WorldWideScience

Sample records for nonequilibrium segregation state

  1. On the nonequilibrium segregation state of a two-phase mixture in a porous column

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1996-01-01

    The problem of segregation of a two-phase multicomponent mixture under the action of thermal gradient, gravity and capillary forces is studied with respect to component distribution in a thick oil-gas-condensate reservoir. Governing equations are derived on the basis of nonequilibrium thermodynam...... thermodynamics. A steady state of the two-phase mixture with nonzero diffusion fluxes and exchange between phases is described. In the case of binary mixtures analytical formulae for saturation, component distribution and flow in the two-phase zone are obtained....

  2. Nonequilibrium Segregation in Petroleum Reservoirs

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent fi...

  3. Theoretical progress in non-equilibrium grain-boundary segregation (Ⅰ): Thermally induced non-equilibrium grain-boundary segregation and intergranular embrittlement

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The research progress of non-equilibrium grain-boundary segregation theories in the last 20 years is reviewed. Based on studies by the present authors, the critical time of non-equilibrium segregation and its impact on the development of non-equilibrium segregation theories are described. Quasi- thermo- dynamics and kinetics for thermal non-equilibrium grain boundary segregation are detailed along with a non-equilibrium grain boundary cosegregation model. The experimental validation of the theories and their application to the reversible temper embrittlement of steels and the intermediate temperature brittleness in metals and alloys are also addressed.

  4. Theoretical prosress in non-equilibrium 8rain-boundary segregation (I): Thermally induced non-equilibrium grain-boundary segregation and intersranular embrittlement

    Institute of Scientific and Technical Information of China (English)

    XU TingDong; WANG Kai; SONG ShenHua

    2009-01-01

    The research progress of non-equilibrium grain-boundary segregaUon theories in the last 20 years is reviewed. Based on studies by the present authors, the critical time of non-equilibrium segregation and its impact on the development of non-equilibrium segregation theories are described. Quasi-thermodynamics and kinetics for thermal non-equilibrium grain boundary segregation are detailed along with a non-equilibrium grain boundary cosegregation model. The experimental validation of the theories and their application to the reversible temper embrittlement of steels and the intermediate temperature brittleness in metals and alloys are also addressed.

  5. Nonequilibrium stationary states and entropy.

    Science.gov (United States)

    Gallavotti, G; Cohen, E G D

    2004-03-01

    In transformations between nonequilibrium stationary states, entropy might not be a well defined concept. It might be analogous to the "heat content" in transformations in equilibrium which is not well defined either, if they are not isochoric (i.e., do involve mechanical work). Hence we conjecture that in a nonequilibrium stationary state the entropy is just a quantity that can be transferred or created, such as heat in equilibrium, but has no physical meaning as "entropy content" as a property of the system.

  6. Experimental observation and computer simulation on non-equilibrium grain-boundary segregation kinetics of phosphorus

    Institute of Scientific and Technical Information of China (English)

    LI Li; LI Qing-fen; LIU Er-bao

    2005-01-01

    An experimental study and computer simulation on non-equilibrium grain-boundary segregation kinetics and the critical time for phosphorus in 12Cr1MoV steel(which is used in steam pipeline of ships)are put forward in this paper. The segregation level of phosphorus with solution temperature 1050℃ at the isothermal holding temperature of 540℃,have been measured at grain-boundaries. A non-equilibrium grain-boundary segregation kinetics curve of phosphorus is given. The critical time for phosphorus non-equilibrium grain-boundary segregation is about 500h at 540℃ for the experimental steel. When the holding time is longer than 1500h, non-equilibrium segregation disappears and the level of segregation reaches full equilibrium. The simulation using the kinetic equations of non-equilibrium grain-boundary segregation is in good accordance with the experimental observation for phosphorus in steel 12Cr1MoV. The non-equilibrium grain-boundary segregation kinetic model is therefore proved.

  7. Effect of dislocation configuration on non-equilibrium boron segregation during cooling

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Different densities and configurations of crystal defects were obtained in an austenitic Fe-30%Ni alloy and an ultra low carbon bainitic (ULCB) alloy by undergoing different deformations and annealing treatments at high temperatures. Boron segregation on grain boundaries and subgrain boundaries during air-cooling were revealed by means of the particle tracking autoradiography technique. It is found that non-equilibrium segregation is resisted in deformed grains after recovery and polygonization, boron-depleted zones seem to be quite clear in recrystallized grains than those in deformed original grains during cooling. Subgrain boundaries and polygonized dislocation cells have a significant effect on non-equilibrium boron segregation during the air-cooling. The results implicates that dislocation configuration is a more important factor affecting boron segregation at grain boundaries rather than the density of defects itself in the grain.

  8. Research progress in non-equilibrium grain-boundary segregation and intergranular embrittlement

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper is a summary of the research progress made by the author in the study of non-equilibrium grain-boundary segregation and intergranular embrittlement during the last 20 years. Some new concepts and new models in this research field are proposed, and their scientific backgrounds are introduced.

  9. NON-EQUILIBRIUM SOLUTE SEGREGATION TO AUSTENITIC GRAIN BOUNDARY IN FERRUM-NICKLE ALLOY

    Institute of Scientific and Technical Information of China (English)

    P. Wu; D.Y. Yu; X.L. He

    2001-01-01

    The development of non-equilibrium segregation of boron at grain boundaries in Fe-40%Ni alloy during continuous cooling process was experimentally observed with boronParticle Tracking Autoradiography (PTA) and Transmission Electron Microscopy(TEM). The samples with 10ppm boron were cooled at 2℃/s to 1040, 980, 920,860, 780 and 640℃ respectively after pre-heat treatment of 1150℃ for 15min witha Gleeble-1500 heat simulating machine, then water quenched to room temperature.The width of segregation layer and boron depletion zone, rich factor and other pc-rameters were measured by a special image analysis system. The experimental resultsof PTA show that the grain boundary segregation of boron during cooling process is adynamic process and the development of the non-equilibrium segregation experiencesthree stages: first increases rapidly from 1150 to 1040℃, then gently from 1040 to860℃, and rapidly again from 860℃ to 640℃. The width of boron depletion zoneincreases from about 11μm at 1040℃ to 26μm at 640℃. TEM observation showsthat boron precipitates exist at grain boundaries when the samples are cooled to below860℃. The experimental phenomena are briefly discussed.

  10. Energy repartition in the nonequilibrium steady state

    Science.gov (United States)

    Yan, Peng; Bauer, Gerrit E. W.; Zhang, Huaiwu

    2017-01-01

    The concept of temperature in nonequilibrium thermodynamics is an outstanding theoretical issue. We propose an energy repartition principle that leads to a spectral (mode-dependent) temperature in steady-state nonequilibrium systems. The general concepts are illustrated by analytic solutions of the classical Heisenberg spin chain connected to Langevin heat reservoirs with arbitrary temperature profiles. Gradients of external magnetic fields are shown to localize spin waves in a Wannier-Zeemann fashion, while magnon interactions renormalize the spectral temperature. Our generic results are applicable to other thermodynamic systems such as Newtonian liquids, elastic solids, and Josephson junctions.

  11. On Typicality in Nonequilibrium Steady States

    Science.gov (United States)

    Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto

    2016-08-01

    From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because " almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, " almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.

  12. Dynamic process of trace boron non-equilibrium grain boundary segregation and the effect of cooling rate

    Institute of Scientific and Technical Information of China (English)

    Ping Wu; Xinlai He; Bing Cao; Sen Chen

    2003-01-01

    The dynamic process of non-equilibrium grain boundary segregation of trace boron in Fe-40%Ni alloy during cooling andthe effect of cooling rate were investigated by boron tracking autoradiography technique. The results indicate that during coolingprocess, the amount of segregated boron on grain boundary firstly increases fast, then enters a comparatively even increasing stageand increases rapidly again at the third stage. The details of each stage varied with cooling rate are explained. When thc segregationdevelops to a certain degree, the segregated boron atoms transform fiom solute status to precipitate status.

  13. Fluctuations When Driving Between Nonequilibrium Steady States

    CERN Document Server

    Riechers, P M

    2016-01-01

    Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balance dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify constraints on excess thermodynamic quantities that ride above the NESS housekeeping background. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. Altogether, these point to universal thermodynamic laws that are immediately app...

  14. Fluctuations When Driving Between Nonequilibrium Steady States

    Science.gov (United States)

    Riechers, Paul M.; Crutchfield, James P.

    2017-08-01

    Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balanced dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify the constraints on excess heat and dissipated work necessary to control a system that is kept far from equilibrium by background, uncontrolled "housekeeping" forces. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes thermodynamic feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. We also generalize an approach recently used to determine the work dissipated when driving between functionally relevant configurations of an active energy-consuming complex system. Altogether, these results highlight universal thermodynamic laws that apply to the accessible degrees of freedom within the effective dynamic at any emergent level of hierarchical organization. By way of illustration, we analyze a voltage-gated sodium ion channel whose molecular conformational dynamics play a critical functional role in propagating action potentials in mammalian neuronal membranes.

  15. Atomic scale investigation of non-equilibrium segregation of boron in a quenched Mo-free martensitic steel.

    Science.gov (United States)

    Li, Y J; Ponge, D; Choi, P; Raabe, D

    2015-12-01

    B-added low carbon steels exhibit excellent hardenability. The reason has been frequently attributed to B segregation at prior austenite grain boundaries, which prevents the austenite to ferrite transformation and favors the formation of martensite. The segregation behavior of B at prior austenite grain boundaries is strongly influenced by processing conditions such as austenitization temperatures and cooling rates and by alloying elements such as Mo, Cr, and Nb. Here an local electrode atom probe was employed to investigate the segregation behavior of B and other alloying elements (C, Mn, Si, and Cr) in a Cr-added Mo-free martensitic steel. Similar to our previous results on a Mo-added steel, we found that in both steels B is segregated at prior austenite grain boundaries with similar excess values, whereas B is neither detected in the martensitic matrix nor at martensite-martensite boundaries at the given cooling rate of 30K/s. These results are in agreement with the literature reporting that Cr has the same effect on hardenability of steels as Mo in the case of high cooling rates. The absence of B at martensite-martensite boundaries suggests that B segregates to prior austenite grain boundaries via a non-equilibrium mechanism. Segregation of C at all boundaries such as prior austenite grain boundaries and martensite-martensite boundaries may occur by an equilibrium mechanism.

  16. Mesoscopic thermodynamics of stationary non-equilibrium states

    Energy Technology Data Exchange (ETDEWEB)

    SantamarIa-Holek, I [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Circuito exterior de Ciudad Universitaria, 04510 DF (Mexico); RubI, J M [Facultad de FIsica, Universitat de Barcelona, Av. Diagonal 647, 08028, Barcelona (Spain); Perez-Madrid, A [Facultad de FIsica, Universitat de Barcelona, Av. Diagonal 647, 08028, Barcelona (Spain)

    2005-01-01

    Thermodynamics for systems at non-equilibrium stationary states have been formulated, based on the assumption of the existence of a local equilibrium in phase space which enables one to interpret the probability density and its conjugated non-equilibrium chemical potential as mesoscopic thermodynamic variables. The probability current is obtained from the entropy production related to the probability diffusion process and leads to the formulation of the Fokker-Planck equation. For the case of a gas of Brownian particles under steady flow in the dilute and concentrated regimes, we derive non-equilibrium equations of state.

  17. Analysis of slow transitions between nonequilibrium steady states

    Science.gov (United States)

    Mandal, Dibyendu; Jarzynski, Christopher

    2016-06-01

    Transitions between nonequilibrium steady states obey a generalized Clausius inequality, which becomes an equality in the quasistatic limit. For slow but finite transitions, we show that the behavior of the system is described by a response matrix whose elements are given by a far-from-equilibrium Green-Kubo formula, involving the decay of correlations evaluated in the nonequilibrium steady state. This result leads to a fluctuation-dissipation relation between the mean and variance of the nonadiabatic entropy production, Δ {{s}\\text{na}} . Furthermore, our results extend—to nonequilibrium steady states—the thermodynamic metric structure introduced by Sivak and Crooks for analyzing minimal-dissipation protocols for transitions between equilibrium states.

  18. Local equations of state in nonequilibrium heterogeneous physicochemical systems

    Science.gov (United States)

    Tovbin, Yu. K.

    2017-03-01

    Equations describing local thermal and caloric equations of state in heterogeneous systems at any degree of their states' deviation from equilibrium are derived. The state of a system is described by equations of the transfer of mixture components; these generalize the equations of classical non-equilibrium thermodynamics for strongly nonequilibrium processes. The contributions from reactions and external fields are taken into account. The equations are derived using the lattice gas model with discrete molecular distributions in space (on a scale comparable to molecular dimensions) and continuous molecular distributions (at short distances inside cells) during their translational and vibrational motions. For simplicity, it is assumed that distinctions between the sizes of mixture components are small. Contributions from potential functions of intermolecular interaction (of the Lennard-Jones type) to some coordination spheres are considered. The theory provides a unified description of the dynamics of distributions of concentrations and pair functions of mixture components in three aggregate states, and at their interfaces. Universal expressions for the local components of the pressure tensor and internal energy inside multicomponent bulk phases and at their interfaces are obtained. Local components of the pressure tensor and the internal energy are universally expressed through local unary and pair distribution functions (DFs) in any nonequilibrium state. The time evolution of the unary and pair DFs themselves is determined from the derived system of equations of mass, momentum, and energy transfer that ensure the transition of the system from a strongly nonequilibrium state to both the local equilibrium state described within traditional nonequilibrium thermodynamics and the complete thermodynamic equilibrium state postulated by classical thermodynamics.

  19. Fluctuation theorems and orbital magnetism in nonequilibrium state

    Indian Academy of Sciences (India)

    A M Jayannavar; Mamata Sahoo

    2008-02-01

    We study Langevin dynamics of a driven charged particle in the presence as well as in the absence of magnetic field. We discuss the validity of various work fluctuation theorems using different model potentials and external drives. We also show that one can generate an orbital magnetic moment in a nonequilibrium state which is absent in equilibrium.

  20. Principle of Entropy Maximization for Nonequilibrium Steady States

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    2002-01-01

    The goal of this contribution is to find out to what extent the principle of entropy maximization, which serves as a basis for the equilibrium thermodynamics, may be generalized onto non-equilibrium steady states. We prove a theorem that, in the system of thermodynamic coordinates, where entropy...

  1. SRB states and nonequilibrium statistical mechanics close to equilibrium

    CERN Document Server

    Gallavotti, G; Gallavotti, Giovannni; Ruelle, David

    1997-01-01

    Nonequilibrium statistical mechanics close to equilibrium is studied using SRB states and a formula for their derivatives with respect to parameters. We write general expressions for the thermodynamic fluxes (or currents) and the transport coefficients, generalizing previous results. In this framework we give a general proof of the Onsager reciprocity relations.

  2. Identical mechanism of isochronal and isothermal embrittlement in Ni(Bi) alloy: Thermo-induced non-equilibrium grain-boundary segregation of Bi

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lei, E-mail: zhenglei_ustb@sina.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Institute of Materials Physics, University of Muenster, 48149 Muenster (Germany); Chellali, Reda; Schlesiger, Ralf [Institute of Materials Physics, University of Muenster, 48149 Muenster (Germany); Meng, Ye [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Baither, Dietmar; Schmitz, Guido [Institute of Materials Physics, University of Muenster, 48149 Muenster (Germany)

    2015-05-15

    Highlights: • Both isochronal and isothermal plasticity of Ni(Bi) alloy show minima. • Existing interpretations for isochronal and isothermal embrittlement are inadequate. • Both embrittlement is caused by thermo-induced non-equilibrium grain-boundary segregation of Bi. - Abstract: Isochronal and isothermal plasticity after thermal pre-treatments are obtained by tensile tests to characterize the embrittling behaviors of Ni(Bi) alloy. Both isochronal and isothermal plasticity show evident minima. Fractography observed by scanning electron microscopy displays intergranular fracture for samples of low plasticity. The microstructure is found to be free of precipitates within grains and at grain boundaries by focused ion beam and transmission electron microscopy. Atom probe analysis indicates a strong tendency of Bi segregation to grain boundaries. By these results, the existing interpretations are discussed to be inadequate and both embrittlement are confirmed to be identical in mechanism, i.e. thermo-induced non-equilibrium grain-boundary segregation of Bi.

  3. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    Science.gov (United States)

    Raz, O.; Subaşı, Y.; Jarzynski, C.

    2016-04-01

    Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.

  4. Nonequilibrium Markov state modeling of the globule-stretch transition

    Science.gov (United States)

    Knoch, Fabian; Speck, Thomas

    2017-01-01

    We describe a systematic approach to construct coarse-grained Markov state models from molecular dynamics data of systems driven into a nonequilibrium steady state. We apply this method to study the globule-stretch transition of a single tethered model polymer in shear flow. The folding and unfolding rates of the coarse-grained model agree with the original detailed model. We demonstrate that the folding and unfolding proceeds through the same narrow region of configuration space but along different cycles.

  5. Macroscopic heat transport equations and heat waves in nonequilibrium states

    Science.gov (United States)

    Guo, Yangyu; Jou, David; Wang, Moran

    2017-03-01

    Heat transport may behave as wave propagation when the time scale of processes decreases to be comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the Cattaneo-Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves is obtained through a perturbation solution to the heat differential equation, and found to be intimately related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium states are devised to measure the coefficients in the generalized equation, which may throw light on understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.

  6. Typical pure nonequilibrium steady states and irreversibility for quantum transport.

    Science.gov (United States)

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's.

  7. Typical pure nonequilibrium steady states and irreversibility for quantum transport

    Science.gov (United States)

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's.

  8. Nonequilibrium Steady State Thermodynamics and Fluctuations for Stochastic Systems

    Science.gov (United States)

    Taniguchi, Tooru; Cohen, E. G. D.

    2008-02-01

    We use the work done on and the heat removed from a system to maintain it in a nonequilibrium steady state for a thermodynamic-like description of such a system as well as of its fluctuations. Based on an extended Onsager-Machlup theory for nonequilibrium steady states we indicate two ambiguities, not present in an equilibrium state, in defining such work and heat: one due to a non-uniqueness of time-reversal procedures and another due to multiple possibilities to separate heat into work and an energy difference in nonequilibrium steady states. As a consequence, for such systems, the work and heat satisfy multiple versions of the first and second laws of thermodynamics as well as of their fluctuation theorems. Unique laws and relations appear only to be obtainable for concretely defined systems, using physical arguments to choose the relevant physical quantities. This is illustrated on a number of systems, including a Brownian particle in an electric field, a driven torsion pendulum, electric circuits and an energy transfer driven by a temperature difference.

  9. Factorised steady states and condensation transitions in nonequilibrium systems

    Indian Academy of Sciences (India)

    M R Evans

    2005-06-01

    Systems driven out of equilibrium can often exhibit behaviour not seen in systems in thermal equilibrium – for example phase transitions in one-dimensional systems. In this talk I will review a simple model of a nonequilibrium system known as the `zero-range process' and its recent developments. The nonequilibrium stationary state of this model factorises and this property allows a detailed analysis of several `condensation' transitions wherein a finite fraction of the constituent particles condenses onto a single lattice site. I will then consider a more general class of mass transport models, encompassing continuous mass variables and discrete time updating, and present a necessary and sufficient condition for the steady state to factorise. The property of factorisation again allows an analysis of the condensation transitions which may occur.

  10. Extending the definition of entropy to nonequilibrium steady states.

    Science.gov (United States)

    Ruelle, David P

    2003-03-18

    We study the nonequilibrium statistical mechanics of a finite classical system subjected to nongradient forces xi and maintained at fixed kinetic energy (Hoover-Evans isokinetic thermostat). We assume that the microscopic dynamics is sufficiently chaotic (Gallavotti-Cohen chaotic hypothesis) and that there is a natural nonequilibrium steady-state rho(xi). When xi is replaced by xi + deltaxi, one can compute the change deltarho of rho(xi) (linear response) and define an entropy change deltaS based on energy considerations. When xi is varied around a loop, the total change of S need not vanish: Outside of equilibrium the entropy has curvature. However, at equilibrium (i.e., if xi is a gradient) we show that the curvature is zero, and that the entropy S(xi + deltaxi) near equilibrium is well defined to second order in deltaxi.

  11. Nonequilibrium States of a Quenched Bose Gas

    Science.gov (United States)

    Ling, Hong; Kain, Ben

    2014-05-01

    Yin and Radzihovsky [Phys. Rev. A 88, 063611 (2014)] recently developed a self-consistent extension of a Bogoliubov theory, in which the condensate number density, nc, is treated as a mean field that changes with time in order to analyze a JILA experiment by Makotyn et al. [Nature Physics doi:10.1038/nphys2850 (2014)] on a 85Rb Bose gas following a deep quench to a large scattering length. We apply this theory to construct a set of closed equations that highlight the role of dnc/dt, which is to induce an effective interaction between quasiparticles. We show analytically that such a system supports a steady state characterized by a constant condensate density and a steady but periodically changing momentum distribution, whose time average is described exactly by the generalized Gibbs ensemble. We discuss how the dnc/dt-induced effective interaction, which cannot be ignored on the grounds of the adiabatic approximation for modes near the gapless Goldstone mode, can affect experimentally measurable quantities such as Tan's contact. This work is supported in part by the US Army Research Office under Grant No. W911NF-10-1-0096 and in part by the US National Science Foundation under Grant No. PHY11-25915.

  12. Scalar Fluctuations from Extended Non-equilibrium Thermodynamic States

    Science.gov (United States)

    Nettleton, R. E.

    1985-10-01

    In the framework of extended non-equilibrium thermodynamics, the local non-equilibrium state of a liquid is described by the density, temperature, and a structural variable, ζ, and its rate-of-change. ζ is the ensemble average of a function A (Q) of the configuration co-ordinates, and it is assumed to relax to local equilibrium in a time short compared to the time for diffusion of an appreciable number of particles into the system. By a projection operator technique of Grabert, an equation is derived from the Liouville equation for the distribution of fluctuations in TV, the particle number, and in A and Ȧ. An approximate solution is proposed which exhibits nonequilibrium corrections to the Einstein function in the form of a sum of thermodynamic forces. For a particular structural model, the corresponding non-Einstein contributions to correlation functions are estimated to be very small. For variables of the type considered here, the thermodynamic pressure is found to equal the pressure trace.

  13. Mapping current fluctuations of stochastic pumps to nonequilibrium steady states

    Science.gov (United States)

    Rotskoff, Grant M.

    2017-03-01

    We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production.

  14. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases

    Science.gov (United States)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  15. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.

    Science.gov (United States)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  16. Nonequilibrium many-body steady states via Keldysh formalism

    Science.gov (United States)

    Maghrebi, Mohammad F.; Gorshkov, Alexey V.

    2016-01-01

    Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under nonequilibrium dynamics. While these states and their phase transitions have been studied extensively with mean-field theory, the validity of the mean-field approximation has not been systematically investigated. In this paper, we employ a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in a variety of models. In all cases, a complete description via the Keldysh formalism indicates a partial or complete failure of the mean-field analysis. Furthermore, we find that an effective temperature emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is generically described by a thermodynamic universality class.

  17. Multiple nonequilibrium steady states for one-dimensional heat flow.

    Science.gov (United States)

    Zhang, F; Isbister, D J; Evans, D J

    2001-08-01

    A nonequilibrium molecular dynamics model of heat flow in one-dimensional lattices is shown to have multiple steady states for any fixed heat field strength f(e) ranging from zero to a certain positive value. We demonstrate that, depending on the initial conditions, there are at least two possibilities for the system's evolution: (i) formation of a stable traveling wave (soliton), and (ii) chaotic motion throughout the entire simulation. The percentage of the soliton-generating trajectories is zero for small field strength f(e), but increases sharply to unity over a critical region of the parameter f(e).

  18. Nonequilibrium steady-state circulation and heat dissipation functional.

    Science.gov (United States)

    Qian, H

    2001-08-01

    A nonequilibrium steady-state (NESS), different from an equilibrium, is sustained by circular balance rather than detailed balance. The circular fluxes are driven by energy input and heat dissipation, accompanied by a positive entropy production. Based on a Master equation formalism for NESS, we show the circulation is intimately related to the recently studied Gallavotti-Cohen symmetry of heat dissipation functional, which in turn suggests a Boltzmann's formulalike relation between rate constants and energy in NESS. Expanding this unifying view on NESS to diffusion is discussed.

  19. The effect of pure state structure on nonequilibrium dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Newman, C M; Stein, D L [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States)], E-mail: newman@cims.nyu.edu, E-mail: daniel.stein@nyu.edu

    2008-06-18

    Motivated by short-range Ising spin glasses, we review some rigorous results and their consequences for the relation between the number/nature of equilibrium pure states and nonequilibrium dynamics. Two of the consequences for spin glass dynamics following an instantaneous deep quench to a temperature with broken spin flip symmetry are: (1) almost all initial configurations lie on the boundary between the basins of attraction of multiple pure states; (2) unless there are uncountably many pure states with almost all pairs having zero overlap, there can be no equilibration to a pure state as time t {yields} {infinity}. We discuss the relevance of these results to the difficulty of equilibration of spin glasses. We also review some results concerning the 'nature versus nurture' problem of whether the large-t behavior of both ferromagnets and spin glasses following a deep quench is determined more by the initial configuration (nature) or by the dynamics realization (nurture)

  20. Nonequilibrium Equation of State in Suspensions of Active Colloids

    Science.gov (United States)

    Ginot, Félix; Theurkauff, Isaac; Levis, Demian; Ybert, Christophe; Bocquet, Lydéric; Berthier, Ludovic; Cottin-Bizonne, Cécile

    2015-01-01

    Active colloids constitute a novel class of materials composed of colloidal-scale particles locally converting chemical energy into motility, mimicking micro-organisms. Evolving far from equilibrium, these systems display structural organizations and dynamical properties distinct from thermalized colloidal assemblies. Harvesting the potential of this new class of systems requires the development of a conceptual framework to describe these intrinsically nonequilibrium systems. We use sedimentation experiments to probe the nonequilibrium equation of state of a bidimensional assembly of active Janus microspheres and conduct computer simulations of a model of self-propelled hard disks. Self-propulsion profoundly affects the equation of state, but these changes can be rationalized using equilibrium concepts. We show that active colloids behave, in the dilute limit, as an ideal gas with an activity-dependent effective temperature. At finite density, increasing the activity is similar to increasing adhesion between equilibrium particles. We quantify this effective adhesion and obtain a unique scaling law relating activity and effective adhesion in both experiments and simulations. Our results provide a new and efficient way to understand the emergence of novel phases of matter in active colloidal suspensions.

  1. Nonequilibrium Equation of State in Suspensions of Active Colloids

    Directory of Open Access Journals (Sweden)

    Félix Ginot

    2015-01-01

    Full Text Available Active colloids constitute a novel class of materials composed of colloidal-scale particles locally converting chemical energy into motility, mimicking micro-organisms. Evolving far from equilibrium, these systems display structural organizations and dynamical properties distinct from thermalized colloidal assemblies. Harvesting the potential of this new class of systems requires the development of a conceptual framework to describe these intrinsically nonequilibrium systems. We use sedimentation experiments to probe the nonequilibrium equation of state of a bidimensional assembly of active Janus microspheres and conduct computer simulations of a model of self-propelled hard disks. Self-propulsion profoundly affects the equation of state, but these changes can be rationalized using equilibrium concepts. We show that active colloids behave, in the dilute limit, as an ideal gas with an activity-dependent effective temperature. At finite density, increasing the activity is similar to increasing adhesion between equilibrium particles. We quantify this effective adhesion and obtain a unique scaling law relating activity and effective adhesion in both experiments and simulations. Our results provide a new and efficient way to understand the emergence of novel phases of matter in active colloidal suspensions.

  2. Nonequilibrium Steady States of a Stochastic Model System.

    Science.gov (United States)

    Zhang, Qiwei

    We study the nonequilibrium steady state of a stochastic lattice gas model, originally proposed by Katz, Lebowitz and Spohn (Phys. Rev. B 28: 1655 (1983)). Firstly, we solve the model on some small lattices exactly in order to see the general dependence of the steady state upon different parameters of the model. Nextly, we derive some analytical results for infinite lattice systems by taking some suitable limits. We then present some renormalization group results for the continuum version of the model via field theoretical techniques, the supersymmetry of the critical dynamics in zero field is also explored. Finally, we report some very recent 3-D Monte Carlo simulation results, which have been obtained by applying Multi-Spin-Coding techniques on a CDC vector supercomputer - Cyber 205 at John von Neumann Center.

  3. Manifest and Subtle Cyclic Behavior in Nonequilibrium Steady States

    CERN Document Server

    Zia, R K P; Mandal, Dibyendu; Fox-Kemper, Baylor

    2016-01-01

    Many interesting phenomena in nature are described by stochastic processes with irreversible dynamics. To model these phenomena, we focus on a master equation or a Fokker-Planck equation with rates which violate detailed balance. When the system settles in a stationary state, it will be a nonequilibrium steady state (NESS), with time independent probability distribution as well as persistent probability current loops. The observable consequences of the latter are explored. In particular, cyclic behavior of some form must be present: some are prominent and manifest, while others are more obscure and subtle. We present a theoretical framework to analyze such properties, introducing the notion of "probability angular momentum" and its distribution. Using several examples, we illustrate the manifest and subtle categories and how best to distinguish between them. These techniques can be applied to reveal the NESS nature of a wide range of systems in a large variety of areas. We illustrate with one application: var...

  4. Entanglement structure of non-equilibrium steady states

    CERN Document Server

    Mahajan, Raghu; Mumford, Sam; Tubman, Norm; Swingle, Brian

    2016-01-01

    We study the problem of calculating transport properties of interacting quantum systems, specifically electrical and thermal conductivities, by computing the non-equilibrium steady state (NESS) of the system biased by contacts. Our approach is based on the structure of entanglement in the NESS. With reasonable physical assumptions, we show that a NESS close to local equilibrium is lightly entangled and can be represented via a computationally efficient tensor network. We further argue that the NESS may be found by dynamically evolving the system within a manifold of appropriate low entanglement states. A physically realistic law of dynamical evolution is Markovian open system dynamics, or the Lindblad equation. We explore this approach in a well-studied free fermion model where comparisons with the literature are possible. We study both electrical and thermal currents with and without disorder, and compute entropic quantities such as mutual information and conditional mutual information. We conclude with a di...

  5. Stationary Distribution and Thermodynamic Relation in Nonequilibrium Steady States

    KAUST Repository

    Komatsu, Teruhisa S.

    2010-01-01

    We describe our recent attempts toward statistical mechanics and thermodynamics for nonequilibrium steady states (NESS) realized, e.g., in a heat conducting system. Our first result is a simple expression of the probability distribution (of microscopic states) of a NESS. Our second result is a natural extension of the thermodynamic Clausius relation and a definition of an accompanying entropy in NESS. This entropy coincides with the normalization constant appearing in the above mentioned microscopic expression of NESS, and has an expression similar to the Shannon entropy (with a further symmetrization). The NESS entropy proposed here is a clearly defined measurable quantity even in a system with a large degrees of freedom. We numerically measure the NESS entropy in hardsphere fluid systems with a heat current, by observing energy exchange between the system and the heat baths when the temperatures of the baths are changed according to specified protocols.

  6. Non-equilibrium steady states in supramolecular polymerization

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.

    2017-06-01

    Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.

  7. Determination of the Nonequilibrium Steady State Emerging from a Defect

    Science.gov (United States)

    Bertini, Bruno; Fagotti, Maurizio

    2016-09-01

    We consider the nonequilibrium time evolution of a translationally invariant state under a Hamiltonian with a localized defect. We discern the situations where a light cone spreads out from the defect and separates the system into regions with macroscopically different properties. We identify the light cone and propose a procedure to obtain a (quasi)stationary state describing the late time dynamics of local observables. As an explicit example, we study the time evolution generated by the Hamiltonian of the transverse-field Ising chain with a local defect that cuts the interaction between two sites (a quench of the boundary conditions alongside a global quench). We solve the dynamics exactly and show that the late time properties can be obtained with the general method proposed.

  8. Nonequilibrium steady states in a model for prebiotic evolution

    Science.gov (United States)

    Wynveen, A.; Fedorov, I.; Halley, J. W.

    2014-02-01

    Some statistical features of steady states of a Kauffman-like model for prebiotic evolution are reported from computational studies. We postulate that the interesting "lifelike" states will be characterized by a nonequilibrium distribution of species and a time variable species self-correlation function. Selecting only such states from the population of final states produced by the model yields the probability of the appearance of such states as a function of a parameter p of the model. p is defined as the probability that a possible reaction in the the artificial chemistry actually appears in the network of chemical reactions. Small p corresponds to sparse networks utilizing a small fraction of the available reactions. We find that the probability of the appearance of such lifelike states exhibits a maximum as a function of p: at large p, most final states are in chemical equilibrium and hence are excluded by our criterion. At very small p, the sparseness of the network makes the probability of formation of any nontrivial dynamic final state low, yielding a low probability of production of lifelike states in this limit as well. We also report results on the diversity of the lifelike states (as defined here) that are produced. Repeated starts of the model evolution with different random number seeds in a given reaction network lead to final lifelike states which have a greater than random likelihood of resembling one another. Thus a form of "convergence" is observed. On the other hand, in different reaction networks with the same p, lifelike final states are statistically uncorrelated. In summary, the main results are (1) there is an optimal p or "sparseness" for production of lifelike states in our model—neither very dense nor very sparse networks are optimal—and (2) for a given p or sparseness, the resulting lifelike states can be extremely different. We discuss some possible implications for studies of the origin of life.

  9. Relativistic Hydrodynamics and Non-Equilibrium Steady States

    CERN Document Server

    Spillane, Michael

    2015-01-01

    We review recent interest in the relativistic Riemann problem as a method for generating a non-equilibrium steady state. In the version of the problem under con- sideration, the initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The new double shock solutions are in contrast with older solutions that involve one shock and one rarefaction wave. We use numerical simulations to show that the older solutions are preferred. Briefly we discuss the effects of a conserved charge. Finally, we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids.

  10. Thermodynamics and phase coexistence in nonequilibrium steady states

    Science.gov (United States)

    Dickman, Ronald

    2016-09-01

    I review recent work focussing on whether thermodynamics can be extended to nonequilibrium steady states (NESS), in particular, the possibility of consistent definitions of temperature T and chemical potential μ for NESS. The testing-grounds are simple lattice models with stochastic dynamics. Each model includes a drive that maintains the system far from equilibrium, provoking particle and/or energy flows; for zero drive the system relaxes to equilibrium. Analysis and numerical simulation show that for spatially uniform NESS, consistent definitions of T and μ are possible via coexistence with an appropriate reservoir, if (and in general only if) a particular kind of rate (that proposed by Sasa and Tasaki) is used for exchanges of particles and energy between systems. The program fails, however, for nonuniform systems. The functions T and μ describing isolated phases cannot be used to predict the properties of coexisting phases in a single, phase-separated system.

  11. Computational complexity of nonequilibrium steady states of quantum spin chains

    Science.gov (United States)

    Marzolino, Ugo; Prosen, Tomaž

    2016-03-01

    We study nonequilibrium steady states (NESS) of spin chains with boundary Markovian dissipation from the computational complexity point of view. We focus on X X chains whose NESS are matrix product operators, i.e., with coefficients of a tensor operator basis described by transition amplitudes in an auxiliary space. Encoding quantum algorithms in the auxiliary space, we show that estimating expectations of operators, being local in the sense that each acts on disjoint sets of few spins covering all the system, provides the answers of problems at least as hard as, and believed by many computer scientists to be much harder than, those solved by quantum computers. We draw conclusions on the hardness of the above estimations.

  12. A theory of nonequilibrium steady states in quantum chaotic systems

    Science.gov (United States)

    Wang, Pei

    2017-09-01

    Nonequilibrium steady state (NESS) is a quasistationary state, in which exist currents that continuously produce entropy, but the local observables are stationary everywhere. We propose a theory of NESS under the framework of quantum chaos. In an isolated quantum system whose density matrix follows a unitary evolution, there exist initial states for which the thermodynamic limit and the long-time limit are noncommutative. The density matrix \\hat ρ of these states displays a universal structure. Suppose that \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketα and \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketβ are different eigenstates of the Hamiltonian with energies E_α and E_β , respectively. \\renewcommand{\\bra}[1]{} \\braα\\hat ρ \\ketβ behaves as a random number which has zero mean. In thermodynamic limit, the variance of \\renewcommand{\\bra}[1]{} \\braα\\hat ρ \\ketβ is a smooth function of ≤ft\\vert E_α-E_β\\right\\vert , scaling as 1/≤ft\\vert E_α-E_β\\right\\vert 2 in the limit ≤ft\\vert E_α-E_β\\right\\vert \\to 0 . If and only if this scaling law is obeyed, the initial state evolves into NESS in the long time limit. We present numerical evidence of our hypothesis in a few chaotic models. Furthermore, we find that our hypothesis indicates the eigenstate thermalization hypothesis (ETH) for current operators in a bipartite system.

  13. Ising game: Nonequilibrium steady states of resource-allocation systems

    Science.gov (United States)

    Xin, C.; Yang, G.; Huang, J. P.

    2017-04-01

    Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.

  14. Nonequilibrium stationary states and phase transitions in directed Ising models

    Science.gov (United States)

    Godrèche, Claude; Bray, Alan J.

    2009-12-01

    We study the nonequilibrium properties of directed Ising models with non-conserved dynamics, in which each spin is influenced by only a subset of its nearest neighbours. We treat the following models: (i) the one-dimensional chain; (ii) the two-dimensional square lattice; (iii) the two-dimensional triangular lattice and (iv) the three-dimensional cubic lattice. We raise and answer the question: (a) under what conditions is the stationary state described by the equilibrium Boltzmann-Gibbs distribution? We show that, for models (i), (ii) and (iii), in which each spin 'sees' only half of its neighbours, there is a unique set of transition rates, namely with exponential dependence in the local field, for which this is the case. For model (iv), we find that any rates satisfying the constraints required for the stationary measure to be Gibbsian should satisfy detailed balance, ruling out the possibility of directed dynamics. We finally show that directed models on lattices of coordination number z>=8 with exponential rates cannot accommodate a Gibbsian stationary state. We conjecture that this property extends to any form of the rates. We are thus led to the conclusion that directed models with Gibbsian stationary states only exist in dimensions one and two. We then raise the question: (b) do directed Ising models, augmented by Glauber dynamics, exhibit a phase transition to a ferromagnetic state? For the models considered above, the answers are open problems, with the exception of the simple cases (i) and (ii). For Cayley trees, where each spin sees only the spins further from the root, we show that there is a phase transition provided the branching ratio, q, satisfies q>=3.

  15. Non-equilibrium plasma experiments at The Pennsylvania State University

    Science.gov (United States)

    Knecht, Sean; Bilen, Sven; Micci, Michael

    2013-10-01

    The authors have recently established the capability at The Pennsylvania State University to generate non-equilibrium plasma in atmospheric-pressure air and liquids such as water and saline. The plasma is generated using a high-voltage pulser (Pacific-Electronics PT-55), which is capable of voltage pulses of 75-ns width, peak voltage >50 kV, with rise-times on the order of nanoseconds. The electrodes are tungsten wires of various diameters (50 μm, 175 μm, 254 μm) insulated with nylon tubing. The spacing of the electrodes is controlled with translating mounts with resolution of tens of microns. Spectroscopy (Ocean Optics Model HR2000) is presently used for line identification only. Current and voltage vs. time will be measured with a 500-MHz bandwidth oscilloscope, a high-voltage probe and a shunt resistor connected to the ground side of the circuit. Research directions presently being pursued include the effects of solution electrical conductivity on plasma production and propellant ignition studies. Data from several types of experiments will be presented.

  16. Non-equilibrium steady states: fluctuations and large deviations of the density and of the current

    Science.gov (United States)

    Derrida, Bernard

    2007-07-01

    These lecture notes give a short review of methods such as the matrix ansatz, the additivity principle or the macroscopic fluctuation theory, developed recently in the theory of non-equilibrium phenomena. They show how these methods allow us to calculate the fluctuations and large deviations of the density and the current in non-equilibrium steady states of systems like exclusion processes. The properties of these fluctuations and large deviation functions in non-equilibrium steady states (for example, non-Gaussian fluctuations of density or non-convexity of the large deviation function which generalizes the notion of free energy) are compared with those of systems at equilibrium.

  17. Dissipative dynamics of a quantum two-state system in presence of nonequilibrium quantum noise

    Science.gov (United States)

    Mann, Niklas; Brüggemann, Jochen; Thorwart, Michael

    2016-12-01

    We analyze the real-time dynamics of a quantum two-state system in the presence of nonequilibrium quantum fluctuations. The latter are generated by a coupling of the two-state system to a single electronic level of a quantum dot which carries a nonequilibrium tunneling current. We restrict to the sequential tunneling regime and calculate the dynamics of the two-state system, of the dot population, and of the nonequilibrium charge current on the basis of a diagrammatic perturbative method valid for a weak tunneling coupling. We find a nontrivial dependence of the relaxation and dephasing rates of the two-state system due to the nonequilibrium fluctuations which is directly linked to the structure of the unperturbed central system. In addition, a Heisenberg-Langevin-equation of motion allows us to calculate the correlation function of the nonequilibrium fluctuations. By this, we obtain a generalized nonequilibrium fluctuation relation which includes the equilibrium fluctuation-dissipation theorem in the limit of zero transport voltage. A straightforward extension to the case with a time-periodic ac voltage is shown.

  18. Steady-State Density Functional Theory for Non-equilibrium Quantum Systems

    Science.gov (United States)

    Shuanglong, Liu

    Recently, electron transport properties of molecular junctions under finite bias voltages have attracted a lot of attention because of the potential application of molecular electronic devices. When a molecular junction is under zero bias voltage at zero temperature, it is in equilibrium ground state and all its properties can be solved by ground-state density functional theory (GS-DFT) where ground-state electron density determines everything. Under finite bias voltage, the molecular junction is in non-equilibrium steady state. According to Hershfield's non-equilibrium statistics, a system in non-equilibrium steady state corresponds to an effective equilibrium system. This correspondence provides the basis for the steady-state density functional theory (SS-DFT) which will be developed in this thesis. (Abstract shortened by UMI.).

  19. Transition state theory: a generalization to nonequilibrium systems with power-law distributions

    CERN Document Server

    Jiulin, Du

    2011-01-01

    Transition state theory (TST) is generalized for the nonequilibrium system with power-law distributions. The stochastic dynamics that gives rise to the power-law distributions for the reaction coordinate and momentum is modeled by the Langevin equations and corresponding Fokker-Planck equations. It is assumed that the system far away from equilibrium has not to relax to a thermal equilibrium state with Boltzmann-Gibbs distribution, but asymptotically approaches to a nonequilibrium stationary-state with power-law distributions. Thus, we obtain a generalization of TST rates to nonequilibrium systems with power-law distributions. Furthermore, we derive the generalized TST rate constants for one-dimension and n-dimension Hamiltonian systems away from equilibrium, and receive a generalized Arrhenius rate for the system with power-law distributions.

  20. Open Markov processes: A compositional perspective on non-equilibrium steady states in biology

    CERN Document Server

    Pollard, Blake S

    2016-01-01

    In recent work, Baez, Fong and the author introduced a framework for describing Markov processes equipped with a detailed balanced equilibrium as open systems of a certain type. These `open Markov processes' serve as the building blocks for more complicated processes. In this paper, we describe the potential application of this framework in the modeling of biological systems as open systems maintained away from equilibrium. We show that non-equilibrium steady states emerge in open systems of this type, even when the rates of the underlying process are such that a detailed balanced equilibrium is permitted. It is shown that these non-equilibrium steady states minimize a quadratic form which we call `dissipation.' In some circumstances, the dissipation is approximately equal to the rate of change of relative entropy plus a correction term. On the other hand, Prigogine's principle of minimum entropy production generally fails for non-equilibrium steady states. We use a simple model of membrane transport to illus...

  1. Variational Principle for Non-Equilibrium Steady States of the XX Model

    CERN Document Server

    Matsui, T

    2003-01-01

    We show that non-equilibrium steady states of the one dimensional exactly solved XY model can be characterized by the variational principle of free energy of a long range interaction and that they cannot be a KMS state for any C$^*$-dynamical system.

  2. "Brown" at 62: School Segregation by Race, Poverty and State

    Science.gov (United States)

    Orfield, Gary; Ee, Jongyeon; Frankenberg, Erica; Siegel-Hawley, Genevieve

    2016-01-01

    As the anniversary of "Brown v. Board of Education" decision arrives again without any major initiatives to mitigate spreading and deepening segregation in the nation's schools, the Civil Rights Project adds to a growing national discussion with a research brief drawn from a much broader study of school segregation to be published in…

  3. Renormalized dispersion relations of β-Fermi-Pasta-Ulam chains in equilibrium and nonequilibrium states

    Science.gov (United States)

    Jiang, Shi-xiao W.; Lu, Hai-hao; Zhou, Douglas; Cai, David

    2014-09-01

    We study the nonlinear dispersive characteristics in β-Fermi-Pasta-Ulam (FPU) chains in both thermal equilibrium and nonequilibrium steady state. By applying a multiple scale analysis to the FPU chain, we analyze the contribution of the trivial and nontrivial resonance to the renormalization of the dispersion relation. Our results show that the contribution of the nontrivial resonance remains significant to the renormalization, in particular, in strongly nonlinear regimes. We contrast our results with the dispersion relations obtained from the Zwanzig-Mori formalism and random phase approximation to further illustrate the role of resonances. Surprisingly, these theoretical dispersion relations can be generalized to describe dispersive characteristics well at the nonequilibrium steady state of the FPU chain with driving-damping in real space. Through numerical simulation, we confirm that the theoretical renormalized dispersion relations are valid for a wide range of nonlinearities in thermal equilibrium as well as in nonequilibrium steady state. We further show that the dispersive characteristics persist in nonequilibrium steady state driven-damped in Fourier space.

  4. Renormalized dispersion relations of β-Fermi-Pasta-Ulam chains in equilibrium and nonequilibrium states.

    Science.gov (United States)

    Jiang, Shi-xiao W; Lu, Hai-hao; Zhou, Douglas; Cai, David

    2014-09-01

    We study the nonlinear dispersive characteristics in β-Fermi-Pasta-Ulam (FPU) chains in both thermal equilibrium and nonequilibrium steady state. By applying a multiple scale analysis to the FPU chain, we analyze the contribution of the trivial and nontrivial resonance to the renormalization of the dispersion relation. Our results show that the contribution of the nontrivial resonance remains significant to the renormalization, in particular, in strongly nonlinear regimes. We contrast our results with the dispersion relations obtained from the Zwanzig-Mori formalism and random phase approximation to further illustrate the role of resonances. Surprisingly, these theoretical dispersion relations can be generalized to describe dispersive characteristics well at the nonequilibrium steady state of the FPU chain with driving-damping in real space. Through numerical simulation, we confirm that the theoretical renormalized dispersion relations are valid for a wide range of nonlinearities in thermal equilibrium as well as in nonequilibrium steady state. We further show that the dispersive characteristics persist in nonequilibrium steady state driven-damped in Fourier space.

  5. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    Science.gov (United States)

    Yeh, Leehwa

    1993-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.

  6. Stochastic linearization of turbulent dynamics of dispersive waves in equilibrium and non-equilibrium state

    Science.gov (United States)

    Jiang, Shixiao W.; Lu, Haihao; Zhou, Douglas; Cai, David

    2016-08-01

    Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β-Fermi-Pasta-Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems.

  7. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Kustova, Elena V., E-mail: e.kustova@spbu.ru [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: kremer@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)

    2014-12-05

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.

  8. Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions

    CERN Document Server

    Jin, Xiao

    2016-01-01

    Nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but much less investigated under non-isothermal conditions. However, once the heat exchange between subsystems is rather slow, the isothermal assumption of the whole system meets great challenge, which is indeed the case inside many kinds of living organisms. Here we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics, in the master-equation models, to the situation in which the temperatures of subsystems can be far from uniform. We first obtain a new thermodynamic relation between the chemical reaction rates and thermodynamic potentials under such a non-isothermal circumstances, which immediately implies simply applying the isothermal transition-state rate formula for each chemical reaction in terms of only the reactants' temperature, is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction-rate formulas which not only obey the new ...

  9. How should we understand non-equilibrium many-body steady states?

    Science.gov (United States)

    Maghrebi, Mohammad; Gorshkov, Alexey

    : Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics. In this talk, I use a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in such models. I show that an effective temperature generically emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is described by a thermodynamic universality class. In the end, I will also discuss possibilities that go beyond the paradigm of an effective thermodynamic behavior.

  10. Evanescent states and nonequilibrium in driven superconducting nanowires

    Science.gov (United States)

    Vercruyssen, N.; Verhagen, T. G. A.; Flokstra, M. G.; Pekola, J. P.; Klapwijk, T. M.

    2012-06-01

    We study the nonlinear response of current transport in a superconducting diffusive nanowire between normal reservoirs. We demonstrate theoretically and experimentally the existence of two different superconducting states appearing when the wire is driven out of equilibrium by an applied bias, called the global and bimodal superconducting states. The different states are identified by using two-probe measurements of the wire, and measurements of the local density of states with tunneling probes. The analysis is performed within the framework of the quasiclassical kinetic equations for diffusive superconductors.

  11. Nonequilibrium density-matrix description of steady-state quantum transport.

    Science.gov (United States)

    Dhar, Abhishek; Saito, Keiji; Hänggi, Peter

    2012-01-01

    With this work we investigate the stationary nonequilibrium density matrix of current carrying nonequilibrium steady states of in-between quantum systems that are connected to reservoirs. We describe the analytical procedure to obtain the explicit result for the reduced density matrix of quantum transport when the system, the connecting reservoirs, and the system-reservoir interactions are described by quadratic Hamiltonians. Our procedure is detailed for both electronic transport described by the tight-binding Hamiltonian and for phonon transport described by harmonic Hamiltonians. For the special case of weak system-reservoir couplings, a more detailed description of the steady-state density matrix is obtained. Several paradigm transport setups for interelectrode electron transport and low-dimensional phonon heat flux are elucidated.

  12. Evanescent states and nonequilibrium in driven superconducting nanowires

    NARCIS (Netherlands)

    Vercruyssen, N.; Verhagen, T.G.A.; Flokstra, M.G.; Pekola, J.P.; Klapwijk, T.M.

    2012-01-01

    We study the nonlinear response of current transport in a superconducting diffusive nanowire between normal reservoirs. We demonstrate theoretically and experimentally the existence of two different superconducting states appearing when the wire is driven out of equilibrium by an applied bias, calle

  13. Effectively explore metastable states of proteins by adaptive nonequilibrium driving simulations

    Science.gov (United States)

    Wan, Biao; Xu, Shun; Zhou, Xin

    2017-03-01

    Nonequilibrium drivings applied in molecular dynamics (MD) simulations can efficiently extend the visiting range of protein conformations, but might compel systems to go far away from equilibrium and thus mainly explore irrelevant conformations. Here we propose a general method, called adaptive nonequilibrium simulation (ANES), to automatically adjust the external driving on the fly, based on the feedback of the short-time average response of system. Thus, the ANES approximately keeps the local equilibrium but efficiently accelerates the global motion. We illustrate the capability of the ANES in highly efficiently exploring metastable conformations in the deca-alanine peptide and find that the 0.2 -μ s ANES approximately captures the important states and folding and unfolding pathways in the HP35 solution by comparing with the result of the recent 398 -μ s equilibrium MD simulation on Anton [S. Piana et al., Proc. Natl. Acad. Sci. USA 109, 17845 (2012), 10.1073/pnas.1201811109].

  14. Equilibrium and stationary nonequilibrium states in a chain of colliding harmonic oscillators

    Science.gov (United States)

    Sano

    2000-02-01

    Equilibrium and nonequilibrium properties of a chain of colliding harmonic oscillators (ding-dong model) are investigated. Our chain is modeled as harmonically bounded particles that can only interact with neighboring particles by hard-core interaction. Between the collisions, particles are just independent harmonic oscillators. We are especially interested in the stationary nonequilibrium state of the ding-dong model coupled with two stochastic heat reservoirs (not thermostated) at the ends, whose temperature is different. We check the Gallavotti-Cohen fluctuation theorem [G. Gallavoti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)] and also the Evans-Searles identity [D. Evans and D. Searles, Phys. Rev. E. 50, 1994 (1994)] numerically. It is verified that the former theorem is satisfied for this system, although the system is not a thermostated system.

  15. Non-equilibrium Steady-State Behavior in a Scale-Free Quantum Network

    Science.gov (United States)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    We describe the nonequilibrium dynamics of a cold atomic gas held in a spatially random optical potential and gravity, subject to a controlled amount of dissipation in the form of an extremely slow dark-state laser cooling process. Reaching local kinetic temperatures below the 100nK scale, such systems provide a novel context for observing the non-equilibrium steady-state (NESS) behavior of a disordered quantum system. For sufficiently deep potentials and strong dissipation, this system can be modeled by a self-organized version of directed percolation, and exhibits power-law decay of phase-space density with time due to the presence of absorbing clusters with a wide distribution of entropy and coupling rates. In the absence of dissipation, such a model cannot apply, and we observe the crossover to exponential loss of phase-space density. We provide measurements of the power-law decay constant by observing the non-equilibrium motion of atoms over a ten-minute period, consistent with γ = 0 . 31 +/- 0 . 04 , and extract scaling of the absorbed number with dissipation rate, showing another power-law behavior, with exponent 0 . 5 +/- 0 . 2 over two decades of optical excitation probability.

  16. Classical Orbital Paramagnetism in Non-equilibrium Steady State

    Indian Academy of Sciences (India)

    Avinash A. Deshpande; N. Kumar

    2017-09-01

    We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic moment turns out to be paramagnetic for our choice of parameters, varied over a wide range. This is shown specifically for the case of classical dynamics driven by a Kubo–Anderson type non-Markovian noise. Natural spatial boundary condition was imposed through (1) a soft (harmonic) confining potential, and (2) a hard potential, approximating a reflecting wall. There was no noticeable qualitative difference. What appears to be crucial to the orbital magnetic effect noticed here is the non-Markovian property of the driving noise chosen. Experimental realization of this effect on the laboratory scale, and its possible implications are briefly discussed. We would like to emphasize that the above steady-state classical orbital paramagnetic moment complements, rather than contradicts the Bohr–van Leeuwen (BvL) theorem on the absence of classical orbital diamagnetism in thermodynamic equilibrium.

  17. Nonequilibrium Steady States in Models of Prebiotic Evolution

    Science.gov (United States)

    Halley, J. W.; Wynveen, A.

    2014-12-01

    We report computational results from a model for prebiotic evolution.The model is schematic, but contains a correct description of thebasic statistical problem associated with understanding how the initiation of life can occur given the strong entropic barriers (sometimesknown as 'Eigen's paradox' and appearing in experiments as the 'tar problem'). The model is similar to one of the modelsintroduced years ago by Kauffman and coworkers. The important innovationwhich we introduce is imposition of the requirement that, to qualifyas a lifelike dynamical chemical system, the system must not be inchemical equilibrium. That constraint turns out to have major qualitativeeffects on the conclusions. In particular, very sparse chemical networksturn out to be the most favorable ones for generating autocatalyticnonequilibrium states. This suggests qualitatively that deserts might bebetter than ponds for initiating life. Some details of the models andsimulations will be described, including recent results in which weintroduce spatial diffusion and a proxy for temperature into the description ofthe model chemistry. Results on growth rates, convergence and theoverall probability of generation of lifelike states as a function ofparameters of the chemical network model will be presented.

  18. Classical Orbital Paramagnetism in Non-equilibrium Steady State

    Science.gov (United States)

    Deshpande, Avinash A.; Kumar, N.

    2017-09-01

    We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic moment turns out to be paramagnetic for our choice of parameters, varied over a wide range. This is shown specifically for the case of classical dynamics driven by a Kubo-Anderson type non-Markovian noise. Natural spatial boundary condition was imposed through (1) a soft (harmonic) confining potential, and (2) a hard potential, approximating a reflecting wall. There was no noticeable qualitative difference. What appears to be crucial to the orbital magnetic effect noticed here is the non-Markovian property of the driving noise chosen. Experimental realization of this effect on the laboratory scale, and its possible implications are briefly discussed. We would like to emphasize that the above steady-state classical orbital paramagnetic moment complements, rather than contradicts the Bohr-van Leeuwen (BvL) theorem on the absence of classical orbital diamagnetism in thermodynamic equilibrium.

  19. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    Science.gov (United States)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  20. Mechanical responses and stress fluctuations of a supercooled liquid in a sheared non-equilibrium state.

    Science.gov (United States)

    Mizuno, H; Yamamoto, R

    2012-04-01

    A steady shear flow can drive supercooled liquids into a non-equilibrium state. Using molecular dynamics simulations under steady shear flow superimposed with oscillatory shear strain for a probe, non-equilibrium mechanical responses are studied for a model supercooled liquid composed of binary soft spheres. We found that even in the strongly sheared situation, the supercooled liquid exhibits surprisingly isotropic responses to oscillating shear strains applied in three different components of the strain tensor. Based on this isotropic feature, we successfully constructed a simple two-mode Maxwell model that can capture the key features of the storage and loss moduli, even for highly non-equilibrium state. Furthermore, we examined the correlation functions of the shear stress fluctuations, which also exhibit isotropic relaxation behaviors in the sheared non-equilibrium situation. In contrast to the isotropic features, the supercooled liquid additionally demonstrates anisotropies in both its responses and its correlations to the shear stress fluctuations. Using the constitutive equation (a two-mode Maxwell model), we demonstrated that the anisotropic responses are caused by the coupling between the oscillating strain and the driving shear flow. Due to these anisotropic responses and fluctuations, the violation of the fluctuation-dissipation theorem (FDT) is distinct for different components. We measured the magnitude of this violation in terms of the effective temperature. It was demonstrated that the effective temperature is notably different between different components, which indicates that a simple scalar mapping, such as the concept of an effective temperature, oversimplifies the true nature of supercooled liquids under shear flow. An understanding of the mechanism of isotropies and anisotropies in the responses and fluctuations will lead to a better appreciation of these violations of the FDT, as well as certain consequent modifications to the concept of an

  1. Nonequilibrium steady states and transient dynamics of conventional superconductors under phonon driving

    Science.gov (United States)

    Murakami, Yuta; Tsuji, Naoto; Eckstein, Martin; Werner, Philipp

    2017-07-01

    We perform a systematic analysis of the influence of phonon driving on the superconducting Holstein model coupled to heat baths by studying both the transient dynamics and the nonequilibrium steady state (NESS) in the weak and strong electron-phonon coupling regimes. Our study is based on the nonequilibrium dynamical mean-field theory, and for the NESS we present a Floquet formulation adapted to electron-phonon systems. The analysis of the phonon propagator suggests that the effective attractive interaction can be strongly enhanced in a parametric resonant regime because of the Floquet side bands of phonons. While this may be expected to enhance the superconductivity (SC), our fully self-consistent calculations, which include the effects of heating and nonthermal distributions, show that the parametric phonon driving generically results in a suppression or complete melting of the SC order. In the strong coupling regime, the NESS always shows a suppression of the SC gap, the SC order parameter, and the superfluid density as a result of the driving, and this tendency is most prominent at the parametric resonance. Using the real-time nonequilibrium DMFT formalism, we also study the dynamics towards the NESS, which shows that the heating effect dominates the transient dynamics, and SC is weakened by the external driving, in particular at the parametric resonance. In the weak coupling regime, we find that the SC fluctuations above the transition temperature are generally weakened under the driving. The strongest suppression occurs again around the parametric resonances because of the efficient energy absorption.

  2. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Science.gov (United States)

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-12-01

    Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman-Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N2 flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.

  3. Effects of spatial diffusion on nonequilibrium steady states in a model for prebiotic evolution

    Science.gov (United States)

    Intoy, B. F.; Wynveen, A.; Halley, J. W.

    2016-10-01

    Effects of spatial diffusion in a Kauffman-like model for prebiotic evolution previously studied in a "well-mixed" limit are reported. The previous model was parametrized by a parameter p defined as the probability that a possible reaction in a network of reactions characterizing the artificial chemistry actually appears in the chemical network. In the model reported here, we numerically study a grid of such well-mixed reactors on a two-dimensional spatial lattice in which the model chemical constituents can hop between neighboring reactors at a rate controlled by a second parameter η . We report the frequency of appearance of three distinct types of nonequilibrium steady states, characterized as "diffusively alive locally dead" (DALD), "diffusively dead locally alive" (DDLA) and "diffusively alive locally alive" (DALA). The types are defined according to whether they are chemically equilibrated at each site, diffusively equilibrated between sites, or neither, respectively. With our parametrization of the definitions of these nonequilibrium states, many of the DALA states are growing rapidly in population due to the explosive population growth of a few sites, while their entropy remains well below its equilibrium value. Sharp temporal transitions occur as exploding sites appear. DALD states occur less commonly than the other types and also usually harbor a few explosively growing sites but transitions are less sharp than in DALA systems.

  4. A non-equilibrium state diagram for liquid/fluid/particle mixtures.

    Science.gov (United States)

    Velankar, Sachin S

    2015-11-21

    The equilibrium structures of ternary oil/water/surfactant systems are often represented within a triangular composition diagram with various regions of the triangle corresponding to different equilibrium states. We transplant this idea to ternary liquid/fluid/particle systems that are far from equilibrium. Liquid/liquid/particle mixtures or liquid/gas/particle mixtures yield a wide diversity of morphologies including Pickering emulsions, bijels, pendular aggregates, spherical agglomerates, capillary suspensions, liquid marbles, powdered liquids, and particle-stabilized foams. This paper argues that such ternary liquid/fluid/particle mixtures can be unified into a non-equilibrium state diagram. What is common among all these systems is that the morphology results from an interplay between the preferential wettability of the particles, capillarity, and viscous forces encountered during mixing. Therefore all such systems share certain universal features, regardless of the details of the particles or fluids used. These features guide the construction of a non-equilibrium state diagram which takes the form of a triangular prism, where each triangular cross-section of the prism corresponds to a different relative affinity of the particles towards the two fluids. We classify the prism into regions in which the various morphologies appear and also emphasize the major difference between systems in which the particles are fully-wetted by one of the fluids vs. partially-wetted by both fluids. We also discuss how the state diagram may change with mixing intensity or with interparticle attractions.

  5. Observation of Supercurrent Enhancement in SNS Junctions by Nonequilibrium Injection into Supercurrent Carrying Bound Andreev States

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael; Sørensen, Claus B.

    1999-01-01

    We report for the first time enhancement of the supercurrent by means of injection in a mesoscopic three terminal planar SN-SNS device made of Al on GaAs. When a current is injected from one of the superconducting Al electrodes at an injection bias V = Δ(T)/e, the dc Josephson current between the...... the other two superconducting electrodes has a maximum, giving evidence for an enhancement due to a nonequilibrium injection into bound Andreev states of the underlying semiconductor. The effect persists to temperatures where the equilibrium supercurrent has vanished....

  6. Nonequilibrium steady states in contact: approximate thermodynamic structure and zeroth law for driven lattice gases.

    Science.gov (United States)

    Pradhan, Punyabrata; Amann, Christian P; Seifert, Udo

    2010-10-08

    We explore driven lattice gases for the existence of an intensive thermodynamic variable which could determine "equilibration" between two nonequilibrium steady-state systems kept in weak contact. In simulations, we find that these systems satisfy surprisingly simple thermodynamic laws, such as the zeroth law and the fluctuation-response relation between the particle-number fluctuation and the corresponding susceptibility remarkably well. However, at higher densities, small but observable deviations from these laws occur due to nontrivial contact dynamics and the presence of long-range spatial correlations.

  7. Nonequilibrium critical dynamics of the two-dimensional Ising model quenched from a correlated initial state.

    Science.gov (United States)

    Környei, László; Pleimling, Michel; Iglói, Ferenc

    2008-01-01

    The universality class, even the order of the transition, of the two-dimensional Ising model depends on the range and the symmetry of the interactions (Onsager model, Baxter-Wu model, Turban model, etc.), but the critical temperature is generally the same due to self-duality. Here we consider a sudden change in the form of the interaction and study the nonequilibrium critical dynamical properties of the nearest-neighbor model. The relaxation of the magnetization and the decay of the autocorrelation function are found to display a power law behavior with characteristic exponents that depend on the universality class of the initial state.

  8. Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system

    Science.gov (United States)

    Lombardo, Fernando C.; Mazzitelli, Francisco D.; López, Adrián E. Rubio; Turiaci, Gustavo J.

    2016-07-01

    In this work we analyze the validity of Lifshitz's theory for the case of nonequilibrium scenarios from a full quantum dynamical approach. We show that Lifshitz's framework for the study of the Casimir pressure is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem, subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we implement the closed time path formalism developed in previous works to study the case of two half spaces (modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths) interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the full time evolution, obtaining general expressions for the different contributions to the pressure that take part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long-time limit of these contributions to the total Casimir pressure. We show that, in the steady state, only the baths' contribute, in agreement with the results of previous works, where this was assumed without justification. We also study in detail the physics of the initial conditions' contribution and the concept of modified vacuum modes, giving insights about in which situations one would expect a nonvanishing contribution at the steady state of a nonequilibrium scenario. This would be the case when considering finite width slabs instead of half-spaces.

  9. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    Directory of Open Access Journals (Sweden)

    Benjamin Doyon

    2015-03-01

    Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  10. Numerical formulation of composition segregation at curved solid-liquid interface during steady state solidification process

    Science.gov (United States)

    Wang, Jai-Ching

    1994-01-01

    The lateral solute segregation that results from a curved solid-liquid interface shape during steady state unidirectional solidification of a binary alloy system has been studied both analytically and numerically by Coriell, Bosivert, Rehm, and Sekerka. The system under their study is a two dimensional rectangular system. However, most real growth systems are cylindrical systems. Thus, in a previous study, we have followed Coriell etc. formalism and obtained analytical results for lateral solute segregation for an azimuthal symmetric cylindrical binary melt system during steady state solidification process. The solid-liquid interface shape is expressed as a series combination of Bessel functions. In this study a computer program has been developed to simulate the lateral solute segregation.

  11. Quantum Entanglement at High Temperatures? II. Bosonic Systems in Nonequilibrium Steady State

    CERN Document Server

    Hsiang, Jen-Tsung

    2015-01-01

    This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures $T_1 > T_2$. For \\textit{constant bilinear inter-oscillator coupling} studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting [1]. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal bath...

  12. Entropy production and thermodynamics of nonequilibrium stationary states: a point of view.

    Science.gov (United States)

    Gallavotti, Giovanni

    2004-09-01

    Entropy might be a not well defined concept if the system can undergo transformations involving stationary nonequilibria. It might be analogous to the heat content (once called "caloric") in transformations that are not isochoric (i.e., which involve mechanical work): it could be just a quantity that can be transferred or created, like heat in equilibrium. The text first reviews the philosophy behind a recently proposed definition of entropy production in nonequilibrium stationary systems. A detailed technical attempt at defining the entropy of a stationary states via their variational properties follows: the unsatisfactory aspects of the results add arguments in favor of the nonexistence of a function of state to be identified with entropy; at the same time new aspects and properties of the phase space contraction emerge.

  13. Non-equilibrium steady states in the Klein-Gordon theory

    Science.gov (United States)

    Doyon, Benjamin; Lucas, Andrew; Schalm, Koenraad; Bhaseen, M. J.

    2015-03-01

    We construct non-equilibrium steady states in the Klein-Gordon theory in arbitrary space dimension d following a local quench. We consider the approach where two independently thermalized semi-infinite systems, with temperatures {{T}L} and {{T}R}, are connected along a d-1-dimensional hypersurface. A current-carrying steady state, described by thermally distributed modes with temperatures {{T}L} and {{T}R} for left and right-moving modes, respectively, emerges at late times. The non-equilibrium density matrix is the exponential of a non-local conserved charge. We obtain exact results for the average energy current and the complete distribution of energy current fluctuations. The latter shows that the long-time energy transfer can be described by a continuum of independent Poisson processes, for which we provide the exact weights. We further describe the full time evolution of local observables following the quench. Averages of generic local observables, including the stress-energy tensor, approach the steady state with a power-law in time, where the exponent depends on the initial conditions at the connection hypersurface. We describe boundary conditions and special operators for which the steady state is reached instantaneously on the connection hypersurface. A semiclassical analysis of freely propagating modes yields the average energy current at large distances and late times. We conclude by comparing and contrasting our findings with results for interacting theories and provide an estimate for the timescale governing the crossover to hydrodynamics. As a modification of our Klein-Gordon analysis we also include exact results for free Dirac fermions.

  14. Indian state plans compulsory HIV testing, segregation and branding.

    Science.gov (United States)

    Jayaraman, K S

    1998-04-01

    Health officials in the Indian state of Maharashtra have ordered the compulsory testing of all girls 12 years and older who live in designated "destitute homes." The officials also plan to tattoo a symbol on the thighs of all HIV-positive prostitutes. By April 1998, this December 1997 order had resulted in the compulsory testing of women living in 50 boarding houses and the transfer of several found to be HIV-positive to a separate institution 200 miles from the state capital. Nongovernment organizations (NGOs) have mounted a protest over this statute, but state governments in India are free to enact their own health laws. The Maharashtran government is also seeking to legalize prostitution and to force prostitutes to register with a Board that will be able to order compulsory HIV tests and tattooing. Women with HIV who continue to engage in prostitution will be quarantined, and their clients will be jailed. In response, prostitutes in the capital city of Mumbai have threatened to release a list of their client's names to the press. The only recourse available to NGOs who oppose this action is to generate a large enough public outcry to stop it. A Mumbai-based attorney noted that many private companies are also requiring HIV testing and dismissing those who test positive.

  15. Markov state models from short non-equilibrium simulations—Analysis and correction of estimation bias

    Science.gov (United States)

    Nüske, Feliks; Wu, Hao; Prinz, Jan-Hendrik; Wehmeyer, Christoph; Clementi, Cecilia; Noé, Frank

    2017-03-01

    Many state-of-the-art methods for the thermodynamic and kinetic characterization of large and complex biomolecular systems by simulation rely on ensemble approaches, where data from large numbers of relatively short trajectories are integrated. In this context, Markov state models (MSMs) are extremely popular because they can be used to compute stationary quantities and long-time kinetics from ensembles of short simulations, provided that these short simulations are in "local equilibrium" within the MSM states. However, over the last 15 years since the inception of MSMs, it has been controversially discussed and not yet been answered how deviations from local equilibrium can be detected, whether these deviations induce a practical bias in MSM estimation, and how to correct for them. In this paper, we address these issues: We systematically analyze the estimation of MSMs from short non-equilibrium simulations, and we provide an expression for the error between unbiased transition probabilities and the expected estimate from many short simulations. We show that the unbiased MSM estimate can be obtained even from relatively short non-equilibrium simulations in the limit of long lag times and good discretization. Further, we exploit observable operator model (OOM) theory to derive an unbiased estimator for the MSM transition matrix that corrects for the effect of starting out of equilibrium, even when short lag times are used. Finally, we show how the OOM framework can be used to estimate the exact eigenvalues or relaxation time scales of the system without estimating an MSM transition matrix, which allows us to practically assess the discretization quality of the MSM. Applications to model systems and molecular dynamics simulation data of alanine dipeptide are included for illustration. The improved MSM estimator is implemented in PyEMMA of version 2.3.

  16. The residential segregation of detailed Hispanic and Asian groups in the United States: 1980-2010

    Directory of Open Access Journals (Sweden)

    John Iceland

    2014-09-01

    Full Text Available Background: Racial and ethnic diversity continues to grow in communities across the United States,raising questions about the extent to which different ethnic groups will become residentially integrated. Objective: While a number of studies have examined the residential patterns of pan-ethnic groups, our goal is to examine the segregation of several Asian and Hispanic ethnic groups - Cubans, Dominicans, Mexicans, Puerto Ricans, Salvadorans, Asian Indians, Chinese, Filipinos, Japanese, Koreans, and Vietnamese. We gauge the segregation of each group from several alternative reference groups using two measures over the 1980 to 2010 period. Results: We find that the dissimilarity of Hispanics and Asians from other groups generally held steady or declined, though, because most Hispanic and Asian groups are growing, interaction with Whites also often declined. Our analyses also indicate that pan-ethnic segregation indexes do not always capture the experience of specific groups. Among Hispanics, Mexicans are typically less residentially segregated (as measured using the dissimilarity index from Whites, Blacks, Asians, and other Hispanics than are other Hispanic-origin groups. Among Asian ethnic groups, Japanese and Filipinos tend to have lower levels of dissimilarity from Whites, Blacks, and Hispanics than other Asian groups. Examining different dimensions of segregation also indicates that dissimilarity scores alone often do not capture to what extent various ethnic groups are actually sharing neighborhoods with each other. Finally, color lines vary across groups in some important ways, even as the dominant trend has been toward reduced racial and ethnic residential segregation over time. Conclusions: The overarching trend is that ethnic groups are becoming more residentially integrated,suggestive of assimilation, though there is significant variation across ethnic groups.

  17. Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration.

    Science.gov (United States)

    Fleming, R M T; Thiele, I

    2012-12-07

    Living systems are forced away from thermodynamic equilibrium by exchange of mass and energy with their environment. In order to model a biochemical reaction network in a non-equilibrium state one requires a mathematical formulation to mimic this forcing. We provide a general formulation to force an arbitrary large kinetic model in a manner that is still consistent with the existence of a non-equilibrium steady state. We can guarantee the existence of a non-equilibrium steady state assuming only two conditions; that every reaction is mass balanced and that continuous kinetic reaction rate laws never lead to a negative molecule concentration. These conditions can be verified in polynomial time and are flexible enough to permit one to force a system away from equilibrium. With expository biochemical examples we show how reversible, mass balanced perpetual reaction(s), with thermodynamically infeasible kinetic parameters, can be used to perpetually force various kinetic models in a manner consistent with the existence of a steady state. Easily testable existence conditions are foundational for efforts to reliably compute non-equilibrium steady states in genome-scale biochemical kinetic models.

  18. Nonequilibrium steady state in open quantum systems: Influence action, stochastic equation and power balance

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang, J.-T., E-mail: cosmology@gmail.com [Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433 (China); Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Hu, B.L. [Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433 (China); Joint Quantum Institute and Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742 (United States)

    2015-11-15

    The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics. -- Highlights: •Nonequilibrium steady state (NESS) for interacting quantum many-body systems. •Derivation of stochastic equations for quantum oscillator chain with two heat baths. •Explicit calculation of the energy flow from one bath to the

  19. Non-equilibrium Lifshitz theory as a steady state of a full dynamical quantum system

    CERN Document Server

    Lombardo, Fernando C; Lopez, Adrian E Rubio; Turiaci, Gustavo J

    2015-01-01

    In this work we analyze the validity of Lifshitz's theory for the case of non-equilibrium scenarios from a full quantum dynamical approach. We show that Lifshitz's framework for the study of the Casimir pressure is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem, subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we implement the closed time path formalism developed in previous works to study the case of two half spaces (modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths) interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the full time evolution, obtaining general expressions for the different contributions to the pressure that take part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long-time limit of these contributions to the total Casimir pressu...

  20. Non-equilibrium steady states in two-temperature Ising models with Kawasaki dynamics

    Science.gov (United States)

    Borchers, Nick; Pleimling, Michel; Zia, R. K. P.

    2013-03-01

    From complex biological systems to a simple simmering pot, thermodynamic systems held out of equilibrium are exceedingly common in nature. Despite this, a general theory to describe these types of phenomena remains elusive. In this talk, we explore a simple modification of the venerable Ising model in hopes of shedding some light on these issues. In both one and two dimensions, systems attached to two distinct heat reservoirs exhibit many of the hallmarks of phase transition. When such systems settle into a non-equilibrium steady-state they exhibit numerous interesting phenomena, including an unexpected ``freezing by heating.'' There are striking and surprising similarities between the behavior of these systems in one and two dimensions, but also intriguing differences. These phenomena will be explored and possible approaches to understanding the behavior will be suggested. Supported by the US National Science Foundation through Grants DMR-0904999, DMR-1205309, and DMR-1244666

  1. EMPLOYMENT, PRODUCTION AND CONSUMPTION WITH RANDOM UPDATE: NON-EQUILIBRIUM STATIONARY STATE EQUATIONS

    Directory of Open Access Journals (Sweden)

    Hynek Lavička

    2013-12-01

    Full Text Available In this work, we investigate the Model of Employment, Production and Consumption, as introduced in a series of papers by I. Wright [1–3] from the perspective of statistical physics, and we focus on the presence of equilibrium. The model itself belongs to the class of multi-agent computational models, which aim to explain macro-economic behavior using explicit micro-economic interactions.Based on the mean-field approximation, we form the Fokker-Plank equation(s and then formulate conditions forming the stationary solution, which results in a system of non-linear integral-differential equations. This approximation then allows the presence of non-equilibrium stationary states, where the model is a mixed additive-multiplicative model.

  2. Theoretical progress in non-equilibrium grain-boundary segregation(II):Micro-mechanism of grain boundary anelastic relaxation and its analytical formula

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Finding the internal-friction peak of grain boundary anelastic relaxation was one of the important breakthroughs in the study of internal friction in the last century.But the micro-mechanism of grain boundary anelastic relaxations is still obscure.Based on the observations of the grain boundary seg-regation or depletion of solute induced by an applied stress,the following micro-mechanism was suggested:grain-boundaries will work as sources to emit vacancies when a compressive stress is exerted on them and as sinks to absorb vacancies when a tensile stress is exerted,inducing grain-boundary depletion or segregation of solute,respectively.The equations of vacancy and solute con-centrations at grain boundaries were established under the equilibrium of grain-boundary anelastic relaxation.With these the kinetic equations were established for grain boundary segregation and depletion during the grain boundary relaxation progress.

  3. Curl flux, coherence, and population landscape of molecular systems: Nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics

    CERN Document Server

    Zhang, Zhedong

    2015-01-01

    We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature, the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in th...

  4. Non-equilibrium theory employing enthalpy-based equation of state for binary solid and porous mixtures

    Science.gov (United States)

    Nayak, B.; Menon, S. V. G.

    2017-04-01

    A generalized enthalpy-based equation of state, which includes thermal electron excitations and non-equilibrium thermal energies, is formulated for binary solid and porous mixtures. Our approach gives rise to an extra contribution to mixture volume, in addition to those corresponding to average mixture parameters. This excess term involves the difference of thermal enthalpies of the two components, which depend on their individual temperatures. We propose to use the Hugoniot of the components to compute non-equilibrium temperatures in the mixture. These are then compared with the average temperature obtained from the mixture Hugoniot, thereby giving an estimate of non-equilibrium effects. The Birch-Murnaghan model for the zero-temperature isotherm and a linear thermal model are then used for applying the method to several mixtures, including one porous case. Comparison with experimental data on the pressure-volume Hugoniot and shock speed versus particle speed shows good agreement.

  5. Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang, Jen-Tsung [Center for Field Theory and Particle Physics, Department of Physics, Fudan University,Shanghai 200433 (China); Hu, B.L. [Center for Field Theory and Particle Physics, Department of Physics, Fudan University,Shanghai 200433 (China); Joint Quantum Institute and Maryland Center for Fundamental Physics, University of Maryland,College Park, Maryland 20742 (United States)

    2015-11-13

    This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T{sub 1}>T{sub 2}. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting http://arxiv.org/abs/1405.7642. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T{sub c}, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T{sub 1}, T{sub 2}, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T{sub c} is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, ‘hot entanglement’ is largely a fiction.

  6. Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state

    Science.gov (United States)

    Hsiang, Jen-Tsung; Hu, B. L.

    2015-11-01

    This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T 1 > T 2. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting [1]. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T c, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T 1, T 2, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T c is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, `hot entanglement' is largely a fiction.

  7. Nonequilibrium steady states in a closed inhomogeneous asymmetric exclusion process with generic particle nonconservation

    Science.gov (United States)

    Daga, Bijoy; Mondal, Souvik; Chandra, Anjan Kumar; Banerjee, Tirthankar; Basu, Abhik

    2017-01-01

    We study the totally asymmetric exclusion process (TASEP) on a nonuniform one-dimensional ring consisting of two segments having unequal hopping rates, or defects. We allow weak particle nonconservation via Langmuir kinetics (LK), which are parametrized by generic unequal attachment and detachment rates. For an extended defect, in the thermodynamic limit the system generically displays inhomogeneous density profiles in the steady state—the faster segment is either in a phase with spatially varying density having no density discontinuity, or a phase with a discontinuous density changes. Nonequilibrium phase transitions between the above phases are controlled by the inhomogeneity and LK. The slower segment displays only macroscopically uniform bulk density profiles in the steady states, reminiscent of the maximal current phase of TASEP but with a bulk density generally different from half. With a point defect, there are spatially uniform low- and high-density phases as well, in addition to the inhomogeneous density profiles observed for an extended defect. In all the cases, it is argued that the mean particle density in the steady state is controlled only by the ratio of the LK attachment and detachment rates.

  8. Disassembly of Faceted Macrosteps in the Step Droplet Zone in Non-Equilibrium Steady State

    Directory of Open Access Journals (Sweden)

    Noriko Akutsu

    2017-02-01

    Full Text Available A Wulff figure—the polar graph of the surface tension of a crystal—with a discontinuity was calculated by applying the density matrix renormalization group method to the p-RSOS model, a restricted solid-on-solid model with a point-contact-type step–step attraction. In the step droplet zone in this model, the surface tension is discontinuous around the (111 surface and continuous around the (001 surface. The vicinal surface of 4H-SiC crystal in a Si–Cr–C solution is thought to be in the step droplet zone. The dependence of the vicinal surface growth rate and the macrostep size 〈 n 〉 on the driving force Δ μ for a typical state in the step droplet zone in non-equilibrium steady state was calculated using the Monte Carlo method. In contrast to the known step bunching phenomenon, the size of the macrostep was found to decrease with increasing driving force. The detachment of elementary steps from a macrostep was investigated, and it was found that 〈 n 〉 satisfies a scaling function. Moreover, kinetic roughening was observed for | Δ μ | > Δ μ R , where Δ μ R is the crossover driving force above which the macrostep disappears.

  9. General theory of Onsager symmetries for perturbations of equilibrium and nonequilibrium steady states

    Science.gov (United States)

    Krommes, John A.; Hu, Genze

    1993-11-01

    The theory of Onsager symmetry is reconsidered from the point of view of its application to nonequilibrium, possibly turbulent steady states. A dynamical formalism based on correlation and response functions is used; understanding of its relationship to more conventional approaches based on entropy production enables one to resolve various confusions about the proper use of the theory, even near thermal equilibrium. Previous claims that ``kinematic'' flows must be excluded from considerations of Onsager symmetry are refuted by showing that suitably defined reversible and irreversible parts of the Onsager matrix separately obey the appropriate symmetry; fluctuating hydrodynamics serves as an example. It is shown that Onsager symmetries are preserved under arbitrary covariant changes of variables; the Weinhold metric is used as a fundamental tensor. Covariance is used to render moot the controversy over the proper choice of fluxes and forces in neoclassical plasma transport theory. The fundamental distinction between the fully contravariant Onsager matrix Lij and its mixed representation Lij is emphasized and used to explain why some previous workers have failed to find Onsager symmetry around turbulent steady states. The generalized Onsager theorem of Dufty and Rubí [Phys. Rev. A 36, 222 (1987)] is reviewed. An explicitly soluble Langevin problem is shown to violate Onsager's original symmetry but to obey the generalized theorem. The physical content of the generalized Onsager symmetry is discussed from the point of view of Nosé-Hoover dynamics. A set of extended Graham-Haken potential conditions are derived for Fokker-Planck models and shown to be consistent with the generalized Onsager relations. Finally, for quite general, possibly turbulent steady states it is argued that realizable Markovian statistical closures with underlying Langevin representations must also obey the generalized theorem. In the special case in which all state variables have even parity

  10. Quantum vacuum fluctuations in presence of dissipative bodies: Dynamical approach for nonequilibrium and squeezed states

    Science.gov (United States)

    Rubio López, Adrián E.

    2017-01-01

    The present work contributes to the study of nonequilibrium aspects of the Casimir forces with the introduction of squeezed states in the calculations. Throughout this article two main results can be found, being both strongly correlated. Primarily, the more formal result involves the development of a first-principles canonical quantization formalism to study the quantum vacuum in the presence of different dissipative material bodies in completely general scenarios. For this purpose, we consider a one-dimensional quantum scalar field interacting with the volume elements' degrees of freedom of the material bodies, which are modeled as a set of composite systems consisting of quantum harmonic oscillators interacting with an environment (provided as an infinite set of quantum harmonic oscillators acting as a thermal bath). Solving the full dynamics of the composite system through its Heisenberg equations, we study each contribution to the field operator by employing general properties of the Green function. We deduce the long-time limit of the contributions to the field operator. In agreement with previous works, we show that the expectation values of the components of the energy-momentum tensor present two contributions, one associated to the thermal baths and the other one associated to the field's initial conditions. This allows the direct study of steady situations involving different initial states for the field (keeping arbitrary thermal states for the baths). This leads to the other main result, consisting of computing the Casimir force when the field is initially in thermal or continuum-single-mode squeezed states (the latter being characterized by a given bandwidth and frequency). Time averaging is required for the squeezed case, showing that both results can be given in a unified way, while for the thermal state, all the well-known equilibrium results can be successfully reproduced. Finally, we compared the initial conditions' contribution and the total

  11. General framework of the non-perturbative renormalization group for non-equilibrium steady states

    Energy Technology Data Exchange (ETDEWEB)

    Canet, Leonie [Laboratoire de Physique et Modelisation des Milieux Condenses, Universite Joseph Fourier Grenoble I-CNRS, BP166, 38042 Grenoble Cedex (France); Chate, Hugues [Service de Physique de l' Etat Condense, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Delamotte, Bertrand, E-mail: leonie.canet@grenoble.cnrs.fr [Laboratoire de Physique Theorique de la Matiere Condensee, Universite Pierre et Marie Curie, Paris VI, CNRS UMR 7600, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2011-12-09

    This paper is devoted to presenting in detail the non-perturbative renormalization group (NPRG) formalism to investigate out-of-equilibrium systems and critical dynamics in statistical physics. The general NPRG framework for studying non-equilibrium steady states in stochastic models is expounded and fundamental technicalities are stressed, mainly regarding the role of causality and of It o-bar 's discretization. We analyze the consequences of It o-bar 's prescription in the NPRG framework and eventually provide an adequate regularization to encode them automatically. Besides, we show how to build a supersymmetric NPRG formalism with emphasis on time-reversal symmetric problems, whose supersymmetric structure allows for a particularly simple implementation of NPRG in which causality issues are transparent. We illustrate the two approaches on the example of Model A within the derivative expansion approximation at order 2 and check that they yield identical results. We stress, though, that the framework presented here also applies to genuinely out-of-equilibrium problems. (paper)

  12. Determination of epinephrine by the Briggs-Rauscher oscillating system using non-equilibrium stationary state

    Directory of Open Access Journals (Sweden)

    Gao Jinzhang

    2012-01-01

    Full Text Available A highly sensitive method for the determination of epinephrine was proposed, which was based on the perturbation of epinephrine to Briggs-Rauscher oscillating system involving malonic acid, Mn2+, H+, IO3 - and H2O2 at non-equilibrium stationary state. The concentration of KIO3 was chosen as a control parameter to find the bifurcation point in this paper. Results showed that a well linear relationship between the difference of potential and the negative logarithm concentrations of epinephrine existed in the range of 1.1×10-7~5.2×10-9 mol L-1 with a lower detection limit of 6.8×10-10mol L-1 and a correlation coefficient of 0.9974. Compared to the classical oscillating reaction, this method has a lower detection limit and wider linear range. The effects of some foreign species, which may possibly be existed with epinephrine, on determination were also investigated. The proposed method has been successfully used to determine the epinephrine both in the serum and adrenaline hydrochloride injection.

  13. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    Science.gov (United States)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  14. Tuning Morphologies of Langmuir Polymer Films Through Controlled Relaxations of Non-Equilibrium States.

    Science.gov (United States)

    Chandran, Sivasurender; Dold, Stefanie; Buvignier, Amaury; Krannig, Kai-Steffen; Schlaad, Helmut; Reiter, Günter; Reiter, Renate

    2015-06-16

    Langmuir polymers films (LPFs) frequently form nonequilibrium states which are manifested in a decay of the surface pressure with time when the system is allowed to relax. Monitoring and manipulating the temporal evolution of these relaxations experimentally helps to shed light on the associated molecular reorganization processes. We present a systematic study based on different compression protocols and show how these reorganization processes impact the morphology of LPFs of poly(γ-benzyl-L-glutamate)(PBLG), visualized by means of atomic force microscopy. Upon continuous compression, a fibrillar morphology was formed with a surface decorated by squeezed-out islands. By contrast, stepwise compression promoted the formation of a fibrillar network with a bimodal distribution of fibril diameters, caused by merging of fibrils. Finally, isobaric compression induced in-plane compaction of the monolayer. We correlate these morphological observations with the kinetics of the corresponding relaxations, described best by a sum of two exponential functions with different time scales representing two molecular processes. We discuss the observed kinetics and the resulting morphologies in the context of nucleation and growth, characteristic for first-order phase transitions. Our results demonstrate that the preparation conditions of LPFs have tremendous impact on ordering of the molecules and hence various macroscopic properties of such films.

  15. Thermodynamic Bethe ansatz for non-equilibrium steady states: exact energy current and fluctuations in integrable QFT

    Science.gov (United States)

    Castro-Alvaredo, Olalla; Chen, Yixiong; Doyon, Benjamin; Hoogeveen, Marianne

    2014-03-01

    We evaluate the exact energy current and scaled cumulant generating function (related to the large-deviation function) in non-equilibrium steady states with energy flow, in any integrable model of relativistic quantum field theory (IQFT) with diagonal scattering. Our derivations are based on various recent results of Bernard and Doyon. The steady states are built by connecting homogeneously two infinite halves of the system thermalized at different temperatures Tl, Tr, and waiting for a long time. We evaluate the current J(Tl, Tr) using the exact QFT density matrix describing these non-equilibrium steady states and using Zamolodchikov’s method of the thermodynamic Bethe ansatz (TBA). The scaled cumulant generating function is obtained from the extended fluctuation relations which hold in integrable models. We verify our formula in particular by showing that the conformal field theory (CFT) result is obtained in the high-temperature limit. We analyze numerically our non-equilibrium steady-state TBA equations for three models: the sinh-Gordon model, the roaming trajectories model, and the sine-Gordon model at a particular reflectionless point. Based on the numerics, we conjecture that an infinite family of non-equilibrium c-functions, associated with the scaled cumulants, can be defined, which we interpret physically. We study the full scaled distribution function and find that it can be described by a set of independent Poisson processes. Finally, we show that the ‘additivity’ property of the current, which is known to hold in CFT and was proposed to hold more generally, does not hold in general IQFT—that is, J(Tl, Tr) is not of the form f(Tl) - f(Tr).

  16. Potential of Entropic Force in Markov Systems with Nonequilibrium Steady State, Generalized Gibbs Function and Criticality

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Lowell; Qian, Hong

    2016-08-01

    In this paper we revisit the notion of the “minus logarithm of stationary probability” as a generalized potential in nonequilibrium systems and attempt to illustrate its central role in an axiomatic approach to stochastic nonequilibrium thermodynamics of complex systems. It is demonstrated that this quantity arises naturally through both monotonicity results of Markov processes and as the rate function when a stochastic process approaches a detrministic limit. We then undertake a more detailed mathematical analysis of the consequences of this quantity, culminating in a necessary and sufficient condition for the criticality of stochastic systems. This condition is then discussed in the context of recent results about criticality in biological systems.

  17. Strong nonequilibrium coherent states in mesoscopic superconductor-semiconductor-superconductor junctions

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Wildt, Morten; Taboryski, Rafael Jozef;

    1999-01-01

    A biased superconductor-normal metal-superconductor junction is known to be a strong nonequilibrium system, where Andreev scattering at the interfaces creates a quasiparticle distribution function far from equilibrium, a manifestation of this is the well-known subgap structure in the I...

  18. The matrix model, a driven state variables approach to non-equilibrium thermodynamics

    NARCIS (Netherlands)

    Jongschaap, R.J.J.

    2001-01-01

    One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC

  19. Work relation and the second law of thermodynamics in nonequilibrium steady states.

    Science.gov (United States)

    Nakagawa, Naoko

    2012-05-01

    We extend Jarzynski's work relation and the second law of thermodynamics to a heat conducting system, which is operated by an external agent. These extensions contain a nonequilibrium contribution expressed as the violation of the (linear) response relation caused by the operation. We find that a natural extension of the minimum work principle involves information about the time-reversed operation, and is far from straightforward. Our work relation may be tested experimentally especially when the temperature gradient is small.

  20. Curl flux, coherence, and population landscape of molecular systems: Nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. D. [Department of Physics and Astronomy, SUNY Stony Brook, New York 11794 (United States); Wang, J. [Department of Physics and Astronomy, SUNY Stony Brook, New York 11794 (United States); Department of Chemistry, SUNY Stony Brook, New York 11794 (United States); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2014-06-28

    We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature, the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Populations of states give the probabilities of individual states and therefore quantify the population landscape. Both curl flux and coherence depend on steady state population landscape. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. This is in contrast to the previously found linear relationship. For the systems coupled to bosonic (photonic and phononic) reservoirs the flux is significantly promoted at large voltage while for fermionic (electronic) reservoirs the flux reaches a saturation after a significant enhancement at large voltage due to the Pauli exclusion principle. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy

  1. Nonequilibrium transport through a point contact in the nu = 5/2 non-Abelian quantum Hall state.

    Science.gov (United States)

    Feiguin, Adrian; Fendley, Paul; Fisher, Matthew P A; Nayak, Chetan

    2008-12-05

    We analyze charge-e/4 quasiparticle tunneling between the edges of a point contact in a non-Abelian model of the nu = 5/2 quantum Hall state in the presence of a finite voltage difference using the time-dependent density-matrix renormalization group method. We confirm that, as the voltage decreases, the system is broken into two pieces. In the limits of small and large voltage, we recover the results expected from perturbation theory about the infrared and ultraviolet fixed points. We test our methods by finding the analogous nonequilibrium current through a point contact at nu = 1/3.

  2. Lindblad-driven discretized leads for nonequilibrium steady-state transport in quantum impurity models: Recovering the continuum limit

    Science.gov (United States)

    Schwarz, F.; Goldstein, M.; Dorda, A.; Arrigoni, E.; Weichselbaum, A.; von Delft, J.

    2016-10-01

    The description of interacting quantum impurity models in steady-state nonequilibrium is an open challenge for computational many-particle methods: the numerical requirement of using a finite number of lead levels and the physical requirement of describing a truly open quantum system are seemingly incompatible. One possibility to bridge this gap is the use of Lindblad-driven discretized leads (LDDL): one couples auxiliary continuous reservoirs to the discretized lead levels and represents these additional reservoirs by Lindblad terms in the Liouville equation. For quadratic models governed by Lindbladian dynamics, we present an elementary approach for obtaining correlation functions analytically. In a second part, we use this approach to explicitly discuss the conditions under which the continuum limit of the LDDL approach recovers the correct representation of thermal reservoirs. As an analytically solvable example, the nonequilibrium resonant level model is studied in greater detail. Lastly, we present ideas towards a numerical evaluation of the suggested Lindblad equation for interacting impurities based on matrix product states. In particular, we present a reformulation of the Lindblad equation, which has the useful property that the leads can be mapped onto a chain where both the Hamiltonian dynamics and the Lindblad driving are local at the same time. Moreover, we discuss the possibility to combine the Lindblad approach with a logarithmic discretization needed for the exploration of exponentially small energy scales.

  3. 77 FR 12874 - Notice of Segregation of Public Lands in the State of Arizona Associated With the Proposed Mohave...

    Science.gov (United States)

    2012-03-02

    ... Wind Energy North America's Mohave County Wind Farm Project (Proposed Project). This segregation covers... in the State of Arizona from appropriation under the public land laws, including the mining law, but...: Eddie Arreola, Supervisory Project Manager; Telephone: 602-417-9505; Address: One North Central...

  4. Characterization of the Nonequilibrium Steady State of a Heterogeneous Nonlinear $q$-Voter Model with Zealotry

    CERN Document Server

    Mellor, Andrew; Zia, R K P

    2016-01-01

    We introduce an heterogeneous nonlinear $q$-voter model with zealots and two types of susceptible voters, and study its non-equilibrium properties when the population is finite and well mixed. In this two-opinion model, each individual supports one of two parties and is either a zealot or a susceptible voter of type $q_1$ or $q_2$. While here zealots never change their opinion, a $q_i$-susceptible voter ($i=1,2$) consults a group of $q_i$ neighbors at each time step, and adopts their opinion if all group members agree. We show that this model violates the detailed balance whenever $q_1 \

  5. Mathematical theory of nonequilibrium steady states on the frontier of probability and dynamical systems

    CERN Document Server

    Jiang, Da-Quan; Qian, Min-Ping

    2004-01-01

    This volume provides a systematic mathematical exposition of the conceptual problems of nonequilibrium statistical physics, such as entropy production, irreversibility, and ordered phenomena. Markov chains, diffusion processes, and hyperbolic dynamical systems are used as mathematical models of physical systems. A measure-theoretic definition of entropy production rate and its formulae in various cases are given. It vanishes if and only if the stationary system is reversible and in equilibrium. Moreover, in the cases of Markov chains and diffusion processes on manifolds, it can be expressed in terms of circulations on directed cycles. Regarding entropy production fluctuations, the Gallavotti-Cohen fluctuation theorem is rigorously proved.

  6. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach.

    Science.gov (United States)

    Duchemin, Ivan; Jacquemin, Denis; Blase, Xavier

    2016-04-28

    We have implemented the polarizable continuum model within the framework of the many-body Green's function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics, wet chemistry, and biology.

  7. Nonequilibrium steady state and induced currents of a mesoscopically glassy system: interplay of resistor-network theory and Sinai physics.

    Science.gov (United States)

    Hurowitz, Daniel; Rahav, Saar; Cohen, Doron

    2013-12-01

    We introduce an explicit solution for the nonequilibrium steady state (NESS) of a ring that is coupled to a thermal bath, and is driven by an external hot source with log-wide distribution of couplings. Having time scales that stretch over several decades is similar to glassy systems. Consequently there is a wide range of driving intensities where the NESS is like that of a random walker in a biased Brownian landscape. We investigate the resulting statistics of the induced current I. For a single ring we discuss how sign of I fluctuates as the intensity of the driving is increased, while for an ensemble of rings we highlight the fingerprints of Sinai physics on the distribution of the absolute value of I.

  8. Quantum Vacuum Fluctuations in Presence of Dissipative Bodies: Dynamical Approach for Non-Equilibrium and Squeezed States

    CERN Document Server

    Lopez, Adrian E Rubio

    2016-01-01

    This work contributes to the study of non-equilibrium aspects of the Casimir forces with the introduction of squeezed states in the calculations. Throughout this article two main results can be found, being both strongly correlated. Primarily, the more formal result involves the development of a first-principles canonical quantization formalism to study the vacuum in presence different dissipative bodies in completely general scenarios. We considered a one-dimensional quantum scalar field interacting with the volume elements' degrees of freedom of the material bodies, which are modeled as composite systems consisting in a harmonic oscillators interacting with an environment. Solving the full dynamics of the composite system through its Heisenberg equations, we studied each contribution to the field operator by employing general properties of the Green function. We deduced the long-time limit of the field operator. In agreement with previous works, we showed that the expectation values of the components of the...

  9. Nonequilibrium statistical physics

    CERN Document Server

    Röpke, Gerd

    2013-01-01

    Authored by one of the top theoretical physicists in Germany, and a well-known authority in the field, this is the only coherent presentation of the subject suitable for masters and PhD students, as well as postdocs in physics and related disciplines.Starting from a general discussion of the nonequilibrium state, different standard approaches such as master equations, and kinetic and linear response theory, are derived after special assumptions. This allows for an insight into the problems of nonequilibrium physics, a discussion of the limits, and suggestions for improvements. Applications

  10. Signature of a continuous quantum phase transition in non-equilibrium energy absorption: Footprints of criticality on higher excited states.

    Science.gov (United States)

    Bhattacharyya, Sirshendu; Dasgupta, Subinay; Das, Arnab

    2015-11-16

    Understanding phase transitions in quantum matters constitutes a significant part of present day condensed matter physics. Quantum phase transitions concern ground state properties of many-body systems, and hence their signatures are expected to be pronounced in low-energy states. Here we report signature of a quantum critical point manifested in strongly out-of-equilibrium states with finite energy density with respect to the ground state and extensive (subsystem) entanglement entropy, generated by an external pulse. These non-equilibrium states are evidently completely disordered (e.g., paramagnetic in case of a magnetic ordering transition). The pulse is applied by switching a coupling of the Hamiltonian from an initial value (λI) to a final value (λF) for sufficiently long time and back again. The signature appears as non-analyticities (kinks) in the energy absorbed by the system from the pulse as a function of λF at critical-points (i.e., at values of λF corresponding to static critical-points of the system). As one excites higher and higher eigenstates of the final Hamiltonian H(λF) by increasing the pulse height (|λF - λI|), the non-analyticity grows stronger monotonically with it. This implies adding contributions from higher eigenstates help magnifying the non-analyticity, indicating strong imprint of the critical-point on them. Our findings are grounded on exact analytical results derived for Ising and XY chains in transverse field.

  11. The Intergenerational Transmission of Occupational Preferences, Segregation, and Wage Inequality – Empirical Evidence from Europe and the United States

    OpenAIRE

    Eberharter, Veronika V.

    2013-01-01

    Based on longitudinal data (CNEF 1980 – 2010) the paper analyzes the structuring effects of individual and family background characteristics on occupational choice in Germany, the United States, and Great Britain. We start from the hypothesis that the intergenerational transmission of occupational status promotes persistent occupational segregation and gender wage differentials. We suppose country differences due to the existing institutional settings of the labor markets, educational systems...

  12. Diffusion, Absorbing States, and Nonequilibrium Phase Transitions in Range Expansions and Evolution

    Science.gov (United States)

    Lavrentovich, Maxim Olegovich

    The spatial organization of a population plays a key role in its evolutionary dynamics and growth. In this thesis, we study the dynamics of range expansions, in which populations expand into new territory. Focussing on microbes, we first consider how nutrients diffuse and are absorbed in a population, allowing it to grow. These nutrients may be absorbed before reaching the population interior, and this "nutrient shielding'' can confine the growth to a thin region on the population periphery. A thin population front implies a small local effective population size and enhanced number fluctuations (or genetic drift). We then study evolutionary dynamics under these growth conditions. In particular, we calculate the survival probability of mutations with a selective advantage occurring at the population front for two-dimensional expansions (e.g., along the surface of an agar plate), and three-dimensional expansions (e.g., an avascular tumor). We also consider the effects of irreversible, deleterious mutations which can lead to the loss of the advantageous mutation in the population via a "mutational meltdown,'' or non-equilibrium phase transition. We examine the effects of an inflating population frontier on the phase transition. Finally, we discuss how spatial dimension and frontier roughness influence range expansions of mutualistic, cross-feeding variants. We find here universal features of the phase diagram describing the onset of a mutualistic phase in which the variants remain mixed at long times.

  13. Catalyst-like modulation of transition states for CFTR channel opening and closing: new stimulation strategy exploits nonequilibrium gating.

    Science.gov (United States)

    Csanády, László; Töröcsik, Beáta

    2014-02-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is the chloride ion channel mutated in cystic fibrosis (CF) patients. It is an ATP-binding cassette protein, and its resulting cyclic nonequilibrium gating mechanism sets it apart from most other ion channels. The most common CF mutation (ΔF508) impairs folding of CFTR but also channel gating, reducing open probability (Po). This gating defect must be addressed to effectively treat CF. Combining single-channel and macroscopic current measurements in inside-out patches, we show here that the two effects of 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB) on CFTR, pore block and gating stimulation, are independent, suggesting action at distinct sites. Furthermore, detailed kinetic analysis revealed that NPPB potently increases Po, also of ΔF508 CFTR, by affecting the stability of gating transition states. This finding is unexpected, because for most ion channels, which gate at equilibrium, altering transition-state stabilities has no effect on Po; rather, agonists usually stimulate by stabilizing open states. Our results highlight how for CFTR, because of its unique cyclic mechanism, gating transition states determine Po and offer strategic targets for potentiator compounds to achieve maximal efficacy.

  14. The Western States: Profound Diversity but Severe Segregation for Latino Students

    Science.gov (United States)

    Kucsera, John; Flaxman, Greg

    2012-01-01

    The U.S. Western region and its public schools are in the midst of its largest racial and economic transformation, as the area witnesses a shrinking white majority, a surging Latino minority, and a growing class of poor. These groups, along with blacks and Asian, more often than not attend very different and segregated schools both in educational…

  15. Non-equilibrium relaxation between two quasi-stationary states in a stochastic lattice Lotka-Volterra model

    Science.gov (United States)

    Chen, Sheng; Täuber, Uwe C.

    2015-03-01

    Spatially extended stochastic models for predator-prey competition and coexistence display complex, correlated spatio-temporal structures and are governed by remarkably large fluctuations. Both populations are characterized by damped erratic oscillations whose properties are governed by the reaction rates. Here, we specifically study a stochastic lattice Lotka-Volterra model by means of Monte Carlo simulations that impose spatial restrictions on the number of occupants per site. The system tends to relax into a quasi-stationary state, independent of the imposed initial conditions. We investigate the non-equilibrium relaxation between two such quasi-stationary states, following an instantaneous change of the predation rate. The ensuing relaxation times are measured via the peak width of the population density Fourier transforms. As expected, we find that the initial state only influences the oscillations for the duration of this relaxation time, implying that the system quickly loses any memory of the initial configuration. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  16. Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, Roderick [Unite de Bioclimatologie, INRA Centre de Bordeaux, BP 81, 33883 Villenave d' Ornon (France)

    2003-01-24

    Jaynes' information theory formalism of statistical mechanics is applied to the stationary states of open, non-equilibrium systems. First, it is shown that the probability distribution p{sub {gamma}} of the underlying microscopic phase space trajectories {gamma} over a time interval of length {tau} satisfies p{sub {gamma}} {proportional_to} exp({tau}{sigma}{sub {gamma}}/2k{sub B}) where {sigma}{sub {gamma}} is the time-averaged rate of entropy production of {gamma}. Three consequences of this result are then derived: (1) the fluctuation theorem, which describes the exponentially declining probability of deviations from the second law of thermodynamics as {tau} {yields} {infinity}; (2) the selection principle of maximum entropy production for non-equilibrium stationary states, empirical support for which has been found in studies of phenomena as diverse as the Earth's climate and crystal growth morphology; and (3) the emergence of self-organized criticality for flux-driven systems in the slowly-driven limit. The explanation of these results on general information theoretic grounds underlines their relevance to a broad class of stationary, non-equilibrium systems. In turn, the accumulating empirical evidence for these results lends support to Jaynes' formalism as a common predictive framework for equilibrium and non-equilibrium statistical mechanics.

  17. State-by-state emission spectra fitting for non-equilibrium plasmas: OH spectra of surface barrier discharge at argon/water interface

    Science.gov (United States)

    Voráč, Jan; Synek, Petr; Procházka, Vojtěch; Hoder, Tomáš

    2017-07-01

    Optical emission spectroscopy applied to non-equilibrium plasmas in molecular gases can give important information on basic plasma parameters, including the rotational and vibrational temperatures and densities of the investigated radiative states. In order to precisely understand the non-equilibrium of rotational-vibrational state distribution from the investigated spectra without limiting presumptions, a state-by-state temperature-independent fitting procedure is the ideal approach. In this paper, we present a novel software tool developed for this purpose, freely available for the scientific community. The introduced tool offers a convenient way to construct Boltzmann plots even from partially overlapping spectra, in a user-friendly environment. We apply the novel software to the challenging case of OH spectra in surface streamer discharges generated from the triple-line of the argon/water/dielectrics interface. After the barrier discharge is characterised by ICCD and electrical measurements, the spatially and phase resolved rotational temperatures from N2(C-B) and OH(A-X) spectra are determined and compared. The precise analysis shows that OH(A) states with quantum numbers ≤ft({{v}\\prime}=0,~9≤slant {{N}\\prime}≤slant 13\\right) are overpopulated with respect to the found two-Boltzmann distribution. We hypothesise that fast vibrational-energy transfer is responsible for this phenomenon, observed here for the first time. Finally, the vibrational temperature of the plasma and the relative populations of hot and cold OH(A) states are quantified spatially and phase resolved.

  18. Nonequilibrium fluctuation-dissipation relations for one- and two-particle correlation functions in steady-state quantum transport

    Energy Technology Data Exchange (ETDEWEB)

    Ness, H., E-mail: herve.ness@kcl.ac.uk [Department of Physics, School of Natural and Mathematical Sciences, King' s College London, Strand, London WC2R 2LS (United Kingdom); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); European Theoretical Spectroscopy Facility (ETSF), Liege (Belgium); Dash, L. K. [European Theoretical Spectroscopy Facility (ETSF), Liege (Belgium); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2014-04-14

    We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments.

  19. Nonequilibrium fluctuation-dissipation relations for one- and two-particle correlation functions in steady-state quantum transport.

    Science.gov (United States)

    Ness, H; Dash, L K

    2014-04-14

    We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments.

  20. Gender inequality in the welfare state: sex segregation in housework, 1965-2003.

    Science.gov (United States)

    Hook, Jennifer L

    2010-03-01

    National context may influence sex segregation of household tasks through both pragmatic decision making and the normative context in which decision making is embedded. This study utilizes 36 time use surveys from 19 countries (spanning 1965-2003) combined with original national-level data in multilevel models to examine household task segregation. Analyses reveal that men do less and women do more time-inflexible housework in nations where work hours and parental leave are long. Women do less of this work where there is more public child care and men are eligible to take parental leave. National context affects the character of gender inequality in the home through individual- and national-level pathways.

  1. NON-EQUILIBRIUM STATIONARY STATE IN CHEMICAL REACTION OF SiO2/Fe AT INTERFACE OF SLAG/METAL AND ITS STABILITY DURING ARC WELDING

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoquan; DU Zeyu; YANG Xuguang

    2007-01-01

    For characteristics of open and far from thermodynamic equilibrium in welding chemical reaction, a new kind of quantitative method, which is used to analyze direction and extent for chemical reaction of SiO2/Fe during quasi-steady state period, is introduced with the concept of non-equilibrium stationary state. The main idea is based on thermodynamic driving forces, which result in non-zero thermodynamic fluxes and lead to chemical reaction far away from thermodynamic equilibrium. There exists certain dynamic equilibrium relationship between rates of diffusion fluxes in liquid phase of reactants or products and the rate equation of chemical reaction when welding is in quasi-steady state. As result of this, a group of non-linear equations containing concentrations of all substances at interface of slag/liquid-metal may be established. Moreover the stability of this non-equilibrium stationary state is discussed using dissipative structure theory and it is concluded theoretically that this non-equilibrium stationary state for welding chemical reaction is of stability.

  2. Simulating 3D Stellar Winds and Diffuse X-ray Emissions from Gases in Non-equilibrium Ionization State

    Science.gov (United States)

    Long, Min; Sun, Wei; Niu, Shu; Zhou, Xin; Ji, Li

    2017-08-01

    We investigate the physical properties of stellar winds launched in super stellar clusters (SSCs). Chandra observations have detected the presence of diffuse X-ray emission caused by hot gas from such winds in SSCs, and provide the best probe for understanding interactions between the stellar winds and the complex nursery regions. However, the details of the origin of cluster winds, the mass and energy ejection, the formation of diffuse X-ray emission, the fraction of winds contribution to the distribution of diffuse X-ray emission still remain unclear. We developed a multiphysics hydrodynamic model including self-gravity, head conduction and performed 3D simulations with an unprecedented grid resolution due to adaptive mesh refinement (AMR) capability in a case study of NGC 3603, as a supplement to the analysis of the archived 500 ks Chandra observations. The synthetic emission will be computed by assuming the gas in a non-equilibrium ionization (NEI) state indicated by Chandra observation, not coronal ionization equilibrium (CIE) that most works assumed, by using a customized NEI calculation module based on AtomDB. The results will be compared to the Chandra observations.

  3. Applied Thermodynamics: Grain Boundary Segregation

    Directory of Open Access Journals (Sweden)

    Pavel Lejček

    2014-03-01

    Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.

  4. Non-equilibrium dynamics and state preparation in bilayer optical lattices

    Science.gov (United States)

    Langer, Stephan; Daley, Andrew J.

    2014-03-01

    We study dynamical schemes to obtain low entropy ground states of strongly interacting many body systems. The focus of our work is on ultra-cold Bose and Fermi gases in bilayer optical lattice systems with separately tunable interlayer coupling, energy offset between the layers and repulsive interactions. The case of two coupled one-dimensional chains is treated in a numerically exact manner using the adaptive time-dependent density matrix renormalization group which allows us to study the change of offset and interlayer coupling in real time. We identify parameter regimes where the ground state of the coupled system in the limit of small interlayer coupling consists of a Mott insulator in one layer and a superfluid/metallic state in the other layer can serve as an entropy reservoir. We then investigate the time-dependent dynamics of this system, studying entropy transfer between layers and the emergence of characteristic many-body correlations as we change the layer offset energy and coupling strength. In addition to applications as a preparation scheme for fully interacting Mott-insulator states, feasible with available experimental techniques, the investigated protocols could be easily adapted to also allow for a controlled preparation of highly excited states.

  5. Nonequilibrium Fluctuation Relation for Sheared Micellar Gel in a Jammed State

    Science.gov (United States)

    Majumdar, Sayantan; Sood, A. K.

    2008-08-01

    We show that the shear rate at a fixed shear stress in a micellar gel in a jammed state exhibits large fluctuations, showing positive and negative values, with the mean shear rate being positive. The resulting probability distribution functions of the global power flux to the system vary from Gaussian to non-Gaussian, depending on the driving stress, and in all cases show similar symmetry properties as predicted by the Gallavotti-Cohen steady state fluctuation relation. The fluctuation relation allows us to determine an effective temperature related to the structural constraints of the jammed state. We have measured the stress dependence of the effective temperature. Further, experiments reveal that the effective temperature and the standard deviation of the shear-rate fluctuations increase with the decrease of the system size.

  6. Full-order fluctuation-dissipation relation for a class of nonequilibrium steady states

    OpenAIRE

    Ichiki, Akihisa; Ohzeki, Masayuki

    2015-01-01

    Acceleration of relaxation toward a fixed stationary distribution via violation of detailed balance was reported in the context of a Markov chain Monte Carlo method recently. Inspired by this result, systematic methods to violate detailed balance in Langevin dynamics were formulated by using exponential and rotational nonconservative forces. In the present paper, we accentuate that such specific nonconservative forces relate to the large deviation of total heat in an equilibrium state. The re...

  7. Nonequilibrium Pump-Probe Photoexcitation as a Tool for Analyzing Unoccupied Equilibrium States of Correlated Electrons

    Science.gov (United States)

    Yamaji, Youhei; Imada, Masatoshi

    2016-09-01

    Relaxation of electrons in a Hubbard ring coupled to a dissipative bosonic bath is studied to simulate the pump-probe photoemission measurement. From this insight, we propose an experimental method of eliciting the unoccupied part of single-particle spectra at the equilibrium of doped Mott insulators. We reveal first that the effective temperatures of distribution functions and electronic spectra are different during the relaxation, which makes the frequently employed thermalization picture inappropriate. Contrary to the conventional analysis, we show that the unoccupied spectra at equilibrium can be detected as the states that relax faster.

  8. Bubble-raft collapse and the nonequilibrium dynamics of two-state elastica

    Science.gov (United States)

    Kuo, Chin-Chang; Kachan, Devin; Levine, Alex J.; Dennin, Michael

    2016-03-01

    We report on the collapse of bubble rafts under compression in a closed rectangular geometry. A bubble raft is a single layer of bubbles at the air-water interface. A collapse event occurs when bubbles submerge beneath the neighboring bubbles under compression, causing the structure of the bubble raft to go from single-layer to multilayer. We studied the collapse dynamics as a function of compression velocity. At higher compression velocity we observe a more uniform distribution of collapse events, whereas at lower compression velocities the collapse events accumulate at the system boundaries. We propose that this system can be understood in terms of a linear elastic sheet coupled to a local internal (Ising) degree of freedom. The two internal states, which represent one bubble layer versus two, couple to the elasticity of the sheet by locally changing the reference state of the material. By exploring the collapse dynamics of the bubble raft, one may address the basic nonlinear mechanics of a number of complex systems in which elastic stress is coupled to local internal variables.

  9. Segregation Levels in Cleveland Public Schools and the Cleveland Voucher Program. School Choice Issues in the State

    Science.gov (United States)

    Forster, Greg

    2006-01-01

    Examining the widespread claims that private schools have high segregation levels and vouchers will lead to greater segregation, this study finds that both assertions are empirically unsupportable. Private schools participating in Cleveland's voucher program are much less segregated than Cleveland's public schools. This means that students using…

  10. Microwave-Induced Oscillations in Magnetocapacitance: Direct Evidence for Nonequilibrium Occupation of Electronic States

    Science.gov (United States)

    Dorozhkin, S. I.; Kapustin, A. A.; Umansky, V.; von Klitzing, K.; Smet, J. H.

    2016-10-01

    In a two-dimensional electron system, microwave radiation may induce giant resistance oscillations. Their origin has been debated controversially and numerous mechanisms based on very different physical phenomena have been invoked. However, none of them have been unambiguously experimentally identified, since they produce similar effects in transport studies. The capacitance of a two-subband system is sensitive to a redistribution of electrons over energy states, since it entails a shift of the electron charge perpendicular to the plane. In such a system, microwave-induced magnetocapacitance oscillations have been observed. They can only be accounted for by an electron distribution function oscillating with energy due to Landau quantization, one of the quantum mechanisms proposed for the resistance oscillations.

  11. Quantum non-equilibrium effects in rigidly-rotating thermal states

    Science.gov (United States)

    Ambruş, Victor E.

    2017-08-01

    Based on known analytic results, the thermal expectation value of the stress-energy tensor (SET) operator for the massless Dirac field is analysed from a hydrodynamic perspective. Key to this analysis is the Landau decomposition of the SET, with the aid of which we find terms which are not present in the ideal SET predicted by kinetic theory. Moreover, the quantum corrections become dominant in the vicinity of the speed of light surface (SOL). While rigidly-rotating thermal states cannot be constructed for the Klein-Gordon field, we perform a similar analysis at the level of quantum corrections previously reported in the literature and we show that the Landau frame is well-defined only when the system is enclosed inside a boundary located inside or on the SOL. We discuss the relevance of these results for accretion disks around rapidly-rotating pulsars.

  12. Rich structure in the correlation matrix spectra in non-equilibrium steady states.

    Science.gov (United States)

    Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H

    2017-01-17

    It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.

  13. Nonequilibrium effective field theory for absorbing state phase transitions in driven open quantum spin systems

    Science.gov (United States)

    Buchhold, Michael; Everest, Benjamin; Marcuzzi, Matteo; Lesanovsky, Igor; Diehl, Sebastian

    2017-01-01

    Phase transitions to absorbing states are among the simplest examples of critical phenomena out of equilibrium. The characteristic feature of these models is the presence of a fluctuationless configuration which the dynamics cannot leave, which has proved a rather stringent requirement in experiments. Recently, a proposal to seek such transitions in highly tunable systems of cold-atomic gases offers to probe this physics and, at the same time, to investigate the robustness of these transitions to quantum coherent effects. Here, we specifically focus on the interplay between classical and quantum fluctuations in a simple driven open quantum model which, in the classical limit, reproduces a contact process, which is known to undergo a continuous transition in the "directed percolation" universality class. We derive an effective long-wavelength field theory for the present class of open spin systems and show that, due to quantum fluctuations, the nature of the transition changes from second to first order, passing through a bicritical point which appears to belong instead to the "tricritical directed percolation" class.

  14. Resveratrol production in bioreactor: Assessment of cell physiological states and plasmid segregational stability

    Directory of Open Access Journals (Sweden)

    Margarida S. Afonso

    2015-03-01

    Full Text Available Resveratrol is a plant secondary metabolite commonly found in peanuts and grapevines with significant health benefits. Recombinant organisms can produce large amounts of resveratrol and, in this work, Escherichia coli BW27784 was used to produce resveratrol in bioreactors while monitoring cell physiology and plasmid stability through flow cytometry and real-time qPCR, respectively. Initially, the influence of culture conditions and precursor addition was evaluated in screening assays and the data gathered was used to perform the bioreactor assays, allowing the production of 160 μg/mL of resveratrol. Cellular physiology and plasmid instability affected the final resveratrol production, with lower viability and plasmid copy numbers associated with lower yields. In sum, this study describes new tools to monitor the bioprocess, evaluating the effect of culture conditions, and its correlation with cell physiology and plasmid segregational stability, in order to define a viable and scalable bioprocess to fulfill the need for larger quantities of resveratrol.

  15. Nonequilibrium volumetric response of shocked polymers

    Energy Technology Data Exchange (ETDEWEB)

    Clements, B E [Los Alamos National Laboratory

    2009-01-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.

  16. Catalyst-like modulation of transition states for CFTR channel opening and closing: New stimulation strategy exploits nonequilibrium gating

    OpenAIRE

    Csanády, László; Töröcsik, Beáta

    2014-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is the chloride ion channel mutated in cystic fibrosis (CF) patients. It is an ATP-binding cassette protein, and its resulting cyclic nonequilibrium gating mechanism sets it apart from most other ion channels. The most common CF mutation (ΔF508) impairs folding of CFTR but also channel gating, reducing open probability (Po). This gating defect must be addressed to effectively treat CF. Combining single-channel and macroscopic current ...

  17. The influence of Kapitza resistance on the establishment of stationary non-equilibrium states in superfluid 3He-4He solutions

    Science.gov (United States)

    Vihtinskaya, T. G.; Nemchenko, K. E.; Rogova, S. Yu.

    2016-08-01

    We examine the establishment of stationary non-equilibrium states when a flow of heat is turned on in superfluid solutions with a sufficiently high (9.8%) concentration of 3He. We study the influence of possible relaxation mechanisms, focusing on the Kapitza jump in particular, on the process of establishing a constant temperature gradient. We found the thermal diffusivity, thermal conductivity and the Kapitza coefficients by comparing the theoretical calculations against experimental data. It is shown that it is necessary to include the Kapitza jump in order to perform a quantitative description of the experimental data.

  18. A New Position-Space Renormalization-Group Approach for Non-Equilibrium Systems and its Application to the Three-State Driven Lattice Gas

    Science.gov (United States)

    Georgiev, Ivan T.; McKay, Susan R.

    2004-03-01

    We have introduced a general position-space renormalization-group approach for non-equilibrium systems developed from the microscopic master equation. The method is based upon a closed form representation of the parameters of the system in terms of the steady state probability distribution of small clusters. From the master equation in terms of these small clusters, we build recursion relations linking parameters affecting transition rates on various length scales and determine the flow topology. Results for the three-state driven lattice gas show many of the expected features associated with the phase diagrams previously reported for this system, (G. Korniss, B. Schmittmann, and R.K.P. Zia, Non-Equilibrium Phase Transitions in a Simple Three-State Lattice Gas, J. Stat. Phys. 86, 721 (1997).)in excellent agreement with simulations. The flow diagrams also exhibit added complexities, suggesting multiple regions within the ordered phase for some values of parameters and the presence of an extra "source" fixed point. (I.T. Georgiev, U. of Maine Ph.D. Thesis (2003); I.T. Georgiev and S.R. McKay, in preparation.)

  19. Segregation Levels in Milwaukee Public Schools and the Milwaukee Voucher Program. School Choice Issues in the State

    Science.gov (United States)

    Forster, Greg

    2006-01-01

    This study compares segregation levels in Milwaukee public schools and in private schools participating in the Milwaukee voucher program. Using a segregation index that measures the difference between the percent of students in a school who are white and the percentage of school-age children in the greater metro area who are white, it finds that…

  20. Socio-Economic Segregation of Disadvantaged Children between Schools in Pakistan: Comparing the State and Private Sector

    Science.gov (United States)

    Siddiqui, Nadia

    2017-01-01

    The distribution of children in different school-types and regions in Pakistan suggests that access and opportunities in education are not evenly accessible for many children. Segregation at school level is an important concern for equity and social justice because the adverse effects of segregation increase the pre-existing gap in opportunities…

  1. Linking Equilibrium and Nonequilibrium Dynamics in Glass-Forming Systems

    DEFF Research Database (Denmark)

    Mauro, John C.; Guo, Xiaoju; Smedskjær, Morten Mattrup

    , we show that the nonequilibrium glassy dynamics are intimately connected with the equilibrium liquid dynamics. This is accomplished by deriving a new functional form for the thermal history dependence of nonequilibrium viscosity, which is validated against experimental measurements of industrial......Understanding nonequilibrium glassy dynamics is of great scientific and technological importance. However, prediction of the temperature, thermal history, and composition dependence of nonequilibrium viscosity is challenging due to the noncrystalline and nonergodic nature of the glassy state. Here...

  2. Exploring the Landscape of Inclusion: Profiles of Inclusive versus Segregated School Districts in the United States

    Science.gov (United States)

    Marks, Susan Unok; Kurth, Jennifer A.; Bartz, Jody Marie

    2014-01-01

    Although inclusive education has been increasing in frequency for students with disabilities in the United States, for many students, the opportunity to be educated with their peers without disabilities continues to be out of reach despite decades of efforts by those promoting the vision of inclusion. This exploratory case study used interviews…

  3. New York State's Extreme School Segregation: Inequality, Inaction and a Damaged Future

    Science.gov (United States)

    Kucsera, John

    2014-01-01

    The fight for equal educational opportunity in New York has followed a pattern similar to other diverse or racially transforming states. From the 1950s to 1980s, the issue of school desegregation was an important issue. Local civil rights pressure, the courts, and legislation attempted to desegregate large urban school systems through both…

  4. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  5. The Moving Lines on Electron Spectra as Charge Reflexes on Non-equilibrium States of Nanostructured Surfaces.

    Science.gov (United States)

    Mishchuk, Oleg A

    2016-12-01

    The experimental results present the phenomenon of moving lines on electron spectra which are linked spatially and in time with the localization and durability of the processes of new surface producing in folds and grain boundaries. This effect was also realized for a thin-layer composite "organic on metal films on dielectric substrate" in modeling non-equilibrium conditions which are created by the intensive electron beam pulse impact. It was found that the nature of the inceptive adsorption layer, in addition to the metal film, determines the initial positions of moving lines on the spectra. The main accents in these investigations were in observations of appearance of the moving lines, dynamics of their displacements on the spectra, final stages when these lines vanished, and finding the general regularities between the spontaneous and induced events.

  6. Equilibrium and non-equilibrium charge-state distributions of 2.0 MeV/u carbon ions passing through carbon foils

    Energy Technology Data Exchange (ETDEWEB)

    Imai, M., E-mail: imai@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, Nishikyo, Kyoto 615-8540 (Japan); Sataka, M.; Matsuda, M.; Okayasu, S. [Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Kawatsura, K. [Kansai Gaidai University, Hirakata, Osaka 573-1001 (Japan); Takahiro, K. [Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Sakyo, Kyoto 606-8585 (Japan); Komaki, K. [Atomic Physics Laboratory, RIKEN, Wako, Saitama 351-0198 (Japan); Shibata, H. [Department of Nuclear Engineering, Kyoto University, Nishikyo, Kyoto 615-8540 (Japan); Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Nishio, K. [Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan)

    2015-07-01

    Both equilibrium and non-equilibrium charge-state distributions were studied experimentally for 2.0 MeV/u carbon ions after passing through carbon foils. Measured charge-state distribution established the equilibrium at a target thickness of 10 μg/cm{sup 2} and this remained unchanged until a maximum target thickness of 98 μg/cm{sup 2}. The equilibrium charge-state distribution, the equilibrium mean charge-state, and the width and skewness of the equilibrium distribution were compared with predictions using existing semi-empirical formulae as well as simulation results, including the ETACHA code. It was found that charge-state distributions, mean charge states, and distribution widths for C{sup 2+}, C{sup 3+}, and C{sup 4+} incident ions merged into quasi-equilibrium values at a target thickness of 5.7 μg/cm{sup 2} in the pre-equilibrium region and evolved simultaneously to the ‘real equilibrium’ values for all of the initial charge states, including C{sup 5+} and C{sup 6+} ions, as previously demonstrated for sulfur projectile ions at the same velocity (Imai et al., 2009). Two kinds of simulation, ETACHA and solution of rate equations taking only single electron transfers into account, were used, and both of them reproduced the measured charge evolution qualitatively. The quasi-equilibrium behavior could be reproduced with the ETACHA code, but not with solution of elementary rate equations.

  7. Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of non-linear chemical reaction networks.

    Science.gov (United States)

    Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido

    2011-01-28

    Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF) of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM) or fluorescence-correlation spectroscopy (FCS) to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.

  8. Thermodynamic Measure for Nonequilibrium Processes

    Directory of Open Access Journals (Sweden)

    Attila Grandpierre

    2007-07-01

    Full Text Available One of the most fundamental laws of Nature is formulated by the Second Law of Thermodynamics. At present, in its usual formulation the central concept is entropy characterized in terms of equilibrium state variables. We point out that because thermodynamic changes arise when systems are out of equilibrium and because entropy is not a natural state variable characterizing non-equilibrium states, a new formulation of the Second Law is required. In this paper, we introduce a new, more general, but still entropic measure that is suitable in non-equilibrium conditions as well. This new entropic measure has given a name extropy. The introduction of extropy allows us to formulate the Second Law in a more suitable and precise form, and it resolves some conceptual difficulties related to the interpretation of entropy. We point out that extropy has a fundamental significance in physics, in biology, and in our scientific worldview.

  9. The effect of grain boundary segregation of boron in cast alloy 718 on HAZ microfissuring -- a SIMS analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.; Chaturvedi, M.C. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Dept. of Mechanical and Industrial Engineering; Richards, N.L. [Bristol Aerospace Ltd., Winnipeg, Manitoba (Canada); Jackman, J. [CANMET, Ottawa, Ontario (Canada)

    1997-08-01

    Secondary ion mass spectroscopy (SIMS) has been used to examine grain boundary segregation in cast alloy 718. The relationship between the boron segregation and the microfissuring tendency in heat affected zones (HAZ) around electron beam welds is discussed in this study. It is concluded that two types of segregation, namely equilibrium and non-equilibrium segregation, occurred during the homogenization heat treatment of the base material. Water quenching after the homogenization treatment inhibited non-equilibrium segregation of boron and other trace elements owing to insufficient time for diffusion of solute-vacancy complexes to occur. Intermediate cooling rates such as air cooling enhanced both non-equilibrium and equilibrium segregation, since equilibrium segregation occurred during holding at the heat treatment temperature. The value of net segregation produced by a combination of equilibrium segregation and non-equilibrium segregation varied with temperature in a U-shape. The nature of the grain boundary in the cast alloy was examined by using an electron backscattered diffraction (EBSD) technique and it was found that 93% of the grain boundaries were of the random type ({Sigma} > 49). The weldability of this alloy was found to be closely related to the grain boundary segregation of boron, i.e., the variation of HAZ total crack length (TCL) with pre-welding heat treatment temperatures has a trend similar to that of boron segregation with temperature after air cooling. Mechanisms for the effect of boron on HAZ microfissuring have been proposed.

  10. Nonequilibrium aspects of quantum thermodynamics

    OpenAIRE

    2006-01-01

    Questions about the route from a nonequilibrium initial state to the final global equilibrium have played an important role since the early days of phenomenological thermodynamics and statistical mechanics. Nowadays, their implications reach from central technical devices of the contemporary human society, like heat engines, refrigerators and computers to recent physics at almost all length scales, from Bose-Einstein-condensation and superconductors to black holes. This work addresses the fou...

  11. Thermodynamic Limit of a Nonequilibrium Steady-State: Maxwell-Type Construction for a Bistable Biochemical System

    CERN Document Server

    Ge, Hao

    2009-01-01

    We show that the thermodynamic limit of a bistable phosphorylation-dephosphorylation cycle has a selection rule for the "more stable" macroscopic steady state. The analysis is akin to the Maxwell construction. Based on the chemical master equation approach, it is shown that, except at a critical point, bistability disappears in the stochastic model when fluctuation is sufficiently low but unneglectable. Onsager's Gaussian fluctuation theory applies to the unique macroscopic steady state. With initial state in the basin of attraction of the "less stable" steady state, the deterministic dynamics obtained by the Law of Mass Action is a metastable phenomenon. Stability and robustness in cell biology are stochastic concepts.

  12. Mesoscopic virial equation for nonequilibrium statistical mechanics

    Science.gov (United States)

    Falasco, G.; Baldovin, F.; Kroy, K.; Baiesi, M.

    2016-09-01

    We derive a class of mesoscopic virial equations governing energy partition between conjugate position and momentum variables of individual degrees of freedom. They are shown to apply to a wide range of nonequilibrium steady states with stochastic (Langevin) and deterministic (Nosé-Hoover) dynamics, and to extend to collective modes for models of heat-conducting lattices. A macroscopic virial theorem ensues upon summation over all degrees of freedom. It allows for the derivation of generalised (nonequilibrium) equations of state that involve average dissipative heat flows besides genuine state variables, as exemplified for inertial Brownian motion with solid friction and overdamped active Brownian particles subject to inhomogeneous pressure.

  13. Nonequilibrium molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, W.G. (California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National Lab., CA (USA))

    1990-11-01

    The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.

  14. Mechanisms for chromosome segregation.

    Science.gov (United States)

    Bouet, Jean-Yves; Stouf, Mathieu; Lebailly, Elise; Cornet, François

    2014-12-01

    Bacteria face the problem of segregating their gigantic chromosomes without a segregation period restricted in time and space, as Eukaryotes do. Segregation thus involves multiple activities, general or specific of a chromosome region and differentially controlled. Recent advances show that these various mechanisms conform to a “pair and release” rule, which appears as a general rule in DNA segregation. We describe the latest advances in segregation of bacterial chromosomes with emphasis on the different pair and release mechanisms.

  15. Non-equilibrium folding of individual DNA molecules recaptured up to 1000 times in a solid state nanopore

    NARCIS (Netherlands)

    Plesa, Calin; Cornelissen, Ludo; Tuijtel, Maarten W.; Dekker, Cees

    2013-01-01

    We investigate translocation of linear and circular double-stranded DNA molecules through solid state nanopores where each molecule is recaptured and re-translocated many times. Single molecules can be recaptured by switching voltage polarity for hundreds or even thousands of times. The large number

  16. Mean Field Theory for Nonequilibrium Network Reconstruction

    DEFF Research Database (Denmark)

    Roudi, Yasser; Hertz, John

    2011-01-01

    There has been recent progress on the problem of inferring the structure of interactions in complex networks when they are in stationary states satisfying detailed balance, but little has been done for non-equilibrium systems. Here we introduce an approach to this problem, considering, as an exam......There has been recent progress on the problem of inferring the structure of interactions in complex networks when they are in stationary states satisfying detailed balance, but little has been done for non-equilibrium systems. Here we introduce an approach to this problem, considering......-time and one time step-delayed correlation functions....

  17. On the excess energy of nonequilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, A. V. [National Research Centre Kurchatov Institute, Institute of Hydrogen Power Engineering and Plasma Technologies (Russian Federation)

    2012-01-15

    The energy that can be released in plasma due to the onset of instability (the excess plasma energy) is estimated. Three potentially unstable plasma states are considered, namely, plasma with an anisotropic Maxwellian velocity distribution of plasma particles, plasma with a two-beam velocity distribution, and an inhomogeneous plasma in a magnetic field with a local Maxwellian velocity distribution. The excess energy can serve as a measure of the degree to which plasma is nonequilibrium. In particular, this quantity can be used to compare plasmas in different nonequilibrium states.

  18. Non-equilibrium phase transitions in complex plasma

    NARCIS (Netherlands)

    Sutterlin, K. R.; Wysocki, A.; Rath, C.; Ivlev, A. V.; Thomas, H. M.; Khrapak, S.; Zhdanov, S.; Rubin-Zuzic, M.; W. J. Goedheer,; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Morfill, G. E.; Lowen, H.

    2010-01-01

    Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separatio

  19. Cumulants of the three-state Potts model and of nonequilibrium models with C{sub 3v} symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Tome, Tania [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Petri, Alberto [Istituto di Acustica O M Corbino, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, Rome (Italy)

    2002-07-05

    The critical behaviour of two-dimensional stochastic lattice gas models with C{sub 3v} symmetry is analysed. We study the cumulants of the order parameter for the three-state (equilibrium) Potts model and for two irreversible models whose dynamic rules are invariant under the symmetry operations of the point group C{sub 3v}. By means of extensive numerical analysis of the phase transition we show that irreversibility does not affect the critical behaviour of the systems. In particular, we find that the Binder reduced fourth-order cumulant takes a universal value U* which is the same for the three-state Potts model and for the irreversible models. The same universal behaviour is observed for the reduced third-order cumulant. (author)

  20. Shape, orientation and magnitude of the curl quantum flux, the coherence and the statistical correlations in energy transport at nonequilibrium steady state

    CERN Document Server

    Zhang, Zhedong

    2015-01-01

    We provide a quantitative description of the nonequilibriumness based on the model of coupled oscillators interacting with multiple energy sources. This can be applied to the study of vibrational energy transport in molecules. The curl quantum flux quantifying the nonequilibriumness and time-irreversibility is quantified in the coherent representation and we find the geometric description of the shape and polarization of the flux which provides the connection between the microscopic description of quantum nonequilibriumness and the macroscopic observables, i.e., correlation function. We use the Wilson loop integral to quantify the magnitude of curl flux, which is shown to be correlated to the correlation function as well. Coherence contribution is explicitly demonstrated to be non-trivial and to considerably promote the heat transport quantified by heat current and efficiency. This comes from the fact that coherence effect is microscopically reflected by the geometric description of the flux. To uncover the e...

  1. Nonlinear Stochastic Dynamics of Complex Systems, II: Potential of Entropic Force in Markov Systems with Nonequilibrium Steady State, Generalized Gibbs Function and Criticality

    CERN Document Server

    Thompson, Lowell F

    2016-01-01

    In this paper we revisit the notion of the "minus logarithm of stationary probability" as a generalized potential in nonequilibrium systems and attempt to illustrate its central role in an axiomatic approach to stochastic nonequilibrium thermodynamics of complex systems. It is demonstrated that this quantity arises naturally through both monotonicity results of Markov processes and as the rate function when a stochastic process approaches a detrministic limit. We then undertake a more detailed mathematical analysis of the consequences of this quantity, culminating in a necessary and sufficient condition for the criticality of stochastic systems. This condition is then discussed in the context of recent results about criticality in biological systems.

  2. Topologically protected modes in non-equilibrium stochastic systems

    Science.gov (United States)

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2017-01-01

    Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function.

  3. Entropy as the driver of chromosome segregation.

    Science.gov (United States)

    Jun, Suckjoon; Wright, Andrew

    2010-08-01

    We present a new physical biology approach to understanding the relationship between the organization and segregation of bacterial chromosomes. We posit that replicated Escherichia coli daughter strands will spontaneously demix as a result of entropic forces, despite their strong confinement within the cell; in other words, we propose that entropy can act as a primordial physical force which drives chromosome segregation under the right physical conditions. Furthermore, proteins implicated in the regulation of chromosome structure and segregation may in fact function primarily in supporting such an entropy-driven segregation mechanism by regulating the physical state of chromosomes. We conclude that bacterial chromosome segregation is best understood in terms of spontaneous demixing of daughter strands. Our concept may also have important implications for chromosome segregation in eukaryotes, in which spindle-dependent chromosome movement follows an extended period of sister chromatid demixing and compaction.

  4. Evidence for topological nonequilibrium in magnetic configurations

    CERN Document Server

    Vainshtein, A I; Rosner, R A; Linker, J A

    2000-01-01

    We use direct numerical simulations to study the evolution, or relaxation, of magnetic configurations to an equilibrium state. We use the full single-fluid equations of motion for a magnetized, non-resistive, but viscous fluid; and a Lagrangian approach is used to obtain exact solutions for the magnetic field. As a result, the topology of the magnetic field remains unchanged, which makes it possible to study the case of topological nonequilibrium. We find two cases for which such nonequilibrium appears, indicating that these configurations may develop singular current sheets.

  5. Local entropy of a nonequilibrium fermion system

    Science.gov (United States)

    Stafford, Charles A.; Shastry, Abhay

    2017-03-01

    The local entropy of a nonequilibrium system of independent fermions is investigated and analyzed in the context of the laws of thermodynamics. It is shown that the local temperature and chemical potential can only be expressed in terms of derivatives of the local entropy for linear deviations from local equilibrium. The first law of thermodynamics is shown to lead to an inequality, not equality, for the change in the local entropy as the nonequilibrium state of the system is changed. The maximum entropy principle (second law of thermodynamics) is proven: a nonequilibrium distribution has a local entropy less than or equal to a local equilibrium distribution satisfying the same constraints. It is shown that the local entropy of the system tends to zero when the local temperature tends to zero, consistent with the third law of thermodynamics.

  6. Nonequilibrium molecular dynamics theory, algorithms and applications

    CERN Document Server

    Todd, Billy D

    2017-01-01

    Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and...

  7. Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD{sub 3}CN treated with a parallel multi-state EVB model

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, David R., E-mail: drglowacki@gmail.com [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Department of Computer Science, University of Bristol, Bristol BS8 1UB (United Kingdom); PULSE Institute and Department of Chemistry, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Orr-Ewing, Andrew J. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Harvey, Jeremy N. [Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee (Belgium)

    2015-07-28

    We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD{sub 3}CN → DF + CD{sub 2}CN reaction in CD{sub 3}CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD{sub 3}CN solvent, equilibrium power spectra of DF in CD{sub 3}CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ∼23 kcal mol{sup −1} localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD{sub 3}CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational

  8. 78 FR 53779 - Notice To Extend Mineral Segregation for the Proposed Silver State Solar Project Near Primm in...

    Science.gov (United States)

    2013-08-30

    ... solar energy project would consist of photovoltaic panels and related ROW appurtenances, including a... Silver State Solar Project Near Primm in Clark County, Nevada AGENCY: Bureau of Land Management, Interior.... SUPPLEMENTARY INFORMATION: Silver State Solar, LLC, has submitted a right-of-way (ROW) application for...

  9. Determination of INAH by using the non-equilibrium stationary state of the B-Z reaction%利用B-Z体系的非平衡定态检测异烟肼

    Institute of Scientific and Technical Information of China (English)

    任杰; 姬良亮; 王明强; 高锦章; 杨武

    2012-01-01

    分别研究了异烟肼对B-Z氏化学振荡体系的规则振荡状态和非平衡定态的影响.结果表明,在非平衡定态测定异烟肼的灵敏度更高,检测限可达6.76×10-9gmol/L.并将该方法用于异烟肼片中异烟肼含量的检测,其结果与药典法中的检测结果一致.%The effects of INAH on both the regular oscillating state and the non-equilibrium stationary state of the B-Z reaction were investigated respectively in this paper. The results showed that the non-equilibrium stationary state was more sensitive to INAH than the regular oscillating state, and the detection limit was 6. 76 × 10-9 mol/L. In addition, INAH in tablets were detected by the proposed method and the results were consistent with those obtained by the method in pharmacopoeia.

  10. Fluorine segregation in crystalline materials: structural control and solid-state [2+2] cycloaddition in CF(3)-substituted tetrathiafulvalene derivatives.

    Science.gov (United States)

    Jeannin, Olivier; Fourmigué, Marc

    2006-04-03

    The well-known influence of long perfluorinated chains on the structures and stability of amphiphilic molecules in liquid crystalline mesophases or mesoscopic micellar arrangements is evaluated here in the realm of crystalline materials based on rigid aromatic molecules bearing only a limited number of CF(3) moieties. Tetrathiafulvalene (TTF) derivatives bearing one or two CF(3) groups, that is, (Z)- and (E)-(CF(3))(2)TTF ((Z)-1, (E)-1), EDT-TTF-CF(3) (2), and EDT-TTF(CF(3))(2) (3) (EDT=ethylenedithio) are prepared from the 1,3-dipolar reaction of methyl 4,4,4-trifluorotetrolate with ethylenetrithiocarbonate. The structures of neutral (Z)-1, (E)-1, 2, and 3 as indicated by single-crystal X-ray diffraction measurements reveal the recurrent formation of layered structures with a strong segregation of the fluorinated moieties and formation of fluorous bilayers, attributed to the amphiphilic character of those TTF derivatives upon CF(3) functionalization, and without need for longer C(n)F(2n+1) (n>1) perfluorinated chains. The short intermolecular distance between outer C==C double bonds observed in the layered structure of (E)-1 allows a solid-state [2+2] photocyclization with formation of chiral dyads incorporating the characteristic cyclobutane ring. These dyads containing two dihydrotetrathiafulvalene moieties facing each other exhibit reversible oxidation to the mixed-valence radical cation state and organize in the solid-state into the same layered structures with fluorous bilayers.

  11. Nonequilibrium charge susceptibility and dynamical conductance: identification of scattering processes in quantum transport.

    Science.gov (United States)

    Ness, H; Dash, L K

    2012-03-23

    We calculate the nonequilibrium charge transport properties of nanoscale junctions in the steady state and extend the concept of charge susceptibility to the nonequilibrium conditions. We show that the nonequilibrium charge susceptibility is related to the nonlinear dynamical conductance. In spectroscopic terms, both contain the same features versus applied bias when charge fluctuation occurs in the corresponding electronic resonances. However, we show that, while the conductance exhibits features at biases corresponding to inelastic scattering with no charge fluctuations, the nonequilibrium charge susceptibility does not. We suggest that measuring both the nonequilibrium conductance and charge susceptibility in the same experiment will permit us to differentiate between different scattering processes in quantum transport.

  12. ThermoCalc Application for the Assessment of Binary Alloys Non-Equilibrium Solidification

    Directory of Open Access Journals (Sweden)

    Zyska A.

    2017-03-01

    Full Text Available The paper presents the possibility of application of the developed computer script which allows the assessment of non-equilibrium solidification of binary alloys in the ThermoCalc program. The script makes use of databases and calculation procedures of the POLY-3 module. A solidification model including diffusion in the solid state, developed by Wołczyński, is used to describe the non-equilibrium solidification. The model takes into account the influence of the degree of solute segregation on the solidification process by applying the so-called back-diffusion parameter. The core of the script is the iteration procedure with implemented model equation. The possibility of application of the presented calculation method is illustrated on the example of the Cr-30% Ni alloy. Computer simulations carried out with use of the developed script allow to determine the influence of the back-diffusion parameter on the course of solidification curves, solidus temperature, phase composition of the alloy and the fraction of each phase after the solidification completion, the profile of solute concentration in liquid during solidification process, the average solute concentration in solid phase at the eutectic temperature and many other quantities which are usually calculated in the ThermoCalc program.

  13. Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics

    CERN Document Server

    Ruelle, D

    1998-01-01

    This paper reviews various applications of the theory of smooth dynamical systems to conceptual problems of nonequilibrium statistical mechanics. We adopt a new point of view which has emerged progressively in recent years, and which takes seriously into account the chaotic character of the microscopic time evolution. The emphasis is on nonequilibrium steady states rather than the traditional approach to equilibrium point of view of Boltzmann. The nonequilibrium steady states, in presence of a Gaussian thermostat, are described by SRB measures. In terms of these one can prove the Gallavotti-Cohen fluctuation theorem. One can also prove a general linear response formula and study its consequences, which are not restricted to near equilibrium situations. Under suitable conditions the nonequilibrium steady states satisfy the pairing theorem of Dettmann and Morriss. The results just mentioned hold so far only for classical systems; they do not involve large size, i.e., they hold without a thermodynamic limit.

  14. Bacterial chromosome segregation.

    Science.gov (United States)

    Possoz, Christophe; Junier, Ivan; Espeli, Olivier

    2012-01-01

    Dividing cells have mechanisms to ensure that their genomes are faithfully segregated into daughter cells. In bacteria, the description of these mechanisms has been considerably improved in the recent years. This review focuses on the different aspects of bacterial chromosome segregation that can be understood thanks to the studies performed with model organisms: Escherichia coli, Bacillus subtilis, Caulobacter crescentus and Vibrio cholerae. We describe the global positionning of the nucleoid in the cell and the specific localization and dynamics of different chromosomal loci, kinetic and biophysic aspects of chromosome segregation are presented. Finally, a presentation of the key proteins involved in the chromosome segregation is made.

  15. A six-zone simulation model for HCCI engines with a non-segregated solver of zone state

    Science.gov (United States)

    Kozarac, Darko; Lulic, Zoran; Sagi, Goran

    2010-07-01

    A new six-zone simulation model for the calculation of changes in an HCCI engine has been developed and tested. The model uses comprehensive chemical kinetics and a non-sequential solver of zone states. This means that the state vector comprises the states in all zones, and that the changes in states in all zones are calculated simultaneously. In this manner, physical accuracy during the calculation of a new state is maintained at the expense of the calculation time. The model comprises the wall heat transfer, zone heat transfer and zone mass transfer as means of zone interactions. The cylinder is divided into two central zones, three boundary layer zones and one crevice zone. Since the model calculates only the high pressure part of an engine cycle, it has been connected with the cycle simulation software AVL Boost. In this way, a relatively easy-to-use, higher accuracy, simulation tool for HCCI engines has been obtained. The model was tested by comparing simulation results with experimental ones. The comparison was made with a single cylinder engine running on isooctane. The calculated pressure and net rate of heat release correspond to the experimental results very well in the entire operating region. By using the six-zone simulation model, a big improvement, compared to the single zone simulation, is obtained in operating points where combustion efficiency is over 90%. Results of emissions of unburned HC and CO show that predictions of these species are greatly improved, but it has also been noticed that these emissions are still slightly underpredicted. Predictions of emissions that come from crevice regions are good, but emissions that come from the corners of boundary layers are not captured very well. A detailed description of the simulation model is given, and validation results and possibilities of a further development are discussed.

  16. Statistical mechanics of nonequilibrium liquids

    CERN Document Server

    Evans, Denis J; Craig, D P; McWeeny, R

    1990-01-01

    Statistical Mechanics of Nonequilibrium Liquids deals with theoretical rheology. The book discusses nonlinear response of systems and outlines the statistical mechanical theory. In discussing the framework of nonequilibrium statistical mechanics, the book explains the derivation of a nonequilibrium analogue of the Gibbsian basis for equilibrium statistical mechanics. The book reviews the linear irreversible thermodynamics, the Liouville equation, and the Irving-Kirkwood procedure. The text then explains the Green-Kubo relations used in linear transport coefficients, the linear response theory,

  17. Nonequilibrium Thermodynamics of Porous Electrodes

    CERN Document Server

    Ferguson, Todd R

    2012-01-01

    We review classical porous electrode theory and extend it to non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic fluxes, and Faradaic charge-transfer kinetics to the variational electrochemical potentials of ions and electrons. The Butler-Volmer exchange current is consistently expressed in terms of the activities of the reduced, oxidized and transition states, and the activation overpotential is defined relative to the local Nernst potential. We also apply mathematical bounds on effective diffusivity to estimate porosity and tortuosity corrections. The theory is illustrated for a Li-ion battery with active solid particles described by a Cahn-Hilliard phase-field model. Depending on the applied current and porous electrode properties, the dynamics can be limited by electrolyte transport, solid diffusion and phase separation, or intercalation kinetics. In phase-separating porous electrodes, the model...

  18. Local non-equilibrium thermodynamics.

    Science.gov (United States)

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-16

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation.

  19. Nonequilibrium phase transitions and a nonequilibrium critical point from anti-de Sitter space and conformal field theory correspondence.

    Science.gov (United States)

    Nakamura, Shin

    2012-09-21

    We find novel phase transitions and critical phenomena that occur only outside the linear-response regime of current-driven nonequilibrium states. We consider the strongly interacting (3+1)-dimensional N = 4 large-N(c) SU(N(c)) supersymmetric Yang-Mills theory with a single flavor of fundamental N = 2 hypermultiplet as a microscopic theory. We compute its nonlinear nonballistic quark-charge conductivity by using the AdS/CFT correspondence. We find that the system exhibits a novel nonequilibrium first-order phase transition where the conductivity jumps and the sign of the differential conductivity flips at finite current density. A nonequilibrium critical point is discovered at the end point of the first-order regime. We propose a nonequilibrium steady-state analogue of thermodynamic potential in terms of the gravity-dual theory in order to define the transition point. Nonequilibrium analogues of critical exponents are proposed as well. The critical behavior of the conductivity is numerically confirmed on the basis of these proposals. The present work provides a new example of nonequilibrium phase transitions and nonequilibrium critical points.

  20. Non-equilibrium in low-temperature plasmas

    Science.gov (United States)

    Taccogna, Francesco; Dilecce, Giorgio

    2016-11-01

    The wide range of applications of cold plasmas originates from their special characteristic of being a physical system out of thermodynamic equilibrium. This property enhances its reactivity at low gas temperature and allows to obtain macroscopic effects with a moderate energy consumption. In this review, the basic concepts of non-equilibrium in ionized gases are treated by showing why and how non-equilibrium functions of the degrees of freedom are formed in a variety of natural and man-made plasmas with particular emphasis on the progress made in the last decade. The modern point of view of a molecular basis of non-equilibrium and of a state-to-state kinetic approach is adopted. Computational and diagnostic techniques used to investigate the non-equilibrium conditions are also surveyed.

  1. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  2. Nonequilibrium density matrix for quantum transport: Hershfield approach as a McLennan-Zubarev form of the statistical operator.

    Science.gov (United States)

    Ness, H

    2013-08-01

    In this paper, we formally demonstrate that the nonequilibrium density matrix developed by Hershfield for the steady state has the form of a McLennan-Zubarev nonequilibrium ensemble. The correction term in this pseudoequilibrium Gibbs-like ensemble is directly related to the entropy production in the quantum open system. The fact that both methods state that a nonequilibrium steady state can be mapped onto a pseudoequilibrium, permits us to develop nonequilibrium quantities from formal expressions equivalent to the equilibrium case. We provide an example: the derivation of a nonequilibrium distribution function for the electron population in a scattering region in the context of quantum transport.

  3. Rigorous results of nonequilibrium statistical physics and their experimental verification

    Science.gov (United States)

    Pitaevskii, Lev P.

    2011-06-01

    Rigorous relations of nonequilibrium statistical physics are discussed. An arbitrary system brought into a strongly nonequilibrium state by an external time-dependent impact is considered. Based on the Hamiltonian formalism of classical mechanics, the Bochkov-Kuzovlev equality, the Jarzynski equality, and Crooks reversal relations valid for fluctuations in the work done on a system are derived. Verification of these equalities in mechanical experiments with a torsion pendulum and biological objects (folded ribonucleic acids) is described.

  4. Non-equilibrium and band tailing in organic conductors

    Indian Academy of Sciences (India)

    A T Oza; P C Vinodkumar; R G Patel

    2003-03-01

    The concept of band tailing with focal point and width of the tail from IR absorption spectra of different organic conductors is found valid even for thermal and elastic changes. The experimental situations like change of solvents, method of preparation, applied pressure and pressure cycle apart from compositions is analyzed within the framework of tailing of states. Non-equilibrium due to coupling between applied energy and free electrons can be responsible for the exponential relaxation from non-equilibrium to equilibrium.

  5. Non-Equilibrium Thermodynamics in Conformal Field Theory

    CERN Document Server

    Hollands, Stephan

    2016-01-01

    We present a model independent, operator algebraic approach to non-equilibrium quantum thermodynamics within the framework of two-dimensional Conformal Field Theory. Two infinite reservoirs in equilibrium at their own temperatures and chemical potentials are put in contact through a defect line, possibly by inserting a probe. As time evolves, the composite system then approaches a non-equilibrium steady state that we describe. In particular, we re-obtain recent formulas of Bernard and Doyon.

  6. Thermal response of nonequilibrium RC-circuits

    CERN Document Server

    Baiesi, Marco; Falasco, Gianmaria; Yolcu, Cem

    2016-01-01

    We analyze experimental data obtained from an electrical circuit having components at different temperatures, showing how to predict its response to temperature variations. This illustrates in detail how to utilize a recent linear response theory for nonequilibrium overdamped stochastic systems. To validate these results, we introduce a reweighting procedure that mimics the actual realization of the perturbation and allows extracting the susceptibility of the system from steady state data. This procedure is closely related to other fluctuation-response relations based on the knowledge of the steady state probability distribution. As an example, we show that the nonequilibrium heat capacity in general does not correspond to the correlation between the energy of the system and the heat flowing into it. Rather, also non-dissipative aspects are relevant in the nonequilbrium fluctuation response relations.

  7. Nonequilibrium Green's function theory of resonant steady state photoconduction in a double quantum well FET subject to THz radiation at plasmon frequency

    Science.gov (United States)

    Morgenstern Horing, Norman J.; Popov, Vyacheslav V.

    2006-04-01

    Recent experimental observations by X.G. Peralta and S.J. Allen, et al. of dc photoconductivity resonances in steady source-drain current subject to terahertz radiation in a grid-gated double-quantum well FET suggested an association with plasmon resonances. This association was definitively confirmed for some parameter ranges in our detailed electrodynamic absorbance calculations. In this paper we propose that the reason that the dc photoconductance resonances match the plasmon resonances in semiconductors is based on a nonlinear dynamic screening mechanism. In this, we employ a shielded potential approximation that is nonlinear in the terahertz field to determine the nonequilibrium Green's function and associated density perturbation that govern the nonequilibrium dielectric polarization of the medium. This ''conditioning'' of the system by the incident THz radiation results in resonant polarization response at the plasmon frequencies which, in turn, causes a sharp drop of the resistive shielded impurity scattering potentials and attendant increase of the dc source-drain current. This amounts to disabling the impurity scattering mechanism by plasmon resonant behavior in nonlinear screening.

  8. INTRODUCTION: Nonequilibrium Processes in Plasmas

    Science.gov (United States)

    Petrović, Zoran; Marić, Dragana; Malović, Gordana

    2009-07-01

    have the presentation of monitoring of the deposition of airborne particles by the group from Belgrade led by Mirjana Tasić, and a study of such particles by elemental analysis by van Grieken and his colleagues from Belgium. We hope that the continuation of our workshops and the publication of our books will contribute to finding a common thread that connects different topics, even different fields, that share some aspects of the phenomena associated with non-equilibrium. As Anton Chekhov once stated 'Only entropy comes easy' so any work aimed at bringing order into the field is difficult. Organization of the workshop and publication of the book are of course not as hard as the pursuit of knowledge itself but we hope that it is, to some degree, a minor contribution to the everlasting human struggle against the entropy. And while we, of course, agree with scientists that are much better than we are that thermodynamics will never be overthrown, it is only human to try to cheat it. Doing the related science is allowing us to achieve exactly that and it is a source of numerous practical applications. The editors are grateful to all the members of the Gaseous Electronics Laboratory for organization of the workshop, in particular the members of the organizing committee and the staff of the Academy of Science and Institute of Physics. Finally and above all we acknowledge great efforts of all the participants who have invested a lot of funds, their time and effort to join us, sometimes travelling from distant continents. This book exists, however, mainly thanks to the efforts of all the authors who have invested their time and experience to write the papers. We also acknowledge the contribution by Professor Rastko Ćirić whose rendering of Maxwell's demon remains as symbol of our meeting and our publications. Perhaps the most chaotic aspect of human society, as our current experience teaches us, is the flow of funds and several agencies helped us get the needed funds to

  9. Nonequilibrium superconducting detectors

    Science.gov (United States)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  10. Nonequilibrium superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)

    2006-03-15

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  11. Combined physical and chemical nonequilibrium transport model for solution conduits.

    Science.gov (United States)

    Field, Malcolm S; Leij, Feike J

    2014-02-01

    Solute transport in karst aquifers is primarily constrained to relatively complex and inaccessible solution conduits where transport is often rapid, turbulent, and at times constrictive. Breakthrough curves generated from tracer tests in solution conduits are typically positively-skewed with long tails evident. Physical nonequilibrium models to fit breakthrough curves for tracer tests in solution conduits are now routinely employed. Chemical nonequilibrium processes are likely important interactions, however. In addition to partitioning between different flow domains, there may also be equilibrium and nonequilibrium partitioning between the aqueous and solid phases. A combined physical and chemical nonequilibrium (PCNE) model was developed for an instantaneous release similar to that developed by Leij and Bradford (2009) for a pulse release. The PCNE model allows for partitioning open space in solution conduits into mobile and immobile flow regions with first-order mass transfer between the two regions to represent physical nonequilibrium in the conduit. Partitioning between the aqueous and solid phases proceeds either as an equilibrium process or as a first-order process and represents chemical nonequilibrium for both the mobile and immobile regions. Application of the model to three example breakthrough curves demonstrates the applicability of the combined physical and chemical nonequilibrium model to tracer tests conducted in karst aquifers, with exceptionally good model fits to the data. The three models, each from a different state in the United States, exhibit very different velocities, dispersions, and other transport properties with most of the transport occurring via the fraction of mobile water. Fitting the model suggests the potentially important interaction of physical and chemical nonequilibrium processes.

  12. Nonlinear nonequilibrium quasiparticle relaxation in Josephson junctions.

    Science.gov (United States)

    Krasnov, V M

    2009-11-27

    I solve numerically a full set of nonlinear kinetic balance equations for stacked Josephson junctions, which allows analysis of strongly nonequilibrium phenomena. It is shown that nonlinearity becomes significant already at very small disequilibrium. The following new, nonlinear effects are obtained: (i) At even-gap voltages V = 2nDelta/e (n = 2, 3, ...) nonequilibrium bosonic bands overlap. This leads to enhanced emission of Omega = 2Delta bosons and to the appearance of dips in tunnel conductance. (ii) A new type of radiative solution is found at strong disequilibrium. It is characterized by the fast stimulated relaxation of quasiparticles. A stack in this state behaves as a light emitting diode and directly converts electric power to boson emission, without utilization of the ac-Josephson effect. The phenomenon can be used for realization of a new type of superconducting cascade laser in the THz frequency range.

  13. Nonequilibrium Thermodynamic Model of Manganese Carbonate Oxidation

    Institute of Scientific and Technical Information of China (English)

    郝瑞霞; 彭省临

    1999-01-01

    Manganese carbonate can be converted to many kinds of manganese oxides when it is aerated in air and oxygen.Pure manganese carbonate can be changed into Mn3O4 and γ-MnOOH,and manganese carbonate ore can be converted to MnO2 under the air-aerating and oxygen-aerating circumstances.The oxidation process of manganese carbonate is a changing process of mineral association,and is also a converting process of valence of manganese itself.Not only equilibrium stat,but also nonequilibrium state are involved in this whole process,This process is an irreversible heterogeneous complex reaction,and oberys the nonequilibrium thermodynamic model,The oxidation rate of manganese cabonate is controlled by many factors,especially nonmanganese metallic ions which play an important role in the oxidation process of manganese carbonate.

  14. Non-equilibrium Economics

    Directory of Open Access Journals (Sweden)

    Katalin Martinás

    2007-02-01

    Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.

  15. Commentary: Genger Segregation in Childhood.

    Science.gov (United States)

    Maccoby, Eleanor E.

    1994-01-01

    Provides an overview of the preceding articles in this journal issue. Considers the timing of gender segregation, compatibility between play styles and gender segregation, possible physiological processes underlying gender segregation in play, children's cognitive knowledge about gender, and the consequences of gender segregation. (BAC)

  16. Grain boundary structure and solute segregation in titanium-doped sapphire bicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Seth T.

    2002-05-17

    Solute segregation to ceramic grain boundaries governs material processing and microstructure evolution, and can strongly influence material properties critical to engineering performance. Understanding the evolution and implications of grain boundary chemistry is a vital component in the greater effort to engineer ceramics with controlled microstructures. This study examines solute segregation to engineered grain boundaries in titanium-doped sapphire (Al2O3) bicrystals, and explores relationships between grain boundary structure and chemistry at the nanometer scale using spectroscopic and imaging techniques in the transmission electron microscope (TEM). Results demonstrate dramatic changes in solute segregation stemming from small fluctuations in grain boundary plane and structure. Titanium and silicon solute species exhibit strong tendencies to segregate to non-basal and basal grain boundary planes, respectively. Evidence suggests that grain boundary faceting occurs in low-angle twis t boundaries to accommodate nonequilibrium solute segregation related to slow specimen cooling rates, while faceting of tilt grain boundaries often occurs to expose special planes of the coincidence site lattice (CSL). Moreover, quantitative analysis of grain boundary chemistry indicates preferential segregation of charged defects to grain boundary dislocations. These results offer direct proof that static dislocations in ionic materials can assume a net charge, and emphasize the importance of interactions between charged point, line, and planar defects in ionic materials. Efforts to understand grain boundary chemistry in terms of space charge theory, elastic misfit and nonequilibrium segregation are discussed for the Al2O3 system.

  17. Non-equilibrium dynamics from RPMD and CMD.

    Science.gov (United States)

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F

    2016-11-28

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t(4)) and O(t(1)), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t(5)) and O(t(2)), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  18. Continuous utility factor in segregation models

    Science.gov (United States)

    Roy, Parna; Sen, Parongama

    2016-02-01

    We consider the constrained Schelling model of social segregation in which the utility factor of agents strictly increases and nonlocal jumps of the agents are allowed. In the present study, the utility factor u is defined in a way such that it can take continuous values and depends on the tolerance threshold as well as the fraction of unlike neighbors. Two models are proposed: in model A the jump probability is determined by the sign of u only, which makes it equivalent to the discrete model. In model B the actual values of u are considered. Model A and model B are shown to differ drastically as far as segregation behavior and phase transitions are concerned. In model A, although segregation can be achieved, the cluster sizes are rather small. Also, a frozen state is obtained in which steady states comprise many unsatisfied agents. In model B, segregated states with much larger cluster sizes are obtained. The correlation function is calculated to show quantitatively that larger clusters occur in model B. Moreover for model B, no frozen states exist even for very low dilution and small tolerance parameter. This is in contrast to the unconstrained discrete model considered earlier where agents can move even when utility remains the same. In addition, we also consider a few other dynamical aspects which have not been studied in segregation models earlier.

  19. Nonequilibrium quantum dynamics in optomechanical systems

    Science.gov (United States)

    Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund

    2016-05-01

    The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.

  20. Understanding Segregation Processes

    Science.gov (United States)

    Bruch, Elizabeth

    There is growing consensus that living in neighborhoods of concentrated poverty increases the likelihood of social problems such as teenage parenthood, drug and alcohol use, crime victimization, and chronic unemployment. Neighborhood inequality is also implicated in studies of enduring race/ethnic health disparities, and there are recent moves to broaden the definition of health care policy to policies targeting social inequality (Mechanic 2007). Residential segregation affects health outcomes in several different ways. First, income, education, and occupation are all strongly related to health (Adler and Newman 2002). Segregation is a key mechanism through which socioeconomic inequality is perpetuated and reinforced, as it hinders the upward mobility of disadvantaged groups by limiting their educational and employment opportunities. Second, segregation increases minority exposure to unhealthy neighborhood environments. Residential segregation creates areas with concentrated poverty and unemployment, both of which are key factors that predict violence and create racial differences in homicide (Samson and Wilson 1995). Neighborhood characteristics, such as exposure to environmental hazards, fear of violence, and access to grocery stores, affect health risks and health behaviors (Cheadle et al. 1991). Tobacco and alcohol industries also advertise their products disproportionately in poor, minority areas (Moore, Williams, and Qualls 1996). Finally, residential segregation leads to inequalitie in health care resources, which contributes to disparities in quality of treatment (Smedley, Stith, and Nelson 2002).

  1. Vertical distribution, segregation by size and recruitment of the yellow clam Mesodesma mactroides Deshayes, 1854 (Mollusca, Bivalvia, Mesodesmatidae in exposed sandy beaches of the Rio Grande do Sul state, Brazil

    Directory of Open Access Journals (Sweden)

    PEA. Bergonci

    Full Text Available The vertical distribution and the segregation by size of the yellow clam Mesodesma mactroides Deshayes, 1854 were investigated in the intertidal zone and its limits with the lower and upper shores at exposed sandy beaches of Rio Grande do Sul state, Brazil. The gathering was made throughout 12 months; from the Pinhal beach towards the south of the State, in six 15 km equidistant transects, determined through random selection. In these transects, the calculation of 30 consecutive waves was made in order to determine its average amplitude point (P0, from which two points were marked towards the lower shore (P-1 and P-2 and three towards the upper shore (P1, P2 and P3. A 30 by 50 cm cylinder was buried down to the depth of 40 cm, the material was separated with a 0.25 cm mesh and the specimens were quantified and measured in length. The yellow clam presented segregation by size, especially between recruit and adult individuals, with recruits occupying preferably the zones above P0 and adults from this point towards the sea. The young specimens are distributed through all zones, mixed with adult and recruit specimens, which dismisses the hypothesis of segregation by size in function of competition for space and food, once the burying depth is directly proportional to their length. However, the segregation between recruits and adults might be related to the filtering mechanism of the adults, which could ingest the larva, as well as the fact that the recruits, being small and light, are easily transported to the regions above P0. Seasonal migration was observed for adult individuals during winter and spring, probably associated to the reproduction period of the species, being that the peak of recruitment was greater in the end of the winter and the beginning of spring.

  2. Vertical distribution, segregation by size and recruitment of the yellow clam Mesodesma mactroides Deshayes, 1854 (Mollusca, Bivalvia, Mesodesmatidae) in exposed sandy beaches of the Rio Grande do Sul state, Brazil.

    Science.gov (United States)

    Bergonci, P E A; Thomé, J W

    2008-05-01

    The vertical distribution and the segregation by size of the yellow clam Mesodesma mactroides Deshayes, 1854 were investigated in the intertidal zone and its limits with the lower and upper shores at exposed sandy beaches of Rio Grande do Sul state, Brazil. The gathering was made throughout 12 months; from the Pinhal beach towards the south of the State, in six 15 km equidistant transects, determined through random selection. In these transects, the calculation of 30 consecutive waves was made in order to determine its average amplitude point (P0), from which two points were marked towards the lower shore (P-1 and P-2) and three towards the upper shore (P1, P2 and P3). A 30 by 50 cm cylinder was buried down to the depth of 40 cm, the material was separated with a 0.25 cm mesh and the specimens were quantified and measured in length. The yellow clam presented segregation by size, especially between recruit and adult individuals, with recruits occupying preferably the zones above P0 and adults from this point towards the sea. The young specimens are distributed through all zones, mixed with adult and recruit specimens, which dismisses the hypothesis of segregation by size in function of competition for space and food, once the burying depth is directly proportional to their length. However, the segregation between recruits and adults might be related to the filtering mechanism of the adults, which could ingest the larva, as well as the fact that the recruits, being small and light, are easily transported to the regions above P0. Seasonal migration was observed for adult individuals during winter and spring, probably associated to the reproduction period of the species, being that the peak of recruitment was greater in the end of the winter and the beginning of spring.

  3. The Dynamic Reinforcement of Polyvinyl Alcohol (PVA) as a Result of Non-equilibrium State of Polymer Supermolecular Structures and their Confinement in Nanofibers

    Science.gov (United States)

    Zussman, Eyal; Shaked, Emil; Arinstein, Arkadi

    2009-03-01

    The results of mechanical testing of PVA -based electrospun nanofibers and bulk in static and dynamic modes are presented. An increase in the elastic moduli resulting from sample deformation was observed in both the bulk and as-spun fibers. This increase occurs when the deformation rate exceeds a critical value and can be attributed to the non-equilibrium dynamics of the supermolecular structures of the polymer matrix. That is, the evolution of these supermolecular structures results in an observably extended relaxation time. It is noted that the rate of the modulus increase of the nanofibers is nearly double that of the bulk fibers' rate. This difference can be explained by confinement influence on the polymer matrix of the nanofibers. In addition, the tests revealed that the, Tg, of the nanofiber is noticeably higher than that of bulk specimen. Reinforcing the nanofibrs by cellulose whiskers showing that the dependence of the effective modulus on the whisker concentration has an initial increase that changes to a decrease when the whisker concentration exceeds 2 %. Such behavior can be explained in the framework of an aggregation concept -- when the cluster size reaches that of the fiber diameter (cluster confinement), the whisker distribution becomes inhomogeneous and results in a measurable weakening of the composite.

  4. 高超声速三维热化学非平衡流场的数值计算对比研究%A comparative study of the computation of 3-D hypersonic flow in thermochemical nonequilibrium state

    Institute of Scientific and Technical Information of China (English)

    张敏捷; 向树红

    2016-01-01

    The influence of the chemical kinetic model selection on the computation of the hypersonic flow in the thermochemical nonequilibrium state is examined, with consideration of several different chemical reaction models (the Dunn-Kang model, the Park85 model, the Park93 model, the Park2001 model, and the Gupta model). Typical experimental results at home and aboard are used to identify the reliable model. The thermal nonequilibrium processes in the gas are accounted in the Park's two temperature model. Cases are computed using five species, and one temperature model is used for comparison. It is shown that the Park85-7 species-two temperature model gives the best results, as compared to experiment data. On the other hand, the Park85-5 species-one temperature model is more suitable for engineering applications.%文章选取国内外典型的高超声速绕流实验,对比研究了不同化学反应模型(Dunn-Kang模型、Park85模型、Park93模型、Park2001模型、Gupta模型)对高超流动计算结果的影响.重点采用Park双温度模型开展热化学非平衡效应的模拟研究,并同时与5组元单温度模型的计算结果进行了对比.研究表明:Park85-7组元双温度模型与实验结果吻合最好,结果最为可靠;而Park85-5组元单温度模型更适用于工程计算.

  5. Measuring Inequality and Segregation

    CERN Document Server

    Roberto, Elizabeth

    2015-01-01

    In this paper, I introduce the Divergence Index, a conceptually intuitive and methodologically rigorous measure of inequality and segregation. The index measures the difference between a distribution of interest and another empirical, theoretical, or normative distribution. The Divergence Index provides flexibility in specifying a theoretically meaningful basis for evaluating inequality. It evaluates how surprising an empirical distribution is given a theoretical distribution that represents equality. I demonstrate the unique features of the new measure, as well as deriving its mathematical equivalence with Theil's Inequality Index and the Information Theory Index. I compare the dynamics of the measures using simulated data, and an empirical analysis of racial residential segregation in the Detroit, MI, metro area. The Information Theory Index has become the gold standard for decomposition analyses of segregation. I show that although the Information Theory Index can be decomposed for subareas, it is misleadi...

  6. Nonequilibrium thermodynamics of nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M., E-mail: marco.schweizer@math.ethz.ch [ETH Zurich, Department of Materials, Polymer Physics, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Sagis, L. M. C., E-mail: leonard.sagis@wur.nl [ETH Zurich, Department of Materials, Polymer Physics, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Food Physics Group, Wageningen University, Bornse Weilanden, 6708 WG Wageningen (Netherlands)

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  7. Free Energy Functional for Nonequilibrium Systems: An Exactly Solvable Case

    Science.gov (United States)

    Derrida, B.; Lebowitz, J. L.; Speer, E. R.

    2001-10-01

    We consider the steady state of an open system in which there is a flux of matter between two reservoirs at different chemical potentials. For a large system of size N, the probability of any macroscopic density profile ρ(x) is exp[-NF(\\{ρ\\})] F thus generalizes to nonequilibrium systems the notion of free energy density for equilibrium systems. Our exact expression for F is a nonlocal functional of ρ, which yields the macroscopically long range correlations in the nonequilibrium steady state previously predicted by fluctuating hydrodynamics and observed experimentally.

  8. Landscape and flux theory of non-equilibrium open economy

    Science.gov (United States)

    Zhang, Kun; Wang, Jin

    2017-09-01

    The economy is open and never in true equilibrium due to the exchanges with outside. However, most of the quantitative studies have been focused on the equilibrium economy. Despite of the recent efforts, it is still challenging to formulate a quantitative theory for uncovering the principles of non-equilibrium open economy. In this study, we developed a landscape and flux theory for non-equilibrium economy. We quantified the states of economy and identify the multi-stable states as the basins of attractions on the underlying landscape. We found the global driving force of the non-equilibrium economy is determined by both the underlying landscape gradient and the curl probability flux measuring the degree of non-equilibriumness through the detailed balance breaking. The non-equilibrium thermodynamics, the global stability, the optimal path and speed of the non-equilibrium economy can be formulated and quantified. In the conventional economy, the supply and demand usually has only one equilibrium. By considering nonlinear supply-demand dynamics, we found that both bi-stable states and limit cycle oscillations can emerge. By shifting the slope of demand curve, we can see how the bi-stability transforms to the limit cycle dynamics and vice versa. By parallel shifting the demand curve, we can also see how the monopoly, the competition, and the bistable monopoly and competition states emerge and transform to one other. We can also see how the mono-stable monopoly, the limit cycle and the mono-stable competition states emerge and transform to one another.

  9. Factors affecting hydrogen-assisted cracking in a commercial tempered martensitic steel: Mn segregation, MnS, and the stress state around abnormal cracks

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Daisuke [Graduate School of Kyushu University, Fukuoka 819-0395 (Japan); Koyama, Motomichi [Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku Fukuoka 819-0395 (Japan); Noguchi, Hiroshi, E-mail: nogu@mech.kyushu-u.ac.jp [Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku Fukuoka 819-0395 (Japan)

    2015-07-29

    The purpose of this paper is to reveal the dominant factors affecting tensile fracture under a hydrogen gas atmosphere. Tensile tests were conducted in hydrogen gas with circumferentially-notched specimens of a commercial tempered martensitic steel. Two specimens were exposed to hydrogen gas for 48 h before tensile testing; the other two specimens were not pre-charged. Longitudinal cracks along the loading direction and a transverse crack perpendicular to the loading direction were observed on a cross section of the non-charged specimen, but there was only one small crack on a cross section of the pre-charged specimen. Electron back scatter diffraction, energy dispersive X-ray spectrometry and finite element method analyses were applied to clarify the relationships among the longitudinal crack, Mn segregation, microstructures of martensitic steel and hydrogen. As a result, it has been demonstrated that Mn segregation and MnS promote hydrogen-assisted cracking in the tempered martensitic steel, causing the longitudinal cracking which is a mechanically non-preferential direction in homogeneous situations. More specifically, we have shown that the role of the Mn segregation is to promote the hydrogen-enhanced decohesion effect (HEDE), which is particularly important for crack propagation in the present case. These considerations indicate that the presence of Mn is crucially important for hydrogen-assisted cracking associated with hydrogen-enhanced localized plasticity (HELP) as well as HEDE.

  10. A Question of Segregation

    DEFF Research Database (Denmark)

    Quedas, Fátima; Ponte, João; Trindade, Carlos

    2016-01-01

    than 40 per cent of breads were indeed over the labelling threshold, and should be labelled. This includes GM maize that is not cultivated in the EU and enters the supply chain via international trade. We conclude that the realisation of coexistence and segregation requires involvement of the full...

  11. Plasmid segregation mechanisms

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Gerdes, Kenn; Charbon, Gitte Ebersbach

    2005-01-01

    Bacterial plasmids encode partitioning (par) loci that ensure ordered plasmid segregation prior to cell division. par loci come in two types: those that encode actin-like ATPases and those that encode deviant Walker-type ATPases. ParM, the actin-like ATPase of plasmid R1, forms dynamic filaments ...

  12. Modeling, Measurements, and Fundamental Database Development for Nonequilibrium Hypersonic Aerothermodynamics

    Science.gov (United States)

    Bose, Deepak

    2012-01-01

    The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above

  13. Racial Segregation and the American Foreclosure Crisis.

    Science.gov (United States)

    Rugh, Jacob S; Massey, Douglas S

    2010-10-01

    Although the rise in subprime lending and the ensuing wave of foreclosures was partly a result of market forces that have been well-identified in the literature, in the United States it was also a highly racialized process. We argue that residential segregation created a unique niche of poor minority clients who were differentially marketed risky subprime loans that were in great demand for use in mortgage-backed securities that could be sold on secondary markets. We test this argument by regressing foreclosure actions in the top 100 U.S. metropolitan areas on measures of black, Hispanic, and Asian segregation while controlling for a variety of housing market conditions, including average creditworthiness, the extent of coverage under the Community Reinvestment Act, the degree of zoning regulation, and the overall rate of subprime lending. We find that black residential dissimilarity and spatial isolation are powerful predictors of foreclosures across U.S. metropolitan areas. In order to isolate subprime lending as the causal mechanism whereby segregation influences foreclosures, we estimate a two-stage least squares model that confirms the causal effect of black segregation on the number and rate of foreclosures across metropolitan areas. In the United States segregation was an important contributing cause of the foreclosure crisis, along with overbuilding, risky lending practices, lax regulation, and the bursting of the housing price bubble.

  14. Nonequilibrium Tuning of the Thermal Casimir Effect

    CERN Document Server

    Dean, David S; Maggs, A C; Podgornik, Rudolf

    2016-01-01

    In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.

  15. Spectroscopy of nonequilibrium electrons and phonons

    CERN Document Server

    Shank, CV

    1992-01-01

    The physics of nonequilibrium electrons and phonons in semiconductors is an important branch of fundamental physics that has many practical applications, especially in the development of ultrafast and ultrasmall semiconductor devices. This volume is devoted to different trends in the field which are presently at the forefront of research. Special attention is paid to the ultrafast relaxation processes in bulk semiconductors and two-dimensional semiconductor structures, and to their study by different spectroscopic methods, both pulsed and steady-state. The evolution of energy and space distrib

  16. Nonlinear and nonequilibrium dynamics in geomaterials.

    Science.gov (United States)

    TenCate, James A; Pasqualini, Donatella; Habib, Salman; Heitmann, Katrin; Higdon, David; Johnson, Paul A

    2004-08-01

    The transition from linear to nonlinear dynamical elasticity in rocks is of considerable interest in seismic wave propagation as well as in understanding the basic dynamical processes in consolidated granular materials. We have carried out a careful experimental investigation of this transition for Berea and Fontainebleau sandstones. Below a well-characterized strain, the materials behave linearly, transitioning beyond that point to a nonlinear behavior which can be accurately captured by a simple macroscopic dynamical model. At even higher strains, effects due to a driven nonequilibrium state, and relaxation from it, complicate the characterization of the nonlinear behavior.

  17. Tuning non-equilibrium superconductors with lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael A.; Kollath, Corinna [HISKP, University of Bonn, Nussallee 14-16, D-53115 Bonn (Germany); Kemper, Alexander F. [LBL Berkeley (United States); Georges, Antoine [Ecole Polytechnique and College de France, Paris (France)

    2015-07-01

    The study of the real-time dynamics dynamics of solids perturbed by short laser pulses is an intriguing opportunity of ultrafast materials science. Previous theoretical work on pump-probe photoemission spectroscopy revealed spectroscopic signatures of electron-boson coupling, which are reminiscent of features observed in recent pump-probe photoemission experiments on cuprate superconductors. Here we investigate the ordered state of electron-boson mediated superconductors subject to laser driving using Migdal-Eliashberg theory on the Kadanoff-Baym-Keldysh contour. We extract the characteristic time scales on which the non-equilibrium superconductor reacts to the perturbation, and their relation to the coupling boson and the underlying order.

  18. Nonequilibrium thermodynamics and Nose-Hoover dynamics.

    Science.gov (United States)

    Esposito, Massimiliano; Monnai, Takaaki

    2011-05-12

    We show that systems driven by an external force and described by Nose-Hoover dynamics allow for a consistent nonequilibrium thermodynamics description when the thermostatted variable is initially assumed in a state of canonical equilibrium. By treating the "real" variables as the system and the thermostatted variable as the reservoir, we establish the first and second law of thermodynamics. As for Hamiltonian systems, the entropy production can be expressed as a relative entropy measuring the system-reservoir correlations established during the dynamics.

  19. Dynamical Ensembles in Nonequilibrium Statistical Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Gallavotti, G.; Cohen, E.G.D. [Dipartimento di Fisica, Universita di Roma, La Sapienza, 00185 Roma (Italy)]|[The Rockefeller University, New York, New York 10021 (United States)

    1995-04-03

    Ruelle`s principle for turbulence leading to what is usually called the Sinai-Ruelle-Bowen (SRB) distribution is applied to the statistical mechanics of many particle systems in nonequilibrium stationary states. A specific prediction, obtained without the need to construct explicitly the SRB itself, is shown to be in agreement with a recent computer experiment on a strongly sheared fluid. This presents the first test of the principle on a many particle system far from equilibrium. A possible application to fluid mechanics is also discussed.

  20. Jamming and pattern formation in models of segregation

    Science.gov (United States)

    Rogers, Tim; McKane, Alan J.

    2012-04-01

    We investigate the Schelling model of social segregation, formulated as an intrinsically nonequilibrium system, in which the agents occupy districts (or patches) rather than sites on a grid. We show that this allows the equations governing the dynamical behavior of the model to be derived. Analysis of these equations reveals a jamming transition in the regime of low-vacancy density, and inclusion of a spatial dimension in the model leads to a pattern forming instability. Both of these phenomena exhibit unusual characteristics which may be studied through our approach.

  1. Non-Equilibrium Transitions of Heliospheric plasma

    Science.gov (United States)

    Livadiotis, G.; McComas, D. J.

    2011-12-01

    Recent advances in Space Physics theory have established the connection between non-extensive Statistical Mechanics and space plasmas by providing a theoretical basis for the empirically derived kappa distributions commonly used to describe the phase space distribution functions of these systems [1]. The non-equilibrium temperature and the kappa index that govern these distributions are the two independent controlling parameters of non-equilibrium systems [1-3]. The significance of the kappa index is primarily given by its role in identifying the non-equilibrium stationary states, and measuring their "thermodynamic distance" from thermal equilibrium [4], while its physical meaning is connected to the correlation between the system's particles [5]. For example, analysis of the IBEX high Energetic Neutral Atom spectra [6] showed that the vast majority of measured kappa indices are between ~1.5 and ~2.5, consistent with the far-equilibrium "cavity" of minimum entropy discovered by Livadiotis & McComas [2]. Spontaneous procedures that can increase the entropy, move the system gradually toward equilibrium, that is the state with the maximum (infinite) kappa index. Other external factors that may decrease the entropy, move the system back to states further from equilibrium where the kappa indices are smaller. Newly formed pick-up ions can play this critical role in the solar wind and other space plasmas. We have analytically shown that their highly ordered motion can reduce the average entropy in the plasma beyond the termination shock, inside the inner heliosheath [7]. Non-equilibrium transitions have a key role in understanding the governing thermodynamical processes of space plasmas. References 1. Livadiotis, G., & McComas, D. J. 2009, JGR, 114, 11105. 2. Livadiotis, G., & McComas, D. J. 2010a, ApJ, 714, 971. 3. Livadiotis, G., & McComas, D. J. 2010c, in AIP Conf. Proc. 9, Pickup Ions Throughout the Heliosphere and Beyond, ed. J. LeRoux, V. Florinski, G. P. Zank, & A

  2. Chemical segregation and self polarisation in ferroelectrics

    Directory of Open Access Journals (Sweden)

    Bernard E. Watts

    2009-06-01

    Full Text Available Chemical partitioning or segregation is commonly encountered in solid-state syntheses. It is driven by compositional, thermal and electric field gradients. These phenomena can be quite extreme in thin films and lead to notable effects on the electrical properties of ferroelectrics. The segregation in ferroelectric thin films will be illustrated and the mechanisms explained in terms of diffusion processes driven by a potential gradient of the oxygen. The hypothesis can also explain self polarisation and imprint in ferroelectric hysteresis.

  3. Open problems in non-equilibrium physics

    Energy Technology Data Exchange (ETDEWEB)

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  4. Casimir-Polder Potential in Thermal Non-Equilibrium

    CERN Document Server

    Ellingsen, Simen Å; Buhmann, Stefan Y; Scheel, Stefan

    2009-01-01

    Different non-equilibrium situations have recently been considered when studying the thermal Casimir--Polder interaction with a body. We show that the Keldysh Green function method provides a very general common framework for such studies where non-equilibrium of either the atom or the body with the environment can be accounted for. We apply the results to the case of ground state polar molecules out of equilibrium with their environment, observing several striking effects. We consider thermal Casimir--Polder potentials in planar configurations, and new results for a molecule in a cylindrical cavity are reported, showing similar characteristic behaviour as found in planar geometry.

  5. Work fluctuation and total entropy production in nonequilibrium processes

    Science.gov (United States)

    Funo, Ken; Shitara, Tomohiro; Ueda, Masahito

    2016-12-01

    Work fluctuation and total entropy production play crucial roles in small thermodynamic systems subject to large thermal fluctuations. We investigate a trade-off relation between them in a nonequilibrium situation in which a system starts from an arbitrary nonequilibrium state. We apply a variational method to study this problem and find a stationary solution against variations over protocols that describe the time dependence of the Hamiltonian of the system. Using the stationary solution, we find the minimum of the total entropy production for a given amount of work fluctuation. An explicit protocol that achieves this is constructed from an adiabatic process followed by a quasistatic process. The obtained results suggest how one can control the nonequilibrium dynamics of the system while suppressing its work fluctuation and total entropy production.

  6. Nonequilibrium Dynamical Mean-Field Theory for Bosonic Lattice Models

    Science.gov (United States)

    Strand, Hugo U. R.; Eckstein, Martin; Werner, Philipp

    2015-01-01

    We develop the nonequilibrium extension of bosonic dynamical mean-field theory and a Nambu real-time strong-coupling perturbative impurity solver. In contrast to Gutzwiller mean-field theory and strong-coupling perturbative approaches, nonequilibrium bosonic dynamical mean-field theory captures not only dynamical transitions but also damping and thermalization effects at finite temperature. We apply the formalism to quenches in the Bose-Hubbard model, starting from both the normal and the Bose-condensed phases. Depending on the parameter regime, one observes qualitatively different dynamical properties, such as rapid thermalization, trapping in metastable superfluid or normal states, as well as long-lived or strongly damped amplitude oscillations. We summarize our results in nonequilibrium "phase diagrams" that map out the different dynamical regimes.

  7. Black Hole Evaporation and Nonequilibrium Thermodynamics for a Radiation Field

    CERN Document Server

    Saida, H

    2005-01-01

    When a black hole is put in an "empty" space (zero temperature space) on which there is no matter except the matter of the Hawking radiation (Hawking field), then an outgoing energy flow from the black hole into the empty space exists. By the way, an equilibrium between two arbitrary systems can not allow the existence of an energy (heat) flow from one system to another. Consequently, in the case of a black hole evaporation in the empty space, the Hawking field should be in a nonequilibrium state. Hence the total behaviour of the evaporation, for example the time evolution of the total entropy, should be analysed with a nonequilibrium thermodynamics for the Hawking field. This manuscript explains briefly the way of constructing a nonequilibrium thermodynamic theory for a radiation field, and apply it to a simplified model of a black hole evaporation to calculate the time evolution of the total entropy.

  8. Non-equilibrium fluctuation-dissipation relation from holography

    CERN Document Server

    Mukhopadhyay, Ayan

    2012-01-01

    We derive non-equilibrium fluctuation-dissipation relation for bosonic correlation functions from holography in the classical gravity approximation. We also show this holds universally in any classical gravity theory which has a stable thermal background as a solution. Therefore, this can provide a strong experimental test for the applicability of the holographic framework. The fluctuation-dissipation relation gives a proportionality factor between the expectation value of the commutator i.e. the spectral function, and the expectation value of the anti-commutator, i.e. the Keldysh propagator, in an arbitrary non-equilibrium state. We show that, in the limit in which the external sources vanish and within the range of validity of perturbative hydrodynamic (derivative) and non-hydrodynamic (amplitude) expansions, the holographic non-equilibrium fluctuation-dissipation relation is fixed completely by the temperature of the final equilibrium. We argue this is consistent with locality and causality of the dual fie...

  9. An introduction to stochastic processes and nonequilibrium statistical physics

    CERN Document Server

    Wio, Horacio S; Lopez, Juan M

    2012-01-01

    This book aims to provide a compact and unified introduction to the most important aspects in the physics of non-equilibrium systems. It first introduces stochastic processes and some modern tools and concepts that have proved their usefulness to deal with non-equilibrium systems from a purely probabilistic angle. The aim is to show the important role played by fluctuations in far-from-equilibrium situations, where noise can promote order and organization, switching among non-equilibrium states, etc. The second part adopts a more historical perspective, retracing the first steps taken from the purely thermodynamic as well as from the kinetic points of view to depart (albeit slightly) from equilibrium. The third part revisits the path outlined in the first one, but now undertakes the mesoscopic description of extended systems, where new phenomena (patterns, long-range correlations, scaling far from equilibrium, etc.) are observed.

  10. Simulating rare events in equilibrium or nonequilibrium stochastic systems

    NARCIS (Netherlands)

    Allen, R.J.; Frenkel, D.; Wolde, P.R. ten

    2006-01-01

    We present three algorithms for calculating rate constants and sampling transition paths for rare events in simulations with stochastic dynamics. The methods do not require a priori knowledge of the phase-space density and are suitable for equilibrium or nonequilibrium systems in stationary state. A

  11. Note on two theorems in nonequilibrium statistical mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E.G.D.; Gallavotti, G.

    1999-09-01

    An attempt is made to clarify the difference between a theorem derived by Evans and Searles in 1994 on the statistics of trajectories in phase space and a theorem proved by the authors in 1995 on the statistics of fluctuations on phase space trajectory segments in a nonequilibrium stationary state.

  12. A multifluid model extended for strong temperature nonequilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-08

    We present a multifluid model in which the material temperature is strongly affected by the degree of segregation of each material. In order to track temperatures of segregated form and mixed form of the same material, they are defined as different materials with their own energy. This extension makes it necessary to extend multifluid models to the case in which each form is defined as a separate material. Statistical variations associated with the morphology of the mixture have to be simplified. Simplifications introduced include combining all molecularly mixed species into a single composite material, which is treated as another segregated material. Relative motion within the composite material, diffusion, is represented by material velocity of each component in the composite material. Compression work, momentum and energy exchange, virtual mass forces, and dissipation of the unresolved kinetic energy have been generalized to the heterogeneous mixture in temperature nonequilibrium. The present model can be further simplified by combining all mixed forms of materials into a composite material. Molecular diffusion in this case is modeled by the Stefan-Maxwell equations.

  13. Nonequilibrium dynamical mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, Martin

    2009-12-21

    The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)

  14. Rheology via nonequilibrium molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, W.G.

    1982-10-01

    The equilibrium molecular dynamics formulated by Newton, Lagrange, and Hamilton has been modified in order to simulate rheologial molecular flows with fast computers. This modified Nonequilibrium Molecular Dynamics (NEMD) has been applied to fluid and solid deformations, under both homogeneous and shock conditions, as well as to the transport of heat. The irreversible heating associated with dissipation could be controlled by carrying out isothermal NEMD calculations. The new isothermal NEMD equations of motion are consistent with Gauss' 1829 Least-Constraint principle as well as certain microscopic equilibrium and nonequilibrium statistical formulations due to Gibbs and Boltzmann. Application of isothermal NEMD revealed high-frequency and high-strain-rate behavior for simple fluids which resembled the behavior of polymer solutions and melts at lower frequencies and strain rates. For solids NEMD produces plastic flows consistent with experimental observations at much lower strain rates. The new nonequilibrium methods also suggest novel formulations of thermodynamics in nonequilibrium systems and shed light on the failure of the Principle of Material Frame Indifference.

  15. Chaotic dynamics, fluctuations, nonequilibrium ensembles.

    Science.gov (United States)

    Gallavotti, Giovanni

    1998-06-01

    The ideas and the conceptual steps leading from the ergodic hypothesis for equilibrium statistical mechanics to the chaotic hypothesis for equilibrium and nonequilibrium statistical mechanics are illustrated. The fluctuation theorem linear law and universal slope prediction for reversible systems is briefly derived. Applications to fluids are briefly alluded to. (c) 1998 American Institute of Physics.

  16. ANTIMONY GRAIN BOUNDARY SEGREGATION AND ITS SUPPRESSION BY CERIUM IN Fe-2%Mn-Sb STRUCTURAL STEELS

    Institute of Scientific and Technical Information of China (English)

    Z.X. Yuan; A.M. Guo; J. Liu; D.D. Shen; J. Jia; S.H. Song

    2003-01-01

    Antimony grain boundary segregation in Fe-2%Mn-Sb structure steels has been studied through measurements of the ductile-brittle transition temperature in conjunction with scanning electron microscopy, Auger electron spectroscopy and secondary ion mass spectroscopy. The research result reveals that during tempering or ageing after quenching at 980C, Sb segregates to grain boundaries with both equilibrium and nonequilibrium natures and brings about temper embrittlement in the steels. Cerium can relieve temper embrittlement of the steels and its segregation to grain boundaries -05 play an important role in reducing this embrittlement.

  17. Chemistry of borate in salt lake brine (XXXIV)-- Phase diagram of thermodynamic nonequilibrium state of MgO-B2O3-18%MgCl2-H2O system at 20℃

    Institute of Scientific and Technical Information of China (English)

    GAO; Shiyang; (高世扬); ZHU; Lixia; (朱黎霞); HAO; Zhixian; (郝志显); XIA; Shuping; (夏树屏)

    2002-01-01

    The crystallization processes of hydrated Mg-borates, boric, magnesium hydroxide and Mg-oxychloride from MgO-B2O3-18%MgCl2-H2O supersaturated solution at 20℃ have been studied by kinetic method. The crystallization solid phases were characterized by X-ray powder diffraction, IR spectra, thermal analysis and chemical analysis. The liquid-solid phase diagram of thermodynamic nonequilibrium state has been given. In this phase diagram, there exist eight crystallization fields, boric acid(H3BO3), trigomagneborite(MgO*3B2O3*7.5H2O, MgO*3B2O3*7H2O), hungchaoite(MgO*2B2O3*9H2O), inderite(2MgO*3B2O3*15H2O), chloropinnoite(2MgO*2B2O3*MgCl2*14H2O), magnesium hydroxide(Mg(OH)2) and magnesium oxychloride (5Mg(OH)2*MgCl2*8H2O).

  18. Source Segregation and Collection of Source-Segregated Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Matsufuji, Y.

    2011-01-01

    The Segregation of individual material fractions at the waste source and keeping the fractions separate for collection is one of the key issues in modern waste management. In most cases the waste is just kept segregated from other waste according to certain criteria that improve the possibility...... the more important it is to consider source segregation of the waste, since the amount of waste links to the possibility of obtaining manageable amounts of segregated waste with reasonable logistics as well as to the manpower that can be allocated at the source to perform source segregation of waste....... Therefore, source segregation usually makes most sense in industry, where the waste often also is more well defined and cleaner, while residential waste containing relatively small amounts of each material fraction is a bigger and much more difficult challenge. This chapter describes the main issues...

  19. Simulations of nonequilibrium warm dense gold produced by ultrafast heating

    Science.gov (United States)

    Holst, B.; Recoules, V.; Torrent, M.; Chen, Z.; Sametoglu, V.; Tsui, Y. Y.; Kirkwood, S. E.; Reid, M.; Mazevet, S.; Ng, A.

    2013-03-01

    The interaction of femtosecond laser pulses with metals produces nonequilibrium states consisting of hot electrons and cold ions. These can last for many picoseconds before relaxing to a thermodynamic equilibrium. Recent experiments using a chirped pulse probe technique provided AC conductivity data of gold at a sufficient time resolution to observe this relaxation process. We developed an ab-initio model that characterizes thermodynamic properties of warm dense matter states in nonequilibrium. Our theoretical scheme combines a standard two temperature model with temperature dependent material parameters and an energy transfer rate that are obtained by means of ab-initio simulations. This enables us to give a prediction for the temperature evolution during the relaxation process. Additionally, we derive the AC conductivity of the nonequilibrium states from our simulations using the Kubo-Greenwood formula. It is used to test our model against measurements. We observe agreement with experiment using an energy relaxation rate, that is smaller than predicted, giving us reason to revisit its determination. We can furthermore provide thermodynamical and structural data of nonequilibrium warm dense gold which are not accessible in experiment.

  20. Patterns of Residential Segregation.

    Directory of Open Access Journals (Sweden)

    Rémi Louf

    Full Text Available The spatial distribution of income shapes the structure and organisation of cities and its understanding has broad societal implications. Despite an abundant literature, many issues remain unclear. In particular, all definitions of segregation are implicitely tied to a single indicator, usually rely on an ambiguous definition of income classes, without any consensus on how to define neighbourhoods and to deal with the polycentric organization of large cities. In this paper, we address all these questions within a unique conceptual framework. We avoid the challenge of providing a direct definition of segregation and instead start from a definition of what segregation is not. This naturally leads to the measure of representation that is able to identify locations where categories are over- or underrepresented. From there, we provide a new measure of exposure that discriminates between situations where categories co-locate or repel one another. We then use this feature to provide an unambiguous, parameter-free method to find meaningful breaks in the income distribution, thus defining classes. Applied to the 2014 American Community Survey, we find 3 emerging classes-low, middle and higher income-out of the original 16 income categories. The higher-income households are proportionally more present in larger cities, while lower-income households are not, invalidating the idea of an increased social polarisation. Finally, using the density-and not the distance to a center which is meaningless in polycentric cities-we find that the richer class is overrepresented in high density zones, especially for larger cities. This suggests that density is a relevant factor for understanding the income structure of cities and might explain some of the differences observed between US and European cities.

  1. Aversive Racism and Intergroup Contact Theories: Cultural Competence in a Segregated World

    Science.gov (United States)

    Rodenborg, Nancy A.; Boisen, Laura A.

    2013-01-01

    The United States remains highly segregated, and social work students are likely to live and work in segregated contexts. What implications does this have for their cultural competence? Does segregation affect social workers' ability to serve diverse clients without bias? This article reviews two social psychology theories, aversive racism…

  2. Size segregation in a granular bore

    Science.gov (United States)

    Edwards, A. N.; Vriend, N. M.

    2016-10-01

    We investigate the effect of particle-size segregation in an upslope propagating granular bore. A bidisperse mixture of particles, initially normally graded, flows down an inclined chute and impacts with a closed end. This impact causes the formation of a shock in flow thickness, known as a granular bore, to travel upslope, leaving behind a thick deposit. This deposit imprints the local segregated state featuring both pure and mixed regions of particles as a function of downstream position. The particle-size distribution through the depth is characterized by a thin purely small-particle layer at the base, a significant linear transition region, and a thick constant mixed-particle layer below the surface, in contrast to previously observed S-shaped steady-state concentration profiles. The experimental observations agree with recent progress that upward and downward segregation of large and small particles respectively is asymmetric. We incorporate the three-layer, experimentally observed, size-distribution profile into a depth-averaged segregation model to modify it accordingly. Numerical solutions of this model are able to match our experimental results and therefore motivate the use of a more general particle-size distribution profile.

  3. A non-equilibrium Monte Carlo renormalization-group approach based upon the microscopic master equation applied to the three-state driven lattice gas

    Science.gov (United States)

    Georgiev, Ivan T.; McKay, Susan R.

    2005-12-01

    We present a general position-space renormalization-group approach for systems in steady states far from equilibrium and illustrate its application to the three-state driven lattice gas. The method is based upon the possibility of a closed form representation of the parameters controlling transition rates of the system in terms of the steady state probability distribution of small clusters, arising from the application of the master equations to small clusters. This probability distribution on various length scales is obtained through a Monte Carlo algorithm on small lattices, which then yields a mapping between parameters on different length scales. The renormalization-group flows indicate the phase diagram, analogous to equilibrium treatments. For the three-state driven lattice gas, we have implemented this procedure and compared the resulting phase diagrams with those obtained directly from simulations. Results in general show the expected topology with one exception. For high densities, an unexpected additional fixed point emerges, which can be understood qualitatively by comparing it with the fixed point of the fully asymmetric exclusion process.

  4. Nonequilibrium effects in the energy distribution function

    Science.gov (United States)

    Burns, George; Cohen, L. Kenneth

    1983-03-01

    The relative nonequilibrium energy distribution function, in the steady state for the irreversibly reacting Br2 in an argon system at 3500 K, is calculated. It is based upon 44 400 classical 3D trajectories, and uses the single uniform ensemble method [H. D. Kutz and G. Burns, J. Chem. Phys. 72, 3562 (1980)]. Although the raw data display a considerable scatter, they clearly indicate a depletion from the equilibrium distribution function over a wide energy range. A careful statistical study of the data is performed. It is found that their histograms can be described over the entire possible energy range by a simple analytical function with only one adjustable parameter. The best fitting procedure yields a surprisingly narrow goodness of fit. However, an apparent deviation of the fit from the data is observed in the energy region where the reaction channel opens. To that extent, this work sheds a new light on the nature of the steady state in an irreversible reaction.

  5. Nonequilibrium phase transitions in biomolecular signal transduction

    Science.gov (United States)

    Smith, Eric; Krishnamurthy, Supriya; Fontana, Walter; Krakauer, David

    2011-11-01

    We study a mechanism for reliable switching in biomolecular signal-transduction cascades. Steady bistable states are created by system-size cooperative effects in populations of proteins, in spite of the fact that the phosphorylation-state transitions of any molecule, by means of which the switch is implemented, are highly stochastic. The emergence of switching is a nonequilibrium phase transition in an energetically driven, dissipative system described by a master equation. We use operator and functional integral methods from reaction-diffusion theory to solve for the phase structure, noise spectrum, and escape trajectories and first-passage times of a class of minimal models of switches, showing how all critical properties for switch behavior can be computed within a unified framework.

  6. Conditional reversibility in nonequilibrium stochastic systems

    Science.gov (United States)

    Bonança, Marcus V. S.; Jarzynski, Christopher

    2016-02-01

    For discrete-state stochastic systems obeying Markovian dynamics, we establish the counterpart of the conditional reversibility theorem obtained by Gallavotti for deterministic systems [Ann. de l'Institut Henri Poincaré (A) 70, 429 (1999)]. Our result states that stochastic trajectories conditioned on opposite values of entropy production are related by time reversal, in the long-time limit. In other words, the probability of observing a particular sequence of events, given a long trajectory with a specified entropy production rate σ , is the same as the probability of observing the time-reversed sequence of events, given a trajectory conditioned on the opposite entropy production, -σ , where both trajectories are sampled from the same underlying Markov process. To obtain our result, we use an equivalence between conditioned ("microcanonical") and biased ("canonical") ensembles of nonequilibrium trajectories. We provide an example to illustrate our findings.

  7. Why do polygynous ungulates segregate in space? Testing the activity-budget hypothesis in soay sheep

    OpenAIRE

    2007-01-01

    Sexual segregation is the behavior in which animals of different sex in a species live in separate groups outside the mating season. Recently a new concept, namely, the >activity-budget hypothesis,> has claimed to be the ultimate explanation of this behavior. The new hypothesis explains not only sexual segregation, but also segregation between animals of different size within sex (i.e., social segregation). The hypothesis states that the activity patterns of animals will differ when big diffe...

  8. Segregation behavior of phosphorus in the heat-affected zone of an A533B/A182 dissimilar weld joint before and after simulated thermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Ziqing, E-mail: ziqing.zhai@rbm.qse.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, 6-6-01-2 Aoba, Aramaki, Aoba-Ku, Sendai 980-8579 (Japan); Miyahara, Yuichi [Material Science Research Laboratory, Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Abe, Hiroshi; Watanabe, Yutaka [Graduate School of Engineering, Tohoku University, 6-6-01-2 Aoba, Aramaki, Aoba-Ku, Sendai 980-8579 (Japan)

    2014-09-15

    Highlights: • Impacts of aging on P segregation in actual heat-affected zone were examined by 3D-APT. • Non-equilibrium segregation of P dominated in subsequent cooling after welding. • Equilibrium segregation of P prevailed in step-cooling heat treatment. • High enrichment of P at grain/packet boundaries occurred in CGHAZ and ICCGHAZ. • Level of P enrichment at precipitate/matrix interface seemed species-dependent. - Abstract: The segregation behavior of phosphorus (P) in the heat-affected zone (HAZ) of an A533B/A182 dissimilar weld joint before and after step cooling was investigated with atom probe tomography. At grain/packet boundaries, the final P segregation level consisted of non-equilibrium segregation that occurred during cooling after welding and post-weld heat treatment (PWHT) and equilibrium segregation that occurred during step cooling. In both processes, higher P coverage was observed in the coarse-grained and intercritically reheated coarse-grained HAZ than in the fine-grained HAZ and base material. The cooling after welding and PWHT seemed to have a pronounced impact on P segregation in the subsequent aging process. In addition, P segregation also occurred at the precipitate/matrix interfaces of cementite, Mo{sub 2}C and Al–Si rich precipitates. The evolution of P coverage at these two types of sites suggested increasing risks of embrittlement with an increase in aging time.

  9. Chromosome Segregation in Vibrio cholerae

    OpenAIRE

    Ramachandran, R.; Jha, J.; Chattoraj, DK

    2014-01-01

    The study of chromosome segregation is currently one of the most exciting research frontiers in cell biology. In this review, we discuss our current knowledge of the chromosome segregation process in Vibrio cholerae, based primarily on findings from fluorescence microscopy experiments. This bacterium is of special interest because of its eukaryotic feature of having a divided genome, a feature shared with 10% of known bacteria. We also discuss how the segregation mechanisms of V. cholerae com...

  10. Bombardment-induced segregation and redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.; Wiedersich, H.

    1986-04-01

    During ion bombardment, a number of processes can alter the compositional distribution and microstructure in near-surface regions of alloys. The relative importance of each process depends principally on the target composition, temperature, and ion characteristics. In addition to displacement mixing leading to a randomization of atomic locations, and preferential loss of alloying elements by sputtering, which are dominant at relatively low temperatures, several thermally-activated processes, including radiation-enhanced diffusion, radiation-induced segregation and Gibbsian adsorption, also play important roles. At elevated temperatures, nonequilibrium point defects induced by ion impacts become mobile and tend to anneal out by recombination and diffusion to extended sinks, such as dislocations, grain boundaries and free surfaces. The high defect concentrations, far exceeding the thermodynamic equilbrium values, can enhance diffusion-controlled processes, while persistent defect fluxes, originating from the spatial non-uniformity in defect production and annihilation, give rise to local redistribution of alloy constituents because of radiation-induced segregation. Moreover, when the alloy is maintained at high temperature, Gibbsian adsorption, driven by the reduction in free energy of the system, occurs even without irradiation; it involves a compositional perturbation in a few atom layers near the alloy surface. The combination of these processes leads to the complex development of a compositionally-modified layer in the subsurface region. In the present paper, selected examples of these different phenomena and their synergistic effects on the evolution of the near-surface compositions of alloys during sputtering and ion implantation at elevated temperatures are discussed. 74 refs., 7 figs., 1 tab.

  11. Separating forward and backward pathways in nonequilibrium umbrella sampling.

    Science.gov (United States)

    Dickson, Alex; Warmflash, Aryeh; Dinner, Aaron R

    2009-10-21

    Umbrella sampling enforces uniform sampling of steady-state distributions that are functions of arbitrary numbers of order parameters. The key to applying such methods to nonequilibrium processes is the accumulation of fluxes between regions. A significant difference between microscopically reversible and irreversible systems is that, in the latter case, the transition path ensemble for a reaction can be significantly different for "forward" and "backward" trajectories. Here, we show how to separately treat forward and backward pathways in nonequilibrium umbrella sampling simulations by working in an extended space. In this extended space, the exact rate (for equilibrium or nonequilibrium processes) can be calculated "for free" as a flux in phase space. We compare the efficiency of this rate calculation with forward flux sampling for a two-dimensional potential and show that nonequilibrium umbrella sampling is more efficient when an intermediate is present. We show that this technique can also be used to describe steady-state limit cycles by examining a simulation of circadian oscillations. We obtain the path of the limit cycle in a space of 22 order parameters, as well as the oscillation period. The relation of our method to others is discussed.

  12. Chromosome segregation in Vibrio cholerae.

    Science.gov (United States)

    Ramachandran, Revathy; Jha, Jyoti; Chattoraj, Dhruba K

    2014-01-01

    The study of chromosome segregation is currently one of the most exciting research frontiers in cell biology. In this review, we discuss our current knowledge of the chromosome segregation process in Vibrio cholerae, based primarily on findings from fluorescence microscopy experiments. This bacterium is of special interest because of its eukaryotic feature of having a divided genome, a feature shared with 10% of known bacteria. We also discuss how the segregation mechanisms of V. cholerae compare with those in other bacteria, and highlight some of the remaining questions regarding the process of bacterial chromosome segregation.

  13. Nonequilibrium and irreversibility

    CERN Document Server

    Gallavotti, Giovanni

    2014-01-01

    This book concentrates on the properties of the stationary states in chaotic systems of particles or fluids, leaving aside the theory of the way they can be reached. The stationary states of particles or of fluids (understood as probability distributions on microscopic configurations or on the fields describing continua) have received important new ideas and data from numerical simulations and reviews are needed. The starting point is to find out which time invariant distributions come into play in physics. A special feature of this book is the historical approach. To identify the problems the author analyzes the papers of the founding fathers Boltzmann, Clausius and Maxwell including translations of the relevant (parts of ) historical documents. He also establishes a close link between treatment of irreversible phenomena in statistical mechanics and the theory of chaotic systems at and beyond the onset of turbulence as developed by Sinai, Ruelle, Bowen (SRB) and others: the author gives arguments intending t...

  14. Patterns of residential segregation

    CERN Document Server

    Louf, Rémi

    2015-01-01

    The spatial distribution of income shapes the structure and organisation of cities and its understanding has broad societal implications. Despite an abundant literature, many issues remain however unclear: there is no clear definition of what segregation is, no unambiguous definition of income classes, no clear way to identify neighborhoods, and no method to deal with the polycentric organization of large cities. In this paper, we address all these questions within a unique theoretical framework. We assume that households belonging to the same class tend to live close to each other, and households from different classes tend to avoid one another. Applied to the US 2000 Census Income data, 3 distinct classes emerge from the clustering of the original 16 income classes. Using these unambiguously defined classes, we cluster together contiguous similar areas and find that the number of clusters for each category scales with the city population, an effect that is more pronounced for rich households. Finally, using...

  15. Shaping Segregation: Convexity vs. concavity

    NARCIS (Netherlands)

    Gonzalez, S.; Windows-Yule, C.R.; Luding, S.; Parker, D.J.; Thornton, A.R.

    2014-01-01

    Controlling segregation is both a practical and a theoretical challenge. In this Letter we demonstrate a manner in which rotation-induced segregation may be controlled by altering the geometry of the rotating containers in which granular systems are housed. Using a novel drum design comprising conca

  16. On Equivalence of Nonequilibrium Thermodynamic and Statistical Entropies

    Directory of Open Access Journals (Sweden)

    Purushottam D. Gujrati

    2015-02-01

    Full Text Available We review the concept of nonequilibrium thermodynamic entropy and observables and internal variables as state variables, introduced recently by us, and provide a simple first principle derivation of additive statistical entropy, applicable to all nonequilibrium states by treating thermodynamics as an experimental science. We establish their numerical equivalence in several cases, which includes the most important case when the thermodynamic entropy is a state function. We discuss various interesting aspects of the two entropies and show that the number of microstates in the Boltzmann entropy includes all possible microstates of non-zero probabilities even if the system is trapped in a disjoint component of the microstate space. We show that negative thermodynamic entropy can appear from nonnegative statistical entropy.

  17. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    Science.gov (United States)

    Tomé, Tânia; de Oliveira, Mário J

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  18. Racial segregation and maternal smoking during pregnancy: a multilevel analysis using the racial segregation interaction index.

    Science.gov (United States)

    Yang, Tse-Chuan; Shoff, Carla; Noah, Aggie J; Black, Nyesha; Sparks, Corey S

    2014-04-01

    Drawing from both the place stratification and ethnic enclave perspectives, we use multilevel modeling to investigate the relationships between women's race/ethnicity (i.e., non-Hispanic white, non-Hispanic black, Asian, and Hispanic) and maternal smoking during pregnancy, and examine if these relationships are moderated by racial segregation in the continental United States. The results show that increased interaction with whites is associated with increased probability of maternal smoking during pregnancy, and racial segregation moderates the relationships between race/ethnicity and maternal smoking. Specifically, living in a less racially segregated area is related to a lower probability of smoking during pregnancy for black women, but it could double and almost triple the probability of smoking for Asian women and Hispanic women, respectively. Our findings provide empirical evidence for both the place stratification and ethnic enclave perspectives.

  19. Chromosome segregation in plant meiosis

    Science.gov (United States)

    Zamariola, Linda; Tiang, Choon Lin; De Storme, Nico; Pawlowski, Wojtek; Geelen, Danny

    2014-01-01

    Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved. PMID:24987397

  20. Chromosome segregation in plant meiosis

    Directory of Open Access Journals (Sweden)

    Linda eZamariola

    2014-06-01

    Full Text Available Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.

  1. Nonequilibrium phase transition in a driven Potts model with friction.

    Science.gov (United States)

    Iglói, Ferenc; Pleimling, Michel; Turban, Loïc

    2011-04-01

    We consider magnetic friction between two systems of q-state Potts spins which are moving along their boundaries with a relative constant velocity ν. Due to the interaction between the surface spins there is a permanent energy flow and the system is in a steady state, which is far from equilibrium. The problem is treated analytically in the limit ν=∞ (in one dimension, as well as in two dimensions for large-q values) and for v and q finite by Monte Carlo simulations in two dimensions. Exotic nonequilibrium phase transitions take place, the properties of which depend on the type of phase transition in equilibrium. When this latter transition is of first order, a sequence of second- and first-order nonequilibrium transitions can be observed when the interaction is varied. ©2011 American Physical Society

  2. Source Segregation and Collection of Source-Segregated Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Matsufuji, Y.

    2011-01-01

    of optimal handling of the waste. But in a few cases, the waste must also be separated at source, for example removing the protective plastic cover from a commercial advertisement received by mail, prior to putting the advertisement into the waste collection bin for recyclable paper. These issues are often......The Segregation of individual material fractions at the waste source and keeping the fractions separate for collection is one of the key issues in modern waste management. In most cases the waste is just kept segregated from other waste according to certain criteria that improve the possibility...... termed source separation or sorting at source. Here the word segregation has been chosen to indicate the importance of keeping the waste fractions apart by sorting waste and by separating waste into segregated materials as it is generated. The more waste that a physically defined source generates...

  3. Nonequilibrium Floquet States in Topological Kondo Insulators

    Science.gov (United States)

    2016-02-04

    scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: Student Metrics This section only applies to...REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT NUMBER 5b...RETURN YOUR FORM TO THE ABOVE ADDRESS. University of Maryland - College Park Research Administration 3112 Lee Building College Park, MD 20742 -5141 31

  4. Escherichia coli Chromosomal Loci Segregate from Midcell with Universal Dynamics.

    Science.gov (United States)

    Cass, Julie A; Kuwada, Nathan J; Traxler, Beth; Wiggins, Paul A

    2016-06-21

    The structure of the Escherichia coli chromosome is inherently dynamic over the duration of the cell cycle. Genetic loci undergo both stochastic motion around their initial positions and directed motion to opposite poles of the rod-shaped cell during segregation. We developed a quantitative method to characterize cell-cycle dynamics of the E. coli chromosome to probe the chromosomal steady-state mobility and segregation process. By tracking fluorescently labeled chromosomal loci in thousands of cells throughout the entire cell cycle, our method allows for the statistical analysis of locus position and motion, the step-size distribution for movement during segregation, and the locus drift velocity. The robust statistics of our detailed analysis of the wild-type E. coli nucleoid allow us to observe loci moving toward midcell before segregation occurs, consistent with a replication factory model. Then, as segregation initiates, we perform a detailed characterization of the average segregation velocity of loci. Contrary to origin-centric models of segregation, which predict distinct dynamics for oriC-proximal versus oriC-distal loci, we find that the dynamics of loci were universal and independent of genetic position.

  5. Non-equilibrium transport through a disordered molecular nanowire

    OpenAIRE

    2016-01-01

    We investigate the non-equilibrium transport properties of a disordered molecular nanowire. The nanowire is regarded as a quasi-one-dimensional organic crystal composed of self-assembled molecules. One orbital and a single random energy are assigned to each molecule while the intermolecular coupling does not fluctuate. Consequently, electronic states are expected to be spatially localized. We consider the regime of strong localization, namely, the localization length is smaller than the lengt...

  6. Nonequilibrium entropy production in open and closed quantum systems

    OpenAIRE

    2011-01-01

    Thermodynamics is a phenomenological theory describing the energy conversion of work and heat. At its origins thermodynamics was developed in order to understand and improve heat engines. In conventional thermodynamics, however, only such processes are completely describable which are slow enough to keep the system of interest in an equilibrium state with its thermal environment at all times. On the contrary, all real physical processes are accompanied by non-equilibrium phenomena. These are ...

  7. Nonequilibrium thermodynamics of fuel cells: Heat release mechanisms and voltage

    Energy Technology Data Exchange (ETDEWEB)

    Wilemski, G.

    1980-01-01

    Nonequilibrium thermodynamics is used to analyze the spatial distribution of heat release mechanisms occurring in fuel cells operating under load in nonisothermal steady states. Novel contributions to heat release in the bulk electrolyte are found which are analogous to Peltier and Thomson effects in metallic conductors. Expresions for the heat release at individual electrodes are presented. An equation for the voltage of these cells is also derived.

  8. Nonequilibrium emergent phenomena in organic molecular solids

    Energy Technology Data Exchange (ETDEWEB)

    Mitrano, Matteo

    2015-07-15

    The manipulation of matter with ultrashort laser pulses is a relevant research field from both a fundamental and an applied perspective, owing to the efficient coupling to the electronic degrees of freedom on femtosecond timescales and the ability to induce transient phases that cannot be realized in equilibrium scenarios. Strongly correlated materials are a natural environment for the observation of such novel and emergent out-of-equilibrium physics because small modifications to the electron-electron interactions can induce transitions between remarkably different macroscopic phases. One of the most effective means of modifying the effective electron-electron interactions is to perturb the crystal structure through pressure, strain or even light. However, it remains largely unexplored how perturbing the structural degrees of freedom affects the electron dynamics of the transiently driven states and how the interplay of correlations and electron-lattice interactions determine the intrinsic timescales of these nonequilibrium states. This thesis investigates how to control the light-induced nonequilibrium electronic properties in strongly correlated organics, that are highly tunable with moderate variations of external parameters, by perturbing their structural degrees of freedom, either via static pressures or vibrational excitation. We study the role of correlations in determining the relaxation rate of holes (holons) and double occupancies (doublons) in a solid state Mott insulator, the ET-F{sub 2}TCNQ, driven across a transient insulator-to-metal transition. By mapping holon-doublon lifetimes onto the ground-state electronic interactions, we found that the decay rate of the photoinjected quasiparticles depends on the degree of correlation between carriers and is affected by the presence of a competition between local recombination and delocalization of holon-doublon pairs. By optically controlling the effective correlations in organic molecular crystals through

  9. Non-dissipative effects in nonequilibrium systems

    CERN Document Server

    Maes, Christian

    2018-01-01

    This book introduces and discusses both the fundamental aspects and the measurability of applications of time-symmetric kinetic quantities, outlining the features that constitute the non-dissipative branch of non-equilibrium physics. These specific features of non-equilibrium dynamics have largely been ignored in standard statistical mechanics texts. This introductory-level book offers novel material that does not take the traditional line of extending standard thermodynamics to the irreversible domain. It shows that although stationary dissipation is essentially equivalent with steady non-equilibrium and ubiquitous in complex phenomena, non-equilibrium is not determined solely by the time-antisymmetric sector of energy-entropy considerations. While this should not be very surprising, this book provides timely, simple reminders of the role of time-symmetric and kinetic aspects in the construction of non-equilibrium statistical mechanics.

  10. Inherent Segregation in Granular Media

    Directory of Open Access Journals (Sweden)

    Sánchez-Guzmán J.

    2011-10-01

    Full Text Available A study of the inherent segregation within granular media due to the relative size of the different particles is presented. A numerical model is used to simulate granular structures. For both simulation and granular structures evaluations, probability theory is widely used. Particles are idealized by disks (2D model and spheres (3D model. Strictly uniform grain size materials, bimodal (two particle sizes and continuous are simulated. Two variables representing segregation and allowing appreciating the grain-size parameters effects are considered. In uniform materials, the presence of spontaneous structuring is observed. In bimodal and continuous materials, inherent segregation mainly depends on the ratio between maximum and minimum diameters of particle. Some practical implications of inherent segregation in geotechnical problems and other disciplines are remarked.

  11. Can topology reshape segregation patterns?

    CERN Document Server

    Gandica, Yerali; Carletti, Timoteo

    2015-01-01

    We consider a metapopulation version of the Schelling model of segregation over several complex networks and lattice. We show that the segregation process is topology independent and hence it is intrinsic to the individual tolerance. The role of the topology is to fix the places where the segregation patterns emerge. In addition we address the question of the time evolution of the segregation clusters, resulting from different dynamical regimes of a coarsening process, as a function of the tolerance parameter. We show that the underlying topology may alter the early stage of the coarsening process, once large values of the tolerance are used, while for lower ones a different mechanism is at work and it results to be topology independent.

  12. Computing the complexity for Schelling segregation models

    Science.gov (United States)

    Gerhold, Stefan; Glebsky, Lev; Schneider, Carsten; Weiss, Howard; Zimmermann, Burkhard

    2008-12-01

    The Schelling segregation models are "agent based" population models, where individual members of the population (agents) interact directly with other agents and move in space and time. In this note we study one-dimensional Schelling population models as finite dynamical systems. We define a natural notion of entropy which measures the complexity of the family of these dynamical systems. The entropy counts the asymptotic growth rate of the number of limit states. We find formulas and deduce precise asymptotics for the number of limit states, which enable us to explicitly compute the entropy.

  13. An FEGSTEM Study of Grain Boundary Segregation of Phosphorus during Quenching in a 2.25Cr-1Mo Steel

    Institute of Scientific and Technical Information of China (English)

    Shenhua SONG; Luqian WENG

    2005-01-01

    Quenching-induced phosphorus segregation to prior austenite grain boundaries in a 0.077 wt pct P-doped 2.25Cr1Mo steel is examined using field emission gun scanning transmission electron microscopy (FEGSTEM). A phosphorus level of around 1.56 at. pct is observed for the water-quenched sample. In recognition of insufficiently high spatial resolution of the technique for grain boundary composition analysis, the measured results are corrected by an analytical convolution method. The corrected phosphorus segregation level may be up to about 4.7 at. pct. The quenchinginduced phosphorus segregation is nonequilibrium segregation and the migration of vacancy-phosphorus complexes plays an important role in the kinetic process. For such a reason, the mechanism for migration of the complexes is discussed in some detail.

  14. Dynamics of Transformation from Segregation to Mixed Wealth Cities

    CERN Document Server

    Sahasranaman, Anand

    2016-01-01

    We model the dynamics of the Schelling model for agents described simply by a continuously distributed variable - wealth. Agents move to neighborhoods where their wealth is not lesser than that of some proportion of their neighbors, the threshold level. As in the case of the classic Schelling model where segregation obtains between two races, we find here that wealth-based segregation occurs and persists. However, introducing uncertainty into the decision to move - that is, with some probability, if agents are allowed to move even though the threshold level condition is contravened - we find that even for small proportions of such disallowed moves, the dynamics no longer yield segregation but instead sharply transition into a persistent mixed wealth distribution. We investigate the nature of this sharp transformation between segregated and mixed states, and find that it is because of a non-linear relationship between allowed moves and disallowed moves. For small increases in disallowed moves, there is a rapid...

  15. Maximum work extraction and implementation costs for nonequilibrium Maxwell's demons

    Science.gov (United States)

    Sandberg, Henrik; Delvenne, Jean-Charles; Newton, Nigel J.; Mitter, Sanjoy K.

    2014-10-01

    We determine the maximum amount of work extractable in finite time by a demon performing continuous measurements on a quadratic Hamiltonian system subjected to thermal fluctuations, in terms of the information extracted from the system. The maximum work demon is found to apply a high-gain continuous feedback involving a Kalman-Bucy estimate of the system state and operates in nonequilibrium. A simple and concrete electrical implementation of the feedback protocol is proposed, which allows for analytic expressions of the flows of energy, entropy, and information inside the demon. This let us show that any implementation of the demon must necessarily include an external power source, which we prove both from classical thermodynamics arguments and from a version of Landauer's memory erasure argument extended to nonequilibrium linear systems.

  16. A non-equilibrium extension of quantum gravity

    CERN Document Server

    Mandrin, Pierre A

    2016-01-01

    A variety of quantum gravity models (including spin foams) can be described using a path integral formulation. A path integral has a well-known statistical mechanical interpretation in connection with a canonical ensemble. In this sense, a path integral describes the thermodynamic equilibrium of a local system in a thermal bath. This interpretation is in contrast to solutions of Einstein's Equations which depart from local thermodynamical equilibrium (one example is shown explicitly). For this reason, we examine an extension of the path integral model to a (locally) non-equilibrium description. As a non-equilibrium description, we propose to use a global microcanonical ensemble with constraints. The constraints reduce the set of admissible microscopic states to be consistent with the macroscopic geometry. We also analyse the relation between the microcanonical description and a statistical approach not based on dynamical assumptions which has been proposed recently. This analysis is of interest for the test o...

  17. Topologically protected modes in non-equilibrium stochastic systems

    CERN Document Server

    Murugan, Arvind

    2016-01-01

    Non-equilibrium driving of biochemical reactions is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enyzmatic specificity and maintenance of coherent oscillations. Non-equilibrium biochemical reactions can be modeled as a master equation whose rate constants break detailed balance. We find that non equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. We show that when a biochemical network can be decomposed into two ordered bulks that meet at a possibly disordered interferace, the ordered bulks can be each associated with a topologically invariant winding number. If the winding numbers are mismatched, we are guaranteed that the steady state distribution is localized at the interface between the bulks, even in the presence of strong disorder in reaction rates. We argue that our work provides a framew...

  18. Nonequilibrium quantum fluctuation relations for harmonic systems in nonthermal environments

    Science.gov (United States)

    Pagel, D.; Nalbach, P.; Alvermann, A.; Fehske, H.; Thorwart, M.

    2013-10-01

    We formulate exact generalized nonequilibrium fluctuation relations for the quantum mechanical harmonic oscillator coupled to multiple harmonic baths. Each of the different baths is prepared in its own individual (in general nonthermal) state. Starting from the exact solution for the oscillator dynamics we study fluctuations of the oscillator position as well as of the energy current through the oscillator under general nonequilibrium conditions. In particular, we formulate a fluctuation-dissipation relation for the oscillator position autocorrelation function that generalizes the standard result for the case of a single bath at thermal equilibrium. Moreover, we show that the generating function for the position operator fulfils a generalized Gallavotti-Cohen-like relation. For the energy transfer through the oscillator, we determine the average energy current together with the current fluctuations. Finally, we discuss the generalization of the cumulant generating function for the energy transfer to nonthermal bath preparations.

  19. Shapiro step at nonequilibrium conditions

    Science.gov (United States)

    Shukrinov, Yu. M.; Nashaat, M.; Kulikov, K. V.; Dawood, R.; El Samman, H.; El Sherbini, Th. M.

    2016-07-01

    Detailed numerical simulations of intrinsic Josephson junctions of high-temperature superconductors under external electromagnetic radiation are performed taking into account a charge imbalance effect. We demonstrate that the charge imbalance is responsible for a slope in the Shapiro step in the IV-characteristic. The value of slope increases with a nonequilibrium parameter. Coupling between junctions leads to the distribution of the slope's values along the stack. The nonperiodic boundary conditions shift the Shapiro step from the canonical position determined by Vss=\\hbar f /(2e) , where f is a frequency of external radiation. This fact makes the interpretation of the experimentally found Shapiro step shift by the charge imbalance effect ambiguous.

  20. Statistical thermodynamics of nonequilibrium processes

    CERN Document Server

    Keizer, Joel

    1987-01-01

    The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo­ dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com­ bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and...

  1. Nonequilibrium fluctuations in a resistor.

    Science.gov (United States)

    Garnier, N; Ciliberto, S

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I, and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P = R I2 in the system by just studying the PDFs' symmetries.

  2. Controlling segregation speed of entangled polymers by the shapes: A simple model for eukaryotic chromosome segregation

    Science.gov (United States)

    Sakai, Yuji; Tachikawa, Masashi; Mochizuki, Atsushi

    2016-10-01

    We report molecular dynamics simulations of the segregation of two overlapping polymers motivated by chromosome segregation in biological cells. We investigate the relationship between polymer shapes and segregation dynamics and show that elongation and compaction make entangled polymers segregate rapidly. This result suggests that eukaryotic chromosomes take such a characteristic rod-shaped structure, which is induced by condensins, to achieve rapid segregation.

  3. Settle for Segregation or Strive for Diversity? A Defining Moment for Maryland's Public Schools

    Science.gov (United States)

    Ayscue, Jennifer B.

    2013-01-01

    Maryland, as one of 17 states that had de jure segregation, has an intense history of school segregation. Following the 1954 Brown decision, school districts across the state employed various methods to desegregate their schools, including mandatory busing in Prince George's County, magnet schools in Montgomery County, and a freedom of choice plan…

  4. Nonequilibrium dynamical mean-field theory: an auxiliary quantum master equation approach.

    Science.gov (United States)

    Arrigoni, Enrico; Knap, Michael; von der Linden, Wolfgang

    2013-02-22

    We introduce a versatile method to compute electronic steady-state properties of strongly correlated extended quantum systems out of equilibrium. The approach is based on dynamical mean-field theory (DMFT), in which the original system is mapped onto an auxiliary nonequilibrium impurity problem imbedded in a Markovian environment. The steady-state Green's function of the auxiliary system is solved by full diagonalization of the corresponding Lindblad equation. The approach can be regarded as the nontrivial extension of the exact-diagonalization-based DMFT to the nonequilibrium case. As a first application, we consider an interacting Hubbard layer attached to two metallic leads and present results for the steady-state current and the nonequilibrium density of states.

  5. Heats of Segregation and Segregation Profiles of BCC Metals

    Science.gov (United States)

    Good, Brian S.; Bozzolo, Guillermo

    2002-01-01

    The composition of metal alloy surfaces is often different from that of the bulk. Some alloys exhibit surface segregation, where one or more species reside preferentially at or near the surface. A detailed understanding of this behavior is necessary to correctly model such phenomena as adhesion or catalysis. Several phenomenological approaches to the problem have been put forward, falling into two broad categories: Thermodynamic approaches, where the equilibrium distribution of chemical species is computed. Atomistic approaches, where the tendency of a species to segregate is determined by computation of the energies of single atoms of that species in bulk and surface environments.

  6. Integration and Segregation of Default Mode Network Resting-state Functional Connectivity in Transition-age Males with High-functioning Autism Spectrum Disorder: A Proof of Concept Study.

    Science.gov (United States)

    Joshi, Gagan; Arnold Anteraper, Sheeba; Patil, Kaustubh; Semwal, Meha; Goldin, Rachel; Furtak, Stephannie; Chai, Xiaoqian Jenny; Saygin, Zeynep; Gabrieli, John D; Biederman, Joseph; Whitfield-Gabrieli, Susan

    2017-09-24

    To assess the resting-state functional connectivity (RsFc) profile of the default mode network (DMN) in transition-age males with autism spectrum disorder (ASD). Resting-state blood oxygen level dependent functional MRI (fMRI) data were acquired from adolescent and young adult males with high-functioning ASD (N=15) and from age-, sex-, and IQ-matched healthy controls (HC; N=16). The DMN was examined by assessing the positive and negative RsFc correlations of an average of the literature-based conceptualized major DMN nodes (medial prefrontal cortex [mPFC], posterior cingulate cortex, bilateral angular and inferior temporal gyrii regions). RsFc data analysis was performed using a seed driven approach. ASD was characterized by an altered pattern of RsFc in the DMN. The ASD group exhibited a weaker pattern of intra- and extra- DMN positive and negative RsFc correlations respectively. In ASD the strength of intra-DMN coupling was significantly reduced with the mPFC and the bilateral angular gyrii regions. In addition, the polarity of the extra-DMN correlation with the right hemispheric task-positive regions of fusiform gyrus and supramarginal gyrus was reversed from typically negative to positive in the ASD group. A wide variability was observed in the presentation of the RsFc profile of the DMN in both HC and ASD groups that revealed a distinct pattern of sub-grouping using pattern recognition analyses. These findings imply that the functional architecture profile of the DMN is altered in ASD with weaker than expected integration and segregation of the DMN RsFc. Future studies with larger sample sizes are warranted. Key Words: autism spectrum disorder, resting-state fMRI, default mode network.

  7. On the fundamental equation of nonequilibrium statistical physics—Nonequilibrium entropy evolution equation and the formula for entropy production rate

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    another entropy increase rate, obtained a theoretical expression for unifying thermodynamic degradation and self-organizing evolution, and revealed that the entropy diffusion mechanism caused the system to approach to equilibrium. As application, we used these entropy formulas in calculating and discussing some actual physical topics in the nonequilibrium and stationary states. All these derivations and results are unified and rigorous from the new fundamental equation without adding any extra new assumption.

  8. Isothermal Gravitational Segregation: Algorithms and Specifications

    DEFF Research Database (Denmark)

    Halldórsson, Snorri; Stenby, Erling Halfdan

    2000-01-01

    New algorithms for calculating the isothermal equilibrium state of reservoir fluids under the influence of gravity are presented. Two types of specifications are considered: the specification of pressure and composition at a reference depth; and the specification of the total overall content...... of the reservoir, along with the reservoir geometry. It is shown how both types of calculations can be performed in an efficient and robust manner using volume-based thermodynamics. The new method makes it possible to evaluate the influence of reservoir geometry and gravity segregation on the hydrocarbon reserves...

  9. Nonequilibrium thermodynamics of dilute polymer solutions in flow.

    Science.gov (United States)

    Latinwo, Folarin; Hsiao, Kai-Wen; Schroeder, Charles M

    2014-11-07

    Modern materials processing applications and technologies often occur far from equilibrium. To this end, the processing of complex materials such as polymer melts and nanocomposites generally occurs under strong deformations and flows, conditions under which equilibrium thermodynamics does not apply. As a result, the ability to determine the nonequilibrium thermodynamic properties of polymeric materials from measurable quantities such as heat and work is a major challenge in the field. Here, we use work relations to show that nonequilibrium thermodynamic quantities such as free energy and entropy can be determined for dilute polymer solutions in flow. In this way, we determine the thermodynamic properties of DNA molecules in strong flows using a combination of simulations, kinetic theory, and single molecule experiments. We show that it is possible to calculate polymer relaxation timescales purely from polymer stretching dynamics in flow. We further observe a thermodynamic equivalence between nonequilibrium and equilibrium steady-states for polymeric systems. In this way, our results provide an improved understanding of the energetics of flowing polymer solutions.

  10. Plasma wave instabilities in nonequilibrium graphene

    DEFF Research Database (Denmark)

    Aryal, Chinta M.; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka

    2016-01-01

    We study two-stream instabilities in a nonequilibrium system in which a stream of electrons is injected into doped graphene. As with equivalent nonequilibrium parabolic band systems, we find that the graphene systems can support unstable charge-density waves whose amplitudes grow with time. We...... of the injected electrons that maximizes the growth rate increases with increasing | q |. We compare the range and strength of the instability in graphene to that of two- and three-dimensional parabolic band systems....

  11. Energy flow in non-equilibrium conformal field theory

    Science.gov (United States)

    Bernard, Denis; Doyon, Benjamin

    2012-09-01

    We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.

  12. Dynamical Cooper pairing in nonequilibrium electron-phonon systems

    Science.gov (United States)

    Knap, Michael; Babadi, Mehrtash; Refael, Gil; Martin, Ivar; Demler, Eugene

    2016-12-01

    We analyze Cooper pairing instabilities in strongly driven electron-phonon systems. The light-induced nonequilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We demonstrate that the competition between these effects leads to an enhanced superconducting transition temperature in a broad range of parameters. Our results may explain the observed transient enhancement of superconductivity in several classes of materials upon irradiation with high intensity pulses of terahertz light, and may pave new ways for engineering high-temperature light-induced superconducting states.

  13. Declining Segregation of Same-Sex Partners: Evidence from Census 2000 and 2010

    OpenAIRE

    Spring, Amy L.

    2013-01-01

    Despite recent media and scholarly attention describing the “disappearance” of traditionally gay neighborhoods, urban scholars have yet to quantify the segregation of same-sex partners and determine whether declining segregation from different-sex partners is a wide-spread trend. Focusing on the 100 most populous places in the United States, I use data from the 2000 and 2010 Decennial Census to examine the segregation of same-sex partners over time and its place-level correl...

  14. Grain Boundary Segregation in Metals

    CERN Document Server

    Lejcek, Pavel

    2010-01-01

    Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.

  15. Tailings philosophies : to segregate or not to segregate

    Energy Technology Data Exchange (ETDEWEB)

    Wells, P.S. [Suncor Energy, Fort McMurray, AB (Canada)

    2010-07-01

    Traditional technologies for treating oil sands tailings include the segregation of of tailings when discharged into water-filled ponds. The coarser tailings form long beaches. However, the percentage of silts and clays that remain suspended within the water column pose significant challenges to oil sands operators, and contribute to water losses and increases in storage volume. This paper discussed new technologies developed to identify the tailings materials that contribute to the problem and methods designed to isolate and treat the materials. Treatment material balances, process water balances, and material handling requirements for the technologies were evaluated and compared. Three scenarios were considered: (1) a sub-aqueous beaching scenario where tailings were produced by extraction and pumped to a beach storage area for dewatering through self-drainage; (2) a non-segregated tailings (NST) scenario that used mature fine tailings (MFT) drying; (3) and a segregated stream scenario where MFT drying was used where tailings were deposited in traditional tailings ponds. Results of the study showed that the segregated stream tailings treatment system was preferred to NST treatment system. Options for sub-aerial NST deposition may overcome the volume discrepancies between treating fines as well as the required volumes of coarser materials. 5 refs., 2 tabs., 2 figs.

  16. Aerospace Applications of Non-Equilibrium Plasma

    Science.gov (United States)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  17. Nonequilibrium statistical mechanics of shear flow: invariant quantities and current relations

    Science.gov (United States)

    Baule, A.; Evans, R. M. L.

    2010-03-01

    In modeling nonequilibrium systems one usually starts with a definition of the microscopic dynamics, e.g., in terms of transition rates, and then derives the resulting macroscopic behavior. We address the inverse question for a class of steady state systems, namely complex fluids under continuous shear flow: how does an externally imposed shear current affect the microscopic dynamics of the fluid? The answer can be formulated in the form of invariant quantities, exact relations for the transition rates in the nonequilibrium steady state, as discussed in a recent letter (Baule and Evans, 2008 Phys. Rev. Lett. 101 240601). Here, we present a more pedagogical account of the invariant quantities and the theory underlying them, known as the nonequilibrium counterpart to detailed balance (NCDB). Furthermore, we investigate the relationship between the transition rates and the shear current in the steady state. We show that a fluctuation relation of the Gallavotti-Cohen type holds for systems satisfying NCDB.

  18. Universal Nonequilibrium Properties of Dissipative Rydberg Gases

    Science.gov (United States)

    Marcuzzi, Matteo; Levi, Emanuele; Diehl, Sebastian; Garrahan, Juan P.; Lesanovsky, Igor

    2014-11-01

    We investigate the out-of-equilibrium behavior of a dissipative gas of Rydberg atoms that features a dynamical transition between two stationary states characterized by different excitation densities. We determine the structure and properties of the phase diagram and identify the universality class of the transition, both for the statics and the dynamics. We show that the proper dynamical order parameter is in fact not the excitation density and find evidence that the dynamical transition is in the "model A " universality class; i.e., it features a nontrivial Z2 symmetry and a dynamics with nonconserved order parameter. This sheds light on some relevant and observable aspects of dynamical transitions in Rydberg gases. In particular it permits a quantitative understanding of a recent experiment [C. Carr, Phys. Rev. Lett. 111, 113901 (2013)] which observed bistable behavior as well as power-law scaling of the relaxation time. The latter emerges not due to critical slowing down in the vicinity of a second order transition, but from the nonequilibrium dynamics near a so-called spinodal line.

  19. Nonequilibrium antiferromagnetic mixed-spin Ising model.

    Science.gov (United States)

    Godoy, Mauricio; Figueiredo, Wagner

    2002-09-01

    We studied an antiferromagnetic mixed-spin Ising model on the square lattice subject to two competing stochastic processes. The model system consists of two interpenetrating sublattices of spins sigma=1/2 and S=1, and we take only nearest neighbor interactions between pairs of spins. The system is in contact with a heat bath at temperature T, and the exchange of energy with the heat bath occurs via one-spin flip (Glauber dynamics). Besides, the system interacts with an external agency of energy, which supplies energy to it whenever two nearest neighboring spins are simultaneously flipped. By employing Monte Carlo simulations and a dynamical pair approximation, we found the phase diagram for the stationary states of the model in the plane temperature T versus the competition parameter between one- and two-spin flips p. We observed the appearance of three distinct phases, that are separated by continuous transition lines. We also determined the static critical exponents along these lines and we showed that this nonequilibrium model belongs to the universality class of the two-dimensional equilibrium Ising model.

  20. Sexual orientation, prejudice and segregation

    NARCIS (Netherlands)

    Plug, E.; Webbink, D.; Martin, N.

    2014-01-01

    This article examines whether gay and lesbian workers sort into tolerant occupations. With information on sexual orientation, prejudice, and occupational choice taken from Australian Twin Registers, we find that gays and lesbians shy away from prejudiced occupations. We show that our segregation res

  1. PICH promotes mitotic chromosome segregation

    DEFF Research Database (Denmark)

    Nielsen, Christian Thomas Friberg; Hickson, Ian D

    2016-01-01

    PICH is an SNF2-family DNA translocase that appears to play a role specifically in mitosis. Characterization of PICH in human cells led to the initial discovery of "ultra-fine DNA bridges" (UFBs) that connect the 2 segregating DNA masses in the anaphase of mitosis. These bridge structures, which...

  2. Is it possible to deduce the ground state OH density from relative optical emission intensities of the OH(A 2Σ+-X 2Πi) transition in atmospheric pressure non-equilibrium plasmas?—An analysis of self-absorption

    Science.gov (United States)

    Du, Yanjun; Peng, Zhimin; Ding, Yanjun; Sadeghi, Nader; Bruggeman, Peter J.

    2016-08-01

    The measurement of absolute densities of reactive species and radicals such as OH is of growing interest for many plasma applications. In this paper, we extend the use of a self-absorption model for atomic emission spectroscopy to molecular emission spectroscopy. The proposed analysis of self-absorbed molecular emission spectra is a simple and inexpensive method to determine OH(X) densities and rotational temperatures compared to laser induced fluorescence. We compare the recorded absolute OH density in a non-equilibrium diffuse atmospheric-pressure RF glow discharge by this method with broadband UV absorption considering a number of rotational lines with J‧  ⩽  6.5, the detection limit of the line integrated OH(X) density with this method is of the order of 2  ×  1019 m-2. The accuracy of the density is sensitive to the rotational temperature of the OH(A) state and the non-equilibrium rotational population distribution.

  3. Correlations of the density and of the current in non-equilibrium diffusive systems

    Science.gov (United States)

    Sadhu, Tridib; Derrida, Bernard

    2016-11-01

    We use fluctuating hydrodynamics to analyze the dynamical properties in the non-equilibrium steady state of a diffusive system coupled with reservoirs. We derive the two-time correlations of the density and of the current in the hydrodynamic limit in terms of the diffusivity and the mobility. Within this hydrodynamic framework we discuss a generalization of the fluctuation dissipation relation in a non-equilibrium steady state where the response function is expressed in terms of the two-time correlations. We compare our results to an exact solution of the symmetric exclusion process. This exact solution also allows one to directly verify the fluctuating hydrodynamics equation.

  4. Exact Free Energy Functional for a Driven Diffusive Open Stationary Nonequilibrium System

    Science.gov (United States)

    Derrida, B.; Lebowitz, J. L.; Speer, E. R.

    2002-06-01

    We obtain the exact probability exp[-LF({ρ(x)})] of finding a macroscopic density profile ρ(x) in the stationary nonequilibrium state of an open driven diffusive system, when the size of the system L-->∞. F, which plays the role of a nonequilibrium free energy, has a very different structure from that found in the purely diffusive case. As there, F is nonlocal, but the shocks and dynamic phase transitions of the driven system are reflected in nonconvexity of F, in discontinuities in its second derivatives, and in non-Gaussian fluctuations in the steady state.

  5. The Statistical Dynamics of Nonequilibrium Control

    Science.gov (United States)

    Rotskoff, Grant Murray

    Living systems, even at the scale of single molecules, are constantly adapting to changing environmental conditions. The physical response of a nanoscale system to external gradients or changing thermodynamic conditions can be chaotic, nonlinear, and hence difficult to control or predict. Nevertheless, biology has evolved systems that reliably carry out the cell's vital functions efficiently enough to ensure survival. Moreover, the development of new experimental techniques to monitor and manipulate single biological molecules has provided a natural testbed for theoretical investigations of nonequilibrium dynamics. This work focuses on developing paradigms for both understanding the principles of nonequilibrium dynamics and also for controlling such systems in the presence of thermal fluctuations. Throughout this work, I rely on a perspective based on two central ideas in nonequilibrium statistical mechanics: large deviation theory, which provides a formalism akin to thermodynamics for nonequilibrium systems, and the fluctuation theorems which identify time symmetry breaking with entropy production. I use the tools of large deviation theory to explore concepts like efficiency and optimal coarse-graining in microscopic dynamical systems. The results point to the extreme importance of rare events in nonequilibrium dynamics. In the context of rare dynamical events, I outline a formal approach to predict efficient control protocols for nonequilibrium systems and develop computational tools to solve the resulting high dimensional optimization problems. The final chapters of this work focus on applications to self-assembly dynamics. I show that the yield of desired structures can be enhanced by driving a system away from equilibrium, using analysis inspired by the theory of the hydrophobic effect. Finally, I demonstrate that nanoscale, protein shells can be modeled and controlled to robustly produce monodisperse, nonequilibrium structures strikingly similar to the

  6. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review

    Science.gov (United States)

    Reichhardt, C.; Olson Reichhardt, C. J.

    2017-02-01

    We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  7. Nonequilibrium behaviors of the three-dimensional Heisenberg model in the Swendsen-Wang algorithm.

    Science.gov (United States)

    Nonomura, Yoshihiko; Tomita, Yusuke

    2016-01-01

    Recently, it was shown [Y. Nonomura, J. Phys. Soc. Jpn. 83, 113001 (2014)JUPSAU0031-901510.7566/JPSJ.83.113001] that the nonequilibrium critical relaxation of the two-dimensional (2D) Ising model from a perfectly ordered state in the Wolff algorithm is described by stretched-exponential decay, and a universal scaling scheme was found to connect nonequilibrium and equilibrium behaviors. In the present study we extend these findings to vector spin models, and the 3D Heisenberg model could be a typical example. To evaluate the critical temperature and critical exponents precisely using the above scaling scheme, we calculate nonequilibrium ordering from the perfectly disordered state in the Swendsen-Wang algorithm, and we find that the critical ordering process is described by stretched-exponential growth with a comparable exponent to that of the 3D XY model. The critical exponents evaluated in the present study are consistent with those in previous studies.

  8. Nonequilibrium behaviors of the three-dimensional Heisenberg model in the Swendsen-Wang algorithm

    Science.gov (United States)

    Nonomura, Yoshihiko; Tomita, Yusuke

    2016-01-01

    Recently, it was shown [Y. Nonomura, J. Phys. Soc. Jpn. 83, 113001 (2014), 10.7566/JPSJ.83.113001] that the nonequilibrium critical relaxation of the two-dimensional (2D) Ising model from a perfectly ordered state in the Wolff algorithm is described by stretched-exponential decay, and a universal scaling scheme was found to connect nonequilibrium and equilibrium behaviors. In the present study we extend these findings to vector spin models, and the 3D Heisenberg model could be a typical example. To evaluate the critical temperature and critical exponents precisely using the above scaling scheme, we calculate nonequilibrium ordering from the perfectly disordered state in the Swendsen-Wang algorithm, and we find that the critical ordering process is described by stretched-exponential growth with a comparable exponent to that of the 3D X Y model. The critical exponents evaluated in the present study are consistent with those in previous studies.

  9. Thermodynamics for nonequilibrium solvation and numerical evaluation of solvent reorganization energy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This work presents a thermodynamic method for treating nonequilibrium solvation. By imposing an extra electric field onto the nonequilibrium solvation system, a virtual constrained equilibrium state is prepared. In this way, the free energy difference between the real nonequilibrium state and the con-strained equilibrium one is simply the potential energy of the nonequilibrium polarization in the extra electronic field, according to thermodynamics. Further, new expressions of nonequilibrium solvation energy and solvent reorganization energy have been formulated. Analysis shows that the present formulations will give a value of reorganization energy about one half of the traditional Marcus theory in polar solvents, thus the explanation on why the traditional theory tends to overestimate this quantity has been found out. For the purpose of numerical determination of solvent reorganization energy, we have modified Gamess program on the basis of dielectric polarizable continuum model. Applying the procedure to the well-investigated intramolecular electron transfer in biphenyl-androstane-naphthyl and biphenyl-androstane-phenanthryl systems, the numerical results of solvent reorganization energy have been found to be in good agreement with the experimental fittings.

  10. 18 CFR 401.113 - Segregable materials.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Segregable materials. Any reasonably segregable portion of a record shall be provided to any person...

  11. International perspectives on countering school segregation

    NARCIS (Netherlands)

    Bakker, J.T.A.; Denessen, E.J.P.G.; Peters, T.J.M.; Walraven, G.

    2010-01-01

    School segregation is perceived as an unyielding problem worldwide, which is manifest along both ethnic and socio-economic lines. With this edited volume we aim to share information about school segregation and policies focused on countering school segregation from an international perspective. Many

  12. Forgotten History: Mexican American School Segregation in Arizona from 1900-1951

    Science.gov (United States)

    Powers, Jeanne M.

    2008-01-01

    This article documents the efforts by Mexican Americans to challenge school segregation in Arizona in the first half of the twentieth century. As in Texas and California, although state law never formally mandated the segregation of Mexican American students, school districts in Arizona often established separate "Mexican Schools" for…

  13. Nonequilibrium plasma generator (NPG) project - experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Lineberry, J.T.; Wu, Y.C.L.; Lin, B.C. [and others

    1995-12-31

    This paper summarizes research conducted under a DOE MHD SBIR entitled: {open_quotes}A Light Metal Fueled Non-equilibrium Plasma Generator (NPG){close_quotes}. It is a summary paper presenting the idea of the NPG and activities of the NPG SBIR research program along with experimental results from NPG Proof-of-Principle tests. The NPG is an innovative concept for a combustion device that can produce a nonequilibrium plasma. This device bums powdered metal fuel, and it can be used to drive an MHD disk generator pulse power unit or a similar nonequilibrium MHD device or system. The NPG research program was concluded over the past two years under sponsorship of a DOE Phase II SBIR grant. This program focused on addressing fundamental and practical aspects of the NPG concept and its system design. The research included investigation of the physics of the NPG concept through theoretical and experimental studies on the quality of the plasma that it can produce, theoretical evaluations of the nonequilibrium ionization processes in an MHD disk generator driven by an NPG, and experimental validation of the NPG concept in Proof-of-Principle tests. At the conclusion of this research it was determined that the NPG is indeed a viable concept. Results from combustion tests using powdered aluminum fuel reveal that the NPG can produce an extremely hot argon plasma clean enough to support nonequilibrium ionization in an MHD device.

  14. A Numerical Analysis of the Transient Response of an Ablation System Including Effects of Thermal Nonequilibrium, Mass Transfer and Chemical Kinetics. Ph.D Thesis - Virginia Polytechnic Inst. and State Univ.

    Science.gov (United States)

    Clark, R. K.

    1972-01-01

    The differential equations governing the transient response of a one-dimensional ablative thermal protection system undergoing stagnation ablation are derived. These equations are for thermal nonequilibrium effects between the pyrolysis gases and the char layer and kinetically controlled chemical reactions and mass transfer between the pyrolysis gases and the char layer. The boundary conditions are written for the particular case of stagnation heating with surface removal by oxidation or sublimation and pyrolysis of the uncharred layer occurring in a plane. The governing equations and boundary conditions are solved numerically using the modified implicit method (Crank-Nicolson method). Numerical results are compared with exact solutions for a number of simplified cases. The comparison is favorable in each instance.

  15. Nonequilibrium Electron Transport Through a Quantum Dot from Kubo Formula

    Institute of Scientific and Technical Information of China (English)

    L(U) Rong; ZHANG Guang-Ming

    2005-01-01

    Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi level of the quantum dot is set by the conduction electrons of the leads, we calculate the electron current from the left side by assuming the quantum dot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively.

  16. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi

    2009-02-15

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  17. Microscopic versus macroscopic approaches to non-equilibrium systems

    OpenAIRE

    Derrida, Bernard

    2010-01-01

    The one dimensional symmetric simple exclusion process (SSEP) is one of the very few exactly soluble models of non-equilibrium statistical physics. It describes a system of particles which diffuse with hard core repulsion on a one dimensional lattice in contact with two reservoirs of particles at unequal densities. The goal of this note is to review the two main approaches which lead to the exact expression of the large deviation functional of the density of the SSEP in its steady state: a mi...

  18. Non-equilibrium Kondo effect in double quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.N. E-mail: kiselev@physik.uni-wuerzburg.de; Kikoin, K.A.; Molenkamp, L.W

    2004-05-01

    We investigate theoretically a non-equilibrium transport through a double quantum dot (DQD) in a parallel geometry. It is shown that the resonance Kondo tunneling through a parallel DQD with even occupation and singlet ground state may arise at a strong bias, which compensates the energy of singlet/triplet excitation. Using the renormalization group technique we derive scaling equations and calculate the differential conductance as a function of an auxiliary DC-bias for parallel DQD being in a regime described by SO(4) symmetry.

  19. Nonequilibrium optical conductivity: General theory and application to transient phases

    Science.gov (United States)

    Kennes, D. M.; Wilner, E. Y.; Reichman, D. R.; Millis, A. J.

    2017-08-01

    A nonequilibrium theory of optical conductivity of dirty-limit superconductors and commensurate charge density wave is presented. We discuss the current response to different experimentally relevant light-field probe pulses and show that a single frequency definition of the optical conductivity σ (ω )≡j (ω )/E (ω ) is difficult to interpret out of the adiabatic limit. We identify characteristic time-domain signatures distinguishing between superconducting, normal-metal, and charge density wave states. We also suggest a route to directly address the instantaneous superfluid stiffness of a superconductor by shaping the probe light field.

  20. Structural characterization of lipidic systems under nonequilibrium conditions

    DEFF Research Database (Denmark)

    Yaghmur, Anan; Rappolt, Michael

    2012-01-01

    manipulation techniques including, for instance, stop-flow mixing or rapid temperature-jump perturbation is given. Second, our recent synchrotron SAXS findings on the dynamic structural response of gold nanoparticle-loaded vesicles upon exposure to an ultraviolet light source, the impact of rapidly mixing...... and the possible formation of intermediate states in the millisecond to second range. The need for investigating self-assembled systems, mainly stimuli-responsive drug nanocarriers, under nonequilibrium conditions is discussed. For pharmaceutically relevant applications, it is essential to combine...

  1. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  2. Gender-Segregated Schooling: A Problem Disguised as a Solution

    Science.gov (United States)

    Fabes, Richard A.; Martin, Carol Lynn; Hanish, Laura D.; Galligan, Kathrine; Pahlke, Erin

    2015-01-01

    Gender-segregated (GS) schooling has become popular in the United States despite the fact that every major review has concluded that GS schooling is not superior to coeducational schooling. Moreover, concern has been raised that GS schooling leads to negative effects, including increased gender stereotyping. We argue that these negative effects…

  3. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  4. Statistical Description of Segregation in a Powder Mixture

    DEFF Research Database (Denmark)

    Chapiro, Alexander; Stenby, Erling Halfdan

    1996-01-01

    In this paper we apply the statistical mechanics of powders to describe a segregated state in a mixture of grains of different sizes. Variation of the density of a packing with depth arising due to changes of particle configurations is studied. The statistical mechanics of powders is generalized...

  5. Gender-Segregated Schooling: A Problem Disguised as a Solution

    Science.gov (United States)

    Fabes, Richard A.; Martin, Carol Lynn; Hanish, Laura D.; Galligan, Kathrine; Pahlke, Erin

    2015-01-01

    Gender-segregated (GS) schooling has become popular in the United States despite the fact that every major review has concluded that GS schooling is not superior to coeducational schooling. Moreover, concern has been raised that GS schooling leads to negative effects, including increased gender stereotyping. We argue that these negative effects…

  6. Exclusion and Hierarchy of Time Scales Lead to Spatial Segregation of Molecular Motors in Cellular Protrusions

    Science.gov (United States)

    Pinkoviezky, I.; Gov, N. S.

    2017-01-01

    Molecular motors that carry cargo along biopolymer filaments within cells play a crucial role in the functioning of the cell. In particular, these motors are essential for the formation and maintenance of the cellular protrusions that play key roles in motility and specific functionalities, such as the stereocilia in hair cells. Typically, there are several species of motors, carrying different cargos, that share the same track. Furthermore, it was observed that in the mature stereocilia, the different motors occupy well-segregated bands as a function of distance from the tip. We use a totally asymmetric exclusion process model with two- and three-motor species, to study the conditions that give rise to such spatial patterns. We find that the well-segregated bands appear for motors with a strong hierarchy of attachment or detachment rates. This is a striking example of pattern formation in nonequilibrium, low-dimensional systems.

  7. Bacterial chromosome organization and segregation.

    Science.gov (United States)

    Badrinarayanan, Anjana; Le, Tung B K; Laub, Michael T

    2015-01-01

    If fully stretched out, a typical bacterial chromosome would be nearly 1 mm long, approximately 1,000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length scales, highlighting the functions of various DNA-binding proteins and the impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation.

  8. Nonequilibrium thermodynamics of restricted Boltzmann machines

    Science.gov (United States)

    Salazar, Domingos S. P.

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  9. A non-equilibrium plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Lineberry, J.T.; Wu, Y.C.L.; Martin, J.F. [ERC, Incorporated, Tullahoma, TN (United States)

    1993-12-31

    This paper summarizes research ideas, results and activities on a DOE MHD SBIR entitled: {open_quote}A Light Metal Fueled Nonequilibrium Plasma Generator (NPG){close_quotes}. The NPG is a concept for a device that has the capability of producing a nonequilibrium plasma from metal combustion. The results of preliminary studies on the NPG concept are given. These studies address fundamentals of the NPG including operating concepts of the NPG concept, results of studies on the quality of the plasma that it can produce, and theoretical evaluations of the nonequilibrium ionization process in an MHD disk generator driven by an NPG. A discussion of potential applications for the NPG is given. These applications encompass pulse MHD power, commercial MHD power and disk MHD generator research.

  10. Study of non-equilibrium transport phenomena

    Science.gov (United States)

    Sharma, Surendra P.

    1987-01-01

    Nonequilibrium phenomena due to real gas effects are very important features of low density hypersonic flows. The shock shape and emitted nonequilibrium radiation are identified as the bulk flow behavior parameters which are very sensitive to the nonequilibrium phenomena. These parameters can be measured in shock tubes, shock tunnels, and ballistic ranges and used to test the accuracy of computational fluid dynamic (CFD) codes. Since the CDF codes, by necessity, are based on multi-temperature models, it is also desirable to measure various temperatures, most importantly, the vibrational temperature. The CFD codes would require high temperature rate constants, which are not available at present. Experiments conducted at the NASA Electric Arc-driven Shock Tube (EAST) facility reveal that radiation from steel contaminants overwhelm the radiation from the test gas. For the measurement of radiation and the chemical parameters, further investigation and then appropriate modifications of the EAST facility are required.

  11. Non-Equilibrium Thermodynamics in Multiphase Flows

    CERN Document Server

    Mauri, Roberto

    2013-01-01

    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  12. Bacterial Chromosome Organization and Segregation

    OpenAIRE

    Toro, Esteban; Shapiro, Lucy

    2010-01-01

    Bacterial chromosomes are generally ∼1000 times longer than the cells in which they reside, and concurrent replication, segregation, and transcription/translation of this crowded mass of DNA poses a challenging organizational problem. Recent advances in cell-imaging technology with subdiffraction resolution have revealed that the bacterial nucleoid is reliably oriented and highly organized within the cell. Such organization is transmitted from one generation to the next by progressive segrega...

  13. Characteristics of Sn segregation in Ge/GeSn heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Chang, C.; Chen, T. P.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw [Center for Condensed Matter Sciences and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Shi, Z. W.; Chen, H. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-10-13

    We report an investigation of Sn segregation in Ge/GeSn heterostructures occurred during the growth by molecular beam epitaxy. The measured Sn profile in the Ge layer shows that: (a) the Sn concentration decreases rapidly near the Ge/GeSn interface, and (b) when moving away from the interface, the Sn concentration reduced with a much slower rate. The 1/e decay lengths of the present system are much longer than those of the conventional group IV system of Ge segregation in the Si overlayer because of the smaller kinetic potential as modeled by a self-limited two-state exchange scheme. The demonstration of the Sn segregation shows the material characteristics of the heterostructure, which are needed for the investigation of its optical properties.

  14. Non-equilibrium evolution of a "Tsunami" Dynamical Symmetry Breaking

    CERN Document Server

    Boyanovsky, D; Holman, R; Kumar, S P; Pisarski, R D; Boyanovsky, Daniel; Vega, Hector J. de; Holman, Richard; Pisarski, Robert D.

    1998-01-01

    We propose to study the non-equilibrium features of heavy-ion collisions by following the evolution of an initial state with a large number of quanta with a distribution around a momentum |\\vec k_0| corresponding to a thin spherical shell in momentum space, a `tsunami'. An O(N); ({\\vec \\Phi}^2)^2 model field theory in the large N limit is used as a framework to study the non-perturbative aspects of the non-equilibrium dynamics including a resummation of the effects of the medium (the initial particle distribution). In a theory where the symmetry is spontaneously broken in the absence of the medium, when the initial number of particles per correlation volume is chosen to be larger than a critical value the medium effects can restore the symmetry of the initial state. We show that if one begins with such a symmetry-restored, non-thermal, initial state, non-perturbative effects automatically induce spinodal instabilities leading to a dynamical breaking of the symmetry. As a result there is explosive particle pro...

  15. Highly Nonlinear Ising Model and Social Segregation

    CERN Document Server

    Sumour, M A; Shabat, M M

    2011-01-01

    The usual interaction energy of the random field Ising model in statistical physics is modified by complementing the random field by added to the energy of the usual Ising model a nonlinear term S^n were S is the sum of the neighbor spins, and n=0,1,3,5,7,9,11. Within the Schelling model of urban segregation, this modification corresponds to housing prices depending on the immediate neighborhood. Simulations at different temperatures, lattice size, magnetic field, number of neighbors and different time intervals showed that results for all n are similar, expect for n=3 in violation of the universality principle and the law of corresponding states. In order to find the critical temperatures, for large n we no longer start with all spins parallel but instead with a random configuration, in order to facilitate spin flips. However, in all cases we have a Curie temperature with phase separation or long-range segregation only below this Curie temperature, and it is approximated by a simple formula: Tc is proportion...

  16. Chemical Sensing by Nonequilibrium Cooperative Receptors

    Science.gov (United States)

    Skoge, Monica; Naqvi, Sahin; Meir, Yigal; Wingreen, Ned S.

    2013-01-01

    Cooperativity arising from local interactions in equilibrium receptor systems provides gain, but does not increase sensory performance, as measured by the signal-to-noise ratio (SNR) due to a fundamental tradeoff between gain and intrinsic noise. Here we allow sensing to be a nonequilibrium process and show that energy dissipation cannot circumvent the fundamental tradeoff, so that the SNR is still optimal for independent receptors. For systems requiring high gain, nonequilibrium 2D-coupled receptors maximize the SNR, revealing a new design principle for biological sensors. PMID:25165963

  17. Air-Driven Segregation in Binary Granular Mixtures with Same Size but Different Densities

    Institute of Scientific and Technical Information of China (English)

    LU Chang-Hong; SHI Qing-Fan; YANG Lei; SUN Gang

    2008-01-01

    We investigate the segregation effect of binary granular mixtures with the same size but different densities under vibration at different air pressures. Our experiments show that the segregation state is seriously dependent on the air pressure and there is a new type of partially segregated state at high air pressure, which has the characteristic that the lighter grains tend to stay at the bottom and form a pure layer, while heavier grains and remained lighter ones tend to rise and to form a mixed layer on the top of the system. We redefine the order parameter to study the variation of the segregation effect with the air pressure and vibration parameter in detail. Finally, the mechanism of the air-driven segregation is illustrated by the faster acceleration due to the airflow through the granular bed for lighter particles.

  18. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Golding, Thomas Peter; Carlsson, Mats [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Leenaarts, Jorrit, E-mail: thomas.golding@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: jorrit.leenaarts@astro.su.se [Institute for Solar Physics, Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden)

    2016-02-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.

  19. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    Science.gov (United States)

    Rezai, Raheleh; Ebrahimi, Farshad

    2014-04-01

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron-electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current-voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron-electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U2 IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior.

  20. Coupled carrier-phonon nonequilibrium dynamics in terahertz quantum cascade lasers: a Monte Carlo analysis

    Science.gov (United States)

    Iotti, Rita C.; Rossi, Fausto

    2013-07-01

    The operation of state-of-the-art optoelectronic quantum devices may be significantly affected by the presence of a nonequilibrium quasiparticle population to which the carrier subsystem is unavoidably coupled. This situation is particularly evident in new-generation semiconductor-heterostructure-based quantum emitters, operating both in the mid-infrared as well as in the terahertz (THz) region of the electromagnetic spectrum. In this paper, we present a Monte Carlo-based global kinetic approach, suitable for the investigation of a combined carrier-phonon nonequilibrium dynamics in realistic devices, and discuss its application with a prototypical resonant-phonon THz emitting quantum cascade laser design.

  1. Nonequilibrium Distribution of the Microscopic Thermal Current in Steady Thermal Transport Systems

    KAUST Repository

    Yukawa, Satoshi

    2010-01-01

    Nonequilibrium distribution of the microscopic thermal current is investigated by direct molecular dynamics simulations. The microscopic thermal current in this study is defined by a flow of kinetic energy carried by a single particle. Asymptotic parallel and antiparallel tails of the nonequilibrium distribution to an average thermal current are identical to ones of equilibrium distribution with different temperatures. These temperatures characterizing the tails are dependent on a characteristic length in which a memory of dynamics is completely erased by several particle collisions. This property of the tails of nonequilibrium distribution is confirmed in other thermal transport systems. In addition, statistical properties of a particle trapped by a harmonic potential in a steady thermal conducting state are also studied. This particle feels a finite force parallel to the average thermal current as a consequence of the skewness of the distribution of the current. This force is interpreted as the microscopic origin of thermophoresis.

  2. Non-equilibrium 1D many-body problems and asymptotic properties of Toeplitz determinants

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, D B [Department of Physics, Bar Ilan University, Ramat Gan 52900 (Israel); Gefen, Yuval [Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Mirlin, A D [Institut fuer Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany)

    2011-04-22

    Non-equilibrium bosonization technique facilitates the solution of a number of important many-body problems out of equilibrium, including the Fermi-edge singularity, the tunneling spectroscopy and full counting statistics of interacting fermions forming a Luttinger liquid. We generalize the method to non-equilibrium hard-core bosons (Tonks-Girardeau gas) and establish interrelations between all these problems. The results can be expressed in terms of Fredholm determinants of the Toeplitz type. We analyze the long time asymptotics of such determinants, using Szego and Fisher-Hartwig theorems. Our analysis yields dephasing rates as well as power-law scaling behavior, with exponents depending not only on the interaction strength but also on the non-equilibrium state of the system.

  3. Nonequilibrium self-organization in alloys under irradiation leading to the formation of nano composites

    CERN Document Server

    Enrique, R A; Averback, R S; Bellon, P

    2003-01-01

    Alloys under irradiation are continuously driven away from equilibrium: Every time an external particle interacts with the atoms in the solid, a perturbation very localized in space and time is produced. Under this external forcing, phase and microstructural evolution depends ultimately on the dynamical interaction between the external perturbation and the internal recovery kinetics of the alloy. We consider the nonequilibrium steady state of an immiscible binary alloy subject to mixing by heavy-ion irradiation. It has been found that the range of the forced atomic relocations taking place during collision cascades plays an important role on the final microstructure: when this range is large enough, it can lead to the spontaneous formation of compositional patterns at the nanometer scale. These results were rationalized in the framework of a continuum model solved by deriving a nonequilibrium thermodynamic potential. Here we derive the nonequilibrium structure factor by including the role of fluctuations. In ...

  4. Nonequilibrium temperature and bulk viscosity for a dense fluid of square-well molecules

    NARCIS (Netherlands)

    Beijeren, H. van; Karkheck, J.; Sengers, J.V.

    1988-01-01

    A recently proposed nonlinear kinetic theory for a dense fluid of square-well molecules reveals the existence of two temperature scales, one associated with kinetic energy and the other with potential energy. The scales are coupled through conservation of energy and, for nonequilibrium states, the

  5. Weakly nonlocal non-equilibrium thermodynamics - variational principles and Second Law

    OpenAIRE

    Ván, P.

    2009-01-01

    A general, uniform, rigorous and constructive thermodynamic approach to weakly nonlocal non-equilibrium thermodynamics is reviewed. A method is given to construct and restrict the evolution equations of physical theories according to the Second Law of thermodynamics and considering weakly nonlocal constitutive state spaces. The evolution equations of internal variables, the classical irreversible thermodynamics and Korteweg fluids are treated.

  6. Dannie Heineman Prize for Mathematical Physics Lecture: Understanding Nonequilibrium via Rare Fluctuations

    Science.gov (United States)

    Jona-Lasinio, Giovanni

    2012-02-01

    Irreversible processes are a hot subject in statistical mechanics. During the last decade through the effort of several people, including the recipient of the prize and his collaborators, a progress in understanding stationary nonequilibrium states has been achieved. The key has been the study of rare fluctuations. The talk will review some basic ideas, results and perspectives.

  7. Nonequilibrium Green function theory for excitation and transport in atoms and molecules

    NARCIS (Netherlands)

    Dahlen, Nils Erik; Stan, Adrian

    2006-01-01

    In this work we discuss the application of nonequilibrium Green functions theory to atomic and molecular systems with the aim to study charge and energy transport in these systems. We apply the Kadanoff-Baym equations to atoms and diatomic molecules initially in the ground state. The results obtaine

  8. Non-equilibrium theory of arrested spinodal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Olais-Govea, José Manuel; López-Flores, Leticia; Medina-Noyola, Magdaleno [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, SLP (Mexico)

    2015-11-07

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible relaxation [P. E. Ramŕez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010); 82, 061504 (2010)] is applied to the description of the non-equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermodynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass transition and from above by the spinodal dynamic arrest line, we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the formation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.

  9. Non-equilibrium thermodynamics and physical kinetics

    CERN Document Server

    Bikkin, Halid

    2014-01-01

    This graduate textbook covers contemporary directions of non-equilibrium statistical mechanics as well as classical methods of kinetics. With one of the main propositions being to avoid terms such as "obviously" and "it is easy to show", this treatise is an easy-to-read introduction into this traditional, yet vibrant field.

  10. Transmission eigenchannels from nonequilibrium Green's functions

    DEFF Research Database (Denmark)

    Paulsson, Magnus; Brandbyge, Mads

    2007-01-01

    The concept of transmission eigenchannels is described in a tight-binding nonequilibrium Green's function (NEGF) framework. A simple procedure for calculating the eigenchannels is derived using only the properties of the device subspace and quantities normally available in a NEGF calculation...

  11. Non-equilibrium modelling of distillation

    NARCIS (Netherlands)

    Wesselingh, JA; Darton, R

    1997-01-01

    There are nasty conceptual problems in the classical way of describing distillation columns via equilibrium stages, and efficiencies or HETP's. We can nowadays avoid these problems by simulating the behaviour of a complete column in one go using a non-equilibrium model. Such a model has phase

  12. Evolution and non-equilibrium physics

    DEFF Research Database (Denmark)

    Becker, Nikolaj; Sibani, Paolo

    2014-01-01

    We argue that the stochastic dynamics of interacting agents which replicate, mutate and die constitutes a non-equilibrium physical process akin to aging in complex materials. Specifically, our study uses extensive computer simulations of the Tangled Nature Model (TNM) of biological evolution...

  13. Ethnic Segregation in Arizona Charter Schools

    Directory of Open Access Journals (Sweden)

    Casey D. Cobb

    1999-01-01

    Full Text Available Among the criticisms of charter schools is their potential to further stratify schools along ethnic and class lines. This study addressed whether Arizona charter schools are more ethnically segregated than traditional public schools. In 1996-97, Arizona had nearly one in four of all charter schools in the United States. The analysis involved a series of comparisons between the ethnic compositions of adjacent charter and public schools in Arizona's most populated region and its rural towns. This methodology differed from the approach of many evaluations of charter schools and ethnic stratification in that it incorporated the use of geographic maps to compare schools' ethnic make-ups. The ethnic compositions of 55 urban and 57 rural charter schools were inspected relative to their traditional public school neighbors.

  14. The dynamics of vortex structures and states of current in plasma-like fluids and the electrical explosion of conductors; 1, the model of a non-equilibrium phase transition

    CERN Document Server

    Volkov, N B

    1993-01-01

    A set of equations according to which the conducting medium consists of two fluids - laminar and vortex, has been obtained in the present paper by transforming MHD equations. In a similar way, an electronic fluid is assumed to consist of a laminar and a vortex fluid. This system allows one to study the formation and the dynamics of large-scale hydrodynamic fluctuations. From this model a model of a non-equilibrium phase transition belonging to a class of the Lorenz-type models has been developed [Lorenz E N 1963 J. Atmos. Sci. {\\bf 20} 130]. Vortex structures resulting in the increase in an effective resistance of the conducting medium and the interruption of current have been shown to appear even at constant transport coefficients in a laminar electronic fluid. Critical exponents of the parameters of an order (amplitudes), which for a direct current coincide with the critical exponents in the Lorenz model, have been found. A spatial scale of the structure described by the theory is in good agreement with exp...

  15. Sexual segregation in foraging giraffe

    Science.gov (United States)

    Mramba, Rosemary Peter; Mahenya, Obeid; Siyaya, Annetjie; Mathisen, Karen Marie; Andreassen, Harry Peter; Skarpe, Christina

    2017-02-01

    Sexual segregation in giraffe is known to vary between savannas. In this study, we compared sexual segregation in giraffe in one nutrient-rich savanna, the Serengeti National Park, one nutrient-poor, Mikumi National Park, and one medium rich savanna, Arusha National Park, (from here on referred to just by name) based on effects of sexual size dimorphism and related hypotheses. Data were collected in the wet and dry seasons, by driving road transects and making visual observations of browsing giraffe. Additional data were collected from literature (plant chemistry; mammal communities). There was a noticeable difference in browsing by females and males and in browsing between the three savannas. Females browsed a higher diversity of tree species in Serengeti whereas males browsed a higher diversity in Arusha, while the diversity of species browsed in Mikumi was high and about the same in both sexes. Females selected for high concentrations of nitrogen and low concentrations of tannins and phenolics compared to males in Serengeti but selection in Mikumi was more complex. Males browsed higher in the canopy than females in all sites, but the browsing height was generally higher in Serengeti than Mikumi and Arusha. Season had an effect on the browsing height independent of sex in Mikumi, where giraffes browsed higher in the dry season compared to the wet season. Males spent more time browsing per tree compared to females in all three sites; however, browsing time in Mikumi was also affected by season, where giraffes had longer browsing bouts in the wet season compared to the dry season. We suggest that sexual differences in forage requirement and in foraging interacts with differences in tree chemistry and in competing herbivore communities between nutrient rich and nutrient poor savanna in shaping the sexual segregation.

  16. Perceptual-binding and persistent surface segregation

    OpenAIRE

    2004-01-01

    Visual input is segregated in the brain into subsystems that process different attributes such as motion and color. At the same time, visual information is perceptually segregated into objects and surfaces. Here we demonstrate that perceptual segregation of visual entities based on a transparency cue precedes and affects perceptual binding of attributes. Adding an irrelevant transparency cue paradoxically improved the pairing of color and motion for rapidly alternating surfaces. Subsequent ex...

  17. Housing Systems and Ethnic Spatial Segregation

    DEFF Research Database (Denmark)

    Andersen, Hans Skifter; Andersson, Roger; Wessel, Terje

    Residential spatial segregation is related to housing markets and housing policies. In this paper, ethnic segregation is compared across four Nordic capitals and explanations for the differences are examined by comparing the housing markets and housing policies of the countries. The housing markets...... of neighbourhoods. Ethnic segmentation of housing tenures thus contributes to segregation, but the effect is much dependent on how tenures are distributed across space. In one of the cities, the policy of neighbourhood tenure mix has resulted in a relatively low degree of segregation in spite of high concentrations...

  18. Perceptual-binding and persistent surface segregation.

    Science.gov (United States)

    Moradi, Farshad; Shimojo, Shinsuke

    2004-11-01

    Visual input is segregated in the brain into subsystems that process different attributes such as motion and color. At the same time, visual information is perceptually segregated into objects and surfaces. Here we demonstrate that perceptual segregation of visual entities based on a transparency cue precedes and affects perceptual binding of attributes. Adding an irrelevant transparency cue paradoxically improved the pairing of color and motion for rapidly alternating surfaces. Subsequent experiments show: (1) Attributes are registered over the temporal window defined by the perceptual persistence of segregation, resulting in asynchrony in binding, and (2) attention is necessary for correct registration of attributes in the presence of ambiguity.

  19. From particle segregation to the granular clock

    Energy Technology Data Exchange (ETDEWEB)

    Lambiotte, R. [Physique Statistique, Plasmas et Optique Non-lineaire, Universite Libre de Bruxelles, Campus Plaine, Boulevard du Triomphe, Code Postal 231, 1050 Brussels (Belgium)]. E-mail: rlambiot@ulb.ac.be; Salazar, J.M. [Universite De Bougogne-LRRS UMR-5613 CNRS, Faculte des Sciences Mirande, 9 Av. Alain Savary, 21078 Dijon Cedex (France)]. E-mail: jmarcos@u-bourgogne.fr; Brenig, L. [Physique Statistique, Plasmas et Optique Non-lineaire, Universite Libre de Bruxelles, Campus Plaine, Boulevard du Triomphe, Code Postal 231, 1050 Brussels (Belgium)]. E-mail: lbrenig@ulb.ac.be

    2005-08-01

    Recently several authors studied the segregation of particles for a system composed of mono-dispersed inelastic spheres contained in a box divided by a wall in the middle. The system exhibited a symmetry breaking leading to an overpopulation of particles in one side of the box. Here we study the segregation of a mixture of particles composed of inelastic hard spheres and fluidized by a vibrating wall. Our numerical simulations show a rich phenomenology: horizontal segregation and periodic behavior. We also propose an empirical system of ODEs representing the proportion of each type of particles and the segregation flux of particles. These equations reproduce the major features observed by the simulations.

  20. Conformational Nonequilibrium Enzyme Kinetics: Generalized Michaelis-Menten Equation.

    Science.gov (United States)

    Piephoff, D Evan; Wu, Jianlan; Cao, Jianshu

    2017-08-03

    In a conformational nonequilibrium steady state (cNESS), enzyme turnover is modulated by the underlying conformational dynamics. On the basis of a discrete kinetic network model, we use an integrated probability flux balance method to derive the cNESS turnover rate for a conformation-modulated enzymatic reaction. The traditional Michaelis-Menten (MM) rate equation is extended to a generalized form, which includes non-MM corrections induced by conformational population currents within combined cyclic kinetic loops. When conformational detailed balance is satisfied, the turnover rate reduces to the MM functional form, explaining its general validity. For the first time, a one-to-one correspondence is established between non-MM terms and combined cyclic loops with unbalanced conformational currents. Cooperativity resulting from nonequilibrium conformational dynamics can be achieved in enzymatic reactions, and we provide a novel, rigorous means of predicting and characterizing such behavior. Our generalized MM equation affords a systematic approach for exploring cNESS enzyme kinetics.

  1. Nonequilibrium relaxation method – An alternative simulation strategy

    Indian Academy of Sciences (India)

    Nobuyasu Ito

    2005-06-01

    One well-established simulation strategy to study the thermal phases and transitions of a given microscopic model system is the so-called equilibrium method, in which one first realizes the equilibrium ensemble of a finite system and then extrapolates the results to infinite system. This equilibrium method traces over the standard theory of the thermal statistical mechanics, and over the idea of the thermodynamic limit. Recently, an alternative simulation strategy has been developed, which analyzes the nonequilibrium relaxation (NER) process. It is called the NER method. NER method has some advantages over the equilibrium method. The NER method provides a simpler analyzing procedure. This implies less systematic error which is inevitable in the simulation and provides efficient resource usage. The NER method easily treats not only the thermodynamic limit but also other limits, for example, non-Gibbsian nonequilibrium steady states. So the NER method is also relevant for new fields of the statistical physics. Application of the NER method have been expanding to various problems: from basic first- and second-order transitions to advanced and exotic phases like chiral, KT spin-glass and quantum phases. These studies have provided, not only better estimations of transition point and exponents, but also qualitative developments. For example, the universality class of a random system, the nature of the two-dimensional melting and the scaling behavior of spin-glass aging phenomena have been clarified.

  2. Mesoscopic non-equilibrium thermodynamic analysis of molecular motors.

    Science.gov (United States)

    Kjelstrup, S; Rubi, J M; Pagonabarraga, I; Bedeaux, D

    2013-11-28

    We show that the kinetics of a molecular motor fueled by ATP and operating between a deactivated and an activated state can be derived from the principles of non-equilibrium thermodynamics applied to the mesoscopic domain. The activation by ATP, the possible slip of the motor, as well as the forward stepping carrying a load are viewed as slow diffusion along a reaction coordinate. Local equilibrium is assumed in the reaction coordinate spaces, making it possible to derive the non-equilibrium thermodynamic description. Using this scheme, we find expressions for the velocity of the motor, in terms of the driving force along the spacial coordinate, and for the chemical reaction that brings about activation, in terms of the chemical potentials of the reactants and products which maintain the cycle. The second law efficiency is defined, and the velocity corresponding to maximum power is obtained for myosin movement on actin. Experimental results fitting with the description are reviewed, giving a maximum efficiency of 0.45 at a myosin headgroup velocity of 5 × 10(-7) m s(-1). The formalism allows the introduction and test of meso-level models, which may be needed to explain experiments.

  3. Nonequilibrium gap collapse near a first-order Mott transition

    Science.gov (United States)

    Sandri, Matteo; Fabrizio, Michele

    2015-03-01

    We study the nonequilibrium dynamics of a simple model for V2O3 that consists of a quarter-filled Hubbard model for two orbitals that are split by a weak crystal field. Peculiarities of this model are (1) a Mott insulator whose gap corresponds to transferring an electron from the occupied lower orbital to the empty upper one, rather than from the lower to the upper Hubbard subbands; (2) a Mott transition generically of first order even at zero temperature. We simulate by means of time-dependent Gutzwiller approximation the evolution within the insulating phase of an initial state endowed by a nonequilibrium population of electrons in the upper orbital and holes in the lower one. We find that the excess population may lead, above a threshold, to a gap collapse and drive the insulator into the metastable metallic phase within the coexistence region around the Mott transition. This result foresees a nonthermal pathway to revert a Mott insulator into a metal. Even though this physical scenario is uncovered in a very specific toy model, we argue it might apply to other Mott insulating materials that share similar features.

  4. Block renormalization study on the nonequilibrium chiral Ising model.

    Science.gov (United States)

    Kim, Mina; Park, Su-Chan; Noh, Jae Dong

    2015-01-01

    We present a numerical study on the ordering dynamics of a one-dimensional nonequilibrium Ising spin system with chirality. This system is characterized by a direction-dependent spin update rule. Pairs of +- spins can flip to ++ or -- with probability (1-u) or to -+ with probability u while -+ pairs are frozen. The system was found to evolve into the ferromagnetic ordered state at any urenormalization analysis proposed by Basu and Hinrichsen [U. Basu and H. Hinrichsen, J. Stat. Mech.: Theor. Exp. (2011)]. The block renormalization method predicts, under the assumption of dynamic scale invariance, a scaling relation that can be used to estimate the scaling exponent numerically. We find the condition under which the scaling relation is justified. We then apply the method to our model and obtain the critical exponent zδ at several values of u. The numerical result is in perfect agreement with that of the previous study. This study serves as additional evidence for the claim that the nonequilibrium chiral Ising model displays power-law scaling behavior with continuously varying exponents.

  5. Nonequilibrium work theorems applied to transitions between configurational domains

    Science.gov (United States)

    Giovannelli, Edoardo; Cardini, Gianni; Volkov, Victor; Chelli, Riccardo

    2016-12-01

    A nonequilibrium simulation scheme extending the field of applicability of the Jarzynski equality (Jarzynski 1997 Phys. Rev. Lett. 78 2690) and Crooks fluctuation theorem (Crooks 2000 Phys. Rev. E 61 2361) is presented. The algorithm is based on steps, consisting of transition kernels, alternated to relaxation kernels, that drive the system from an initial to a final configurational domain within the space of the (externally controlled) collective coordinates. This allows the producing of nonequilibrium paths connecting two states with arbitrary shape and size in the space of the collective coordinates, giving access to their free energy difference. The method can be viewed as a generalization of the steered molecular dynamics, a technique commonly applied in simulation to calculate the potentials of mean force along an established monodimensional path in the space of the collective coordinates. A numerical validation of the method is provided by estimating the free energy differences in two model systems featured by a double-well potential. The outcomes are compared to those obtained from standard steered molecular dynamics simulations.

  6. Stochastic Modeling of Non-equilibrium Bedload Transport

    Science.gov (United States)

    Kuai, Z.; Tsai, C. W.

    2009-05-01

    Traditional stochastic bed load models aimed to solve for the equilibrium bedload transport rate by matching the rate of bed erosion with the rate of deposition. Bedload transport can be in nonequilibrium even under the steady flow condition, as the quantity of moving particles in the bedload layer may vary. In a nonequilibrium condition, the interchange of sediment particles occurs not only between the bedload layer and the bed surface, but also across the interface between bedload and suspended load. The proposed approach attempts to add a new bedload-suspended load interchange layer to a stochastic bedlod transport model based on the Markov chain. The bedload transport rate is the product of the total particle volume in saltation and the average saltating velocity. We can quantify the number of saltating particles by modeling the occupancy probabilities vector of particles staying in three states (i.e., bed surface, bedload layer, and the interchange layer between the bedload and the suspended load.). The new stochastic bedload relation is validated against existing bedload model. The sudden change of flow and/or sediment condition leads to changes in the transition probabilities. The influence of sudden changes in flow-sediment properties on the bedload transport rate is investigated in this preliminary study. It is found that the neglecting the exchange process between the bedload layer and the suspended layer may lead to non-negligible errors in bedload calculation when the flow and/or sediment conditions change.

  7. Nonequilibrium transport in the pseudospin-1 Dirac-Weyl system

    Science.gov (United States)

    Wang, Cheng-Zhen; Xu, Hong-Ya; Huang, Liang; Lai, Ying-Cheng

    2017-09-01

    Recently, solid state materials hosting pseudospin-1 quasiparticles have attracted a great deal of attention. In these materials, the energy band contains a pair of Dirac cones and a flatband through the connecting point of the cones. As the "caging" of carriers with a zero group velocity, the flatband itself has zero conductivity. However, in a nonequilibrium situation where a constant electric field is suddenly switched on, the flatband can enhance the resulting current in both the linear and nonlinear response regimes through distinct physical mechanisms. Using the (2 +1 )-dimensional pseudospin-1 Dirac-Weyl system as a concrete setting, we demonstrate that, in the weak field regime, the interband current is about twice larger than that for pseudospin-1/2 system due to the interplay between the flatband and the negative band, with the scaling behavior determined by the Kubo formula. In the strong field regime, the intraband current is √{2 } times larger than that in the pseudospin-1/2 system, due to the additional contribution from particles residing in the flatband. In this case, the current and field follow the scaling law associated with Landau-Zener tunneling. These results provide a better understanding of the role of the flatband in nonequilibrium transport and are experimentally testable using electronic or photonic systems.

  8. Complementary relations in non-equilibrium stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-jin, E-mail: e.kim@sheffield.ac.uk; Nicholson, S.B.

    2015-08-28

    Highlights: • Novel complementary relations in non-equilibrium stochastic processes. • Dependence of statistical measures (entropy, information, and work) on variables, reference frames, and time. • Equilibrium maximises simultaneous information while minimising simultaneous disorder/uncertainty. • Difference between Eulerian and Lagrangian entropy and its related concepts. • Hamilton–Jacobi relation for forced-dissipative system. - Abstract: We present novel complementary relations in non-equilibrium stochastic processes. Specifically, by utilising path integral formulation, we derive statistical measures (entropy, information, and work) and investigate their dependence on variables (x, v), reference frames, and time. In particular, we show that the equilibrium state maximises the simultaneous information quantified by the product of the Fisher information based on x and v while minimising the simultaneous disorder/uncertainty quantified by the sum of the entropy based on x and v as well as by the product of the variances of the PDFs of x and v. We also elucidate the difference between Eulerian and Lagrangian entropy. Our theory naturally leads to Hamilton–Jacobi relation for forced-dissipative systems.

  9. Non-Condon nonequilibrium Fermi's golden rule rates from the linearized semiclassical method

    Science.gov (United States)

    Sun, Xiang; Geva, Eitan

    2016-08-01

    The nonequilibrium Fermi's golden rule describes the transition between a photoexcited bright donor electronic state and a dark acceptor electronic state, when the nuclear degrees of freedom start out in a nonequilibrium state. In a previous paper [X. Sun and E. Geva, J. Chem. Theory Comput. 12, 2926 (2016)], we proposed a new expression for the nonequilibrium Fermi's golden rule within the framework of the linearized semiclassical approximation and based on the Condon approximation, according to which the electronic coupling between donor and acceptor is assumed constant. In this paper we propose a more general expression, which is applicable to the case of non-Condon electronic coupling. We test the accuracy of the new non-Condon nonequilibrium Fermi's golden rule linearized semiclassical expression on a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering the following: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary-mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions, in both normal and inverted regions, and over a wide range of initial nonequilibrium states, temperatures, and frictions.

  10. NATO Advanced Study Institute on Nonequilibrium Phonon Dynamics

    CERN Document Server

    1985-01-01

    Phonons are always present in the solid state even at an absolute temperature of 0 K where zero point vibrations still abound. Moreover, phonons interact with all other excitations of the solid state and, thereby, influence most of its properties. Historically experimental information on phonon transport came from measurements of thermal conductivity. Over the past two decades much more, and much more detailed, information on phonon transport and on many of the inherent phonon interaction processes have come to light from experiments which use nonequilibrium phonons to study their dynamics. The resultant research field has most recently blossomed with the development of ever more sophisticated experimental and theoretical methods which can be applied to it. In fact, the field is moving so rapidly that new members of the research community have difficulties in keeping up to date. This NATO Advanced Study Institute (ASI) was organized with the objective of overcoming the information barrier between those expert...

  11. Geometric aspects of Schnakenberg's network theory of macroscopic nonequilibrium observables

    Science.gov (United States)

    Polettini, M.

    2011-03-01

    Schnakenberg's network theory deals with macroscopic thermodynamical observables (forces, currents and entropy production) associated to the steady states of diffusions on generic graphs. Using results from graph theory and from the theory of discrete differential forms we recast Schnakenberg's treatment in the form of a simple discrete gauge theory, which allows to interpret macroscopic forces as the Wilson loops of a real connection. We discuss the geometric properties of transient states, showing that heat fluxes allow for a notion of duality of macroscopic observables which interchanges the role of the environment and that of the system. We discuss possible generalizations to less trivial gauge groups and the relevance for nonequilibrium fluctuation theorems. Based on work in collaboration with professor A. Maritan, University of Padua, to be published.

  12. Nonequilibrium thermodynamic potentials for continuous-time Markov chains.

    Science.gov (United States)

    Verley, Gatien

    2016-01-01

    We connect the rare fluctuations of an equilibrium (EQ) process and the typical fluctuations of a nonequilibrium (NE) stationary process. In the framework of large deviation theory, this observation allows us to introduce NE thermodynamic potentials. For continuous-time Markov chains, we identify the relevant pairs of conjugated variables and propose two NE ensembles: one with fixed dynamics and fluctuating time-averaged variables, and another with fixed time-averaged variables, but a fluctuating dynamics. Accordingly, we show that NE processes are equivalent to conditioned EQ processes ensuring that NE potentials are Legendre dual. We find a variational principle satisfied by the NE potentials that reach their maximum in the NE stationary state and whose first derivatives produce the NE equations of state and second derivatives produce the NE Maxwell relations generalizing the Onsager reciprocity relations.

  13. Nonequilibrium phase diagram of the driven-dissipative photonic lattice

    CERN Document Server

    Biondi, M; Türeci, H E; Schmidt, S

    2016-01-01

    We study the nonequilibrium steady state of a driven-dissipative Bose-Hubbard model with Kerr nonlinearity. Employing a mean-field decoupling for the intercavity hopping $J$, we find that the crossover between low and high photon-number states inherited from the single cavity transforms into a gas--liquid bistability at large $J$. We determine the boundary separating smooth and sharp gas--liquid transitions in the $\\Delta$--$J$ diagram, where the detuning $\\Delta$ relates to the liquid-phase photon density, and find that it exhibits a lobe structure strikingly reminiscent of the phase boundary in the equilibrium phase diagram of the Bose-Hubbard model. Going beyond mean-field, we characterize the bulk phases and the transition region by their compressibility and pair-correlations.

  14. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [Department of Physics and Astronomy and Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States); Wang, Jin, E-mail: jin.wang.1@stonybrook.edu [Department of Physics and Astronomy and Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China and College of Physics, Jilin University, 130021 Changchun (China)

    2014-09-14

    We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series.

  15. Segregation as Splitting, Segregation as Joining: Schools, Housing, and the Many Modes of Jim Crow

    Science.gov (United States)

    Highsmith, Andrew R.; Erickson, Ansley T.

    2015-01-01

    Popular understandings of segregation often emphasize the Jim Crow South before the 1954 "Brown" decision and, in many instances, explain continued segregation in schooling as the result of segregated housing patterns. The case of Flint, Michigan, complicates these views, at once illustrating the depth of governmental commitment to…

  16. Decreased segregation of brain systems across the healthy adult lifespan.

    Science.gov (United States)

    Chan, Micaela Y; Park, Denise C; Savalia, Neil K; Petersen, Steven E; Wig, Gagan S

    2014-11-18

    Healthy aging has been associated with decreased specialization in brain function. This characterization has focused largely on describing age-accompanied differences in specialization at the level of neurons and brain areas. We expand this work to describe systems-level differences in specialization in a healthy adult lifespan sample (n = 210; 20-89 y). A graph-theoretic framework is used to guide analysis of functional MRI resting-state data and describe systems-level differences in connectivity of individual brain networks. Young adults' brain systems exhibit a balance of within- and between-system correlations that is characteristic of segregated and specialized organization. Increasing age is accompanied by decreasing segregation of brain systems. Compared with systems involved in the processing of sensory input and motor output, systems mediating "associative" operations exhibit a distinct pattern of reductions in segregation across the adult lifespan. Of particular importance, the magnitude of association system segregation is predictive of long-term memory function, independent of an individual's age.

  17. The residential segregation of mixed-nativity married couples.

    Science.gov (United States)

    Iceland, John; Nelson, Kyle Anne

    2010-11-01

    This article examines the ways in which mixed-nativity marriage is related to spatial assimilation in metropolitan areas of the United States. Specifically, we examine the residential patterns of households with a mixed-nativity-and, in some cases, interracial-marriage to determine whether they are less segregated from the native-born than entirely foreign-born households. Using restricted-use data from the 2000 census, we find that compared with couples in which both spouses are foreign-born, mixed-nativity couples tend to be less segregated from various native-born racial and ethnic groups. Further, among both foreign-born Asians and Hispanics, those with a native-born non-Hispanic white spouse are considerably less segregated from native-born white households than from other foreign-born Asian and Hispanic households. We also find that even though nativity status matters for black couples in a manner consistent with assimilation theory, foreign-born and mixed-nativity black households still each display very high levels of segregation from all other native-born racial/ethnic groups, reaffirming the power of race in determining residential patterns. Overall, our findings provide moderate support for spatial assimilation theory and suggest that cross-nativity marriages often facilitate the residential integration of the foreign-born.

  18. Strong mass segregation around a massive black hole

    CERN Document Server

    Alexander, Tal

    2008-01-01

    We show that the mass-segregation solution for the steady state distribution of stars around a massive black hole (MBH) has two branches: the known weak segregation solution (Bahcall & Wolf 1977), and a newly discovered strong segregation solution, presented here. The nature of the solution depends on the heavy-to-light stellar mass ratio M_H/M_L and on the unbound population number ratio N_H/N_L, through the relaxational coupling parameter \\Delta=4 N_H M_H^2 /[N_L M_L^2(3+M_H/M_L)]. When the heavy stars are relatively common (\\Delta>>1), they scatter frequently on each other. This efficient self-coupling leads to weak mass segregation, where the stars form n \\propto r^{-\\alpha_M} mass-dependent cusps near the MBH, with indices \\alpha_H=7/4 for the heavy stars and 3/2<\\alpha_L<7/4 for the light stars (i.e. \\max(\\alpha_H-\\alpha_L)~=1/4). However, when the heavy stars are relatively rare (\\Delta<<1), they scatter mostly on light stars, sink to the center by dynamical friction and settle into a m...

  19. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  20. Surface segregations in platinum-based alloy nanoparticles

    Science.gov (United States)

    Yamakawa, Shunsuke; Asahi, Ryoji; Koyama, Toshiyuki

    2014-04-01

    A phase-field model that describes the radial distributions of the ordered-disordered phase and surface segregation in a single-alloy nanoparticle is introduced to clarify the overall behavior of surface segregation of various Pt-based alloy nanoparticles. One of the obstacles to apply a platinum-transition metal alloy as a cathode electro-catalyst of a polymer electrolyte fuel cell is the need to ensure the retention of the designed surface composition in an alloy nanoparticle against the alloy combinations, a particle size, and heat treatment. From the results of calculations for CrPt, FePt, CoPt, NiPt, CuPt, PdPt, IrPt, and AuPt binary nanoparticles with diameters below 10 nm at 973.15 K, the compositional variation within a single particle was found to depend on the balance between the atomic interaction within particles and the surface free energy. In addition, the obtained specific steady-state composition of the surface varied significantly with alloy combination and particle diameter. Based on the general tendencies of a binary system to exhibit segregation, attempts to control the amount of platinum segregation on the surface using a ternary-alloy system were examined.

  1. Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nilmeier, J. P.; Crooks, G. E.; Minh, D. D. L.; Chodera, J. D.

    2011-10-24

    Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. While generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.

  2. Black hole evaporation in a heat bath as a nonequilibrium process and its final fate

    CERN Document Server

    Saida, H

    2007-01-01

    When a black hole evaporates, there arises a net energy flow from black hole into its outside environment (heat bath). The existence of energy flow means that the thermodynamic state of the whole system, which consists of the black hole and the heat bath, is in a nonequilibrium state. Therefore, in order to study the detail of evaporation process, the nonequilibrium effects of the energy flow should be taken into account. Using the nonequilibrium thermodynamics which has been formulated recently, this paper shows the following: (1) Time scale of black hole evaporation in a heat bath becomes shorter than that of the evaporation in an empty space (a situation without heat bath), because a nonequilibrium effect of temperature difference between the black hole and heat bath appears as a strong energy extraction from the black hole by the heat bath. (2) Consequently a huge energy burst (stronger than that of the evaporation in an empty space) arises at the end of semi-classical stage of evaporation. (3) It is sugg...

  3. A nonequilibrium phase transition in immune response

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei; Qi An-Shen

    2004-01-01

    The dynamics of immune response correlated to signal transduction in immune thymic cells (T cells) is studied.In particular, the problem of the phosphorylation of the immune-receptor tyrosine-based activation motifs (ITAM) is explored. A nonlinear model is established on the basis of experimental observations. The behaviours of the model can be well analysed using the concepts of nonequilibrium phase transitions. In addition, the Riemann-Hugoniot cusp catastrophe is demonstrated by the model. Due to the application of the theory of nonequilibrium phase transitions,the biological phenomena can be clarified more precisely. The results can also be used to further explain the signal transduction and signal discrimination of an important type of immune T cell.

  4. Non-Equilibrium Liouville and Wigner Equations: Moment Methods and Long-Time Approximations

    Directory of Open Access Journals (Sweden)

    Ramon F. Álvarez-Estrada

    2014-03-01

    Full Text Available We treat the non-equilibrium evolution of an open one-particle statistical system, subject to a potential and to an external “heat bath” (hb with negligible dissipation. For the classical equilibrium Boltzmann distribution, Wc,eq, a non-equilibrium three-term hierarchy for moments fulfills Hermiticity, which allows one to justify an approximate long-time thermalization. That gives partial dynamical support to Boltzmann’s Wc,eq, out of the set of classical stationary distributions, Wc;st, also investigated here, for which neither Hermiticity nor that thermalization hold, in general. For closed classical many-particle systems without hb (by using Wc,eq, the long-time approximate thermalization for three-term hierarchies is justified and yields an approximate Lyapunov function and an arrow of time. The largest part of the work treats an open quantum one-particle system through the non-equilibrium Wigner function, W. Weq for a repulsive finite square well is reported. W’s (< 0 in various cases are assumed to be quasi-definite functionals regarding their dependences on momentum (q. That yields orthogonal polynomials, HQ,n(q, for Weq (and for stationary Wst, non-equilibrium moments, Wn, of W and hierarchies. For the first excited state of the harmonic oscillator, its stationary Wst is a quasi-definite functional, and the orthogonal polynomials and three-term hierarchy are studied. In general, the non-equilibrium quantum hierarchies (associated with Weq for the Wn’s are not three-term ones. As an illustration, we outline a non-equilibrium four-term hierarchy and its solution in terms of generalized operator continued fractions. Such structures also allow one to formulate long-time approximations, but make it more difficult to justify thermalization. For large thermal and de Broglie wavelengths, the dominant Weq and a non-equilibrium equation for W are reported: the non-equilibrium hierarchy could plausibly be a three-term one and possibly not

  5. Lattice Boltzmann approach for complex nonequilibrium flows.

    Science.gov (United States)

    Montessori, A; Prestininzi, P; La Rocca, M; Succi, S

    2015-10-01

    We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.

  6. Nonequilibrium band structure of nano-devices

    Science.gov (United States)

    Hackenbuchner, S.; Sabathil, M.; Majewski, J. A.; Zandler, G.; Vogl, P.; Beham, E.; Zrenner, A.; Lugli, P.

    2002-03-01

    A method is developed for calculating, in a consistent manner, the realistic electronic structure of three-dimensional (3-D) heterostructure quantum devices under bias and its current density close to equilibrium. The nonequilibrium electronic structure is characterized by local Fermi levels that are calculated self-consistently. We have applied this scheme to predict asymmetric Stark shifts and tunneling of confined electrons and holes in single-dot GaAs/InGaAs photodiodes.

  7. Nonequilibrium invariant measure under heat flow.

    Science.gov (United States)

    Delfini, Luca; Lepri, Stefano; Livi, Roberto; Politi, Antonio

    2008-09-19

    We provide an explicit representation of the nonequilibrium invariant measure for a chain of harmonic oscillators with conservative noise in the presence of stationary heat flow. By first determining the covariance matrix, we are able to express the measure as the product of Gaussian distributions aligned along some collective modes that are spatially localized with power-law tails. Numerical studies show that such a representation applies also to a purely deterministic model, the quartic Fermi-Pasta-Ulam chain.

  8. Dynamical Non-Equilibrium Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Giovanni Ciccotti

    2013-12-01

    Full Text Available In this review, we discuss the Dynamical approach to Non-Equilibrium Molecular Dynamics (D-NEMD, which extends stationary NEMD to time-dependent situations, be they responses or relaxations. Based on the original Onsager regression hypothesis, implemented in the nineteen-seventies by Ciccotti, Jacucci and MacDonald, the approach permits one to separate the problem of dynamical evolution from the problem of sampling the initial condition. D-NEMD provides the theoretical framework to compute time-dependent macroscopic dynamical behaviors by averaging on a large sample of non-equilibrium trajectories starting from an ensemble of initial conditions generated from a suitable (equilibrium or non-equilibrium distribution at time zero. We also discuss how to generate a large class of initial distributions. The same approach applies also to the calculation of the rate constants of activated processes. The range of problems treatable by this method is illustrated by discussing applications to a few key hydrodynamic processes (the “classical” flow under shear, the formation of convective cells and the relaxation of an interface between two immiscible liquids.

  9. Nonequilibrium functional bosonization of quantum wire networks

    Energy Technology Data Exchange (ETDEWEB)

    Ngo Dinh, Stephane, E-mail: stephane.ngodinh@kit.edu [Institut fuer Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); DFG Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Bagrets, Dmitry A. [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Mirlin, Alexander D. [Institut fuer Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Institut fuer Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); DFG Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Petersburg Nuclear Physics Institute, 188300 St. Petersburg (Russian Federation)

    2012-11-15

    We develop a general approach to nonequilibrium nanostructures formed by one-dimensional channels coupled by tunnel junctions and/or by impurity scattering. The formalism is based on nonequilibrium version of functional bosonization. A central role in this approach is played by the Keldysh action that has a form reminiscent of the theory of full counting statistics. To proceed with evaluation of physical observables, we assume the weak-tunneling regime and develop a real-time instanton method. A detailed exposition of the formalism is supplemented by two important applications: (i) tunneling into a biased Luttinger liquid with an impurity, and (ii) quantum Hall Fabry-Perot interferometry. - Highlights: Black-Right-Pointing-Pointer A nonequilibrium functional bosonization framework for quantum wire networks is developed Black-Right-Pointing-Pointer For the study of observables in the weak tunneling regime a real-time instanton method is elaborated. Black-Right-Pointing-Pointer We consider tunneling into a biased Luttinger liquid with an impurity. Black-Right-Pointing-Pointer We analyze electronic Fabry-Perot interferometers in the integer quantum Hall regime.

  10. Morphological instability of a non-equilibrium ice-colloid interface

    KAUST Repository

    Peppin, S. S. L.

    2009-10-02

    We assess the morphological stability of a non-equilibrium ice-colloidal suspension interface, and apply the theory to bentonite clay. An experimentally convenient scaling is employed that takes advantage of the vanishing segregation coefficient at low freezing velocities, and when anisotropic kinetic effects are included, the interface is shown to be unstable to travelling waves. The potential for travelling-wave modes reveals a possible mechanism for the polygonal and spiral ice lenses observed in frozen clays. A weakly nonlinear analysis yields a long-wave evolution equation for the interface shape containing a new parameter related to the highly nonlinear liquidus curve in colloidal systems. We discuss the implications of these results for the frost susceptibility of soils and the fabrication of microtailored porous materials. © 2009 The Royal Society.

  11. Ising, Schelling and Self-Organising Segregation

    CERN Document Server

    Stauffer, D

    2007-01-01

    The similarities between phase separation in physics and residential segregation by preference in the Schelling model of 1971 are reviewed. Also, new computer simulations of asymmetric interactions different from the usual Ising model are presented, showing spontaneous magnetisation (= self-organising segregation) and in one case a sharp phase transition.

  12. Ising, Schelling and self-organising segregation

    Science.gov (United States)

    Stauffer, D.; Solomon, S.

    2007-06-01

    The similarities between phase separation in physics and residential segregation by preference in the Schelling model of 1971 are reviewed. Also, new computer simulations of asymmetric interactions different from the usual Ising model are presented, showing spontaneous magnetisation (=self-organising segregation) and in one case a sharp phase transition.

  13. Progressive segregation of the Escherichia coli chromosome

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2006-01-01

    We have followed the fate of 14 different loci around the Escherichia coli chromosome in living cells at slow growth rate using a highly efficient labelling system and automated measurements. Loci are segregated as they are replicated, but with a marked delay. Most markers segregate in a smooth...

  14. On the evolutionary stability of Mendelian segregation.

    Science.gov (United States)

    Ubeda, Francisco; Haig, David

    2005-07-01

    We present a model of a primary locus subject to viability selection and an unlinked locus that causes sex-specific modification of the segregation ratio at the primary locus. If there is a balanced polymorphism at the primary locus, a population undergoing Mendelian segregation can be invaded by modifier alleles that cause sex-specific biases in the segregation ratio. Even though this effect is particularly strong if reciprocal heterozygotes at the primary locus have distinct viabilities, as might occur with genomic imprinting, it also applies if reciprocal heterozygotes have equal viabilities. The expected outcome of the evolution of sex-specific segregation distorters is all-and-none segregation schemes in which one allele at the primary locus undergoes complete drive in spermatogenesis and the other allele undergoes complete drive in oogenesis. All-and-none segregation results in a population in which all individuals are maximally fit heterozygotes. Unlinked modifiers that alter the segregation ratio are unable to invade such a population. These results raise questions about the reasons for the ubiquity of Mendelian segregation.

  15. Measuring segregation: an activity space approach.

    Science.gov (United States)

    Wong, David W S; Shaw, Shih-Lung

    2011-06-01

    While the literature clearly acknowledges that individuals may experience different levels of segregation across their various socio-geographical spaces, most measures of segregation are intended to be used in the residential space. Using spatially aggregated data to evaluate segregation in the residential space has been the norm and thus individual's segregation experiences in other socio-geographical spaces are often de-emphasized or ignored. This paper attempts to provide a more comprehensive approach in evaluating segregation beyond the residential space. The entire activity spaces of individuals are taken into account with individuals serving as the building blocks of the analysis. The measurement principle is based upon the exposure dimension of segregation. The proposed measure reflects the exposure of individuals of a referenced group in a neighborhood to the populations of other groups that are found within the activity spaces of individuals in the referenced group. Using the travel diary data collected from the tri-county area in southeast Florida and the imputed racial-ethnic data, this paper demonstrates how the proposed segregation measurement approach goes beyond just measuring population distribution patterns in the residential space and can provide a more comprehensive evaluation of segregation by considering various socio-geographical spaces.

  16. Losing Ground: School Segregation in Massachuestts

    Science.gov (United States)

    Ayscue, Jennifer B.; Greenberg, Alyssa

    2013-01-01

    Though once a leader in school integration, Massachusetts has regressed over the last two decades as its students of color have experienced intensifying school segregation. This report investigates trends in school segregation in Massachusetts by examining concentration, exposure, and evenness measures by both race and class. First, the report…

  17. Occupational Segregation by Sex: Trends and Prospects.

    Science.gov (United States)

    Blau, Francine D.; Hendricks, Wallace E.

    1979-01-01

    Investigates postwar trends in occupational segregation. Finds segregation increased slightly between 1950-60 as predominantly female clerical/professional jobs increased. Occupation mix changes (1960-70) were neutral in impact, but male inflow into female professions and female inflow into male sales/clerical jobs produced modest segregation…

  18. Chromosome replication and segregation in bacteria.

    Science.gov (United States)

    Reyes-Lamothe, Rodrigo; Nicolas, Emilien; Sherratt, David J

    2012-01-01

    In dividing cells, chromosome duplication once per generation must be coordinated with faithful segregation of newly replicated chromosomes and with cell growth and division. Many of the mechanistic details of bacterial replication elongation are well established. However, an understanding of the complexities of how replication initiation is controlled and coordinated with other cellular processes is emerging only slowly. In contrast to eukaryotes, in which replication and segregation are separate in time, the segregation of most newly replicated bacterial genetic loci occurs sequentially soon after replication. We compare the strategies used by chromosomes and plasmids to ensure their accurate duplication and segregation and discuss how these processes are coordinated spatially and temporally with growth and cell division. We also describe what is known about the three conserved families of ATP-binding proteins that contribute to chromosome segregation and discuss their inter-relationships in a range of disparate bacteria.

  19. The Spatial Context of Residential Segregation

    CERN Document Server

    Roberto, Elizabeth

    2015-01-01

    Scholars have engaged in a longstanding debate about how best to measure residential segregation, and scores of indexes have been developed in response. However, the methods commonly employed are aspatial -- they summarize the characteristics of segregation patterns, such as concentration or clustering, but ignore their spatial features, such as how neighborhoods are spatially arranged. As a consequence, many studies find the same level of segregation whether a city has a patchwork of racial and ethnic enclaves, or is divided into large areas with little or no diversity. New methods have been developed to capture the spatial proximity of neighborhoods and the geographic scale of clustering. However, they lack a realistic measure of distance and do not accurately represent how segregation varies within cities. In this paper, I introduce a new method for studying the spatial context of residential segregation. I measure the distance between locations along city roads rather than in a straight line. Road distanc...

  20. Nonequilibrium Thermodynamics of Wealth Condensation

    CERN Document Server

    Braun, D

    2006-01-01

    We analyze wealth condensation for a wide class of stochastic economy models on the basis of the economic analog of thermodynamic potentials, termed transfer potentials. The economy model is based on three common transfers modes of wealth: random transfer, profit proportional to wealth and motivation of poor agents to work harder. The economies never reach steady state. Wealth condensation is the result of stochastic tunneling through a metastable transfer potential. In accordance with reality, both wealth and income distribution transiently show Pareto tails for high income subjects. For metastable transfer potentials, exponential wealth condensation is a robust feature. For example with 10 % annual profit 1% of the population owns 50 % of the wealth after 50 years. The time to reach such a strong wealth condensation is a hyperbolic function of the annual profit rate.

  1. Nonequilibrium model on Apollonian networks.

    Science.gov (United States)

    Lima, F W S; Moreira, André A; Araújo, Ascânio D

    2012-11-01

    We investigate the majority-vote model with two states (-1,+1) and a noise parameter q on Apollonian networks. The main result found here is the presence of the phase transition as a function of the noise parameter q. Previous results on the Ising model in Apollonian networks have reported no presence of a phase transition. We also studied the effect of redirecting a fraction p of the links of the network. By means of Monte Carlo simulations, we obtained the exponent ratio γ/ν, β/ν, and 1/ν for several values of rewiring probability p. The critical noise q{c} and U were also calculated. Therefore, the results presented here demonstrate that the majority-vote model belongs to a different universality class than equilibrium Ising model on Apollonian network.

  2. Nonequilibrium depletion relaxation in strong electric fields under various conditions at the silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Kirillova, S.I.; Primachenko, V.E.; Snitko, O.V.

    1985-04-16

    The nonequilibrium depletion relaxation processes at real, clean, thermally oxidized, and Au and Zn doped n- and p-type Si surfaces are studied. A strong acceleration of the relaxation process with field increase is observed. This is explained by the Frenkel and Franz-Keldysh effect during the transition of majority charge carriers from the surface states into an allowed band. The acceleration is also believed to be due to a tunnel-activation mechanism of majority carriers from surface layer traps into an allowed band. The parameters of the surface states taking part in the relaxation of nonequilibrium depletion (the electron-phonon interaction parameter sigma, being very sensitive to the state of the Si surface, for example) are determined.

  3. Order and phase nucleation in non-equilibrium nanocomposite Fe-Pt thin films with perpendicular magnetic anisotropy.

    Energy Technology Data Exchange (ETDEWEB)

    Clavero, C.; Skuza, J. R.; Garcia-Martin, J. M.; Cebollada, A.; Walko, D. A.; Lukaszew, R. A.; Coll. of William and Mary; Inst. de Microelectronica de Madrid

    2009-03-01

    We report on the time evolution of mass transport upon annealing nonequilibrium Fe-Pt nanocomposite films, leading to nucleation of L1{sub 0} chemically ordered phase. The nonequilibrium nanocomposite films were fabricated by applying Fe{sup +} ion implantation to epitaxial Pt films grown on (001) MgO substrates, yielding Fe nanoclusters embedded in a Pt matrix at a tailored penetration depth. Time-resolved x-ray diffraction studies were carried out using synchrotron radiation, allowing determination of the activation energy for nucleation of the FePt L1{sub 0} phase within the segregated nanoclusters during annealing. The growth of the segregated L1{sub 0} ordered phase was modeled using ideal grain-size law and found to be dominated by strain-driven surface nucleation. The activation energies were found to correlate with the nanocluster size. Magnetic characterization of selected annealed samples indicates perpendicular magnetic anisotropy with high coercive field coincident with high value of the chemical order parameter of the ordered phase within the magnetic nanoclusters.

  4. Searching for the Tracy-Widom distribution in nonequilibrium processes

    Science.gov (United States)

    Mendl, Christian B.; Spohn, Herbert

    2016-06-01

    While originally discovered in the context of the Gaussian unitary ensemble, the Tracy-Widom distribution also rules the height fluctuations of growth processes. This suggests that there might be other nonequilibrium processes in which the Tracy-Widom distribution plays an important role. In our contribution we study one-dimensional systems with domain wall initial conditions. For an appropriate choice of parameters, the profile develops a rarefaction wave while maintaining the initial equilibrium states far to the left and right, which thus serve as infinitely extended thermal reservoirs. For a Fermi-Pasta-Ulam type anharmonic chain, we will demonstrate that the time-integrated current has a deterministic contribution, linear in time t , and fluctuations of size t1 /3 with a Tracy-Widom distributed random amplitude.

  5. Microscopic versus macroscopic approaches to non-equilibrium systems

    Science.gov (United States)

    Derrida, Bernard

    2011-01-01

    The one-dimensional symmetric simple exclusion process (SSEP) is one of the very few exactly soluble models of non-equilibrium statistical physics. It describes a system of particles which diffuse with hard core repulsion on a one-dimensional lattice in contact with two reservoirs of particles at unequal densities. The goal of this paper is to review the two main approaches which lead to the exact expression of the large deviation functional of the density of the SSEP in its steady state: a microscopic approach (based on the matrix product ansatz and an additivity property) and a macroscopic approach (based on the macroscopic fluctuation theory of Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim).

  6. Energy and magnetization transport in nonequilibrium macrospin systems

    Science.gov (United States)

    Borlenghi, Simone; Iubini, Stefano; Lepri, Stefano; Chico, Jonathan; Bergqvist, Lars; Delin, Anna; Fransson, Jonas

    2015-07-01

    We investigate numerically the magnetization dynamics of an array of nanodisks interacting through the magnetodipolar coupling. In the presence of a temperature gradient, the chain reaches a nonequilibrium steady state where energy and magnetization currents propagate. This effect can be described as the flow of energy and particle currents in an off-equilibrium discrete nonlinear Schrödinger (DNLS) equation. This model makes transparent the transport properties of the system and allows for a precise definition of temperature and chemical potential for a precessing spin. The present study proposes a setup for the spin-Seebeck effect, and shows that its qualitative features can be captured by a general oscillator-chain model.

  7. Nonequilibrium Weak Processes in Kaon Condensation; 2, Kinetics of condensation

    CERN Document Server

    Muto, T; Iwamoto, N; Muto, Takumi; Tatsumi, Toshitaka; Iwamoto, Naoki

    2000-01-01

    The kinetics of negatively charged kaon condensation in the early stages of a newly born neutron star is considered. The thermal kaon process, in which kaons are thermally produced by nucleon-nucleon collisions, is found to be dominant throughout the equilibration process. Temporal changes of the order parameter of the condensate and the number densities of the chemical species are obtained from the rate equations, which include the thermal kaon reactions as well as the kaon-induced Urca and the modified Urca reactions. It is shown that the dynamical evolution of the condensate is characterized by three stages: the first, prior to establishment of a condensate, the second, during the growth and subsequent saturation of the condensate, and the third, near chemical equilibrium. The connection between the existence of a soft kaon mode and the instability of the noncondensed state is discussed. Implications of the nonequilibrium process on the possible delayed collapse of a protoneutron star are also mentioned.

  8. Nonequilibrium drift-diffusion model for organic semiconductor devices

    Science.gov (United States)

    Felekidis, Nikolaos; Melianas, Armantas; Kemerink, Martijn

    2016-07-01

    Two prevailing formalisms are currently used to model charge transport in organic semiconductor devices. Drift-diffusion calculations, on the one hand, are time effective but assume local thermodynamic equilibrium, which is not always realistic. Kinetic Monte Carlo models, on the other hand, do not require this assumption but are computationally expensive. Here, we present a nonequilibrium drift-diffusion model that bridges this gap by fusing the established multiple trap and release formalism with the drift-diffusion transport equation. For a prototypical photovoltaic system the model is shown to quantitatively describe, with a single set of parameters, experiments probing (1) temperature-dependent steady-state charge transport—space-charge limited currents, and (2) time-resolved charge transport and relaxation of nonequilibrated photocreated charges. Moreover, the outputs of the developed kinetic drift-diffusion model are an order of magnitude, or more, faster to compute and in good agreement with kinetic Monte Carlo calculations.

  9. Research situation andprogress of non-equilibrium plasma chemistry

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Generally, the non-equilibrium plasma is produced at low pressure by a glow discharge (1.33 Pa-l.33 kPa)including the radio frequency (13.56 MHz), microwave (2450 MHz), AC or DC high voltage discharges. As a method to directly apply energy to a reaction system,some successful applications have been obtained in the fields such as chemical synthesis and decomposition at plasma, sputtering and filming, deposition at the gas state,polymerization, modification on the material surface,etching, ashing at low temperature and so on. For example,in 1999, Zhang et al.[1] got a high conversion rate of 98.2% for CH4 synthesis by a glow discharge at the condition of 850℃ with the catalyst of Ni/α-Al2O3. In 1990,Matsumoto et al.[2

  10. Dynamical symmetries and causality in non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte

    2015-01-01

    Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant $n$-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  11. Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions

    Directory of Open Access Journals (Sweden)

    Malte Henkel

    2015-11-01

    Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  12. Computing Equilibrium Free Energies Using Non-Equilibrium Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Christoph Dellago

    2013-12-01

    Full Text Available As shown by Jarzynski, free energy differences between equilibrium states can be expressed in terms of the statistics of work carried out on a system during non-equilibrium transformations. This exact result, as well as the related Crooks fluctuation theorem, provide the basis for the computation of free energy differences from fast switching molecular dynamics simulations, in which an external parameter is changed at a finite rate, driving the system away from equilibrium. In this article, we first briefly review the Jarzynski identity and the Crooks fluctuation theorem and then survey various algorithms building on these relations. We pay particular attention to the statistical efficiency of these methods and discuss practical issues arising in their implementation and the analysis of the results.

  13. Fluctuation patterns and conditional reversibility in nonequilibrium systems

    CERN Document Server

    Gallavotti, G

    1997-01-01

    Fluctuations of observables as functions of time, or "fluctuation patterns", are studied in a chaotic microscopically reversible system that has irreversibly reached a nonequilibrium stationary state. Supposing that during a certain, long enough, time interval the average entropy creation rate has a value $s$ and that during another time interval of the same length it has value $-s$ then we show that the relative probabilities of fluctuation patterns in the first time interval are the same as those of the reversed patterns in the second time interval. The system is ``conditionally reversible'' or irreversibility in a reversible system is "driven" by the entropy creation: while a very rare fluctuation happens to change the sign of the entropy creation rate it also happens that the time reversed fluctuations of all other observables acquire the same relative probability of the corresponding fluctuations in presence of normal entropy creation. A mathematical proof is sketched.

  14. Tensor-network algorithm for nonequilibrium relaxation in the thermodynamic limit

    Science.gov (United States)

    Hotta, Yoshihito

    2016-06-01

    We propose a tensor-network algorithm for discrete-time stochastic dynamics of a homogeneous system in the thermodynamic limit. We map a d -dimensional nonequilibrium Markov process to a (d +1 ) -dimensional infinite tensor network by using a higher-order singular-value decomposition. As an application of the algorithm, we compute the nonequilibrium relaxation from a fully magnetized state to equilibrium of the one- and two-dimensional Ising models with periodic boundary conditions. Utilizing the translational invariance of the systems, we analyze the behavior in the thermodynamic limit directly. We estimated the dynamical critical exponent z =2.16 (5 ) for the two-dimensional Ising model. Our approach fits well with the framework of the nonequilibrium-relaxation method. Our algorithm can compute time evolution of the magnetization of a large system precisely for a relatively short period. In the nonequilibrium-relaxation method, one needs to simulate dynamics of a large system for a short time. The combination of the two provides a different approach to the study of critical phenomena.

  15. Nonequilibrium localization and the interplay between disorder and interactions

    Science.gov (United States)

    Mascarenhas, Eduardo; Bragança, Helena; Drumond, R.; Aguiar, M. C. O.; França Santos, M.

    2016-05-01

    We study the nonequilibrium interplay between disorder and interactions in a closed quantum system. We base our analysis on the notion of dynamical state-space localization, calculated via the Loschmidt echo. Although real-space and state-space localization are independent concepts in general, we show that both perspectives may be directly connected through a specific choice of initial states, namely, maximally localized states (ML-states). We show numerically that in the noninteracting case the average echo is found to be monotonically increasing with increasing disorder; these results are in agreement with an analytical evaluation in the single particle case in which the echo is found to be inversely proportional to the localization length. We also show that for interacting systems, the length scale under which equilibration may occur is upper bounded and such bound is smaller the greater the average echo of ML-states. When disorder and interactions, both being localization mechanisms, are simultaneously at play the echo features a non-monotonic behaviour indicating a non-trivial interplay of the two processes. This interplay induces delocalization of the dynamics which is accompanied by delocalization in real-space. This non-monotonic behaviour is also present in the effective integrability which we show by evaluating the gap statistics.

  16. Legally White, Socially "Mexican": The Politics of De Jure and De Facto School Segregation in the American Southwest

    Science.gov (United States)

    Donato, Ruben; Hanson, Jarrod S.

    2012-01-01

    The history of Mexican American school segregation is complex, often misunderstood, and currently unresolved. The literature suggests that Mexican Americans experienced de facto segregation because it was local custom and never sanctioned at the state level in the American Southwest. However, the same literature suggests that Mexican Americans…

  17. Chemical Reactions Using a Non-Equilibrium Wigner Function Approach

    Directory of Open Access Journals (Sweden)

    Ramón F. Álvarez-Estrada

    2016-10-01

    Full Text Available A three-dimensional model of binary chemical reactions is studied. We consider an ab initio quantum two-particle system subjected to an attractive interaction potential and to a heat bath at thermal equilibrium at absolute temperature T > 0 . Under the sole action of the attraction potential, the two particles can either be bound or unbound to each other. While at T = 0 , there is no transition between both states, such a transition is possible when T > 0 (due to the heat bath and plays a key role as k B T approaches the magnitude of the attractive potential. We focus on a quantum regime, typical of chemical reactions, such that: (a the thermal wavelength is shorter than the range of the attractive potential (lower limit on T and (b ( 3 / 2 k B T does not exceed the magnitude of the attractive potential (upper limit on T. In this regime, we extend several methods previously applied to analyze the time duration of DNA thermal denaturation. The two-particle system is then described by a non-equilibrium Wigner function. Under Assumptions (a and (b, and for sufficiently long times, defined by a characteristic time scale D that is subsequently estimated, the general dissipationless non-equilibrium equation for the Wigner function is approximated by a Smoluchowski-like equation displaying dissipation and quantum effects. A comparison with the standard chemical kinetic equations is made. The time τ required for the two particles to transition from the bound state to unbound configurations is studied by means of the mean first passage time formalism. An approximate formula for τ, in terms of D and exhibiting the Arrhenius exponential factor, is obtained. Recombination processes are also briefly studied within our framework and compared with previous well-known methods.

  18. Modeling density segregation in granular flow

    Science.gov (United States)

    Xiao, Hongyi; Lueptow, Richard; Umbanhowar, Paul

    2015-11-01

    A recently developed continuum-based model accurately predicts segregation in flows of granular mixtures varying in particle size by considering the interplay of advection, diffusion and segregation. In this research, we extend the domain of the model to include density driven segregation. Discrete Element Method (DEM) simulations of density bidisperse flows of mono-sized particles in a quasi-2D bounded heap were performed to determine the dependence of the density driven segregation velocity on local shear rate, particle concentration, and a segregation length which scales with the particle size and the logarithm of the density ratio. With these inputs, the model yields theoretical predictions of density segregation patterns that quantitatively match the DEM simulations over a range of density ratios (1.11-3.33) and flow rates (19.2-113.6 cm3/s). Matching experiments with various combinations of glass, steel and ceramic particles were also performed which reproduced the segregation patterns obtained in both the simulations and the theory.

  19. Nonequilibrium thermodynamics of pressure solution

    Science.gov (United States)

    Lehner, F. K.; Bataille, J.

    1984-01-01

    This paper is concerned with the thermodynamic theory of solution and precipitation processes in wet crustal rocks and with the mechanism of steady pressure-solution slip in ‘contact zones,’ such as grain-to-grain contacts, fracture surfaces, and permeable gouge layers, that are infiltrated by a mobile aqueous solution phase. A local dissipation jump condition at the phase boundary is fundamental to identifying the thermodynamic force driving the solution and precipitation process and is used here in setting up linear phenomenological relations to model near-equilibrium phase transformation kinetics. The local thermodynamic equilibrium of a stressed pure solid in contact with its melt or solution phase is governed by Gibbs's relation, which is rederived here, in a manner emphasizing its independence of constitutive assumptions for the solid while neglecting surface tension and diffusion in the solid. Fluid-infiltrated contact zones, such as those formed by rough surfaces, cannot generally be in thermodynamic equilibrium, especially during an ongoing process of pressure-solution slip, and the existing equilibrium formulations are incorrect in overlooking dissipative processes tending to eliminate fluctuations in superficial free energies due to stress concentrations near asperities, defects, or impurities. Steady pressure-solution slip is likely to exhibit a nonlinear dependence of slip rate on shear stress and effective normal stress, due to a dependence of the contact-zone state on the latter. Given that this dependence is negligible within some range, linear relations for pressure-solution slip can be derived for the limiting cases of diffusion-controlled and interface-reaction-controlled rates. A criterion for rate control by one of these mechanisms is set by the magnitude of the dimensionless quantity kδ/2C pD, where k is the interfacial transfer coefficient, δ is the mean diffusion path length, C p is the solubility at pressure p, and D is the mass

  20. Construction of traveling clusters in the Hamiltonian mean-field model by nonequilibrium statistical mechanics and Bernstein-Greene-Kruskal waves.

    Science.gov (United States)

    Yamaguchi, Yoshiyuki Y

    2011-07-01

    Traveling clusters are ubiquitously observed in the Hamiltonian mean-field model for a wide class of initial states, which are not predicted to become spatially inhomogeneous states by nonequilibrium statistical mechanics and by nonlinear Landau damping. To predict such a cluster state from a given initial state, we combine nonequilibrium statistical mechanics and a construction method of Bernstein-Greene-Kruskal (BGK) waves with the aid of phenomenological assumptions. The phenomenological theory is partially successful, and the theoretically constructed cluster states are in good agreement with N-body simulations. Robustness of the theory is also discussed for unsuccessful initial states.

  1. Veil: A Wall of Segregation

    Directory of Open Access Journals (Sweden)

    Tayebeh Nowrouzi

    2015-08-01

    Full Text Available Moving behind the confines of the race has been the continuous efforts of African-Americans so as to reveal and confirm their true humanity and abilities to white race as well as their own race. African-Americans, Dubois posited, are shut out of the white America, inhabiting behind a vast veil which creates a deep division between the races. Veil is made of the fabric of racism interwoven thread by thread and imposed by white world. It is thrown discourteously and forcibly to the African-Americans whom their distorted images are imposed on them and their true humanity and identity are hidden behind the veil. This study overtakes to present how Loraine Hansberry, in her first and the most outstanding drama, A Raisin in the Sun examines the world within the veil. She demonstrated that Duboisian metaphoric veil is operating in the racist American society so that not only African-Americans are segregated physically and psychologically from the rest of the world but also are inflicted with obscurity of vision that are neither able to see themselves clearly nor be seen truly. On the other hand, it presents how the veil provides blacks with the second sight to observe and comprehend the racist nature of whites which is hidden and incomprehensible for them.

  2. Genes that bias Mendelian segregation.

    Directory of Open Access Journals (Sweden)

    Pierre Grognet

    Full Text Available Mendel laws of inheritance can be cheated by Meiotic Drive Elements (MDs, complex nuclear genetic loci found in various eukaryotic genomes and distorting segregation in their favor. Here, we identify and characterize in the model fungus Podospora anserina Spok1 and Spok2, two MDs known as Spore Killers. We show that they are related genes with both spore-killing distorter and spore-protecting responder activities carried out by the same allele. These alleles act as autonomous elements, exert their effects independently of their location in the genome and can act as MDs in other fungi. Additionally, Spok1 acts as a resistance factor to Spok2 killing. Genetical data and cytological analysis of Spok1 and Spok2 localization during the killing process suggest a complex mode of action for Spok proteins. Spok1 and Spok2 belong to a multigene family prevalent in the genomes of many ascomycetes. As they have no obvious cellular role, Spok1 and Spok2 Spore Killer genes represent a novel kind of selfish genetic elements prevalent in fungal genome that proliferate through meiotic distortion.

  3. Genes that bias Mendelian segregation.

    Science.gov (United States)

    Grognet, Pierre; Lalucque, Hervé; Malagnac, Fabienne; Silar, Philippe

    2014-01-01

    Mendel laws of inheritance can be cheated by Meiotic Drive Elements (MDs), complex nuclear genetic loci found in various eukaryotic genomes and distorting segregation in their favor. Here, we identify and characterize in the model fungus Podospora anserina Spok1 and Spok2, two MDs known as Spore Killers. We show that they are related genes with both spore-killing distorter and spore-protecting responder activities carried out by the same allele. These alleles act as autonomous elements, exert their effects independently of their location in the genome and can act as MDs in other fungi. Additionally, Spok1 acts as a resistance factor to Spok2 killing. Genetical data and cytological analysis of Spok1 and Spok2 localization during the killing process suggest a complex mode of action for Spok proteins. Spok1 and Spok2 belong to a multigene family prevalent in the genomes of many ascomycetes. As they have no obvious cellular role, Spok1 and Spok2 Spore Killer genes represent a novel kind of selfish genetic elements prevalent in fungal genome that proliferate through meiotic distortion.

  4. A Social Network Analysis of Occupational Segregation

    DEFF Research Database (Denmark)

    Buhai, Ioan Sebastian; van der Leij, Marco

    We develop a social network model of occupational segregation between different social groups, generated by the existence of positive inbreeding bias among individuals from the same group. If network referrals are important for job search, then expected homophily in the contact network structure...... induces different career choices for individuals from different social groups. This further translates into stable occupational segregation equilibria in the labor market. We derive the conditions for wage and unemployment inequality in the segregation equilibria and characterize first and second best...

  5. Segregation of Polymers in Confined Spaces

    CERN Document Server

    Liu, Ya

    2009-01-01

    We investigate the motion of two overlapping polymers with self-avoidance confined in a narrow 2d box. A statistical model is constructed using blob free-energy arguments. We find spontaneous segregation under the condition: $L > R_{//}$, and mixing under $L < R_{//}$, where L is the length of the box, and $R_{//}$ the polymer extension in an infinite slit. Segregation time scales are determined by solving a mean first-passage time problem, and by performing Monte Carlo simulations. Predictions of the two methods show good agreement. Our results may elucidate a driving force for chromosomes segregation in bacteria.

  6. Declining Segregation of Same-Sex Partners: Evidence from Census 2000 and 2010.

    Science.gov (United States)

    Spring, Amy L

    2013-10-01

    Despite recent media and scholarly attention describing the "disappearance" of traditionally gay neighborhoods, urban scholars have yet to quantify the segregation of same-sex partners and determine whether declining segregation from different-sex partners is a wide-spread trend. Focusing on the 100 most populous places in the United States, I use data from the 2000 and 2010 Decennial Census to examine the segregation of same-sex partners over time and its place-level correlates. I estimate linear regression models to examine the role of four place characteristics in particular: average levels of education, aggregate trends in the family life cycle of same-sex partners, violence and social hostility motivated by sexual orientation bias, and representation of same-sex partners in the overall population. On average, same-sex partners were less segregated from different-sex partners in 2010 than in 2000, and the vast majority of same-sex partners lived in environments of declining segregation. Segregation was lower and declined more rapidly in places that had a greater percentage of graduate degree holders. In addition, segregation of female partners was lower in places that had a greater share of female partner households with children. These findings suggest that sexual orientation should be considered alongside economic status, race, and ethnicity as an important factor that contributes to neighborhood differentiation and urban spatial inequality.

  7. Non-equilibrium Dynamics of DNA Nanotubes

    Science.gov (United States)

    Hariadi, Rizal Fajar

    Can the fundamental processes that underlie molecular biology be understood and simulated by DNA nanotechnology? The early development of DNA nanotechnology by Ned Seeman was driven by the desire to find a solution to the protein crystallization problem. Much of the later development of the field was also driven by envisioned applications in computing and nanofabrication. While the DNA nanotechnology community has assembled a versatile tool kit with which DNA nanostructures of considerable complexity can be assembled, the application of this tool kit to other areas of science and technology is still in its infancy. This dissertation reports on the construction of non-equilibrium DNA nanotube dynamic to probe molecular processes in the areas of hydrodynamics and cytoskeletal behavior. As the first example, we used DNA nanotubes as a molecular probe for elongational flow measurement in different micro-scale flow settings. The hydrodynamic flow in the vicinity of simple geometrical objects, such as a rigid DNA nanotube, is amenable to rigorous theoretical investigation. We measured the distribution of elongational flows produced in progressively more complex settings, ranging from the vicinity of an orifice in a microfluidic chamber to within a bursting bubble of Pacific ocean water. This information can be used to constrain theories on the origin of life in which replication involves a hydrodynamically driven fission process, such as the coacervate fission proposed by Oparin. A second theme of this dissertation is the bottom-up construction of a de novo artificial cytoskeleton with DNA nanotubes. The work reported here encompasses structural, locomotion, and control aspects of non-equilibrium cytoskeletal behavior. We first measured the kinetic parameters of DNA nanotube assembly and tested the accuracy of the existing polymerization models in the literature. Toward recapitulation of non-equilibrium cytoskeletal dynamics, we coupled the polymerization of DNA

  8. Nonequilibrium Spin Magnetization Quantum Transport Equations

    CERN Document Server

    Buot, F A; Otadoy, R E S; Villarin, D L

    2011-01-01

    The classical Bloch equations of spin magnetization transport is extended to fully time-dependent and highly-nonlinear nonequilibrium quantum distribution function (QDF) transport equations. The leading terms consist of the Boltzmann kinetic equation with spin-orbit coupling in a magnetic field together with spin-dependent scattering terms which do not have any classical analogue, but should incorporate the spatio-temporal-dependent phase-space dynamics of Elliot-Yafet and D'yakonov-Perel scatterings. The resulting magnetization QDF transport equation serves as a foundation for computational spintronic and nanomagnetic device applications, in performing simulation of ultrafast-switching-speed/low-power performance and reliability analyses.

  9. Universality in Nonequilibrium Lattice Systems Theoretical Foundations

    CERN Document Server

    Ódor, Géza

    2008-01-01

    Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically.The book helps the reader to navigate in the zoo of basic m

  10. Nonequilibrium fermion production in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Pruschke, Jens

    2010-06-16

    The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio

  11. Segregation behavior of phosphorus in the heat-affected zone of an A533B/A182 dissimilar weld joint before and after simulated thermal aging

    Science.gov (United States)

    Zhai, Ziqing; Miyahara, Yuichi; Abe, Hiroshi; Watanabe, Yutaka

    2014-09-01

    The segregation behavior of phosphorus (P) in the heat-affected zone (HAZ) of an A533B/A182 dissimilar weld joint before and after step cooling was investigated with atom probe tomography. At grain/packet boundaries, the final P segregation level consisted of non-equilibrium segregation that occurred during cooling after welding and post-weld heat treatment (PWHT) and equilibrium segregation that occurred during step cooling. In both processes, higher P coverage was observed in the coarse-grained and intercritically reheated coarse-grained HAZ than in the fine-grained HAZ and base material. The cooling after welding and PWHT seemed to have a pronounced impact on P segregation in the subsequent aging process. In addition, P segregation also occurred at the precipitate/matrix interfaces of cementite, Mo2C and Al-Si rich precipitates. The evolution of P coverage at these two types of sites suggested increasing risks of embrittlement with an increase in aging time.

  12. The nonequilibrium electromotive force. II. Theory for a continuously stirred tank reactor

    Science.gov (United States)

    Keizer, Joel

    1987-10-01

    In previous work [J. Keizer, J. Chem. Phys. 82, 2751 (1985)] we used statistical nonequilibrium thermodynamics to predict a non-Nernstian component to the electromotive force (EMF) for half-reactions involving reactants at nonequilibrium steady states. In this paper we present a simple theory for calculating the nonequilibrium component of the EMF based on the elementary transport processes occurring in a continuously stirred tank reactor (CSTR). The calculations utilize the density-density correlation function, which is obtained from the statistical theory of nonequilibrium thermodynamics. This gives rise to an expression for the second partial derivatives of the generalized entropy, or sigma function, which is used to calculate generalized chemical potentials. The generalized chemical potentials are related to the EMF through a generalization of the Nernst equation. The calculations presented here depend on the residence time in the CSTR, reaction rate constants, feed line concentrations in the CSTR, and the diffusion constants of reactants and products. A characteristic diffusion length is used to represent the length scale below which turbulent mixing effects are not important. Calculations with the theory are carried out for several different reaction mechanisms, including A+B⇄C; A+B⇄C, D+E⇄B; A+B⇄2B; and A+B→C+D, A+D→C+E. Values of the nonequilibrium EMF depend on the mechanism as well as all of the transport parameters cited above. For a plausible choice of the diffusion length, corrections to the Nernst formula can be as large as 10-15 mV. Specific calculations for the reaction of Fe2+ with S2O2-8 are shown in the preceding paper to agree with experimental measurements on this system in a CSTR.

  13. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    Science.gov (United States)

    Zhang, W.; Lani, A.; Panesi, M.

    2016-07-01

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  14. Mass Segregation in the Galactic Centre

    CERN Document Server

    Hopman, Clovis

    2010-01-01

    Two-body energy exchange between stars orbiting massive black holes (MBHs) leads to the formation of a power-law density distribution n(r)~r^(-a) that diverges towards the MBH. For a single mass population, a=7/4 and the flow of stars is much less than N(segregation with the use of Fokker-Planck calculations, and show that steady state is reached in 0.2-0.3 t_r. Since the relaxation time in the Galactic centre (GC) is t_r ~2-3 * 10^(10) yr, a cusp should form in less than a Hubble time. The absence of a visible cusp of old stars in the GC poses a challenge to these models, ...

  15. Unbiased free energy estimates in fast nonequilibrium transformations using Gaussian mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Procacci, Piero [Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy and Centro Interdipartimentale per lo Studio delle Dinamiche Complesse (CSDC), Via Sansone 1, I-50019 Sesto Fiorentino (Italy)

    2015-04-21

    In this paper, we present an improved method for obtaining unbiased estimates of the free energy difference between two thermodynamic states using the work distribution measured in nonequilibrium driven experiments connecting these states. The method is based on the assumption that any observed work distribution is given by a mixture of Gaussian distributions, whose normal components are identical in either direction of the nonequilibrium process, with weights regulated by the Crooks theorem. Using the prototypical example for the driven unfolding/folding of deca-alanine, we show that the predicted behavior of the forward and reverse work distributions, assuming a combination of only two Gaussian components with Crooks derived weights, explains surprisingly well the striking asymmetry in the observed distributions at fast pulling speeds. The proposed methodology opens the way for a perfectly parallel implementation of Jarzynski-based free energy calculations in complex systems.

  16. Possible segregation caused by centrifugal titanium casting.

    Science.gov (United States)

    Watanabe, K; Okawa, S; Kanatani, M; Nakano, S; Miyakawa, O; Kobayashi, M

    1996-12-01

    The possibility of the segregation under solidification process using a centrifugal casting machine was investigated using an electron probe microanalyzer with elemental distribution map, line analysis and quantitative analysis. When a very small quantity of platinum was added to local molten titanium during the casting process, macroscopic segregation was observed under conditions of density difference of 0.1 g/cm3 at the most, confirming that the centrifugal force of the casting machine is extremely strong. When a Ti-6Al-4V alloy was cast, however, no macroscopic segregation was observed. The centrifugal force of the casting machine examined in the present study hardly results in the body-force segregation in this titanium alloy.

  17. Entropy as the driver of chromosome segregation

    OpenAIRE

    Jun, Suckjoon; Wright, Andrew

    2010-01-01

    We present a new physical biology approach to understanding the relationship between the organization and segregation of bacterial chromosomes. We posit that replicated Escherichia coli daughter strands will spontaneously demix as a result of entropic forces, despite their strong confinement within the cell; in other words, we propose that entropy can act as a primordial physical force which drives chromosome segregation under the right physical conditions. Furthermore, proteins implicated in...

  18. Non-equilibrium stochastic dynamics in continuum: The free case

    Directory of Open Access Journals (Sweden)

    Y.Kondratiev

    2008-12-01

    Full Text Available We study the problem of identification of a proper state-space for the stochastic dynamics of free particles in continuum, with their possible birth and death. In this dynamics, the motion of each separate particle is described by a fixed Markov process M on a Riemannian manifold X. The main problem arising here is a possible collapse of the system, in the sense that, though the initial configuration of particles is locally finite, there could exist a compact set in X such that, with probability one, infinitely many particles will arrive at this set at some time t>0. We assume that X has infinite volume and, for each α���1, we consider the set Θα of all infinite configurations in X for which the number of particles in a compact set is bounded by a constant times the α-th power of the volume of the set. We find quite general conditions on the process M which guarantee that the corresponding infinite particle process can start at each configuration from Θα, will never leave Θα, and has cadlag (or, even, continuous sample paths in the vague topology. We consider the following examples of applications of our results: Brownian motion on the configuration space, free Glauber dynamics on the configuration space (or a birth-and-death process in X, and free Kawasaki dynamics on the configuration space. We also show that if X=Rd, then for a wide class of starting distributions, the (non-equilibrium free Glauber dynamics is a scaling limit of (non-equilibrium free Kawasaki dynamics.

  19. Non-equilibrium Thermodynamics of Rayleigh-Taylor instability

    Science.gov (United States)

    Sengupta, Tapan K.; Sengupta, Aditi; Shruti, K. S.; Sengupta, Soumyo; Bhole, Ashish

    2016-10-01

    Rayleigh-Taylor instability (RTI) has been studied here as a non-equilibrium thermodynamics problem. Air masses with temperature difference of 70K, initially with heavier air resting on lighter air isolated by a partition, are allowed to mix by impulsively removing the partition. This results in interface instabilities, which are traced here by solving two dimensional (2D) compressible Navier-Stokes equation (NSE), without using Boussinesq approximation (BA henceforth). The non-periodic isolated system is studied by solving NSE by high accuracy, dispersion relation preserving (DRP) numerical methods described in Sengupta T.K.: High Accuracy Computing Method (Camb. Univ. Press, USA, 2013). The instability onset is due to misaligned pressure and density gradients and is evident via creation and evolution of spikes and bubbles (when lighter fluid penetrates heavier fluid and vice versa, associated with pressure waves). Assumptions inherent in compressible formulation are: (i) Stokes' hypothesis that uses zero bulk viscosity assumption and (ii) the equation of state for perfect gas which is a consequence of equilibrium thermodynamics. Present computations for a non-equilibrium thermodynamic process do not show monotonic rise of entropy with time, as one expects from equilibrium thermodynamics. This is investigated with respect to the thought-experiment. First, we replace Stokes' hypothesis, with another approach where non-zero bulk viscosity of air is taken from an experiment. Entropy of the isolated system is traced, with and without the use of Stokes' hypothesis. Without Stokes' hypothesis, one notes the rate of increase in entropy to be higher as compared to results with Stokes' hypothesis. We show this using the total entropy production for the thermodynamically isolated system. The entropy increase from the zero datum is due to mixing in general; punctuated by fluctuating entropy due to creation of compression and rarefaction fronts originating at the interface

  20. Effects of turbulent mixing on the nonequilibrium critical behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, N V; Iglovikov, V I; Kapustin, A S [Department of Theoretical Physics, St. Petersburg University, Uljanovskaja 1, St. Petersburg, Petrodvorez 198504 (Russian Federation)], E-mail: nikolai.antonov@pobox.spbu.ru

    2009-04-03

    We study the effects of turbulent mixing on the critical behaviour of a nonequilibrium system near its second-order phase transition between the absorbing and fluctuating states. The model describes the spreading of an agent (e.g., infectious disease) in a reaction-diffusion system and belongs to the universality class of the directed bond percolation process, also known as the simple epidemic process, and is equivalent to the Reggeon field theory. The turbulent advecting velocity field is modelled by the Obukhov-Kraichnan's rapid-change ensemble: Gaussian statistics with the correlation function (vv) {approx} {delta}(t - t')k{sup -d-{xi}}, where k is the wave number, and 0 < {xi} < 2 is a free parameter. Using the field theoretic renormalization group we show that, depending on the relation between the exponent {xi} and the spatial dimension d, the system reveals different types of large-scale, long-time asymptotic behaviour, associated with four possible fixed points of the renormalization group equations. In addition to known regimes (ordinary diffusion, ordinary directed percolation process and passively advected scalar field), the existence of a new nonequilibrium universality class is established, and the corresponding critical dimensions are calculated to the first order of the double expansion in {xi} and {epsilon} = 4 - d (one-loop approximation). It turns out, however, that the most realistic values {xi} = 4/3 (Kolmogorov's fully developed turbulence) and d = 2 or 3 correspond to the case of a passive scalar field, when the nonlinearity of the Reggeon model is irrelevant, and the spreading of the agent is completely determined by the turbulent transfer.

  1. Nonequilibrium dynamics in an interacting Fe-C nanoparticle system

    DEFF Research Database (Denmark)

    Jönsson, P.; Hansen, Mikkel Fougt; Nordblad, P.

    2000-01-01

    Nonequilibrium dynamics in an interacting Fe-C nanoparticle sample, exhibiting a low-temperature spin-glass-like phase, has been studied by low-frequency ac susceptibility and magnetic relaxation experiments. The nonequilibrium behavior shows characteristic spin-glass features, but some qualitative...

  2. Analysis of Instabilities in Non-Equilibrium Plasmas

    Institute of Scientific and Technical Information of China (English)

    LIN Lie; WU Bin; ZHANG Peng; WANG Yong-Qing

    2004-01-01

    Plasma instabilities with charged particle production processes in non-equilibrium plasma are analysed. A criterion on plasma instabilities is deduced by first-order perturbation theory. The relationship between plasma instabilities and certain factors (degree of non-equilibrium in plasma, the electron attachment rate coefficient and electron temperature) are described.

  3. Koppe's Work of 1948: A fundamental for non-equilibrium rate of particle production

    CERN Document Server

    Tawfik, Abdel Nasser

    2013-01-01

    In 1948, Koppe formulated an almost complete recipe for statistical-thermal models including particle production, formation and decay of resonances, temporal and thermal evolution of the interacting system, statistical approaches and equilibrium condition in final state of the nuclear interaction. As the rate of particle production was one of the basic assumptions, recalling Koppe's work would be an essential input to be involved in the statistical prediction of non-equilibrium particle production in recent and future ultra-relativistic collisions.

  4. Entropy production in non-equilibrium systems described by the generalized Langevin equation

    Science.gov (United States)

    Sevilla, Francisco J.; Piña-Perez, Omar

    2014-03-01

    The generalized Langevin equation for a charged particle under the influence of time-dependent external fields, is employed to study the effects of non-Markovian dissipative terms in the entropy production of non-equilibrium states exhibiting non-zero mass flux. We present results for the case in which the fluctuation-dissipation relation holds. FJS and OPP acknowledge financial support from PAPIIT-IN113114 and PAEP-UNAM respectively.

  5. Quantum Dew Formation of quantum liquid in a nonequilibrium Bose gas

    CERN Document Server

    Khlebnikov, S Yu

    2000-01-01

    We consider phase separation in nonequilibrium Bose gas with an attractive interaction between the particles. Using numerical integrations on a lattice, we show that the system evolves into a state that contains drops of Bose-Einstein condensate suspended in uncondensed gas. When the initial gas is sufficiently rarefied, the rate of formation of this quantum dew scales with the initial density as expected for a process governed by two-particle collisions.

  6. Perpetual extraction of work from a nonequilibrium dynamical system under Markovian feedback control

    Science.gov (United States)

    Kosugi, Taichi

    2013-09-01

    By treating both control parameters and dynamical variables as probabilistic variables, we develop a succinct theory of perpetual extraction of work from a generic classical nonequilibrium system subject to a heat bath via repeated measurements under a Markovian feedback control. It is demonstrated that a problem for perpetual extraction of work in a nonequilibrium system is reduced to a problem of Markov chain in the higher-dimensional phase space. We derive a version of the detailed fluctuation theorem, which was originally derived for classical nonequilibrium systems by Horowitz and Vaikuntanathan [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.061120 82, 061120 (2010)], in a form suitable for the analyses of perpetual extraction of work. Since our theory is formulated for generic dynamics of probability distribution function in phase space, its application to a physical system is straightforward. As simple applications of the theory, two exactly solvable models are analyzed. The one is a nonequilibrium two-state system and the other is a particle confined to a one-dimensional harmonic potential in thermal equilibrium. For the former example, it is demonstrated that the observer on the transitory steps to the stationary state can lose energy and that work larger than that achieved in the stationary state can be extracted. For the latter example, it is demonstrated that the optimal protocol for the extraction of work via repeated measurements can differ from that via a single measurement. The validity of our version of the detailed fluctuation theorem, which determines the upper bound of the expected work in the stationary state, is also confirmed for both examples. These observations provide useful insights into exploration for realistic modeling of a machine that extracts work from its environment.

  7. Perpetual extraction of work from a nonequilibrium dynamical system under Markovian feedback control.

    Science.gov (United States)

    Kosugi, Taichi

    2013-09-01

    By treating both control parameters and dynamical variables as probabilistic variables, we develop a succinct theory of perpetual extraction of work from a generic classical nonequilibrium system subject to a heat bath via repeated measurements under a Markovian feedback control. It is demonstrated that a problem for perpetual extraction of work in a nonequilibrium system is reduced to a problem of Markov chain in the higher-dimensional phase space. We derive a version of the detailed fluctuation theorem, which was originally derived for classical nonequilibrium systems by Horowitz and Vaikuntanathan [Phys. Rev. E 82, 061120 (2010)], in a form suitable for the analyses of perpetual extraction of work. Since our theory is formulated for generic dynamics of probability distribution function in phase space, its application to a physical system is straightforward. As simple applications of the theory, two exactly solvable models are analyzed. The one is a nonequilibrium two-state system and the other is a particle confined to a one-dimensional harmonic potential in thermal equilibrium. For the former example, it is demonstrated that the observer on the transitory steps to the stationary state can lose energy and that work larger than that achieved in the stationary state can be extracted. For the latter example, it is demonstrated that the optimal protocol for the extraction of work via repeated measurements can differ from that via a single measurement. The validity of our version of the detailed fluctuation theorem, which determines the upper bound of the expected work in the stationary state, is also confirmed for both examples. These observations provide useful insights into exploration for realistic modeling of a machine that extracts work from its environment.

  8. Transport analogy for segregation and granular rheology

    Science.gov (United States)

    Liu, Siying; McCarthy, Joseph J.

    2017-08-01

    Here, we show a direct connection between density-based segregation and granular rheology that can lead to insight into both problems. Our results exhibit a transition in the rate of segregation during simple shear that occurs at I ˜0.5 and mimics a coincident regime change in flow rheology. We propose scaling arguments that support a packing fraction criterion for this transition that can both explain our segregation results as well as unify existing literature studies of granular rheology. By recasting a segregation model in terms of rheological parameters, we establish an approach that not only collapses results for a wide range of conditions, but also yields a direct relationship between the coordination number z and the segregation velocity. Moreover, our approach predicts the precise location of the observed regime change or saturation. This suggests that it is possible to rationally design process operating conditions that lead to significantly lower segregation extents. These observations can have a profound impact on both the study of granular flow or mixing as well as industrial practice.

  9. Simulation of Fluid Flow, Heat Transfer and Micro-Segregation in Twin-roll Strip Casting of Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Xiaoming ZHANG; Zhengyi JIANG; Xianghua LIU; Guodong WANG

    2006-01-01

    In twin-roll strip casting process, metal flow and temperature distribution in the molten pool directly affect the stability of the process and the quality of products. In this paper, a 3D coupled thermal-flow fenite element modeling (FEM) simulation for twin-roll strip casting of stainless steel was performed. Influences of the pouring temperature and casting speed on the temperature fields were obtained from the numerical simulation. The micro-segregation of the solutes during the strip casting process of stainless steel was also simulated. A developed micro-segregation model was used to calculate the micro-segregation of solutes in twin-roll casting of stainless steel. The relationship between the solidus fraction in solidification and temperature was given,which was used to determine the LIT (liquid impermeable temperature), ZST (zero strength temperature) and ZDT (zero ductility temperature) in the period of non-equilibrium solidification. The effect of temperature on the micro-segregation was discussed. According to the computational results, the solidification completion temperature in the twin-roll strip casting of stainless steel was then determined, which can provide a basis for controlling the location of solidification completion temperature and analysing the crack of the casting strip.

  10. Non-equilibrium many body dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.; Gyulassy, M.

    1997-09-22

    This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.

  11. Viscosity of confined inhomogeneous nonequilibrium fluids.

    Science.gov (United States)

    Zhang, Junfang; Todd, B D; Travis, Karl P

    2004-12-01

    We use the nonlocal linear hydrodynamic constitutive model, proposed by Evans and Morriss [Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990)], for computing an effective spatially dependent shear viscosity of inhomogeneous nonequilibrium fluids. The model is applied to a simple atomic fluid undergoing planar Poiseuille flow in a confined channel of several atomic diameters width. We compare the spatially dependent viscosity with a local generalization of Newton's law of viscosity and the Navier-Stokes viscosity, both of which are known to suffer extreme inaccuracies for highly inhomogeneous systems. The nonlocal constitutive model calculates effective position dependent viscosities that are free from the notorious singularities experienced by applying the commonly used local constitutive model. It is simple, general, and has widespread applicability in nanofluidics where experimental measurement of position dependent transport coefficients is currently inaccessible. In principle the method can be used to predict approximate flow profiles of any arbitrary inhomogeneous system. We demonstrate this by predicting the flow profile for a simple fluid undergoing planar Couette flow in a confined channel of several atomic diameters width.

  12. Nonequilibrium free diffusion in seed leachate

    Science.gov (United States)

    Ortiz G., Luis; Riquelme P., Pablo; Guzmán, R.

    2013-11-01

    In this work, we use a Schlieren-like Near Field Scattering (SNFS) setup to study nonequilibrium free diffusion behavior of a colloidal solution obtained from seeds leachate. The main objective is to compare the temporal behavior of the diffusion coefficient of seed leachate with an electric conductivity based vigor test. SNFS sizing measurements, based on Mie theory, were carried out to ensure its reliability and sensitivity. Then, we performed a typical nonequilibrium free diffusion experiment of a glycerol-water mixture. In this way, we confirmed that SNFS setup is sensitive to giant concentration fluctuations of nanocolloidal solutions. The results obtained in this stage reproduce properly the data reported elsewhere in literature. Moreover, seed leachate diffuse, in water, in a similar way that glycerol does. In both cases we used the same method (dynamic structure factor) to determine thermo-physical properties. We show that time evolution of diffusion coefficient of Lupinus Albus leachate exhibits three defined regimes as electric conductivity measurements. The results also exhibit a correspondence between the behavior of the diffusion coefficient and electric conductivity values of the two regions in the temporal range studied. Finally, we discuss biological processes involved in germination that could modulate this dependence, and the role played by the electrolytic nature of solutes.

  13. Gender Segregated Labour Markets in the Baltics: What are Prevailing – Similarities or Differences?

    Directory of Open Access Journals (Sweden)

    Rein Vöörmann

    2009-11-01

    Full Text Available This paper focuses on men and women and the gender segregation of jobs in the Baltic countries. Based on the Estonian, Latvian and Lithuanian labour force survey data, a look is taken at the employment structure of men and women by industries and occupations, as well as at the question whether or not gender segregation in the labour market has been increased after the collapse of the communist systems in the region under consideration. Empirical data demonstrate that in respect to industrial gender segregation there is some increase in Estonia and Latvia, but not in Lithuania. Occupational gender segregation demonstrates more stability in all three Baltic States. Compared to the Western European countries, the main trend is towards bigger similarities.

  14. Horizontal segregation of mono-layer granules coordinated by vertical motion.

    Science.gov (United States)

    Liaw, S-Y; Chung, F F; Liaw, S-S

    2011-06-01

    We experimentally investigate the segregation of a binary mixture of spherical beads confined between two horizontal vertically vibrating plates. The two kinds of beads are of equal diameter and mass but have different restitution coefficients. Segregation occurs in particular ranges of vibration amplitude and frequency. We find that the collisions between beads at an angle to the horizontal plane induce an effective horizontal repulsive force. When one or both bead types bounce up and down in synchronization, the effective repulsive force between the two types of beads is likely to be larger than that found within a single bead type, resulting in the mixture segregating. Non-horizontal collisions also play a role in stabilizing the segregation state by transferring the horizontal kinetic energy back into vertical motion.

  15. The Behavior of Matter under Nonequilibrium Conditions: Fundamental Aspects and Applications: Progress Report for Period August 15, 1989 - April 14, 1990

    Science.gov (United States)

    Prigogine, I.

    1989-10-01

    As in the previous period, our work has been concerned with the study of the properties of nonequilibrium systems and especially with the mechanism of self-organization. As is well-known, the study of self-organization began with the investigation of hydrodynamical or chemical instabilities studied from the point of view of macroscopic physics. The main outcome is that nonequilibrium generates spatial correlations of macroscopic physics. The main outcome is that nonequilibrium generated spatial correlations of macroscopic range whose characteristics length is an intrinsic property and whose amplitude is determined by nonequilibrium constraints. A survey of the macroscopic approach to nonequilibrium states is given in the paper. "Nonequilibrium States and Long Range Correlations in Chemical Dynamics", by G. Nicolis at al. However, over the last few years important progress has been made in the simulation of nonequilibrium situations using mainly molecular dynamics. It appears now that processes corresponding to self-organization as well as the appearance of long-range correlations can be obtained in this way starting from a program involving Newtonian dynamics (generally the laws of interaction correspond to hard spheres or hard disks). Examples of such types of studies leading to Benard instabilities, to chemical clocks, or to spatial structure formation are given in this report. As a result, we may now view self-organization as a direct expression of tan appropriate microscopic dynamics. This is the reason why we have devoted much work to the study of large Poincare systems (LPS) involving continuous sets of resonances. These systems have been shown to lead, according to the constraints, either to equilibrium situations or to nonequilibrium states involving long range correlations. We discuss LPS in the frame of classical mechanics.

  16. Gender Segregation in the Spanish Labor Market: An Alternative Approach

    Science.gov (United States)

    del Rio, Coral; Alonso-Villar, Olga

    2010-01-01

    The aim of this paper is to study occupational segregation by gender in Spain, which is a country where occupational segregation explains a large part of the gender wage gap. As opposed to previous studies, this paper measures not only overall segregation, but also the segregation of several population subgroups. For this purpose, this paper uses…

  17. Steepest entropy ascent model for far-nonequilibrium thermodynamics: unified implementation of the maximum entropy production principle.

    Science.gov (United States)

    Beretta, Gian Paolo

    2014-10-01

    By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium

  18. Magnetic property and interlayer segregation in spin valve metal multilayers

    Institute of Scientific and Technical Information of China (English)

    于广华; 李明华; 朱逢吾; 柴春林; 姜宏伟; 赖武彦

    2002-01-01

    The experimental results show that the exchange coupling field of NiFe/FeMn for Ta/NiFe/FeMn/Ta multilayers is higher than that for the spin valve multilayers Ta/NiFe/Cu/NiFe/FeMn/Ta.In order to find out the reason,the composition and chemical states at the surfaces of Ta(12nm)/NiFe(7nm),Ta(12nm)/NiFe(7nm)/Cu(4nm) and Ta(12nm)/NiFe(7nm)/Cu(3nm)/NiFe(5nm) were studied using the X-ray photoelectron spectroscopy (XPS).The results show that no elements from lower layers float out or segregate to the surface for the first and second samples.However,Cu atoms segregate to the surface of Ta(12nm)/NiFe(7nm)/Cu(3nm)/NiFe(5nm) multilayers,i.e.Cu atoms segregate to the NiFe/FeMn interface for Ta/NiFe/Cu/NiFe/FeMn/Ta multilayers.We believe that the presence of Cu atoms at the interface of NiFe/FeMn is one of the important factors causing the exchange coupling field of Ta/NiFe/FeMn/Ta multilayers to be higher than that of Ta/NiFe/Cu/NiFe/FeMn/Ta multilayers.``

  19. Nonequilibrium statistics of the laser beam intensity profile at the output of a model channel with strong turbulence

    Science.gov (United States)

    Arsenyan, Tatiana I.; Babanin, Eugeniy A.; Komarov, Aleksandr G.; Suhareva, Natalia A.; Zotov, Aleksey M.

    2014-11-01

    The experimentally obtained space-time distortions of the signal beam profile in the optical data transmitting channels are presented. Interpretation and prognostication of distortion structure was carried out using the non-equilibrium thermodynamics and statistics methods, particularly non-extensive Renyi entropy. The method of media state operational control using a single sampling frame is proposed.

  20. Nonequilibrium Quantum Systems: Divergence between Global and Local Descriptions

    Directory of Open Access Journals (Sweden)

    Pedro D. Manrique

    2015-01-01

    Full Text Available Even photosynthesis—the most basic natural phenomenon underlying life on Earth—involves the nontrivial processing of excitations at the pico- and femtosecond scales during light-harvesting. The desire to understand such natural phenomena, as well as interpret the output from ultrafast experimental probes, creates an urgent need for accurate quantitative theories of open quantum systems. However it is unclear how best to generalize the well-established assumptions of an isolated system, particularly under nonequilibrium conditions. Here we compare two popular approaches: a description in terms of a direct product of the states of each individual system (i.e., a local approach versus the use of new states resulting from diagonalizing the whole Hamiltonian (i.e., a global approach. The main difference lies in finding suitable operators to derive the Lindbladian and hence the master equation. We show that their equivalence fails when the system is open, in particular under the experimentally ubiquitous condition of a temperature gradient. By solving for the steady state populations and calculating the heat flux as a test observable, we uncover stark differences between the formulations. This divergence highlights the need to establish rigorous ranges of applicability for such methods in modeling nanoscale transfer phenomena—including during the light-harvesting process in photosynthesis.

  1. Nonequilibrium dynamics in chemical systems A brief account

    Science.gov (United States)

    Nicolis, G.; Baras, F.

    1985-12-01

    During the period of September 3 to 7, 1984 a symposium on “Nonequilibrium Dynamics in Chemical Systems” was organized by the Centre de Recherche Paul Pascal in Bordeaux, France. It was supported, primarily, by the French Centre National de la Recherche Scientifique and attended by about 90 participants from Australia, Belgium, Canada, Denmark, France, Germany, Hungary, Israël, Italy, Japan, The Netherlands, Poland, Tchekoslovakia, Spain, United Kingdom, United States and Zimbabwe. A list of topics and speakers is found in the table below. Two highly successful conferences centered on nonlinear phenomena in chemical systems far from equilibrium had already been organized by the Bordeaux group in the past. The first of them [1], held in September 1978, was dominated by the theme that nonequilibrium can act as a source of order. Sustained oscillations and bistability were the two principal phenomena studied from this point of view. Thanks to the systematic utilization of the continuous stirred tank reactor (CSTR) the study of open systems could finally be realized. Reliable state diagrams were thus produced, notably by the Bordeaux group, in which one could identify the transition points to new states. The Belousov-Zhabotinskii (BZ) reaction and its variants were the main vehicle on which these new ideas could be illustrated. The second Bordeaux conference [2], held in September 1981, was largely dominated by the major progress that had just marked two vital areas of this field: the discovery of new classes of chemical oscillators; and the invasion of chaotic dynamics in chemistry. These themes also dominated the first Gordon Conference on Chemical Oscillations held in New Hampshire in July 1982. In contrast to its two predecessors, the third Bordeaux conference held in September 1984 was not dominated by a single central theme. New questions were raised in situations in which until very recently things were considered to be perfectly clear. Simple,

  2. Melting of a nonequilibrium vortex crystal in a fluid film with polymers : elastic versus fluid turbulence

    CERN Document Server

    Gupta, Anupam

    2016-01-01

    We perform a direct numerical simulation (DNS) of the forced, incompressible two-dimensional Navier-Stokes equation coupled with the FENE-P equations for the polymer-conformation tensor. The forcing is such that, without polymers and at low Reynolds numbers $Re$, the film attains a steady state that is a square lattice of vortices and anti-vortices. We find that, as we increase the Weissenberg number ${\\mathcal Wi}$, this lattice undergoes a series of nonequilibrium phase transitions, first to spatially distorted, but temporally steady, crystals and then to a sequence of crystals that oscillate in time, periodically, at low ${\\mathcal Wi}$, and quasiperiodically, for slightly larger ${\\mathcal Wi}$. Finally, the system becomes disordered and displays spatiotemporal chaos and elastic turbulence. We then obtain the nonequilibrium phase diagram for this system, in the ${\\mathcal Wi} - Re$ plane, and show that (a) the boundary between the crystalline and turbulent phases has a complicated, fractal-type character ...

  3. Non-equilibrium helium ionization in an MHD simulation of the solar atmosphere

    CERN Document Server

    Golding, Thomas Peter; Carlsson, Mats

    2015-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilbrium hydrogen ionization by performing a 2D radiation-magneto-hydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyman-$\\alpha$ and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with LTE ionization shows that non-equilibrium helium ionization leads to higher temperatures in wave fronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behaviour with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. ...

  4. Ab initio vibrations in nonequilibrium nanowires

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Engelund, Mads; Markussen, T

    2010-01-01

    We review recent results on electronic and thermal transport in two different quasi one-dimensional systems: Silicon nanowires (SiNW) and atomic gold chains. For SiNW's we compute the ballistic electronic and thermal transport properties on equal footing, allowing us to make quantitative predicti......We review recent results on electronic and thermal transport in two different quasi one-dimensional systems: Silicon nanowires (SiNW) and atomic gold chains. For SiNW's we compute the ballistic electronic and thermal transport properties on equal footing, allowing us to make quantitative...... predictions for the thermoelectric properties, while for the atomic gold chains we evaluate microscopically the damping of the vibrations, due to the coupling of the chain atoms to the modes in the bulk contacts. Both approaches are based on the combination of density-functional theory, and nonequilibrium...... Green's functions....

  5. Localized nonequilibrium nanostructures in surface chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, M; Ipsen, M; Mikhailov, A S; Ertl, G [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

    2003-06-01

    Nonequilibrium localized stationary structures of submicrometre and nanometre sizes can spontaneously develop under reaction conditions on a catalytic surface. These self-organized structures emerge because of the coupling between the reaction and a structural phase transition in the substrate. Depending on the reaction conditions they can either correspond to densely covered spots (islands), inside which the reaction predominantly proceeds, or local depletions (holes) in a dense adsorbate layer with a very small reactive output in comparison to the surroundings. The stationary localized solutions are constructed using the singular perturbation approximation. These results are compared with numerical simulations, where special adaptive grid algorithms and numerical continuation of stationary profiles are used. Numerical investigations beyond the singular perturbation limit are also presented.

  6. Gravity and Nonequilibrium Thermodynamics of Classical Matter

    CERN Document Server

    Hu, B L

    2010-01-01

    Renewed interest in deriving gravity (more precisely, the Einstein equations) from thermodynamics considerations [1, 2] is stirred up by a recent proposal that 'gravity is an entropic force' [3] (see also [4]). Even though I find the arguments justifying such a claim in this latest proposal rather ad hoc and simplistic compared to the original one I would unreservedly support the call to explore deeper the relation between gravity and thermodynamics, this having the same spirit as my long-held view that general relativity is the hydrodynamic limit [5, 6] of some underlying theories for the microscopic structure of spacetime - all these proposals, together with that of [7, 8], attest to the emergent nature of gravity [9]. In this first paper of two we set the modest goal of studying the nonequilibrium thermodynamics of classical matter only, bringing afore some interesting prior results, without invoking any quantum considerations such as Bekenstein-Hawking entropy, holography or Unruh effect. This is for the ...

  7. Non-equilibrium quantum heat machines

    Science.gov (United States)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  8. Anomalous spectral lines and relic quantum nonequilibrium

    CERN Document Server

    Underwood, Nicolas G

    2016-01-01

    We describe general features that might be observed in the line spectra of relic cosmological particles should quantum nonequilibrium be preserved in their statistics. According to our arguments, these features would represent a significant departure from those of a conventional origin. Among other features, we find a possible spectral broadening (for incident photons) that is proportional to the energy resolution of the recording telescope (and so could be orders of magnitude larger than any intrinsic broadening). Notably, for a range of possible initial conditions we find the possibility of spectral line `narrowing' whereby a telescope could observe a spectral line which is narrower than it should conventionally be able to resolve. We briefly discuss implications for the indirect search for dark matter.

  9. Atomic loss and gain as a resource for nonequilibrium phase transitions in optical lattices

    Science.gov (United States)

    Everest, B.; Marcuzzi, M.; Lesanovsky, I.

    2016-02-01

    Recent breakthroughs in the experimental manipulation of strongly interacting atomic Rydberg gases in lattice potentials have opened an avenue for the study of many-body phenomena. Considerable efforts are currently being undertaken to achieve clean experimental settings that show a minimal amount of noise and disorder and are close to zero temperature. A complementary direction investigates the interplay between coherent and dissipative processes. Recent experiments have revealed a glimpse into the emergence of a rich nonequilibrium behavior stemming from the competition of laser excitation, strong interactions, and radiative decay of Rydberg atoms. The aim of the present theoretical work is to show that local incoherent loss and gain of atoms can in fact be the source of interesting out-of-equilibrium dynamics. This perspective opens up paths for the exploration of nonequilibrium critical phenomena and, more generally, phase transitions, some of which so far have been rather difficult to study. To demonstrate the richness of the encountered dynamical behavior we consider here three examples. The first two feature local atom loss and gain together with an incoherent excitation of Rydberg states. In this setting either a continuous or a discontinuous phase transition emerges with the former being reminiscent of genuine nonequilibrium transitions of stochastic processes with multiple absorbing states. The third example considers the regime of coherent laser excitation. Here the many-body dynamics is dominated by an equilibrium transition of the "model A" universality class.

  10. Nonequilibrium response of a voltage gated sodium ion channel and biophysical characterization of dynamic hysteresis.

    Science.gov (United States)

    Pal, Krishnendu; Das, Biswajit; Gangopadhyay, Gautam

    2017-02-21

    Here we have studied the dynamic as well as the non-equilibrium thermodynamic response properties of voltage-gated Na-ion channel. Using sinusoidally oscillating external voltage protocol we have both kinetically and energetically studied the non-equilibrium steady state properties of dynamic hysteresis in details. We have introduced a method of estimating the work done associated with the dynamic memory due to a cycle of oscillating voltage. We have quantitatively characterised the loop area of ionic current which gives information about the work done to sustain the dynamic memory only for ion conduction, while the loop area of total entropy production rate gives the estimate of work done for overall gating dynamics. The maximum dynamic memory of Na-channel not only depends on the frequency and amplitude but it also depends sensitively on the mean of the oscillating voltage and here we have shown how the system optimize the dynamic memory itself in the biophysical range of field parameters. The relation between the average ionic current with increasing frequency corresponds to the nature of the average dissipative work done at steady state. It is also important to understand that the utilization of the energy from the external field can not be directly obtained only from the measurement of ionic current but also requires nonequilibrium thermodynamic study.

  11. Neurotransmitter segregation: functional and plastic implications.

    Science.gov (United States)

    Sámano, Cynthia; Cifuentes, Fredy; Morales, Miguel Angel

    2012-06-01

    Synaptic cotransmission is the ability of neurons to use more than one transmitter to convey synaptic signals. Cotransmission was originally described as the presence of a classic transmitter, which conveys main signal, along one or more cotransmitters that modulate transmission, later on, it was found cotransmission of classic transmitters. It has been generally accepted that neurons store and release the same set of transmitters in all their synaptic processes. However, some findings that show axon endings of individual neurons storing and releasing different sets of transmitters, are not in accordance with this assumption, and give support to the hypothesis that neurons can segregate transmitters to different synapses. Here, we review the studies showing segregation of transmitters in invertebrate and mammalian central nervous system neurons, and correlate them with our results obtained in sympathetic neurons. Our data show that these neurons segregate even classic transmitters to separated axons. Based on our data we suggest that segregation is a plastic phenomenon and responds to functional synaptic requirements, and to 'environmental' cues such as neurotrophins. We propose that neurons have the machinery to guide the different molecules required in synaptic transmission through axons and sort them to different axon endings. We believe that transmitter segregation improves neuron interactions during cotransmission and gives them selective and better control of synaptic plasticity.

  12. Calculation of State Specific Rate Coefficients for Non-Equilibrium Hypersonics Applications: from H(Psi) = E(Psi) to k(T) = A *exp(-E(sub a)/RT)

    Science.gov (United States)

    Jaffe, Richard; Schwenke, David; Chaban, Galina; Panesi, Marco

    2014-01-01

    Development of High-Fidelity Physics-Based Models to describe hypersonic flight through the atmospheres of Earth and Mars is underway at NASA Ames Research Center. The goal is to construct chemistry models of the collisional and radiative processes that occur in the bow shock and boundary layers of spacecraft during atmospheric entry that are free of empiricism. In this talk I will discuss our philosophy and describe some of our progress. Topics to be covered include thermochemistry, internal energy relaxation, collisional dissociation and radiative emission and absorption. For this work we start by solving the Schrodinger equation to obtain accurate interaction potentials and radiative properties. Then we invoke classical mechanics to compute state-specific heavy particle collision cross sections and reaction rate coefficients. Finally, phenomenological rate coefficients and relaxation times are determined from master equation solutions.

  13. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten

    Science.gov (United States)

    Chen, Nanjun; Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Zhou, Hong-Bo; Jin, Shuo; Ran, Guang; Lu, Guang-Hong; Gao, Fei

    2016-11-01

    The harsh irradiation environment poses serious threat to the structural integrity of leading candidate for plasma-facing materials, tungsten (W), in future nuclear fusion reactors. It is thus essential to understand the radiation-induced segregation of native defects and impurities to defect sinks, such as grain boundaries (GBs), by quantifying the segregation energetics. In this work, molecular statics simulations of a range of equilibrium and metastable [100] symmetric tilt GBs are carried out to explore the energetics of vacancy segregation. We show that the low-angle GBs have larger absorption length scales over their high-angle counterparts. Vacancy sites that are energetically unfavorable for segregation are found in all GBs. The magnitudes of minimum segregation energies for the equilibrium GBs vary from -2.61 eV to -0.76 eV depending on the GB character, while those for the metastable GB states tend to be much lower. The significance of vacancy delocalization in decreasing the vacancy segregation energies and facilitating GB migration has been discussed. Metrics such as GB energy and local stress are used to interpret the simulation results, and correlations between them have been established. This study contributes to the possible application of polycrystalline W under irradiation in advanced nuclear fusion reactors.

  14. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten.

    Science.gov (United States)

    Chen, Nanjun; Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Zhou, Hong-Bo; Jin, Shuo; Ran, Guang; Lu, Guang-Hong; Gao, Fei

    2016-11-22

    The harsh irradiation environment poses serious threat to the structural integrity of leading candidate for plasma-facing materials, tungsten (W), in future nuclear fusion reactors. It is thus essential to understand the radiation-induced segregation of native defects and impurities to defect sinks, such as grain boundaries (GBs), by quantifying the segregation energetics. In this work, molecular statics simulations of a range of equilibrium and metastable [100] symmetric tilt GBs are carried out to explore the energetics of vacancy segregation. We show that the low-angle GBs have larger absorption length scales over their high-angle counterparts. Vacancy sites that are energetically unfavorable for segregation are found in all GBs. The magnitudes of minimum segregation energies for the equilibrium GBs vary from -2.61 eV to -0.76 eV depending on the GB character, while those for the metastable GB states tend to be much lower. The significance of vacancy delocalization in decreasing the vacancy segregation energies and facilitating GB migration has been discussed. Metrics such as GB energy and local stress are used to interpret the simulation results, and correlations between them have been established. This study contributes to the possible application of polycrystalline W under irradiation in advanced nuclear fusion reactors.

  15. Quasicritical brain dynamics on a nonequilibrium Widom line

    Science.gov (United States)

    Williams-García, Rashid V.; Moore, Mark; Beggs, John M.; Ortiz, Gerardo

    2014-12-01

    Is the brain really operating at a critical point? We study the nonequilibrium properties of a neural network which models the dynamics of the neocortex and argue for optimal quasicritical dynamics on the Widom line where the correlation length and information transmission are optimized. We simulate the network and introduce an analytical mean-field approximation, characterize the nonequilibrium phase transitions, and present a nonequilibrium phase diagram, which shows that in addition to an ordered and disordered phase, the system exhibits a "quasiperiodic" phase corresponding to synchronous activity in simulations, which may be related to the pathological synchronization associated with epilepsy.

  16. Dynamic renormalization in the framework of nonequilibrium thermodynamics.

    Science.gov (United States)

    Ottinger, Hans Christian

    2009-02-01

    We show how the dynamic renormalization of nonequilibrium systems can be carried out within the general framework of nonequilibrium thermodynamics. Whereas the renormalization of Hamiltonians is well known from equilibrium thermodynamics, the renormalization of dissipative brackets, or friction matrices, is the main new feature for nonequilibrium systems. Renormalization is a reduction rather than a coarse-graining technique; that is, no new dissipative processes arise in the dynamic renormalization procedure. The general ideas are illustrated for dilute polymer solutions where, in renormalizing bead-spring chain models, dissipative hydrodynamic interactions between different smaller beads contribute to the friction coefficient of a single larger bead.

  17. Segregation of Niobium During Electroslag Remelting Process

    Institute of Scientific and Technical Information of China (English)

    DONG Yan-wu; JIANG Zhou-hua; LI Zheng-bang

    2009-01-01

    Experiment was carried out after the process parameters were calculated by the model previously established.The relationship between interdendritic spacing and local solidification time (LST) mainly determined by process parameters was exposed.Furthermore,the extent of segregation was studied.The results indicate that LST and interdendritic spacing are the largest and the amount of Laves phase as a result of the niobium segregation is the highest in the center of the ingot,whereas the opposite results are obtained at the edge of ingot.The extent of element segregation and the amount of Laves phase can be reduced when appropriate parameters are used.Therefore,the duration of subsequent homogenization treatments for 718 is shortened and the alloy quality is improved.

  18. School Segregation and Racial Academic Achievement Gaps

    Directory of Open Access Journals (Sweden)

    Sean F. Reardon

    2016-09-01

    Full Text Available Although it is clear that racial segregation is linked to academic achievement gaps, the mechanisms underlying this link have been debated since James Coleman published his eponymous 1966 report. In this paper, I examine sixteen distinct measures of segregation to determine which is most strongly associated with academic achievement gaps. I find clear evidence that one aspect of segregation in particular—the disparity in average school poverty rates between white and black students’ schools—is consistently the single most powerful correlate of achievement gaps, a pattern that holds in both bivariate and multivariate analyses. This implies that high-poverty schools are, on average, much less effective than lower-poverty schools and suggests that strategies that reduce the differential exposure of black, Hispanic, and white students to poor schoolmates may lead to meaningful reductions in academic achievement gaps.

  19. Segregating complex sound sources through temporal coherence.

    Directory of Open Access Journals (Sweden)

    Lakshmi Krishnan

    2014-12-01

    Full Text Available A new approach for the segregation of monaural sound mixtures is presented based on the principle of temporal coherence and using auditory cortical representations. Temporal coherence is the notion that perceived sources emit coherently modulated features that evoke highly-coincident neural response patterns. By clustering the feature channels with coincident responses and reconstructing their input, one may segregate the underlying source from the simultaneously interfering signals that are uncorrelated with it. The proposed algorithm requires no prior information or training on the sources. It can, however, gracefully incorporate cognitive functions and influences such as memories of a target source or attention to a specific set of its attributes so as to segregate it from its background. Aside from its unusual structure and computational innovations, the proposed model provides testable hypotheses of the physiological mechanisms of this ubiquitous and remarkable perceptual ability, and of its psychophysical manifestations in navigating complex sensory environments.

  20. Non-equilibrium Warm Dense Gold: Experiments and Simulations

    Science.gov (United States)

    Ng, Andrew

    2015-11-01

    This talk is an overview of a series of studies of non-equilibrium Warm Dense Matter using a broad range of measured properties of a single material, namely Au, as comprehensive benchmarks for theory. The measurements are made in fs-laser pump-probe experiments. For understanding lattice stability, our investigation reveals a solid phase at high energy density. This leads to the calculation of lattice dynamics using MD simulations and phonon hardening in DFT-MD simulations. For understanding electron transport in two-temperature states, AC conductivity is used to evaluate DFT-MD and Kubo-Greenwood calculations while DC conductivity is used to test Ziman calculations in a DFT average atom model. The electron density is also used to assess electronic structure calculations in DFT simulations. In our latest study of electron kinetics in states with a non-Fermi-Dirac distribution, three-body recombination is found to have a significant effect on electron thermalizaiton time. This is driving an effort to develop electron kinetics simulations using the Boltzmann equation method.