spectrum of autoimmune diseases. Carotid intima-media thickness turns out to be a leading marker of subclinical atherosclerosis, and many studies recognize its role as a predictor of future vascular events, both in non-CTD individuals and in CTD patients. In rheumatic diseases, flow-mediated dilatation and arterial stiffness prove to be strongly correlated with inflammation, disease damage index, and with subclinical atherosclerosis, although their prognostic role has not yet been conclusively shown. Systemic lupus erythematosus, rheumatoid arthritis, and likely antiphospholipid syndrome are better associated with premature and accelerated atherosclerosis. Inconclusive results were reported in systemic sclerosis.Keywords: rheumatic disease, subclinical atherosclerosis, arterial stiffness

  12. Non-cardiac findings on coronary computed tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Dewey, Marc; Schnapauff, Dirk; Teige, Florian; Hamm, Bernd

    2007-01-01

    Both multislice computed tomography (CT) and magnetic resonance imaging (MRI) are emerging as methods to detect coronary artery stenoses and assess cardiac function and morphology. Non-cardiac structures are also amenable to assessment by these non-invasive tests. We investigated the rate of significant and insignificant non-cardiac findings using CT and MRI. A total of 108 consecutive patients suspected of having coronary artery disease and without contraindications to CT and MRI were included in this study. Significant non-cardiac findings were defined as findings that required additional clinical or radiological follow-up. CT and MR images were read independently in a blinded fashion. CT yielded five significant non-cardiac findings in five patients (5%). These included a pulmonary embolism, large pleural effusions, sarcoid, a large hiatal hernia, and a pulmonary nodule (>1.0 cm). Two of these significant non-cardiac findings were also seen on MRI (pleural effusions and sarcoid, 2%). Insignificant non-cardiac findings were more frequent than significant findings on both CT (n = 11, 10%) and MRI (n = 7, 6%). Incidental non-cardiac findings on CT and MRI of the coronary arteries are common, which is why images should be analyzed by radiologists to ensure that important findings are not missed and unnecessary follow-up examinations are avoided. (orig.)

  13. Non-cardiac findings on coronary computed tomography and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc; Schnapauff, Dirk; Teige, Florian; Hamm, Bernd [Charite-Universitaetsmedizin Berlin, Humboldt-Universitaet zu Berlin, Department of Radiology, Chariteplatz 1, P.O. Box 10098, Berlin (Germany)

    2007-08-15

    Both multislice computed tomography (CT) and magnetic resonance imaging (MRI) are emerging as methods to detect coronary artery stenoses and assess cardiac function and morphology. Non-cardiac structures are also amenable to assessment by these non-invasive tests. We investigated the rate of significant and insignificant non-cardiac findings using CT and MRI. A total of 108 consecutive patients suspected of having coronary artery disease and without contraindications to CT and MRI were included in this study. Significant non-cardiac findings were defined as findings that required additional clinical or radiological follow-up. CT and MR images were read independently in a blinded fashion. CT yielded five significant non-cardiac findings in five patients (5%). These included a pulmonary embolism, large pleural effusions, sarcoid, a large hiatal hernia, and a pulmonary nodule (>1.0 cm). Two of these significant non-cardiac findings were also seen on MRI (pleural effusions and sarcoid, 2%). Insignificant non-cardiac findings were more frequent than significant findings on both CT (n = 11, 10%) and MRI (n = 7, 6%). Incidental non-cardiac findings on CT and MRI of the coronary arteries are common, which is why images should be analyzed by radiologists to ensure that important findings are not missed and unnecessary follow-up examinations are avoided. (orig.)

  14. Noninvasive continuous monitoring of digital pulse waves during hemodialysis

    DEFF Research Database (Denmark)

    Burkert, Antje; Scholze, Alexandra; Tepel, Martin

    2009-01-01

    Intermittent hemodynamic instability during hemodialysis treatment is a frequent complication in patients with end-stage renal failure. A noninvasive method for continuous hemodynamic monitoring is needed. We used noninvasive digital photoplethysmography and an algorithm for continuous, investiga...

  15. Direct cone-beam cardiac reconstruction algorithm with cardiac banding artifact correction

    International Nuclear Information System (INIS)

    Taguchi, Katsuyuki; Chiang, Beshan S.; Hein, Ilmar A.

    2006-01-01

    Multislice helical computed tomography (CT) is a promising noninvasive technique for coronary artery imaging. Various factors can cause inconsistencies in cardiac CT data, which can result in degraded image quality. These inconsistencies may be the result of the patient physiology (e.g., heart rate variations), the nature of the data (e.g., cone-angle), or the reconstruction algorithm itself. An algorithm which provides the best temporal resolution for each slice, for example, often provides suboptimal image quality for the entire volume since the cardiac temporal resolution (TRc) changes from slice to slice. Such variations in TRc can generate strong banding artifacts in multi-planar reconstruction images or three-dimensional images. Discontinuous heart walls and coronary arteries may compromise the accuracy of the diagnosis. A β-blocker is often used to reduce and stabilize patients' heart rate but cannot eliminate the variation. In order to obtain robust and optimal image quality, a software solution that increases the temporal resolution and decreases the effect of heart rate is highly desirable. This paper proposes an ECG-correlated direct cone-beam reconstruction algorithm (TCOT-EGR) with cardiac banding artifact correction (CBC) and disconnected projections redundancy compensation technique (DIRECT). First the theory and analytical model of the cardiac temporal resolution is outlined. Next, the performance of the proposed algorithms is evaluated by using computer simulations as well as patient data. It will be shown that the proposed algorithms enhance the robustness of the image quality against inconsistencies by guaranteeing smooth transition of heart cycles used in reconstruction

  16. Advancing ecological understandings through technological transformations in noninvasive genetics

    Science.gov (United States)

    Albano Beja-Pereira; Rita Oliveira; Paulo C. Alves; Michael K. Schwartz; Gordon Luikart

    2009-01-01

    Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological...

  17. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography

    International Nuclear Information System (INIS)

    Schwaiger, M.; Kalff, V.; Rosenspire, K.; Haka, M.S.; Molina, E.; Hutchins, G.D.; Deeb, M.; Wolfe, E. Jr.; Wieland, D.M.

    1990-01-01

    The noninvasive functional characterization of the cardiac sympathetic nervous system by imaging techniques may provide important pathophysiological information in various cardiac disease states. Hydroxyephedrine labeled with carbon 11 has been developed as a new catecholamine analogue to be used in the in vivo evaluation of presynaptic adrenergic nerve terminals by positron emission tomography (PET). To determine the feasibility of this imaging approach in the human heart, six normal volunteers and five patients with recent cardiac transplants underwent dynamic PET imaging after intravenous injection of 20 mCi [11C]hydroxyephedrine. Blood and myocardial tracer kinetics were assessed using a regions-of-interest approach. In normal volunteers, blood 11C activity cleared rapidly, whereas myocardium retained 11C activity with a long tissue half-life. Relative tracer retention in the myocardium averaged 79 +/- 31% of peak activity at 60 minutes after tracer injection. The heart-to-blood 11C activity ratio exceeded 6:1 as soon as 30 minutes after tracer injection, yielding excellent image quality. Little regional variation of tracer retention was observed, indicating homogeneous sympathetic innervation throughout the left ventricle. In the transplant recipients, myocardial [11C]hydroxyephedrine retention at 60 minutes was significantly less (-82%) than that of normal volunteers, indicating only little non-neuronal binding of the tracer in the denervated human heart. Thus, [11C]hydroxyephedrine, in combination with dynamic PET imaging, allows the noninvasive delineation of myocardial adrenergic nerve terminals. Tracer kinetic modeling may permit quantitative assessment of myocardial catecholamine uptake, which will in turn provide insights into the effects of various disease processes on the neuronal integrity of the heart

  18. Isolated Cardiac Hydatid Cyst

    International Nuclear Information System (INIS)

    Shakil, U.; Rehman, A. U.; Shahid, R.

    2015-01-01

    Hydatid cyst disease is common in our part of the world. Cardiac hydatid cyst is its rare manifestation. We report this case of 48-year male having isolated cardiac hydatid cyst, incidentally found on computed tomography. This patient presented in medical OPD of Combined Military Hospital, Lahore with one month history of mild retrosternal discomfort. His general physical and systemic examinations as well as ECG were unremarkable. Chest X-ray showed an enlarged cardiac shadow with mildly irregular left heart border. Contrast enhanced CT scan of the chest showed a large well defined multiloculated non-enhancing cystic lesion with multiple daughter cysts involving wall of left ventricle and overlying pericardium. Serology for echinococcus confirmed the diagnosis of hydatid cyst. Patient was offered the surgical treatment but he opted for medical treatment only. Albendezol was prescribed. His follow-up echocardiography after one month showed no significant decrease in size of the cyst. (author)

  19. Pediatric cardiac postoperative care

    Directory of Open Access Journals (Sweden)

    Auler Jr. José Otávio Costa

    2002-01-01

    Full Text Available The Heart Institute of the University of São Paulo, Medical School is a referral center for the treatment of congenital heart diseases of neonates and infants. In the recent years, the excellent surgical results obtained in our institution may be in part due to modern anesthetic care and to postoperative care based on well-structured protocols. The purpose of this article is to review unique aspects of neonate cardiovascular physiology, the impact of extracorporeal circulation on postoperative evolution, and the prescription for pharmacological support of acute cardiac dysfunction based on our cardiac unit protocols. The main causes of low cardiac output after surgical correction of heart congenital disease are reviewed, and methods of treatment and support are proposed as derived from the relevant literature and our protocols.

  20. Trends in the utilization of computed tomography and cardiac catheterization among children with congenital heart disease.

    Science.gov (United States)

    Yang, Justin Cheng-Ta; Lin, Ming-Tai; Jaw, Fu-Shan; Chen, Shyh-Jye; Wang, Jou-Kou; Shih, Tiffany Ting-Fang; Wu, Mei-Hwan; Li, Yiu-Wah

    2015-11-01

    Pediatric cardiac computed tomography (CT) is a noninvasive imaging modality used to clearly demonstrate the anatomical detail of congenital heart diseases. We investigated the impact of cardiac CT on the utilization of cardiac catheterization among children with congenital heart disease. The study sample consisted of 2648 cardiac CT and 3814 cardiac catheterization from 1999 to 2009 for congenital heart diseases. Diagnoses were categorized into 11 disease groups. The numbers of examination, according to the different modalities, were compared using temporal trend analyses. The estimated effective radiation doses (mSv) of CT and catheterization were calculated and compared. The number of CT scans and interventional catheterizations had a slight annual increase of 1.2% and 2.7%, respectively, whereas that of diagnostic catheterization decreased by 6.2% per year. Disease groups fell into two categories according to utilization trend differences between CT and diagnostic catheterization. The increased use of CT reduces the need for diagnostic catheterization in patients with atrioventricular connection disorder, coronary arterial disorder, great vessel disorder, septal disorder, tetralogy of Fallot, and ventriculoarterial connection disorder. Clinicians choose either catheterization or CT, or both examinations, depending on clinical conditions, in patients with semilunar valvular disorder, heterotaxy, myocardial disorder, pericardial disorder, and pulmonary vein disorder. The radiation dose of CT was lower than that of diagnostic cardiac catheterization in all age groups. The use of noninvasive CT in children with selected heart conditions might reduce the use of diagnostic cardiac catheterization. This may release time and facilities within the catheterization laboratory to meet the increasing demand for cardiac interventions. Copyright © 2014. Published by Elsevier B.V.

  1. Conservation genetics of otters: Review about the use of non-invasive samples

    OpenAIRE

    Aristizábal Duque, Sandra L.; Orozco-Jiménez, Luz Y.; Zapata-Escobar, Carolina; Palacio-Baena, Jaime A.

    2018-01-01

    Abstract: Wild population management programs require determining some fundamental aspects for conservation, including population structure, flow between populations, evolutionary history and kinship, among others. Since sample collection from wild mammals for DNA extraction is a complex task, conservation genetics has developed non-invasive sampling techniques, which allow obtaining DNA without the need to capture individuals. For the genetic characterization of otter populations, stools are...

  2. Non-invasive method of determination of thermoelectric materials figure of merit

    Directory of Open Access Journals (Sweden)

    Ashcheulov А. А.

    2009-04-01

    Full Text Available Thermoelectric effects arising in a sample placed in a measuring oscillating loop have been studied. It has been shown that asymmetric character of flowing current results in a volumetric bundle of induced Foucault currents and regions of Peltier heat release by thermoelectric sample which leads to increasing of irreversible heat losses recorded by measuring oscillating loop. The presence of this effect has caused the emergence of ingenious non-invasive method for recording of thermoelectric materials figure of merit.

  3. Magnetic fields in noninvasive brain stimulation.

    Science.gov (United States)

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.

  4. Noninvasive dentistry: a dream or reality?

    Science.gov (United States)

    Clarkson, B H; Exterkate, R A M

    2015-01-01

    Various caries prevention and repair strategies are reviewed in this article ranging from the use of fluoride to nanohydroxyapatite particles. Several of the strategies which combine fluoride and calcium and phosphate treatments have both in vitro and in vivo data showing them to be efficacious if the surface integrity of the lesion is not breached. Once this has occurred, the rationale for cutting off the nutrient supplies to the pathogenic bacteria without the removal of the infected dentine, a noninvasive restorative technique, is discussed using existing clinical studies as examples. Finally two novel noninvasive restorative techniques using fluorohydroxyapatite crystals are described. The need for clinical data in support of emerging caries-preventive and restorative strategies is emphasized. 2015 S. Karger AG, Basel

  5. Effect of myocardial perfusion and metabolic interventions on cardiac kinetics of phenylpentadecanoic acid (IPPA) I 123

    Energy Technology Data Exchange (ETDEWEB)

    Reske, S.N.; Schoen, S.; Schmitt, W.; Knopp, R.; Winkler, C.; Machulla, H.J.

    1986-08-01

    The effect of regional myocardial perfusion and flow-independent adrenergic stimulation, as well as lactate-mediated inhibition of cardiac lipolysis, on cardiac IPPA uptake and metabolism was examined in canine hearts (flow studies) and in the isolated perfused Langendorff rat heart (metabolic interventions). In both normal and ischaemic myocardium, local perfusion is a major determinant of cardiac IPPA uptake. In pacing-induced hyperaemia, the strict flow-dependence of cardiac IPPA uptake is not preserved. Adrenergic stimulation raises the rate of oxidation of both palmitic acid /sup 14/C and IPPA. This change is reflected by increased metabolite production released into the perfusate and radioactivity clearance recorded externally. Lactate in high concentrations exerts the opposite effect on cardiac free fatty acid oxidation. IPPA is stored in this condition preferentially in tissue phospholipids and triglycerides.

  6. Effect of myocardial perfusion and metabolic interventions on cardiac kinetics of phenylpentadecanoic acid (IPPA) I 123

    International Nuclear Information System (INIS)

    Reske, S.N.; Schoen, S.; Schmitt, W.; Knopp, R.; Winkler, C.; Machulla, H.J.

    1986-01-01

    The effect of regional myocardial perfusion and flow-independent adrenergic stimulation, as well as lactate-mediated inhibition of cardiac lipolysis, on cardiac IPPA uptake and metabolism was examined in canine hearts (flow studies) and in the isolated perfused Langendorff rat heart (metabolic interventions). In both normal and ischaemic myocardium, local perfusion is a major determinant of cardiac IPPA uptake. In pacing-induced hyperaemia, the strict flow-dependence of cardiac IPPA uptake is not preserved. Adrenergic stimulation raises the rate of oxidation of both palmitic acid 14 C and IPPA. This change is reflected by increased metabolite production released into the perfusate and radioactivity clearance recorded externally. Lactate in high concentrations exerts the opposite effect on cardiac free fatty acid oxidation. IPPA is stored in this condition preferentially in tissue phospholipids and triglycerides. (orig.)

  7. Quantitative cardiac computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, M.; Dueber, C.; Wolff, P.; Erbel, R.; Hoffmann, T.

    1985-06-01

    The scope and limitations of quantitative cardiac CT have been evaluated in a series of experimental and clinical studies. The left ventricular muscle mass was estimated by computed tomography in 19 dogs (using volumetric methods, measurements in two axes and planes and reference volume). There was good correlation with anatomical findings. The enddiastolic volume of the left ventricle was estimated in 22 patients with cardiomyopathies; using angiography as a reference, CT led to systematic under-estimation. It is also shown that ECG-triggered magnetic resonance tomography results in improved visualisation and may be expected to improve measurements of cardiac morphology.

  8. Cardiac output measurement

    Directory of Open Access Journals (Sweden)

    Andreja Möller Petrun

    2014-02-01

    Full Text Available In recent years, developments in the measuring of cardiac output and other haemodynamic variables are focused on the so-called minimally invasive methods. The aim of these methods is to simplify the management of high-risk and haemodynamically unstable patients. Due to the need of invasive approach and the possibility of serious complications the use of pulmonary artery catheter has decreased. This article describes the methods for measuring cardiac output, which are based on volume measurement (Fick method, indicator dilution method, pulse wave analysis, Doppler effect, and electrical bioimpedance.

  9. Novel axolotl cardiac function analysis method using magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Pedro Gomes Sanches

    Full Text Available The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a non-invasive technique to image heart function of axolotls. Three axolotls were imaged with magnetic resonance imaging using a retrospectively gated Fast Low Angle Shot cine sequence. Within one scanning session the axolotl heart was imaged three times in all planes, consecutively. Heart rate, ejection fraction, stroke volume and cardiac output were calculated using three techniques: (1 combined long-axis, (2 short-axis series, and (3 ultrasound (control for heart rate only. All values are presented as mean ± standard deviation. Heart rate (beats per minute among different animals was 32.2±6.0 (long axis, 30.4±5.5 (short axis and 32.7±4.9 (ultrasound and statistically similar regardless of the imaging method (p > 0.05. Ejection fraction (% was 59.6±10.8 (long axis and 48.1±11.3 (short axis and it differed significantly (p = 0.019. Stroke volume (μl/beat was 133.7±33.7 (long axis and 93.2±31.2 (short axis, also differed significantly (p = 0.015. Calculations were consistent among the animals and over three repeated measurements. The heart rate varied depending on depth of anaesthesia. We described a new method for defining and imaging the anatomical planes of the axolotl heart and propose one of our techniques (long axis analysis may prove useful in defining cardiac function in regenerating axolotl hearts.

  10. Noninvasive Transcranial Brain Stimulation and Pain

    OpenAIRE

    Rosen, Allyson C.; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the tre...

  11. Cardiac pathologies incidentally detected with non-gated chest CT; Inzidentelle Pathologien des Herzens im Thorax-CT

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Axel; Kroepil, P.; Lanzman, R.S.; Moedder, U. [Inst. fuer Radiologie, Universitaetsklinikum Duesseldorf, Heinrich-Heine-Univ. (Germany); Choy, G.; Abbara, S. [Cardiovascular Imaging Section, Massachusetts General Hospital, Harvard Medical School (United States)

    2009-12-15

    Cardiac imaging using electrocardiogram-gated multi-detector computed tomography (MDCT) permits noninvasive diagnosis of congenital and acquired cardiac pathologies and has thus become increasingly important in the last years. Several studies investigated the incidence and relevance of incidental extracardiac structures within the lungs, mediastinum, chest wall, and abdomen with gated coronary CT. This resulted in the general acceptance of the review of extracardiac structures as a routine component of coronary CT interpretation. On the other hand radiologists tend to neglect pericardial and cardiac pathologies in non-gated chest CT, which is primarily performed for the evaluation of the respiratory system or for tumor staging. Since the introduction of multi-detector spiral CT technology, the incidental detection of cardiac and pericardial findings has become possible using non-gated chest CT. This article reviews the imaging appearances and differential diagnostic considerations of incidental cardiac entities that may be encountered in non-gated chest CT. (orig.)

  12. Recent advances in noninvasive glucose monitoring

    Directory of Open Access Journals (Sweden)

    So CF

    2012-06-01

    Full Text Available Chi-Fuk So,1 Kup-Sze Choi,1 Thomas KS Wong,2 Joanne WY Chung2,31Centre for Integrative Digital Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, 2Department of Nursing and Health Sciences, Tung Wah College, Hong Kong, 3Department of Health and Physical Education, The Hong Kong Institute of Education, Hong KongAbstract: The race for the next generation of painless and reliable glucose monitoring for diabetes mellitus is on. As technology advances, both diagnostic techniques and equipment improve. This review describes the main technologies currently being explored for noninvasive glucose monitoring. The principle of each technology is mentioned; its advantages and limitations are then discussed. The general description and the corresponding results for each device are illustrated, as well as the current status of the device and the manufacturer; internet references for the devices are listed where appropriate. Ten technologies and eleven potential devices are included in this review. Near infrared spectroscopy has become a promising technology, among others, for blood glucose monitoring. Although some reviews have been published already, the rapid development of technologies and information makes constant updating mandatory. While advances have been made, the reliability and the calibration of noninvasive instruments could still be improved, and more studies carried out under different physiological conditions of metabolism, bodily fluid circulation, and blood components are needed.Keywords: noninvasive, glucose monitoring, diabetes mellitus, blood glucose measurement

  13. [Non-invasive assessment of fatty liver].

    Science.gov (United States)

    Egresi, Anna; Lengyel, Gabriella; Hagymási, Krisztina

    2015-04-05

    As the result of various harmful effects (infectious agents, metabolic diseases, unhealthy diet, obesity, toxic agents, autoimmune processes) hepatic damage may develop, which can progress towards liver steatosis, and fibrosis as well. The most common etiological factors of liver damages are hepatitis B and C infection, alcohol consumption and non-alcoholic fatty liver disease. Liver biopsy is considered as the gold standard for the diagnosis of chronic liver diseases. Due to the dangers and complications of liver biopsy, studies are focused on non-invasive markers and radiological imaging for liver steatosis, progression of fatty liver, activity of the necroinflammation and the severity of the fibrosis. Authors review the possibilities of non-invasive assessment of liver steatosis. The statistical features of the probes (positive, negative predictive values, sensitivity, specificity) are reviewed. The role of radiological imaging is also discussed. Although the non-invasive methods discussed in this article are useful to assess liver steatosis, further studies are needed to validate to follow progression of the diseases and to control therapeutic response.

  14. Noninvasive prenatal diagnosis for single gene disorders.

    Science.gov (United States)

    Allen, Stephanie; Young, Elizabeth; Bowns, Benjamin

    2017-04-01

    Noninvasive prenatal diagnosis for single gene disorders is coming to fruition in its clinical utility. The presence of cell-free DNA in maternal plasma has been recognized for many years, and a number of applications have developed from this. Noninvasive prenatal diagnosis for single gene disorders has lagged behind due to complexities of technology development, lack of investment and the need for validation samples for rare disorders. Publications are emerging demonstrating a variety of technical approaches and feasibility of clinical application. Techniques for analysis of cell-free DNA including digital PCR, next-generation sequencing and relative haplotype dosage have been used most often for assay development. Analysis of circulating fetal cells in the maternal blood is still being investigated as a viable alternative and more recently transcervical trophoblast cells. Studies exploring ethical and social issues are generally positive but raise concerns around the routinization of prenatal testing. Further work is necessary to make testing available to all patients with a pregnancy at risk of a single gene disorder, and it remains to be seen if the development of more powerful technologies such as isolation and analysis of single cells will shift the emphasis of noninvasive prenatal diagnosis. As testing becomes possible for a wider range of conditions, more ethical questions will become relevant.

  15. A New Technology for Detecting Cerebral Blood Flow

    DEFF Research Database (Denmark)

    Schytz, Henrik W; Guo, Song; Jensen, Lars T

    2012-01-01

    There is a need for real-time non-invasive, continuous monitoring of cerebral blood flow (CBF) during surgery, in intensive care units and clinical research. We investigated a new non-invasive hybrid technology employing ultrasound tagged near infrared spectroscopy (UT-NIRS) that may estimate...

  16. The effects of non-invasive respiratory support on oropharyngeal temperature and humidity: a neonatal manikin study.

    Science.gov (United States)

    Roberts, Calum T; Kortekaas, Rebecca; Dawson, Jennifer A; Manley, Brett J; Owen, Louise S; Davis, Peter G

    2016-05-01

    Heating and humidification of inspired gases is routine during neonatal non-invasive respiratory support. However, little is known about the temperature and humidity delivered to the upper airway. The International Standards Organization (ISO) specifies that for all patients with an artificial airway humidifiers should deliver ≥33 g/m(3) absolute humidity (AH). We assessed the oropharyngeal temperature and humidity during different non-invasive support modes in a neonatal manikin study. Six different modes of non-invasive respiratory support were applied at clinically relevant settings to a neonatal manikin, placed in a warmed and humidified neonatal incubator. Oropharyngeal temperature and relative humidity (RH) were assessed using a thermohygrometer. AH was subsequently calculated. Measured temperature and RH varied between devices. Bubble and ventilator continuous positive airway pressure (CPAP) produced temperatures >34°C and AH >38 g/m(3). Variable flow CPAP resulted in lower levels of AH than bubble or ventilator CPAP, and AH decreased with higher gas flow. High-flow (HF) therapy delivered by Optiflow Junior produced higher AH with higher gas flow, whereas with Vapotherm HF the converse was true. Different non-invasive devices deliver inspiratory gases of variable temperature and humidity. Most AH levels were above the ISO recommendation; however, with some HF and variable flow CPAP devices at higher gas flow this was not achieved. Clinicians should be aware of differences in the efficacy of heating and humidification when choosing modes of non-invasive respiratory support. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Advanced computer techniques for inverse modeling of electric current in cardiac tissue

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, S.A.; Romero, L.A.; Diegert, C.F.

    1996-08-01

    For many years, ECG`s and vector cardiograms have been the tools of choice for non-invasive diagnosis of cardiac conduction problems, such as found in reentrant tachycardia or Wolff-Parkinson-White (WPW) syndrome. Through skillful analysis of these skin-surface measurements of cardiac generated electric currents, a physician can deduce the general location of heart conduction irregularities. Using a combination of high-fidelity geometry modeling, advanced mathematical algorithms and massively parallel computing, Sandia`s approach would provide much more accurate information and thus allow the physician to pinpoint the source of an arrhythmia or abnormal conduction pathway.

  18. The utility of cardiac CT beyond the assessment of suspected coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Kakouros, N. [Johns Hopkins Hospital, Baltimore, MD (United States); Giles, J.; Crundwell, N.B. [Conquest Hospital, St Leonards-on-Sea, East Sussex (United Kingdom); McWilliams, E.T.M., E-mail: eric.mcwilliams@esht.nhs.uk [Conquest Hospital, St Leonards-on-Sea, East Sussex (United Kingdom)

    2012-07-15

    Extensive work has been done over recent years to improve the spatial and temporal resolution of electrocardiogram (ECG)-gated cardiac computed tomography (CT). Advances in both hardware and software analysis have enabled the development of non-invasive coronary angiography. However, these high-quality examinations lend themselves to multiple additional applications beyond coronary angiography. In this review, we illustrate and discuss some established and some emerging applications of ECG-gated cardiac CT beyond the assessment of suspected coronary disease, particularly in light of recent recommendations on the appropriate use of this technology.

  19. The utility of cardiac CT beyond the assessment of suspected coronary artery disease

    International Nuclear Information System (INIS)

    Kakouros, N.; Giles, J.; Crundwell, N.B.; McWilliams, E.T.M.

    2012-01-01

    Extensive work has been done over recent years to improve the spatial and temporal resolution of electrocardiogram (ECG)-gated cardiac computed tomography (CT). Advances in both hardware and software analysis have enabled the development of non-invasive coronary angiography. However, these high-quality examinations lend themselves to multiple additional applications beyond coronary angiography. In this review, we illustrate and discuss some established and some emerging applications of ECG-gated cardiac CT beyond the assessment of suspected coronary disease, particularly in light of recent recommendations on the appropriate use of this technology.

  20. A fluid-structure interaction model of the internal carotid and ophthalmic arteries for the noninvasive intracranial pressure measurement method.

    Science.gov (United States)

    Misiulis, Edgaras; Džiugys, Algis; Navakas, Robertas; Striūgas, Nerijus

    2017-05-01

    Accurate and clinically safe measurements of intracranial pressure (ICP) are crucial for secondary brain damage prevention. There are two methods of ICP measurement: invasive and noninvasive. Invasive methods are clinically unsafe; therefore, safer noninvasive methods are being developed. One of the noninvasive ICP measurement methods implements the balance principle, which assumes that if the velocity of blood flow in both ophthalmic artery segments - the intracranial (IOA) and extracranial (EOA) - is equal, then the acting ICP on the IOA and the external pressure (Pe) on the EOA are also equal. To investigate the assumption of the balance principle, a generalized computational model incorporating a fluid-structure interaction (FSI) module was created and used to simulate noninvasive ICP measurement by accounting for the time-dependent behavior of the elastic internal carotid (ICA) and ophthalmic (OA) arteries and their interaction with pulsatile blood flow. It was found that the extra balance pressure term, which incorporates the hydrodynamic pressure drop between measurement points, must be added into the balance equation, and the corrections on a difference between the velocity of blood flow in the IOA and EOA must be made, due to a difference in the blood flow rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Comparative cardiac imaging

    International Nuclear Information System (INIS)

    Brundage, B.H.

    1990-01-01

    This book is designed to compare all major cardiac imaging techniques. All major imaging techniques - including conventional angiography, digital angiography, echocardiography and Doppler imaging, conventional radioisotope techniques, computed tomography, and magnetic resonance imaging - are covered in this text as they apply to the major cardiovascular disorders. There is brief coverage of positron emission tomography and an extensive presentation of ultrafast computed tomography

  2. Advanced Cardiac Life Support.

    Science.gov (United States)

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document contains materials for an advanced college course in cardiac life support developed for the State of Iowa. The course syllabus lists the course title, hours, number, description, prerequisites, learning activities, instructional units, required text, six references, evaluation criteria, course objectives by units, course…

  3. Cardiac Pacemakers; Marcapasos Cardiacos

    Energy Technology Data Exchange (ETDEWEB)

    Fiandra, O [Universidad de la Republica, Facultad de Maedicina, Departamento de Cardiologia, Montevideo(Uruguay); Espasandin, W [Universidad de la Republica, Facultad de Medicina, Departamento de Cirugia Cardiaca, Montevideo (Uruguay); Fiandra, H [Instituto Nacional de Cirugia Cardiaca, Departamento de Hemodinamia y Marcapasos, Montevideo (Uruguay); and others

    1984-07-01

    A complete survey of physiological biophysical,clinical and engineering aspects of cardiac facing,including the history and an assessment of possible future developments.Among the topics studied are: pacemakers, energy search, heart stimulating with pacemakers ,mathematical aspects of the electric cardio stimulation chronic, pacemaker implants,proceeding,treatment and control.

  4. Nonexercise cardiac stress testing

    International Nuclear Information System (INIS)

    Vacek, J.L.; Baldwin, T.

    1989-01-01

    Many patients who require evaluation for coronary artery disease are unable to undergo exercise stress testing because of physiologic or psychological limitations. Drs Vacek and Baldwin describe three alternative methods for assessment of cardiac function in these patients, all of which have high levels of diagnostic sensitivity and specificity. 23 references

  5. Cardiac magnetic resonance imaging

    African Journals Online (AJOL)

    2011-03-06

    Mar 6, 2011 ... Cardiac magnetic resonance imaging. Cardiovascular magnetic resonance imaging is becoming a routine diagnostic technique. BRUCE s sPOTTiswOOdE, PhD. MRC/UCT Medical Imaging Research Unit, University of Cape Town, and Division of Radiology, Stellenbosch University. Bruce Spottiswoode ...

  6. Tissue Damage Characterization Using Non-invasive Optical Modalities

    Science.gov (United States)

    Diaz, David

    The ability to determine the degree of cutaneous and subcutaneous tissue damage is essential for proper wound assessment and a significant factor for determining patient treatment and morbidity. Accurate characterization of tissue damage is critical for a number of medical applications including surgical removal of nonviable tissue, severity assessment of subcutaneous ulcers, and depth assessment of visually open wounds. The main objective of this research was to develop a non-invasive method for identifying the extent of tissue damage underneath intact skin that is not apparent upon visual examination. This work investigated the relationship between tissue optical properties, blood flow, and tissue viability by testing the hypotheses that (a) changes in tissue oxygenation and/or microcirculatory blood flow measurable by Diffuse Near Infrared Spectroscopy (DNIRS) and Diffuse Correlation Spectroscopy (DCS) differ between healthy and damaged tissue and (b) the magnitude of those changes differs for different degrees of tissue damage. This was accomplished by developing and validating a procedure for measuring microcirculatory blood flow and tissue oxygenation dynamics at multiple depths (up to 1 centimeter) using non-invasive DCS and DNIRS technologies. Due to the lack of pressure ulcer animal models that are compatible with our optical systems, a proof of concept was conducted in a porcine burn model prior to conducting clinical trials in order to assess the efficacy of the system in-vivo. A reduction in total hemoglobin was observed for superficial (5%) and deep burns (35%) along with a statistically significant difference between the optical properties of superficial and deep burns (p differences detected in optical properties and hemoglobin content by optical measurements correlated with the extent of tissue injury observed in histological stains. After proof of concept in animals, a human study was conducted and optical data was collected from 20 healthy

  7. Cardiac diseases - their clinical features, diagnostic procedures and questions to the radiologist

    Energy Technology Data Exchange (ETDEWEB)

    Maisch, B.

    1983-09-01

    When diagnosing cardiac diseases non-invasively either by radiology, radionuclide studies or echocardiography each method has its values and problems. In coronary artery disease exercise stress testing with or without thallium-201 perfusion scintigraphy, the demonstration of coronary artery calcification and echocardiography are valuable non-invasive methods. Only by coronary arteriography, however, can the degree of stenosis, its localisation and its operability be determined. In heart muscle diseases X-ray and radionuclide angiocardiography demonstrate cardiac dilatation and diminished left ventricular function. In addition echocardiography is the method of choice to distinguish dilated from hypertrophic (obstructive or non obstructive) cardiomyopathy. Pericardial diseases are diagnosed most effectively by echocardiography and, more expensively, by computer tomography. In neoplastic pericardial effusions computer tomography assesses mediastinal tumors most effectively. In valvular heart disease the classical chest X-ray is still of great importance, but echocardiography is more specific and more sensitive. Invasive diagnostic measures (heart catherization) are still mandatory in most valvular diseases.

  8. Noninvasive ventilation in patients with acute cardiogenic pulmonary edema

    Directory of Open Access Journals (Sweden)

    Andrea Bellone

    2013-07-01

    Full Text Available The term noninvasive ventilation (NIV encompasses two different modes of delivering positive airway pressure, namely continuous positive airway pressure (CPAP and bilevel positive airway pressure (bilevel-PAP. The two modes are different since CPAP does not actively assist inspiration whereas bilevel-PAP does. Bilevel-PAP is a type of noninvasive ventilation that helps keep the upper airways of the lungs open by providing a flow of air delivered through a face mask. The air is pressurized by a machine, which delivers it to the face mask through long, plastic hosing. With bilevel-PAP, the doctor prescribes specific alternating pressures: a higher pressure is used to breathe in (inspiratory positive airway pressure and a lower pressure is used to breath out (expiratory positive airway pressure. Noninvasive ventilation has been shown to reduce the rate of tracheal intubation. The main indications are exacerbation of chronic obstructive pulmonary disease and acute cardiogenic pulmonary edema (ACPE. This last is a common cause of respiratory failure with high incidence and high mortality rate. Clinical findings of ACPE are related to the increased extra-vascular water in the lungs and the resulting reduced lung compliance, increased airway resistance and elevated inspiratory muscle load which generates a depression in pleural pressure. These large pleural pressure swings are responsible for hemodynamic changes by increasing left ventricular afterload, myocardial transmural pressure, and venous return. These alterations can be detrimental to patients with left ventricular systolic dysfunction. Under these circumstances, NIV, either by CPAP or bilevel-PAP, improves vital signs, gas exchange, respiratory mechanics and hemodynamics by reducing left ventricular afterload and preload. In the first randomized study which compared the effectiveness of CPAP plus medical treatment vs medical treatment alone, the CPAP group showed a significant decrease in its

  9. Severe bronchopulmonary dysplasia improved by noninvasive positive pressure ventilation: a case report

    Directory of Open Access Journals (Sweden)

    Mann Christian

    2011-09-01

    Full Text Available Abstract Introduction This is the first report to describe the feasibility and effectiveness of noninvasive positive pressure ventilation in the secondary treatment of bronchopulmonary dysplasia. Case presentation A former male preterm of Caucasian ethnicity delivered at 29 weeks gestation developed severe bronchopulmonary dysplasia. At the age of six months he was in permanent tachypnea and dyspnea and in need of 100% oxygen with a flow of 2.0 L/minute via a nasal cannula. Intermittent nocturnal noninvasive positive pressure ventilation was then administered for seven hours daily. The ventilator was set at a positive end-expiratory pressure of 6 cmH2O, with pressure support of 4 cmH2O, trigger at 1.4 mL/second, and a maximum inspiratory time of 0.7 seconds. Over the course of seven weeks, the patient's maximum daytime fraction of inspired oxygen via nasal cannula decreased from 1.0 to 0.75, his respiratory rate from 64 breaths/minute to 50 breaths/minute and carbon dioxide from 58 mmHg to 44 mmHg. Conclusion Noninvasive positive pressure ventilation may be a novel therapeutic option for established severe bronchopulmonary dysplasia. In the case presented, noninvasive positive pressure ventilation achieved sustained improvement in ventilation and thus prepared our patient for safe home oxygen therapy.

  10. Non-invasive measurement of cardiac output by Finometer in patients with cirrhosis

    DEFF Research Database (Denmark)

    Kaltoft, N; Hobolth, L; Møller, S

    2010-01-01

    .6 [3.9;9.7] l min(-1) (mean +/- SD [range]) compared to mean CO(F) of 7.2 +/- 2.3 [3.1;11.9] l min(-1). There was a mean difference between CO(F) and CO(I) of 1.0 +/- 1.8 [-2.1;4.0] l min(-1) and 95% confidence interval of [0.2;1.8], P...-blockade, mean DeltaCO(I) was 1.6 +/- 1.4 [-0.1;3.3] l min(-1) compared to mean DeltaCO(F) of 1.9 +/- 1.3 [0.4;3.8] l min(-1). Mean difference between DeltaCO(F) and DeltaCO(I) was 0.3 +/- 0.3 [-0.2;0.7] l min(-1) with a 95% confidence interval of [-0.1;0.6], P = 0.11. Compared with invasive measurements...

  11. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics - preliminary experience

    Energy Technology Data Exchange (ETDEWEB)

    Karmonik, C.; Benndorf, G. [The Methodist Hospital Research Inst., Houston (United States). Radiology; Klucznik, R. [The Methodist Hospital, Houston (United States). Radiology

    2008-03-15

    Purpose: computational fluid dynamics (CFD) simulations are increasingly used to model cerebral aneurysm hemodynamics. We investigated the capability of phase contrast magnetic resonance imaging (pcMRI), guided by specialized software for optimal slice definition (NOVA, Vassol Inc.) as a non-invasive method to measure intra-aneurysmal blood flow patterns in-vivo. In a novel approach, these blood flow patterns measured with pcMRI were qualitatively compared to the ones calculated with CFD. Materials end methods: the volumetric inflow rates into three unruptured cerebral aneurysms and the temporal variations of the intra-aneurysmal blood flow patterns were recorded with pcMRI. Transient CFD simulations were performed on geometric models of these aneurysms derived from 3D digital subtraction angiograms. Calculated intra-aneurysmal blood flow patterns were compared at the times of maximum and minimum arterial inflow to the ones measured with pcMRI and the temporal variations of these patterns during the cardiac cycle were investigated. Results: in all three aneurysms, the main features of intra-aneurysmal flow patterns obtained with pcMRI consisted of areas with positive velocities components and areas with negative velocities components. The measured velocities ranged from approx. {+-}60 to {+-}100 cm/sec. Comparison with calculated CFD simulations showed good correlation with regard to the spatial distribution of these areas, while differences in calculated magnitudes of velocities were found. (orig.)

  12. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics - preliminary experience

    International Nuclear Information System (INIS)

    Karmonik, C.; Benndorf, G.; Klucznik, R.

    2008-01-01

    Purpose: computational fluid dynamics (CFD) simulations are increasingly used to model cerebral aneurysm hemodynamics. We investigated the capability of phase contrast magnetic resonance imaging (pcMRI), guided by specialized software for optimal slice definition (NOVA, Vassol Inc.) as a non-invasive method to measure intra-aneurysmal blood flow patterns in-vivo. In a novel approach, these blood flow patterns measured with pcMRI were qualitatively compared to the ones calculated with CFD. Materials end methods: the volumetric inflow rates into three unruptured cerebral aneurysms and the temporal variations of the intra-aneurysmal blood flow patterns were recorded with pcMRI. Transient CFD simulations were performed on geometric models of these aneurysms derived from 3D digital subtraction angiograms. Calculated intra-aneurysmal blood flow patterns were compared at the times of maximum and minimum arterial inflow to the ones measured with pcMRI and the temporal variations of these patterns during the cardiac cycle were investigated. Results: in all three aneurysms, the main features of intra-aneurysmal flow patterns obtained with pcMRI consisted of areas with positive velocities components and areas with negative velocities components. The measured velocities ranged from approx. ±60 to ±100 cm/sec. Comparison with calculated CFD simulations showed good correlation with regard to the spatial distribution of these areas, while differences in calculated magnitudes of velocities were found. (orig.)

  13. Maternal cardiac metabolism in pregnancy

    Science.gov (United States)

    Liu, Laura X.; Arany, Zolt

    2014-01-01

    Pregnancy causes dramatic physiological changes in the expectant mother. The placenta, mostly foetal in origin, invades maternal uterine tissue early in pregnancy and unleashes a barrage of hormones and other factors. This foetal ‘invasion’ profoundly reprogrammes maternal physiology, affecting nearly every organ, including the heart and its metabolism. We briefly review here maternal systemic metabolic changes during pregnancy and cardiac metabolism in general. We then discuss changes in cardiac haemodynamic during pregnancy and review what is known about maternal cardiac metabolism during pregnancy. Lastly, we discuss cardiac diseases during pregnancy, including peripartum cardiomyopathy, and the potential contribution of aberrant cardiac metabolism to disease aetiology. PMID:24448314

  14. Isolated Non-Compaction of the Left Ventricle in a Patient with New-Onset Heart Failure: Morphologic and Functional Evaluation with Cardiac Multidetector Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heon [Soonchuhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Kim, Seok Yeon [Seoul Medical Center, Seoul (Korea, Republic of); Schoepf, U. Joseph [Medical University of South Carolina, SC (United States)

    2012-03-15

    We describe a case of new-onset heart failure in a patient in whom cardiac CT enabled the non-invasive diagnosis of isolated non-compaction and associated functional abnormalities of the left ventricle with the concomitant evaluation of coronary arteries. This case highlights the utility of cardiac CT for the morphological and functional evaluation of the heart as a single imaging modality.

  15. Cardiac Auscultation Using Smartphones: Pilot Study.

    Science.gov (United States)

    Kang, Si-Hyuck; Joe, Byunggill; Yoon, Yeonyee; Cho, Goo-Yeong; Shin, Insik; Suh, Jung-Won

    2018-02-28

    Cardiac auscultation is a cost-effective, noninvasive screening tool that can provide information about cardiovascular hemodynamics and disease. However, with advances in imaging and laboratory tests, the importance of cardiac auscultation is less appreciated in clinical practice. The widespread use of smartphones provides opportunities for nonmedical expert users to perform self-examination before hospital visits. The objective of our study was to assess the feasibility of cardiac auscultation using smartphones with no add-on devices for use at the prehospital stage. We performed a pilot study of patients with normal and pathologic heart sounds. Heart sounds were recorded on the skin of the chest wall using 3 smartphones: the Samsung Galaxy S5 and Galaxy S6, and the LG G3. Recorded heart sounds were processed and classified by a diagnostic algorithm using convolutional neural networks. We assessed diagnostic accuracy, as well as sensitivity, specificity, and predictive values. A total of 46 participants underwent heart sound recording. After audio file processing, 30 of 46 (65%) heart sounds were proven interpretable. Atrial fibrillation and diastolic murmur were significantly associated with failure to acquire interpretable heart sounds. The diagnostic algorithm classified the heart sounds into the correct category with high accuracy: Galaxy S5, 90% (95% CI 73%-98%); Galaxy S6, 87% (95% CI 69%-96%); and LG G3, 90% (95% CI 73%-98%). Sensitivity, specificity, positive predictive value, and negative predictive value were also acceptable for the 3 devices. Cardiac auscultation using smartphones was feasible. Discrimination using convolutional neural networks yielded high diagnostic accuracy. However, using the built-in microphones alone, the acquisition of reproducible and interpretable heart sounds was still a major challenge. ClinicalTrials.gov NCT03273803; https://clinicaltrials.gov/ct2/show/NCT03273803 (Archived by WebCite at http://www.webcitation.org/6x6g1f

  16. Cardiac tissue Doppler imaging in sports medicine.

    Science.gov (United States)

    Krieg, Anne; Scharhag, Jürgen; Kindermann, Wilfried; Urhausen, Axel

    2007-01-01

    The differentiation of training-induced cardiac adaptations from pathological conditions is a key issue in sports cardiology. As morphological features do not allow for a clear delineation of early stages of relevant pathologies, the echocardiographic evaluation of left ventricular function is the technique of first choice in this regard. Tissue Doppler imaging (TDI) is a relatively recent method for the assessment of cardiac function that provides direct, local measurements of myocardial velocities throughout the cardiac cycle. Although it has shown a superior sensitivity in the detection of ventricular dysfunction in clinical and experimental studies, its application in sports medicine is still rare. Besides technical factors, this may be due to a lack in consensus on the characteristics of ventricular function in relevant conditions. For more than two decades there has been an ongoing debate on the existence of a supernormal left ventricular function in athlete's heart. While results from traditional echocardiography are conflicting, TDI studies established an improved diastolic function in endurance-trained athletes with athlete's heart compared with controls.The influence of anabolic steroids on cardiac function also has been investigated by standard echocardiographic techniques with inconsistent results. The only TDI study dealing with this topic demonstrated a significantly impaired diastolic function in bodybuilders with long-term abuse of anabolic steroids compared with strength-trained athletes without abuse of anabolic steroids and controls, respectively.Hypertrophic cardiomyopathy is the most frequent cause of sudden death in young athletes. However, in its early stages, it is difficult to distinguish from athlete's heart. By means of TDI, ventricular dysfunction in hypertrophic cardiomyopathy can be disclosed even before the development of left ventricular hypertrophy. Also, a differentiation of left ventricular hypertrophy due to hypertrophic

  17. Calculation of left ventricular volumes and ejection fraction from dynamic cardiac-gated 15O-water PET/CT: 5D-PET

    Directory of Open Access Journals (Sweden)

    Jonny Nordström

    2017-11-01

    Full Text Available Abstract Background Quantitative measurement of myocardial blood flow (MBF is of increasing interest in the clinical assessment of patients with suspected coronary artery disease (CAD. 15O-water positron emission tomography (PET is considered the gold standard for non-invasive MBF measurements. However, calculation of left ventricular (LV volumes and ejection fraction (EF is not possible from standard 15O-water uptake images. The purpose of the present work was to investigate the possibility of calculating LV volumes and LVEF from cardiac-gated parametric blood volume (V B 15O-water images and from first pass (FP images. Sixteen patients with mitral or aortic regurgitation underwent an eight-gate dynamic cardiac-gated 15O-water PET/CT scan and cardiac MRI. V B and FP images were generated for each gate. Calculations of end-systolic volume (ESV, end-diastolic volume (EDV, stroke volume (SV and LVEF were performed with automatic segmentation of V B and FP images, using commercially available software. LV volumes and LVEF were calculated with surface-, count-, and volume-based methods, and the results were compared with gold standard MRI. Results Using V B images, high correlations between PET and MRI ESV (r = 0.89, p  0.86, p < 0.001. Conclusion Calculation of LV volumes and LVEF from dynamic 15O-water PET is feasible and shows good correlation with MRI. However, the analysis method is laborious, and future work is needed for more automation to make the method more easily applicable in a clinical setting.

  18. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Park, Jeong-Jun [University of Ulsan College of Medicine, Asan Medical Center, Department of Pediatric Cardiac Surgery, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Asan Medical Center, Division of Neonatology, Department of Pediatrics, Seoul (Korea, Republic of); Won, Hye-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of)

    2014-09-15

    Most thoracopagus twins present with cardiac fusion and associated congenital cardiac defects, and assessment of this anatomy is of critical importance in determining patient care and outcome. Cardiac CT with electrocardiographic triggering provides an accurate and quick morphological assessment of both intracardiac and extracardiac structures in newborns, making it the best imaging modality to assess thoracopagus twins during the neonatal period. In this case report, we highlight the diagnostic value of cardiac CT in thoracopagus twins with an interatrial channel and complex congenital cardiac defects. (orig.)

  19. Cross-talk between cardiac muscle and coronary vasculature.

    Science.gov (United States)

    Westerhof, Nico; Boer, Christa; Lamberts, Regis R; Sipkema, Pieter

    2006-10-01

    The cardiac muscle and the coronary vasculature are in close proximity to each other, and a two-way interaction, called cross-talk, exists. Here we focus on the mechanical aspects of cross-talk including the role of the extracellular matrix. Cardiac muscle affects the coronary vasculature. In diastole, the effect of the cardiac muscle on the coronary vasculature depends on the (changes in) muscle length but appears to be small. In systole, coronary artery inflow is impeded, or even reversed, and venous outflow is augmented. These systolic effects are explained by two mechanisms. The waterfall model and the intramyocardial pump model are based on an intramyocardial pressure, assumed to be proportional to ventricular pressure. They explain the global effects of contraction on coronary flow and the effects of contraction in the layers of the heart wall. The varying elastance model, the muscle shortening and thickening model, and the vascular deformation model are based on direct contact between muscles and vessels. They predict global effects as well as differences on flow in layers and flow heterogeneity due to contraction. The relative contributions of these two mechanisms depend on the wall layer (epi- or endocardial) and type of contraction (isovolumic or shortening). Intramyocardial pressure results from (local) muscle contraction and to what extent the interstitial cavity contracts isovolumically. This explains why small arterioles and venules do not collapse in systole. Coronary vasculature affects the cardiac muscle. In diastole, at physiological ventricular volumes, an increase in coronary perfusion pressure increases ventricular stiffness, but the effect is small. In systole, there are two mechanisms by which coronary perfusion affects cardiac contractility. Increased perfusion pressure increases microvascular volume, thereby opening stretch-activated ion channels, resulting in an increased intracellular Ca2+ transient, which is followed by an increase in Ca

  20. Development of new anatomy reconstruction software to localize cardiac isochrones to the cardiac surface from the 12 lead ECG.

    Science.gov (United States)

    van Dam, Peter M; Gordon, Jeffrey P; Laks, Michael M; Boyle, Noel G

    2015-01-01

    Non-invasive electrocardiographic imaging (ECGI) of the cardiac muscle can help the pre-procedure planning of the ablation of ventricular arrhythmias by reducing the time to localize the origin. Our non-invasive ECGI system, the cardiac isochrone positioning system (CIPS), requires non-intersecting meshes of the heart, lungs and torso. However, software to reconstruct the meshes of the heart, lungs and torso with the capability to check and prevent these intersections is currently lacking. Consequently the reconstruction of a patient specific model with realistic atrial and ventricular wall thickness and incorporating blood cavities, lungs and torso usually requires additional several days of manual work. Therefore new software was developed that checks and prevents any intersections, and thus enables the use of accurate reconstructed anatomical models within CIPS. In this preliminary study we investigated the accuracy of the created patient specific anatomical models from MRI or CT. During the manual segmentation of the MRI data the boundaries of the relevant tissues are determined. The resulting contour lines are used to automatically morph reference meshes of the heart, lungs or torso to match the boundaries of the morphed tissue. Five patients were included in the study; models of the heart, lungs and torso were reconstructed from standard cardiac MRI images. The accuracy was determined by computing the distance between the segmentation contours and the morphed meshes. The average accuracy of the reconstructed cardiac geometry was within 2mm with respect to the manual segmentation contours on the MRI images. Derived wall volumes and left ventricular wall thickness were within the range reported in literature. For each reconstructed heart model the anatomical heart axis was computed using the automatically determined anatomical landmarks of the left apex and the mitral valve. The accuracy of the reconstructed heart models was well within the accuracy of the used

  1. Localization of endocardial ectopic activity by means of noninvasive endocardial surface current density reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Lai Dakun; Liu Chenguang; Eggen, Michael D; He Bin [Department of Biomedical Engineering, University of Minnesota, MN (United States); Iaizzo, Paul A, E-mail: binhe@umn.edu [Department of Surgery, University of Minnesota, MN (United States)

    2011-07-07

    Localization of the source of cardiac ectopic activity has direct clinical benefits for determining the location of the corresponding ectopic focus. In this study, a recently developed current-density (CD)-based localization approach was experimentally evaluated in noninvasively localizing the origin of the cardiac ectopic activity from body-surface potential maps (BSPMs) in a well-controlled experimental setting. The cardiac ectopic activities were induced in four well-controlled intact pigs by single-site pacing at various sites within the left ventricle (LV). In each pacing study, the origin of the induced ectopic activity was localized by reconstructing the CD distribution on the endocardial surface of the LV from the measured BSPMs and compared with the estimated single moving dipole (SMD) solution and precise pacing site (PS). Over the 60 analyzed beats corresponding to ten pacing sites (six for each), the mean and standard deviation of the distance between the locations of maximum CD value and the corresponding PSs were 16.9 mm and 4.6 mm, respectively. In comparison, the averaged distance between the SMD locations and the corresponding PSs was slightly larger (18.4 {+-} 3.4 mm). The obtained CD distribution of activated sources extending from the stimulus site also showed high consistency with the endocardial potential maps estimated by a minimally invasive endocardial mapping system. The present experimental results suggest that the CD method is able to locate the approximate site of the origin of a cardiac ectopic activity, and that the distribution of the CD can portray the propagation of early activation of an ectopic beat.

  2. Congestive Cardiac Failure in a patient with Systemic Sclerosis ...

    African Journals Online (AJOL)

    TNHJOURNALPH

    disease(ILD) and cardiac function ... failure symptoms, in order to avoid a ... were a few blood vessels with thickened wall .... mean left atrial diameter, a smaller LV ejection ... resistance to flow is at the level of the ... 8The finding of mitral valve.

  3. Rectal microcirculatory alterations after elective on-pump cardiac surgery

    NARCIS (Netherlands)

    Boerma, E. C.; Kaiferova, K.; Konijn, A. J. M.; De Vries, J. W.; Buter, H.; Ince, C.

    Background. Hemodynamic changes, related to on-pump cardiac surgery, have been reported to impair intestinal perfusion. However, until recently, direct in vivo observation of the intestinal microcirculation was not clinically feasible, and the concept of altered intestinal blood flow in the setting

  4. A Cardiac Cell Outgrowth Assay for Evaluating Drug Compounds Using a Cardiac Spheroid-on-a-Chip Device

    Directory of Open Access Journals (Sweden)

    Jonas Christoffersson

    2018-05-01

    Full Text Available Three-dimensional (3D models with cells arranged in clusters or spheroids have emerged as valuable tools to improve physiological relevance in drug screening. One of the challenges with cells cultured in 3D, especially for high-throughput applications, is to quickly and non-invasively assess the cellular state in vitro. In this article, we show that the number of cells growing out from human induced pluripotent stem cell (hiPSC-derived cardiac spheroids can be quantified to serve as an indicator of a drug’s effect on spheroids captured in a microfluidic device. Combining this spheroid-on-a-chip with confocal high content imaging reveals easily accessible, quantitative outgrowth data. We found that effects on outgrowing cell numbers correlate to the concentrations of relevant pharmacological compounds and could thus serve as a practical readout to monitor drug effects. Here, we demonstrate the potential of this semi-high-throughput “cardiac cell outgrowth assay” with six compounds at three concentrations applied to spheroids for 48 h. The image-based readout complements end-point assays or may be used as a non-invasive assay for quality control during long-term culture.

  5. Efficacy of high-flow oxygen by nasal cannula with active humidification in a patient with acute respiratory failure of neuromuscular origin.

    Science.gov (United States)

    Díaz-Lobato, Salvador; Folgado, Miguel Angel; Chapa, Angel; Mayoralas Alises, Sagrario

    2013-12-01

    The treatment of choice for patients with respiratory failure of neuromuscular origin, especially in patients with hypercapnic respiratory acidosis, is noninvasive ventilation (NIV). Endotracheal intubation and invasive ventilation are indicated for patients with severe respiratory compromise or failure of NIV. In recent years, high-flow oxygen therapy and active humidification devices have been introduced, and emerging evidence suggests that high-flow oxygen may be effective in various clinical settings, such as acute respiratory failure, after cardiac surgery, during sedation and analgesia, in acute heart failure, in hypoxemic respiratory distress, in do-not-intubate patients, in patients with chronic cough and copious secretions, pulmonary fibrosis, or cancer, in critical areas and the emergency department. We report on a patient with amyotrophic lateral sclerosis who arrived at the emergency department with acute hypercapnic respiratory failure. She did not tolerate NIV and refused intubation, but was treated successfully with heated, humidified oxygen via high-flow nasal cannula. Arterial blood analysis after an hour on high-flow nasal cannula showed improved pH, P(aCO2), and awareness. The respiratory acidosis was corrected, and she was discharged after 5 days of hospitalization. Her response to high-flow nasal cannula was similar to that expected with NIV. We discuss the mechanisms of action of heated, humidified high-flow oxygen therapy.

  6. Socially differentiated cardiac rehabilitation

    DEFF Research Database (Denmark)

    Meillier, Lucette Kirsten; Nielsen, Kirsten Melgaard; Larsen, Finn Breinholt

    2012-01-01

    in recruitment and participation among low educated and socially vulnerable patients must be addressed to lower inequality in post-MI health. Our aim was to improve referral, attendance, and adherence rates among socially vulnerable patients by systematic screening and by offering a socially differentiated...... to a standard rehabilitation programme (SRP). If patients were identified as socially vulnerable, they were offered an extended version of the rehabilitation programme (ERP). Excluded patients were offered home visits by a cardiac nurse. Concordance principles were used in the individualised programme elements......%. Patients were equally distributed to the SRP and the ERP. No inequality was found in attendance and adherence among referred patients. Conclusions: It seems possible to overcome unequal referral, attendance, and adherence in cardiac rehabilitation by organisation of systematic screening and social...

  7. Ictal Cardiac Ryhthym Abnormalities.

    Science.gov (United States)

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic-clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy.

  8. Cardiac nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Gerson, M.C.

    1987-01-01

    The book begins with a review of the radionuclide methods available for evaluating cardiac perfusion and function. The authors discuss planar and tomographic thallium myocardial imaging, first-pass and equilibrium radionuclide angiography, and imaging with infarct-avid tracers. Several common but more specialized procedures are then reviewed: nonogemetric measurement of left ventricular volume, phase (Fourier) analysis, stroke volume ratio, right ventricular function, and diastolic function. A separate chapter is devoted to drug interventions and in particular the use of radionuclide ventriculography to monitor doxorubicin toxicity and therapy of congestive heart failure. The subsequent chapters provide a comprehensive guide to test selection, accuracy, and results in acute myocardial infarction, in postmyocardial infarction, in chronic coronary artery disease, before and after medical or surgical revascularization, in valvular heart disease, in cardiomyopathies, and in cardiac trauma.

  9. Cardiac nuclear medicine

    International Nuclear Information System (INIS)

    Gerson, M.C.

    1987-01-01

    The book begins with a review of the radionuclide methods available for evaluating cardiac perfusion and function. The authors discuss planar and tomographic thallium myocardial imaging, first-pass and equilibrium radionuclide angiography, and imaging with infarct-avid tracers. Several common but more specialized procedures are then reviewed: nonogemetric measurement of left ventricular volume, phase (Fourier) analysis, stroke volume ratio, right ventricular function, and diastolic function. A separate chapter is devoted to drug interventions and in particular the use of radionuclide ventriculography to monitor doxorubicin toxicity and therapy of congestive heart failure. The subsequent chapters provide a comprehensive guide to test selection, accuracy, and results in acute myocardial infarction, in postmyocardial infarction, in chronic coronary artery disease, before and after medical or surgical revascularization, in valvular heart disease, in cardiomyopathies, and in cardiac trauma

  10. Cardiac function studies

    International Nuclear Information System (INIS)

    Horn, H.J.

    1986-01-01

    A total of 27 patients were subjected tointramyocardial sequential scintiscanning (first pass) using 99m-Tc human serum albumin. A refined method is described that is suitable to analyse clinically relevant parameters like blood volume, cardiac output, ejection fraction, stroke volume, enddiastolic and endsystolic volumes as well as pulmonal transition time and uses a complete camaracomputer system adapted to the requirements of a routine procedure. Unless there is special hardware available, the method does not yet appear mature enough to be put into general practice. Its importance recently appeared in a new light due to the advent of particularly shortlived isotopes. For the time being, however, ECG-triggered equilibrium studies are to be preferred for cardiac function tests. (TRV) [de

  11. CSI cardiac prevent 2015

    OpenAIRE

    S Ramakrishnan; Manisha Kaushik

    2015-01-01

    The CSI Cardiac Prevent 2015 was held at Hotel Taj Palace, New Delhi, on September 25-27, 2015. The major challenge was to create interest among cardiologists and physicians on preventive cardiology, a neglected area. The theme of the conference was "Innovations in Heart Disease Prevention.′′ This conference included "CSI at WHF Roadmap Workshop, Inauguration Ceremony, scientific program, plenary sessions, Nursing/Dietician track, Industry Exhibition, Social Events," Great India blood pressur...

  12. Multifractality in Cardiac Dynamics

    Science.gov (United States)

    Ivanov, Plamen Ch.; Rosenblum, Misha; Stanley, H. Eugene; Havlin, Shlomo; Goldberger, Ary

    1997-03-01

    Wavelet decomposition is used to analyze the fractal scaling properties of heart beat time series. The singularity spectrum D(h) of the variations in the beat-to-beat intervals is obtained from the wavelet transform modulus maxima which contain information on the hierarchical distribution of the singularities in the signal. Multifractal behavior is observed for healthy cardiac dynamics while pathologies are associated with loss of support in the singularity spectrum.

  13. Integrative Cardiac Health Project

    Science.gov (United States)

    2014-10-01

    primary cardiac arrest. Circulation. 1998;97(2):155Y160. 8. Sesso HD, Lee IM, Gaziano JM, Rexrode KM, Glynn RJ, Buring JE. Maternal and paternal ...to signal transduction, inflammation, and host–pathogen interactions .27 Whole blood RNA isolation systems such as PAXgene accurately capture in vivo...the effect of healthy behaviors on leukocyte function and leukocyte–endothelium interactions that are important for cardiovascular health

  14. Right ventricular involvement in cardiac sarcoidosis demonstrated with cardiac magnetic resonance.

    Science.gov (United States)

    Smedema, Jan-Peter; van Geuns, Robert-Jan; Ainslie, Gillian; Ector, Joris; Heidbuchel, Hein; Crijns, Harry J G M

    2017-11-01

    Cardiac involvement in sarcoidosis is reported in up to 30% of patients. Left ventricular involvement demonstrated by contrast-enhanced cardiac magnetic resonance has been well validated. We sought to determine the prevalence and distribution of right ventricular late gadolinium enhancement in patients diagnosed with pulmonary sarcoidosis. We prospectively evaluated 87 patients diagnosed with pulmonary sarcoidosis with contrast-enhanced cardiac magnetic resonance for right ventricular involvement. Pulmonary artery pressures were non-invasively evaluated with Doppler echocardiography. Patient characteristics were compared between the groups with and without right ventricular involvement, and right ventricular enhancement was correlated with pulmonary hypertension, ventricular mass, volume, and systolic function. Left ventricular late gadolinium enhancement was demonstrated in 30 patients (34%). Fourteen patients (16%) had right ventricular late gadolinium enhancement, with sole right ventricular enhancement in only two patients. The pattern of right ventricular enhancement consisted of right ventricular outflow tract enhancement in 1 patient, free wall enhancement in 8 patients, ventricular insertion point enhancement in 10 patients, and enhancement of the right side of the interventricular septum in 11 patients. Pulmonary arterial hypertension correlated with the presence of right ventricular enhancement (P Right ventricular enhancement correlated with systolic ventricular dysfunction (P Right ventricular enhancement was present in 16% of patients diagnosed with pulmonary sarcoidosis and in 48% of patients with left ventricular enhancement. The presence of right ventricular enhancement correlated with pulmonary arterial hypertension, right ventricular systolic dysfunction, hypertrophy, and dilation. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  15. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals.

    Science.gov (United States)

    Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lin, Wen-Yen; Chang, Po-Cheng; Lee, Ming-Yih

    2018-01-28

    Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to the

  16. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2018-01-01

    Full Text Available Cardiovascular disease (CVD is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI, computerized tomography scan (CT scan, and echocardiography (Echo are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL. In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to

  17. Molecular nuclear cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soo; Paeng, Jin Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-04-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect.

  18. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  19. Cardiac Cachexia Syndrome

    Directory of Open Access Journals (Sweden)

    Teresa Raposo André

    2017-10-01

    Full Text Available Heart failure is a chronic, progressive, and incurable disease. Cardiac cachexia is a strong predictor of poor prognosis, regardless of other important variables. This review intends to gather evidence to enable recognition of cardiac cachexia, identification of early stages of muscle waste and sarcopenia, and improve identification of patients with terminal heart failure in need of palliative care, whose symptoms are no longer controlled by usual medical measures. The pathophysiology is complex and multifactorial. There are many treatment options to prevent or revert muscle waste and sarcopenia; although, these strategies are less effective in advanced stages of cardiac cachexia. In these final stages, symptomatic palliation plays an important role, focussing on the patient’s comfort and avoiding the ‘acute model’ treatment of aggressive, disproportionate, and inefficient care. In order to provide adequate care and attempt to prevent this syndrome, thus reducing its impact on healthcare, there should be improved communication between general practitioners, internal medicine physicians, cardiologists, and palliative care specialists since heart failure has an unforeseeable course and is associated with an increasing number of deaths and different levels of suffering.

  20. Cardiac tissue engineering

    Directory of Open Access Journals (Sweden)

    MILICA RADISIC

    2005-03-01

    Full Text Available We hypothesized that clinically sized (1-5 mm thick,compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3 can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of perfluorocarbons, or with electrical stimulation (continuous application of biphasic pulses, 2 ms, 5 V, 1 Hz. Tissue constructs cultured without perfusion or electrical stimulation served as controls. Medium perfusion and addition of perfluorocarbons resulted in compact, thick constructs containing physiologic density of viable, electromechanically coupled cells, in contrast to control constructs which had only a ~100 mm thick peripheral region with functionally connected cells. Electrical stimulation of cultured constructs resulted in markedly improved contractile properties, increased amounts of cardiac proteins, and remarkably well developed ultrastructure (similar to that of native heart as compared to non-stimulated controls. We discuss here the state of the art of cardiac tissue engineering, in light of the biomimetic approach that reproduces in vitro some of the conditions present during normal tissue development.

  1. Molecular nuclear cardiac imaging

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Paeng, Jin Chul

    2004-01-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect

  2. Radionuclide detection and differential diagnosis of left-to-right cardiac shunts by analysis of time-activity curves

    International Nuclear Information System (INIS)

    Kim, Ok-Hwa

    1986-01-01

    The noninvasive nature of the radionuclide angiocardiography provided a useful approach for the evaluation of left-to-right cardiac shunts (LRCS). While the qualitative information can be obtained by inspection of serial radionuclide angiocardiograms, the quantitative information of radionuclide angiocardiography can be obtained by the analysis of time-activity curves using advanced computer system. The count ratios method and pulmonary-to-systemic flow ratio (QP/QS) by gamma variate fit method were used to evaluate the accuracy of detection and localization of LRCS. One hundred and ten time-activity curves were analyzed. There were 46 LRCS (atrial septal defects 11, ventricular septal defects 22, patent ductus arteriosus 13) and 64 normal subjects. By computer analysis of time-activity histograms of the right atrium, ventricle and the lungs separately, the count ratios modified by adding the mean cardiac transit time were calculated in each anatomic site. In normal subjects the mean count ratios in the right atrium, ventricle and lungs were 0.24 on average. In atrial septal defects, the count ratios were high in the right atrium, ventricle and lungs, whereas in ventricular septal defects the count ratios were higher only in the right ventricle and lungs. Patent ductus arteriosus showed normal count ratios in the heart but high count ratios were obtained in the lungs. Thus, this count ratios method could be separated normal from those with intracardiac or extracardiac shunts, and moreover, with this method the localization of the shunts level was possible in LRCS. Another method that could differentiate the intracardiac shunts from extracardiac shunts was measuring QP/QS in the left and right lungs. In patent ductus arteriosus, the left lung QP/QS was hight than those of the right lung, whereas in atrial septal defects and ventricular septal defects QP/QS ratios were equal in both lungs. (J.P.N.)

  3. Non-invasive diagnostic methods in dentistry

    Science.gov (United States)

    Todea, Carmen

    2016-03-01

    The paper, will present the most important non-invasive methods for diagnostic, in different fields of dentistry. Moreover, the laser-based methods will be emphasis. In orthodontics, 3D laser scanners are increasingly being used to establish database for normative population and cross-sectional growth changes but also to asses clinical outcomes in orthognatic surgical and non-surgical treatments. In prevention the main methods for diagnostic of demineralization and caries detection in early stages are represented by laser fluorescence - Quantitative Light Florescence (QLF); DiagnoDent-system-655nm; FOTI-Fiberoptic transillumination; DIFOTI-Digital Imaging Fiberoptic transillumination; and Optical Coherence Tomography (OCT). In odontology, Laser Doppler Flowmetry (LDF) is a noninvasive real time method used for determining the tooth vitality by monitoring the pulp microcirculation in traumatized teeth, fractured teeth, and teeth undergoing different conservative treatments. In periodontology, recently study shows the ability of LDF to evaluate the health of gingival tissue in periodontal tissue diseases but also after different periodontal treatments.

  4. Non-invasive assessment of gastric activity

    International Nuclear Information System (INIS)

    Smallwood, R.H.; Brown, B.H.

    1983-01-01

    There have been many suggestions for the routine clinical use of the electro-enterogram, but with the exception of the reported usage in the USSR no significant penetration into medical practice has been reported elsewhere. Amongst the many suggestions have been the possible application of electrical stimulation via surface electrodes to overcome post-operative inhibition of intestinal electrical activity, which can be recorded via surface electrodes. Gastric emptying studies have shown that duodenal ulceration is associated with changes in the rate and pattern of emptying of solid meals. Identifiable patterns in the electro-gastrogram following a metal might have diagnostic application. There is some evidence of correlations of electrical activity and pathology in the large intestine. In the colon diverticular disease has been shown to change the frequency content of the slow wave electrical activity and there is some evidence that this might be recorded from surface electrodes. A major obstacle to progress remains the inability to relate non-invasive recordings to intestinal motility. The best hope may be the use of direct and yet non-invasive methods of obtaining motility and in this context real-time ultrasound imaging is probably the most promising technique. The electro-gastrogram has certainly been shown to allow recording of gastric slow wave activity and there is a reasonable hope that further methods of analysis will allow inferential information on motility to be obtained. The following section makes brief mention of these techniques

  5. Noninvasive hemoglobin measurement using dynamic spectrum

    Science.gov (United States)

    Yi, Xiaoqing; Li, Gang; Lin, Ling

    2017-08-01

    Spectroscopy methods for noninvasive hemoglobin (Hgb) measurement are interfered by individual difference and particular weak signal. In order to address these problems, we have put forward a series of improvement methods based on dynamic spectrum (DS), including instrument design, spectrum extraction algorithm, and modeling approach. The instrument adopts light sources composed of eight laser diodes with the wavelength range from 600 nm to 1100 nm and records photoplethysmography signals at eight wavelengths synchronously. In order to simplify the optical design, we modulate the light sources with orthogonal square waves and design the corresponding demodulation algorithm, instead of adopting a beam-splitting system. A newly designed algorithm named difference accumulation has been proved to be effective in improving the accuracy of dynamic spectrum extraction. 220 subjects are involved in the clinical experiment. An extreme learning machine calibration model between the DS data and the Hgb levels is established. Correlation coefficient and root-mean-square error of prediction sets are 0.8645 and 8.48 g/l, respectively. The results indicate that the Hgb level can be derived by this approach noninvasively with acceptable precision and accuracy. It is expected to achieve a clinic application in the future.

  6. The decrease of cardiac chamber volumes and output during positive-pressure ventilation

    DEFF Research Database (Denmark)

    Kristensen, Kasper Kyhl; Ahtarovski, Kiril Aleksov; Iversen, Kasper

    2013-01-01

    the effect of PPV on the central circulation by studying cardiac chamber volumes with cardiac magnetic resonance imaging (CMR). We hypothesized that PPV lowers cardiac output (CO) mainly via the Frank-Starling relationship. In 18 healthy volunteers, cardiac chamber volumes and flow in aorta and the pulmonary...... artery were measured by CMR during PPV levels of 0, 10, and 20 cmH2O applied via a respirator and a face mask. All cardiac chamber volumes decreased in proportion to the level of PPV. Following 20-cmH2O PPV, the total diastolic and systolic cardiac volumes (±SE) decreased from 605 (±29) ml to 446 (±29......) ml (P volume decreased by 27 (±4) ml/beat; heart rate increased by 7 (±2) beats/min; and CO decreased by 1.0 (±0.4) l/min (P

  7. Initial Efficacy of a Cardiac Rehabilitation Transition Program: Cardiac TRUST

    Science.gov (United States)

    Zullo, Melissa; Boxer, Rebecca; Moore, Shirley M.

    2012-01-01

    Patients recovering from cardiac events are increasingly using postacute care, such as home health care and skilled nursing facility services. The purpose of this pilot study was to test the initial efficacy, feasibility, and safety of a specially designed postacute care transitional rehabilitation intervention for cardiac patients. Cardiac Transitional Rehabilitation Using Self- Management Techniques (Cardiac TRUST) is a family-focused intervention that includes progressive low-intensity walking and education in self-management skills to facilitate recovery following a cardiac event. Using a randomized two-group design, exercise self-efficacy, steps walked, and participation in an outpatient cardiac rehabilitation program were compared in a sample of 38 older adults; 17 who received the Cardiac TRUST program and 21 who received usual care only. At discharge from postacute care, the intervention group had a trend for higher levels of self-efficacy for exercise outcomes (X=39.1, SD=7.4) than the usual care group (X=34.5; SD=7.0) (t-test 1.9, p=.06). During the 6 weeks following discharge, compared with the usual care group, the intervention group had more attendance in out-patient cardiac rehabilitation (33% compared to 11.8%, F=7.1, p=.03) and a trend toward more steps walked during the first week (X=1,307, SD=652 compared to X=782, SD=544, t-test 1.8, p=.07). The feasibility of the intervention was better for the home health participants than for those in the skilled nursing facility and there were no safety concerns. The provision of cardiac-focused rehabilitation during postacute care has the potential to bridge the gap in transitional services from hospitalization to outpatient cardiac rehabilitation for these patients at high risk for future cardiac events. Further evidence of the efficacy of Cardiac TRUST is warranted. PMID:22084960

  8. Noninvasive Positive Pressure Ventilatory Support Begins During Sleep.

    Science.gov (United States)

    Bach, John R

    2017-12-01

    The goal of sleep doctors has been to titrate away apneas and hypopneas using noninvasive ventilation, a term that has become synonymous with continuous positive airway pressure and bilevel positive airway pressure at the lowest effective bilevel settings. It is now time to appreciate noninvasive ventilatory support as an alternative to invasive mechanical ventilation. This article discusses mechanisms of action, two paradigms, and ancillary techniques for noninvasive ventilatory support. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Clinical application of noninvasive diagnosis of liver fibrosis

    Directory of Open Access Journals (Sweden)

    ZHU Chuanlong

    2015-03-01

    Full Text Available Hepatic fibrosis is the common outcome of chronic liver diseases of various causes. At present, liver biopsy is the “gold standard” for the diagnosis of liver fibrosis, but it has limitations and is invasive, which leads to the development of noninvasive assessment of liver fibrosis. The article mainly introduces the technology and application of noninvasive diagnosis of liver fibrosis from the aspects of clinical manifestation, serology, and radiology. It has pointed out the clinical value of these noninvasive diagnosis techniques, and it discusses the progress in clinical research and its limitations for noninvasive diagnosis of liver fibrosis.

  10. Low-pressure sequential compression of lower limbs enhances forearm skin blood flow.

    Science.gov (United States)

    Amah, Guy; Voicu, Sebastian; Bonnin, Philippe; Kubis, Nathalie

    2016-12-01

    We investigated whether forearm skin blood flow could be improved when a multilayer pulsatile inflatable suit was applied at a low pressure to the lower limbs and abdomen. We hypothesized that a non-invasive purely mechanical stimulation of the lower limbs could induce remote forearm blood flow modifications. The pulsatile suit induced a sequential compartmentalized low compression (65 mmHg), which was synchronized with each diastole of the cardiac cycle with each phase evolving centripetally (lower limbs to abdomen). Modifications of the forearm skin blood flow were continuously recorded by laser Doppler flowmetry (LDF) at baseline and during the pulsatile suit application. Endothelium-dependent and endothelium-independent vasodilations of the forearm skin microcirculation were measured by LDF in response to a local transdermal iontophoretic application of acetylcholine (ACh-test) and to hyperthermia (hyperT- test). Twenty-four healthy volunteers, 12 men and 12 women (43±14 years) were included in the study. LDF responses increased 1) under pulsatile suit (97±106%, p.

  11. Noninvasive detection of rejection of transplanted hearts with indium-111-labeled lymphocytes

    International Nuclear Information System (INIS)

    Eisen, H.J.; Eisenberg, S.B.; Saffitz, J.E.; Bolman, R.M. III; Sobel, B.E.; Bergmann, S.R.

    1987-01-01

    To determine whether cardiac transplant rejection can be detected noninvasively with indium-111 ( 111 In)-labeled lymphocytes, we studied 11 dogs with thoracic heterotopic cardiac transplants without immunosuppression and five dogs with transplants treated with cyclosporine (10 mg/kg/day) and prednisone (1 mg/kg/day). All were evaluated sequentially with gamma scintigraphy after administration of 150 to 350 muCi of autologous 111 In-lymphocytes. Technetium-99m-labeled red blood cells (1 to 3 mCi) were used for correction of radioactivity in the blood pool attributable to circulating labeled lymphocytes. Lymphocyte infiltration was quantified as the ratio of indium in the myocardium of the transplant or native heart compared with that in blood (indium excess, IE). Results were correlated with mechanical and electrical activity of allografts and with histologic findings in sequential biopsy specimens. In untreated dogs (n = 11), IE was 15.5 +/- 7.0 (SD) in transplanted hearts undergoing rejection and 0.4 +/- 1.1 in native hearts on the day before animals were killed. In dogs treated with cyclosporine and prednisone (n = 5), IE was minimal in allografts during the course of immunosuppression (0.8 +/- 0.4) and increased to 22.9 +/- 11.1 after immunosuppression was stopped. Scintigraphic criteria of rejection (IE greater than 2 SD above that in native hearts) correlated with results of biopsies indicative of rejection and appeared before electrophysiologic or mechanical manifestations of dysfunction. Thus infiltration of labeled lymphocytes in allografts, indicative of rejection, is detectable noninvasively by gamma scintigraphy and provides a sensitive approach potentially applicable to clinical monitoring for early detection of rejection and guidance for titration of immunosuppressive measures

  12. Intraoperative Vector Flow Imaging of the Heart

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Møller-Sørensen, Hasse; Pedersen, Mads Møller

    2013-01-01

    The cardiac flow is complex and multidirectional, and difficult to measure with conventional Doppler ultrasound (US) methods due to the one-dimensional and angle-dependent velocity estimation. The vector velocity method Transverse Oscillation (TO) has been proposed as a solution to this. TO is im......The cardiac flow is complex and multidirectional, and difficult to measure with conventional Doppler ultrasound (US) methods due to the one-dimensional and angle-dependent velocity estimation. The vector velocity method Transverse Oscillation (TO) has been proposed as a solution to this....... TO is implemented on a conventional US scanner (Pro Focus 2202 UltraView, BK Medical) using a linear transducer (8670, BK Medical) and can provide real-time, angle-independent vector velocity estimates of the cardiac blood flow. During cardiac surgery, epicardiac US examinations using TO were performed on three...

  13. A cardiac electrical activity model based on a cellular automata system in comparison with neural network model.

    Science.gov (United States)

    Khan, Muhammad Sadiq Ali; Yousuf, Sidrah

    2016-03-01

    Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle.

  14. Real-time MRI guidance of cardiac interventions.

    Science.gov (United States)

    Campbell-Washburn, Adrienne E; Tavallaei, Mohammad A; Pop, Mihaela; Grant, Elena K; Chubb, Henry; Rhode, Kawal; Wright, Graham A

    2017-10-01

    Cardiac magnetic resonance imaging (MRI) is appealing to guide complex cardiac procedures because it is ionizing radiation-free and offers flexible soft-tissue contrast. Interventional cardiac MR promises to improve existing procedures and enable new ones for complex arrhythmias, as well as congenital and structural heart disease. Guiding invasive procedures demands faster image acquisition, reconstruction and analysis, as well as intuitive intraprocedural display of imaging data. Standard cardiac MR techniques such as 3D anatomical imaging, cardiac function and flow, parameter mapping, and late-gadolinium enhancement can be used to gather valuable clinical data at various procedural stages. Rapid intraprocedural image analysis can extract and highlight critical information about interventional targets and outcomes. In some cases, real-time interactive imaging is used to provide a continuous stream of images displayed to interventionalists for dynamic device navigation. Alternatively, devices are navigated relative to a roadmap of major cardiac structures generated through fast segmentation and registration. Interventional devices can be visualized and tracked throughout a procedure with specialized imaging methods. In a clinical setting, advanced imaging must be integrated with other clinical tools and patient data. In order to perform these complex procedures, interventional cardiac MR relies on customized equipment, such as interactive imaging environments, in-room image display, audio communication, hemodynamic monitoring and recording systems, and electroanatomical mapping and ablation systems. Operating in this sophisticated environment requires coordination and planning. This review provides an overview of the imaging technology used in MRI-guided cardiac interventions. Specifically, this review outlines clinical targets, standard image acquisition and analysis tools, and the integration of these tools into clinical workflow. 1 Technical Efficacy: Stage 5 J

  15. Blood flow patterns underlie developmental heart defects.

    Science.gov (United States)

    Midgett, Madeline; Thornburg, Kent; Rugonyi, Sandra

    2017-03-01

    Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. Copyright © 2017 the American Physiological Society.

  16. Efficacy of Noninvasive Ventilation in a Patient with Hypercapnic Respiratory Failure Complicating Eisenmenger’s Syndrome

    Directory of Open Access Journals (Sweden)

    Ana Jaureguizar Oriol

    2017-08-01

    Full Text Available Eisenmenger’s syndrome is a severe type of congenital heart disease characterized by severe pulmonary arterial hypertension. In the cases that the pressure in pulmonary circulation exceeds the systemic pressure, there appears a right-to-left shunting of blood. Consequently, the syndrome exists hypoxemia and cyanosis. Hypercapnia is not common in these patients; however, it might coexist with hypoxemic failure if there are other restrictive pathologies associated. Meanwhile, it has been described high prevalence of sleep disorders in Down syndrome. There is no evidence about the role of noninvasive ventilation in the management of these patients. We present a 39-year-old man, suffering of Down and Eisenmenger’s syndrome with multiple cardiac decompensations and obstructive sleep apnea (OSA, who was admitted to hospital due to severe somnolence, edema, and dyspnea. We observed a hypercapnic respiratory acidosis that ameliorated with noninvasive ventilation (NIV. The patient returned home with nocturnal NIV as a new treatment, and no further admission to hospital was seen in the following two years. To our knowledge, this is the first report about the utility of NIV in Eisenmenger’s and Down syndrome patients.

  17. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, M.S.; Tuli, M.M.; Radtke, N.L.; Heger, J.J.; Miles, W.M.; Mock, B.H.; Burt, R.W.; Wellman, H.N.; Zipes, D.P. (Indiana Univ. School of Medicine, IN (USA))

    1989-11-15

    Transmural myocardial infarction in dogs produces denervation of sympathetic nerves in viable myocardium apical to the infarct that may be arrhythmogenic. It is unknown whether sympathetic denervation occurs in humans. The purpose of this study was to use iodine-123-metaiodobenzylguanidine (MIBG), a radiolabeled guanethidine analog that is actively taken up by sympathetic nerve terminals, to image noninvasively the cardiac sympathetic nerves in patients with and without ventricular arrhythmias after myocardial infarction. Results showed that 10 of 12 patients with spontaneous ventricular tachyarrhythmias after myocardial infarction exhibited regions of thallium-201 uptake indicating viable perfused myocardium, with no MIBG uptake. Such a finding is consistent with sympathetic denervation. One patient had frequent episodes of nonsustained ventricular tachycardia induced at exercise testing that was eliminated by beta-adrenoceptor blockade. Eleven of the 12 patients had ventricular tachycardia induced at electrophysiologic study and metoprolol never prevented induction. Sympathetic denervation was also detected in two of seven postinfarction patients without ventricular arrhythmias. Normal control subjects had no regions lacking MIBG uptake. This study provides evidence that regional sympathetic denervation occurs in humans after myocardial infarction and can be detected noninvasively by comparing MIBG and thallium-201 images. Although the presence of sympathetic denervation may be related to the onset of spontaneous ventricular tachyarrhythmias in some patients, it does not appear to be related to sustained ventricular tachycardia induced at electrophysiologic study.

  18. Non-Invasive Ventilation in Patients with Heart Failure: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Hugo Souza Bittencourt

    Full Text Available Abstract Non-invasive ventilation (NIV may perfect respiratory and cardiac performance in patients with heart failure (HF. The objective of the study to establish, through systematic review and meta-analysis, NIV influence on functional capacity of HF patients. A systematic review with meta-analysis of randomized studies was carried out through research of databases of Cochrane Library, SciELO, Pubmed and PEDro, using the key-words: heart failure, non-invasive ventilation, exercise tolerance; and the free terms: bi-level positive airway pressure (BIPAP, continuous positive airway pressure (CPAP, and functional capacity (terms were searched for in English and Portuguese using the Boolean operators AND and OR. Methodological quality was ensured through PEDro scale. Weighted averages and a 95% confidence interval (CI were calculated. The meta-analysis was done thorugh the software Review Manager, version 5.3 (Cochrane Collaboration. Four randomized clinical trials were included. Individual studies suggest NIV improved functional capacity. NIV resulted in improvement in the distance of the six-minute walk test (6MWT (68.7m 95%CI: 52.6 to 84.9 in comparison to the control group. We conclude that the NIV is an intervention that promotes important effects in the improvement of functional capacity of HF patients. However, there is a gap in literature on which are the most adequate parameters for the application of this technique.

  19. Aircraft noise effects on sleep: a systematic comparison of EEG awakenings and automatically detected cardiac activations

    International Nuclear Information System (INIS)

    Basner, Mathias; Müller, Uwe; Elmenhorst, Eva-Maria; Kluge, Götz; Griefahn, Barbara

    2008-01-01

    Polysomnography is the gold standard for investigating noise effects on sleep, but data collection and analysis are sumptuous and expensive. We recently developed an algorithm for the automatic identification of cardiac activations associated with cortical arousals, which uses heart rate information derived from a single electrocardiogram (ECG) channel. We hypothesized that cardiac activations can be used as estimates for EEG awakenings. Polysomnographic EEG awakenings and automatically detected cardiac activations were systematically compared using laboratory data of 112 subjects (47 male, mean ± SD age 37.9 ± 13 years), 985 nights and 23 855 aircraft noise events (ANEs). The probability of automatically detected cardiac activations increased monotonically with increasing maximum sound pressure levels of ANEs, exceeding the probability of EEG awakenings by up to 18.1%. If spontaneous reactions were taken into account, exposure–response curves were practically identical for EEG awakenings and cardiac activations. Automatically detected cardiac activations may be used as estimates for EEG awakenings. More investigations are needed to further validate the ECG algorithm in the field and to investigate inter-individual differences in its ability to predict EEG awakenings. This inexpensive, objective and non-invasive method facilitates large-scale field studies on the effects of traffic noise on sleep

  20. Noninvasive treatment alternative for intractable startle epilepsy

    Directory of Open Access Journals (Sweden)

    Sylvia Klinkenberg

    2014-01-01

    Full Text Available We describe a treatment alternative for intractable, startle-provoked, epileptic seizures in four children aged between 8 and 14. Three of the four children had symptomatic localization-related epilepsy. They all suffered from intractable epilepsy precipitated by sudden sounds. The fact that seizures tended to occur with high frequency – more than one seizure a day – had a clear impact on daily life. Clinical seizure pattern demonstrated asymmetric tonic posturing in all four children. Three children experienced several seizure types including focal seizure onset. All children had focal neurological signs or learning disabilities or a combination of both. Our noninvasive treatment method using psychoeducational counseling and sound generators was applied in four children, resulting in a seizure frequency reduction of ≥50% in two of them.

  1. Noninvasive transcranial brain stimulation and pain.

    Science.gov (United States)

    Rosen, Allyson C; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-02-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the treatment of chronic pain. Furthermore, TMS and tDCS can be applied with other techniques, such as event-related potentials and pharmacologic manipulation, to illuminate the underlying physiologic mechanisms of normal and pathological pain. This review presents a description and overview of the uses of two major brain stimulation techniques and a listing of useful references for further study.

  2. Noninvasive Retinal Markers in Diabetic Retinopathy

    DEFF Research Database (Denmark)

    Blindbæk, Søren Leer; Torp, Thomas Lee; Lundberg, Kristian

    2017-01-01

    The retinal vascular system is the only part of the human body available for direct, in vivo inspection. Noninvasive retinal markers are important to identity patients in risk of sight-threatening diabetic retinopathy. Studies have correlated structural features like retinal vascular caliber...... and fractals with micro- and macrovascular dysfunction in diabetes. Likewise, the retinal metabolism can be evaluated by retinal oximetry, and higher retinal venular oxygen saturation has been demonstrated in patients with diabetic retinopathy. So far, most studies have been cross-sectional, but these can only...... retinopathy and diabetic macular edema. The Department of Ophthalmology at Odense University Hospital, Denmark, has a strong tradition of studying the retinal microvasculature in diabetic retinopathy. In the present paper, we demonstrate the importance of the retinal vasculature not only as predictors of long...

  3. Cardiac autonomic modulation impairments in advanced breast cancer patients.

    Science.gov (United States)

    Arab, Claudia; Vanderlei, Luiz Carlos Marques; da Silva Paiva, Laércio; Fulghum, Kyle Levi; Fristachi, Carlos Elias; Nazario, Afonso Celso Pinto; Elias, Simone; Gebrim, Luiz Henrique; Ferreira Filho, Celso; Gidron, Yori; Ferreira, Celso

    2018-05-02

    To compare cardiac autonomic modulation in early- versus advanced-stage breast cancer patients before any type of cancer treatment and investigate associated factors. This cross-sectional study included women (30-69 years old) with primary diagnosis of breast cancer and women with benign breast tumors. We evaluated cardiac modulation by heart rate variability and assessed factors of anxiety, depression, physical activity, and other relevant medical variables. Patients were divided into three groups based on TNM staging of cancer severity: early-stage cancer (n = 42), advanced-stage cancer (n = 37), or benign breast tumors to serve as a control (n = 37). We analyzed heart rate variability in time and frequency domains. The advanced-stage cancer group had lower vagal modulation than early-stage and benign groups; also, the advance-stage group had lower overall heart rate variability when compared to benign conditions. Heart rate variability was influenced by age, menopausal status, and BMI. Heart rate variability seems to be a promising, non-invasive tool for early diagnosis of autonomic dysfunction in breast cancer and detection of cardiovascular impairments at cancer diagnosis. Cardiac autonomic modulation is inversely associated with breast cancer staging.

  4. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing

    Science.gov (United States)

    Lind, Johan U.; Busbee, Travis A.; Valentine, Alexander D.; Pasqualini, Francesco S.; Yuan, Hongyan; Yadid, Moran; Park, Sung-Jin; Kotikian, Arda; Nesmith, Alexander P.; Campbell, Patrick H.; Vlassak, Joost J.; Lewis, Jennifer A.; Parker, Kevin K.

    2017-03-01

    Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro, have emerged as a promising alternative. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.

  5. Noncardiac findings on cardiac CT part I: Pros and cons.

    LENUS (Irish Health Repository)

    Killeen, Ronan P

    2012-02-01

    Cardiac computed tomography (CT) has evolved into an effective imaging technique for the evaluation of coronary artery disease in selected patients. Two distinct advantages over other noninvasive imaging modalities include its ability to evaluate directly the coronary arteries and to provide an opportunity to evaluate extracardiac structures, such as the lungs and mediastinum. Some centers reconstruct a small field of view (FOV) cropped around the heart, but a full FOV (from skin to skin in the irradiated area) is obtainable in the raw data of every scan so that clinically relevant noncardiac findings are identifiable. Debate in the scientific community has centered on the necessity for this large FOV evaluation. A review of noncardiac structures provides the opportunity to make alternative diagnoses that may account for the patient\\'s presentation or to detect important but clinically silent problems such as lung cancer. Critics argue that the yield of biopsy-proven cancers is low and that the follow-up of incidental noncardiac findings is expensive, resulting in increased radiation exposure and possibly unnecessary further testing. In this two-part review we outline the issues surrounding the concept of the noncardiac read looking for noncardiac findings on cardiac CT. Part I focuses on the pros and cons of the practice of identifying noncardiac findings on cardiac CT.

  6. Development of acute parotitis after non-invasive ventilation

    Science.gov (United States)

    Martinez, Eduardo

    2017-01-01

    A 90-year-old woman underwent laparoscopic exploratory laparotomy for evaluation of suspected mesenteric ischemia. She was promptly extubated postoperatively and transferred to the intensive care unit, where on the first postoperative day she developed hypoxemia necessitating initiation of noninvasive ventilation (NIV) with bilevel positive airway pressure (BiPAP). After 8 hours of BiPAP, she was noted to have swelling, erythema and tenderness in the right preauricular area. Ultrasound evaluation demonstrated an enlarged right parotid gland. With discontinuation of BiPAP and supportive measures, parotitis resolved within 6 days. The mechanism of NIV-induced acute parotitis likely involves transmission of positive pressure to the oral cavity, causing obstruction to salivary flow within the parotid (Stensen) duct. Conditions that increase salivary viscosity and promote salivary stasis, such as advanced age, dehydration, and absence of salivary gland stimulation due to restriction of oral intake, may render patients more susceptible to this complication. As NIV will continue to be a commonly-used modality for the treatment of acute respiratory failure, clinicians should be aware of this phenomenon. PMID:28840025

  7. Advances in cardiac magnetic resonance imaging of congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, Mieke M.P. [University of Utrecht, University Medical Center Utrecht, Department of Radiology, PO Box 85500, Utrecht (Netherlands); University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); The Interuniversity Cardiology Institute of the Netherlands (ICIN) - Netherlands Heart Institute, PO Box 19258, Utrecht (Netherlands); Breur, Johannes M.P.J. [Wilhelmina Children' s Hospital, University Medical Center Utrecht, Department of Pediatric Cardiology, PO Box 85500, Utrecht (Netherlands); Budde, Ricardo P.J.; Oorschot, Joep W.M. van; Leiner, Tim [University of Utrecht, University Medical Center Utrecht, Department of Radiology, PO Box 85500, Utrecht (Netherlands); Kimmenade, Roland R.J. van; Sieswerda, Gertjan Tj [Univ