WorldWideScience

Sample records for nondestructive degradation evaluation

  1. Optical coherence tomography for nondestructive evaluation of fuel rod degradation

    International Nuclear Information System (INIS)

    Renshaw, Jeremy B.; Jenkins, Thomas P.; Buckner, Benjamin D.; Friend, Brian

    2015-01-01

    Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such as Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal

  2. Optical coherence tomography for nondestructive evaluation of fuel rod degradation

    Energy Technology Data Exchange (ETDEWEB)

    Renshaw, Jeremy B., E-mail: jrenshaw@epri.com [Electric Power Research Institute, 1300 West WT Harris Blvd., Charlotte, NC 28262 (United States); Jenkins, Thomas P., E-mail: tjenkins@metrolaserinc.com; Buckner, Benjamin D., E-mail: tjenkins@metrolaserinc.com [MetroLaser, Inc., 22941 Mill Creek Drive, Laguna Hills, CA 92653 (United States); Friend, Brian [AREVA, Inc., 3315 Old Forest Road, Lynchburg, VA 24501 (United States)

    2015-03-31

    Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such as Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.

  3. Evaluation of Ultrasonic and Thermal Nondestructive Evaluation for the Characterization of Aging Degradation in Braided Composite Materials

    Science.gov (United States)

    Martin, Richard E.

    2010-01-01

    This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed thermography techniques in the as received condition. These same specimens were then examined following extended thermal-humidity cycling. Results of this examination did not show a significant change in the resulting (NDE) signals.

  4. Non-destructive evaluation of material degradation in RPV steel by magnetic methods

    International Nuclear Information System (INIS)

    Takahashi, S.; Kikuchi, H.; Kamada, Y.; Ara, K.; Zhang, L.; Liu, T.

    2004-01-01

    The minor hysteresis loops are measured with increasing magnetic field amplitude, H a , step by step and analyzed in connection with the lattice defects such as dislocations in deformed and neutron irradiated A533B steels. We have defined several new magnetic parameters in the minor loops: they are a pseudo coercive force H c *, a pseudo remanence B R *, a magnetic susceptibility at pseudo coercive force χ H *, pseudo hysteresis loss W f *, pseudo remanence work W r *. H c * is the magnetic field where the magnetization becomes zero in the minor loop. Six coefficients sensitive to lattice defects are obtained by the pseudo magnetic properties and they are independent of H a as well as the magnetic field. These coefficients are effective parameters for nondestructive evaluation of degradation before the initiation of cracking. The minor loops have several advantages for the nondestructive evaluation compared with the major loop. The coefficients have much information about lattice defects and the high accuracy. The measurement is available for low magnetic field of 20 Oe and the H a step is not necessarily fine for the detailed information because of the similarity. (orig.)

  5. Development of a Nondestructive Evaluation Technique for Degraded Thermal Barrier Coatings Using Microwave

    Science.gov (United States)

    Sayar, M.; Ogawa, K.; Shoji, T.

    2008-02-01

    Thermal barrier coatings have been widely used in gas turbine engines in order to protect substrate metal alloy against high temperature and to enhance turbine efficiency. Currently, there are no reliable nondestructive techniques available to monitor TBC integrity over lifetime of the coating. Hence, to detect top coating (TC) and TGO thicknesses, a microwave nondestructive technique that utilizes a rectangular waveguide was developed. The phase of the reflection coefficient at the interface of TC and waveguide varies for different TGO and TC thicknesses. Therefore, measuring the phase of the reflection coefficient enables us to accurately calculate these thicknesses. Finally, a theoretical analysis was used to evaluate the reliability of the experimental results.

  6. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    International Nuclear Information System (INIS)

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-01

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm −1 to 68 cm −1 to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100° C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  7. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.

    Science.gov (United States)

    Neumann, Alexander J; Quinn, Timothy; Bryant, Stephanie J

    2016-07-15

    Photopolymerizable and hydrolytically labile poly(ethylene glycol) (PEG) hydrogels formed from photo-clickable reactions were investigated as cell delivery platforms for cartilage tissue engineering (TE). PEG hydrogels were formed from thiol-norbornene PEG macromers whereby the crosslinks contained caprolactone segments with hydrolytically labile ester linkages. Juvenile bovine chondrocytes encapsulated in the hydrogels were cultured for up to four weeks and assessed biochemically and histologically, using standard destructive assays, and for mechanical and ultrasound properties, as nondestructive assays. Bulk degradation of acellular hydrogels was confirmed by a decrease in compressive modulus and an increase in mass swelling ratio over time. Chondrocytes deposited increasing amounts of sulfated glycosaminoglycans and collagens in the hydrogels with time. Spatially, collagen type II and aggrecan were present in the neotissue with formation of a territorial matrix beginning at day 21. Nondestructive measurements revealed an 8-fold increase in compressive modulus from days 7 to 28, which correlated with total collagen content. Ultrasound measurements revealed changes in the constructs over time, which differed from the mechanical properties, and appeared to correlate with ECM structure and organization shown by immunohistochemical analysis. Overall, non-destructive and destructive measurements show that this new hydrolytically degradable PEG hydrogel is promising for cartilage TE. Designing synthetic hydrogels whose degradation matches tissue growth is critical to maintaining mechanical integrity as the hydrogel degrades and new tissue forms, but is challenging due to the nature of the hydrogel crosslinks that inhibit diffusion of tissue matrix molecules. This study details a promising, new, photo-clickable and synthetic hydrogel whose degradation supports cartilaginous tissue matrix growth leading to the formation of a territorial matrix, concomitant with an

  8. Handbook of nondestructive evaluation

    National Research Council Canada - National Science Library

    Hellier, Charles

    2013-01-01

    "Fully revised to cover the latest nondestructive testing (NDT) procedures, this practical resource reviews established and emerging methods for examining materials without destroying them or altering their structure...

  9. Review of the status of nondestructive measurement techniques to quantify material property degradation due to aging and planning for further evaluation

    International Nuclear Information System (INIS)

    Doctor, S.R.; Boyd, D.M.; Bruemmer, S.M.; Green, E.R.; Schuster, G.J.; Simonen, E.P.

    1989-01-01

    The materials used in nuclear reactors are inspected periodically during the service life of the power plant to detect degradation that might occur. These inspections follow the rules specified in Section XI of the ASME Boiler and Pressure Vessel Code. These inspections are designed to detect service-induced failure mechanisms. This program is designed not to look at the detection of defects but the making of nondestructive measurements to quantify the material properties that a defect may reside in or the incipient condition(s) that may initiate a defect. This program is intended to provide an assessment of the technologies that are available to quantify with nondestructive measurements material properties or material property changes related to degradation due to aging of structural components in light water reactors. In addition, a program plan will be developed that describes the work necessary to create adequate engineering data bases for demonstrating and validating prototypic systems for making these measurements. The main thrust this year has been an extensive review of literature and an assessment of the technology. The second major activity was the planning of a workshop to bring together 30 leading experts in materials and nondestructive evaluation to discuss the state-of-the-art and to address where future work should go

  10. Probabilistic Risk Assessment: Impact of Human Factors on Nondestructive Evaluation and Sensor Degradation on Structural Health Monitoring (Preprint)

    National Research Council Canada - National Science Library

    Aldrin, John C; Medina, Enrique A; Allwine, Daniel A; Qadeer Ahmed, Mohammed; Fisher, Joseph; Knopp, Jeremy S; Lindgren, Eric A

    2006-01-01

    .... Quantitative studies are presented evaluating the effects of variations in probability of detection associated with human factors, plus in-situ sensor degradation on life cycle measures such as cost...

  11. Analytical nondestructive evaluation for materials characterization

    International Nuclear Information System (INIS)

    Raj, Baldev

    1993-01-01

    Science and technology of nondestructive testing and evaluation has contributed immensely to the safety and productivity of industrial plants. In recent years, nondestructive evaluation (NDE) has emerged as a frontline research area of equal if not greater technological relevance, for materials characterization as well. A comprehensive range of techniques from qualitative nondestructive testing for quality control of engineering products and materials to quantitative NDE for materials characterization is being used by the engineering industry and materials researchers, for better understanding of the manufacturing practices and materials behaviour. Quantitative NDE is considered essential for ensuring fitness for purpose at the start of the life in case the component has been designed using fracture mechanics parameters. Quantitative NDE is also vital for assessing degradation of material during service. Moreover, quantitative NDE enables characterization of dynamics of certain phenomenon (not achievable by destructive test methodologies) leading to better understanding of the performance of materials in relation to unavoidable defects in the materials. As the next logical step, the need for an analytical approach to NDE is felt. The need and motivation for such an approach is addressed and the means to achieve this objective are identified. It is argued that analytical NDE is essential to meet the challenges of characterization, intelligent processing of materials and life prediction of components and plants. These requirements are of significant importance in the context of recent developments in materials engineering, and for enhancing the competitive advantage of Indian engineering industry in the international market. (author). 9 refs., 3 figs

  12. Review of the status of nondestructive measurement techniques to quantify material property degradation due to aging and planning for further evaluation

    International Nuclear Information System (INIS)

    Boyd, D.M.; Bruemmer, S.M.; Green, E.R.; Schuster, G.J.; Simonen, E.P.

    1989-01-01

    The materials used in nuclear reactors are inspected periodically during the service life of the power plant to detect degradation that might occur. These inspections follow the rules specified in Section XI of the ASME Boiler and Pressure Vessel Code. These inspections are designed to detect service-induced failure mechanisms. This program is designed not to look at the detection of defects but the marking of nondestructive measurements to quantify the material properties that a defect may reside in or the incipient condition(s) that may initiate a defect. This program is intended to provide an assessment of the technologies that are available to quantify with nondestructive measurements material properties or material property changes related to degradation due to aging of structural components in light water reactors. In addition, a program plan will be developed that describes the work necessary to create adequate engineering data bases for demonstrating and validating prototypic systems for making these measurements. The main thrust this year has been an extensive review of literature and an assessment of the technology. The second major activity was the planning of a workshop to bring together 30 leading experts in materials and NDE to discuss the state-of-the-art and to address where future work should go

  13. Active spectral imaging nondestructive evaluation (SINDE) camera

    Energy Technology Data Exchange (ETDEWEB)

    Simova, E.; Rochefort, P.A., E-mail: eli.simova@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    A proof-of-concept video camera for active spectral imaging nondestructive evaluation has been demonstrated. An active multispectral imaging technique has been implemented in the visible and near infrared by using light emitting diodes with wavelengths spanning from 400 to 970 nm. This shows how the camera can be used in nondestructive evaluation to inspect surfaces and spectrally identify materials and corrosion. (author)

  14. Nondestructive evaluation of nuclear-grade graphite

    Science.gov (United States)

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-01

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  15. Nondestructive Evaluation of Ceramic Candle Filters Using Vibration Response

    International Nuclear Information System (INIS)

    Chen, Roger H.L.; Kiriakidis, Alejandro C.; Peng, Steve W.

    1997-01-01

    This study aims at the development of an effective nondestructive evaluation technique to predict the remaining useful life of a ceramic candle filter during a power plant's annual maintenance shutdown. The objective of the present on-going study is to establish the vibration signatures of ceramic candle filters at varying degradation levels due to different operating hours, and to study the various factors involving the establishment of the signatures

  16. Nondestructive quality evaluation technology of agricultural products

    International Nuclear Information System (INIS)

    Noh, Sang Ha

    1997-01-01

    Quality evaluation of agricultural products has been interested to many researchers for many years and as the result, several nondestructive techniques and so many papers have been reported for quality evaluation of agricultural products. These nondestructive techniques are based on the detection of mechanical, optical, electrical, electro-magnetical, dielectric and vibrational properties of agricultural products that are well correlated with certain quality factors of the products such as color, shape, firmness, sugar content, external or internal defects, moisture content, etc. The sophistication of nondestructive methods has evolved rapidly with modem technologies. In this paper an emphasis was put on reviewing some of those papers and techniques which could be led to on-line measurement for practical use.

  17. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  18. Review of progress in quantitative nondestructive evaluation

    International Nuclear Information System (INIS)

    Thompson, D.O.; Chimenti, D.E.

    1983-01-01

    A comprehensive review of the current state of quantitative nondestructive evaluation (NDE), this volume brings together papers by researchers working in government, private industry, and university laboratories. Their papers cover a wide range of interests and concerns for researchers involved in theoretical and applied aspects of quantitative NDE. Specific topics examined include reliability probability of detection--ultrasonics and eddy currents weldments closure effects in fatigue cracks technology transfer ultrasonic scattering theory acoustic emission ultrasonic scattering, reliability and penetrating radiation metal matrix composites ultrasonic scattering from near-surface flaws ultrasonic multiple scattering

  19. Nondestructive Evaluation Program: Progress in 1986

    International Nuclear Information System (INIS)

    1987-07-01

    The increasing cost of equipment for power generating plants and the potential increases in productivity and safety available through rapidly developing Nondestructive Evaluation (NDE) technology led EPRI to initiate a Nondestructive Evaluation Program in 1974. To date, the major focus has been on light water reactor inspection problems; however, increased application to other systems is now under way. This report presents a comprehensive review of the EPRI effort in the NDE area. Most of the report consists of contractor-supplied progress reports on each current project. An organizational plan of the program is presented in overview. In addition, organization from several viewpoints is presented, e.g., in-service inspection operators, R and D personnel, and utility representatives. The report summarizes significant progress made since the previous EPRI Special Report NP-4315-SR was issued in May 1986. Section 1 contains information about the program organization, and the sections that follow contain contractor-supplied progress reports of each current project. The progress reports are grouped by plant components - pipe, pressure vessel, steam generator and boiler tubes, and turbine. In addition, Part 6 is devoted to discussions of technology transfer

  20. Nondestructive evaluation ultrasonic methods for construction materials

    International Nuclear Information System (INIS)

    Chilibon, I.; Zisu, T.; Raetchi, V.

    2002-01-01

    The paper presents some ultrasonic methods for evaluation of physical-mechanical properties of construction materials (bricks, concrete, BCA), such as: pulse method, examination methods, and direct measurement of the propagation velocity and impact-echo method. Utilizing these nondestructive evaluation ultrasonic methods it can be determined the main material parameters and material characteristics (elasticity coefficients, density, propagation velocity, ultrasound attenuation, etc.) of construction materials. These method are suitable for construction materials because the defectoscopy methods for metallic materials cannot be utilized, due to its rugged and non-homogeneous structures and grate attenuation coefficients of ultrasound propagation through materials. Also, the impact-echo method is a technique for flaw detection in concrete based on stress wave propagation. Studies have shown that the impact-echo method is effective for locating voids, honeycombing, delaminating, depth of surface opening cracks, and measuring member thickness

  1. Review of progress in quantitative nondestructive evaluation

    CERN Document Server

    Chimenti, Dale

    1999-01-01

    This series provides a comprehensive review of the latest research results in quantitative nondestructive evaluation (NDE). Leading investigators working in government agencies, major industries, and universities present a broad spectrum of work extending from basic research to early engineering applications. An international assembly of noted authorities in NDE thoroughly cover such topics as: elastic waves, guided waves, and eddy-current detection, inversion, and modeling; radiography and computed tomography, thermal techniques, and acoustic emission; laser ultrasonics, optical methods, and microwaves; signal processing and image analysis and reconstruction, with an emphasis on interpretation for defect detection; and NDE sensors and fields, both ultrasonic and electromagnetic; engineered materials and composites, bonded joints, pipes, tubing, and biomedical materials; linear and nonlinear properties, ultrasonic backscatter and microstructure, coatings and layers, residual stress and texture, and constructi...

  2. Operation of the EPRI Nondestructive Evaluation Center

    International Nuclear Information System (INIS)

    Stone, R.M.; Ammirato, F.V.; Becker, F.L.

    1989-11-01

    This report describes the Electric Power Research Institute (EPRI) funded nondestructive evaluation (NDE) and life assessment project activities carried out at the EPRI NDE Center in 1988. The primary support for this program is provided through contract RP 1570-2 with the EPRI Nuclear Division. Supplementary funding is provided by other contracts with the EPRI Nuclear, Coal Combustion, and Electrical Systems Divisions. The major objective of this program is to provide improved and field-qualified NDE equipment, procedures, and personnel training to the electric utility industry. A second program objective involves the validation, provision, and maintenance of life assessment codes for selected plant components. Significant assistance has been provided to the utility industry under this project in the form of improved, field-ready equipment and procedures; critically needed assessments of inspection method capability; demonstrations of effectiveness of examination methods; rapid response for critical, short-term problems; assistance with selected life assessment computer codes; and training for specific utility industry needs. These efforts have specifically involved heat exchanger, piping, steam turbine, generator, and heavy section problems. Certain components of both nuclear and fossil plants have been addressed. 56 refs., 48 figs., 13 tabs

  3. Superconducting Quantum Interferometers for Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    M. I. Faley

    2017-12-01

    Full Text Available We review stationary and mobile systems that are used for the nondestructive evaluation of room temperature objects and are based on superconducting quantum interference devices (SQUIDs. The systems are optimized for samples whose dimensions are between 10 micrometers and several meters. Stray magnetic fields from small samples (10 µm–10 cm are studied using a SQUID microscope equipped with a magnetic flux antenna, which is fed through the walls of liquid nitrogen cryostat and a hole in the SQUID’s pick-up loop and returned sidewards from the SQUID back to the sample. The SQUID microscope does not disturb the magnetization of the sample during image recording due to the decoupling of the magnetic flux antenna from the modulation and feedback coil. For larger samples, we use a hand-held mobile liquid nitrogen minicryostat with a first order planar gradiometric SQUID sensor. Low-Tc DC SQUID systems that are designed for NDE measurements of bio-objects are able to operate with sufficient resolution in a magnetically unshielded environment. High-Tc DC SQUID magnetometers that are operated in a magnetic shield demonstrate a magnetic field resolution of ~4 fT/√Hz at 77 K. This sensitivity is improved to ~2 fT/√Hz at 77 K by using a soft magnetic flux antenna.

  4. Proceedings CORENDE: Regional congress on nondestructive and structural evaluation

    International Nuclear Information System (INIS)

    1997-01-01

    Works are presented at the CORENDE: Regional Congress on Nondestructive and Structural Evaluation organized by the National Atomic Energy Commission and the National Technological University (Mendoza). This congress wants to be the forum where people from research, industry and marketing might meet and discuss ideas towards the fostering of these new cultural habits. Papers covering all disciplines contributing to the evaluation of components, systems and structures are welcome: nondestructive evaluation methods and techniques (ultrasound, eddy currents and other electromagnetic methods, acoustic emission, radiography, thermography, leak testing, dye-penetrants, visual inspection, etc.), personnel certification, welding inspection, nondestructive metallography, optics and lasers, fluid-structure interaction, vibrations, extensometry, modelling of structures [es

  5. Use of nondestructive evaluation to detect moisture in flexible pavements.

    Science.gov (United States)

    2006-01-01

    The purpose of this study was to identify the currently available nondestructive evaluation technology that holds the greatest potential to detect moisture in flexible pavements and then apply the technology in multiple locations throughout Virginia....

  6. Ionizing radiations for non-destructive evaluation

    International Nuclear Information System (INIS)

    Raj, Baldev; Venkataraman, B.

    1989-01-01

    A state of the art of major non-destructive testing (NDT) techniques based on ionising radiations is presented. These techniques are broadly classified into three categories, namely, radiography, radiation gaging and analytical applications. The basic principles behind each method are explained and salient features of each technique which make it suitable for a particular task are described. Several illustrative applications drawn from the nuclear industry are given. The monograph is intended to serve as an introductory guide to scientist and engineers engaged in NDT activities. (M.G.B.). 32 refs., 13 figs., 5 tabs

  7. Nondestructive evaluation of LWR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Ballard, D.W.

    1978-02-01

    An analysis of nondestructive testing (NDT) methods currently being used to evaluate the integrity of Light Water Reactor (LWR) spent fuel shipping casks is presented. An assessment of anticipated NDT needs related to breeder reactor cask requirements is included. Specific R and D approaches to probable NDT problem areas such as the evaluation of austenitic stainless steel weldments are outlined

  8. Stress wave nondestructive evaluation of Douglas-fir peeler cores

    Science.gov (United States)

    Robert J. Ross; John I. Zerbe; Xiping Wang; David W. Green; Roy F. Pellerin

    2005-01-01

    With the need for evaluating the utilization of veneer peeler log cores in higher value products and the increasing importance of utilizing round timbers in poles, posts, stakes, and building construction components, we conducted a cooperative project to verify the suitability of stress wave nondestructive evaluation techniques for assessing peeler cores and some...

  9. Nondestructive evaluation of oriented strand board exposed to decay fungi.

    Science.gov (United States)

    Barbara L. Illman; Vina W. Yang; Robert J. Ross; William J. Nelson

    2002-01-01

    Stress wave nondestructive evaluation (NDE) technologies are being used in our laboratory to evaluate the performance properties of engineered wood. These techniques have proven useful in the inspection of timber structures to locate internal voids and decayed or deteriorated areas in large timbers. But no information exists concerning NDE and important properties of...

  10. Non-destructive testing and evaluation for structural integrity

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Rao, B.P.C.

    1995-01-01

    In this paper, a brief description of the physical concepts of non-destructive evaluation (NDE) methods and the physical/derived parameters that are used for assessing defects, stresses and microstructures are given. A few case studies highlighting the importance of non-destructive testing and evaluation for structural integrity assessment are also discussed based on the investigations carried out. Emerging concepts like intelligent processing of materials, expert systems, neural networks, use of multisensors with fusion of data and exploitation of signal analysis and imaging approaches are also addressed in this paper. (author). 92 refs., 1 tab

  11. Pattern recognition approach to nondestructive evaluation of materials

    International Nuclear Information System (INIS)

    Chen, C.H.

    1987-01-01

    In this paper, a pattern recognition approach to the ultrasonic nondestructive evaluation of materials is examined. Emphasis is placed on identifying effective features from time and frequency domains, correlation functions and impulse responses to classify aluminum plate specimens into three major defect geometry categories: flat, angular cut and circular hole defects. A multi-stage classification procedure is developed which can further determine the angles and sizes for defect characterization and classification. The research clearly demonstrates that the pattern recognition approach can significantly improve the nondestructive material evaluation capability of the ultrasonic methods without resorting to the solution of highly complex mathematical inverse problems

  12. Nondestructive evaluation of creep-fatigue damage: an interim report

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1977-02-01

    In view of the uncertainties involved in designing against creep-fatigue failure and the consequences of such failures in Class 1 nuclear components that operate at elevated temperature, the possibility of intermittent or even continuous non-destructive examination of these components has been considered. In this interim report some preliminary results on magnetic force and ultrasonic evaluation of creep-fatigue damage in an LMFBR steam generator material are presented. These results indicate that the non-destructive evaluation of pure creep damage will be extremely difficult. A set of biaxial creep-fatigue tests that are designed to discriminate between various failure theories is also described

  13. Nondestructive Evaluation of Thick Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL

    2015-01-01

    Materials issues are a key concern for the existing nuclear reactor fleet in the United States as material degradation can lead to increased maintenance, increased downtime, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of both known and new forms of degradation. A multitude of concrete-based structures are typically part of a light water reactor plant to provide foundation, support, shielding, and containment functions. The size and complexity of nuclear power plant containment structures and the heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. This paper examines the benefits of using time-frequency analysis with Synthetic Aperture Focusing Technique (SAFT). By using wavelet packet decomposition, the original ultrasound signals are decomposed into various frequency bands that facilitates highly selective analysis of the signal’s frequency content and can be visualized using the familiar SAFT image reconstruction algorithm.

  14. Mathematical modelling of ultrasonic non-destructive evaluation

    Directory of Open Access Journals (Sweden)

    Larissa Ju Fradkin

    2001-01-01

    Full Text Available High-frequency asymptotics have been used at our Centre to develop codes for modelling pulse propagation and scattering in the near-field of the ultrasonic transducers used in NDE (Non-Destructive Evaluation, particularly of walls of nuclear reactors. The codes are hundreds of times faster than the direct numerical codes but no less accurate.

  15. Online Preventative Non-Destructive Evaluation in Automated Fibre Placement

    NARCIS (Netherlands)

    Tonnaer, R.; Shroff, S.; Groves, R.M.

    2016-01-01

    The strict quality requirements for aerospace composite struc- tures give rise to costly quality control procedures. In automated bre placement (AFP) these procedures rely heavily on manual work and inspection. This research aims at performing preventative non-destructive evaluation of composite

  16. Nondestructive evaluation of incipient decay in hardwood logs

    Science.gov (United States)

    Xiping Wang; Jan Wiedenbeck; Robert J. Ross; John W. Forsman; John R. Erickson; Crystal Pilon; Brian K. Brashaw

    2005-01-01

    Decay can cause significant damage to high-value hardwood timber. New nondestructive evaluation (NDE) technologies are urgently needed to effectively detect incipient decay in hardwood timber at the earliest possible stage. Currently, the primary means of inspecting timber relies on visual assessment criteria. When visual inspections are used exclusively, they provide...

  17. Application of liquid crystals in thermal nondestructive evaluation

    International Nuclear Information System (INIS)

    Panakal, J.P.; Mukherjee, S.; Ghosh, J.K.

    1983-01-01

    In recent years, thermal nondestructive evaluation using Cholestric liquid crystals have found wide applications in industry. Thermography using Cholesteric liquid crystals can be used for detection of nonbonds in metallic composites, hot spots in electronic circuits and preliminary examination of welded pressure vessels. This paper presents the results of experiments on thermography of components using encapsulated liquid crystals. (author)

  18. Artificial intelligence to maximise contributions of nondestructive evaluation to materials science and technology

    International Nuclear Information System (INIS)

    Baldev Raj; Rajagopalan, C.

    1996-01-01

    The paper reviews the current status of Nondestructive Testing and Evaluation (NDT and E), in relation to materials science and technology. It suggests a path of growth for Nondestructive Testing and Evaluation, taking into account the increase in data and knowledge. We recommend Artificial Intelligence (AI) concepts for maximising the contributions of and benefits from, Nondestructive Testing and Evaluation. (author)

  19. Nondestructive materials evaluation and imaging by higher harmonics

    International Nuclear Information System (INIS)

    Kawashima, Koichiro

    2012-01-01

    Nondestructive detection of material anormalities, degradation and tight cracks, in which the acoustic impedance mismatch is low, is rather difficult by conventional ultrasonic testing. A novel nonlinear ultrasonic technique, in particular, higher harmonic technique, utilizes the waveform distortion, which results from the interaction between anormalities and large amplitude tone-burst waves. This technique is not affected by acoustic impedance mismatch, therefore, it has possibility to detect such anormalities, degradation and tight cracks. A novel higher harmonic imaging technique is proposed and applied to detect and visualize local plastic deformation of SUS 304 plates, plastic zone in front of crack tip, weld bond contour of carbon steel, small inclusions in ODS steel fuel tubes, pitting damage of SUS 316 plates in mercury, shallow fatigue cracks of SUS 316 plates introduced by thermal fatigue, and inter-granular stress corrosion cracking, IGSCC, in welded plates simulated safe-ends for bonding dissimilar metals. (author)

  20. Technology Evaluation Report: Non-destructive ...

    Science.gov (United States)

    Technology Evaluation Report HSRP is working to develop tools and information that will help detect the intentional introduction of chemical or biological contaminants in buildings or water systems, the containment of these contaminants, the decontamination of buildings and/or water systems, and the management of wastes generated from decontamination and cleanup operations. Evaluation of the performance of CBI Polymers’ DeconGelTM 1108, Environmental Alternatives, Inc.’s (EAI’s) Rad-Release II (RRII), Environmental Alternatives, Inc.’s SuperGel, and Intek Technologies’ LH-21. The objective of evaluating these technologies was to test their ability to remove radioactive cesium (Cs)-137 from the mixed building material coupons of brick with mortar, tile with grout, granite with mortar, all mortar and all grout coupons.

  1. Aging management of major LWR components with nondestructive evaluation

    International Nuclear Information System (INIS)

    Shah, V.N.; MacDonald, P.E.; Akers, D.W.; Sellers, C.; Murty, K.L.; Miraglia, P.Q.; Mathew, M.D.; Haggag, F.M.

    1997-01-01

    Nondestructive evaluation of material damage can contribute to continued safe, reliable, and economical operation of nuclear power plants through their current and renewed license period. The aging mechanisms active in the major light water reactor components are radiation embrittlement, thermal aging, stress corrosion cracking, flow-accelerated corrosion, and fatigue, which reduce fracture toughness, structural strength, or fatigue resistance of the components and challenge structural integrity of the pressure boundary. This paper reviews four nondestructive evaluation methods with the potential for in situ assessment of damage caused by these mechanisms: stress-strain microprobe for determining mechanical properties of reactor pressure vessel and cast stainless materials, magnetic methods for estimating thermal aging damage in cast stainless steel, positron annihilation measurements for estimating early fatigue damage in reactor coolant system piping, and ultrasonic guided wave technique for detecting cracks and wall thinning in tubes and pipes and corrosion damage to embedded portion of metal containments

  2. Proceedings: 19th International Nondestructive Testing and Evaluation of Wood Symposium

    Science.gov (United States)

    Robert J. Ross; Raquel Gonçalves; Xiping Wang

    2015-01-01

    The 19th International Nondestructive Testing and Evaluation of Wood Symposium was hosted by the University of Campinas, College of Agricultural Engineering (FEAGRI/UNICAMP), and the Brazilian Association of Nondestructive Testing and Evaluation (ABENDI) in Rio de Janeiro, Brazil, on September 22–25, 2015. This Symposium was a forum for those involved in nondestructive...

  3. Nondestructive evaluation of metallic structures using a SQUID magnetometer

    International Nuclear Information System (INIS)

    Weinstock, H.; Nisenoff, M.

    1985-01-01

    We present one of the first reports of the use of SQUID instrumentation for nondestructive evaluation of electrically conducting and ferromagnetic specimens. We report preliminary experiments on the use of SQUIDs for the detection of defects (such as cracks, holes, weld seams, variations in wall thickness, effects of corrosion, etc.) in the walls of a hollow pipe, and for monitoring the magnetic state of a ferromagnetic sample under stress-strain loading conditions. (orig./BUD)

  4. Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors, Technical Progress Report for FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, P.; Meyer, R.M.; Fricke, J.M.; Prowant, M.S.; Coble, J.B.; Griffin, J.W.; Pitman, S.G.; Dahl, M.E.; Kafentzis, T.A.; Roosendaal, T.J.

    2012-09-01

    The overall objective of this project was to investigate the effectiveness of nondestructive examination (NDE) technology in detecting material degradation precursors by initiating and growing cracks in selected materials and using NDE methods to measure crack precursors prior to the onset of cracking. Nuclear reactor components are subject to stresses over time that are not precisely known and that make the life expectancy of components difficult to determine. To prevent future issues with the operation of these plants because of unforeseen failure of components, NDE technology is needed that can be used to identify and quantify precursors to macroscopic degradation of materials. Some of the NDE methods being researched as possible solutions to the precursor detection problem are magnetic Barkhausen noise, nonlinear ultrasonics, acoustic emission, eddy current measurements, and guided wave technology. In FY12, the objective was to complete preliminary assessment of advanced NDE techniques for sensitivity to degradation precursors, using prototypical degradation mechanisms in laboratory-scale measurements. This present document reports on the deliverable that meets the following milestone: M3LW-12OR0402143 – Report detailing an initial demonstration on samples from the crack-initiation tests will be provided (demonstrating acceleration of the work).

  5. Nondestructive Evaluation of the VSC-17 Cask

    International Nuclear Information System (INIS)

    Sheryl Morton; Al Carlson; Cecilia Hoffman; James Rivera; Phil Winston; Koji Shirai; Shin Takahashi; Masaharo Tanaka

    2006-01-01

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC 17) spent nuclear fuel storage cask, originally located at the INL Test Area North, as a candidate to study cask performance because it had been used to store fuel as part of a dry cask storage demonstration project for over 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. The INL team met with the CRIEPI representatives in December of 2004 to discuss the next steps. As a result of that meeting, CRIEPI requested that in the summer 2005 INL perform additional surveys on the VSC 17 cask with participation of CRIEPI scientists. This document summarizes the evaluation methods used on the VSC 17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution

  6. Ultrasonic nondestructive evaluation systems industrial application issues

    CERN Document Server

    Callegari, Sergio; Montisci, Augusto; Ricci, Marco; Versaci, Mario

    2015-01-01

    This book covers the practical implementation of ultrasonic NDT techniques in an industrial environment, discussing several issues that may emerge and proposing strategies for addressing them successfully.  It aims to bridge advanced academic research results and their application to industrial procedures. The topics covered in the text range from the basic operation of an ultrasonic NDT system to the simulation of the measurement operations; from the choice and generation of the signals energizing the system to the different ways of exploiting the probes and their output signals; and from quality assessment evaluation to the use of soft computing techniques for classification. Throughout the text, an effort is made to embrace a system view where the physical and technological aspects of sensing are addressed together with higher abstraction levels, such as signal and information processing. Consequently, the book aims at guiding the reader through the various tasks requested for developing a complete ultras...

  7. Nondestructive evaluation using dipole model analysis with a scan type magnetic camera

    Science.gov (United States)

    Lee, Jinyi; Hwang, Jiseong

    2005-12-01

    Large structures such as nuclear power, thermal power, chemical and petroleum refining plants are drawing interest with regard to the economic aspect of extending component life in respect to the poor environment created by high pressure, high temperature, and fatigue, securing safety from corrosion and exceeding their designated life span. Therefore, technology that accurately calculates and predicts degradation and defects of aging materials is extremely important. Among different methods available, nondestructive testing using magnetic methods is effective in predicting and evaluating defects on the surface of or surrounding ferromagnetic structures. It is important to estimate the distribution of magnetic field intensity for applicable magnetic methods relating to industrial nondestructive evaluation. A magnetic camera provides distribution of a quantitative magnetic field with a homogeneous lift-off and spatial resolution. It is possible to interpret the distribution of magnetic field when the dipole model was introduced. This study proposed an algorithm for nondestructive evaluation using dipole model analysis with a scan type magnetic camera. The numerical and experimental considerations of the quantitative evaluation of several sizes and shapes of cracks using magnetic field images of the magnetic camera were examined.

  8. Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Konstantinos G. Dassios

    2013-01-01

    Full Text Available Infrared thermography (IRT and acoustic emission (AE are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material’s performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.

  9. Nondestructive methods for quality evaluation of livestock products.

    Science.gov (United States)

    Narsaiah, K; Jha, Shyam N

    2012-06-01

    The muscles derived from livestock are highly perishable. Rapid and nondestructive methods are essential for quality assurance of such products. Potential nondestructive methods, which can supplement or replace many of traditional time consuming destructive methods, include colour and computer image analysis, NIR spectroscopy, NMRI, electronic nose, ultrasound, X-ray imaging and biosensors. These methods are briefly described and the research work involving them for products derived from livestock is reviewed. These methods will be helpful in rapid screening of large number of samples, monitoring distribution networks, quick product recall and enhance traceability in the value chain of livestock products. With new developments in the areas of basic science related to these methods, colour, image processing, NIR spectroscopy, biosensors and ultrasonic analysis are expected to be widespread and cost effective for large scale meat quality evaluation in near future.

  10. Advanced uses of radiation in non-destructive evaluation

    International Nuclear Information System (INIS)

    Baldev Raj; Viswanathan, B.; Venkataraman, B.

    1998-01-01

    The increasing demand for newer materials and stringency of specifications, have expanded the scope of advanced uses of radiation in non-destructive evaluation of materials and industrial components. This paper highlights the application of some of the advanced techniques of radiography and residual stress measurements, using x-ray diffraction, for materials characterisation and testing, based on the results obtained at the author's laboratory. The application of positron annihilation techniques based on the use of radioisotopes and high resolution gamma ray spectroscopy, is introduced as non-destructive tools for materials characterisation. Selective examples of significant results obtained using this technique, on the radiation damage and early stages of fatigue damage in technologically important steels are reviewed from recent works at the author's laboratory and elsewhere. The scope of application of charge particle based thin layer activation method is briefly outlined. (author)

  11. A versatile nondestructive evaluation imaging workstation

    Science.gov (United States)

    Chern, E. James; Butler, David W.

    1994-01-01

    Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.

  12. Advanced nondestructive evaluation for creep damage

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    As a result of operation at elevated temperatures, power plant components experience creep. Changes in metallurgical structure and microscopic cracking occur after periods of operation and lead to component failure. In order to detect the presence of creep and avoid creep-related failures, EPRI has just initiated a five year program entitled Advanced NDE for Creep Damage (RP 1856-7). The objective of this program is to develop NDE methods for detection and characterization of microscopic creep damage. Several NDE methods will be initially evaluated to determine their potential for detecting and characterizing such damage. These NDE methods include ultrasonics, eddy current, Barkhausen, positron annihilation, and thermal-wave imaging. A prototype system will be developed and tested for commercial applications in a follow-on project, utilizing characteristics of the best NDE method for creep detection. A brief description of the project and results of a theoretical investigation, to determine feasibility of ultrasonic NDE method, for detection of creep damage are presented

  13. Evaluation of Nondestructive Assay/Nondestructive Examination Capabilities for Department of Energy Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Luptak, A.J.; Bulmahn, K.D.

    1998-01-01

    This report summarizes an evaluation of the potential use of nondestructive assay (NDA) and nondestructive examination (NDE) technologies on DOE spent nuclear fuel (SNF). It presents the NDA/NDE information necessary for the National Spent Nuclear Fuel Program (NSNFP) and the SNF storage sites to use when defining that role, if any, of NDA/NDE in characterization and certification processes. Note that the potential role for NDA/NDE includes confirmatory testing on a sampling basis and is not restricted to use as a primary, item-specific, data collection method. The evaluation does not attempt to serve as a basis for selecting systems for development or deployment. Information was collected on 27 systems being developed at eight DOE locations. The systems considered are developed to some degree, but are not ready for deployment on the full range of DOE SNF and still require additional development. The system development may only involve demonstrating performance on additional SNF, packaging the system for deployment, and developing calibration standards, or it may be as extensive as performing additional basic research. Development time is considered to range from one to four years. We conclude that NDA/NDE systems are capable of playing a key role in the characterization and certification of DOE SNF, either as the primary data source or as a confirmatory test. NDA/NDE systems will be able to measure seven of the nine key SNF properties and to derive data for the two key properties not measured directly. The anticipated performance goals of these key properties are considered achievable except for enrichment measurements on fuels near 20% enrichment. NDA/NDE systems can likely be developed to measure the standard canisters now being considered for co-disposal of DOE SNF. This ability would allow the preparation of DOE SNF for storage now and the characterization and certification to be finalize later

  14. Non-destructive evaluation studies for cultural heritage

    International Nuclear Information System (INIS)

    Jayakumar, T.; Babu Rao, C.; Kumar, Anish; Rajkumar, K.V.; Sharma, G.K.; Raj, Baldev

    2009-01-01

    The results of the nondestructive evaluation studies carried out on the Delhi iron pillar and the musical pillars of the Vithala temple at Hampi, Karnataka are discussed. While studies on Delhi iron pillar were carried out with a primary aim to understand the methodology of fabrication of this pillar, the studies on the musical pillars were carried out to finger print/petroligically characterize the stones used in the construction of the musical pillars and to understand the origin of various sounds generated on tapping of the musical pillars by carrying out various acoustic studies. (author)

  15. Nondestructive evaluation of reinforced plastics by a radiometric measurement technique

    International Nuclear Information System (INIS)

    Entine, Gerald; Afshari, Sia; Verlinden, Matt

    1990-01-01

    The demand for new high-performance plastics has greatly increased with advances in the performance characteristics of sophisticated reinforced engineering resins. However, conventional methods for the evaluation of the glass and filler contents of reinforced plastics are destructive, labor intensive, and time consuming. We have developed a new instrument, to address this problem, which provides for the rapid, accurate, and nondestructive measurement of glass or filler content in reinforced plastics. This instrument utilizes radiation transmission and scattering techniques for analytical measurement of glass, graphite and other fillers used in reinforced plastics. (author)

  16. The Nuclear Renaissance — Implications on Quantitative Nondestructive Evaluations

    Science.gov (United States)

    Matzie, Regis A.

    2007-03-01

    The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not even have access to electricity. With this increased energy demand and the high and volatile price of fossil fuels, nuclear energy is experiencing resurgence. This so-called nuclear renaissance is broad based, reaching across Asia, the United States, Europe, as well as selected countries in Africa and South America. Some countries, such as Italy, that have actually turned away from nuclear energy are reconsidering the advisability of this design. This renaissance provides the opportunity to deploy more advanced reactor designs that are operating today, with improved safety, economy, and operations. In this keynote address, I will briefly present three such advanced reactor designs in whose development Westinghouse is participating. These designs include the advanced passive PWR, AP1000, which recently received design certification for the US Nuclear Regulatory Commission; the Pebble Bed Modular reactor (PBMR) which is being demonstrated in South Africa; and the International Reactor Innovative and Secure (IRIS), which was showcased in the US Department of Energy's recently announced Global Nuclear Energy Partnership (GNEP), program. The salient features of these designs that impact future requirements on quantitative nondestructive evaluations will be discussed. Such features as reactor vessel materials, operating temperature regimes, and new geometric configurations will be described, and mention will be made of the impact on quantitative nondestructive evaluation (NDE) approaches.

  17. The Nuclear Renaissance - Implications on Quantitative Nondestructive Evaluations

    International Nuclear Information System (INIS)

    Matzie, Regis A.

    2007-01-01

    The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not even have access to electricity. With this increased energy demand and the high and volatile price of fossil fuels, nuclear energy is experiencing resurgence. This so-called nuclear renaissance is broad based, reaching across Asia, the United States, Europe, as well as selected countries in Africa and South America. Some countries, such as Italy, that have actually turned away from nuclear energy are reconsidering the advisability of this design. This renaissance provides the opportunity to deploy more advanced reactor designs that are operating today, with improved safety, economy, and operations. In this keynote address, I will briefly present three such advanced reactor designs in whose development Westinghouse is participating. These designs include the advanced passive PWR, AP1000, which recently received design certification for the US Nuclear Regulatory Commission; the Pebble Bed Modular reactor (PBMR) which is being demonstrated in South Africa; and the International Reactor Innovative and Secure (IRIS), which was showcased in the US Department of Energy's recently announced Global Nuclear Energy Partnership (GNEP), program. The salient features of these designs that impact future requirements on quantitative nondestructive evaluations will be discussed. Such features as reactor vessel materials, operating temperature regimes, and new geometric configurations will be described, and mention will be made of the impact on quantitative nondestructive evaluation (NDE) approaches

  18. Toughness degradation evaluation of low alloyed steels by electrical resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Nahm, S H; Yu, K M; Kim, S C [Korea Research Inst. of Standards and Science, Taejon (Korea, Republic of); Kim, A [Department of Mechanical Engineering, Kongju Univ., Kongju, Chungnam (Korea, Republic of)

    1997-09-01

    Remaining life of turbine rotors with a crack can be assessed by the fracture toughness on the aged rotors at service temperature. DC potential drop measurement system was constructed in order to evaluate material toughness nondestructively. Test material was 1Cr-1Mo-0.25V steel used widely for turbine rotor material. Seven kinds of specimen with different degradation levels were prepared according to isothermal aging heat treatment at 630 deg. C. Electrical resistivity of test material was measured at room temperature. It was observed that material toughness and electrical resistivity decreased with the increase of degradation. The relationship between fracture toughness and electrical resistivity was investigated. Fracture toughness of a test material may be determined nondestructively by electrical resistivity. (author). 13 refs, 7 figs.

  19. Reports from the Yayoi symposium on quantitative non-destructive evaluation, (1)

    International Nuclear Information System (INIS)

    1990-02-01

    The report consists of four parts. The first part deals with nondestructive evaluation in the nuclear power industry, focusing on in-service inspection in nuclear power plant, eddy current crack detection test of steam generator heat-exchanger tube, and nondestructive test of thin-wall components. The second part discusses inverse problems and quantification for nondestructive evaluation, centering on the identification of defect by boundary element method, quantification by using supersonic wave, defect shape recognition by the electrical potential method, and a neural network applied to crack type recognition. The third part deals with the application of electromagnetic phenomena to nondestructive evaluation, focusing on a superconducting quantum interference device, electromagnetic measurement in the iron industry, and nondestructive measurement of residual stress by magnetic process. The fourth part discusses visualization techniques for nondestructive evaluation, focusing on image processing, neutron radiography, X-ray CT, defect diagnosis by infrared rays, and visualization of magnetic field. (N.K.)

  20. Non-destructive evaluation on mechanical properties of nuclear graphite with porous structure

    International Nuclear Information System (INIS)

    Shibata, Taiju; Hanawa, Satoshi; Sumita, Junya; Tada, Tatsuya; Sawa, Kazuhiro; Iyoku, Tatsuo

    2005-01-01

    As a research subjects of 'Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' we started the study of development of non-destructive evaluation methods for mechanical properties of graphite components. The micro-indentation and ultrasonic wave methods are focused to evaluate the degradation of graphite components in VHTR core. For the micro-indentation method, the test apparatus was designed for the indentation test on graphite specimens with some stress levels. It is expected the stress condition is evaluated by the indentation load-depth characteristics and hardness. For the ultrasonic wave method, ultrasonic wave testing machine and probes were prepared for experiments. It is expected that the stress and inner porous conditions are evaluated by the wave propagation characteristics with wave-pore interaction model. R and D plan to develop the non-destructive evaluation method for graphite is presented in this paper. (This study is the result of contract research in the fiscal year of 2004, Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' which is entrusted to the Japan Atomic Energy Research Institute from the Ministry of Education, Culture, Sports, Science and Technology of Japan.) (author)

  1. Nondestructive evaluation of dissipative behavior of reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Luong, M.P. [Ecole Polytechnique, LMS, CNRS, 91 - Palaiseau (France)

    2001-07-01

    Current technological developments tend toward increased exploitation of materials strengths and toward tackling extreme loads and environmental actions such as offshore structures subject to wind and wave loading, or buildings in seismic area. Concrete is widely used as a construction material because of its high strength-cost ratio in many applications. Experience of earthquakes and laboratory tests has shown that well designed and detailed reinforced concrete is suitable for earthquake resistant structures. The most severe likely earthquake can be survived if the members are sufficiently ductile to absorb and dissipate seismic energy by inelastic deformation. This requires a designer to assess realistically the acceptable levels of strength and to ensure adequate dissipation. This paper proposes the use of infrared thermography as a nondestructive, noncontact and real-time technique to examine diverse mechanisms of dissipation and to illustrate the onset of damage process, stress concentration and heat dissipation localization in loaded zone. In addition, this technique can be used as a nondestructive method for evaluating the fatigue limit of concrete structure subject to repeated loading.

  2. Nondestructive evaluation of dissipative behavior of reinforced concrete structure

    International Nuclear Information System (INIS)

    Luong, M.P.

    2001-01-01

    Current technological developments tend toward increased exploitation of materials strengths and toward tackling extreme loads and environmental actions such as offshore structures subject to wind and wave loading, or buildings in seismic area. Concrete is widely used as a construction material because of its high strength-cost ratio in many applications. Experience of earthquakes and laboratory tests has shown that well designed and detailed reinforced concrete is suitable for earthquake resistant structures. The most severe likely earthquake can be survived if the members are sufficiently ductile to absorb and dissipate seismic energy by inelastic deformation. This requires a designer to assess realistically the acceptable levels of strength and to ensure adequate dissipation. This paper proposes the use of infrared thermography as a nondestructive, noncontact and real-time technique to examine diverse mechanisms of dissipation and to illustrate the onset of damage process, stress concentration and heat dissipation localization in loaded zone. In addition, this technique can be used as a nondestructive method for evaluating the fatigue limit of concrete structure subject to repeated loading

  3. Development of nondestructive evaluation methods for ceramic coatings

    International Nuclear Information System (INIS)

    Ellingson, W. A.; Deemer, C.; Sun, J. G.; Erdman, S.; Muliere, D.; Wheeler, B.

    2002-01-01

    Various nondestructive evaluation (NDE) technologies are being developed to study the use of ceramic coatings on components in the hot-gas path of advanced low-emission gas-fired turbines. The types of ceramic coatings include thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs). TBCs are under development for vanes, blades, and combustor liners to allow hotter gas-path temperatures, and EBCs are under development to reduce environmental damage to high-temperature components made of ceramic matrix composites. The NDE methods will be used to (a) provide data to assess the reliability of new coating application processes, (b) identify defective components that could cause unscheduled outages, (c) track growth rates of defects during component use in engines, and (d) allow rational judgment for replace/repair/re-use decisions regarding components. Advances in TBC application, both electron beam-physical vapor deposition (EB-PVD) and air plasma spraying (APS), are allowing higher temperatures in the hot-gas path. However, as TBCs become ''prime reliant,'' their condition at scheduled or unscheduled outages must be known. NDE methods are under development to assess the condition of the TBC for pre-spall conditions. EB-PVD test samples with up to 70 thermal cycles have been studied by a newly developed method involving polarized laser back-scatter NDE. Results suggest a correlation between the NDE laser data and the TBC/bond-coat topography. This finding is important because several theories directed toward understanding the pre-spall condition suggest that the topography in the thermally grown oxide layer changes significantly as a function of the number of thermal cycles. Tests have also been conducted with this NDE method on APS TBCs. Results suggest that the pre-spall condition is detected for these coatings. One-sided, high-speed thermal imaging also has shown promise for NDE of APS coatings. Testing of SiC/SiC composites for combustor liners

  4. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Barker, Alan M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Santos-Villalobos, Hector J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Albright, Austin P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoegh, Kyle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  5. Numerical modeling for the electromagnetic non-destructive evaluation: application to the non-destructive evaluation of concrete

    International Nuclear Information System (INIS)

    Travassos, L.

    2007-06-01

    Concrete is the most common building material and accounts for a large part of the systems that are necessary for a country to operate smoothly including buildings, roads, and bridges. Nondestructive testing is one of the techniques that can be used to assess the structural condition. It provides non perceptible information that conventional techniques of evaluation unable to do. The main objective of this work is the numerical simulation of a particular technique of nondestructive testing: the radar. The numerical modeling of the radar assessment of concrete structures make it possible to envisage the behavior of the system and its capacity to detect defects in various configurations. To achieve this objective, it was implemented electromagnetic wave propagation models in concrete structures, by using various numerical techniques to examine different aspects of the radar inspection. First of all, we implemented the finite-difference time-domain method in 3D which allows to take into account concrete characteristics such as porosity, salt content and the degree of saturation of the mixture by using Debye models. In addition, a procedure to improve the radiation pattern of bow-tie antennas is presented. This approach involves the Moment Method in conjunction with the Multi objective Genetic Algorithm. Finally, we implemented imaging algorithms which can perform fast and precise characterization of buried targets in inhomogeneous medium by using three different methods. The performance of the proposed algorithms is confirmed by numerical simulations. (author)

  6. Non-Destructive Analysis of Degradation Mechanisms in Cycle-Aged Graphite/LiCoO2 Batteries

    Directory of Open Access Journals (Sweden)

    Liqiang Zhang

    2014-09-01

    Full Text Available Non-destructive analysis of degradation mechanisms can be very beneficial for the prognostics and health management (PHM study of lithium-ion batteries. In this paper, a type of graphite/LiCoO2 battery was cycle aged at high ambient temperature, then 25 parameters of the multi-physics model were identified. Nine key parameters degraded with the cycle life, and they were treated as indicators of battery degradation. Accordingly, the degradation mechanism was discussed by using the multi-physics model and key parameters, and the reasons for capacity fade and the internal resistance increase were analyzed in detail. All evidence indicates that the formation reaction of the solid electrolyte interface (SEI film is the main cause of battery degradation at high ambient temperature.

  7. Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Vannier, M.W.; Ackerman, J.L.; Sawicka, B.D.; Gronemeyer, S.; Kriz, R.J.

    1987-01-01

    Advanced nondestructive evaluation methods are being developed to characterize ceramic materials and allow improvement of process technology. If one can spatially determine porosity, map organic binder/plasticizer distributions, measure average through-volume and in-plane density, as well as detect inclusions, process and machining operations may be modified to enhance the reliability of ceramics. Two modes of X-ray tomographic imaging -- advanced film (analog) tomography and computed tomography -- are being developed to provide flaw detection and density profile mapping capability. Nuclear magnetic resonance imaging is being developed to determine porosity and map the distribution of organic binder/plasticizer. Ultrasonic backscatter and through-transmission are being developed to measure average through-thickness densities and detect surface inclusions

  8. Non-destructive evaluation of water ingress in photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Mihail; Kotovsky, Jack

    2017-03-07

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, a focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.

  9. Nerva fuel nondestructive evaluation and characterization equipment and facilities

    International Nuclear Information System (INIS)

    Caputo, A.J.

    1993-01-01

    Nuclear Thermal Propulsion (NTP) is one of the technologies that the Space Exploration Initiative (SEI) has identified as essential for a manned mission to Mars. A base or prior work is available upon which to build in the development of nuclear rockets. From 1955 to 1973, the U.S Atomic Energy Commission (AEC) sponsored development and testing of a nuclear rocket engine under Project Rover. The rocket engine, called the Nuclear Engine for Rocket Vehicle Application (NERVA), used a graphite fuel element incorporating coated particle fuel. Much of the NERVA development and manufacturing work was performed at the Oak Ridge Y-12 Plant. This paper gives a general review of that work in the area of nondestructive evaluation and characterization. Emphasis is placed on two key characteristics: uranium content and distribution and thickness profile of metal carbide coatings deposited in the gas passage holes

  10. Operation of the EPRI nondestructive evaluation center: 1985 annual report

    International Nuclear Information System (INIS)

    Nemzek, T.A.; Stone, R.M.; Ammirato, F.V.; Becker, F.L.; Krzywosz, K.; Pherigo, G.L.; Wilson, G.H. III.

    1986-08-01

    This report describes the Electric Power Research Institute (EPRI) Nuclear Division funded nondestructive evaluation (NDE) project activities carried out at the EPRI NDE Center in 1985. The continuing objective of the Center is transfer of research and development results funded by EPRI and other related projects to useful field application. This is being accomplished by qualification and refinement of equipment and techniques, training under realistic conditions, and encouragement of greater involvement of the academic community in NDE education. Significant assistance has been provided to the nuclear utility industry under this project in the form of improved, field-ready equipment and procedures; critically needed assessments of inspection method capability; demonstrations of effectiveness of examination methods; rapid response for critical, short-term problems; and training for specific utility industry needs. This effort has specifically addressed steam generator, piping, steam turbine, and heavy section inspection problems

  11. Efficiency evaluation test of waste non-destructive analysis device

    International Nuclear Information System (INIS)

    Maeda, Kouichi; Ogasawara, Kensuke; Nisizawa, Ichio

    2000-03-01

    A device for non-destructive analysis of plutonium in alpha solid waste has been installed in NUCEF; Nuclear Fuel Cycle Safety Engineering Research Facility. The device has been designed to determine the amount of radioisotopes in carton-boxes, 45 l steel cans and 200 l steel cans containing relatively low density waste. Considering the waste density and the heterogeneity of radio-sources, the proper distance between the detector and the waste, and the open degree of the collimator have been settled, because real waste may contain several kinds of material and the heterogeneity of radioactivity. It has been confirmed from the evaluation of the detect limit that plutonium of about 8 MBq can be determined with the accuracy of 10% and the device may be proper for the practical application. (author)

  12. Advanced quantitative magnetic nondestructive evaluation methods - Theory and experiment

    Science.gov (United States)

    Barton, J. R.; Kusenberger, F. N.; Beissner, R. E.; Matzkanin, G. A.

    1979-01-01

    The paper reviews the scale of fatigue crack phenomena in relation to the size detection capabilities of nondestructive evaluation methods. An assessment of several features of fatigue in relation to the inspection of ball and roller bearings suggested the use of magnetic methods; magnetic domain phenomena including the interaction of domains and inclusions, and the influence of stress and magnetic field on domains are discussed. Experimental results indicate that simplified calculations can be used to predict many features of these results; the data predicted by analytic models which use finite element computer analysis predictions do not agree with respect to certain features. Experimental analyses obtained on rod-type fatigue specimens which show experimental magnetic measurements in relation to the crack opening displacement and volume and crack depth should provide methods for improved crack characterization in relation to fracture mechanics and life prediction.

  13. Nondestructive/in-situ evaluation of the tensile properties in industrial facilities using indentation system

    International Nuclear Information System (INIS)

    Jang, Jae Il; Choi, Yeol; Son, Dong Il; Kwon, Dong Il

    2001-01-01

    Exact reliability evaluation and lifetime prediction through the in-field diagnosis of materials properties is needed for safe usage of degraded industrial structures. But, conventional standard testing methods having destructive procedures are not applicable to in-field assessment of mechanical property. Therefore, an advanced indentation technique was proposed for simple and non-destructive testing of in-field structures and for selected testing of local range such as heat affected zone and weldment. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. First of all, flow properties such as yield strength, tensile strength and work hardening index can be evaluated through the analysis of the deformation behavior beneath the spherical indenter. Additionally, case studies of advanced indentation techniques are introduced.

  14. Use of nondestructive evaluation methods to improve power plant availability

    International Nuclear Information System (INIS)

    Weber, R.M.

    1985-01-01

    On an ever-increasing basis, utilities are relying on nondestructive evaluation (NDE) as a management and planning tool. In addition to the conventional ASME Code and Technical Specification-required examinations, progressive utilities are utilizing NDE sampling programs to monitor existing conditions and search for potential situations affecting plant safety and reliability. Improved NDE detection and sizing procedures give management personnel the accurate information needed to make the ''go/no go'' decisions on repair programs which can significantly affect plant availability. As the burden of regulatory-imposed inspection requirements increases, plant personnel are increasingly cognizant that NDE is a significant factor in their plant's outage schedule. Whether an outage is scheduled or forced, NDE becomes part of each plant's program to assure the safety and reliability of its critical components. Knowledge and planning of NDE application is important because of the time expended in examination performance and subsequent data evaluation. Managers who are knowledgeable in NDE application can effectively improve plant availability by scheduling NDE as an integral part of their maintenance programs. Examination results can then be used in making decisions directly affecting availability

  15. A Review of Microwave Thermography Nondestructive Testing and Evaluation

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2017-05-01

    Full Text Available Microwave thermography (MWT has many advantages including strong penetrability, selective heating, volumetric heating, significant energy savings, uniform heating, and good thermal efficiency. MWT has received growing interest due to its potential to overcome some of the limitations of microwave nondestructive testing (NDT and thermal NDT. Moreover, during the last few decades MWT has attracted growing interest in materials assessment. In this paper, a comprehensive review of MWT techniques for materials evaluation is conducted based on a detailed literature survey. First, the basic principles of MWT are described. Different types of MWT, including microwave pulsed thermography, microwave step thermography, microwave pulsed phase thermography, and microwave lock-in thermography are defined and introduced. Then, MWT case studies are discussed. Next, comparisons with other thermography and NDT methods are conducted. Finally, the trends in MWT research are outlined, including new theoretical studies, simulations and modelling, signal processing algorithms, internal properties characterization, automatic separation and inspection systems. This work provides a summary of MWT, which can be utilized for material failures prevention and quality control.

  16. A Review of Microwave Thermography Nondestructive Testing and Evaluation.

    Science.gov (United States)

    Zhang, Hong; Yang, Ruizhen; He, Yunze; Foudazi, Ali; Cheng, Liang; Tian, Guiyun

    2017-05-15

    Microwave thermography (MWT) has many advantages including strong penetrability, selective heating, volumetric heating, significant energy savings, uniform heating, and good thermal efficiency. MWT has received growing interest due to its potential to overcome some of the limitations of microwave nondestructive testing (NDT) and thermal NDT. Moreover, during the last few decades MWT has attracted growing interest in materials assessment. In this paper, a comprehensive review of MWT techniques for materials evaluation is conducted based on a detailed literature survey. First, the basic principles of MWT are described. Different types of MWT, including microwave pulsed thermography, microwave step thermography, microwave pulsed phase thermography, and microwave lock-in thermography are defined and introduced. Then, MWT case studies are discussed. Next, comparisons with other thermography and NDT methods are conducted. Finally, the trends in MWT research are outlined, including new theoretical studies, simulations and modelling, signal processing algorithms, internal properties characterization, automatic separation and inspection systems. This work provides a summary of MWT, which can be utilized for material failures prevention and quality control.

  17. Transmission mode acoustic time-reversal imaging for nondestructive evaluation

    Science.gov (United States)

    Lehman, Sean K.; Devaney, Anthony J.

    2002-11-01

    In previous ASA meetings and JASA papers, the extended and formalized theory of transmission mode time reversal in which the transceivers are noncoincident was presented. When combined with the subspace concepts of a generalized MUltiple SIgnal Classification (MUSIC) algorithm, this theory is used to form super-resolution images of scatterers buried in a medium. These techniques are now applied to ultrasonic nondestructive evaluation (NDE) of parts, and shallow subsurface seismic imaging. Results are presented of NDE experiments on metal and epoxy blocks using data collected from an adaptive ultrasonic array, that is, a ''time-reversal machine,'' at Lawrence Livermore National Laboratory. Also presented are the results of seismo-acoustic subsurface probing of buried hazardous waste pits at the Idaho National Engineering and Environmental Laboratory. [Work performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.] [Work supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the NSF (award number EEC-9986821) as well as from Air Force Contracts No. F41624-99-D6002 and No. F49620-99-C0013.

  18. Non-destructive system to evaluate critical properties of asphalt compaction : [research brief].

    Science.gov (United States)

    2013-12-01

    The Wisconsin Highway Research Program sponsored a two-stage investigation to develop a non-destructive system to evaluate critical compaction properties and characteristics of asphalt pavements during the densification process. Stage One activities ...

  19. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  20. Magnetic sensor for nondestructive evaluation of deteriorated prestressing strand : phase II.

    Science.gov (United States)

    2011-08-01

    This report gives an account of the execution and achievements in Phase II of the project completed through August 2011. The main objective of this project is to advance the practical development of a nondestructive testing and evaluation method usin...

  1. Technologies for Nondestructive Evaluation of Surfaces and Thin Coatings

    Science.gov (United States)

    1999-01-01

    The effort included in this project included several related activities encompassing basic understanding, technological development, customer identification and commercial transfer of several methodologies for nondestructive evaluation of surfaces and thin surface coatings. Consistent with the academic environment, students were involved in the effort working with established investigators to further their training, provide a nucleus of experienced practitioners in the new technologies during their industrial introduction, and utilize their talents for project goals. As will be seen in various portions of the report, some of the effort has led to commercialization. This process has spawned other efforts related to this project which are supported from outside sources. These activities are occupying the efforts of some of the people who were previously supported within this grant and its predecessors. The most advanced of the supported technologies is thermography, for which the previous joint efforts of the investigators and NASA researchers have developed several techniques for extending the utility of straight thermographic inspection by producing methods of interpretation and analysis accessible to automatic image processing with computer data analysis. The effort reported for this technology has been to introduce the techniques to new user communities, who are then be able to add to the effective uses of existing products with only slight development work. In a related development, analysis of a thermal measurement situation in past efforts led to a new insight into the behavior of simple temperature probes. This insight, previously reported to the narrow community in which the particular measurement was made, was reported to the community of generic temperature measurement experts this year. In addition to the propagation of mature thermographic techniques, the development of a thermoelastic imaging system has been an important related development. Part of the

  2. National seminar on non-destructive evaluation techniques: proceedings cum souvenir

    International Nuclear Information System (INIS)

    Dutta, N.G.; Kulkarni, P.G.; Purushotham, D.S.C.

    1994-01-01

    This volume contains selected papers presented at the National Seminar on Non-Destructive Evaluation Techniques held at Bhabha Atomic Research Centre, Mumbai during December 8-9, 1994. The papers covered a wide spectrum of non-destructive evaluation activities including that for quality assurance of various nuclear components and structures with the focal theme being computerization and robotics. The papers relevant to INIS are indexed separately

  3. Nondestructive evaluation of warm mix asphalt through resonant column testing.

    Science.gov (United States)

    2014-02-01

    Non-destructive testing has been used for decades to characterize engineering properties of hot-mix asphalt. Among such tests is the resonant column (RC) test, which is commonly used to characterize soil materials. The resonant column device at Penn ...

  4. NonDestructive Evaluation for Industrial & Development Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, James F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-12

    Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.

  5. Experimental Design for Evaluating Selected Nondestructive Measurement Technologies - Advanced Reactor Technology Milestone: M3AT-16PN2301043

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pitman, Stan G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roy, Surajit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Good, Morris S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walker, Cody M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-16

    The harsh environments in advanced reactors (AdvRx) increase the possibility of degradation of safety-critical passive components, and therefore pose a particular challenge for deployment and extended operation of these concepts. Nondestructive evaluation technologies are an essential element for obtaining information on passive component condition in AdvRx, with the development of sensor technologies for nondestructively inspecting AdvRx passive components identified as a key need. Given the challenges posed by AdvRx environments and the potential needs for reducing the burden posed by periodic in-service inspection of hard-to-access and hard-to-replace components, a viable solution may be provided by online condition monitoring of components. This report identifies the key challenges that will need to be overcome for sensor development in this context, and documents an experimental plan for sensor development, test, and evaluation. The focus of initial research and development is on sodium fast reactors, with the eventual goal of the research being developing the necessary sensor technology, quantifying sensor survivability and long-term measurement reliability for nondestructively inspecting critical components. Materials for sensor development that are likely to withstand the harsh environments are described, along with a status on the fabrication of reference specimens, and the planned approach for design and evaluation of the sensor and measurement technology.

  6. Infrared thermography non-destructive evaluation of lithium-ion battery

    Science.gov (United States)

    Wang, Zi-jun; Li, Zhi-qiang; Liu, Qiang

    2011-08-01

    The power lithium-ion battery with its high specific energy, high theoretical capacity and good cycle-life is a prime candidate as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Safety is especially important for large-scale lithium-ion batteries, especially the thermal analysis is essential for their development and design. Thermal modeling is an effective way to understand the thermal behavior of the lithium-ion battery during charging and discharging. With the charging and discharging, the internal heat generation of the lithium-ion battery becomes large, and the temperature rises leading to an uneven temperature distribution induces partial degradation. Infrared (IR) Non-destructive Evaluation (NDE) has been well developed for decades years in materials, structures, and aircraft. Most thermographic methods need thermal excitation to the measurement structures. In NDE of battery, the thermal excitation is the heat generated from carbon and cobalt electrodes in electrolyte. A technique named "power function" has been developed to determine the heat by chemical reactions. In this paper, the simulations of the transient response of the temperature distribution in the lithium-ion battery are developed. The key to resolving the security problem lies in the thermal controlling, including the heat generation and the internal and external heat transfer. Therefore, three-dimensional modelling for capturing geometrical thermal effects on battery thermal abuse behaviour is required. The simulation model contains the heat generation during electrolyte decomposition and electrical resistance component. Oven tests are simulated by three-dimensional model and the discharge test preformed by test system. Infrared thermography of discharge is recorded in order to analyze the security of the lithium-ion power battery. Nondestructive detection is performed for thermal abuse analysis and discharge analysis.

  7. Newly developed non-destructive testing method for evaluation of irradiation brittleness of structural materials using ultrasonic

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Kato, Yoshiaki; Saito, Junichi; Hoshiya, Taiji; Shibata, Saburo; Kobayashi, Hideo

    1999-01-01

    Surveillance testing is important to evaluate neutron irradiation embrittlement of reactor pressure vessel material for long life operation. An alternative test method for evaluating the irradiation embrittlement of the pressure vessel material will have to be proposed to support the limited number of surveillance test specimens in order to manage the plant life to be extended. In this study, ultrasonic testing for irradiated A533B-1 steel and weld metal was applied to examine material degradation nondestructively. With increasing the shift of Charpy 41 J transition temperature, ultrasonic velocity decreased and attenuation coefficient of ultrasonic wave increased. Especially, the difference of ultrasonic velocity for 5 MHz shear wave between as-received and irradiated material is corresponding to the shift of transition temperature showing material degradation. (author)

  8. Automated Non-Destructive Testing Array Evaluation System

    Energy Technology Data Exchange (ETDEWEB)

    Wei, T.; Zavaljevski, N.; Bakhtiari, S.; Miron, A.; Jupperman, D.

    2004-12-31

    Utilities perform eddy current tests on nuclear power plant steam generator (SG) tubes to detect degradation. This report summarizes the status of ongoing research to develop signal processing algorithms that automate analysis of eddy current test data. The research focuses on analyzing array probe data for detecting, classifying, and characterizing degradation in SG tubes.

  9. Automated Non-Destructive Testing Array Evaluation System

    International Nuclear Information System (INIS)

    Wei, T.; Zavaljevski, N.; Bakhtiari, S.; Miron, A.; Kupperman, D.

    2004-01-01

    Utilities perform eddy current tests on nuclear power plant steam generator (SG) tubes to detect degradation. This report summarizes the status of ongoing research to develop signal processing algorithms that automate analysis of eddy current test data. The research focuses on analyzing array probe data for detecting, classifying, and characterizing degradation in SG tubes

  10. Frequency domain reflectometry modeling for nondestructive evaluation of nuclear power plant cables

    Science.gov (United States)

    Glass, S. W.; Fifield, L. S.; Jones, A. M.; Hartman, T. S.

    2018-04-01

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to

  11. Finite-element model of ultrasonic NDE [nondestructive evaluation

    International Nuclear Information System (INIS)

    Lord, W.

    1989-07-01

    An understanding of the way in which ultrasound interacts with defects in materials is essential to the development of improved nondestructive testing procedures for the inspection of critical power plant components. Traditionally, the modeling of such phenomena has been approached from an analytical standpoint in which appropriate assumptions are made concerning material properties, geometrical constraints and defect boundaries in order to arrive at closed form solutions. Such assumptions, by their very nature, tend to inhibit the development of complete input/output NDT system models suitable for predicting realistic piezoelectric transducer signals from the interaction of pulsed, finite-aperture ultrasound with arbitrarily shaped defects in the kinds of materials of interest to the utilities. The major thrust of EPRI Project RP 2687-2 is to determine the feasibility of applying finite element analysis techniques to overcome these problems. 85 refs., 64 figs., 3 tabs

  12. Nondestructive evaluation of potential quality of creosote-treated piles removed from service

    Science.gov (United States)

    Xiping. Wang; Robert J. Ross; John R. Erickson; John W. Forsman; Gary D. McGinnis; Rodney C. De Groot

    2001-01-01

    Stress-wave-based nondestructive evaluation methods were used to evaluate the potential quality and modulus of elasticity (MOE) of wood from creosote-treated Douglas-fir and southern pine piles removed from service. Stress-wave measurements were conducted on each pile section. Stress-wave propagation speeds were obtained to estimate the MOE of the wood. Tests were then...

  13. Nondestructive methods of evaluating quality of wood in preservative-treated piles

    Science.gov (United States)

    Xiping. Wang; Robert J. Ross; John R. Erickson; John W. Forsman; Gary D. McGinnis; Rodney C. De Groot

    2000-01-01

    Stress-wave-based nondestructive evaluation methods were used to evaluate the potential quality and modulus of elasticity (MOE) of wood in used preservative-treated Douglas-fir and southern pine piles. Stress wave measurements were conducted on each pile section. Stress wave propagation speeds in the piles were then obtained to estimate their MOE. This was followed by...

  14. Review of Micro/Nano Nondestructive Evaluation Technique (II): Measurement of Acoustic Properties

    International Nuclear Information System (INIS)

    Kim, Chung Seok; Park, Ik Keun

    2012-01-01

    The present paper reviews the micro and nano nondestructive evaluation(NDE) technique that is possible to investigate the surface and measure the acoustic properties. The technical theory, features and applications of the ultrasonic atomic force microscopy(UAFM) and scanning acoustic microscopy(SAM) are illustrated. Especially, these technologies are possible to evaluate the mechanical properties in micro/nano structure and surface through the measurement of acoustic properties in addition to the observation of surface and subsurface. Consequently, it is thought that technique developments and applications of these micro/nano NDE in advanced industrial parts together with present nondestructive industry are widely possible hereafter.

  15. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    International Nuclear Information System (INIS)

    Joo, Kyung Mun; Hong, Jun Hee

    2015-01-01

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  16. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Kyung Mun [Korea Hydro and Nuclear Power Company Ltd., Central Research Institute, Daejeon (Korea, Republic of); Hong, Jun Hee [Dept. of mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2015-02-15

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  17. Comparison of magnetic nondestructive methods applied for inspection of steel degradation

    Czech Academy of Sciences Publication Activity Database

    Takahashi, S.; Kobayashi, S.; Tomáš, Ivan; Dupre, L.; Vértesy, G.

    2017-01-01

    Roč. 91, Jun (2017), s. 54-60 ISSN 0963-8695 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : magnetic hysteresis * magnetic NDT * steel degradation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.726, year: 2016

  18. Forensic Examination Using a Nondestructive Evaluation Method for Surface Metrology

    Science.gov (United States)

    Eisenmann, David J.; Chumbley, L. Scott

    2009-03-01

    The objective of this paper is to describe the use of a new technique of optical profilometry in a nondestructive, non-contact fashion for the comparison of two metallic surfaces, one hard and one soft. When brought in contact with one another, the harder material (i.e. the tool) will impress its surface roughness onto the softer. It is understood that the resulting set of impressions left from a tool tip act in a manner similar to a photographic negative, in that it leaves a reverse, or negative impression on the surface of a plate. If properly inverted and reversed, measurements from the softer material should be identical to the harder indenting object with regard to surface texture and roughness. This assumption is inherent in the area of forensics, where bullets, cartridge cases, and toolmarked surfaces from crime scenes are compared to similar marks made under controlled conditions in the forensic laboratory. This paper will examine the methodology used to compare two surfaces for similarities and dissimilarities, and comment on the applicability of this technique to other studies.

  19. Non-destructive evaluation of concrete using ultrasonic pulse velocity

    International Nuclear Information System (INIS)

    Lawson, I.

    2008-06-01

    Ultrasonic pulse velocity is one of the most popular non-destructive techniques used in the assessment of concrete properties. This thesis investigates the relationship between using ultrasonic pulse velocity (UPV) and the conventional compressive strength tests to determine concrete uniformity. The specimens used in the studies were made of concrete with a paste content of 18% and the constituents of the specimens varied in different water-cement ratios (w/c). The UPV measurement and compressive strength tests were carried out at the concrete age of 2, 7, 15 and 28 days. The UPV and the compressive strength of concrete increase with age, but the growth rate varies with mixture proportion. A relationship curve is drawn between UPV and compressive strength for concrete having different w/c from 0.35 to 0.7. Tests were also performed using Ultrasonic Pulse Velocity Method (UPVM) in detecting discontinuity and determining its depth during the early age of concrete. The test results indicate that the UPVM can be used to assess the in-situ properties of concrete or for quality control on site. The accuracy of the UPVM in detecting discontinuities ranges from 55.75 to 98.70% for ages 3 to 28 (full strength) respectively. (au)

  20. Timber bridge evaluation : a global nondestructive approach using impact generated FRFs

    Science.gov (United States)

    Angus Morison; C.D. Van Karsen; H.A. Evensen; J.B. Ligon; J.R. Erickson; R.J. Ross; J.W. Forsman

    2002-01-01

    Bridges require periodic inspections to ensure the safety of those using the structure. A visual inspection has historically been the most common form of investigation for timber bridges. This poses many problems when inspecting bridge timbers since often the damage is internal, leaving no visible signs of decay on the surface. Localized nondestructive evaluation (NDE...

  1. Nondestructive evaluation of green wood using stress wave and transverse vibration techniques

    Science.gov (United States)

    Udaya B. Halabe; Gangadhar M. Bidigalu; Hota V.S. GangaRao; Robert J. Ross

    1997-01-01

    Longitudinal stress wave and transverse vibration nondestructive testing (NDT) techniques have proven to be accurate means of evaluating the quality of wood based products. Researchers have found strong relationships between stress wave and transverse vibration parameters (e.g., wave velocity and modulus of elasticity predicted using NDT measurements) with the actual...

  2. Nondestructive methods for the structural evaluation of wood floor systems in historic buildings : preliminary results : [abstract

    Science.gov (United States)

    Zhiyong Cai; Michael O. Hunt; Robert J. Ross; Lawrence A. Soltis

    1999-01-01

    To date, there is no standard method for evaluating the structural integrity of wood floor systems using nondestructive techniques. Current methods of examination and assessment are often subjective and therefore tend to yield imprecise or variable results. For this reason, estimates of allowable wood floor loads are often conservative. The assignment of conservatively...

  3. The Assessment of Cement Mortars after Thermal Degradation by Acoustic Non-destructive Methods

    Science.gov (United States)

    Topolář, L.; Štefková, D.; Hoduláková, M.

    2017-10-01

    Thanks, the terrorist attacks on the worldwide interest in the design of structures for fire greatly increased. One of the advantages of concrete over other building materials is its inherent fire-resistive properties. The concrete structural components still must be able to withstand dead and live loads without collapse even though the rise in temperature causes a decrease in the strength and modulus of elasticity for concrete and steel reinforcement. In addition, fully developed fires cause expansion of structural components and the resulting stresses and strains must be resisted. This paper reports the results of measurements by Impact-echo method and measurement by ultrasound. Both methods are based on the acoustic properties of the material which are dependent on its condition. These acoustic methods allow identifying defects and are thus suitable for monitoring the building structure condition. The results are obtained in the laboratory during the degradation of composite materials based on cement by high-temperature.

  4. Non-destructive evaluation of welding part of stainless steels by phased array system

    International Nuclear Information System (INIS)

    Tatematsu, Nobuhiro; Matsumoto, Eiji

    2009-01-01

    Recently, more accurate and convenient Non-Destructive Evaluation techniques are required for flaw inspection of structural materials. Phased array ultrasonic transducers are expected as such as NDE technique but there are many subjects to be solved. Furthermore, commercial phased array systems with conventional scanning and imaging techniques have not fulfilled their maximum potential. The purpose of this paper is to improve the phased array system to be applicable to the inhomogeneity evaluation of welding part of stainless steels. (author)

  5. Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

    International Nuclear Information System (INIS)

    Ho, Duc Duy; Hong, Dong Soo; Kim, Jeong Tae

    2010-01-01

    This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified

  6. Computational electromagnetics and model-based inversion a modern paradigm for eddy-current nondestructive evaluation

    CERN Document Server

    Sabbagh, Harold A; Sabbagh, Elias H; Aldrin, John C; Knopp, Jeremy S

    2013-01-01

    Computational Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy Current Nondestructive Evaluation describes the natural marriage of the computer to eddy-current NDE. Three distinct topics are emphasized in the book: (a) fundamental mathematical principles of volume-integral equations as a subset of computational electromagnetics, (b) mathematical algorithms applied to signal-processing and inverse scattering problems, and (c) applications of these two topics to problems in which real and model data are used. By showing how mathematics and the computer can solve problems more effectively than current analog practices, this book defines the modern technology of eddy-current NDE. This book will be useful to advanced students and practitioners in the fields of computational electromagnetics, electromagnetic inverse-scattering theory, nondestructive evaluation, materials evaluation and biomedical imaging. Users of eddy-current NDE technology in industries as varied as nuclear power, aerospace,...

  7. Nondestructive evaluation of LWR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Ballard, D.W.

    1978-02-01

    An analysis of nondestructve testing (NDT) methods currently being used to evaluate the integrity of Light Water Reactor (LWR) spent fuel shipping casks is presented. An assessment of anticipated NDT needs related to breeder reactor cask requirements is included. Specific R and D approaches to probable NDT problem areas such as the evaluation of austenitic stainless steel weldments are outlined. A comprehensive bibliography of current NDT methods for cask evaluation in the USA, Great Britain, Japan and West Germany was compiled for this study

  8. Visualization of Tooth for Non-Destructive Evaluation from CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Chae, Ok Sam [Kyung Hee University, Seoul (Korea, Republic of)

    2009-06-15

    This paper reports an effort to develop 3D tooth visualization system from CT sequence images as a part of the non-destructive evaluation suitable for the simulation of endodontics, orthodontics and other dental treatments. We focus on the segmentation and visualization for the individual tooth. In dental CT images teeth are touching the adjacent teeth or surrounded by the alveolar bones with similar intensity. We propose an improved level set method with shape prior to separate a tooth from other teeth as well as the alveolar bones. Reconstructed 3D model of individual tooth based on the segmentation results indicates that our technique is a very conducive tool for tooth visualization, evaluation and diagnosis. Some comparative visualization results validate the non-destructive function of our method.

  9. Role of research in non-destructive evaluation for nuclear technology

    International Nuclear Information System (INIS)

    Jayakumar, T.; Rao, B.P.C.; Raj, Baldev

    2010-01-01

    This paper presents the role of research in non-destructive evaluation (NDE) of microstructures and mechanical properties in materials, assessment of manufacturing quality and early detection of in-service damage in nuclear components and structures. A few applications and case studies are discussed based on the results of systematic research and developmental activities pursued in different NDE techniques at the authors' laboratory for three different types of Indian nuclear reactors. (author)

  10. Addition of magnetic markers for non-destructive evaluation of polymer composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Pereira Fulco

    2011-12-01

    Full Text Available Polymer composite pipes are an appealing option as a substitute for conventional steel pipes, particularly due to their inherent corrosion resistance. However, the composite pipes currently used do not allow non-destructive evaluation (NDE using instrumented devices which operate with magnetic sensors. The present work aims at the development of polymer composites with the addition magnetic markers to allow the application non-destructive evaluation techniques which use magnetic sensors. Glass-polyester composite flat, circular plates were fabricated with the addition of ferrite particles (barium ferrite and strontium ferrite and four types of notches were introduced on the plates' surfaces. The influence of these notches on the measured magnetic properties of each material was measured. X-ray diffraction (XRD, X-ray fluorescence (XRF and Brunauer, Emmett, and Teller (BET nitrogen adsorption were used for the characterization of the ferrite particles. Particle dispersion in the polymer matrix was analyzed by scanning electron microscopy (SEM. According to the results, a particular variation in magnetic field was detected over the region surrounding each type of notch. The results suggest that the proposed technique has great potential for damage detection in polymer composites using magnetic sensors and thus constitute a valuable contribution which may ultimately lead to the development of non-destructive evaluation techniques for assessing the structural integrity polymer composite pipes.

  11. Non-destructive Reliability Evaluation of Electronic Device by ESPI

    International Nuclear Information System (INIS)

    Yoon, Sung Un; Kim, Koung Suk; Kang, Ki Soo; Jo, Seon Hyung

    2001-01-01

    This paper propose electronic speckle pattern interferometry(ESPI) for reliability evaluation of electronic device. Especially, vibration problem in a fan of air conditioner, motor of washing machine and etc. is important factor to design the devices. But, it is difficult to apply previous method, accelerometer to the devices with complex geometry. ESPI, non-contact measurement technique applies a commercial fan of air conditioner to vibration analysis. Vibration mode shapes, natural frequency and the range of the frequency are decided and compared with that of FEM analysis. In mechanical deign of new product, ESPI adds weak point of previous method to supply effective design information

  12. Nondestructive damage detection and evaluation technique for seismically damaged structures

    Science.gov (United States)

    Adachi, Yukio; Unjoh, Shigeki; Kondoh, Masuo; Ohsumi, Michio

    1999-02-01

    The development of quantitative damage detection and evaluation technique, and damage detection technique for invisible damages of structures are required according to the lessons from the 1995 Hyogo-ken Nanbu earthquake. In this study, two quantitative damage sensing techniques for highway bridge structures are proposed. One method is to measure the change of vibration characteristics of the bridge structure. According to the damage detection test for damaged bridge column by shaking table test, this method can successfully detect the vibration characteristic change caused by damage progress due to increment excitations. The other method is to use self-diagnosis intelligent materials. According to the reinforced concrete beam specimen test, the second method can detect the damage by rupture of intelligent sensors, such as optical fiber or carbon fiber reinforced plastic rod.

  13. Investigation and development of a non-destructive system to evaluate critical properties of asphalt pavements during the compaction process.

    Science.gov (United States)

    2013-10-01

    The purpose of this report is to present findings from a two-stage investigation to develop a non-destructive system to : evaluate critical properties and characteristics of asphalt pavements during the compaction process. The first stage aligned : c...

  14. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    Science.gov (United States)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-05-01

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ɛ carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes.

  15. Nonconventional concrete hollow blocks evaluation by destructive and non-destructive testing

    Directory of Open Access Journals (Sweden)

    M.S. Rodrigues

    Full Text Available The aim of this study was to evaluate cementitious matrices properties by partial replacement of Portland cement by silica fume (SF or by rice husk ash (RHA, and their application in nonbearing hollow blocks, tested by destructive and non-destructive methods. The following mixtures were produced: reference (100% of Portland cement and Portland cement replacement (10% by mass with SF or RHA. The non-destructive testing showed that the highest values of UPV were obtained for SF-based blocks and RHA-based blocks. The destructive test showed better results for SF-based blocks, but there was no statistical difference between the RHA-based and control ones.

  16. An accurately controllable imitative stress corrosion cracking for electromagnetic nondestructive testing and evaluations

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Uchimoto, Tetsuya; Takagi, Toshiyuki; Hashizume, Hidetoshi

    2012-01-01

    Highlights: ► We propose a method to simulate stress corrosion cracking. ► The method offers nondestructive signals similar to those of actual cracking. ► Visual and eddy current examinations validate the method. - Abstract: This study proposes a simple and cost-effective approach to fabricate an artificial flaw that is identical to stress corrosion cracking especially from the viewpoint of electromagnetic nondestructive evaluations. The key idea of the approach is to embed a partially-bonded region inside a material by bonding together surfaces that have grooves. The region is regarded as an area of uniform non-zero conductivity from an electromagnetic nondestructive point of view, and thus simulates the characteristics of stress corrosion cracking. Since the grooves are introduced using electro-discharge machining, one can control the profile of the imitative stress corrosion cracking accurately. After numerical simulation to evaluate the spatial resolution of conventional eddy current testing, six specimens made of type 316L austenitic stainless steel were fabricated on the basis of the results of the simulations. Visual and eddy current examinations were carried out to demonstrate that the artificial flaws well simulated the characteristics of actual stress corrosion cracking. Subsequent destructive test confirmed that the bonding did not change the depth profiles of the artificial flaw.

  17. Evaluation of corrosion of prestressing steel in concrete using non-destructive techniques

    International Nuclear Information System (INIS)

    Ali, M.G.; Maddocks, A.R.

    2003-01-01

    Use of high strength steel in pre-stressed concrete structures has been in use in Australia for many decades. Highway bridges, among other structures, have extensively used pre-stress-ing and post-tensioning techniques. Although prestressing offers many competitive edges to it's traditional rival reinforced concrete, the consequence of damage to prestressing tendons could be catastrophic. Periodic visual inspections of prestressed concrete bridges throughout the world have demonstrated the growing problem of deterioration of prestressing steel as a result of corrosion. Early detection of damage to prestressing steel therefore is of paramount importance. Unfortunately no reliable and practical non-destructive evaluation technique has been available for assessing the condition of prestressing steel within concrete although a number of techniques appear promising. The following inspection methods have been highlighted in recent literature for their use as non-destructive inspection methods for prestressed concrete structures. In addition to the techniques discussed, a number of destructive, or invasive techniques also exist for determination of the corrosion status of prestressing tendons in prestressed structures. The following non-destructive techniques are discussed in some detail: Radiography; Computed Tomography; Surface Penetrating Radar; Impact Echo; Acoustic Emission Monitoring; Magnetic Field Disturbance Technique; Remnant Magnetism Method; Linear Polarisation Method; Electrical Resistance and Surface Potential Survey. The portability, limitations and use in Australia of these techniques are summarised in a table

  18. Three new nondestructive evaluation tools based on high flux neutron sources

    International Nuclear Information System (INIS)

    Hubbard, C.R.; Raine, D.; Peascoe, R.; Wright, M.

    1997-01-01

    Nondestructive evaluation methods and systems based on specific attributes of neutron interactions with materials are being developed. The special attributes of neutrons are low attenuation in most engineering materials, strong interaction with low Z elements, and epithermal neutron absorption resonances. The three methods under development at ORNL include neutron based tomography and radiography; through thickness, nondestructive texture mapping; and internal, noninvasive temperature measurement. All three techniques require high flux sources such as the High Flux Isotope Reactor, a steady state source, or the Oak Ridge Electron Linear Accelerator, a pulsed neutron source. Neutrons are quite penetrating in most engineering materials and thus can be useful to detect internal flaws and features. Hydrogen atoms, such as in a hydrocarbon fuel, lubricant, or a metal hydride, are relatively opaque to neutron transmission and thus neutron based tomography/radiography is ideal to image their presence. Texture, the nonrandom orientation of crystalline grains within materials, can be mapped nondestructively using neutron diffraction methods. Epithermal neutron resonance absorption is being studied as a noncontacting temperature sensor. This paper highlights the underlying physics of the methods, progress in development, and the potential benefits for science and industry of the three facilities

  19. Optical Calibration Process Developed for Neural-Network-Based Optical Nondestructive Evaluation Method

    Science.gov (United States)

    Decker, Arthur J.

    2004-01-01

    A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation

  20. Virtual reality presentation for nondestructive evaluation of rebar corrosion in concrete based on IBEM

    International Nuclear Information System (INIS)

    Kyung, Je Woon; Leelarkiet, V.; Ohtsu, Masayasu; Yokata, Masaru

    2004-01-01

    In order to evaluate the corrosion of reinforcing steel-bars (rebar) in concrete, a nondestructive evaluation by the half-cell potential method is currently applied. In this study, potentials measured on a concrete surface are compensated into those on the concrete-rebar interface by the inverse boundary element method (IBEM). Because these potentials are obtained three-dimensionally (3-D), 3-D visualization is desirable. To this end, a visualization system has been developed by using VRML (Virtual Reality Modeling Language). As an application, results of a reinforced concrete (RC) slab with corroded rebars are visualized and discussed.

  1. Fabrication of imitative stress corrosion cracking specimens suitable for electromagnetic nondestructive evaluations using solid state bonding

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi; Uchimoto, Tetsuya; Takagi, Toshiyuki

    2011-01-01

    This study proposes a method to fabricate an artificial defect that is almost identical to stress corrosion cracking from the viewpoint of electromagnetic nondestructive evaluations. The key idea is to realize a region having electrical resistance embedded inside a conductive materials using solid state bonding. A rough region is introduced into the surface of the materials to be bonded so that the region is partially bonded to realize electrical resistance. Experimental demonstrations are carried out using type 316L austenitic stainless steels. Eddy current tests and subsequent numerical evaluations are conducted to discuss the validity of the proposed method. (author)

  2. Yucca Mountain project container fabrication, closure and non-destructive evaluation development activities

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.

    1989-06-01

    In this presentation, container fabrication, closure, and non-destructive evaluation (NDE) process development activities are described. All of these activities are interrelated, and will contribute to the metal barrier selection activity. The plan is to use a corrosion-resistant material in the form of a cylinder with a wall thickness of ∼1cm (2cm for pure copper.) The materials under consideration include the three austenitic alloys: stainless steel-304L, stainless steel-316L and alloy 825, as well as the three copper alloys: CDA 102, CDA 613, and CDA 715. This document reviews the recommended procedures and processes for fabricating, closing and evaluating each of the candidate materials

  3. Post-harvest Quality Evaluation of Grapes using Non-destructive Electronic Nose

    Directory of Open Access Journals (Sweden)

    RAJIN S. M. Ataul Karim

    2015-10-01

    Full Text Available Over the past decades, electronic nose has opened a variety of possibilities and is becoming one of the most important non-destructive odour inspection technologies in the food industry. The objective of this study is to determine the quality degradation of the fruit by monitoring the change in the volatile compound while kept in storage using a lab manufactured electronic nose. Here, grapes are chosen as the fruit sample for experiment. Principal component analysis (PCA is used to determine the ability of the electronic nose to distinguish the different quality of the fruit stored over an interval of time. The result shows that using PCA analysis, the electronic nose is able to identify a clear distinction between the aromas of grapes stored for different time intervals.

  4. The real defect and its nondestructive characterization

    International Nuclear Information System (INIS)

    Licht, H.

    1982-01-01

    Nondestructive test techniques to evaluate defect severity and component degradation are typically based on transmission of energy into the material to be inspected. The capabilities of such techniques are controlled by physical phenomena which generally do not coincide with inspection requirements. This paper reviews several recent developments (mainly in ultrasonic and eddy current testing) which highlight the state of the art

  5. Enhancement of Spatial Resolution Using a Metamaterial Sensor in Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Adriana Savin

    2015-11-01

    Full Text Available The current stage of non-destructive evaluation techniques imposes the development of new electromagnetic methods that are based on high spatial resolution and increased sensitivity. Printed circuit boards, integrated circuit boards, composite materials with polymeric matrix containing conductive fibers, as well as some types of biosensors are devices of interest in using such evaluation methods. In order to achieve high performance, the work frequencies must be either radiofrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. Detection of these waves, containing required information, can be done using sensors with metamaterial lenses. We propose in this paper the enhancement of the spatial resolution using electromagnetic methods, which can be accomplished in this case using evanescent waves that appear in the current study in slits of materials such as the spaces between carbon fibers in Carbon Fibers Reinforced Plastics or in materials of interest in the nondestructive evaluation field with industrial applications, where microscopic cracks are present. We propose herein a unique design of the metamaterials for use in nondestructive evaluation based on Conical Swiss Rolls configurations, which assure the robust concentration/focusing of the incident electromagnetic waves (practically impossible to be focused using classical materials, as well as the robust manipulation of evanescent waves. Applying this testing method, spatial resolution of approximately λ/2000 can be achieved. This testing method can be successfully applied in a variety of applications of paramount importance such as defect/damage detection in materials used in a variety of industrial applications, such as automotive and aviation technologies.

  6. Microstructure analysis for quantification of Barkhausen noise method and nondestructive evaluation of fracture characteristics

    International Nuclear Information System (INIS)

    Kim, Dong Won; Kwon, Dong Il

    1999-01-01

    Barkhausen noise method as a magnetic nondestructive test has the advantages for evaluating the properties of magnetic material more precisely and high-sensitively compared to other magnetic NDT methods. For a long time Barkhausen noise method was applied to measure the bulk magnetic properties of magnetic materials and recently to evaluate microstructure, stress analysis, fatigue, creep, and fracture characteristics as a NDT method. But so far Barkhausen noise method has been used as evaluating orientation of material properties rather qualitatively. For this reason, many NDT testing methods have seldom been applied to industrial plants and laboratories. In this study we make experiments on the variation of Barkhausen noise as microstructure, and quantify Barkhausen noise(rms voltage) via formula of velocity of magnetic domain walls using coercive force as retarding force of domain wall movement. As a result, we could evaluate the microstructure of magnetic materials and trends of fracture toughness quantitatively by measuring Barkhausen noise, therefore directly evaluate microstructure and fracture toughness by Barkhausen noise method as accurate in-situ nondestructive testing method.

  7. Development of quantitative evaluation procedure of in-service materials degradation

    International Nuclear Information System (INIS)

    Takahashi, Hideaki

    1992-01-01

    The quantitative nondestructive evaluation procedure for detecting in-service materials degradation of low alloy structural steels by both small punch test and the electrochemical method has been developed. The static and dynamic small punch test method have been developed in order to apply this technique to R and D study for fusion reactor material development, such as 14 MeV irradiation damage evaluation. The characteristic changes in polarization curves attributed to IGC have an excellent correlation with shifts in FATT caused by temper embrittlement for Cr-Mo and Cr-Mo-V steels. (author)

  8. Prospects on the application of HTS SQUID magnetometry to nondestructive evaluation (NDE)

    Science.gov (United States)

    Weinstock, H.

    1993-04-01

    In light of recent advances in the fabrication of low-noise HTS SQUIDs, a review is presented on the use of LTS SQUID magnetometry for nondestructive evaluation (NDE). Examples are given on applications relating to defects in steel, subsurface cracks in aircraft frames, and voids in non-metallic structures. HTS SQUIDs may make a significant difference in the acceptance of these applications because sensing coils will be closer to a sample under test, there will be greater instrument portability and the problem of bringing liquid helium to remote locations will be eliminated.

  9. Enhancing the capabilities of eddy current techniques for non-destructive evaluation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Rao, B.P.C.; Thirunavukkarasu, S.; Sasi, B.; Jayakumar, T.; Baldev Raj

    2010-01-01

    Eddy current non-destructive evaluation (NDE) techniques find many applications during fabrication and in-service inspection of components made of stainless steel. In recent years, concurrent developments in electromagnetic field detection sensors such as giant magneto-resistive (GMR), giant-magneto impedance (GMI) and SQUIDs sensors, computers, microelectronics, and incorporating advanced signal and image processing techniques, have paved the way for enhancing the capabilities of existing eddy current (EC) techniques for examination of austenitic stainless steel (SS) plates, tubes and other geometries and several innovative methodologies have been developed. This paper highlights a few such applications in EC testing to austenitic stainless steel components used in fast reactors. (author)

  10. Additive Manufacturing (AM) Activities and Non-Destructive Evaluation (NDE) at GSFC

    Science.gov (United States)

    Jones, Justin S.

    2017-01-01

    NASA personnel will be meeting with a delegation from the Japan Aerospace Exploration Agency (JAXA) Office of Safety and Mission Assurance (OSMA) at Langley Research Center on 2217 through 3217. The purpose of the meeting is a technical interchange between NASA and JAXA to discuss Non-Destructive Evaluation (NDE) of Additive Manufacturing (AM) parts and the HALT process (relates to accelerated life testing). The visitors will be a small group of Japanese citizens. Goddard Space Flight Center (GSFC) has been asked to participate in the meeting, either in person or via teleconference. This presentation covers NDE efforts at GSFC and provides a cursory overview of AM and lab capabilities.

  11. Coupling photon Monte Carlo simulation and CAD software. Application to X-ray nondestructive evaluation

    International Nuclear Information System (INIS)

    Tabary, J.; Gliere, A.

    2001-01-01

    A Monte Carlo radiation transport simulation program, EGS Nova, and a computer aided design software, BRL-CAD, have been coupled within the framework of Sindbad, a nondestructive evaluation (NDE) simulation system. In its current status, the program is very valuable in a NDE laboratory context, as it helps simulate the images due to the uncollided and scattered photon fluxes in a single NDE software environment, without having to switch to a Monte Carlo code parameters set. Numerical validations show a good agreement with EGS4 computed and published data. As the program's major drawback is the execution time, computational efficiency improvements are foreseen. (orig.)

  12. Fabrication of imitative stress corrosion cracking specimens suitable for electromagnetic nondestructive evaluations using solid state bonding

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi; Uchimoto, Tetsuya; Takagi, Toshiyuki

    2010-01-01

    This study proposes a method to fabricate artificial defects that is almost identical to stress corrosion cracking from the viewpoint of electromagnetic nondestructive evaluations. The key idea is to realize a region having electrical resistance embedded inside a conductive materials using solid state bonding. A rough region is introduced into the surface of the materials so that the region is partially bonded to realize electrical resistance. The validity of the method is demonstrated using type 316L austenitic stainless steels. Eddy current tests and subsequent destructive tests confirm that signals due to the fabricated specimens are very similar to those due to stress corrosion cracks. (author)

  13. Using the World-Wide Web to Facilitate Communications of Non-Destructive Evaluation

    Science.gov (United States)

    McBurney, Sean

    1995-01-01

    The high reliability required for Aeronautical components is a major reason for extensive Nondestructive Testing and Evaluation. Here at Langley Research Center (LaRC), there are highly trained and certified personal to conduct such testing to prevent hazards from occurring in the workplace and on the research projects for the National Aeronautics and Space Administration (NASA). The purpose of my studies was to develop a communication source to educate others of the services and equipment offered here. This was accomplished by creating documents that are accessible to all in the industry via the World Wide Web.

  14. A DATA FUSION SYSTEM FOR THE NONDESTRUCTIVE EVALUATION OF NON-PIGGABLE PIPES

    Energy Technology Data Exchange (ETDEWEB)

    Shreekanth Mandayam; Robi Polikar; John C. Chen

    2004-04-01

    The objectives of this research project are: (1) To design sensor data fusion algorithms that can synergistically combine defect related information from heterogeneous sensors used in gas pipeline inspection for reliably and accurately predicting the condition of the pipe-wall. (2) To develop efficient data management techniques for signals obtained during multisensor interrogation of a gas pipeline. During this reporting period, Rowan University designed, developed and exercised multisensor data fusion algorithms for identifying defect related information present in magnetic flux leakage, ultrasonic testing and thermal imaging nondestructive evaluation signatures of a test-specimen suite representative of benign and anomalous indications in gas transmission pipelines.

  15. Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage

    Science.gov (United States)

    Mansour, Joseph M.; Lee, Zhenghong; Welter, Jean F.

    2016-01-01

    In this review, methods for evaluating the properties of tissue engineered (TE) cartilage are described. Many of these have been developed for evaluating properties of native and osteoarthritic articular cartilage. However, with the increasing interest in engineering cartilage, specialized methods are needed for nondestructive evaluation of tissue while it is developing and after it is implanted. Such methods are needed, in part, due to the large inter- and intra-donor variability in the performance of the cellular component of the tissue, which remains a barrier to delivering reliable TE cartilage for implantation. Using conventional destructive tests, such variability makes it near-impossible to predict the timing and outcome of the tissue engineering process at the level of a specific piece of engineered tissue and also makes it difficult to assess the impact of changing tissue engineering regimens. While it is clear that the true test of engineered cartilage is its performance after it is implanted, correlation of pre and post implantation properties determined non-destructively in vitro and/or in vivo with performance should lead to predictive methods to improve quality-control and to minimize the chances of implanting inferior tissue. PMID:26817458

  16. Feasibility on fiber orientation detection on unidirectional CFRP composite laminates using nondestructive evaluation techniques

    Science.gov (United States)

    Yang, In-Young; Kim, Ji-Hoon; Cha, Cheon-Seok; Lee, Kil-Sung; Hsu, David K.; Im, Kwang-Hee

    2007-07-01

    In particular, CFRP (carbon fiber reinforced plastics) composite materials have found wide applicability because of their inherent design flexibility and improved material properties. CFRP composites were manufactured from uni-direction prepreg sheet in this paper. It is important to assess fiber orientation, material properties and part defect in order to ensure product quality and structural integrity of CFRP because strength and stiffness of composites depend on fiber orientation. It is desirable to perform nondestructive evaluation which is very beneficial. An new method for nondestructively determining the fiber orientation in a composite laminate is presented. A one-sided pitch-catch setup was used in the detection and evaluation of flaws and material anomalies in the unidirectional CFRP composite laminates. Two Rayleigh wave transducers were joined head-to-head and used in the pitch-catch mode on the surface of the composites. The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composite. Especially, ultrasonic waves were extensively characterized in the CFRP composite laminates both normal to fiber and along to fiber with using a one-sided direction of Rayleigh wave transducers. Also, one-sided ultrasonic measurement was made with using a Rayleigh wave transducers and a conventional scanner was used in an immersion tank for extracting fiber orientation information from the ultrasonic reflection in the unidirectional laminate. Therefore, it is thought that the proposed method is useful to evaluate integrity of CFRP laminates.

  17. Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation

    International Nuclear Information System (INIS)

    Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won

    2000-01-01

    Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch

  18. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    International Nuclear Information System (INIS)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-01-01

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ε carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes. - Highlights: • D2 steel parts were tempered at 200-650 °C to produce various microstructures. • Precipitation of ε and Fe 3 C carbides and spheroidization of carbides were detected. • Retained austenite decomposition and secondary hardening effect were determined. • Variations of electrical resistivity (ρ) and magnetic saturation (Bs) were studied. • Combined effects of ρ and Bs on the EC outputs were evaluated

  19. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Kahrobaee, Saeed, E-mail: saeed.kahrobaee@yahoo.com; Kashefi, Mehrdad, E-mail: m-kashefi@um.ac.ir

    2015-05-15

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ε carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes. - Highlights: • D2 steel parts were tempered at 200-650 °C to produce various microstructures. • Precipitation of ε and Fe{sub 3}C carbides and spheroidization of carbides were detected. • Retained austenite decomposition and secondary hardening effect were determined. • Variations of electrical resistivity (ρ) and magnetic saturation (Bs) were studied. • Combined effects of ρ and Bs on the EC outputs were evaluated.

  20. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation.

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Wang, Junming; Wang, Ning; Chen, Xuemin; Song, Gangbing

    2018-03-04

    As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation.

  1. Non-destructive evaluation of thermal aging embrittlement of duplex stainless steels

    International Nuclear Information System (INIS)

    Yi, Y.S.; Tomobe, T.; Watanabe, Y.; Shoji, T.

    1993-01-01

    The non-destructive evaluation procedure for detecting thermal aging embrittlement of cast duplex stainless steels has been investigated. As a novel measurement technique for the thermal aging embrittlement, an electrochemical method was used and anodic polarization behaviors were measured on new, service exposed, and laboratory aged materials and then were compared with the results of the mechanical tests and microstructural changes. During the polarization experiments performed in potassium hydroxide solution (KOH), M 23 C 6 carbides on phase boundary were preferentially dissolved, which was comfirmed by the SEM after polarization measurements. The preferential dissolution of M 23 C 6 carbides were obtained. Also, the non-destructive measurement and evaluation method of spinodal decomposition, which has been known as the primary mechanism of embrittlement inferrite phase, was reviewed. When the materials, where spinodal decomposition occurred, were polarized in an acetic acid solution (CH 3 COOH), larger critical anodic current densities were observed than those observed on new materials, and these results were consistent with the result of the microhardness measurement. Concerning these polarization results, a critical electric charge, which was required for stable passive films in passive metals, was defined and the relationship between the microstructural changes and this charge amount was reviewed under various polarization conditions in order to verify the polarization mechanism of the spinodally decomposed ferrite phase

  2. Application of optical interferometric techniques for non-destructive evaluation of novel "green" composite materials

    Science.gov (United States)

    Pagliarulo, Vito; Russo, Pietro; Bianco, Vittorio; Ferraro, Pietro; Simeoli, Giorgio; Cimino, Francesca; Ruggiero, Berardo

    2018-04-01

    Nowadays the use of advanced composite materials in aeronautics, both civil and military, in automotive and in sport applications, citing some, is well established. The characteristics of composite materials in terms of weight, fatigue resistance and corrosion resistance make them competitive with respect to conventional ones. On the other side, the fabrication process of the most employed composites reinforced by carbon fibers or glass fibers, needs of complex steps that not always are environmental complaisant. Moreover, such fibers are not themselves "green". For these reasons, in the last decades, the use of natural reinforcing fibers has gained an increasing attention allowing the development of new materials with the same advantages of composite systems but respecting the environment. Furthermore, such materials for their structural complexity are not always compatible with the use of standard non-destructive evaluation as the ultrasounds methods. In this work the efficiency of the employment of optical interferometric techniques as nondestructive evaluation methods in full field modality is proved on novel "green" composite materials. In particular, Electronic Speckle Pattern Interferometry has been tested on different kinds of specimens after flexural tests.

  3. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.

    Science.gov (United States)

    Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu

    2017-11-24

    The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

  4. Nondestructive evaluation of wall thinning occurred under reinforced plate by MFL method

    International Nuclear Information System (INIS)

    Kikuchi, Hiroaki; Sato, Kaito; Shimizu, Isamu

    2013-01-01

    Basic study on applying magnetic flux leakage (MFL) method using ac excitation to a nondestructive evaluation of wall thinning occurred under reinforcing plates in nuclear power plants were performed. Frequently, MFL method by means of dc field for exciting specimens is adopted, and only intensity of magnetic flux density is evaluated. On the other hand, MFL with alternating current enable us to utilize not only amplitude of magnetic flux density but also phase difference, which contributes to evaluation with higher accuracy. Here, specimens with slit and pipe with imitated wall thinning are prepared and magnetized using magnetic yoke with ac field, and then the leakage magnetic flux density and the phase difference on the specimen surface are investigated. Additionally, specimens imitated wall thinning occurred under reinforcing plates were investigated by MFL with ac excitation. (author)

  5. Nondestructive evaluation of ceramic and metal matrix composites for NASA's HITEMP and enabling propulsion materials programs

    Science.gov (United States)

    Generazio, Edward R.

    1992-01-01

    In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.

  6. Nondestructive technique application for corrosion evaluation by hydrogen charging of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Kyung, E-mail: leejink@deu.ac.kr [Department of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of); Bae, Dong Su [Department of Advanced Materials Engineering, Dongeui University, Busan (Korea, Republic of); Lee, Sang Pill; Hwang, Sung Guk [Department of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of); Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-11-01

    Highlights: • We have studied on the nondestructive technique application for corrosion evaluation by hydrogen charging of stainless steel. An ultrasonic test (UT) is an useful method to evaluate the mechanical properties of material. By measuring the velocity and the attenuation of ultrasonic wave propagating the hydrogen charged stainless steel, the relation of ultrasonic wave and mechanical properties of hydrogen charged 316L stainless steel was discussed. However, in order to evaluate the dynamic behavior of materials, an acoustic emission (AE) technique was applied to investigate the corrosion characteristics of hydrogen charged specimen. Acoustic emission is one of elastic waves caused by dislocation, cracks initiation and propagation within material from loading outside. The waveform of the acoustic emission is different depending on the damage mechanism of material. Lots of AE parameters such as energy, duration time, event and amplitude were used to analyze the dynamic behavior of the hydrogen charged specimen. • A conventional 316L stainless steel was used in this study, and electrochemical treat system for hydrogen charging of the specimen. ASTM (G142) type tensile specimens (diameter 6.0 mm, gage length 28.6 mm) were prepared, and sulfuric acid(H{sub 2}SO{sub 4}) and arsenic trioxide(As{sub 2}O{sub 3}) were used as the electrolyte, and potentiostat(HA 151) supplied the current to platinum wire and specimen. • Tensile strength and attenuation coefficient has a relation to some extent. Therefore, we could estimate the tensile strength and the hydrogen charging time by measuring the attenuation coefficient using ultrasonic wave nondestructively. • Acoustic emission technique was useful to evaluate the dynamic damage because AE parameters of AE event, average energy and average frequency showed various change by external loading at the specimens with and without hydrogen. - Abstract: Caused corrosion by hydrogen on stainless steel using

  7. Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: Advantages and limitations.

    Science.gov (United States)

    Hassoun, Abdo; Karoui, Romdhane

    2017-06-13

    Although being one of the most vulnerable and perishable products, fish and other seafoods provide a wide range of health-promoting compounds. Recently, the growing interest of consumers in food quality and safety issues has contributed to the increasing demand for sensitive and rapid analytical technologies. Several traditional physicochemical, textural, sensory, and electrical methods have been used to evaluate freshness and authentication of fish and other seafood products. Despite the importance of these standard methods, they are expensive and time-consuming, and often susceptible to large sources of variation. Recently, spectroscopic methods and other emerging techniques have shown great potential due to speed of analysis, minimal sample preparation, high repeatability, low cost, and, most of all, the fact that these techniques are noninvasive and nondestructive and, therefore, could be applied to any online monitoring system. This review describes firstly and briefly the basic principles of multivariate data analysis, followed by the most commonly traditional methods used for the determination of the freshness and authenticity of fish and other seafood products. A special focus is put on the use of rapid and nondestructive techniques (spectroscopic techniques and instrumental sensors) to address several issues related to the quality of these products. Moreover, the advantages and limitations of each technique are reviewed and some perspectives are also given.

  8. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  9. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Gopalsami, N.; Dieckman, S.; Hentea, T.; Vaitekunas, J.J.

    1989-01-01

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  10. An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials

    Directory of Open Access Journals (Sweden)

    Adriana Savin

    2015-07-01

    Full Text Available This paper proposes the study and implementation of a sensor with a metamaterial (MM lens in electromagnetic nondestructive evaluation (eNDE. Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000.

  11. An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials.

    Science.gov (United States)

    Savin, Adriana; Steigmann, Rozina; Bruma, Alina; Šturm, Roman

    2015-07-03

    This paper proposes the study and implementation of a sensor with a metamaterial (MM) lens in electromagnetic nondestructive evaluation (eNDE). Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR) has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000.

  12. Yucca mountain container fabrication, closure and non-destructive evaluation development activities

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.

    1990-01-01

    Container fabrication, closure, and non-destructive evaluation process development activities are described. The design parameters for a tuff environment are: no significant hydrostatic or lithostatic loading of the container; very small water flux; benign water, an oxidizing, dilute sodium bicarbonate solution of neutral pH; temperatures reaching 250 C over the first 50 to 100 years, then falling to about 97 C over the remainder of the 300-year container period. The materials under consideration are three austenitic alloys: AISI 304L, AISI 316L, and alloy 825; as well as three copper alloys: CDA 102, CDA 613, and CDA 715. Targets are controlled, uniform microstructures for the base metal, the weld and the heat affected zones of the weld; controlled microchemistry; low residual stresses; small welds and heat-affected zones; and reliable methods of flaw detection by surface and volumetric activities. The recommended procedures and processes for fabricating, closing and evaluating each of the candidate materials are reviewed

  13. Nondestructive Evaluation of the J-2X Direct Metal Laser Sintered Gas Generator Discharge Duct

    Science.gov (United States)

    Esther, Elizabeth A.; Beshears, Ronald D.; Lash, Rhonda K.

    2012-01-01

    The J-2X program at NASA's Marshall Space Flight Center (MSFC) procured a direct metal laser sintered (DMLS) gas generator discharge duct from Pratt & Whitney Rocketdyne and Morris Technologies for a test program that would evaluate the material properties and durability of the duct in an engine-like environment. DMLS technology was pursued as a manufacturing alternative to traditional techniques, which used off nominal practices to manufacture the gas generator duct's 180 degree turn geometry. MSFC's Nondestructive Evaluation (NDE) Team performed radiographic, ultrasonic, computed tomographic, and fluorescent penetrant examinations of the duct. Results from the NDE examinations reveal some shallow porosity but no major defects in the as-manufactured material. NDE examinations were also performed after hot-fire testing the gas generator duct and yielded similar results pre and post-test and showed no flaw growth or development.

  14. Current nondestructive evaluation research and development trends in the United States

    International Nuclear Information System (INIS)

    Jackson, Jerry

    1992-01-01

    An underlying theme present in much of the nondestructive evaluation (NDE) research and development occurring in the United States as well as worldwide is the application of physics and engineering principles toward understanding and optimizing NDE processes. Expanding this trend of using mathematical models for NDE processes is critical to the entire spectrum of NDE technology. In NDE research, modeling anchors the investigation in scientific, proven principles and establishes a firm technical basis to guide the design and development of inspection equipment and approaches. It also provides for understanding the capabilities and the limitations of whatever designs are selected and ultimately applied in the field. This paper reviews the status of these efforts, presents several examples where mathematical modeling is being profitably used for practical inspection work, and shows the path being taken in ongoing research.

  15. QUANTITATIVE NON-DESTRUCTIVE EVALUATION (QNDE) OF THE ELASTIC MODULI OF POROUS TIAL ALLOYS

    International Nuclear Information System (INIS)

    Yeheskel, O.

    2008-01-01

    The elastic moduli of γ-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a tool for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals

  16. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  17. Robotic 3D SQUID imaging system for practical nondestructive evaluation applications

    International Nuclear Information System (INIS)

    Isawa, K.; Nakayama, S.; Ikeda, M.; Takagi, S.; Tosaka, S.; Kasai, N.

    2005-01-01

    A robotic three-dimensional (3D) scanning superconducting quantum interference device (SQUID) imaging system was developed for practical nondestructive evaluation (NDE) applications. The major feature of this SQUID-NDE system is that the SQUID sensor itself scans in 3D by traveling over the surface of an object during testing without the need for magnetic shielding. This imaging system consists of (i) DC-SQUID gradiometer for effective movement of the sensor, (ii) SQUID sensor manipulator utilizing an articulated-type robot used in industry, (iii) laser charge-coupled-device (CCD) displacement sensor to measure the 3D coordinates of points on the surface of the object, and (iv) computer-aided numerical interpolation scheme for 3D surface reconstruction of the object. The applicability of this system for NDE was demonstrated by successfully detecting artificial damage of cylindrical-shaped steel tubes

  18. Evaluation of High-Speed Railway Bridges Based on a Nondestructive Monitoring System

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2016-01-01

    Full Text Available Recently, trains’ velocities in Korea increased more than the speed used in the design of some bridges. Accordingly, this paper demonstrates the evaluation of a railway bridge due to high-speed trains’ movement. A nondestructive monitoring system is used to assess the bridge performance under train speeds of 290, 360, 400 and 406 km/h. This system is comprised of a wireless short-term acceleration system and strain monitoring sensors attached to the bridge girder. The results of the analytical methods in time and frequency domains are presented. The following conclusions are obtained: the cross-correlation models for accelerations and strain measurements are effective to predict the performance of the bridge; the static behavior is increased with train speed developments; and the vibration, torsion, fatigue and frequency contents analyses of the bridge show that the bridge is safe under applied trains’ speeds.

  19. Experimental program for development and evaluation of nondestructive assay techniques for plutonium holdup

    International Nuclear Information System (INIS)

    Brumbach, S.B.

    1977-05-01

    An outline is presented for an experimental program to develop and evaluate nondestructive assay techniques applicable to holdup measurement in plutonium-containing fuel fabrication facilities. The current state-of-the-art in holdup measurements is reviewed. Various aspects of the fuel fabrication process and the fabrication facility are considered for their potential impact on holdup measurements. The measurement techniques considered are those using gamma-ray counting, neutron counting, and temperature measurement. The advantages and disadvantages of each technique are discussed. Potential difficulties in applying the techniques to holdup measurement are identified. Experiments are proposed to determine the effects of such problems as variation in sample thickness, in sample distribution, and in background radiation. These experiments are also directed toward identification of techniques most appropriate to various applications. Also proposed are experiments to quantify the uncertainties expected for each measurement

  20. An Assessment of Nondestructive Evaluation Capability for Complex Additive Manufacturing Aerospace Components

    Science.gov (United States)

    Walker, James; Beshears, Ron; Lambert, Dennis; Tilson, William

    2016-01-01

    The primary focus of this work is to investigate some of the fundamental relationships between processing, mechanical testing, materials characterization, and NDE for additively manufactured (AM) components using the powder bed fusion direct melt laser sintered process. The goal is to understand the criticality of defects unique to the AM process and then how conventional nondestructive evaluation methods as well as some of the more non-traditional methods such as computed tomography, are effected by the AM material. Specific defects including cracking, porosity and partially/unfused powder will be addressed. Besides line-of-site NDE, as appropriate these inspection capabilities will be put into the context of complex AM geometries where hidden features obscure, or inhibit traditional NDE methods.

  1. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2016-06-01

    Full Text Available Terahertz (THz time-domain spectroscopy (TDS imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations.

  2. Nondestructive Evaluation of the Friction Weld Process on 2195/2219 Grade Aluminum

    Science.gov (United States)

    Suits, Michael W.; Clark, Linda S.; Cox, Dwight E.

    1999-01-01

    In 1996, NASA's Marshall Space Flight Center began an ambitious program designed to find alternative methods of repairing conventional TIG (Tungsten Inert Gas) welds and VPPA (Variable Polarity Plasma Arc) welds on the Space Shuttle External Tank without producing additional heat-related anomalies or conditions. Therefore, a relatively new method, invented by The Welding Institute (TWI) in Cambridge, England, called Friction Stir Welding (FSW), was investigated for use in this application, as well as being used potentially as an initial weld process. As with the conventional repair welding processes, nondestructive evaluation (NDE) plays a crucial role in the verification of these repairs. Since it was feared that conventional NDE might have trouble with this type of weld structure (due to shape of nugget, grain structure, etc.) it was imperative that a complete study be performed to address the adequacy of the NDE process. This paper summarizes that process.

  3. The Evolution of Nondestructive Evaluation Methods for the Space Shuttle External Tank Thermal Protection System

    Science.gov (United States)

    Walker, James L.; Richter, Joel D.

    2006-01-01

    Three nondestructive evaluation methods are being developed to identify defects in the foam thermal protection system (TPS) of the Space Shuttle External Tank (ET). Shearography is being developed to identify shallow delaminations, shallow voids and crush damage in the foam while terahertz imaging and backscatter radiography are being developed to identify voids and cracks in thick foam regions. The basic theory of operation along with factors affecting the results of these methods will be described. Also, the evolution of these methods from lab tools to implementation on the ET will be discussed. Results from both test panels and flight tank inspections will be provided to show the range in defect sizes and types that can be readily detected.

  4. Review of progress in quantitative nondestructive evaluation. Volume 8A and Volume 8B

    International Nuclear Information System (INIS)

    Thompson, D.O.; Chimenti, D.E.

    1989-01-01

    Volume 8 contains the edited papers presented at the 1988 Review of Progress in Quantitative Nondestructive Evaluation meeting. The 288 papers discuss such topics as fundamental techniques as acoustic testing, eddy current testing, and x-ray radiography; advanced techniques using x-ray computed tomography and laser ultrasonics; interpretive signal and image processing using expert systems and adaptive analysis; NDE probes and sensors and NDE systems and instrumentation; materials process control and inspection reliability including human factors. Materials discussed range from electronic circuit materials, coatings, adhesive bonds, smart structures, composite materials, welded joints, ferrous materials, and steels and alloys. Stress, texture, structural and fracture properties of materials are characterized using various NDE techniques. Applications to reactor, aircraft, and space vehicle components are investigated

  5. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for ultrasonic test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice facilitates the interoperability of ultrasonic imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E 2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E 2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, transfer and archival storage. The goal of Practice E 2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E 2339 provides a data dictionary and set of information modules that are applicable to all NDE modalities. This practice supplements Practice E 2339 by providing information object definitions, information ...

  6. Standard practice for digital imaging and communication nondestructive evaluation (DICONDE) for computed radiography (CR) test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of computed radiography (CR) imaging and data acquisition equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This practice is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information objec...

  7. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    Science.gov (United States)

    Jiles, David C.; Sipahi, Levent B.

    1994-05-17

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  8. Nondestructive evaluation of free acid content in apples using near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Sohn, M.R.; Cho, R.K.

    1998-01-01

    In non-destructive evaluation of free acid content in apples by near- infrared spectroscopy(NIRS), browning and heat treatment of squeezed apple juice affected to the accuracy but titratable alkali concentration did not. The free acid content in apples after harvest was able to determine using different apples in harvest time for calibration making. The result of MLR, multiple correlation coefficient(R) was 0.77 and standard error of prediction(SEP) was 0.03%. The free acid content in apples during storage was able to determine using calibration equation established with stored apples, R was 0.90 and SEP was ca. 0.04%. The prediction accuracy by NIR was not sufficient for use of quantitative analysis of free acid content in apple, but classification of low and high level in acid content was supposed to be applicable

  9. Nondestructive evaluation of the preservation state of stone columns in the Hospital Real of Granada

    Science.gov (United States)

    Moreno de Jong van Coevorden, C.; Cobos Sánchez, C.; Rubio Bretones, A.; Fernández Pantoja, M.; García, Salvador G.; Gómez Martín, R.

    2012-12-01

    This paper describes the results of the employment of two nondestructive evaluation methods for the diagnostic of the preservation state of stone elements. The first method is based on ultrasonic (US) pulses while the second method uses short electromagnetic pulses. Specifically, these methods were applied to some columns, some of them previously restored. These columns are part of the architectonic heritage of the University of Granada, in particular they are located at the patio de la capilla del Hospital Real of Granada. The objective of this work was the application of systems based on US pulses (in transmission mode) and the ground-penetrating radar systems (electromagnetic tomography) in the diagnosis and detection of possible faults in the interior of columns.

  10. Thermographic Non-Destructive Evaluation for Natural Fiber-Reinforced Composite Laminates

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2018-02-01

    Full Text Available Natural fibers, including mineral and plant fibers, are increasingly used for polymer composite materials due to their low environmental impact. In this paper, thermographic non-destructive inspection techniques were used to evaluate and characterize basalt, jute/hemp and bagasse fibers composite panels. Different defects were analyzed in terms of impact damage, delaminations and resin abnormalities. Of particular interest, homogeneous particleboards of sugarcane bagasse, a new plant fiber material, were studied. Pulsed phase thermography and principal component thermography were used as the post-processing methods. In addition, ultrasonic C-scan and continuous wave terahertz imaging were also carried out on the mineral fiber laminates for comparative purposes. Finally, an analytical comparison of different methods was given.

  11. Evaluation of land and vegetation degradation indicators in Kiang ...

    African Journals Online (AJOL)

    Evaluation of land and vegetation degradation indicators in Kiang'ombe ... land and vegetation degradation risk and analyzing the effectiveness of various ... The methods used included; Focus Group Discussions (FGD), key informant ...

  12. Non-destructive evaluation of the hidden voids in integrated circuit packages using terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Jin-Wook

    2015-01-01

    In this work, a terahertz time-domain spectroscopy (THz-TDS) imaging technique was used as a non-destructive inspection method for detecting voids in integrated circuit (IC) packages. Transmission and reflection modes, with an angle of incidence of 30°, were used to detect voids in IC packages. The locations of the detected voids in the IC packages could be calculated by analyzing THz waveforms. Finally, voids that are positioned at the different interfaces in the IC package samples could be successfully detected and imaged. Therefore, this THz-TDS imaging technique is expected to be a promising technique for non-destructive evaluation of IC packages. (paper)

  13. Nondestructive Testing

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Harold [Argonne National Laboratory

    1969-01-01

    A nondestructive test is an examination of an object in any manner which will not impair the future usefulness of the object. This booklet discusses a few basic methods of nondestructive testing, and some of their characteristics. In addition, it discusses possible future methods for nondestructive testing by taking a quick look at some of the methods now under study.

  14. Improving the Repair Planning System for Mining Equipment on the Basis of Non-destructive Evaluation Data

    Science.gov (United States)

    Drygin, Michael; Kuryshkin, Nicholas

    2017-11-01

    The article tells about forming a new concept of scheduled preventive repair system of the equipment at coal mining enterprises, based on the use of modem non-destructive evaluation methods. The approach to the solution for this task is based on the system-oriented analysis of the regulatory documentation, non-destructive evaluation methods and means, experimental studies with compilation of statistics and subsequent grapho-analytical analysis. The main result of the work is a feasible explanation of using non-destructive evaluation methods within the current scheduled preventive repair system, their high efficiency and the potential of gradual transition to condition-based maintenance. In practice wide use of nondestructive evaluation means w;ill allow to reduce significantly the number of equipment failures and to repair only the nodes in pre-accident condition. Considering the import phase-out policy, the solution for this task will allow to adapt the SPR system to Russian market economy conditions and give the opportunity of commercial move by reducing the expenses for maintenance of Russian-made and imported equipment.

  15. Nondestructive Evaluation of Advanced Materials with X-ray Phase Mapping

    Science.gov (United States)

    Hu, Zhengwei

    2005-01-01

    X-ray radiation has been widely used for imaging applications since Rontgen first discovered X-rays over a century ago. Its large penetration depth makes it ideal for the nondestructive visualization of the internal structure and/or defects of materials unobtainable otherwise. Currently used nondestructive evaluation (NDE) tools, X-ray radiography and tomography, are absorption-based, and work well in heavy-element materials where density or composition variations due to internal structure or defects are high enough to produce appreciable absorption contrast. However, in many cases where materials are light-weight and/or composites that have similar mass absorption coefficients, the conventional absorption-based X-ray methods for NDE become less useful. Indeed, the light-weight and ultra-high-strength requirements for the most advanced materials used or developed for current flight mission and future space exploration pose a great challenge to the standard NDE tools in that the absorption contrast arising from the internal structure of these materials is often too weak to be resolved. In this presentation, a solution to the problem, the use of phase information of X-rays for phase contrast X-ray imaging, will be discussed, along with a comparison between the absorption-based and phase-contrast imaging methods. Latest results on phase contrast X-ray imaging of lightweight Space Shuttle foam in 2D and 3D will be presented, demonstrating new opportunities to solve the challenging issues encountered in advanced materials development and processing.

  16. Performance and non-destructive evaluation methods of airborne radome and stealth structures

    Science.gov (United States)

    Panwar, Ravi; Ryul Lee, Jung

    2018-06-01

    In the past few years, great effort has been devoted to the fabrication of highly efficient, broadband radome and stealth (R&S) structures for distinct control, guidance, surveillance and communication applications for airborne platforms. The evaluation of non-planar aircraft R&S structures in terms of their electromagnetic performance and structural damage is still a very challenging task. In this article, distinct measurement techniques are discussed for the electromagnetic performance and non-destructive evaluation (NDE) of R&S structures. This paper deals with an overview of the transmission line method and free space measurement based microwave measurement techniques for the electromagnetic performance evaluation of R&S structures. In addition, various conventional as well as advanced methods, such as millimetre and terahertz wave based imaging techniques with great potential for NDE of load bearing R&S structures, are also discussed in detail. A glimpse of in situ NDE techniques with corresponding experimental setup for R&S structures is also presented. The basic concepts, measurement ranges and their instrumentation, measurement method of different R&S structures and some miscellaneous topics are discussed in detail. Some of the challenges and issues pertaining to the measurement of curved R&S structures are also presented. This study also lists various mathematical models and analytical techniques for the electromagnetic performance evaluation and NDE of R&S structures. The research directions described in this study may be of interest to the scientific community in the aerospace sectors.

  17. Ultrasonic C-scan Technique for Nondestructive Evaluation of Spot Weld Quality

    International Nuclear Information System (INIS)

    Park, Ik Gun

    1994-01-01

    This paper discusses the feasibility of ultrasonic C-scan technique for nondestructive evaluation of spot weld quality. Ultrasonic evaluation for spot weld quality was performed by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of the corona bond from nugget, preliminary infinitesimal gap experiment by newton ring is tried in order to set up the optimum ultrasonic test condition. Ultrasonic image data obtained were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be measured with the accuracy of 1.0mm, and voids included in nugget can be detected to 10μm extent with simplicity and accuracy. Finally, it was found that it is necessary to make a profound study of definite discrimination of corona bond from nugget and the approach of quantitative evaluation of nugget diameter by utilizing the various image processing techniques

  18. Non-destructive evaluation of containment walls in nuclear power plants

    Science.gov (United States)

    Garnier, V.; Payan, C.; Lott, M.; Ranaivomanana, N.; Balayssac, J. P.; Verdier, J.; Larose, E.; Zhang, Y.; Saliba, J.; Boniface, A.; Sbartai, Z. M.; Piwakowski, B.; Ciccarone, C.; Hafid, H.; Henault, J. M.; Buffet, F. Ouvrier

    2017-02-01

    Two functions are regularly tested on containment walls in order to anticipate a possible accident. The first is mechanical to resist a possible internal over-pressure and the second is to prevent leakage. The AAPR reference accident is the rupture of a pipe in the primary circuit of a nuclear plant. In this case, the pressure and temperature can reach 5 bar and 180°C in 20 seconds. The national project `Non-destructive testing of the containment structures of nuclear plants' aims at studying the non-destructive techniques capable to evaluate the concrete properties and its damaging and cracks. This 4-year-project is segmented into two parts. The first consists in developing and selecting the most relevant NDEs in the laboratory to reach these goals. These evaluations are developed in conditions representing the real conditions of the stresses generated during ten-yearly visits of the plants or those related to an accident. The second part consists in applying the selected techniques to two containment structures under pressure. The first structure is proposed by ONERA and the second is a mockup of a containment wall on a 1/3 scale made by EDF within the VeRCoRs project. Communication is focused on the part of the project that concerns the damage and crack process characterization by means of NDT. The tests are done in 3 or 4 points bending in order to study the cracks' generation, their propagation, as well as their opening and closing. The main ultrasonic techniques developed concern linear or non-linear acoustic: acoustic emission [1], Locadiff [2], energy diffusion, surface wave's velocity and attenuation, DAET [3]. The recorded data contribute to providing the mapping of the investigated parameters, either in volume, in surface or globally. Digital image correlation is an important additional asset to validate the coherence of the data. The spatial normalization of the data in the specimen space allows proposing algorithms on the combination of the

  19. Evaluation of physical dimension changes as nondestructive measurements for monitoring rigor mortis development in broiler muscles.

    Science.gov (United States)

    Cavitt, L C; Sams, A R

    2003-07-01

    Studies were conducted to develop a non-destructive method for monitoring the rate of rigor mortis development in poultry and to evaluate the effectiveness of electrical stimulation (ES). In the first study, 36 male broilers in each of two trials were processed at 7 wk of age. After being bled, half of the birds received electrical stimulation (400 to 450 V, 400 to 450 mA, for seven pulses of 2 s on and 1 s off), and the other half were designated as controls. At 0.25 and 1.5 h postmortem (PM), carcasses were evaluated for the angles of the shoulder, elbow, and wing tip and the distance between the elbows. Breast fillets were harvested at 1.5 h PM (after chilling) from all carcasses. Fillet samples were excised and frozen for later measurement of pH and R-value, and the remainder of each fillet was held on ice until 24 h postmortem. Shear value and pH means were significantly lower, but R-value means were higher (P rigor mortis by ES. The physical dimensions of the shoulder and elbow changed (P rigor mortis development and with ES. These results indicate that physical measurements of the wings maybe useful as a nondestructive indicator of rigor development and for monitoring the effectiveness of ES. In the second study, 60 male broilers in each of two trials were processed at 7 wk of age. At 0.25, 1.5, 3.0, and 6.0 h PM, carcasses were evaluated for the distance between the elbows. At each time point, breast fillets were harvested from each carcass. Fillet samples were excised and frozen for later measurement of pH and sacromere length, whereas the remainder of each fillet was held on ice until 24 h PM. Shear value and pH means (P rigor mortis development. Elbow distance decreased (P rigor development and was correlated (P rigor mortis development in broiler carcasses.

  20. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  1. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.; Coble, J.B.; Hashemian, H.M.; Konnick, R.; Ray, S.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).

  2. Development of PZT-excited stroboscopic shearography for full-field nondestructive evaluation.

    Science.gov (United States)

    Asemani, Hamidreza; Park, Jinwoo; Lee, Jung-Ryul; Soltani, Nasser

    2017-05-01

    Nondestructive evaluation using shearography requires a way to stress the inspection target. This technique is able to directly measure the displacement gradient distribution on the object surface. Shearography visualizes the internal structural damages as the anomalous pattern in the shearograpic fringe pattern. A piezoelectric (PZT) excitation system is able to generate loadings in the vibrational, acoustic, and ultrasonic regimes. In this paper, we propose a PZT-excited stroboscopic shearography. The PZT excitation could generate vibrational loading, a stationary wavefield, and a nonstationary propagation wave to fulfill the external loading requirement of shearography. The sweeping of the PZT excitation frequency, the formation of a standing wave, and a small shearing to suppress the incident wave were powerful controllable tools to detect the defects. The sweeping of the PZT excitation frequency enabled us to determine one of the defect-sensitive frequencies almost in real time. In addition, because the defect sensitive frequencies always existed in wide and plural ranges, the risk of the defect being overlooked by the inspector could be alleviated. The results of evaluation using stroboscopic shearography showed that an artificial 20 mm-diameter defect could be visualized at the excitation frequencies of 5-8 kHz range and 12.5-15.5 kHz range. This technique provided full field reliable and repeatable inspection results. Additionally, the proposed method overcame the important drawback of the time-averaged shearography, being required to identify the resonance vibration frequency sensitive to the defect.

  3. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Encouraged by Phase I accomplishments, the proposed Phase II program will significantly mature and align the development of a Space Qualified Non-Destructive...

  4. A study on the nondestructive evaluation of carbon/carbon disk using ultrasonics

    International Nuclear Information System (INIS)

    Im, Kwang Hee; Yang, In Young; Jeong, Hyun Jo

    1998-01-01

    It is useful to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity for carbon/carbon (C/C) composites because the manufacturing of C/C brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to attributable to the manufacturing process. In a carbon/carbon brake disk manufactured by a combination of pitch impregnation and CVI(Vapor infiltration method), the spatial variation of ultrasonic velocity was measured and found to be consistent with the nonuniform densification behavior in the manufacturing process. Low frequency(5 MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. These results were compared with those obtained by dry-coupling ultrasonics. A good correlation was found between ultrasonic velocity and material density on a set of small blocks cut out of the disk. Pulse-echo C-scans at higher frequency (25 MHz) were used to image near-sulfate material property anomalies associated with certain steps in the manufacturing process, such as the placement of spacers between disks during the final CVI.

  5. Nondestructive Evaluation of Concrete Bridge Decks with Automated Acoustic Scanning System and Ground Penetrating Radar.

    Science.gov (United States)

    Sun, Hongbin; Pashoutani, Sepehr; Zhu, Jinying

    2018-06-16

    Delamanintions and reinforcement corrosion are two common problems in concrete bridge decks. No single nondestructive testing method (NDT) is able to provide comprehensive characterization of these defects. In this work, two NDT methods, acoustic scanning and Ground Penetrating Radar (GPR), were used to image a straight concrete bridge deck and a curved intersection ramp bridge. An acoustic scanning system has been developed for rapid delamination mapping. The system consists of metal-ball excitation sources, air-coupled sensors, and a GPS positioning system. The acoustic scanning results are presented as a two-dimensional image that is based on the energy map in the frequency range of 0.5⁻5 kHz. The GPR scanning results are expressed as the GPR signal attenuation map to characterize concrete deterioration and reinforcement corrosion. Signal processing algorithms for both methods are discussed. Delamination maps from the acoustic scanning are compared with deterioration maps from the GPR scanning on both bridges. The results demonstrate that combining the acoustic and GPR scanning results will provide a complementary and comprehensive evaluation of concrete bridge decks.

  6. Nondestructive evaluation of braided carbon fiber composites with artificial defect using HTS-SQUID gradiometer

    International Nuclear Information System (INIS)

    Shinyama, Y.; Yamaji, T.; Hatsukade, Y.; Takai, Y.; Aly-Hassan, M.S.; Nakai, A.; Hamada, H.; Tanaka, S.

    2011-01-01

    We applied a current-injection-based NDE method using a HTS-SQUID gradiometer to a braided CFRP with artificial cracks. Current distributions in the braided CFRP were estimated from measured field gradient distributions. A small crack, in which a few carbon-fiber bundles were cut, was well detected from the current distributions. A cross-section of the CFRP showed that a density of the bundles at edges is higher than the other part. The experimental results demonstrated the capability of the method to detect sub-mm cracks. Braided carbon fiber reinforced plastics (CFRPs) are one of multifunctional materials with superior properties such as mechanical strength to normal CFRPs since the braided CFRPs have continuous fiber bundles. In this paper, we applied the current-injection-based nondestructive evaluation (NDE) method using a HTS-SQUID gradiometer to the braided CFRP for the detection of the breakage of the bundles. We prepared planar braided CFRP samples with and without artificial cracks of 1 and 2 mm lengths, and measured the current density distribution above the samples using the NDE method. In the measurement results, not only a few completely-cut bundles but also the additional partially-cut bundles were detected from decrease in the measured current density along the cut bundle around the cracks. From these results, we showed that it is possible to inspect a few partially-cut bundles in the braided CFRPs by the NDE method.

  7. Nondestructive evaluation of adhesive joints by C-scan ultrasonic testing

    International Nuclear Information System (INIS)

    Zeighami, Mehdi; Honarvar, Farhang

    2009-01-01

    Evaluation of the quality of adhesive bonding is an important issue in many industries who incorporate adhesive joints in their products. Over the past few decades, numerous acoustical techniques have been developed for nondestructive testing (NDT) of adhesively bonded joints. Among these techniques, the ultrasonic pulse-echo method is the most promising means for inspection of adhesive bonds. In practice, due to low impedance matching between adhesive and metal, the discrimination of a good bond from a bad bond is difficult. The low impedance matching also results in low contrast between perfect and disbanded zone in a C-scan image. In this paper, the quality of the interface between aluminum and epoxy is investigated by using an in-house built ultrasonic C-scan system. Two adhesion indices are proposed for producing C-scan images. To verify the capability of these indices, an adhesively bonded sample was fabricated using aluminum plates and epoxy. An artificial defect was implanted in the first interface of the specimens. The C-scan measurement prepared based on the proposed indices was able to reveal the defect much better than the C-scan image prepared by conventional approach. (author)

  8. Analytical model of tilted driver–pickup coils for eddy current nondestructive evaluation

    Science.gov (United States)

    Cao, Bing-Hua; Li, Chao; Fan, Meng-Bao; Ye, Bo; Tian, Gui-Yun

    2018-03-01

    A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil. It is frequently observed in an eddy current (EC) array probe. In this work, a tilted non-coaxial driver-pickup probe above a multilayered conducting plate is analytically modeled with spatial transformation for eddy current nondestructive evaluation. Basically, the core of the formulation is to obtain the projection of magnetic vector potential (MVP) from the driver coil onto the vector along the tilted pickup coil, which is divided into two key steps. The first step is to make a projection of MVP along the pickup coil onto a horizontal plane, and the second one is to build the relationship between the projected MVP and the MVP along the driver coil. Afterwards, an analytical model for the case of a layered plate is established with the reflection and transmission theory of electromagnetic fields. The calculated values from the resulting model indicate good agreement with those from the finite element model (FEM) and experiments, which validates the developed analytical model. Project supported by the National Natural Science Foundation of China (Grant Nos. 61701500, 51677187, and 51465024).

  9. Fractal dimension analysis for robust ultrasonic non-destructive evaluation (NDE) of coarse grained materials

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2018-04-01

    Over the recent decades, there has been a growing demand on reliable and robust non-destructive evaluation (NDE) of structures and components made from coarse grained materials such as alloys, stainless steels, carbon-reinforced composites and concrete; however, when inspected using ultrasound, the flaw echoes are usually contaminated by high-level, time-invariant, and correlated grain noise originating from the microstructure and grain boundaries, leading to pretty low signal-to-noise ratio (SNR) and the flaw information being obscured or completely hidden by the grain noise. In this paper, the fractal dimension analysis of the A-scan echoes is investigated as a measure of complexity of the time series to distinguish the echoes originating from the real defects and the grain noise, and then the normalized fractal dimension coefficients are applied to the amplitudes as the weighting factor to enhance the SNR and defect detection. Experiments on industrial samples of the mild steel and the stainless steel are conducted and the results confirm the great benefits of the method.

  10. Non-Destructive Evaluation Method Based On Dynamic Invariant Stress Resultants

    Directory of Open Access Journals (Sweden)

    Zhang Junchi

    2015-01-01

    Full Text Available Most of the vibration based damage detection methods are based on changes in frequencies, mode shapes, mode shape curvature, and flexibilities. These methods are limited and typically can only detect the presence and location of damage. Current methods seldom can identify the exact severity of damage to structures. This paper will present research in the development of a new non-destructive evaluation method to identify the existence, location, and severity of damage for structural systems. The method utilizes the concept of invariant stress resultants (ISR. The basic concept of ISR is that at any given cross section the resultant internal force distribution in a structural member is not affected by the inflicted damage. The method utilizes dynamic analysis of the structure to simulate direct measurements of acceleration, velocity and displacement simultaneously. The proposed dynamic ISR method is developed and utilized to detect the damage of corresponding changes in mass, damping and stiffness. The objectives of this research are to develop the basic theory of the dynamic ISR method, apply it to the specific types of structures, and verify the accuracy of the developed theory. Numerical results that demonstrate the application of the method will reflect the advanced sensitivity and accuracy in characterizing multiple damage locations.

  11. Detection of thermally grown oxides in thermal barrier coatings by nondestructive evaluation

    Science.gov (United States)

    Fahr, A.; Rogé, B.; Thornton, J.

    2006-03-01

    The thermal-barrier coatings (TBC) sprayed on hot-section components of aircraft turbine engines commonly consist of a partially stabilized zirconia top-coat and an intermediate bond-coat applied on the metallic substrate. The bond-coat is made of an aluminide alloy that at high engine temperatures forms thermally grown oxides (TGO). Although formation of a thin layer of aluminum oxide at the interface between the ceramic top-coat and the bond-coat has the beneficial effect of protecting the metallic substrate from hot gases, oxide formation at splat boundaries or pores within the bond-coat is a source of weakness. In this study, plasma-sprayed TBC specimens are manufactured from two types of bond-coat powders and exposed to elevated temperatures to form oxides at the ceramic-bond-coat boundary and within the bond-coat. The specimens are then tested using nondestructive evaluation (NDE) and destructive metallography and compared with the as-manufactured samples. The objective is to determine if NDE can identify the oxidation within the bond-coat and give indication of its severity. While ultrasonic testing can provide some indication of the degree of bond-coat oxidation, the eddy current (EC) technique clearly identifies severe oxide formation within the bond-coat. Imaging of the EC signals as the function of probe location provides information on the spatial variations in the degree of oxidation, and thereby identifies which components or areas are prone to premature damage.

  12. Development of non-destructive evaluation system using an HTS-SQUID gradiometer for magnetized materials

    Science.gov (United States)

    Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.

    We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.

  13. PHOTOACOUSTIC NON-DESTRUCTIVE EVALUATION AND IMAGING OF CARIES IN DENTAL SAMPLES

    International Nuclear Information System (INIS)

    Li, T.; Dewhurst, R. J.

    2010-01-01

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 deg. C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  14. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    Science.gov (United States)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  15. Dynamic laser speckle for non-destructive quality evaluation of bread

    Science.gov (United States)

    Stoykova, E.; Ivanov, B.; Shopova, M.; Lyubenova, T.; Panchev, I.; Sainov, V.

    2010-10-01

    Coherent illumination of a diffuse object yields a randomly varying interference pattern, which changes over time at any modification of the object. This phenomenon can be used for detection and visualization of physical or biological activity in various objects (e.g. fruits, seeds, coatings) through statistical description of laser speckle dynamics. The present report aims at non-destructive full-field evaluation of bread by spatial-temporal characterization of laser speckle. The main purpose of the conducted experiments was to prove the ability of the dynamic speckle method to indicate activity within the studied bread samples. In the set-up for acquisition and storage of dynamic speckle patterns an expanded beam from a DPSS laser (532 nm and 100mW) illuminated the sample through a ground glass diffuser. A CCD camera, adjusted to focus the sample, recorded regularly a sequence of images (8 bits and 780 x 582 squared pixels, sized 8.1 × 8.1 μm) at sampling frequency 0.25 Hz. A temporal structure function was calculated to evaluate activity of the bread samples in time using the full images in the sequence. In total, 7 samples of two types of bread were monitored during a chemical and physical process of bread's staling. Segmentation of images into matrixes of isometric fragments was also utilized. The results proved the potential of dynamic speckle as effective means for monitoring the process of bread staling and ability of this approach to differentiate between different types of bread.

  16. Quality evaluation of soil-cement-plant residue bricks by the combination of destructive and non-destructive tests

    Directory of Open Access Journals (Sweden)

    Regis de C. Ferreira

    Full Text Available ABSTRACT Residues from agricultural activity can be used to improve the quality of soil-based bricks, constituting an interesting alternative for their destination. The technical quality of soil-cement-plant residue bricks was evaluated by the combination of non-destructive and destructive methods. A predominant clayey soil, Portland cement and residues of husks of both rice and Brachiaria brizantha cv. Marandu (0, 10, 20, 30 and 40%, in mass, in substitution to the 10% cement content were used. The bricks were submitted to destructive (water absorption and compressive strength and nondestructive (ultrasound tests for their physical and mechanical characterization. Results from both destructive and non-destructive tests were combined to determine the quantitative parameter named “anisotropic resistance” in order to evaluate the quality of the bricks. The addition that promoted best technical quality was 10% residue content, regardless of the residue type. The anisotropic resistance proved to be adequate for the technical quality evaluation of the bricks.

  17. Proceedings CORENDE: Regional congress on nondestructive and structural evaluation; Actas CORENDE: Congreso regional de ensayos no destructivos y estructurales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Works are presented at the CORENDE: Regional Congress on Nondestructive and Structural Evaluation organized by the National Atomic Energy Commission and the National Technological University (Mendoza). This congress wants to be the forum where people from research, industry and marketing might meet and discuss ideas towards the fostering of these new cultural habits. Papers covering all disciplines contributing to the evaluation of components, systems and structures are welcome: nondestructive evaluation methods and techniques (ultrasound, eddy currents and other electromagnetic methods, acoustic emission, radiography, thermography, leak testing, dye-penetrants, visual inspection, etc.), personnel certification, welding inspection, nondestructive metallography, optics and lasers, fluid-structure interaction, vibrations, extensometry, modelling of structures refs., ills. [Espanol] Se presentan trabajos de CORENDE: Congreso Regional de Ensayos no Destructivos y Estructurales organizado por la Comision Nacional de Energia Atomica y la Universidad Tecnologica Nacional (Mendoza). Este congreso se propone como un foro de discusion, donde, desde la investigacion hasta la produccion y comercializacion, se intercambien y discutan ideas que sirvan de guia para fomentar ese necesario cambio cultural. Los topicos de discusion incluyen a todas las disciplinas presentes en la evaluacion de componentes, sistemas y estructuras: tecnicas no destructivas (ultrasonido, corrientes inducidas, radiografia industrial, emision acustica, particulas magnetizables, termografia, liquidos penetrantes, ensayos de perdidas, inspeccion visual, etc.), certificacion de personal, inspeccion en soldaduras, replicas metalograficas, tecnicas opticas y laser, interaccion fluido-estructura, vibraciones, extensometria, modelado de estructuras

  18. Numerical modeling for the electromagnetic non-destructive evaluation: application to the non-destructive evaluation of concrete; Modelisation numerique pour l'evaluation non destructive electromagnetique: application au controle non destructif des structures en beton

    Energy Technology Data Exchange (ETDEWEB)

    Travassos, L

    2007-06-15

    Concrete is the most common building material and accounts for a large part of the systems that are necessary for a country to operate smoothly including buildings, roads, and bridges. Nondestructive testing is one of the techniques that can be used to assess the structural condition. It provides non perceptible information that conventional techniques of evaluation unable to do. The main objective of this work is the numerical simulation of a particular technique of nondestructive testing: the radar. The numerical modeling of the radar assessment of concrete structures make it possible to envisage the behavior of the system and its capacity to detect defects in various configurations. To achieve this objective, it was implemented electromagnetic wave propagation models in concrete structures, by using various numerical techniques to examine different aspects of the radar inspection. First of all, we implemented the finite-difference time-domain method in 3D which allows to take into account concrete characteristics such as porosity, salt content and the degree of saturation of the mixture by using Debye models. In addition, a procedure to improve the radiation pattern of bow-tie antennas is presented. This approach involves the Moment Method in conjunction with the Multi objective Genetic Algorithm. Finally, we implemented imaging algorithms which can perform fast and precise characterization of buried targets in inhomogeneous medium by using three different methods. The performance of the proposed algorithms is confirmed by numerical simulations. (author)

  19. Basic Principles and Utilization Possibilities’ of Ultrasonic Phased Array in Material Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Dagmar Faktorova

    2004-01-01

    Full Text Available The paper deals with the basic principles of operation and with the utilization possibilities of phased array (PA in materials nondestructive testing (NDT. The first part deals with description of PA arrangement modes, which enable to generate, focus and steer the ultrasonic beem. The second part deals with the description of electromagnetic acoustic transducer PA operation. The last part deals with the description of the utilization of PA in nondestructive testing of conductive materials and the advantages of PA utilization in inhomogeneous materials NDT.

  20. Low-Cost Quality Control and Nondestructive Evaluation Technologies for General Aviation Structures

    Science.gov (United States)

    Cramer, K. Elliott; Gavinsky, Bob; Semanskee, Grant

    1998-01-01

    NASA's Advanced General Aviation Transport Experiments (AGATE) Program has as a goal to reduce the overall cost of producing private aviation aircraft while maintaining the safety of these aircraft. In order to successfully meet this goal, it is necessary to develop nondestructive inspection techniques which will facilitate the production of the materials used in these aircraft and assure the quality necessary to maintain airworthiness. This paper will discuss a particular class of general aviation materials and several nondestructive inspection techniques that have proven effective for making these inspections. Additionally, this paper will discuss the investigation and application of other commercially available quality control techniques applicable to these structures.

  1. Fabrication of imitative stress corrosion cracking using diffusion bonding for the development of nondestructive testing and evaluations

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi

    2011-01-01

    This study reports a method to fabricate imitative stress corrosion cracking suitable for the development of nondestructive testing and evaluation methods. The method is to embed a partially-bonded region, which simulates the characteristics of stress corrosion cracking, inside a material by bonding together surfaces having artificial grooves. Since the sizes of the grooves are smaller than the spatial resolution of nondestructive testing method applied, the material property realized can be regarded as uniform as the actual stress corrosion cracking. The grooves are introduced using mechanical machining, which enables one to control the characteristics of the simulated flaw. Four specimens made of type 316L austenitic stainless steel are fabricated. The method is demonstrated by visual and eddy current examinations. (author)

  2. APNEA/WIT system nondestructive assay capability evaluation plan for select accessibly stored INEL RWMC waste forms

    International Nuclear Information System (INIS)

    Becker, G.K.

    1997-01-01

    Bio-Imaging Research Inc. (BIR) and Lockheed Martin Speciality Components (LMSC) are engaged in a Program Research and Development Agreement and a Rapid Commercialization Initiative with the Department of Energy, EM-50. The agreement required BIR and LMSC to develop a data interpretation method that merges nondestructive assay and nondestructive examination (NDA/NDE) data and information sufficient to establish compliance with applicable National TRU Program (Program) waste characterization requirements and associated quality assurance performance criteria. This effort required an objective demonstration of the BIR and LMSC waste characterization systems in their standalone and integrated configurations. The goal of the test plan is to provide a mechanism from which evidence can be derived to substantiate nondestructive assay capability and utility statement for the BIT and LMSC systems. The plan must provide for the acquisition, compilation, and reporting of performance data thereby allowing external independent agencies a basis for an objective evaluation of the standalone BIR and LMSC measurement systems, WIT and APNEA respectively, as well as an expected performance resulting from appropriate integration of the two systems. The evaluation is to be structured such that a statement regarding select INEL RWMC waste forms can be made in terms of compliance with applicable Program requirements and criteria

  3. Nondestructive testing 89

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings contain 24 contributions, out of which 14 have been inputted in INIS. These deal with materials for nondestructive testing and various nondestructive testing systems, with the evaluation of radiograms and with the application of radiographic, ultrasonic and eddy current methods to the detection of defects in materials, to the inspection of nuclear reactor components and in other fields of technology. (B.S.)

  4. Non-Destructive Evaluation of Kissing Bonds using Local Defect Resonance (LDR) Spectroscopy: A Simulation Study

    Science.gov (United States)

    Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K.

    With the growing demand from industry to optimize and further develop existing Non-Destructive Testing & Evaluation (NDT&E) techniques or new methods to detect and characterize incipient damage with high sensitivity and increased quality, ample efforts have been devoted to better understand the typical behavior of kissing bonds, such as delaminations and cracks. Recently, it has been shown experimentally that the nonlinear ultrasonic response of kissing bonds could be enhanced by using Local Defect Resonance (LDR) spectroscopy. LDR spectroscopy is an efficient NDT technique that takes advantage of the characteristic fre- quencies of the defect (defect resonances) in order to provide maximum acoustic wave-defect interaction. In fact, for nonlinear methodologies, the ultrasonic excitation of the sample should occur at either multiples or integer ratios of the characteristic defect resonance frequencies, in order to obtain the highest signal-to-noise response in the nonlinear LDR spectroscopy. In this paper, the potential of using LDR spectroscopy for the detection, localization and characterization of kissing bonds is illustrated using a 3D simulation code for elastic wave propagation in materials containing closed but dynamically active cracks or delaminations. Using the model, we are able to define an appropriate method, based on the Scaling Subtraction Method (SSM), to determine the local defect resonance frequencies of a delamination in a composite plate and to illustrate an increase in defect nonlinearity due to LDR. The simulation results will help us to obtain a better understanding of the concept of LDR and to assist in the further design and testing of LDR spectroscopy for the detection, localization and characterization of kissing bonds.

  5. Evaluation of the MIT-Scan-T2 for non-destructive PCC pavement thickness determination.

    Science.gov (United States)

    2008-07-01

    The MIT-Scan-T2 device is marketed as a non-destructive way to determine pavement thickness on both : HMA and PCC pavements. PCC pavement thickness determination is an important incentivedisincentive : measurement for the Iowa DOT and contractors. Th...

  6. Degradation modeling with application to aging and maintenance effectiveness evaluations

    International Nuclear Information System (INIS)

    Samanta, P.K.; Hsu, F.; Subduhi, M.; Vesely, W.E.

    1990-01-01

    This paper describes a modeling approach to analyze component degradation and failure data to understand the aging process of components. As used here, degradation modeling is the analysis of information on component degradation in order to develop models of the process and its implications. This particular modeling focuses on the analysis of the times of component degradations, to model how the rate of degradation changes with the age of the component. The methodology presented also discusses the effectiveness of maintenance as applicable to aging evaluations. The specific applications which are performed show quantitative models of component degradation rates and component failure rates from plant-specific data. The statistical techniques which are developed and applied allow aging trends to be effectively identified in the degradation data, and in the failure data. Initial estimates of the effectiveness of maintenance in limiting degradations from becoming failures also are developed. These results are important first steps in degradation modeling, and show that degradation can be modeled to identify aging trends. 2 refs., 8 figs

  7. Degradation modeling with application to aging and maintenance effectiveness evaluations

    International Nuclear Information System (INIS)

    Samanta, P.K.; Vesely, W.E.; Hsu, F.; Subudhi, M.

    1991-01-01

    This paper describes a modeling approach to analyze light water reactor component degradation and failure data to understand the aging process of components. As used here, degradation modeling is the analysis of information on component degradation in order to develop models of the process and its implications. This particular modeling focuses on the analysis of the times of component degradations, to model how the rate of degradation changes with the age of the component. The methodology presented also discusses the effectiveness of maintenance as applicable to aging evaluations. The specific applications which are performed show quantitative models of component degradation rates and component failure rates from plant-specific data. The statistical techniques which are developed and applied allow aging trends to be effectively identified in the degradation data, and in the failure data. Initial estimates of the effectiveness of maintenance in limiting degradations from becoming failures also are developed. These results are important first steps in degradation modeling, and show that degradation can be modeled to identify aging trends

  8. Application of advanced non-destructive testing to evaluate the foundation depth of the existing structures

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc; Phan Chanh Vu; Bui Xuan Huy; Tran Thanh Luan; Nguyen Kien Chinh; Le Danh Chuan

    2004-01-01

    The applications of Parallel Seismic Test to evaluate deep foundations of the existing structures are still new in Vietnam. Under the framework of the basic VAEC project (2003) and project VIE/8/013, the parallel seismic test method (PSM) was evaluated at Center for Nuclear Techniques, Hochiminh City. Background information on principle and general description of the method as it is typically applied in the evaluation of deep foundations are also summarized. A suitable test site was selected, where the foundation depths can be controlled for the parallel seismic tests were conducted by impacting the driven piles, and the travel times down the pile, through the soil, to a receiver located in an adjacent water-filled borehole were measured. The primary objective of the test program is to evaluated the accuracy of method in determining the pile length, to evaluate the capabilities of the method and the equipped system SPL-97, to define the type of material which comprises a deep foundation, the distance of the compression wave can travel through the adjacent soil before the signal attenuates beyond recognition and the ware velocities in the various soil strata encountered. The parallel seismic testing program is described and results are presented. Parallel seismic tests, as conventionally practiced, i.e. with short distance between a structure and an access hole, can be used to define the bottom of the piles, as well as to identify the material type from the computed velocity in the structural material. The conventional approach of using changes of slop of the plot versus first arrival to identify the bottom of a deep foundation works best when the piles are in a soil with uniform stiffness and the accuracy of the evaluated depths can be obtained about ± 0.5 m. Supplementing this approach of interpretation by the examining the amplitudes of the first arrival on a plot with the same scale for all records allows one to better interpret signals in more common

  9. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    Science.gov (United States)

    Claycomb, James Ronald

    1998-10-01

    Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic

  10. Digital image analysis applied to industrial nondestructive evaluation and automated parts assembly

    International Nuclear Information System (INIS)

    Janney, D.H.; Kruger, R.P.

    1979-01-01

    Many ideas of image enhancement and analysis are relevant to the needs of the nondestructive testing engineer. These ideas not only aid the engineer in the performance of his current responsibilities, they also open to him new areas of industrial development and automation which are logical extensions of classical testing problems. The paper begins with a tutorial on the fundamentals of computerized image enhancement as applied to nondestructive testing, then progresses through pattern recognition and automated inspection to automated, or robotic, assembly procedures. It is believed that such procedures are cost-effective in many instances, and are but the logical extension of those techniques now commonly used, but often limited to analysis of data from quality-assurance images. Many references are given in order to help the reader who wishes to pursue a given idea further

  11. Application of novel hall sensor technique to evaluate internal defect nondestructively in squirrel cage rotor

    International Nuclear Information System (INIS)

    Park, Myung Ju; Lee, Joon Hyun

    1998-01-01

    Development of Nondestructive Tester for industrial application to detect flaws in aluminum die-casted squirrel case rotor is reported in this paper. Electronic currents are supplied to the end-ring and Hall effect sensors are used to detect the variation of currents which flow in the bar of the rotor. Some signal processing techniques are introduced to classify the signals due to the defects in the bars

  12. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Chengguang [College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, PR China and Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom); Drinkwater, Bruce W. [Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom)

    2014-02-18

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.

  13. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    International Nuclear Information System (INIS)

    Fan, Chengguang; Drinkwater, Bruce W.

    2014-01-01

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded

  14. Evaluation and improvement of nondestructive evaluation reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Bates, D.J.; Deffenbaugh, J.D.; Good, M.S.; Heasler, P.G.; Mart, G.A.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Van Fleet, L.G.

    1987-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection (ISI) of Light Water Reactors (NDE Reliability) Program at Pacific Northwest Laboratory (PNL) was established to determine the reliability of current ISI techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this NRC program are to: determine the reliability of ultrasonic ISI performed on commercial light-water reactor (LWR) primary systems, using probabilistic fracture mechanics analysis, determine the impact of NDE unreliability on system safety and determine the level of inspection reliability required to ensure a suitably low failure probability, evaluate the degree of reliability improvement that could be achieved using improved and advanced NDE techniques, based on material properties, service conditions, and NDE uncertainties, recommend revisions to ASME Code, Section XI, and Regulatory Requirements that will ensure suitably low failure probabilities. The scope of this program is limited to ISI of primary systems; the results and recommendations may also be applicable to Class II piping systems

  15. Nondestructive Evaluation of Functionally Graded Subsurface Damage on Cylinders in Nuclear Installations Based on Circumferential SH Waves

    Directory of Open Access Journals (Sweden)

    Zhen Qu

    2016-01-01

    Full Text Available Subsurface damage could affect the service life of structures. In nuclear engineering, nondestructive evaluation and detection of the evaluation of the subsurface damage region are of great importance to ensure the safety of nuclear installations. In this paper, we propose the use of circumferential horizontal shear (SH waves to detect mechanical properties of subsurface regions of damage on cylindrical structures. The regions of surface damage are considered to be functionally graded material (FGM and the cylinder is considered to be a layered structure. The Bessel functions and the power series technique are employed to solve the governing equations. By analyzing the SH waves in the 12Cr-ODS ferritic steel cylinder, which is frequently applied in the nuclear installations, we discuss the relationship between the phase velocities of SH waves in the cylinder with subsurface layers of damage and the mechanical properties of the subsurface damaged regions. The results show that the subsurface damage could lead to decrease of the SH waves’ phase velocity. The gradient parameters, which represent the degree of subsurface damage, can be evaluated by the variation of the SH waves’ phase velocity. Research results of this study can provide theoretical guidance in nondestructive evaluation for use in the analysis of the reliability and durability of nuclear installations.

  16. Evaluating Suit Fit Using Performance Degradation

    Science.gov (United States)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2011-01-01

    The Mark III suit has multiple sizes of suit components (arm, leg, and gloves) as well as sizing inserts to tailor the fit of the suit to an individual. This study sought to determine a way to identify the point an ideal suit fit transforms into a bad fit and how to quantify this breakdown using mobility-based physical performance data. This study examined the changes in human physical performance via degradation of the elbow and wrist range of motion of the planetary suit prototype (Mark III) with respect to changes in sizing and as well as how to apply that knowledge to suit sizing options and improvements in suit fit. The methods implemented in this study focused on changes in elbow and wrist mobility due to incremental suit sizing modifications. This incremental sizing was within a range that included both optimum and poor fit. Suited range of motion data was collected using a motion analysis system for nine isolated and functional tasks encompassing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm only. The results were then compared across sizing configurations. The results of this study indicate that range of motion may be used as a viable parameter to quantify at what stage suit sizing causes a detriment in performance; however the human performance decrement appeared to be based on the interaction of multiple joints along a limb, not a single joint angle. The study was able to identify a preliminary method to quantify the impact of size on performance and to develop a means to gauge tolerances around optimal size. More work is needed to improve the assessment of optimal fit and to compensate for multiple joint interactions.

  17. Combined Non-destructive Testing (NDT) methods for evaluating concrete quality

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of combining Non-destructive measurements on concrete. Local crushed granite and hematite were used as coarse aggregates; mining sand and river sand were used as fine aggregates to produce various density and strength of concrete. Concrete samples (150 mm cubes and interlocked blocks) were prepared by changing mix ratio, water to cement ratio (w/c) and types of aggregates. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  18. Some aspects of industrial non-destructive evaluation by X- and γ-ray computed tomography

    International Nuclear Information System (INIS)

    Reimers, P.; Goebbels, J.; Weise, H.P.; Wilding, K.

    1984-01-01

    The development of an industrial CAT-Scanner at the Bundesanstalt fuer Materialpruefung (BAM) is described and some practical results on typical nondestructive testing problems are presented. General criteria for the image quality, especially spatial and density resolution, are discussed on the basis of the appropriate mathematical relationships. The limiting parameter in industrial CAT will be the final specific photon emissivity of available radiation sources. Therefore the relative density resolution obtainable with the three most common types of radiation sources is calculated by variation of material thickness and scanning time. (orig.)

  19. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    International Nuclear Information System (INIS)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D

    2009-01-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  20. Correlation of mechanical properties with nondestructive evaluation of babbitt metal/bronze composite interface

    Science.gov (United States)

    Ijiri, Y.; Liaw, P. K.; Taszarek, B. J.; Frohlich, S.; Gungor, M. N.

    1988-09-01

    Interfaces of the babbitt metal-bronze composite were examined ultrasonically and were fractured using the Chalmers test method. It was found that the ultrasonic results correlated with the bond strength, the ductility, and the degree of bonding at the tested interface. Specifically, high ultrasonic reflection percentages were associated with low bond strength, low ductility, and low percentages of bonded regions. The fracture mechanism in the bonded area of the babbitt-bronze interface is related to the presence of the intermetallic compound, Cu6Sn5, at the interface. It is suggested that the non-destructive ultrasonic technique can detect the bond integrity of babbitted metals.

  1. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D, E-mail: brnc-radarcomms1@nrta.mod.u [Sensors Team, Plymouth University at Britannia Royal Naval College, Dartmouth, Devon (United Kingdom) and Paignton Zoological Park, Paignton, Devon (United Kingdom); Thermal Wave Imaging, Inc., 845 Livernoise St, Ferndale, MI (United States); Buckfast Butterfly and Otter Sanctuary, Buckfast, Devon (United Kingdom)

    2009-07-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  2. Photothermal Analysis Applied To Non-Destructive Evaluation Of Paint On Polymer Substrates

    Science.gov (United States)

    Vergne, D.; Busse, G.

    1988-10-01

    The decoration and protection quality of coatings on polymers is of considerable interest for industrial applications. However, at present there is no non-destructive (NDE) method to monitor the quality of these coatings during the manufacturing process or while they are in use. As an approach for such a method we use photothermal analysis where the propagation and reflection of optically generated thermal waves is investigated. We found that one can monitor the drying process, the effect of surface temperature treatment, and coating thickness (accuracy + 2 μm in 50 μm thickness). The information obtained with this remote NDE method is adequate for most industrial applications, eg car manufacturing.

  3. 1 Evaluating Biophysical Attributes of Environmentally Degraded ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    Ethiopian Journal of Environmental Studies and Management Vol.4 No. 1 2011. 1 Department of .... land cover types and other physical attributes. (soils and landform ..... Natural water bodies (Rivers). Figure 4: .... permanent or ephemeral rivers. .... evaluating land use/land cover change using participatory ... First Edition.

  4. A Crack Closure Model and Its Application to Vibrothermography Nondestructive Evaluation

    Science.gov (United States)

    Schiefelbein, Bryan Edward

    Vibrothermography nondestructive evaluation (NDE) is in the early stages of research and development, and there exists uncertainty in the fundamental mechanisms and processes by which heat generation occurs. Holland et al. have developed a set of tools which simulate and predict the outcome of a vibrothermography inspection by breaking the inspection into three distinct processes: vibrational excitation, heat generation, and thermal imaging. The stage of vibrothermography which is not well understood is the process by which vibrations are converted to heat at the crack surface. It has been shown that crack closure and closure state impact the resulting heat generation. Despite this, research into the link between partial crack closure and vibrothermography is limited. This work seeks to rectify this gap in knowledge by modeling the behavior of a partially closed crack in response to static external loading and a dynamic vibration. The residual strains left by the plastic wake during fatigue crack growth manifest themselves as contact stresses acting at the crack surface interface. In response to an applied load below the crack opening stress, the crack closure state will evolve, but the crack will remain partially closed. The crack closure model developed in this work is based in linear elastic fracture mechanics (LEFM) and describes the behavior of a partially closed crack in response to a tensile external load and non-uniform closure stress distribution. The model builds on work by Fleck to describe the effective length, crack opening displacement, and crack tip stress field for a partially closed crack. These quantities are solved for by first establishing an equilibrium condition which governs the effective or apparent length of the partially closed crack. The equilibrium condition states that, under any external or crack surface loading, the effective crack tip will be located where the effective stress intensity factor is zero. In LEFM, this is equivalent to

  5. Development and optimization of thermographic techniques for Non-Destructive Evaluation of multilayered structures

    Science.gov (United States)

    Gavrilov, Dmitry J.

    Quality control of modern materials is of the utmost importance in science and industry. Methods for nondestructive evaluation of material properties and the presence of defects are numerous. They differ in terms of their sensitivity and applicability in various conditions, and they provide different kinds of data such as the speed of sound in the material, its hardness, radiation absorption, etc. Based on measured characteristics an analyst makes a decision on the material studied. This work addresses a class of methods known as active thermographic analysis. Thermography analyzes the temperature of the surface of the sample under different external conditions. By keeping track of temperature changes at the surface caused by a deposition of heat on the sample one can determine its material properties such as theand processing the data captured it is possible to make decisions on parameters of this sample. Among the data which can be acquired are such important information as the location of internal defects (e.g., detachments, hollows, inclusions), thickness of the material layers, thermal parameters of the material and the location of internal defects (e.g., detachments, hollows, inclusions). The first part of this research investigates a method for analysis of layered composite materials using the approach based on interference of so called temperature waves. As demonstrated using the expressions derived, one can determine the thermal properties of the layers of the sample by applying a harmonically modulated heat flux to the surfaces and measuring the phase of the periodically changing surface temperature. This approach can be of use in the field of designing and analysis of composite thermal insulation coatings. In the second part of this work a method of analyzing objects of fine art was investigated, particularly - detection of subsurface defects. In the process of preserving art it is of primary importance to determine whether restoration is necessary

  6. Inverse Kinematic Analysis and Evaluation of a Robot for Nondestructive Testing Application

    Directory of Open Access Journals (Sweden)

    Zongxing Lu

    2015-01-01

    Full Text Available The robot system has been utilized in the nondestructive testing field in recent years. However, only a few studies have focused on the application of ultrasonic testing for complex work pieces with the robot system. The inverse kinematics problem of the 6-DOF robot should be resolved before the ultrasonic testing task. A new effective solution for curved-surface scanning with a 6-DOF robot system is proposed in this study. A new arm-wrist separateness method is adopted to solve the inverse problem of the robot system. Eight solutions of the joint angles can be acquired with the proposed inverse kinematics method. The shortest distance rule is adopted to optimize the inverse kinematics solutions. The best joint-angle solution is identified. Furthermore, a 3D-application software is developed to simulate ultrasonic trajectory planning for complex-shape work pieces with a 6-DOF robot. Finally, the validity of the scanning method is verified based on the C-scan results of a work piece with a curved surface. The developed robot ultrasonic testing system is validated. The proposed method provides an effective solution to this problem and would greatly benefit the development of industrial nondestructive testing.

  7. Non-destructive evaluation of timber structures in a historical building of Tiradentes , MG

    Directory of Open Access Journals (Sweden)

    Luciana Barbosa de Abreu

    2013-09-01

    Full Text Available Problems related to the durability of wood are commonly found in historical buildings structures. Preservation and conservation resolutions must be adopted, in order to avoid losses and substitutions, which mischaracterize buildings. Non-destructive methods for detecting deterioration should be used in order to substantiate decisions and increase the longevity of historical heritage. This work was carried out in order to perform non-destructive essays to infer about the integrity of a beam and a pillar of the original construction of the Sobrado Ramalho, a historical building of the city of Tiradentes, MG. The equipments utilized were the Stress Wave Timer and resistograph. Samples of the elements were taken for analysis of density. The results showed that, in both structures, to calculate the dynamic modulus of elasticity, there was no significant difference for the application of stress wave timer on the alignments studied. There was no significant difference between the directions of application of the resistograph on the pillar, due to its apparent entirety and regular sessions, practically square, and to not being loaded eccentrically. In the case of the beam, there was significant difference, presumably because it has cracks in its traction line. The equipments, unknown by professionals of heritage conservation allow promising methodologies for inspection of timber structures in service.

  8. Nondestructive evaluation of the oxidation and strength of the Fort Saint Vrain HTGR support block

    International Nuclear Information System (INIS)

    Tingey, G.L.; Posakony, G.J.; Morgan, W.C.; Prince, J.M.; Hill, R.W.; Lessor, D.L.

    1982-04-01

    Non-destructive detection of changes in the strength of graphite support structures in a HTGR appears to be feasible using sonic velocity measurements where access for through transmission is possible. Therefore, future HTGR designs should consider providing such access. Where access is not available, strength changes can be correlated with oxidation profiles in the support member. These oxidation profiles can be determined non-destructively by a combination of eddy current measurements to detect near surface oxidation and sonic backscattering measurements designed to determine oxidation in depth. The Fort Saint Vrain reactor provides an operating reactor to test the applicability of the eddy current and sonic backscattering techniques for determination of oxidation in a support block. Furthermore, such tests in Fort Saint Vrain will supply base line data which will be useful in assuring an adequate strength of the support structure for the lifetime of the reactor. Equipment is, therefore, being developed for tests to be conducted during the next major refueling of the reactor

  9. Enhancement of nondestructive evaluation techniques for magnetic and nonmagnetic structural components (Final report for doctoral fellowship)

    International Nuclear Information System (INIS)

    Chen, Zhenmao

    2000-03-01

    In this report, research works performed in the Structural Safety Engineering Group of OEC/JNC are summarized as the final report of the doctoral fellowship. The main objective of this study is for the enhancement of the nondestructive evaluation techniques for structural components of both magnetic and nonmagnetic material. Studies in three topics have been carried out aiming at the quantitative evaluation of crack with the eddy current testing and the validation of a natural magnetic field based NDE method for detecting mechanical damages in a paramagnetic material. In the first part of the study, an approach to the reconstruction of the natural crack was proposed and implemented with an idealized crack model for its validation. In the second part, the correlation of the natural magnetization and the mechanical damages in the SUS304 stainless steel was investigated by using an experimental approach. In part 3, an inverse method of the measured magnetic fields is proposed for the reconstruction of magnetic charges in the inspected material by using an optimization method and wavelet. As the first work, an approach to the reconstruction of an idealized natural crack of non-vanishing conductivity is proposed with use of signals of eddy current testing. Two numerical models are introduced at first for modeling the natural crack in order to represented it with a set of crack parameters. A method for the rapid prediction of the eddy current testing signals coming from these idealized cracks is given then by extending a knowledge based fast forward solver to the case of a non-vanishing conductivity. Based on this fast forward solver, the inverse algorithm of conjugate gradient method is updated to identify the crack parameters. Several examples are presented finally as a validation of the proposed strategy. The results show that both the two numerical models can give reasonable reconstruction results for signal of low noise. The model concerning the touch of crack

  10. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor.

    Science.gov (United States)

    Lu, Junjun; Miao, Yuxin; Shi, Wei; Li, Jingxin; Yuan, Fei

    2017-10-26

    RapidSCAN is a new portable active crop canopy sensor with three wavebands in red, red-edge, and near infrared spectral regions. The objective of this study was to determine the potential and practical approaches of using this sensor for non-destructive diagnosis of rice nitrogen (N) status. Sixteen plot experiments and ten on-farm experiments were conducted from 2014 to 2016 in Jiansanjiang Experiment Station of the China Agricultural University and Qixing Farm in Northeast China. Two mechanistic and three semi-empirical approaches using the sensor's default vegetation indices, normalized difference vegetation index and normalized difference red edge, were evaluated in comparison with the top performing vegetation indices selected from 51 tested indices. The results indicated that the most practical and stable method of using the RapidSCAN sensor for rice N status diagnosis is to calculate N sufficiency index with the default vegetation indices and then to estimate N nutrition index non-destructively (R 2  = 0.50-0.59). This semi-empirical approach achieved a diagnosis accuracy rate of 59-76%. The findings of this study will facilitate the application of the RapidSCAN active sensor for rice N status diagnosis across growth stages, cultivars and site-years, and thus contributing to precision N management for sustainable intensification of agriculture.

  11. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  12. Non-destructive electrochemical techniques applied to the corrosion evaluation of the liner structures in nuclear power plants

    International Nuclear Information System (INIS)

    Martinez, I.; Castillo, A.; Andrade, C.

    2008-01-01

    The liner structure in nuclear power plants provides containment for the operation and therefore the study of its durability and integrity during its service life is an important issue. There are several causes for the deterioration of the liner, which in general involve corrosion due to its metallic nature. The present paper is aimed at describing the assessment of corrosion problems of two liners from two different nuclear power plants, which were evaluated using non-destructive electrochemical techniques. In spite of the testing difficulties arisen, from the results extracted it can be concluded that the electrochemical techniques applied are adequate for the corrosion evaluation. They provide important information about the integrity of the structure and allow for its evolution with time to be assessed

  13. Magnetic non-destructive evaluation of ruptures of tensile armor in oil risers

    International Nuclear Information System (INIS)

    Pérez-Benitez, J A; Padovese, L R

    2012-01-01

    Risers are flexible multilayered pipes formed by an inner flexible metal structure surrounded by polymer layers and spiral wound steel ligaments, also known as armor wires. Since these risers are used to link subsea pipelines to floating oil and gas production installations, and their failure could produce catastrophic consequences, some methods have been proposed to monitor the armor integrity. However, until now there is no practical method that allows the automatic non-destructive detection of individual armor wire rupture. In this work we show a method using magnetic Barkhausen noise that has shown high efficiency in the detection of armor wire rupture. The results are examined under the cyclic and static load conditions of the riser. This work also analyzes the theory behind the singular dependence of the magnetic Barkhausen noise on the applied tension in riser armor wires. (paper)

  14. Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing

    International Nuclear Information System (INIS)

    Macedo Silva, Edgard de; Costa de Albuquerque, Victor Hugo; Pereira Leite, Josinaldo; Gomes Varela, Antonio Carlos; Pinho de Moura, Elineudo; Tavares, Joao Manuel R.S.

    2009-01-01

    Duplex stainless steel presents special mechanical properties such as, for example, mechanical and corrosion strength, becoming competitive in relation to the other types of stainless steel. One of the great problems of duplex stainless steel microstructural changes study is related to embrittlement above 300 deg. C, with the precipitation of the α' phase occurring over the ferritic microstructure. Aiming to characterise embrittlement of duplex stainless steel, hardening kinetics, from 425 to 475 deg. C, was analysed through the speed of sound, Charpy impact energy, X-ray diffraction, hardness and microscopy parameters. The presence of two hardening stages, detected through the speed of sound, was observed, one being of brittle characteristic and the other ductile. Moreover, the speed of sound showed a direct correlation with the material's hardness. Thus, it is concluded that the speed of sound is a promising nondestructive parameter to follow-up embrittlement in duplex stainless steel.

  15. Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Macedo Silva, Edgard de, E-mail: edgard@cefetpb.edu.br [Centro federal de Educacao Tecnologica da Paraiba (CEFET PB), Area da Industria, Avenida 1o de Maio, 720 - 58015-430 - Joao Pessoa/PB (Brazil); Costa de Albuquerque, Victor Hugo, E-mail: victor.albuquerque@fe.up.pt [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Pereira Leite, Josinaldo, E-mail: josinaldo@ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Gomes Varela, Antonio Carlos, E-mail: varela@cefetpb.edu.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Pinho de Moura, Elineudo, E-mail: elineudo@pq.cnpq.br [Universidade Federal do Ceara (UFC), Departamento de Engenharia Metalurgica e de Materiais, Campus do Pici, Bloco 715, 60455-760 - Fortaleza/CE (Brazil); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.pt [Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Mecanica e Gestao Industrial (DEMEGI)/Instituto de Engenharia Mecanica e Gestao Industrial - INEGI, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2009-08-15

    Duplex stainless steel presents special mechanical properties such as, for example, mechanical and corrosion strength, becoming competitive in relation to the other types of stainless steel. One of the great problems of duplex stainless steel microstructural changes study is related to embrittlement above 300 deg. C, with the precipitation of the {alpha}' phase occurring over the ferritic microstructure. Aiming to characterise embrittlement of duplex stainless steel, hardening kinetics, from 425 to 475 deg. C, was analysed through the speed of sound, Charpy impact energy, X-ray diffraction, hardness and microscopy parameters. The presence of two hardening stages, detected through the speed of sound, was observed, one being of brittle characteristic and the other ductile. Moreover, the speed of sound showed a direct correlation with the material's hardness. Thus, it is concluded that the speed of sound is a promising nondestructive parameter to follow-up embrittlement in duplex stainless steel.

  16. Non-destructive evaluation methods to improve quality control in low enrichment MTR fuel plate production

    International Nuclear Information System (INIS)

    Milne, J.M.; Lidington, B.; Hawker, B.M.

    1991-01-01

    This paper summarises some preliminary non-destructive measurements made recently at the Harwell Laboratory on a prototype low enrichment MTR fuel plate. The measurements were intended to indicate the potential of two different techniques for improving quality control in plate production. Pulse Video Thermography (PVT) is being considered as an alternative to ultrasound transmission measurements for the detection and sizing of lack of thermal bonding between the fuel and the clad layers, either to verify the indications from the established ultrasonic methods before destroying the plate or as a replacement method of inspection. High frequency pulse-echo ultrasonics is being considered for providing maps of clad layer thickness on each side of the plate. The measurements have indicated the potential for both methods, but more work is required, using a test plate containing controlled defects, to establish their capability. (orig.)

  17. Nondestructive evaluation of defects in carbon fiber reinforced polymer (CFRP) composites

    Science.gov (United States)

    Ngo, Andrew C. Y.; Goh, Henry K. H.; Lin, Karen K.; Liew, W. H.

    2017-04-01

    Carbon fiber reinforced polymer (CFRP) composites are increasingly used in aerospace applications due to its superior mechanical properties and reduced weight. Adhesive bonding is commonly used to join the composite parts since it is capable of joining incompatible or dissimilar components. However, insufficient adhesive or contamination in the adhesive bonds might occur and pose as threats to the integrity of the plane during service. It is thus important to look for suitable nondestructive testing (NDT) techniques to detect and characterize the sub-surface defects within the CFRP composites. Some of the common NDT techniques include ultrasonic techniques and thermography. In this work, we report the use of the abovementioned techniques for improved interpretation of the results.

  18. Multi-resolution analysis for region of interest extraction in thermographic nondestructive evaluation

    Science.gov (United States)

    Ortiz-Jaramillo, B.; Fandiño Toro, H. A.; Benitez-Restrepo, H. D.; Orjuela-Vargas, S. A.; Castellanos-Domínguez, G.; Philips, W.

    2012-03-01

    Infrared Non-Destructive Testing (INDT) is known as an effective and rapid method for nondestructive inspection. It can detect a broad range of near-surface structuring flaws in metallic and composite components. Those flaws are modeled as a smooth contour centered at peaks of stored thermal energy, termed Regions of Interest (ROI). Dedicated methodologies must detect the presence of those ROIs. In this paper, we present a methodology for ROI extraction in INDT tasks. The methodology deals with the difficulties due to the non-uniform heating. The non-uniform heating affects low spatial/frequencies and hinders the detection of relevant points in the image. In this paper, a methodology for ROI extraction in INDT using multi-resolution analysis is proposed, which is robust to ROI low contrast and non-uniform heating. The former methodology includes local correlation, Gaussian scale analysis and local edge detection. In this methodology local correlation between image and Gaussian window provides interest points related to ROIs. We use a Gaussian window because thermal behavior is well modeled by Gaussian smooth contours. Also, the Gaussian scale is used to analyze details in the image using multi-resolution analysis avoiding low contrast, non-uniform heating and selection of the Gaussian window size. Finally, local edge detection is used to provide a good estimation of the boundaries in the ROI. Thus, we provide a methodology for ROI extraction based on multi-resolution analysis that is better or equal compared with the other dedicate algorithms proposed in the state of art.

  19. Material aging and degradation detection and remaining life assessment for plant life management

    International Nuclear Information System (INIS)

    Ramuhalli, P.; Henager, C.H. Jr.; Griffin, J.W.; Meyer, R.M.; Coble, J.B.; Pitman, S.G.; Bond, L.J.

    2012-01-01

    One of the major factors that may impact long-term operations is structural material degradation. Detecting materials degradation, estimating the remaining useful life (RUL) of the component, and determining approaches to mitigating the degradation are important from the perspective of long-term operations. In this study, multiple nondestructive measurement and monitoring methods were evaluated for their ability to assess the material degradation state. Metrics quantifying the level of damage from these measurements were defined and evaluated for their ability to provide estimates of remaining life of the component. An example of estimating the RUL from nondestructive measurements of material degradation condition is provided. (author)

  20. Evaluation of proposed degradation algorithms for multiburst environments

    International Nuclear Information System (INIS)

    Olness, D.U.; Warshawsky, A.S.

    1993-01-01

    This work is part of an ongoing effort of the Defense Nuclear Agency's Intermediate Dose Program to investigate the effects of intermediate radiation doses on combat unit performance. The objective of this study is to develop an improved technique for applying performance degradation factors to combat crews in simulated battles following multiple radiation doses on the tactical battlefield. A further objective of the study is to quantify differences in Janus results when crew performance factors, following multiple radiation doses, are obtained from the improved technique instead of from the technique used previously. In this paper, the authors describe and evaluate three methods previously identified for determining performance degradation from multiple exposures. They also present the observed quantitative differences in outcomes of conventional battles begun a few hours after multiple radiation exposures when alternate techniques for calculating combat crew performance degradation factors are included in the Janus combat simulation

  1. Nondestructive evaluation algorithm of fatigue cracks and far-side corrosion around a rivet fastener in multi-layered structures

    Energy Technology Data Exchange (ETDEWEB)

    Le, Min Hhuy; Kim, Jung Min [Research Center for IT-based Real Time NDT for Nano-Damage Tolerance, Chosun University, Gwangju (Korea, Republic of); Kim, Sejin; Wang, Dabin [Dept. of Control and Instrumentation Engineering, Graduate School, Chosun University, Gwangju (Korea, Republic of); Hwang, Young Ha [Avionics System Technology Center, KITECH, Youngcheon (Korea, Republic of)

    2016-09-15

    This research proposes a nondestructive inspection system for inspecting and localizing corrosion and fatigue cracks around rivets in air-intake structures. The system uses 64 InSb Hall sensor elements arrayed at a high spatial interval of 0.52 mm. Rivet detection and damage detection algorithms will be proposed. Analysis of the receiver operating characteristic curve and Probability of detection (POD) will be carried out to evaluate the performance of the system and detection algorithms. Artificial corrosion around a rivet with a minimum volume of 11.02 mm{sup 3} could be detected with 90/95% POD and artificial fatigue crack with minimum length of 2.95 mm from rivet body.

  2. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P. [Riso National Lab. (Denmark)

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  3. SAFT-assisted sound beam focusing using phased arrays (PA-SAFT) for non-destructive evaluation

    Science.gov (United States)

    Nanekar, Paritosh; Kumar, Anish; Jayakumar, T.

    2015-04-01

    Focusing of sound has always been a subject of interest in ultrasonic non-destructive evaluation. An integrated approach to sound beam focusing using phased array and synthetic aperture focusing technique (PA-SAFT) has been developed in the authors' laboratory. The approach involves SAFT processing on ultrasonic B-scan image collected by a linear array transducer using a divergent sound beam. The objective is to achieve sound beam focusing using fewer elements than the ones required using conventional phased array. The effectiveness of the approach is demonstrated on aluminium blocks with artificial flaws and steel plate samples with embedded volumetric weld flaws, such as slag and clustered porosities. The results obtained by the PA-SAFT approach are found to be comparable to those obtained by conventional phased array and full matrix capture - total focusing method approaches.

  4. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Science.gov (United States)

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  5. The study on nondestructive evaluation for a tubular structure by the lamb-type guided wave wedge

    International Nuclear Information System (INIS)

    Cho, Yun Ho; Park, Jung Chul

    1998-01-01

    The study on the cylindrical guided wave was carried out to investigate its feasibility for nondestructive evaluation of tubular structures such as heat exchanger tubings of power industries and various pipings of chemical plants. The concept of wedge design and incident angle selection to optimize guided wave generation is presented based on the dispersion theory and the snell's law for the cylindrical guided wave. The brass tubes with artificial defects in the circumferential or axial direction were used for detect defection experiments. It was found that guided wave sensitivity for detecting an axial defect can be remarkably improved by using non-axisymmetrically launched guided waves. Through this study, it is expected that the guided wave can be successfully applied to tubular structure inspections as an more advanced and efficient NDE technique than a conventional point-by-point technique.

  6. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    International Nuclear Information System (INIS)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-01-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today

  7. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Ahmad Zaki

    2015-08-01

    Full Text Available Corrosion of reinforced concrete (RC structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.

  8. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for X-ray computed tomography (CT) test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of X-ray computed tomography (CT) imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information object definitio...

  9. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for digital radiographic (DR) test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of digital X-ray imaging equipment by specifying image data transfer and archival methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information object definitions, information modules and a ...

  10. Evaluation of diagnostic technique for degradation of low-voltage electric cables with silicone rubber insulator

    International Nuclear Information System (INIS)

    Mikami, Masao

    2005-01-01

    As a part of countermeasures against ageing problems of nuclear power plants, it is requested to establish non-destructive diagnostic technique for their degradation of low voltage electric cables and assessment standard of their life. Having aimed at investigating the degradation of low-voltage electric cable with silicone rubber insulator, change of its surface hardness at elevated temperature were measured by indenter modules. Moreover, we also measured the elongation at break, which is regarded as general degradation index of electric cables, and the surface hardness with a micro hardness meter. Consequently, it is seen that the indenter modulus measurement is (1) capable to obtain general feature of the thermal degradation of silicone rubber insulator, (2) applicable to diagnose the degree of degradation of the electric cable by converting the result to elongation at break, (3) well correlated with the hardness measurement of the electric cable with the micro hardness meter. (author)

  11. Evaluation of Kalman filters and genetic algorithms for delayed-neutron nondestructive assay data analyses

    International Nuclear Information System (INIS)

    Aumeier, S.E.; Forsmann, J.H.

    1998-01-01

    The ability to nondestructively determine the presence and quantity of fissile/fertile nuclei in various matrices is important in several areas of nuclear applications, including international and domestic safeguards, radioactive waste characterization, and nuclear facility operations. An analysis was performed to determine the feasibility of identifying the masses of individual fissionable isotopes from a cumulative delayed-neutron signal resulting form the neutron irradiation of several uranium and plutonium isotopes. The feasibility of two separate data-processing techniques was studied: Kalman filtering and genetic algorithms. The basis of each technique is reviewed, and the structure of the algorithms as applied to the delayed-neutron analysis problem is presented. The results of parametric studies performed using several variants of the algorithms are presented. The effect of including additional constraining information such as additional measurements and known relative isotopic concentration is discussed. The parametric studies were conducted using simulated delayed-neutron data representative of the cumulative delayed-neutron response following irradiation of a sample containing 238 U, 235 U, 239 Pu, and 240 Pu. The results show that by processing delayed-neutron data representative of two significantly different fissile/fertile fission ratios, both Kalman filters and genetic algorithms are capable of yielding reasonably accurate estimates of the mass of individual isotopes contained in a given assay sample

  12. Evaluation of Creep-Fatigue Damage in 304 Stainless Steel using Ultrasonic Non-Destructive Test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Sik [Safetech Co. Ltd., Kimhae (Korea, Republic of); Oh, Yong Jun [Hanbat National Univ., Daejon (Korea, Republic of); Nam, Soo Woo [KISTI ReSEAT Program, Seoul (Korea, Republic of)

    2011-12-15

    It is well known that grain boundary cavitation is the main failure mechanism in austenitic stainless steel under tensile hold creep-fatigue interaction conditions. The cavities are nucleated at the grain boundary during cyclic loading and grow to become grain boundary cracks. The attenuation of ultrasound depends on scattering and absorption in polycrystalline materials. Scattering occurs when a propagation wave encounters microstructural discontinuities, such as internal voids or cavities. Since the density of the creepfatigue cavities increases with the fatigue cycles, the attenuation of ultrasound will also be increased with the fatigue cycles and this attenuation can be detected nondestructively. In this study, it is found that individual grain boundary cavities are formed and grow up to about 100 cycles and then, these cavities coalesce to become cracks. The measured ultrasonic attenuation increased with the cycles up to cycle 100, where it reached a maximum value and then decreased with further cycles. These experimental measurements strongly indicate that the open pores of cavities contribute to the attenuation of ultrasonic waves. However, when the cavities develop, at the grain boundary cracks whose crack surfaces are in contact with each other, there is no longer any open space and the ultrasonic wave may propagate across the cracks. Therefore, the attenuation of ultrasonic waves will be decreased. This phenomenon of maximum attenuation is very important to judge the stage of grain boundary crack development, which is the indication of the dangerous stage of the structures.

  13. Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs.

    NARCIS (Netherlands)

    Blum, J.S.; Temenoff, J.S.; Park, H.; Jansen, J.A.; Mikos, A.G.; Barry, M.A.

    2004-01-01

    This study investigates the utility of genetically modified cells developed for the qualitative and quantitative non-destructive evaluation of cells on biomaterials. The Fisher rat fibroblastic cell line has been genetically modified to stably express the reporter genes enhanced green fluorescence

  14. Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools : a guide for use and interpretation

    Science.gov (United States)

    Xiping Wang; Ferenc Divos; Crystal Pilon; Brian K. Brashaw; Robert J. Ross; Roy F. Pellerin

    2004-01-01

    This guide was prepared to assist field foresters in the use of stress wave timing instruments to locate and define areas of decay in standing timber. The first three sections provide background information, the principles of stress wave nondestructive testing, and measurement techniques for stress wave nondestructive testing. The last section is a detailed description...

  15. Nondestructive testing: welding industry

    International Nuclear Information System (INIS)

    Raj, Baldev; Subramanian, C.V.

    1992-01-01

    This chapter highlights various conventional and advanced nondestructive testing (NDT) techniques that have been used for weld evaluation. Welding Codes and Standards of International and National organisations that have been followed in India for various weld evaluation purposes are also included. The chapter also emphasises the importance of NDT by way of a few case studies that have been carried out on important critical welded components. (author). 12 refs., 17 figs., 1 appendix

  16. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  17. Evaluation of Cs-134 and Cs-137 in sugar by non-destructive analysis

    Energy Technology Data Exchange (ETDEWEB)

    Correira, Filipe Lopes de Barros; Santos Júnior, José Araújo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Medeiros, Nilson Vicente da Silva; Santos Junior, Otávio Pereira dos, E-mail: filipelbck@gmail.com, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: josineide.santos@ufpe.br, E-mail: nilson.medeiros@ufpe.br, E-mail: otavio.santos@vitoria.ifpe.edu.br [Universidade Federal de Pernambuco (RAE/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Grupo de Radioecologia; Vieira, José Wilson, E-mail: jose.wilson59@uol.com.br [Instituto Federal de Pernambuco (IFPE), Recife (Brazil); Valois, Rhaiana Caminha, E-mail: rhaianavalois@hotmail.com [Colégio Militar do Recife, PE (Brazil)

    2017-07-01

    The spread of anthropogenic radioisotopes in the environment comes from nuclear tests and accidents that occurred in the past, which justifies constant monitoring, to guarantee the safety and control of the activities that involve these applications. Brazil, when exporting some food products, depending on the country of origin, a radiometric report is required, especially for sugar that has high world consumption and the possibility of contamination of the population, when radioisotope is present. Therefore, the investigation of the levels of Cs-134 and Cs-137 in sugar matrices is necessary to predict radioecological emergency situations. The National Nuclear Energy Commission, the agency that oversees nuclear applications in Brazil, With Resolution No. 102 of December 22, 2010 approved regulatory positions, including levels of action for food control, recommended to restrict the marketing of food products in Brazil. General, whose specific activity is higher than the limit of 1.0 kBq / kg for the said isotopes of cesium independently. Aiming for improvements in the analyzes that are already performed in the Laboratory of Radioecology and Environmental Control of the Department of Nuclear Energy of the Federal University of Pernambuco to assurance the quality of sugar marketed in Brazil, a standard procedure for the analysis of these radionuclides in this matrix was determined. High resolution gamma spectrometry with non-destructive analysis was used to perform the tests. Priority was given to parameters that directly influence the qualitative and quantitative analysis of these radioactive elements, such as calibration in energy and efficiency, resolution, influence of self-absorption, counting statistics directly associated with the time of analysis, influence of background radiation and geometry analysis. (author)

  18. Ultrasonic imaging algorithms with limited transmission cycles for rapid nondestructive evaluation.

    Science.gov (United States)

    Moreau, Ludovic; Drinkwater, Bruce W; Wilcox, Paul D

    2009-09-01

    Imaging algorithms recently developed in ultrasonic nondestructive testing (NDT) have shown good potential for defect characterization. Many of them are based on the concept of collecting the full matrix of data, obtained by firing each element of an ultrasonic phased array independently, while collecting the data with all elements. Because of the finite sound velocity in the test structure, 2 consecutive firings must be separated by a minimum time interval. Depending on the number of elements in a given array, this may become problematic if data must be collected within a short time, as it is often the case, for example, in an industrial context. An obvious way to decrease the duration of data capture is to use a sparse transmit aperture, in which only a restricted number of elements are used to transmit ultrasonic waves. This paper compares 2 approaches aimed at producing an image on the basis of restricted data: the common source method and the effective aperture technique. The effective aperture technique is based on the far-field approximation, and no similar approach exists for the near-field. This paper investigates the performance of this technique in near-field conditions, where most NDT applications are made. First, these methods are described and their point spread functions are compared with that of the Total Focusing Method (TFM), which consists of focusing the array at every point in the image. Then, a map of efficiency is given for the different algorithms in the near-field. The map can be used to select the most appropriate algorithm. Finally, this map is validated by testing the different algorithms on experimental data.

  19. Evaluation of Cs-134 and Cs-137 in sugar by non-destructive analysis

    International Nuclear Information System (INIS)

    Correira, Filipe Lopes de Barros; Santos Júnior, José Araújo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Medeiros, Nilson Vicente da Silva; Santos Junior, Otávio Pereira dos; Valois, Rhaiana Caminha

    2017-01-01

    The spread of anthropogenic radioisotopes in the environment comes from nuclear tests and accidents that occurred in the past, which justifies constant monitoring, to guarantee the safety and control of the activities that involve these applications. Brazil, when exporting some food products, depending on the country of origin, a radiometric report is required, especially for sugar that has high world consumption and the possibility of contamination of the population, when radioisotope is present. Therefore, the investigation of the levels of Cs-134 and Cs-137 in sugar matrices is necessary to predict radioecological emergency situations. The National Nuclear Energy Commission, the agency that oversees nuclear applications in Brazil, With Resolution No. 102 of December 22, 2010 approved regulatory positions, including levels of action for food control, recommended to restrict the marketing of food products in Brazil. General, whose specific activity is higher than the limit of 1.0 kBq / kg for the said isotopes of cesium independently. Aiming for improvements in the analyzes that are already performed in the Laboratory of Radioecology and Environmental Control of the Department of Nuclear Energy of the Federal University of Pernambuco to assurance the quality of sugar marketed in Brazil, a standard procedure for the analysis of these radionuclides in this matrix was determined. High resolution gamma spectrometry with non-destructive analysis was used to perform the tests. Priority was given to parameters that directly influence the qualitative and quantitative analysis of these radioactive elements, such as calibration in energy and efficiency, resolution, influence of self-absorption, counting statistics directly associated with the time of analysis, influence of background radiation and geometry analysis. (author)

  20. Nondestructive testing method

    International Nuclear Information System (INIS)

    Porter, J.F.

    1996-01-01

    Nondestructive testing (NDT) is the use of physical and chemical methods for evaluating material integrity without impairing its intended usefulness or continuing service. Nondestructive tests are used by manufaturer's for the following reasons: 1) to ensure product reliability; 2) to prevent accidents and save human lives; 3) to aid in better product design; 4) to control manufacturing processes; and 5) to maintain a uniform quality level. Nondestructive testing is used extensively on power plants, oil and chemical refineries, offshore oil rigs and pipeline (NDT can even be conducted underwater), welds on tanks, boilers, pressure vessels and heat exchengers. NDT is now being used for testing concrete and composite materials. Because of the criticality of its application, NDT should be performed and the results evaluated by qualified personnel. There are five basic nondestructive examination methods: 1) liquid penetrant testing - method used for detecting surface flaws in materials. This method can be used for metallic and nonmetallic materials, portable and relatively inexpensive. 2) magnetic particle testing - method used to detect surface and subsurface flaws in ferromagnetic materials; 3) radiographic testing - method used to detect internal flaws and significant variation in material composition and thickness; 4) ultrasonic testing - method used to detect internal and external flaws in materials. This method uses ultrasonics to measure thickness of a material or to examine the internal structure for discontinuities. 5) eddy current testing - method used to detect surface and subsurface flaws in conductive materials. Not one nondestructive examination method can find all discontinuities in all of the materials capable of being tested. The most important consideration is for the specifier of the test to be familiar with the test method and its applicability to the type and geometry of the material and the flaws to be detected

  1. Photocatalytic degradation of rosuvastatin: Analytical studies and toxicity evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Tiele Caprioli, E-mail: tiele@enq.ufrgs.br [Chemical Engineering Department, Federal University of Rio Grande do Sul, Rua Engenheiro Luiz Englert s/n, CEP: 90040-040 Porto Alegre, RS (Brazil); Pizzolato, Tânia Mara [Chemical Institute, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Arenzon, Alexandre [Ecology Center, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Segalin, Jeferson [Biotechnology Center, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Lansarin, Marla Azário [Chemical Engineering Department, Federal University of Rio Grande do Sul, Rua Engenheiro Luiz Englert s/n, CEP: 90040-040 Porto Alegre, RS (Brazil)

    2015-01-01

    Photocatalytic degradation of rosuvastatin, which is a drug that has been used to reduce blood cholesterol levels, was studied in this work employing ZnO as catalyst. The experiments were carried out in a temperature-controlled batch reactor that was irradiated with UV light. Preliminary the effects of the photocatalyst loading, the initial pH and the initial rosuvastatin concentration were evaluated. The experimental results showed that rosuvastatin degradation is primarily a photocatalytic process, with pseudo-first order kinetics. The byproducts that were generated during the oxidative process were identified using nano-ultra performance liquid chromatography tandem mass spectrometry (nano-UPLC–MS/MS) and acute toxicity tests using Daphnia magna were done to evaluate the toxicity of the untreated rosuvastatin solution and the reactor effluent. - Highlights: • The photocatalytic degradation of rosuvastatin was studied under UV irradiation. • Commercial catalyst ZnO was used. • Initial rosuvastatin concentration, photocatalyst loading and pH were evaluated. • The byproducts generated during the oxidative process were detected and identified. • Acute toxicity tests using Daphnia magna were carried out.

  2. Evaluation of non-destructive density determination for QA/QC acceptance testing : research project capsule.

    Science.gov (United States)

    2017-08-01

    LTRCs Geotechnical and Asphalt groups will be conducting two separate field and laboratory evaluations. The Geotechnical group will evaluate field densities of soil layers and the asphalt group will evaluate field densities on asphalt pavement lay...

  3. The evaluation of the status of nondestructive testing (NDT) companies in the Philippines

    International Nuclear Information System (INIS)

    Mateo, Alejandro J.

    2002-10-01

    This research study assessed the present status of the NDT companies practicing the five techniques and methods in nondestructive testing and found answers to the following questions: what is the profile of the NDT companies and NDT personnel in terms of type, category of the company, number of years in operation, capitalization, nature of NDT services offered, number of certified NDT personnel their age, sex, marital status, educational attainment, monthly salary, NDT training and work experience of NDT personnel; what is the level of adequacy of the NDT companies based on the following organization-related factors: financial support human resources, availability of NDT/office equipment/vehicles, available facilities and quality systems; what is the status of the NDT companies in terms of level of performance, in-house activities, level of competitiveness and conformity with PNS-146:1998; are there significant differences in the perceptions of the respondent's on the status of the NDT companies when grouped according to age, sex, salary, work experience; and what personal and organizational-related factors affect the status of the NDT companies. The research study provided for the researcher an opportunity to identify and analyse the problems and concern of the local NDT sector to be able to recommend solutions for the NDT to attain the status of a profession and/or career and with all NDT companies and NDT personnel act as professionals in the performance of NDT services and other NDT-related activities. The study will achieve the following objectives: to the accredited NDT companies, the accreditation will provide the recognition of the companies as to the quality of personnel, equipment, and services they provide to the client; to the client, the accredited NDT companies will provide the assurance of the quality of personnel, equipment and service provided; to the other NDT companies, the accreditation of the NDT company will provide the impetus that they

  4. Evaluation of X-ray System for Nondestructive Testing on Radioactive Waste Drums

    International Nuclear Information System (INIS)

    Park, Jong Kil; Maeng, Seong Jun; Lee, Yeon Ee; Hwang, Tae Won

    2008-01-01

    The physical and chemical properties of radioactive waste drums, which have been temporarily stored on site, should be characterized before their shipment to a disposal facility in order to prove that the properties meet the acceptance guideline. The investigation of NDT(Nondestructive Test) method was figured out that the contents in drum, the quantitative analysis of free standing water and void fraction can be examined with X-ray NDT techniques. This paper describes the characteristics of X-ray NDT such as its principles, the considerations for selection of X-ray system, etc. And then, the waste drum characteristics such as drum type and dimension, contents in drum, etc. were examined, which are necessary to estimate the optimal X-ray energy for NDT of a drum. The estimation results were that: the proper X-ray energy is under 3 MeV to test the drums of 320 β and less; both X-ray systems of 450 keV and/or 3 MeV might be needed considering the economical efficiency and the realization. The number of drums that can be tested with 450 keV and 3 MeV X-ray system was figured out as 42,327 and 18,105 drums (based on storage of 2006. 12), respectively. Four testing scenarios were derived considering equipment procurement method, outsourcing or not, etc. The economical and feasibility assessment for the scenarios was resulted in that an optimal scenario is dependent on the acceptance guide line, the waste generator's policy on the waste treatment and the delivery to a disposal facility, etc. For example, it might be desirable that a waste generator purchases two 450 keV mobile system to examine the drums containing low density waste, and that outsourcing examination for the high density drums, if all NDT items such as quantitative analysis for 'free standing water' and 'void fraction', and confirmation of contents in drum have to be characterized. However, one 450 keV mobile system seems to be required to test only the contents in 13,000 drums per year.

  5. Nondestructive examination requirements for PWR vessel internals

    International Nuclear Information System (INIS)

    Spanner, J.

    2015-01-01

    This paper describes the requirements for the nondestructive examination of pressurized water reactor (PWR) vessel internals in accordance with the requirements of the EPRI Material Reliability Program (MRP) inspection standard for PWR internals (MRP-228) and the American Society of Mechanical Engineers Section XI In-service Inspection. The MRP vessel internals examinations have been performed at nuclear plants in the USA since 2009. The objective of the inspection standard is to provide the requirements for the nondestructive examination (NDE) methods implemented to support the inspection and evaluation of the internals. The inspection standard contains requirements specific to the inspection methodologies involved as well as requirements for qualification of the NDE procedures, equipment and personnel used to perform the vessel internals inspections. The qualification requirements for the NDE systems will be summarized. Six PWR plants in the USA have completed inspections of their internals using the Inspection and Evaluation Guideline (MRP-227) and the Inspection Standard (MRP-228). Examination results show few instances of service-induced degradation flaws, as expected. The few instances of degradation have mostly occurred in bolting

  6. The Effect of Localized Damage on the Electrical Conductivity of Bare Carbon Fiber Tow and its Use as a Non-Destructive Evaluation Tool for Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Wentzel, Daniel

    2015-01-01

    Composite materials are beneficial because of their high specific strength and low weight. Safety, Destructive testing and destructive testing, Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE). Problem: Neither NDT nor NDE can provide sufficient data to determine life expectancy or quantify the damage state of a composite material.

  7. Evaluating prestressing strands and post-tensioning cables in concrete structures using nondestructive methods.

    Science.gov (United States)

    2015-11-01

    The objectives were to evaluate the ability of different NDE methods to detect and quantify : defects associated with corrosion of steel reinforcement and grout defects in post-tensioning : applications; and to evaluate the effectiveness of selected ...

  8. Pilot study to examine use of transverse vibration nondestructive evaluation for assessing floor systems

    Science.gov (United States)

    Zhiyong. Cai; Robert J. Ross; Michael O. Hunt; Lawrence A. Soltis

    2002-01-01

    Evaluation of existing timber structures requires procedures to evaluate in situ structural members and components. This report evaluates the transverse vibration response of laboratory-built floor systems with new and salvaged joists. The objectives were to 1) compare floor system response to individual member response; 2) examine response sensitivity to location of...

  9. Simulation of deformation on aged concrete dam using the date of nondestructive evaluation

    International Nuclear Information System (INIS)

    Kobori, O.; Yamaguchi, S.; Udagawa, Y.; Hirano, M.

    2006-01-01

    Stress and deformation analysis was achieved by FEM in this paper. The simulation model is concrete dam constructed more than twenty years ago and pointed out the degradation year by year such as Alkali-aggregate reaction and salt. At first to have the useful numerical data, ultrasonic traveling velocity was measured in the field. Crack length and wide are inspected by observation. And sampling cores were extracted from several spots. Elastic constants (Young's Modulus and Poisson's ratio) and density of material in dam are decided from the experimental results. Deformation and Stress distribution to horizontal and vertical cracks, crack length were calculated by FEM with some assumption, considering the boundary conditions, earth pressure, existence of additional pressure. Simulation results is shown that, distortion of the dam is now small to the only earth pressure as it is, horizontal crack will cause the more displacement than crack, and high stress occurs around the cracks.

  10. A Study on Nondestructive Technique Using Laser Technique for Evaluation of Carbon fiber Reinforced Plastic

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun; Seo, Kyeong Cheol; Byun, Joon Hyung

    2005-01-01

    Fiber reinforced plastic material should be inspected in fabrication process in order to enhance quality by prevent defects such as delamination and void. Generally, ultrasonic technique is widely used to evaluate FRP. In conventional ultrasonic techniques, transducer should be contacted on FRP. However, conventional contacting method could not be applied in fabrication process and novel non-contact evaluating technique was required. Laser-based ultrasonic technique was tried to evaluate CFRP plate. Laser-based ultrasonic waves propagated on CFRP were received with various transducers such as accelerometer and AE sensor in order to evaluate the properties of waves due to the variation of frequency. Velocities of laser-based ultrasonic waves were evaluated for various fiber orientation. In addition, laser interferometry was used to receive ultrasonic wave in CFRP and frequency was analysed

  11. Degradation of the ethyl glucuronide content in hair by hydrogen peroxide and a non-destructive assay for oxidative hair treatment using infra-red spectroscopy.

    Science.gov (United States)

    Ammann, Dominic; Becker, Roland; Kohl, Anka; Hänisch, Jessica; Nehls, Irene

    2014-11-01

    The assessment of quantification results of the alcohol abuse marker ethyl glucuronide (EtG) in hair in comparison to the cut-off values for the drinking behavior may be complicated by cosmetic hair bleaching. Thus, the impact of increasing exposure to hydrogen peroxide on the EtG content of hair was investigated. Simultaneously, the change of absorbance in the range of 1000-1100 cm(-1) indicative for the oxidation of cystine was investigated non-destructively by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) using pulverized portions of the respective hair samples. Hair samples treated with hydrogen peroxide consistently displayed a significantly increased absorbance at 1040 cm(-1) associated with the formation of cysteic acid. The EtG content decreased significantly if the hair was treated with alkaline hydrogen peroxide as during cosmetic bleaching. It could be shown that ATR-FTIR is capable of detecting an exposure to hydrogen peroxide when still no brightening was visible and already before the EtG content deteriorated significantly. Thus, hair samples suspected of having been exposed to oxidative treatment may be checked non-destructively by a readily available technique. This assay is also possible retrospectively after EtG extraction and using archived samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Vormelker, P.

    2009-07-31

    Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

  13. Nondestructive analysis and development

    Science.gov (United States)

    Moslehy, Faissal A.

    1993-01-01

    This final report summarizes the achievements of project #4 of the NASA/UCF Cooperative Agreement from January 1990 to December 1992. The objectives of this project are to review NASA's NDE program at Kennedy Space Center (KSC) and recommend means for enhancing the present testing capabilities through the use of improved or new technologies. During the period of the project, extensive development of a reliable nondestructive, non-contact vibration technique to determine and quantify the bond condition of the thermal protection system (TPS) tiles of the Space Shuttle Orbiter was undertaken. Experimental modal analysis (EMA) is used as a non-destructive technique for the evaluation of Space Shuttle thermal protection system (TPS) tile bond integrity. Finite element (FE) models for tile systems were developed and were used to generate their vibration characteristics (i.e. natural frequencies and mode shapes). Various TPS tile assembly configurations as well as different bond conditions were analyzed. Results of finite element analyses demonstrated a drop in natural frequencies and a change in mode shapes which correlate with both size and location of disbond. Results of experimental testing of tile panels correlated with FE results and demonstrated the feasibility of EMA as a viable technique for tile bond verification. Finally, testing performed on the Space Shuttle Columbia using a laser doppler velocimeter demonstrated the application of EMA, when combined with FE modeling, as a non-contact, non-destructive bond evaluation technique.

  14. Ultrasonic Imaging Technology Helps American Manufacturer of Nondestructive Evaluation Equipment Become More Competitive in the Global Market

    Science.gov (United States)

    1995-01-01

    Sonix, Inc., of Springfield, Virginia, has implemented ultrasonic imaging methods developed at the NASA Lewis Research Center. These methods have heretofore been unavailable on commercial ultrasonic imaging systems and provide significantly more sensitive material characterization than conventional high-resolution ultrasonic c-scanning. The technology transfer is being implemented under a cooperative agreement between NASA and Sonix, and several invention disclosures have been submitted by Dr. Roth to protect Lewis interests. Sonix has developed ultrasonic imaging systems used worldwide for microelectronics, materials research, and commercial nondestructive evaluation (NDE). In 1993, Sonix won the U.S. Department of Commerce "Excellence in Exporting" award. Lewis chose to work with Sonix for two main reasons: (1) Sonix is an innovative leader in ultrasonic imaging systems, and (2) Sonix was willing to apply the improvements we developed with our in-house Sonix equipment. This symbiotic joint effort has produced mutual benefits. Sonix recognized the market potential of our new and highly sensitive methods for ultrasonic assessment of material quality. We, in turn, see the cooperative effort as an effective means for transferring our technology while helping to improve the product of a domestic firm.

  15. Research Developments in Nondestructive Evaluation and Structural Health Monitoring for the Sustainment of Composite Aerospace Structures at NASA

    Science.gov (United States)

    Cramer, K. Elliott

    2016-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable both the use and sustainment of composites in commercial aircraft structures. One key to the sustainment of these large composite structures is the rapid, in-situ characterization of a wide range of potential defects that may occur during the vehicle's life. Additionally, in many applications it is necessary to monitor changes in these materials over their lifetime. Quantitative characterization through Nondestructive Evaluation (NDE) of defects such as reduced bond strength, microcracking, and delamination damage due to impact, are of particular interest. This paper will present an overview of NASA's applications of NDE technologies being developed for the characterization and sustainment of advanced aerospace composites. The approaches presented include investigation of conventional, guided wave, and phase sensitive ultrasonic methods and infrared thermography techniques for NDE. Finally, the use of simulation tools for optimizing and validating these techniques will also be discussed.

  16. Nondestructive pavement evaluation using finite element analysis based soft computing models.

    Science.gov (United States)

    2009-09-15

    Evaluating structural condition of existing, in-service pavements constitutes annually a major part of the : maintenance and rehabilitation activities undertaken by State Highway Agencies (SHAs). Accurate : estimation of pavement geometry and layer m...

  17. Testing an Impedance Non-destructive Method to Evaluate Steel-Fiber Concrete Samples

    Science.gov (United States)

    Komarkova, Tereza; Fiala, Pavel; Steinbauer, Miloslav; Roubal, Zdenek

    2018-02-01

    Steel-fiber reinforced concrete is a composite material characterized by outstanding tensile properties and resistance to the development of cracks. The concrete, however, exhibits such characteristics only on the condition that the steel fibers in the final, hardened composite have been distributed evenly. The current methods to evaluate the distribution and concentration of a fiber composite are either destructive or exhibit a limited capability of evaluating the concentration and orientation of the fibers. In this context, the paper discusses tests related to the evaluation of the density and orientation of fibers in a composite material. Compared to the approaches used to date, the proposed technique is based on the evaluation of the electrical impedance Z in the band close to the resonance of the sensor-sample configuration. Using analytically expressed equations, we can evaluate the monitored part of the composite and its density at various depths of the tested sample. The method employs test blocks of composites, utilizing the resonance of the measuring device and the measured sample set; the desired state occurs within the interval of between f=3 kHz and 400 kHz.

  18. Development of nondestructive evaluation of creep-fatigue damage in SUS316 stainless steel

    International Nuclear Information System (INIS)

    Shoji, Tetsuo; Kawahara, Tetsuji; Awano, Masakazu; Sato, Yasumoto

    1999-01-01

    Creep-fatigue is a fatal failure mode of high temperature structural materials. It is recognized that the law of linear damage, according to which creep-fatigue damage is expressed by the sum of the creep damage and the fatigue damage, is inadequate to evaluate creep-fatigue damage. This is due to the fact that the law of linear damage does not include the effect of interaction between the creep damage and the fatigue damage. Consequently, development of direct measurement of damage accumulation on the sample of interest is required for plant life evaluation. In this study, the induced current focusing potential drop (ICFPD) technique was used to evaluate the depth of small surface cracks in SUS316FR stainless steel which was subjected to creep-fatigue damage. It is shown that the potential drop increased during the micro-crack initiation and propagation. Correspondingly, the ICFPD technique applied to estimate micro-crack depth changes was used to accurately evaluate the residual life of creep-fatigue damaged structural materials. (author)

  19. Evaluation of cable aging degradation based on plant operating condition

    International Nuclear Information System (INIS)

    Kim, Jong-Seog

    2005-01-01

    Extending the lifetime of nuclear power plant [(hereafter referred simply as ''NPP'')] is one of the most important concerns in the world nuclear industry. Cables are one of the long live items which have not been considered to be replaced during the design life of NPP. To extend the cable life beyond the design life, we need to prove that the design life is too conservative compared with the actual aging. Condition monitoring is one of the useful ways for evaluating the aging condition of cable. In order to simulate the natural aging in nuclear power plant, a study on accelerated aging needs to be conducted first. In this paper, evaluations of mechanical aging degradation for cable jacket were performed after accelerated aging under the continuous heating and intermittent heating. Contrary to general expectation, the intermittent heating to cable jacket showed low aging degradation, 50% break-elongation and 60% indenter modulus, compared with continuous heating. With the plant maintenance period of 1 month after every 12 or 18 months operation, we can easily deduce that the life time of cable jacket can be extended much longer than estimated through the general EQ (Environmental Qualification) test, which adopts continuous accelerated aging for determining cable life. Therefore, a systematic approach which considers the actual environment condition of nuclear power plant is required for determining the life of cables. (author)

  20. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactor (NDE Reliability) program at the Pacific Northwest Laboratory was established by the NRC to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1986 through September 1987

  1. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) program at the Pacific Northwest Laboratory was established by the NRC to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1986 through September 1987. (author)

  2. Short time evaluation of metallic materials' fatigue potential combining destructive and non-destructive testing methods

    International Nuclear Information System (INIS)

    Starke, Peter; Wu, Haoran; Boller, Christian

    2015-01-01

    Fatigue of engineering structures is an issue from an engineering design point. The lifetime of materials being subject to repeated mechanical loads is limited. Different examples of failures and fateful air accidents have caused significant cost and claims to the operators as well as manufacturers in excess of fatalities. Criticality of failure increases with increasing age and the uncertainty of operational loads applied. In such a case a reassessment of a structural materials' condition is in big need should damage tolerance criteria still be met, being the essential ground rule for aeronautical structural design. It is therefore the challenging aim to use a metallic material's microstructure characterizing non-destructive testing (NDT) parameter or a combination of those as a parameter to be scanned over a defined surface of the component considered to more realistically characterize the damage condition and to use this information twofold: (a) to more precisely assess the structural component's residual life and (b) to feed the information recorded back into a specific database belonging to an approach named PHYBAL. The physically based fatigue life evaluation method (PHYBAL) is a short-time procedure for the evaluation of fatigue data based on a small number of fatigue tests performed on un-notched specimens only. This method significantly reduces the effort for experimentation in terms of time and cost by around 90 % and inhibits remarkable scientific as well as economic advantages. The paper highlights the high capability of PHYBAL as well as the suitability for assessing the residual life of aeronautical components also with respect to the application of this approach in the light of structural health monitoring issues.

  3. Evaluation of Bioaugmentation with Entrapped Degrading Cells as a Soil Remediation Technology

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Dechesne, Arnaud; Binning, Philip John

    2010-01-01

    Soil augmentation with microbial degraders immobilized on carriers is evaluated as a potential remediation technology using a mathematical model that includes degradation within spatially distributed carriers and diffusion or advectiondispersion as contaminant mass transfer mechanisms. The total...... degraders have low intrinsic degradation rates and that only limited carrier to soil volume ratios are practically feasible, bioaugmented soils are characterized by low effective degradation ratesandcanbeconsidered fully mixed. A simple exponential model is then sufficient to predict biodegradation...

  4. Nondestructive evaluation of loose assemblies using multi-frequency eddy currents and artificial neural networks

    International Nuclear Information System (INIS)

    Vourc’h, Eric; Le Gac, Guillaume; Larzabal, Pascal; Joubert, Pierre-Yves

    2013-01-01

    This paper considers the problem of the evaluation of metallic assemblies in an aeronautical context, by means of a non-invasive method. The problems lies in the estimation of the distance separating two aluminum plates representative of a loose assembly (up to 300 µm), the top plate being possibly of unknown thickness ranging from 1 to 8 mm. To do so, the eddy current (EC) method is chosen, because it allows non-contact evaluation of conducting media to be carried out, which is sensitive to electrical conductivity changes in the part under evaluation, and hence to the presence of an air gap between parts. The problem falls into the category of evaluation of a multilayered conductive structure starting from EC data, which is an ill-posed problem. In order to bypass these difficulties, as well as to deal with the uncertainties that may be introduced by the experimental set-up, a ‘non-model’ approach is implemented by means of an artificial neural network (ANN). The latter is elaborated in a statistical learning approach starting from the experimental EC data provided by a ferrite cored coil EC probe used to investigate an assembly mockup of adjustable configuration. Moreover, in order to build a learning database allowing a robust and accurate ANN to be elaborated, as well as to deal with assemblies of unknown thicknesses, we consider EC data obtained at different frequencies chosen in an adjusted frequency bandwidth, experimentally determined so as to optimize the sensitivity toward the presence of an air gap between parts. The implementation of the proposed approach for distances between parts ranging from 60 to 300 µm provided estimated root mean square errors ranging from 7 μm up to 50 µm for the estimation of the distance between parts, and ranging from 20 µm up to 1.4 mm for the estimation of the top plates, ranging from 1 to 8 mm, respectively. (paper)

  5. NATO Advanced Study Institute on Nondestructive Evaluation of Semiconductor Materials and Devices

    CERN Document Server

    1979-01-01

    From September 19-29, a NATO Advanced Study Institute on Non­ destructive Evaluation of Semiconductor Materials and Devices was held at the Villa Tuscolano in Frascati, Italy. A total of 80 attendees and lecturers participated in the program which covered many of the important topics in this field. The subject matter was divided to emphasize the following different types of problems: electrical measurements; acoustic measurements; scanning techniques; optical methods; backscatter methods; x-ray observations; accele­ rated life tests. It would be difficult to give a full discussion of such an Institute without going through the major points of each speaker. Clearly this is the proper task of the eventual readers of these Proceedings. Instead, it would be preferable to stress some general issues. What came through very clearly is that the measurements of the basic scientists in materials and device phenomena are of sub­ stantial immediate concern to the device technologies and end users.

  6. Non-destructive evaluation of impact damage on carbon fiber laminates: Comparison between ESPI and Shearography

    Energy Technology Data Exchange (ETDEWEB)

    Pagliarulo, V., E-mail: v.pagliarulo@isasi.cnr.it; Ferraro, P. [CNR National Research Council, ISASI, Institute of Applied Sciences and Intelligent Systems, via Campi Flegrei 34, 80078 Pozzuoli, NA (Italy); Lopresto, V.; Langella, A. [Dpt. Of Chemicals, Materials and Production Engin., University of Naples “Federico II”, P.leTecchio 80, Naples (Italy); Antonucci, V.; Ricciardi, M. R. [CNR National Research Council, IPCB, Institute of Polymer Composites and Biomedical Materials, P.E. Fermi, Portici (Italy)

    2016-06-28

    The aim of this paper is to investigate the ability of two different interferometric NDT techniques to detect and evaluate barely visible impact damage on composite laminates. The interferometric techniques allow to investigate large and complex structures. Electronic Speckle Pattern Interferometry (ESPI) works through real-time surface illumination by visible laser (i.e. 532 nm) and the range and the accuracy are related to the wavelength. While the ESPI works with the “classic” holographic configuration, that is reference beam and object beam, the Shearography uses the object image itself as reference: two object images are overlapped creating a shear image. This makes the method much less sensitive to external vibrations and noise but with one difference, it measures the first derivative of the displacement. In this work, different specimens at different impact energies have been investigated by means of both methods. The delaminated areas have been estimated and compared.

  7. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Andersen, E.S.; Bowey, R.E.; Diaz, A.A.; Good, M.S.; Heasler, P.G.; Hockey, R.L.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1991-01-01

    This program is intended to establish the effectiveness, reliability and adequacy of inservice inspection of reactor pressure vessels and primary piping systems and the impact of ISI reliability on system integrity. The objectives of the program include: (a) determine the effectiveness and reliability of ultrasonic inservice inspection (ISI) performed on commercial, light water reactor pressure vessels and piping; (b) recommend Code changes to the inspection procedures to improve the reliability of ISI; (c) using fracture mechanics analysis, determine the impact of NDE unreliability on system safety and determine the level of inspection reliability required to assure a suitably low failure probability; (d) evaluate the degree of reliability improvement which could be achieved using improved NDE techniques; and (e) based on importance of component to safety, material properties, service conditions, and NDE uncertainties, formulate improved inservice inspection criteria (including sampling plan, frequency, and reliability of inspection) for revisions to ASME Section XI and regulatory requirements needed to assure suitably low failure probabilities

  8. Finite element modeling of stress corrosion cracking for electromagnetic nondestructive evaluations

    International Nuclear Information System (INIS)

    Wang, J.; Yusa, N.; Hashizume, H.

    2012-01-01

    This paper discusses appropriate numerical model for a stress corrosion crack (SCC) from the viewpoint of anisotropy of their conductivity. Two SCCs, which are introduced into a plate of type 316 stainless steel, are considered. Finite element simulations are carried out to evaluate the conductivity. In the simulations, the cracks are modeled as a region with a constant width on the basis of the destructive tests. The results show the conductivity on direction of width has large effect to the accuracy of numerical modeling of SCC, whereas the conductivities on direction of length and depth almost do not have remarkable effects. The results obtained by this study indicate that distribution of conductivity along the surface of a crack would be more important than the anisotropy in modeling SCCs in finite element simulations

  9. Non-destructive evaluation of the water content of concretes by low energy gamma backscattering

    International Nuclear Information System (INIS)

    Raghunath, V.M.; Bhatnagar, P.K.; Meenakshisundaram, V.

    1983-01-01

    A method of estimating the water content of various concretes mixed with neutron absorbers like boron or rare earths is described. This makes use of the fact that a large buildup of low energy photons in the 20 - 100 keV range is observed in the backscattered spectrum from water when compared to conrete. A 4.36 mCi 137 Cs (662 keV) source is used with a 1 mm thick NaI scintillator as the detector to measure the backscattered radiation in the energy range. Calibration curves for evaluating the water content in borated concretes, ordinary conretes of different thickness, and a mortar brick are reported. It has been possible to estimate the water content to within 0.25% (by weight) by this method. (orig.)

  10. Improvement and evaluation of vegerable seed quality by the use of non-destructive technologies

    DEFF Research Database (Denmark)

    Olesen, Merete Halkjær

    and HC=CH structures which represent some of the functional groups in lipids.The same differences in absorbance bands were observed between seeds with different germination capacities. Correct classification of seed germination ranged from 89.5 % to 98.3 %, using extended canonical variance analysis...... are all supposed to influence germination of the seed. To increase the number of non-germinating seeds, seed samples were exposed to accelerated ageing (41 °C for 72 h). This also provides an opportunity to evaluate the difference between NIR spectra of aged and non-aged seeds. Lipids play a major role...... in both ageing and germination. During accelerated ageing lipid peroxidation leads to deterioration of cell membranes and this leads to reduced germination capacity of the seeds. Assignment of difference between scatter corrected absorbance spectra of aged and non-aged seeds leads to 12 the CH2, CH3...

  11. Non-destructive evaluation of the water content of concretes by low energy gamma backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, V M; Bhatnagar, P K; Meenakshisundaram, V [Reactor Research Centre, Kalpakkam (India). Safety Research Lab.

    1983-02-15

    A method of estimating the water content of various concretes mixed with neutron absorbers like boron or rare earths is described. This makes use of the fact that a large buildup of low energy photons in the 20 - 100 keV range is observed in the backscattered spectrum from water when compared to concrete. A 4.36 mCi /sup 137/Cs (662 keV) source is used with a 1 mm thick NaI scintillator as the detector to measure the backscattered radiation in the energy range. Calibration curves for evaluating the water content in borated concretes, ordinary concretes of different thickness, and a mortar brick are reported. It has been possible to estimate the water content to within 0.25% (by weight) by this method.

  12. Non-destructive evaluation utilizing imaging plates for field radiography applications

    International Nuclear Information System (INIS)

    White, Brian S.

    2016-01-01

    The oil and gas industry has utilized film radiography for the evaluation of pipeline welds for many years. The world has evolved, and today people are easily sharing digital images as part of the information revolution. Computed radiography is ready to replace film radiography for portable outdoor use applications. Computed radiography technology adoption has been contingent upon achieving acceptable image quality and getting enough imaging plate use cycles to be profitable. Image quality is dependent upon shot conditions, imaging plate type, reader settings, and scatter control. Likewise, the number of achievable use cycles is dependent upon the imaging plate design for durability and the user's operating environment. This presentation reviews the basic principles of storage phosphor imaging plates. Usage criteria and guidelines for optimum image quality and maximized overall use cycles will be discussed for various imaging plate types. A comparison of film and computed radiography imaging plate technology will be presented.

  13. Linear Array Ultrasonic Testing Of A Thick Concrete Specimens For Non-Destructive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States); Zammerachi, Mattia [Univ. of Minnesota, Minneapolis, MN (United States); Ezell, N. Dianne Bull [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The University of Minnesota and Oak Ridge National Laboratory are collaborating on the design and construction of a concrete specimen with sufficient reinforcement density and cross-sectional size to represent a light water reactor (LWR) containment wall with various defects. The preliminary analysis of the collected data using extended synthetic aperture focussin technique (SAFT) reconstruction indicated a great potential of the ultrasound array technology for locating relatively shallow distresses. However, the resolution and reliability of the analysis is inversely proportional to the defect depth and the amount of reinforcement between the measurement point and the defect location. The objective of this round of testing is to evaluate repeatability of the obtained reconstructions from measurements with different frequencies as well as to examine the effect of the duration of the sending ultrasound signal on the resulting reconstructions. Two series of testing are performed in this study. The objective of the first series is to evaluate repeatability of the measurements and resulting reconstructed images. The measurements use three center frequencies. Five measurements are performed at each location with and without lifting the device. The analysis of the collected data suggested that a linear array ultrasound system can produce reliably repeatable reconstructions using 50 kHz signals for relatively shallow depths (less than 0.5 m). However, for reconstructions at the greater depths the use of lower frequency and/or signal filtering to reduce the effect of signal noise may be required. The objective of the second series of testing is to obtain measurements with various impulse signal durations. The entire grid on the smooth surface is tested with four different various impulse signal durations. An analysis of the resulting extended SAFT reconstructions suggested that Kirchhoff-based migration leads to easier interpreting reconstructions when shorter duration

  14. A Gradient-Field Pulsed Eddy Current Probe for Evaluation of Hidden Material Degradation in Conductive Structures Based on Lift-Off Invariance.

    Science.gov (United States)

    Li, Yong; Jing, Haoqing; Zainal Abidin, Ilham Mukriz; Yan, Bei

    2017-04-25

    Coated conductive structures are widely adopted in such engineering fields as aerospace, nuclear energy, etc. The hostile and corrosive environment leaves in-service coated conductive structures vulnerable to Hidden Material Degradation (HMD) occurring under the protection coating. It is highly demanded that HMD can be non-intrusively assessed using non-destructive evaluation techniques. In light of the advantages of Gradient-field Pulsed Eddy Current technique (GPEC) over other non-destructive evaluation methods in corrosion evaluation, in this paper the GPEC probe for quantitative evaluation of HMD is intensively investigated. Closed-form expressions of GPEC responses to HMD are formulated via analytical modeling. The Lift-off Invariance (LOI) in GPEC signals, which makes the HMD evaluation immune to the variation in thickness of the protection coating, is introduced and analyzed through simulations involving HMD with variable depths and conductivities. A fast inverse method employing magnitude and time of the LOI point in GPEC signals for simultaneously evaluating the conductivity and thickness of HMD region is proposed, and subsequently verified by finite element modeling and experiments. It has been found from the results that along with the proposed inverse method the GPEC probe is applicable to evaluation of HMD in coated conductive structures without much loss in accuracy.

  15. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    Science.gov (United States)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  16. Voluntary Consensus Organization Standards for Nondestructive Evaluation of Thin-Walled Metallic Liners and Composite Overwraps in Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor

    2012-01-01

    NASA fracture control requirements outlined in NASA-STD-5009 and NASA-STD-5014 are predicated on the availability and use of sensitive nondestructive evaluation (NDE) methods that can detect and monitor defects, thereby providing data that can be used to predict failure or reduce the risk of failure in fracture critical components. However, in the case of composite materials and components, including composite overwrapped pressure vessels (COPVs), the effect of defects is poorly understood, the NDE methods used to evaluate locate and size defects are typically at lower technical readiness level than analogous NDE methods used for metals, and demonstration studies to verify the probability of detection (POD) are generally lacking or unavailable. These factors together make failure prediction of fracture critical composite materials and components based on size, quantity, or orientation of defects nearly impossible. Also, when inspecting metal liners in as-manufactured COPVs, sensitivity is lost and only the inner surface of the liner is accessible. Also, NDE of COPVs as applied during manufacturing varies significantly from manufacturer to manufacturer and has not yet been standardized. Although requirements exist to perform NDE immediately after manufacturing to establish initial integrity of the parts, procedural detail for NDE of composites is still nonexistent or under development. For example, in practice, only a visual inspection of COPVs is performed during manufacturing and service, leaving in question whether defects of concern, for example, bridging, overwrap winding anomalies, impact damage below visible threshold, out-of-family strain growth, and liner buckling have been adequately detected and monitored. To address these shortcomings, in 2005 the NASA Nondestructive Evaluation Working Group (NNWG) began funding work to develop and adopt standards for nondestructive evaluation of aerospace composites in collaboration with the American Society for Testing

  17. Nondestructive chemical imaging of wood at the micro-scale: advanced technology to complement macro-scale evaluations

    Science.gov (United States)

    Barbara L. Illman; Julia Sedlmair; Miriam Unger; Carol Hirschmugl

    2013-01-01

    Chemical images help understanding of wood properties, durability, and cell wall deconstruction for conversion of lignocellulose to biofuels, nanocellulose and other value added chemicals in forest biorefineries. We describe here a new method for nondestructive chemical imaging of wood and wood-based materials at the micro-scale to complement macro-scale methods based...

  18. Visible and infrared spectroscopy to evaluate soil quality in degraded sites: an applicative study in southern Italy

    Science.gov (United States)

    Ancona, Valeria; Matarrese, Raffaella; Salvatori, Rosamaria; Salzano, Roberto; Regano, Simona; Calabrese, Angelantonio; Campanale, Claudia; Felice Uricchio, Vito

    2014-05-01

    Land degradation processes like organic matter impoverishment and contamination are growing increasingly all over the world due to a non-rational and often sustainable spread of human activities on the territory. Consequently the need to characterize and monitor degraded sites is becoming very important, with the aim to hinder such main threats, which could compromise drastically, soil quality. Visible and infrared spectroscopy is a well-known technique/tool to study soil properties. Vis-NIR spectral reflectance, in fact, can be used to characterize spatial and temporal variation in soil constituents (Brown et al., 2006; Viscarra Rossel et al., 2006), and potentially its surface structure (Chappell et al., 2006, 2007). It is a rapid, non-destructive, reproducible and cost-effective analytical method to analyse soil properties and therefore, it can be a useful method to study land degradation phenomena. In this work, we present the results of proximal sensing investigations of three degraded sites (one affected by organic and inorganic contamination and two affected by soil organic matter decline) situated southern Italy close to Taranto city (in Apulia Region). A portable spectroradiometer (ASD-FieldSpec) was used to measure the reflectance properties in the spectral range between 350-2500 nm of the soil, in the selected sites, before and after a recovery treatment by using compost (organic fertilizer). For each measurement point the soil was sampled in order to perform chemical analyses to evaluate soil quality status. Three in-situ campaigns have been carried out (September 2012, June 2013, and September 2013), collecting about 20 soil samples for each site and for each campaign. Chemical and spectral analyses have been focused on investigating soil organic carbon, carbonate content, texture and, in the case of polluted site, heavy metals and organic toxic compounds. Statistical analyses have been carried out to test a prediction model of different soil quality

  19. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation.

    Science.gov (United States)

    Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2016-10-15

    In this study, we systematically investigated the potential applicability of potassium permanganate for removal of triclosan (TCS) in water treatment. A series of kinetic experiments were carried out to study the influence of various factors, including the pH, oxidant doses, temperature, and presence of typical anions (Cl(-), SO4(2-), NO3(-)), humic acid (HA), and fulvic acid (FA) on triclosan removal. The optimal reaction conditions were: pH = 8.0, [TCS]0:[KMnO4]0 = 1:2.5, and T = 25 °C, where 20 mg/L of TCS could be completely degraded in 120 s. However, the rate of TCS (20 μg/L) oxidation by KMnO4 ([TCS]0:[KMnO4]0 = 1:2.5) was 1.64 × 10(-3) mg L(-1)·h(-1), lower than that at an initial concentration of 20 mg/L (2.24 × 10(3) mg L(-1)·h(-1)). A total of eleven products were detected by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) analysis, including phenol and its derivatives, benzoquinone, an organic acid, and aldehyde. Two main reaction pathways involving CO bond cleavage (-C(8)O(7)-) and benzene ring opening (in the less chlorinated benzene ring) were proposed, and were further confirmed based on frontier electron density calculations and point charges. Furthermore, the changes in the toxicity of the reaction solution during TCS oxidation by KMnO4 were evaluated by using both the luminescent bacteria Photobacterium phosphoreum and the water flea Daphnia magna. The toxicity of 20 mg/L triclosan to D. magna and P. phosphoreum after 60 min was reduced by 95.2% and 43.0%, respectively. Phenol and 1,4-benzoquinone, the two representative degradation products formed during permanganate oxidation, would yield low concentrations of DBPs (STHMFP, 20.99-278.97 μg/mg; SHAAFP, 7.86 × 10(-4)-45.77 μg/mg) after chlorination and chloramination. Overall, KMnO4 can be used as an effective oxidizing agent for TCS removal in water and wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The role of ultrasonic velocity and Schmidt hammer hardness - The simple and economical non-destructive test for the evaluation of mechanical properties of weathered granite

    Science.gov (United States)

    Jobli, Ahmad Fadzil; Hampden, Ahmad Zaidi; Tawie, Rudy

    2017-08-01

    One of the most significant techniques for evaluation of rock strength is by using the simple and economical non-destructive test (NDT). Previous literatures confirm that there were good correlations between NDTs to the strength properties of granite rocks. The present work deals with the use of Ultrasonic Pulse Velocity and Schmidt Hammer Hardness test to predict the mechanical properties of weathered granite. Cylindrical specimens with the length to diameter ratio of two were prepared for this study and were characterized based on different weathering states. Each of the rock specimens was tested under non-destructive test and then followed by uniaxial compression test to assess the mechanical properties. It was found that good correlations established between the NDTs and the uniaxial compressive strength. The correlation between uniaxial compressive strength and rebound hardness number was demonstrated by exponential form; UCS = 6.31e0.057N, while linear correlations was obtained between the uniaxial compressive strength and the ultrasonic pulse velocity; UCS = 0.023Vp - 21.43. It was also noticed that the increase of uniaxial compression strength was parallel to the increase of elastic modulus and can be presented by a linear equation; UCS = 1.039Et50 + 4.252. Based on the reported results, it is clear that the mechanical properties or weathered granite can be estimated by means of non-destructive test.

  1. Quantitative Nondestructive Evaluation

    Science.gov (United States)

    1979-10-01

    about 0.9 times the shear wave velocity. Waves which propagate in materials having thicknesses comparable to the wave length are called Lamb waves... Lamb wave particle motion is very complex and many modes are possible, some symmetric and some unsymmetric with respect to the midplane of the plate...DRXMR-PL 1 -MT, Mr. Farrow 1 Watertown, Massachusetts 02172 Commander White Sands Missile Range ATTN: STEWS -AD-L 1 White Sands Missile

  2. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    Science.gov (United States)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  3. Nondestructive testing for microstructural characterization in 9Cr-1Mo ferritic steel towards assessment of fabrication quality and in-service degradation

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, T.; Rao, K.B.S.; Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1999-07-01

    The paper discusses the usefulness of non destructive testing for microstructural characterization in 9Cr-1Mo ferritic steel. Ultrasonic velocity and attenuation measurements and spectral analysis have been used in a complementary way for characterizing Ac{sub 1} and Ac{sub 3} temperatures, amount of martensite and ferrite, dissolution of V{sub 4}C{sub 3} and NbC and formation of {delta}-ferrite. The microstructural degradation occurring due to thermal ageing and creep has also been studied by ultrasonic velocity measurements. Magnetic Barkhausen noise technique has been used for estimating the extent of various regions in heat affected zone (HAZ) of 9Cr-1Mo ferritic steel weldment. The same technique has been used for the assessment of low cycle fatigue damage in 9Cr-1Mo steel. The study establishes that non destructive methods can be used for the assessment of fabrication quality and in service degradation of the components. (author)

  4. Non-destructive Engineering

    International Nuclear Information System (INIS)

    Ko, Jin Hyeon; Ryu, Taek In; Ko, Jun Bin; Hwang, Yong Hwa

    2006-08-01

    This book gives descriptions of non-destructive engineering on outline of non-destructive test, weld defects, radiographic inspection radiography, ultrasonic inspection, magnetic particle testing, liquid penetrant testing, eddy current inspection method, strain measurement, acoustic emission inspection method, other non-destructive testing like leakage inspection method, and non-destructive mechanics for fault analysis such as Griffiths creaking theory, and stress analysis of creaking.

  5. EVALUATION AND MAPPING OF RANGELANDS DEGRADATION USING REMOTELY SENSED DATA

    Directory of Open Access Journals (Sweden)

    Majid Ajorlo

    2005-05-01

    Full Text Available The empirical and scientifically documents prove that misuse of natural resource causes degradation in it. So natural resources conservation is important in approaching sustainable development aims. In current study, Landsat Thematic Mapper images and grazing gradient method have been used to map the extent and degree of rangeland degradation. In during ground-based data measuring, factors such as vegetation cover, litter, plant diversity, bare soil, and stone & gravels were estimated as biophysical indicators of degradation. The next stage, after geometric correction and doing some necessary pre-processing practices on the study area’s images; the best and suitable vegetation index has been selected to map rangeland degradation among the Normalized Difference Vegetation Index (NDVI, Soil Adjusted Vegetation Index (SAVI, and Perpendicular Vegetation Index (PVI. Then using suitable vegetation index and distance parameter was produced the rangelands degradation map. The results of ground-based data analysis reveal that there is a significant relation between increasing distance from critical points and plant diversity and also percentage of litter. Also there is significant relation between vegetation cover percent and distance from village, i.e. the vegetation cover percent increases by increasing distance from villages, while it wasn’t the same around the stock watering points. The result of analysis about bare soil and distance from critical point was the same to vegetation cover changes manner. Also there wasn’t significant relation between stones & gravels index and distance from critical points. The results of image processing show that, NDVI appears to be sensitive to vegetation changes along the grazing gradient and it can be suitable vegetation index to map rangeland degradation. The degradation map shows that there is high degradation around the critical points. These areas need urgent attention for soil conservation. Generally, it

  6. Evaluation of the performance degradation at PAFC effect of catalyst degradation on electrode performance

    Energy Technology Data Exchange (ETDEWEB)

    Nishizaki, K.; Uchida, H.; Watanabe, M. [Yamanashi Univ., Kofu (Japan)] [and others

    1996-12-31

    Aiming commercialization of Phosphoric Acid Fuel Cell (PAFC) power plant, many researches and developments have been contributed. Over 20000 hours operations have been demonstrated by many PAFC power plants. But there is no effective method for the estimation of lifetime of electrochemical cells without a practical long-term operation. Conducted by New Energy and Industrial Technology Development Organization (NEDO), cooperative research projects aiming development of PAFC lifetime estimation method have started since 1995 FY in Japan. As part of this project, this work has been performed to clarify basic phenomena of the performance degradation at PAFCs jointly by Yamanashi University, Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) and PAFC manufacturers (Toshiba Co., Mitsubishi Electric Co, Fuji Electric Co.). Among several main causes of the cell performance degradation, effects of catalyst degradation (reduction in metal surface area, dealloying, changes in catalyst support) on PAFC cathode performances are discussed in this work.

  7. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Y.; Qian, S.; Littrell, K.; Parish, C.M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Plummer, L.K. [University of Oregon, Eugene, OR 97403 (United States)

    2015-05-15

    A nondestructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless-steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Our study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount (≈20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor can be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for determining absolute hydrogen concentrations.

  8. Nondestructive examination

    International Nuclear Information System (INIS)

    Mletzko, U.

    1980-01-01

    Visual examination is treated as a method for the control of size and shape of components, surface quality and weld performance. Dye penetrant, magnetic particle and eddy current examinations are treated as methods for the evaluation of surface defects and material properties. The limitations to certain materials, defect sizes and types are shown. (orig./RW)

  9. Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management.

    Science.gov (United States)

    2015-06-01

    Remote sensing technologies allow for the condition evaluation of bridge decks at near highway speed. : Data collection at near highway speed for assessment of the top of the concrete deck and proof of : concept testing for the underside of the deck ...

  10. Evaluation of stress-induced martensite phase in ferromagnetic shape memory alloy Fe-30.2at%Pd by non-destructive Barkhausen noise

    Science.gov (United States)

    Furuya, Yasubumi; Okazaki, Teiko; Ueno, Takasi; Spearing, Mark; Wutting, Manfred

    2005-05-01

    Barkhausen noise (BHN) method seems a useful tecnique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy, which is used as the filler of our proposing "Smart Composite Board". The concept of design for "Smart Composite Board" which can combine the non-destructive magnetic inspection and shape recovery function in the material itself was formerly proposed. In the present study, we survey the possibility of Barkhausen noise (BHN) method to detect the transformation of microscopic martensite phase caused by stress-loading in Fe-30.2at%Pd thin foil, which has a stable austenite phase (fcc structure) at room temperature. The BHN voltage was measured at loading stress up to 100 MPa in temperature range of 300K to 373K. Stress-induced martensite twin was observed by laser microscope above loading stress of 25 MPa. A phase transformation caused by loading stress were analyzed also by X-ray diffraction. The signals of BHN are analyzed by the time of magnetization and the noise frequency. BHN caused by grain boundaries appears in the lower frequency range (1kHz-3kHz) and BHN by martensite twin in the higher frequency range (8kHz-10kHz). The envelope of the BHN voltage as a function of time of magnetization shows a peak due to austenite phase at weak magnetic field. The BHN envelope due to martensite twins creates additional two peaks at intermediate magnetic field. BHN method turns out to be a powerful technique for non-destructive evaluation of the phase transformation of ferromagnetic shape memory alloy.

  11. Evaluation of various pesticides-degrading pure bacterial cultures ...

    African Journals Online (AJOL)

    IASA

    2016-10-05

    Oct 5, 2016 ... Full Length Research Paper ... field experimentations for the degradation of various pesticides like Ridomil ... hazardous/toxic chemicals which might be harmful to the ... The isolation of microorganisms involved in pesticide/.

  12. Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation

    International Nuclear Information System (INIS)

    Silva, Wellington Costa; Castro, Maria Priscila Pessanha; Perez, Victor Haber; Machado, Francisco A.; Mota, Leonardo; Sthel, Marcelo Silva

    2016-01-01

    The aim of this paper was to study the thermal degradation of soybean biodiesel attained by ethanolic route. The soybean biodiesel samples were subjected to heating treatment at 150 °C for 24 h in a closed oven under controlled atmosphere. During the experiments, samples were withdrawn at intervals of 3, 6, 9, 12, 15 and 24 h for physicochemical and thermophysical properties analysis. The biodiesel degradation was validated by Thermogravimetric analysis since their profiles for control and treated biodiesel were different. Also, "1H NMR confirmed this result due to a significant reduction at the signals related to the "1H located near to the double bonds in the unsaturated ethyl esters in agreement with an iodine index reduction and viscosity increase observed during degradation. Nevertheless, degraded biodiesel, under study conditions, preserved its thermophysical properties. These results may be relevant to qualify the produced biodiesel quality and collect physicochemical and thermophysical data important for applications in combustion studies including project of fuel injection systems. - Highlights: • Soybean biodiesel from ethanolic route was subjected to thermal degradation to verify its stability. • Thermal degradation of biodiesel was correlated with physicochemical properties. • Thermal effusivity, diffusivity and conductivity were estimate by photothermal techniques.

  13. Analyses of component degradation to evaluate maintenance effectiveness and aging effects

    International Nuclear Information System (INIS)

    Samanta, P.K.; Hsu, F.; Subudhi, M.; Vesely, W.E.

    1991-01-01

    This paper describes degradation modeling, an approach for analyzing degradation and failure of components to understand the aging process of components. As used in our study, degradation modeling is the analysis of information on degradation of components for developing models of the degradation process and its implications. This modeling focuses on the analysis of the times of degradations of components, to model how the rate of degradation changes with the age of the component. With this methodology we also determine the effectiveness of maintenance as applicable to aging evaluations. The specific applications which are performed show quantitative models of degradation rates of components and failure rates of components from plant-specific data. The statistical techniques allow aging trends to be identified in the degradation data and in the failure data. Initial estimates of the effectiveness of maintenance in limiting degradations from becoming failures are developed. These results are important first steps in degradation modeling, and show that degradation can be modeled to identify aging trends. 2 refs., 8 figs., 1 tab

  14. Infrared image processing devoted to thermal non-contact characterization-Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

    International Nuclear Information System (INIS)

    Batsale, Jean-Christophe; Pradere, Christophe

    2015-01-01

    The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains.Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered.A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms).There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented. (paper)

  15. Evaluation of microbially-influenced degradation of massive concrete structures

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Zolynski, M.; Veeh, R.

    1996-01-01

    Many low level waste disposal vaults, both above and below ground, are constructed of concrete. One potential contributing agent to the destruction of concrete structures is microbially-influenced degradation (MID). Three groups of bacteria are known to create conditions that are conducive to destroying concrete integrity. They are sulfur oxidizing bacteria, nitrifying bacteria, and heterotrophic bacteria. Research is being conducted at the Idaho National Engineering Laboratory to assess the extent of naturally occurring microbially influenced degradation (MID) and its contribution to the deterioration of massive concrete structures. The preliminary steps to understanding the extent of MID, require assessing the microbial communities present on degrading concrete surfaces. Ultimately such information can be used to develop guidelines for preventive or corrective treatments for MID and aid in formulation of new materials to resist corrosion. An environmental study was conducted to determine the presence and activity of potential MID bacteria on degrading concrete surfaces of massive concrete structures. Scanning electron microscopy detected bacteria on the surfaces of concrete structures such as bridges and dams, where corrosion was evident. Enumeration of sulfur oxidizing thiobacilli and nitrogen oxidizing Nitrosomonas sp. and Nitrobacter sp. from surface samples was conducted. Bacterial community composition varied between sampling locations, and generally the presence of either sulfur oxidizers or nitrifiers dominated, although instances of both types of bacteria occurring together were encountered. No clear correlation between bacterial numbers and degree of degradation was exhibited

  16. Non-destructive analysis in a study of the religious art objects

    International Nuclear Information System (INIS)

    Vornicu, Nicoleta; Bibire, Cristina; Geba, Maria

    2009-01-01

    The icon Descending of the Saint Spirit from Bucium Church, dating in the year 1814 and was done in tempera on wood technology. The characterization of cultural heritage materials is essential for the comprehension of their degradation mechanisms. The present study aims at identifying the pigments in the various layers, establishing the possible existence of an organic binder and scientifically evaluating the state of preservation. To this end, were used non-destructive methods, as: microscopic (SEM), XRF and spectroscopic (FTIR).

  17. Non-destructive flavour evaluation of red onion (Allium cepa L.) ecotypes: an electronic-nose-based approach.

    Science.gov (United States)

    Russo, Mariateresa; di Sanzo, Rosa; Cefaly, Vittoria; Carabetta, Sonia; Serra, Demetrio; Fuda, Salvatore

    2013-11-15

    This work reports preliminary results on the potential of a metal oxide sensor (MOS)-based electronic nose, as a non-destructive method to discriminate three "Tropea Red Onion" PGI ecotypes (TrT, TrMC and TrA) from each other and the common red onion (RO), which is usually used to counterfeit. The signals from the sensor array were processed using a canonical discriminant function analysis (DFA) pattern recognition technique. The DFA on onion samples showed a clear separation among the four onion groups with an overall correct classification rate (CR) of 97.5%. Onion flavour is closely linked to pungency and thus to the pyruvic acid content. The e-nose analysis results are in good agreement with pyruvic acid analysis. This work demonstrated that artificial olfactory systems have potential for use as an innovative, rapid and specific non-destructive technique, and may provide a method to protect food products against counterfeiting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Non-destructive monitoring of mouse embryo development and its qualitative evaluation at the molecular level using Raman spectroscopy

    Science.gov (United States)

    Ishigaki, Mika; Hashimoto, Kosuke; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    Current research focuses on embryonic development and quality not only by considering fundamental biology, but also by aiming to improve assisted reproduction technologies, such as in vitro fertilization. In this study, we explored the development of mouse embryo and its quality based on molecular information, obtained nondestructively using Raman spectroscopy. The detailed analysis of Raman spectra measured in situ during embryonic development revealed a temporary increase in protein content after fertilization. Proteins with a β-sheet structure—present in the early stages of embryonic development—are derived from maternal oocytes, while α-helical proteins are additionally generated by switching on a gene after fertilization. The transition from maternal to embryonic control during development can be non-destructively profiled, thus facilitating the in situ assessment of structural changes and component variation in proteins generated by metabolic activity. Furthermore, it was indicated that embryos with low-grade morphology had high concentrations of lipids and hydroxyapatite. This technique could be used for embryo quality testing in the future.

  19. Delamination evaluation of thermal barrier coating on turbine blade owing to isothermal degradation using ultrasonic C-scan image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-10-15

    Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

  20. Delamination evaluation of thermal barrier coating on turbine blade owing to isothermal degradation using ultrasonic C-scan image

    International Nuclear Information System (INIS)

    Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung

    2016-01-01

    Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived

  1. Evaluating mechanical properties and degradation of YTZP dental implants

    International Nuclear Information System (INIS)

    Sevilla, Pablo; Sandino, Clara; Arciniegas, Milena; Martinez-Gomis, Jordi; Peraire, Maria; Gil, Francisco Javier

    2010-01-01

    Lately new biomedical grade yttria stabilized zirconia (YTZP) dental implants have appeared in the implantology market. This material has better aesthetical properties than conventional titanium used for implants but long term behaviour of these new implants is not yet well known. The aim of this paper is to quantify the mechanical response of YTZP dental implants previously degraded under different time conditions and compare the toughness and fatigue strength with titanium implants. Mechanical response has been studied by means of mechanical testing following the ISO 14801 for Standards for dental implants and by finite element analysis. Accelerated hydrothermal degradation has been achieved by means of water vapour and studied by X-ray diffraction and nanoindentation tests. The results show that the degradation suffered by YTZP dental implants will not have a significant effect on the mechanical behaviour. Otherwise the fracture toughness of YTZP ceramics is still insufficient in certain implantation conditions.

  2. Nondestructive Characterization of Aged Components

    Energy Technology Data Exchange (ETDEWEB)

    Panetta, Paul D.; Toloczko, Mychailo B.; Garner, Francis A.; Balachov, Iouri I.

    2003-10-21

    may be used for material properties measurements. A more appealing solution is to use nondestructive evaluation (NDE) methods.

  3. Lifetime Evaluation of PV Inverters considering Panel Degradation Rates and Installation Sites

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    The PV inverter lifetime is affected by the installed sites related to different solar irradiance and ambient temperature profiles. In fact, the installation site also affects the PV panel degradation rate, and thus the long-term power production. Prior-art lifetime analysis in PV inverters has...... not yet investigated the impact of panel degradation. This paper thus evaluates the lifetime of PV inverters considering panel degradation rates and installation sites. Evaluations have been carried out on PV systems installed in Denmark and Arizona. The results reveal that the PV panel degradation rate...... has a considerable impact on the PV inverter lifetime, especially in the hot climate (e.g., Arizona), where the panel degrades at a faster rate. In that case, the PV inverter lifetime estimation can be deviated by 54%, if the impact of PV panel degradation is not taken into account....

  4. Evaluation of mechano-chemical degradation induced stresses of polyolefin pipes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Ho [Korea Univ., Seoul (Korea, Republic of); Chudnovsky, Alexander [The University of Illinois, Chicago (United States)

    2008-07-01

    The fracture phenomena in engineering thermoplastics resulting from chemical degradation is usually observed in the form of a microcrack network within a surface layer of degraded polymer exposed to a combined action of mechanical stresses and chemically aggressive environment. Degradation of polymers is usually manifested in a reduction of molecular weight, increase of crystallinity in semi crystalline polymers, increase of material density, a subtle increase in yield strength, and a dramatic reduction in toughness. The critical level of degradation for fracture initiation depends on the rates of toughness deterioration and build-up of the degradation related stresses as well as on the manufacturing and service stresses. In this paper, the evaluation of mechano-chemical degradation induced stress is attempted, and the application of the evaluated stress to the fracture initiation of polymer pipes is presented.

  5. Evaluation of mechano-chemical degradation induced stresses of polyolefin pipes

    International Nuclear Information System (INIS)

    Choi, Byoung Ho; Chudnovsky, Alexander

    2008-01-01

    The fracture phenomena in engineering thermoplastics resulting from chemical degradation is usually observed in the form of a microcrack network within a surface layer of degraded polymer exposed to a combined action of mechanical stresses and chemically aggressive environment. Degradation of polymers is usually manifested in a reduction of molecular weight, increase of crystallinity in semi crystalline polymers, increase of material density, a subtle increase in yield strength, and a dramatic reduction in toughness. The critical level of degradation for fracture initiation depends on the rates of toughness deterioration and build-up of the degradation related stresses as well as on the manufacturing and service stresses. In this paper, the evaluation of mechano-chemical degradation induced stress is attempted, and the application of the evaluated stress to the fracture initiation of polymer pipes is presented

  6. Methods for Evaluating the Biodegradability of Environmentally Degradable Polymers

    NARCIS (Netherlands)

    Zee, van der M.

    2014-01-01

    This chapter presents an overview of the current knowledge on experimental methods for monitoring the biodegradability of polymeric materials. The focus is, in particular, on the biodegradation of materials under environmental conditions. Examples of in vivo degradation of polymers used in

  7. Application of reflectance colorimeter measurements and infrared spectroscopy methods to rapid and nondestructive evaluation of carotenoids content in apricot (Prunus armeniaca L.).

    Science.gov (United States)

    Ruiz, David; Reich, Maryse; Bureau, Sylvie; Renard, Catherine M G C; Audergon, Jean-Marc

    2008-07-09

    The importance of carotenoid content in apricot (Prunus armeniaca L.) is recognized not only because of the color that they impart but also because of their protective activity against human diseases. Current methods to assess carotenoid content are time-consuming, expensive, and destructive. In this work, the application of rapid and nondestructive methods such as colorimeter measurements and infrared spectroscopy has been evaluated for carotenoid determination in apricot. Forty apricot genotypes covering a wide range of peel and flesh colors have been analyzed. Color measurements on the skin and flesh ( L*, a*, b*, hue, chroma, and a*/ b* ratio) as well as Fourier transform near-infrared spectroscopy (FT-NIR) on intact fruits and Fourier transform mid-infrared spectroscopy (FT-MIR) on ground flesh were correlated with the carotenoid content measured by high-performance liquid chromatography. A high variability in color values and carotenoid content was observed. Partial least squares regression analyses between beta-carotene content and provitamin A activity and color measurements showed a high fit in peel, flesh, and edible apricot portion (R(2) ranged from 0.81 to 0.91) and low prediction error. Regression equations were developed for predicting carotenoid content by using color values, which appeared as a simple, rapid, reliable, and nondestructive method. However, FT-NIR and FT-MIR models showed very low R(2) values and very high prediction errors for carotenoid content.

  8. Aging material evaluation and studies by non-destructive techniques (AMES-NDT) - a European network project

    International Nuclear Information System (INIS)

    Dobmann, Gerd; Debarberis, Luigi; Coste, Jean-Francois

    2001-01-01

    This paper presents results obtained in a round-robin action organized in a concerted action of ten partners in the EURATOM program of the European Community. The objective of the research was to document the state of the art of available non-destructive testing (NDT) techniques in order to characterize material aging phenomena based on a reduction of Charpy-V energy and a shift in the fracture appearance transition temperature. Therefore, samples from the Japanese nuclear reactor pressure vessel JRQ-steel (ASMT Standard A533-B Class 1) have been thermally treated at 700 deg. C for 18 h with a subsequent water quenching. Besides micromagnetic and electromagnetic NDT, the positron annihilation technique, ultrasonic reverberation by using Laser ultrasonics and the thermo-electrical power have been applied to characterize the aged material states

  9. GIS-based evaluation and spatial distribution characteristics of land degradation in Bijiang watershed.

    Science.gov (United States)

    Zhao, Xiaoqing; Dai, Jinhua; Wang, Jianping

    2013-01-01

    Land degradation is one of the significant issues the human beings are confronted with, which has become a bottleneck of restricting the sustainable development of the regional society and economy. In order to ascertain the root causes contributed to the land degradation and characteristics of land degradation, Bijiang watershed, the most important Lead-Zinc mine area of Lanping county of Yunnan Province, was selected as the study area. One evaluation index system for land degradation that consists of 5 single factors(water-soil erosion intensity, geological disaster risk, cultivation intensity of arable land, pollution of heavy metals in soil and biodiversity deterioration) was established and 13 indicators were chosen, and the entropy method was adopted to assign weights to each single factor. By using the tools of Geographic Information System (GIS), the land degradation degree was evaluated and one spatial distribution map for land degradation was accomplished. In this study, the land of the whole watershed was divided into 4 types, including extremely-severe degradation area, severely-degraded area, moderately-degraded area and slightly-degraded area, and some solutions for ecological restoration and rehabilitation were also put forward in this study. The study results indicated that: (1) Water-soil erosion intension and pollution of heavy metals in soil have made greater contribution to the comprehensive land degradation in Bijiang watershed; (2) There is an apparent difference regarding land degradation degree in Bijiang watershed. The moderately-degraded area accounts for the most part in the region, which covers 79.66% of the whole watershed. The severely-degraded area accounts for 15.98% and the slightly-degraded regions and extremely severe degradation area accounts for 1.08% and 3.28% respectively; (3) There is an evident regularity of spatial distribution in land degradation in Bijiang watershed. The moderately-degraded areas mainly distribute in the

  10. Degradation evaluation of high temperature pipeline material for power plant using ultrasonic noise analysis

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Chung, Min Hwa; Cho, Yong Sang; Lee, In Cheol

    2001-01-01

    Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep and thermal fatigue damage due to severe operating conditions such as high temperature and high pressure for an extended period time. Conventional measurement techniques for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also these techniques have low practicality and applied only to component surfaces with good accessibility. In this paper, artificial degradation test and ultrasonic measurement for their degraded specimens were carried out for the purpose of evaluation for creep and thermal fatigue damage. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep/thermal fatigue degradation tests using life prediction formula were carried out. As a result of ultrasonic tests for crept and thermal fatigued specimens, we conformed that the ultrasonic noise linearly increased in proportion to the increase of degradation.

  11. Lifetime Evaluation of Grid-Connected PV Inverters Considering Panel Degradation Rates and Installation Sites

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2018-01-01

    Lifetime of PV inverters is affected by the installation sites related to different solar irradiance and ambient temperature profiles (also referred to as mission profiles). In fact, the installation site also affects the degradation rate of the PV panels, and thus long-term energy production...... and reliability. Prior-art lifetime analysis in PV inverters has not yet investigated the impact of PV panel degradations. This paper thus evaluates the lifetime of PV inverters considering panel degradation rates and mission profiles. Evaluations have been carried out on PV systems installed in Denmark...... and Arizona. The results reveal that the PV panel degradation rate has a considerable impact on the PV inverter lifetime, especially in the hot climate (e.g., Arizona), where the panel degrades at a faster rate. In that case, the PV inverter lifetime prediction can be deviated by 54%, if the impact of PV...

  12. Progress in evaluation and improvement in nondestructive examination reliability for inservice inspection of Light Water Reactors (LWRs) and characterize fabrication flaws in reactor pressure vessels

    International Nuclear Information System (INIS)

    Doctor, S.R.; Bowey, R.E.; Good, M.S.; Friley, J.R.; Kurtz, R.J.; Simonen, F.A.; Taylor, T.T.; Heasler, P.G.; Andersen, E.S.; Diaz, A.A.; Greenwood, M.S.; Hockey, R.L.; Schuster, G.J.; Spanner, J.C.; Vo, T.V.

    1991-10-01

    This paper is a review of the work conducted under two programs. One (NDE Reliability Program) is a multi-year program addressing the reliability of nondestructive evaluation (NDE) for the inservice inspection (ISI) of light water reactor components. This program examines the reliability of current NDE, the effectiveness of evolving technologies, and provides assessments and recommendations to ensure that the NDE is applied at the right time, in the right place with sufficient effectiveness that defects of importance to structural integrity will be reliably detected and accurately characterized. The second program (Characterizing Fabrication Flaws in Reactor Pressure Vessels) is assembling a data base to quantify the distribution of fabrication flaws that exist in US nuclear reactor pressure vessels with respect to density, size, type, and location. These programs will be discussed as two separate sections in this report. 4 refs., 7 figs

  13. Application of non-destructive impedance-based monitoring technique for cyclic fatigue evaluation of endodontic nickel-titanium rotary instruments.

    Science.gov (United States)

    Chang, Yau-Zen; Liu, Mou-Chuan; Pai, Che-An; Lin, Chun-Li; Yen, Kuang-I

    2011-06-01

    This study investigates the application of non-destructive testing based on the impedance theory in the cyclic fatigue evaluation of endodontic Ni-Ti rotary instruments. Fifty Ni-Ti ProTaper instruments were divided into five groups (n=10 in Groups A to E). Groups A to D were subjected to cyclic fatigue within an artificial canal (Group E was the control group). The mean value of the total life limit (TLL), defined as the instrument being rotated until fracture occurred was found to be 104 s in Group A. Each rotary instrument in Groups B, C and D were rotated until the tested instruments reached 80% (84 s), 60% (62 s) and 40% (42 s) of the TLL. After fatigue testing, each rotary instrument was mounted onto a custom-developed non-destructive testing device to give the tip of the instrument a progressive sideways bend in four mutually perpendicular directions to measure the corresponding impedance value (including the resistance and the reactance). The results indicated that the impedance value showed the same trend as the resistance, implying that the impedance was primarily affected by the resistance. The impedance value for the instruments in the 80% and 60% TLL groups increased by about 6 mΩ (about 7.5%) more than that of the instruments in the intact and 40% TLL groups. The SEM analysis result showed that crack striations were only found at the tip of the thread on the cracked surface of the instrument, consistent with the impedance measurements that found the impedance value of the cracked surface to be significantly different from those in other surfaces. These findings indicate that the impedance value may represent an effective parameter for evaluating the micro-structural status of Ni-Ti rotary instruments subjected to fatigue loading. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Physical Principles Pertaining to Ultrasonic and Mechanical Properties of Anisotropic Media and Their Application to Nondestructive Evaluation of Fiber-Reinforced Composite Materials

    Science.gov (United States)

    Handley, Scott Michael

    The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in

  15. Feasibility study of the IE-SASW method for nondestructive evaluation of containment building structures in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.S. E-mail: dskim@kaist.ac.kr; Kim, H.W. E-mail: hwk@kaist.ac.kr; Seo, W.S.; Choi, K.C.; Woo, S.K

    2003-02-01

    The IE-SASW method, a combination of impact-echo (IE) acoustics with spectral analysis of surface waves (SASW), is proposed as a newly developed nondestructive testing method in concrete structures. This feasibility study examines the IE technique and uses elastic P-wave velocity data as measured from the SASW method on concrete members in nuclear power plant containment structures. It was shown that both the thickness of the concrete specimens used in this study and the depth of the introduced defects (i.e. voids) could be identified by the IE-SASW method. In contrast, the reinforced steel bar itself could not be identified by the IE-SASW method. Additionally, GPR (ground penetrating radar) techniques were used to examine the same specimens in order to establish some level of performance and reliability to compare with the performance of the IE-SASW method. The GPR method provides an objective and reliable image corresponding to the reinforced steel bars. The experimental studies show that it is more feasible to use the IE-SASW method rather than GPR to detect voids that were positioned beneath the steel reinforcing bars in the concrete specimens.

  16. Laboratory Evaluation of Interactions in the Degradation of a Polypropylene Geotextile in Marine Environments

    Directory of Open Access Journals (Sweden)

    José Ricardo Carneiro

    2018-01-01

    Full Text Available The long-term behaviour of geosynthetics applied in coastal engineering structures can be adversely affected by many agents. This paper studies the resistance of a nonwoven polypropylene geotextile against some degradation agents present in marine environments and evaluates the existence of interactions between them. For that purpose, the geotextile was exposed to some laboratory degradation tests: immersion tests (in seawater, deionised water, and sodium chloride 35 g·L−1, thermooxidation, and artificial weathering. The geotextile was (1 exposed separately to each degradation test and (2 exposed successively to combinations of two or three degradation tests. The damage caused by the degradation tests was evaluated by monitoring the tensile properties of the geotextile. Based on the changes occurred in tensile strength, reduction factors were determined. The reduction factors obtained directly in the multiple exposures were compared with those obtained by the traditional methodology for the combined effect of the degradation agents. The results, among other findings, showed the existence of relevant interactions between the degradation agents and showed that the reduction factors obtained by the traditional methodology were unable to represent accurately (by underestimating the degradation occurred in the geotextile.

  17. Nondestructive Evaluation and Monitoring Results from COPV Accelerated Stress Rupture Testing, NASA White Sands Test Facility (WSTF)

    Science.gov (United States)

    Saulsberry Regor

    2010-01-01

    Develop and demonstrate NDE techniques for real-time characterization of CPVs and, where possible, identification of NDE capable of assessing stress rupture related strength degradation and/or making vessel life predictions (structural health monitoring or periodic inspection modes). Secondary: Provide the COPV user and materials community with quality carbon/epoxy (C/Ep) COPV stress rupture progression rate data. Aid in modeling, manufacturing, and application of COPVs for NASA spacecraft.

  18. Evaluation of Network Failure induced IPTV degradation in Metro Networks

    DEFF Research Database (Denmark)

    Wessing, Henrik; Berger, Michael Stübert; Yu, Hao

    2009-01-01

    In this paper, we evaluate future network services and classify them according to their network requirements. IPTV is used as candidate service to evaluate the performance of Carrier Ethernet OAM update mechanisms and requirements. The latter is done through quality measurements using MDI...

  19. Evaluation of radiation degradation of cable in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. Y.; Im, D. S.; Lim, I. S.; Lee, C.; Lee, K. Y.; Park, K. S. [Radiation Research Center for Innovative Technology, Seoul (Korea, Republic of)

    2007-11-15

    This project is aimed at lifetime prediction, evaluation of the cable integrity and contribution to the continuous operation in Gori no.1 by using calculating the activation energy before and after irradiation.

  20. Lifetime Evaluation of Grid-Connected PV Inverters Considering Panel Degradation Rates and Installation Sites

    OpenAIRE

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso; Blaabjerg, Frede

    2018-01-01

    Lifetime of PV inverters is affected by the installation sites related to different solar irradiance and ambient temperature profiles (also referred to as mission profiles). In fact, the installation site also affects the degradation rate of the PV panels, and thus long-term energy production and reliability. Prior-art lifetime analysis in PV inverters has not yet investigated the impact of PV panel degradations. This paper thus evaluates the lifetime of PV inverters considering panel degrada...

  1. Upgrading of highly elapsed degradation damage evaluation of structural materials for the light water reactors

    International Nuclear Information System (INIS)

    Katada, Yasuyuki; Matsushima, Shinobu; Sato, Shunji

    1998-01-01

    In this study, for degradation of structural materials in accompanying with highly yearly lapse of the nuclear power plants, it was an aim to elucidate interaction between material degradation and degradation under high hot water environment. And, another aims consisted in intention of expansion protection and recovery evaluation of damage due to laser processing method and so on for welded portion showing extreme material degradation and in preparation of damage region diagram based on the obtained data. In this fiscal year, on interaction between materials and environmental degradation, it was found that as stress corrosion cracking of materials hardened by shot peening shows a resemble shapes of stress-strain curve in CERT and CLRT, shapes of load-time curve were much different. On comparison of the SP material and non-processing material, as peak current showing activity of newly created surface shows no difference, re-passivation of the SP material was found to be too late. And, on recovery evaluation of material degradation damage, as it was found that constant melt depth was essential to evaluate corrosion, a condition preparation aimed for melt depth of more than 1 mm. As only small amount of bubbles were observed at molten metal part on YAG laser processing, it was found that many small bubbles scatter at thermal effect part. (G.K.)

  2. Evaluation of various pesticides-degrading pure bacterial cultures ...

    African Journals Online (AJOL)

    IASA

    2016-10-05

    Oct 5, 2016 ... Full Length Research Paper. Evaluation of various ..... Uso de plaguicidas en dos zonas agrícolas de México and evaluación de la Contaminación de agua and sedimentos. ... Degradacion del clorotalonilo por un consorcio ...

  3. Evaluation of fuel cell system efficiency and degradation at development and during commercialization

    Science.gov (United States)

    Gemmen, R. S.; Johnson, C. D.

    Two primary parameters stand out for characterizing fuel cell system performance. The first and most important parameter is system efficiency. This parameter is relatively easy to define, and protocols for its assessment are already available. Another important parameter yet to be fully considered is system degradation. Degradation is important because customers desire to know how long their purchased fuel cell unit will last. The measure of degradation describes this performance factor by quantifying, for example, how the efficiency of the unit degrades over time. While both efficiency and degradation concepts are readily understood, the coupling between these two parameters must also be understood so that proper testing and evaluation of fuel cell systems is achieved. Tests not properly performed, and results not properly understood, may result in improper use of the evaluation data, producing improper R&D planning decisions and financial investments. This paper presents an analysis of system degradation, recommends an approach to its measurement, and shows how these two parameters are related and how one can be "traded-off" for the other.

  4. Evaluation of radiation-induced degradation of silicon '0' ring

    International Nuclear Information System (INIS)

    Ikeshima, Yoshiaki; Shiraishi; Tadao; Sato, Ryuichi; Tanaka, Isao; Ichihashi, Yoshinori; Ito, Masayuki.

    1990-12-01

    Currently there is too few available data on mechanical properties of an 'O' ring made of organic material, which is used over an extensive period of time under actual Nuclear Reactor environmental conditions. The 'O' rings which were evaluated were made of Silicon Rubber, and are used to provide water tightness. The 'O' rings also served as a pressure boundary within the nozzle of the in-reactor tube in the Water Loop-2 (OWL-2) at the JMTR in Oarai, Ibaraki. The 'O' rings were subjected to a constant penetrating radiation (up to 3.46 kGy) over a period of thirteen (13) years. The effects on the mechanical properties of a Silicon Rubber 'O' Ring were evaluated after having been used over an extensive period of time in an actual in-reactor tube within a radiation environment; a full thirteen years in durations. In making comparison of the properties of other Silicon Rubber 'O' Rings. It was also found that these other 'O' rings were subject to Gamma Rays for a shorter period, but with the same amount of radiation as the 'O' rings in the reactor were supposedly to have received. The evaluation showed that a Silicon Rubber 'O' Ring could have been used for a period, as much as forty (40) years even with a (absorbed) dose of about 300 kGy, before the life expectancy of such an 'O' ring is fully met. It was also discovered that the mechanical properties of an Ethylene Propylene 'O' Rings (currently used in the new OWL-2 in-reactor tube) were much superior to those of the Silicon Rubber 'O' Rings. The Ethylene Propylene 'O' Rings had a live expectancy which was about three times that of a Silicon Rubber 'O' Rings. (author)

  5. [Establishment and evaluation of an in vitro method for neutrophil extracellular trap generation and degradation].

    Science.gov (United States)

    Li, Jinlong; Zhang, Yidan; Zhou, Xin; Ji, Wenjie; Zhao, Jihong; Wei, Luqing; Li, Yuming

    2014-09-01

    To evaluate a novel method for in vitro generation and degradation of neutrophil extracellular traps (NETs), which are a newly recognized structure that is involved in the pathogenesis of autoimmune diseases and thrombosis. Neutrophils from peripheral blood of healthy donors were obtained by Ficoll-Histopaque gradient separation. NET release was initiated by phorbol myristate acetate (PMA) and validated by immunofluorescence staining and agarose gel electrophoresis. NETs degraded by DNase I and healthy human plasma were quantified by fluorescence spectrometry after staining with PicoGreen. HE staining showed that the purity of neutrophils was up to 95% after Ficoll-Histopaque gradient separation. NET immunofluorescent staining revealed that the network structure was mainly composed of DNA and histones, with molecular length more than 10 kb as demonstrated by agarose gel electrophoresis. Moreover, both DNase and healthy human plasma could induce the degradation of NETs, in varying degrees. This work established an efficient method for in vitro generation and degradation of human NETs.

  6. Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Leão, Bruna A; Tótola, Marcos R; Borges, Arnaldo C

    2011-02-01

    The acute toxicity of bacterial surfactants LBBMA111A, LBBMA155, LBBMA168, LBBMA191 and LBBMA201 and the synthetic surfactant sodium dodecyl sulfate (SDS) on the bioluminescent bacterium Vibrio fischeri was evaluated by measuring the reduction of light emission (EC(20)) by this microorganism when exposed to different surfactant concentrations. Moreover, the toxic effects of different concentrations of biological and synthetic surfactants on the growth of pure cultures of isolates Acinetobacter baumannii LBBMA04, Acinetobacter junni LBBMA36, Pseudomonas sp. LBBMA101B and Acinetobacter baumanni LBBMAES11 were evaluated in mineral medium supplemented with glucose. The EC(20) values obtained confirmed that the biosurfactants have a significantly lower toxicity to V. fischeri than the SDS. After 30 min of exposure, bacterial luminescence was almost completely inhibited by SDS at a concentration of 4710 mg L(-1). Growth reduction of pure bacterial cultures caused by the addition of biosurfactants to the growth medium was lower than that caused by SDS. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    Science.gov (United States)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  8. Performance evaluation of multi-state degraded systems with minimal repairs and imperfect preventive maintenance

    International Nuclear Information System (INIS)

    Soro, Isaac W.; Nourelfath, Mustapha; Ait-Kadi, Daoud

    2010-01-01

    In this paper, we develop a model for evaluating the availability, the production rate and the reliability function of multi-state degraded systems subjected to minimal repairs and imperfect preventive maintenance. The status of the system is considered to degrade with use. These degradations may lead to decrease in the system efficiency. It is assumed that the system can consecutively degrade into several discrete states, which are characterized by different performance rates, ranging from perfect functioning to complete failure. The latter is observed when the degradation level reaches a certain critical threshold such as the system efficiency may decrease to an unacceptable limit. In addition, the system can fail randomly from any operational or acceptable state and can be repaired. This repair action brings the system to its previous operational state without affecting its failure rate (i.e., minimal repair). The used preventive maintenance policy suggests that if the system reaches the last acceptable degraded state, it is brought back to one of the states with higher efficiency. Considering customer demand as constant, the system is modeled as a continuous-time Markov process to assess its instantaneous and stationary performance measures. A numerical example is given to illustrate the proposed model.

  9. Comparative evaluation of thermal degradation for biodiesels derived from various feedstocks through transesterification

    International Nuclear Information System (INIS)

    Li, Hui; Niu, Sheng-li; Lu, Chun-mei; Cheng, Shi-qing

    2015-01-01

    Highlights: • TG–FTIR is employed to evaluate thermal degradation characteristics of biodiesels. • Lower content of unsaturated fatty acid is responsible for higher thermal stability. • Evolved products are alkanes, aldehyde/ketones, ethers, alkenes and CO 2 . - Abstract: Biodiesel is commonly derived from various feedstocks through transesterification. Since thermal degradation is concerned with a lot of scientific applications, it is essential to evaluate the thermal degradation characteristics for biodiesel. In this study, thermal degradation of biodiesel is investigated through thermogravimetric analysis (TGA) coupled with Fourier transform infrared spectroscopy (FTIR). The fatty acid composition and the characteristic functional groups of biodiesel are detected by gas chromatography (GC) and FTIR in advance. Then, TGA experiments are conducted at linear heating rates from 20 °C min −1 to 40 °C min −1 under nitrogen atmosphere in temperature range from 25 °C to 600 °C. Subsequently, the activation energy, including enthalpy, is determined by Friedman method and Flynn–Wall–Ozawa method and the reaction order is calculated through the Avrami theory. In addition, the pre-exponential factor, the Gibbs free energy, and the entropy are also calculated. Finally, to obtain a comprehensive understanding for thermal degradation of biodiesels, all evolved products are detected by FTIR in real time

  10. Evaluation of ruminal degradation profiles of forages using bags made from different textiles

    Directory of Open Access Journals (Sweden)

    Tiago Neves Pereira Valente

    2011-11-01

    Full Text Available The objective of this study was to evaluate the in situ degradation profiles of dry matter (DM and neutral detergent fiber (NDF of different forages using nylon (50 µm, F57 (Ankom® and non-woven textile (NWT - 100 g/m² bags. Eight forage samples were used: sugarcane, corn silage, elephant grass cut at 50 and 250 days of regrowth, corn straw, signal grass hay, coast cross hay, and fresh alfalfa. Samples were incubated for 0, 3, 6, 12, 18, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240, and 312 hours. Two bags of each textile were used at each incubation time, totaling 768 bags, using two crossbred Holstein × Zebu steers fitted with ruminal canullae. There was difference in the common rate of lag and degradation (λ of DM for all forages, except for sugarcane. In general, higher λ estimates were obtained using nylon, followed by NWT and F57. Concerning NDF degradation profiles, differences in λ were observed for all forages. Greater estimates were obtained using nylon. Degradation profiles of DM and NDF must not be evaluated using F57 and NWT. These textiles underestimate the degradation rate due to constraints regarding exchange between bags' content and rumen environment.

  11. Evaluation and improvement in nondestructive examination (NDE) reliability for in-service inspection of light water reactors

    International Nuclear Information System (INIS)

    Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The evaluation and improvement of NDE Reliability for In-service Inspection (ISI) of Light Water Reactors (NDE Reliability) Program at Pacific Northwest Laboratory (PNL) was established to determine the reliability of current ISI techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this NRC program are to: determine the reliability of ultrasonic ISI performed on commercial light-water reactor (LWR) primary systems; determine the impact of NDE unreliability on system safety and determine the level of inspection reliability required to ensure a suitably low failure probability using probabilistic fracture mechanics analysis; evaluate the degree of reliability improvement that could be achieved using improved and advanced NDE technique; and recommend revisions to ASME Code, Section XI, and Regulatory Requirements, based on material properties, service conditions, and NDE uncertainties, that will ensure suitably low failure probabilities. The program consists of three basic tasks: a Piping task, a Pressure Vessel task, and an Evaluation and Improvement in NDE Reliability task. The major efforts were concentrated in the Piping task and the Evaluation and Improvement in NDE Reliability task

  12. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging

    Science.gov (United States)

    In this study, we develop a viability evaluation method for pepper (Capsicum annuum L.) seed based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumin...

  13. 3D Nondestructive Visualization and Evaluation of TRISO Particles Distribution in HTGR Fuel Pebbles Using Cone-Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Gongyi Yu

    2017-01-01

    Full Text Available A nonuniform distribution of tristructural isotropic (TRISO particles within a high-temperature gas-cooled reactor (HTGR pebble may lead to excessive thermal gradients and nonuniform thermal expansion during operation. If the particles are closely clustered, local hotspots may form, leading to excessive stresses on particle layers and an increased probability of particle failure. Although X-ray digital radiography (DR is currently used to evaluate the TRISO distributions in pebbles, X-ray DR projection images are two-dimensional in nature, which would potentially miss some details for 3D evaluation. This paper proposes a method of 3D visualization and evaluation of the TRISO distribution in HTGR pebbles using cone-beam computed tomography (CBCT: first, a pebble is scanned on our high-resolution CBCT, and 2D cross-sectional images are reconstructed; secondly, all cross-sectional images are restructured to form the 3D model of the pebble; then, volume rendering is applied to segment and display the TRISO particles in 3D for visualization and distribution evaluation. For method validation, several pebbles were scanned and the 3D distributions of the TRISO particles within the pebbles were produced. Experiment results show that the proposed method provides more 3D than DR, which will facilitate pebble fabrication research and production quality control.

  14. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    International Nuclear Information System (INIS)

    Rackham, Jamie; Weber, Anne-Laure; Chard, Patrick

    2012-01-01

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  15. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Rackham, Jamie [Babcock International Group, Sellafield, Seascale, Cumbria, (United Kingdom); Weber, Anne-Laure [Institut de Radioprotection et de Surete Nucleaire Fontenay-Aux-Roses (France); Chard, Patrick [Canberra, Forss Business and Technology park, Thurso, Caithness (United Kingdom)

    2012-12-15

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  16. Evaluating anthropogenic risk of grassland and forest habitat degradation using land-cover data

    Science.gov (United States)

    Kurt Riitters; James Wickham; Timothy Wade

    2009-01-01

    The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple...

  17. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation.

    Science.gov (United States)

    Kim, Ju-Won; Park, Seunghee

    2018-01-02

    In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.

  18. Non-destructive evaluation of fiber-reinforced composites with a fast 2D fiber-optic laser-ultrasound scanner

    Science.gov (United States)

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; Shtokolov, Alex; O'Donnell, Matthew

    2015-03-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for high speed non-destructive testing and evaluation (NDT&E) of aircraft composites. The performance of the LU system is demonstrated on a composite sample typically used in the aircraft industry. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed diode-pumped laser delivering nanosecond laser pulses at a 1 kHz repetition rate with a pulse energy of 2 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals in a 1-10 MHz frequency range at the same point (an 8 μm focal spot) on the composite surface. A fast (up to 100 mm/s) 2D translation system is employed to move the sample during scanning and produce a complete B-scan consisting of one thousand A-scans in less than a second. The sensitivity of this system, in terms of the noise equivalent pressure, is found to be only 10 dB above the Nyquist thermal noise limit. To our knowledge, this is the best reported sensitivity for a non-contact ultrasonic detector of this dimension.

  19. Educational ultrasound nondestructive testing laboratory.

    Science.gov (United States)

    Genis, Vladimir; Zagorski, Michael

    2008-09-01

    The ultrasound nondestructive evaluation (NDE) of materials course was developed for applied engineering technology students at Drexel University's Goodwin College of Professional Studies. This three-credit, hands-on laboratory course consists of two parts: the first part with an emphasis on the foundations of NDE, and the second part during which ultrasound NDE techniques are utilized in the evaluation of parts and materials. NDE applications are presented and applied through real-life problems, including calibration and use of the latest ultrasonic testing instrumentation. The students learn engineering and physical principles of measurements of sound velocity in different materials, attenuation coefficients, material thickness, and location and dimensions of discontinuities in various materials, such as holes, cracks, and flaws. The work in the laboratory enhances the fundamentals taught during classroom sessions. This course will ultimately result in improvements in the educational process ["The greater expectations," national panel report, http://www.greaterexpectations.org (last viewed February, 2008); R. M. Felder and R. Brent "The intellectual development of Science and Engineering Students. Part 2: Teaching to promote growth," J. Eng. Educ. 93, 279-291 (2004)] since industry is becoming increasingly reliant on the effective application of NDE technology and the demand on NDE specialists is increasing. NDE curriculum was designed to fulfill levels I and II NDE in theory and training requirements, according to American Society for Nondestructive Testing, OH, Recommended Practice No. SNT-TC-1A (2006).

  20. Non-destructive testing of electronic parts

    International Nuclear Information System (INIS)

    Widenhorn, G.

    1980-01-01

    The requirements on quality, safety, faultlessness and reliability of electric components increase because of the high complexity of the appliances in which they are used. By means of examples a survey is given on the common non-destructive testing methods, testing operation and evaluation of test results on electric components which must meet in their application high requirements on quality and reliability. Defective components, especially those with hidden failures are sorted out by non-destructive testing and the failure frequency of the appliances and plants in testing and operation is greatly reduced. (orig.) [de

  1. Nondestructive characterization of austenitic stainless steels

    International Nuclear Information System (INIS)

    Jayakumar, T.; Kumar, Anish

    2010-01-01

    The paper presents an overview of the non-destructive methodologies developed at the authors' laboratory for characterization of various microstructural features, residual stresses and corrosion in austenitic stainless steels. Various non-destructive evaluation (NDE) parameters such as ultrasonic velocity, ultrasonic attenuation, spectral analysis of the ultrasonic signals, magnetic hysteresis parameters and eddy current amplitude have been used for characterization of grain size, precipitation behaviour, texture, recrystallization, thermomechanical processing, degree of sensitization, formation of martensite from metastable austenite, assessment of residual stresses, degree of sensitization and propensity for intergranular corrosion in different austenitic steels. (author)

  2. Evaluation of degradation of antibiotic tetracycline in pig manure by electron beam irradiation.

    Science.gov (United States)

    Cho, Jae-Young

    2010-04-01

    This study was carried out to evaluate the degradation efficiency and intermediate products of the tetracycline from artificially contaminated pig manure using of electron beam irradiation as a function of the absorbed dose. The degradation efficiency of tetracycline was 42.77% at 1 kGy, 64.20% at 3 kGy, 77.83% at 5 kGy, and 90.50% at 10 kGy. The initial concentration of tetracycline (300 mg kg(-1)) in pig manure decreased significantly to 24.2 +/- 5.3 mg kg(-1) after electron beam irradiation at 10 kGy. The radiolytic degradation products of tetracycline were 1,4-benzenedicarboxylic acid, hexadecanoic acid, 9-octadecenamide, 11-octadecenamide, and octadecanoic acid.

  3. Evaluation of anaerobic degradation, biogas and digestate production of cereal silages using nylon-bags.

    Science.gov (United States)

    Negri, Marco; Bacenetti, Jacopo; Fiala, Marco; Bocchi, Stefano

    2016-06-01

    In this study, the degradation efficiency and the biogas and digestate production during anaerobic digestion were evaluated for the cereal silages most used to feed biogas plants. To this purpose, silages of: maize from the whole plant, maize from the ear, triticale and wheat were digested, inside of nylon bags, in laboratory scale digesters, for 75days. Overall, the test involved 288 nylon bags. After 75days of digestion, the maize ear silage shows the highest degradation efficiency (about 98%) while wheat silage the lowest (about 83%). The biogas production ranges from 438 to 852Nm(3)/t of dry matter for wheat and ear maize silage, respectively. For all the cereal silages, the degradation as well as the biogas production are faster at the beginning of the digestion time. Digestate mass, expressed as percentage of the fresh matter, ranges from 38% to 84% for wheat and maize ear silage, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    Science.gov (United States)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  5. Evaluating polymer degradation with complex mixtures using a simplified surface area method.

    Science.gov (United States)

    Steele, Kandace M; Pelham, Todd; Phalen, Robert N

    2017-09-01

    Chemical-resistant gloves, designed to protect workers from chemical hazards, are made from a variety of polymer materials such as plastic, rubber, and synthetic rubber. One material does not provide protection against all chemicals, thus proper polymer selection is critical. Standardized testing, such as chemical degradation tests, are used to aid in the selection process. The current methods of degradation ratings based on changes in weight or tensile properties can be expensive and data often do not exist for complex chemical mixtures. There are hundreds of thousands of chemical products on the market that do not have chemical resistance data for polymer selection. The method described in this study provides an inexpensive alternative to gravimetric analysis. This method uses surface area change to evaluate degradation of a polymer material. Degradation tests for 5 polymer types against 50 complex mixtures were conducted using both gravimetric and surface area methods. The percent change data were compared between the two methods. The resulting regression line was y = 0.48x + 0.019, in units of percent, and the Pearson correlation coefficient was r = 0.9537 (p ≤ 0.05), which indicated a strong correlation between percent weight change and percent surface area change. On average, the percent change for surface area was about half that of the weight change. Using this information, an equivalent rating system was developed for determining the chemical degradation of polymer gloves using surface area.

  6. Best Practices for Evaluating the Capability of Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) Techniques for Damage Characterization (Post-Print)

    Science.gov (United States)

    2016-02-10

    mitigate life-cycle risk of an airframe under the framework of ASIP, a rigorous capability study following the spirit of MIL-HDBK-1823A for POD...model, iaf including uncertainty. Random events such as sensor failure/disbond (b1), sensor bond degradation ( b2 ), sensor replacement (b3), and local

  7. Nondestructive examination development and demonstration plan

    International Nuclear Information System (INIS)

    Weber, J.R.

    1991-01-01

    Nondestructive examination (NDE) of waste matrices using penetrating radiation is by nature very subjective. Two candidate systems of examination have been identified for use in WRAP 1. This test plan describes a method for a comparative evaluation of different x-ray examination systems and techniques

  8. Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L. Seeds Using LED-Induced Hyperspectral Reflectance Imaging

    Directory of Open Access Journals (Sweden)

    Changyeun Mo

    2014-04-01

    Full Text Available In this study, we developed a viability evaluation method for pepper (Capsicum annuum L. seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares–discriminant analysis (PLS-DA model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB, which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400–700 nm yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600–700 nm yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  9. Nondestructive evaluation of crystallized-particle size in lactose-powder by terahertz time-domain spectroscopy

    Science.gov (United States)

    Yamauchi, Satoshi; Hatakeyama, Sakura; Imai, Yoh; Tonouchi, Masayoshi

    2014-03-01

    Transmission-type terahertz time-domain spectroscopy is applied to evaluate crystallized lactose particle of size below 30 μm, which is far too small compared to the wavelength of incident terahertz (THz)-wave. The THz-absorption spectrum of lactose is successfully deconvoluted by Lorentzian to two spectra with peaks at 17.1 cm-1 (0.53 THz) and 45.6 cm-1 (1.37 THz) derived from α-lactose monohydrate, and a spectrum at 39.7 cm-1 (1.19 THz) from anhydrous β-lactose after removal of the broad-band spectrum by polynomial cubic function. Lactose is mainly crystallized into α-lactose monohydrate from the supersaturated solution at room temperature with a small amount of anhydrous β-lactose below 4%. The absorption feature is dependent on the crystallized particle size and the integrated intensity ratio of the two absorptions due to α-lactose monohydrate is correlated in linear for the size.

  10. In situ mobile subaquatic archaeometry evaluated by non-destructive Raman microscopy of gemstones lying under impure waters

    Science.gov (United States)

    Smith, David C.

    2003-08-01

    A series of laboratory simulations have been made in order to evaluate the credibility of carrying out physico-chemical analysis of cultural heritage items by Raman spectral fingerprinting using a mobile Raman microscope in situ under natural impure water in subaquatic or submarine conditions. Three different kinds of gemstone (zircon, microcline and sodalite) were successively placed under different kinds of impure water into which a low power microscope objective was immersed to eliminate the normal aerial pathway between the objective and the object to be analysed. According to the nature of the impurities (inorganic or organic, dissolved or suspended, transparent or coloured) the results obtained variously gave Raman band intensities stronger than, similar to or weaker than those of spectra obtained without water, i.e. in air. The significant point is that after only minor spectral treatment the less good spectra nevertheless yielded exploitable data with most, if not all, of the key Raman bands being detected. Thus the problems of fluorescence or peak absences under water are of a similar degree of magnitude to the other problems inherent with the Raman spectroscopic technique in aerial conditions, e.g. relative peak intensities varying with crystal orientation; peak positions varying with chemical composition. These results indicate that even if at certain sites of submerged cities or sunken ships, the combination of animal, vegetal, mineral and microbial impurities join together to inhibit or hinder the success of subaquatic or submarine archaeometry, there will certainly be other sites where such activity is indeed credible.

  11. Non-destructive evaluation of bacteria-infected watermelon seeds using visible/near-infrared hyperspectral imaging.

    Science.gov (United States)

    Lee, Hoonsoo; Kim, Moon S; Song, Yu-Rim; Oh, Chang-Sik; Lim, Hyoun-Sub; Lee, Wang-Hee; Kang, Jum-Soon; Cho, Byoung-Kwan

    2017-03-01

    There is a need to minimize economic damage by sorting infected seeds from healthy seeds before seeding. However, current methods of detecting infected seeds, such as seedling grow-out, enzyme-linked immunosorbent assays, the polymerase chain reaction (PCR) and the real-time PCR have a critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to evaluate the potential of visible/near-infrared (Vis/NIR) hyperspectral imaging system for detecting bacteria-infected watermelon seeds. A hyperspectral Vis/NIR reflectance imaging system (spectral region of 400-1000 nm) was constructed to obtain hyperspectral reflectance images for 336 bacteria-infected watermelon seeds, which were then subjected to partial least square discriminant analysis (PLS-DA) and a least-squares support vector machine (LS-SVM) to classify bacteria-infected watermelon seeds from healthy watermelon seeds. The developed system detected bacteria-infected watermelon seeds with an accuracy > 90% (PLS-DA: 91.7%, LS-SVM: 90.5%), suggesting that the Vis/NIR hyperspectral imaging system is effective for quarantining bacteria-infected watermelon seeds. The results of the present study show that it is possible to use the Vis/NIR hyperspectral imaging system for detecting bacteria-infected watermelon seeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Nondestructive testing of a weld repair on the I-65 Bridge over the Ohio River at Louisville.

    Science.gov (United States)

    2009-06-01

    Nondestructive evaluation methods were applied to verify the structural integrity of a fracture critical structural member on the I-65 John F. Kennedy Memorial Bridge over the Ohio River at Louisville. Several nondestructive evaluation methods includ...

  13. The study of evaluation methodology of the aging and degradation researches

    International Nuclear Information System (INIS)

    Cho, C. J.; Park, Z. H.; Jeong, I. S.

    2001-01-01

    To judge the usefulness of aging related researches like PLIM (Plant lifetime Management) and aging related degradation, et. al. in PSR(Periodic Safety Review), the evaluation methodology of the R and D have been proposed up to now are reviewed. The infometric methodology is considered to be the optimum method for the evaluation of the nuclear related researches. And finally, to increase the objectiveness and reliability of the infometric methodology in the aging and degradation researches, the indexes of safety, technology and economics are introduced. From this study, the infometric methodology has the advantage of the actual engineering evaluation in the nuclear related researches with other methodologies, but for the further research, the effective construction of DB and survey of various statistics in the technical reports and papers are needed

  14. Ultrasonic Nondestructive Evaluation of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) During Large-Scale Load Testing and Rod Push-Out Testing

    Science.gov (United States)

    Johnston, Patrick H.; Juarez, Peter D.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. The HWB has long been a focus of NASA's environmentally responsible aviation (ERA) project, following a building block approach to structures development, culminating with the testing of a nearly full-scale multi-bay box (MBB), representing a segment of the pressurized, non-circular fuselage portion of the HWB. PRSEUS is an integral structural concept wherein skins, frames, stringers and tear straps made of variable number of layers of dry warp-knit carbon-fiber stacks are stitched together, then resin-infused and cured in an out-of-autoclave process. The PRSEUS concept has the potential for reducing the weight and cost and increasing the structural efficiency of transport aircraft structures. A key feature of PRSEUS is the damage-arresting nature of the stitches, which enables the use of fail-safe design principles. During the load testing of the MBB, ultrasonic nondestructive evaluation (NDE) was used to monitor several sites of intentional barely-visible impact damage (BVID) as well as to survey the areas surrounding the failure cracks after final loading to catastrophic failure. The damage-arresting ability of PRSEUS was confirmed by the results of NDE. In parallel with the large-scale structural testing of the MBB, mechanical tests were conducted of the PRSEUS rod-to-overwrap bonds, as measured by pushing the rod axially from a short length of stringer.

  15. Non-destructive controls

    International Nuclear Information System (INIS)

    Nouvet, A.

    1978-01-01

    The non-destructive controls permit, while respecting their integrity, the direct and individual examination of parts or complete objects as they are manufactured, as well as to follow the evolution of their eventual defects while in operation. The choice of control methods depends on the manufacturing process and shapes of parts, on the physical properties of their components as well as the nature, position and size of the defects which are likely to be detected. Whether it is a question of controls by means of ionizing radiation, flux of neutrons, ultrasons, acoustic source, sweating, magnetoscopy. Foucault currents, thermography, detection of leaks or non-destructive metallography, each has a limited field of application such that they are less competitive than complementary [fr

  16. Center for Nondestructive Evaluation - Center for Nondestructive Evaluation

    Science.gov (United States)

    Director's Webpage History Research NDE Education Become a Sponsor Major Participants Directory Contact Us roadways we drive on every day, to planes that carry both the public and defense personnel. CNDE has a long history of working with industry to provide cost-effective tools and solutions which address relevant

  17. Degradation and performance evaluation of PV module in desert climate conditions with estimate uncertainty in measuring

    Directory of Open Access Journals (Sweden)

    Fezzani Amor

    2017-01-01

    Full Text Available The performance of photovoltaic (PV module is affected by outdoor conditions. Outdoor testing consists installing a module, and collecting electrical performance data and climatic data over a certain period of time. It can also include the study of long-term performance under real work conditions. Tests are operated in URAER located in desert region of Ghardaïa (Algeria characterized by high irradiation and temperature levels. The degradation of PV module with temperature and time exposure to sunlight contributes significantly to the final output from the module, as the output reduces each year. This paper presents a comparative study of different methods to evaluate the degradation of PV module after a long term exposure of more than 12 years in desert region and calculates uncertainties in measuring. Firstly, this evaluation uses three methods: Visual inspection, data given by Solmetric PVA-600 Analyzer translated at Standard Test Condition (STC and based on the investigation results of the translation equations as ICE 60891. Secondly, the degradation rates calculated for all methods. Finally, a comparison between a degradation rates given by Solmetric PVA-600 analyzer, calculated by simulation model and calculated by two methods (ICE 60891 procedures 1, 2. We achieved a detailed uncertainty study in order to improve the procedure and measurement instrument.

  18. Decay extent evaluation of wood degraded by a fungal community using NIRS: application for ecological engineering structures used for natural hazard mitigation

    Science.gov (United States)

    Baptiste Barré, Jean; Bourrier, Franck; Bertrand, David; Rey, Freddy

    2015-04-01

    Ecological engineering corresponds to the design of efficient solutions for protection against natural hazards such as shallow landslides and soil erosion. In particular, bioengineering structures can be composed of a living part, made of plants, cuttings or seeds, and an inert part, a timber logs structure. As wood is not treated by preservatives, fungal degradation can occur from the start of the construction. It results in wood strength loss, which practitioners try to evaluate with non-destructive tools (NDT). Classical NDT are mainly based on density measurements. However, the fungal activity reduces the mechanical properties (modulus of elasticity - MOE) well before well before a density change could be measured. In this context, it would be useful to provide a tool for assessing the residual mechanical strength at different decay stages due to a fungal community. Near-infrared spectroscopy (NIRS) can be used for that purpose, as it can allow evaluating wood mechanical properties as well as wood chemical changes due to brown and white rots. We monitored 160 silver fir samples (30x30x6000mm) from green state to different levels of decay. The degradation process took place in a greenhouse and samples were inoculated with silver fir decayed debris in order to accelerate the process. For each sample, we calculated the normalized bending modulus of elasticity loss (Dw moe) and defined it as decay extent. Near infrared spectra collected from both green and decayed ground samples were corrected by the subtraction of baseline offset. Spectra of green samples were averaged into one mean spectrum and decayed spectra were subtracted from the mean spectrum to calculate the absorption loss. Partial least square regression (PLSR) has been performed between the normalized MOE loss Dw moe (0 wood decay extent in the context of ecological engineering structures used for natural hazard mitigation.

  19. Liquid Crystals for Nondestructive Evaluation

    Science.gov (United States)

    1978-09-01

    polarizers (e.g., where p is the distance of alignment or pitch, X is the Nicol, Rochon, and Wollaston prisms ) are based upon peak wavelength of scattered...RANGE OF so 45" 45 - EVENT SEVENT T(°C) TEMPERATUJRE TC)4"TEMPERATURE 40RANGE OF T(°) 0-RANGE OF 40LIQUID ’ ൫" CRYSTAL S 36 3S. 30 0 IS 90 180 - I...Temperatures TI > T2 > - > TS defects was possible using the liquid crystal. are the Average TemperatursI Thes Resptivegi. Kapfer , Burns, Salvo, and Doyle

  20. Evaluation of the mercaptobenzothiazole degradation by combined adsorption process and Fenton reaction using iron mining residue.

    Science.gov (United States)

    Martins, Adriana Lau da Silva; Teixeira, Luís Alberto César; da Fonseca, Fabiana Valéria; Yokoyama, Lídia

    2017-08-01

    The present study investigated the degradation of mercaptobenzothiazole (MBT), evaluating homogeneous and heterogeneous systems. An iron mineral residue from the desliming step of iron mining was used as a source in the Fenton-like reaction (advanced oxidation process). A granulometric analysis of the residue was performed and yielded fractions with high hematite (Fe 2 O 3 ) and low quartz content in sieves from 74 to below 44 mm. In this particle size range, the hematite content from 58.9% to 67.4% and the Brunauer-Emmett-Teller area from 0.1345 to 1.3137 m 2  g -1 were obtained. The zeta potential curves as a function of pH were obtained for the residue, the MBT solution and mixtures thereof. The adsorption of MBT in the residue and its degradation through the Fenton-like reaction were investigated. Adsorption tests and the Fenton-like reaction were carried out, where the MBT species and the residue are oppositely charged, yielding, respectively, 10% MBT adsorption on the surface of the residue and 100% MBT degradation by the Fenton-like reaction at pH 3, hydrogen peroxide concentration of 25 mg L -1 , residue concentration of 3 g L -1 , 200 rpm and 25°C, from a 100 mg L -1 MBT solution. MBT degradation was found to occur mainly by the heterogeneous Fenton-like process.

  1. Developing Raman spectroscopy for the nondestructive testing of composite materials.

    Science.gov (United States)

    2009-08-01

    The proposed research will develop the application of Raman Spectroscopy as a nondestructive evaluation tool for the condition assessment of carbon fiber composites. Composite materials are increasingly being used in engineered structures and compone...

  2. Hydrodynamic characterization and evaluation of an open channel reactor for the degradation of paracetamol

    International Nuclear Information System (INIS)

    Abreu Zamora, Maria A.; Gonzalez Lopez, Dagoberto E.; Robaina Leon, Yalaina; Dominguez Catasus, Judith; Borroto Portela, Jorge I.; Jauregui Haza, Ulises J.

    2015-01-01

    The conventional wastewater treatment plants do not guarantee the degradation of Persistent Organic Pollutants (POPs). Advanced oxidation processes, like photodegradation that use artificial ultraviolet and solar radiation, are proposed as an alternative for the treatment of contaminated water with POPs. In the present work, the hydrodynamic characterization and evaluation of an open channel reactor for the degradation of paracetamol are presented. The hydrodynamic characterization was performed through the analysis of the residence time distribution using a radioisotope 99m Tc. This process was done in two steps. First, the open channel reactor was evaluated in continuous mode operation. To study the influence of the fluid volume in the reactor and the diameter of the flow distributor's orifices on the flow pattern, an experimental 3 2 design with two replicas in the center was used. The dependent variables were the number of perfectly mixed tanks (J), the mean residence time of the model (τ) and the experimental mean residence time (Trm). The model of perfectly mixed tanks in series exchanging with stagnant zones was assumed as the best model. In a second moment, the mixing time of the system operating in close loop mode was determined. Finally, the degradation of paracetamol in aqueous dissolution trough photolysis, photolysis intensified with H 2 O 2 , photo-Fenton with artificial ultraviolet radiation and photo-Fenton with solar radiation was evaluated. The results show that the photo-Fenton processes employing artificial ultraviolet and solar radiation warranty the total degradation of the pharmaceutical after 15 minutes of reaction. (Author)

  3. Evaluation and selection of indicators for land degradation and desertification monitoring: types of degradation, causes, and implications for management.

    Science.gov (United States)

    Kairis, Or; Kosmas, C; Karavitis, Ch; Ritsema, C; Salvati, L; Acikalin, S; Alcalá, M; Alfama, P; Atlhopheng, J; Barrera, J; Belgacem, A; Solé-Benet, A; Brito, J; Chaker, M; Chanda, R; Coelho, C; Darkoh, M; Diamantis, I; Ermolaeva, O; Fassouli, V; Fei, W; Feng, J; Fernandez, F; Ferreira, A; Gokceoglu, C; Gonzalez, D; Gungor, H; Hessel, R; Juying, J; Khatteli, H; Khitrov, N; Kounalaki, A; Laouina, A; Lollino, P; Lopes, M; Magole, L; Medina, L; Mendoza, M; Morais, P; Mulale, K; Ocakoglu, F; Ouessar, M; Ovalle, C; Perez, C; Perkins, J; Pliakas, F; Polemio, M; Pozo, A; Prat, C; Qinke, Y; Ramos, A; Ramos, J; Riquelme, J; Romanenkov, V; Rui, L; Santaloia, F; Sebego, R; Sghaier, M; Silva, N; Sizemskaya, M; Soares, J; Sonmez, H; Taamallah, H; Tezcan, L; Torri, D; Ungaro, F; Valente, S; de Vente, J; Zagal, E; Zeiliguer, A; Zhonging, W; Ziogas, A

    2014-11-01

    Indicator-based approaches are often used to monitor land degradation and desertification from the global to the very local scale. However, there is still little agreement on which indicators may best reflect both status and trends of these phenomena. In this study, various processes of land degradation and desertification have been analyzed in 17 study sites around the world using a wide set of biophysical and socioeconomic indicators. The database described earlier in this issue by Kosmas and others (Environ Manage, 2013) for defining desertification risk was further analyzed to define the most important indicators related to the following degradation processes: water erosion in various land uses, tillage erosion, soil salinization, water stress, forest fires, and overgrazing. A correlation analysis was applied to the selected indicators in order to identify the most important variables contributing to each land degradation process. The analysis indicates that the most important indicators are: (i) rain seasonality affecting water erosion, water stress, and forest fires, (ii) slope gradient affecting water erosion, tillage erosion and water stress, and (iii) water scarcity soil salinization, water stress, and forest fires. Implementation of existing regulations or policies concerned with resources development and environmental sustainability was identified as the most important indicator of land protection.

  4. Evaluation and Selection of Indicators for Land Degradation and Desertification Monitoring: Types of Degradation, Causes, and Implications for Management

    NARCIS (Netherlands)

    Kairis, O.; Kosmas, C.; Karavitis, C.; Ritsema, C.J.; Salvati, L.; Acikalin, S.; Alcala, M.; Alfama, P.; Atlhopheng, J.; Barrera, J.; Belgacem, A.; Sole-Benet, A.; Brito, J.; Chaker, M.; Chanda, R.; Coelho, C.; Darkoh, M.; Diamantis, I.; Ermolaeva, O.; Fassouli, V.; Fei, W.; Feng, J.; Fernandez, F.; Ferreira, A.; Gokceoglu, C.; Gonzalez, D.; Gungor, H.; Hessel, R.; Juying, J.; Khatteli, H.; Khitrov, N.; Kounalaki, A.; Laouina, A.; Lollino, P.; Lopes, M.; Magole, L.; Medina, L.; Mendoza, M.; Morais, P.; Mulale, K.; Ocakoglu, F.; Ouessar, M.; Ovalle, C.; Perez, C.; Perkins, J.; Pliakas, F.; Polemio, M.; Pozo, A.; Prat, C.; Qinke, Y.; Ramos, A.; Ramos, J.; Riquelme, J.; Romanenkov, V.; Rui, L.; Santaloia, F.; Sebego, R.; Sghaier, M.; Silva, N.; Sizemskaya, M.; Soares, J.; Sonmez, H.; Taamallah, H.; Tezcan, L.; Torri, D.; Ungaro, F.; Valente, S.; Vente, de J.; Zagal, E.; Zeiliguer, A.; Zhonging, W.; Ziogas, A.

    2014-01-01

    Indicator-based approaches are often used to monitor land degradation and desertification from the global to the very local scale. However, there is still little agreement on which indicators may best reflect both status and trends of these phenomena. In this study, various processes of land

  5. Evaluating the effect of crumb rubber and nano silica on the properties of high volume fly ash roller compacted concrete pavement using non-destructive techniques

    Directory of Open Access Journals (Sweden)

    Bashar S. Mohammed

    2018-06-01

    Full Text Available The major problems related to roller compacted concrete (RCC pavement are high rigidity, lower tensile strength which causes a tendency of cracking due to thermal or plastic shrinkage, flexural and fatigue loads. Furthermore, RCC pavement does not support the use of dowel bars or reinforcement due to the way it is placed and compacted, these also aided in cracking and consequently increased maintenance cost. To address these issues, high volume fly ash (HVFA RCC pavement was developed by partially replacing 50% cement by volume with fly ash. Crumb rubber was used as a partial replacement to fine aggregate in HVFA RCC pavement at 0%, 10%, 20%, and 30% replacement by volume. Nano silica was added at 0%, 1%, 2% and 3% by weight of cementitious materials to improve early strength development in HVFA RCC pavement and mitigate the loss of strength due to the incorporation of crumb rubber. The nondestructive technique using the rebound hammer test (RHT and ultrasonic pulse velocity (UPV were used to evaluate the effect of crumb rubber and nano silica on the performance of HVFA RCC pavement. The results showed that the use of HVFA as cement replacement decreases both the unit weight, compressive strength, rebound number (RN. Furthermore, the unit weight, compressive strength, RN, UPV and dynamic modulus of elasticity of HVFA RCC pavement all decreases with increase in crumb rubber content and increases with the addition of nano-silica. Combined UPV-RN (SonReb models for predicting the 28 days strength of HVFA RCC pavement based on combining UPV and RN were developed using multivariable regression (double power, bilinear, and double exponential models. The exponential combined SonReb model is the most suitable for predicting the compressive strength of HVFA RCC pavement using UPV and RN as the independent variable with better predicting ability, higher correlation compared to the single variable models. Keywords: Crumb rubber, High volume fly ash, Nano

  6. In-Situ Nondestructive Evaluation of Kevlar(Registered Trademark)and Carbon Fiber Reinforced Composite Micromechanics for Improved Composite Overwrapped Pressure Vessel Health Monitoring

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor

    2012-01-01

    NASA has been faced with recertification and life extension issues for epoxy-impregnated Kevlar 49 (K/Ep) and carbon (C/Ep) composite overwrapped pressure vessels (COPVs) used in various systems on the Space Shuttle and International Space Station, respectively. Each COPV has varying criticality, damage and repair histories, time at pressure, and pressure cycles. COPVs are of particular concern due to the insidious and catastrophic burst-before-leak failure mode caused by stress rupture (SR) of the composite overwrap. SR life has been defined [1] as the minimum time during which the composite maintains structural integrity considering the combined effects of stress level(s), time at stress level(s), and associated environment. SR has none of the features of predictability associated with metal pressure vessels, such as crack geometry, growth rate and size, or other features that lend themselves to nondestructive evaluation (NDE). In essence, the variability or surprise factor associated with SR cannot be eliminated. C/Ep COPVs are also susceptible to impact damage that can lead to reduced burst pressure even when the amount of damage to the COPV is below the visual detection threshold [2], thus necessitating implementation of a mechanical damage control plan [1]. Last, COPVs can also fail prematurely due to material or design noncompliance. In each case (SR, impact or noncompliance), out-of-family behavior is expected leading to a higher probability of failure at a given stress, hence, greater uncertainty in performance. For these reasons, NASA has been actively engaged in research to develop NDE methods that can be used during post-manufacture qualification, in-service inspection, and in-situ structural health monitoring. Acoustic emission (AE) is one of the more promising NDE techniques for detecting and monitoring, in real-time, the strain energy release and corresponding stress-wave propagation produced by actively growing flaws and defects in composite

  7. A study on the evaluation of material degradation using ball indentation method

    International Nuclear Information System (INIS)

    Kim, Jeong Pyo; Seok, Chang Sung; Ahn, Ha Neul

    2000-01-01

    As huge energy transfer systems like a nuclear power plant, steam power plant and petrochemical plant are operated for a long time, mechanical properties are changed by degradation. The life time of the systems can be affected by the mechanical properties. BI(Ball Indentation) test has a potential to replace conventional fracture tests like a uniaxial tensile test, fracture toughness test, hardness test and so on. In this paper, we would like to present the aging evaluation technique by the BI method. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. Tensile tests, fracture toughness tests, hardness tests and BI tests were performed. The results of the BI tests were in good agreement with fracture characteristics by a standard fracture test method. The IDE(Indentation Deformation Energy) of a BI technique as a new parameter for evaluating a degradation was suggested and the new IDE parameter clearly depicts the degradation degree

  8. Evaluation of Lithium-ion Battery Second Life Performance and Degradation

    DEFF Research Database (Denmark)

    Martinez-Laserna, Egoitz; Sarasketa-Zabala, Elixabet; Stroe, Daniel Loan

    2016-01-01

    the effects of lithium-ion (Li-ion) battery State of Health (SOH) and ageing history over the second life performance on two different applications: a residential demand management application and a power smoothing renewable integration application. The performance and degradation of second life batteries......Reusing electric vehicle batteries once they have been retired from the automotive application is stated as one of the possible solutions to reduce electric vehicle costs. Many publications in the literature have analyzed the economic viability of such a solution, and some car manufacturers have...... recently started running several projects to demonstrate the technical viability of the so-called battery second life. Nevertheless, the performance and degradation of second life batteries remain an unknown topic and one of the biggest gaps in the literature. The present work aims at evaluating...

  9. Technical regulation of nondestructive inspection

    International Nuclear Information System (INIS)

    1995-01-01

    It starts with the explanation of definition of nondestructive inspection and qualifications for a inspection. It lists the technical regulations of nondestructive inspections which are radiographic testing, ultrasonic flaw detecting test, liquid penetrant test, magnetic particle inspection, eddy current test visual inspection and leakage test.

  10. Radiation degradation and hemolytic toxicity evaluation of mono azo reactive dyes

    International Nuclear Information System (INIS)

    Saeed, Q.U.; Bhatti, I.A.; Ashraf, A.

    2017-01-01

    Monoazo reactive dyes have been synthesized and subjected to degradation before their application. Advanced oxidation process has been recognized as a promising radiation technology for the remediation of hazardous organic compounds. Radiation induced degradation of two mono azo reactive dyes have been tried at different absorbed dose, 5 kGy,10 kGy and 15 kGy. Aqueous solutions of these dyes were treated with gamma radiation using Cs 137 radiation source at Nuclear Institute of Agriculture and Biology (NIAB) Faisalabad. Dyes were evaluated spectrophotometrically by UV-visible and fourier transform infra red (FT-IR) spectroscopic techniques before and after irradiation to analyse their percentage decolorization and degradation. Maximum percentage decolorization of 93% and 63% was achieved for mono azo dyes D1 and D2 at 15 kGy absorbed dose. Toxicity study of these dyes was also tested by haemolytic activity assay. Percentage haemolytic activity of untreated dyes was found within permissible limit showing non toxicity of dye solutions. (author)

  11. Evaluation of force degradation characteristics of orthodontic latex elastics in vitro and in vivo.

    Science.gov (United States)

    Wang, Tong; Zhou, Gang; Tan, Xianfeng; Dong, Yaojun

    2007-07-01

    To evaluate the characteristics of force degradation of latex elastics in clinical applications and in vitro studies. Samples of 3/16-inch latex elastics were investigated, and 12 students between the ages of 12 and 15 years were selected for the intermaxillary and intramaxillary tractions. The elastics in the control groups were set in artificial saliva and dry room conditions and were stretched 20 mm. The repeated-measure two-way analysis of variance and nonlinear regression analysis were used to identify statistical significance. Overall, there were statistically significant differences between the different methods and observation intervals. At 24- and 48-hour time intervals, the force decreased during in vivo testing and in artificial saliva (P .05). In intermaxillary traction the percentage of initial force remaining after 48 hours was 61%. In intramaxillary traction and in artificial saliva the percentage of initial force remaining was 71%, and in room conditions 86% of initial force remained. Force degradation of latex elastics was different according to their environmental conditions. There was significantly more force degradation in intermaxillary traction than in intramaxillary traction. The dry room condition caused the least force loss. There were some differences among groups in the different times to start wearing elastics in intermaxillary traction but no significant differences in intramaxillary traction.

  12. Organophosphorus insecticides: Toxic effects and bioanalytical tests for evaluating toxicity during degradation processes

    Directory of Open Access Journals (Sweden)

    Čolović Mirjana B.

    2013-01-01

    Full Text Available Organophosphorus insecticides have been the most applied group of insecticides for the last two decades. Their main toxic effects are related to irreversible inactivation of acetylcholinesterase (AChE. Actually, they covalently bind to serine OH group in the enzyme active site forming phosphorylated enzyme that cannot hydrolyze acetylcholine. Organophosphorus insecticides in the environment undergo the natural degradation pathway including mainly homogeneous and heterogeneous hydrolysis (especially at high pH generating non-inhibiting products. Additionally, thio organophosphates are easily oxidized by naturally present oxidants and UV light, forming more toxic and stable oxons. Thus, oxidative degradation procedures, generally referred as advanced oxidation processes (AOP, have been applied for their efficient removal from contaminated waters. The most applied bioassays to monitor the organophosphate toxicity i.e. the detoxification degree during AOP are Vibrio fischeri and AChE bioassays. Vibrio fischeri toxicity test exploits bioluminescence as the measure of luciferase activity of this marine bacterium, whereas AChE bioassay is based on AChE activity inhibition. Both bioanalytical techniques are rapid (several minutes, simple, sensitive and reproducible. Vibrio fischeri test seems to be a versatile indicator of toxic compounds generated in AOP for organophosphorus insecticides degradation. However, detection of neurotoxic AChE inhibitors, which can be formed in AOP of some organophosphates, requires AChE bioassays. Therefore, AChE toxicity test is more appropriate for monitoring the degradation processes of thio organophosphates, because more toxic oxo organophosphates might be formed and overlooked by Vibrio fischeri bioluminescence inhibition. In addition, during organophosphates removal by AOP, compounds with strong genotoxic potential may be formed, which cannot be detected by standard toxicity tests. For this reason, determination of

  13. Thermal shock resistance of ceramic fibre composites characterized by non-destructive methods

    Directory of Open Access Journals (Sweden)

    M. Dimitrijević

    2008-12-01

    Full Text Available Alumina based ceramic fibres and alumina based ceramic were used to produce composite material. Behaviour of composite ceramics after thermal shock treatments was investigated. Thermal shock of the samples was evaluated using water quench test. Surface deterioration level of samples was monitored by image analysis before and after a number of quenching cycles. Ultrasonic measurements were done on samples after quench tests. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities. Strengths deterioration was calculated using the non-destructive measurements and correlated to degradation of surface area and number of quenches. The addition of small amount of ceramic fibres improves the strengths and diminishes the loss of mechanical properties of samples during thermal shock experiments.

  14. Evaluation of Extraction and Degradation Methods to Obtain Chickpeasaponin B1 from Chickpea (Cicer arietinum L.)

    OpenAIRE

    Kun Cheng; Hua Gao; Rong-Rong Wang; Yang Liu; Yu-Xue Hou; Xiao-Hong Liu; Kun Liu; Wei Wang

    2017-01-01

    The objective of this research is to implement extraction and degradation methods for the obtainment of 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-galactopyranosyl] soyasapogenol B (chickpeasaponin B1) from chickpea. The effects of microwave-assisted extraction (MAE) processing parameters—such as ethanol concentration, solvent/solid ratio, extraction temperature, microwave irradiation power, and irradiation time—were evaluated. Using 1g of material with 8 mL of 70% aqueous ethanol and an extraction t...

  15. Non-destructive inservice inspections

    International Nuclear Information System (INIS)

    Kauppinen, P.; Sarkimo, M.; Lahdenperae, K.

    1998-01-01

    In order to assess the possible damages occurring in the components and structures of operating nuclear power plants during service the main components and structures are periodically inspected by non-destructive testing techniques. The reliability of non-destructive testing techniques applied in these inservice inspections is of major importance because the decisions concerning the needs for repair of components are mainly based on the results of inspections. One of the targets of this research program has been to improve the reliability of non-destructive testing. This has been addressed in the sub-projects which are briefly summarised here. (author)

  16. In-Vitro gas production technique as for feed evaluation: volume of gas production and feed degradability

    International Nuclear Information System (INIS)

    Asih Kurniawati

    2007-01-01

    In-vitro gas production technique can be used to predict feed quality. The effect of molasses supplementation as a source of degradable carbohydrate to protein source red clover silage has been done using this technique. Data showed there were positive correlation between total volume gas produced and feed degradability (r = 0.96), between total volume gas produced and microbial biomass (r = 0,96). Dry matter degradability, dry matter degraded, microbial biomass production and efficiency of nitrogen utilization, highly significant (P<0,01) increased due to increasing of degradable carbohydrate. The addition of 0.3 g molasses gave the best result whereas the addition of 0.15 g and 0.225 g have better effect than 0.0625 g molasses addition and red clover only. This result suggested that In-vitro production technique can be used as tool for feed evaluation. (author)

  17. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability.

    Science.gov (United States)

    Park, Joung-Man; Kim, Dae-Sik; Kim, Sung-Ryong

    2003-08-15

    Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole (PBO, Zylon) and poly(p-phenylene terephthalamide) (PPTA, Kevlar) fibers/epoxy composites were investigated using a micromechanical technique and nondestructive acoustic emission (AE). The interfacial shear strength (IFSS) and work of adhesion, Wa, of PBO or Kevlar fiber/epoxy composites increased with oxygen-plasma treatment, due to induced hydrogen and covalent bondings at their interface. Plasma-treated Kevlar fiber showed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum values. The work of adhesion and the polar term were proportional to the IFSS directly for both PBO and Kevlar fibers. The microfibril fracture pattern of two plasma-treated fibers appeared obviously. Unlike in slow cooling, in rapid cooling, case kink band and kicking in PBO fiber appeared, whereas buckling in the Kevlar fiber was observed mainly due to compressive and residual stresses. Based on the propagation of microfibril failure toward the core region, the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly compared to the untreated case. The results of nondestructive AE were consistent with microfailure modes.

  18. Nondestructive sensing and stress transferring evaluation of carbon nanotube, nanofiber, and Ni nanowire strands/polymer composites using an electro-micromechanical technique

    Science.gov (United States)

    Park, Joung-Man; Kim, Sung-Ju; Jung, Jin-Gyu; Hansen, George; Yoon, Dong-Jin

    2006-03-01

    Nondestructive damage sensing and load transfer mechanisms of carbon nanotube (CNT), nanofiber (CNF), and Ni nanowire strands/epoxy composites were investigated using electro-micromechanical technique. Electrospun PVDF nanofiber was also prepared as a piezoelectric sensor. High volume% CNT/epoxy composites showed significantly higher tensile properties than neat and low volume% CNT/epoxy composites. CNF /epoxy composites with smaller aspect ratio showed higher apparent modulus due to high volume content in case of shorter aspect ratio. Using Ni nanowire strands/silicone composites with different content, load sensing response of electrical contact resistivity was investigated under tensile and compression condition. The mechanical properties of Ni nanowire strands with different type and content/epoxy composites were indirectly measured apparent modulus using uniformed cyclic loading and electro-pullout test. CNT or Ni nanowire strands/epoxy composites showed humidity and temperature sensing within limited ranges, 20 vol% reinforcement. Thermal treated electrospun PVDF nanofiber showed higher mechanical properties than the untreated case due to increased crystallization, whereas load sensing decreased in heat treated case. Electrospun PVDF nanofiber web also responded the sensing effect on humidity and temperature. Nanocomposites using CNT, CNF, Ni nanowire strands, and electrospun PVDF nanofiber web can be applicable practically for multifunctional applications nondestructively.

  19. A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Cho; Kang, Suk Chull; Goo, Cheol Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Jin Ho; Park, Jae Seok; Joo, Geum Jong; Park, Chi Seung [KAITEC, Seoul (Korea, Republic of)

    2004-08-15

    Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed

  20. Improvement of the reliability on nondestructive inspection

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Young H.; Lee, Hyang Beom; Shin, Young Kil; Jung, Hyun Jo; Park, Ik Keun; Park, Eun Soo

    2002-03-01

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time

  1. Improvement of the reliability on nondestructive inspection

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Kim, Young H. [Sungkyunkwan Univ., Suwon (Korea, Republic of); Lee, Hyang Beom [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan National Univ., Gunsan (Korea, Republic of); Jung, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of); Park, Ik Keun; Park, Eun Soo [Seoul Nationl Univ., Seoul (Korea, Republic of)

    2002-03-15

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time.

  2. Breeding of in-situ Petroleum Degrading Bacteria in Hangzhou Bay and evaluating for the In-situ repair effect

    Science.gov (United States)

    Lan, Ru; Lin, Hai; Qiao, Bing; Dong, Yingbo; Zhang, Wei; Chang, Wen

    2018-02-01

    In this paper, the restoration behaviour of the in-situ microorganisms in seawater and sediments to the marine accident oil spill was researched. The experimental study on the breeding of in-situ petroleum-degrading bacteria in the seawater and sediments of Hangzhou Bay and the restoration of oil spill were carried out. Making use of the reinforced microbial flora, combined with physical and chemical methods in field environment, petroleum degrading and restoration experiment were performed, the effect of the breeding of in-situ degrading bacteria was evaluated, and the standard process of in-situ bacteria sampling, laboratory screening, domestication and degradation efficiency testing were formed. This study laid a foundation for further evaluation of the advantages and disadvantages for the petroleum-degrading bacteria of Hangzhou Bay during the process of in-situ restoration. The results showed that in-situ microbes of Hangzhou Bay could reach the growth peak in 5 days with the suitable environmental factors and sufficient nutrient elements, and the degradation efficiency could reach 65.2% (or 74.8% after acclimation). And also the microbes could adapt to the local sea water and environmental conditions, with a certain degree of degradation. The research results could provide parameter support for causal judgment and quantitative assessment of oil spill damage.

  3. Industrial strategy for nondestructive control

    International Nuclear Information System (INIS)

    Martin, P.; Michaut, J.P.

    1994-01-01

    For Electricite de France, the nondestructive control strategy passes by a responsibility of services, a competition between companies, a clarification of the market access and a dialogue with the companies

  4. Documentation Protocols to Generate Risk Indicators Regarding Degradation Processes for Cultural Heritage Risk Evaluation

    Science.gov (United States)

    Kioussi, A.; Karoglou, M.; Bakolas, A.; Labropoulos, K.; Moropoulou, A.

    2013-07-01

    Sustainable maintenance and preservation of cultural heritage assets depends highly on its resilience to external or internal alterations and to various hazards. Risk assessment of a heritage asset's can be defined as the identification of all potential hazards affecting it and the evaluation of the asset's vulnerability (building materials and building structure conservation state).Potential hazards for cultural heritage are complex and varying. The risk of decay and damage associated with monuments is not limited to certain long term natural processes, sudden events and human impact (macroscale of the heritage asset) but is also a function of the degradation processes within materials and structural elements due to physical and chemical procedures. Obviously, these factors cover different scales of the problem. The deteriorating processes in materials may be triggered by external influences or caused because of internal chemical and/or physical variations of materials properties and characteristics. Therefore risk evaluation should be dealt in the direction of revealing the specific active decay and damage mechanism both in mesoscale [type of decay and damage] and microscale [decay phenomenon mechanism] level. A prerequisite for risk indicators identification and development is the existence of an organised source of comparable and interoperable data about heritage assets under observation. This unified source of information offers a knowledge based background of the asset's vulnerability through the diagnosis of building materials' and building structure's conservation state, through the identification of all potential hazards affecting these and through mapping of its possible alterations during its entire life-time. In this framework the identification and analysis of risks regarding degradation processes for the development of qualitative and quantitative indicators can be supported by documentation protocols. The data investigated by such protocols help

  5. DOCUMENTATION PROTOCOLS TO GENERATE RISK INDICATORS REGARDING DEGRADATION PROCESSES FOR CULTURAL HERITAGE RISK EVALUATION

    Directory of Open Access Journals (Sweden)

    A. Kioussi

    2013-07-01

    Full Text Available Sustainable maintenance and preservation of cultural heritage assets depends highly on its resilience to external or internal alterations and to various hazards. Risk assessment of a heritage asset's can be defined as the identification of all potential hazards affecting it and the evaluation of the asset's vulnerability (building materials and building structure conservation state.Potential hazards for cultural heritage are complex and varying. The risk of decay and damage associated with monuments is not limited to certain long term natural processes, sudden events and human impact (macroscale of the heritage asset but is also a function of the degradation processes within materials and structural elements due to physical and chemical procedures. Obviously, these factors cover different scales of the problem. The deteriorating processes in materials may be triggered by external influences or caused because of internal chemical and/or physical variations of materials properties and characteristics. Therefore risk evaluation should be dealt in the direction of revealing the specific active decay and damage mechanism both in mesoscale [type of decay and damage] and microscale [decay phenomenon mechanism] level. A prerequisite for risk indicators identification and development is the existence of an organised source of comparable and interoperable data about heritage assets under observation. This unified source of information offers a knowledge based background of the asset's vulnerability through the diagnosis of building materials' and building structure's conservation state, through the identification of all potential hazards affecting these and through mapping of its possible alterations during its entire life-time. In this framework the identification and analysis of risks regarding degradation processes for the development of qualitative and quantitative indicators can be supported by documentation protocols. The data investigated by such

  6. Evaluate the role of organic acids in the protection of ligands from radiolytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Anneka [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mezyk, Stehpen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterman, Dean [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    In the Advanced TALSPEAK process, the bis(2-ethylhexyl)phosphoric acid (HDEHP) extractant used in the traditional TALSPEAK process is replaced by the extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]). In addition, the aqueous phase complexant and buffer used in traditional TALSPEAK is replaced with the combination of N-(2-hydroxyethyl)ethylenediamine-N,N’,N’-triacetic acid (HEDTA) and citric acid. In order to evaluate the possible impacts of gamma radiolysis upon the efficacy of the Advanced TALSPEAK flowsheet, aqueous and organic phases corresponding to the extraction section of the proposed flowsheet were irradiated in the INL test loop under an ambient atmosphere. The results of these studies conducted at INL, led INL researchers to conclude that the scarcity of values of rate constants for the reaction of hydroxyl radical with the components of the Advanced TALSPEAK process chemistry was severely limiting the interpretation of the results of radiolysis studies performed at the INL. In this work, the rate of reaction of hydroxyl radical with citric acid at several pH values was measured using a competitive pulse radiolysis technique. This report describes those results and is written in completion of milestone M3FT-16IN030102028, the goal of which was to evaluate the role of organic acids in the protection of ligands from radiolytic degradation. The results reported here demonstrate the importance of obtaining hydroxyl radical reaction rate data for the conditions that closely resemble actual solution conditions expected to be used in an actual solvent extraction process. This report describes those results and is written in completion of milestone M3FT-16IN030102028, the goal of which was to evaluate the role of organic acids in the protection of ligands from radiolytic degradation.

  7. High-Resolution and Non-destructive Evaluation of the Spatial Distribution of Nitrate and Its Dynamics in Spinach (Spinacia oleracea L. Leaves by Near-Infrared Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Hao-Yu Yang

    2017-11-01

    Full Text Available Nitrate is an important component of the nitrogen cycle and is therefore present in all plants. However, excessive nitrogen fertilization results in a high nitrate content in vegetables, which is unhealthy for humans. Understanding the spatial distribution of nitrate in leaves is beneficial for improving nitrogen assimilation efficiency and reducing its content in vegetables. In this study, near-infrared (NIR hyperspectral imaging was used for the non-destructive and effective evaluation of nitrate content in spinach (Spinacia oleracea L. leaves. Leaf samples with different nitrate contents were collected under various fertilization conditions, and reference data were obtained using reflectometer apparatus RQflex 10. Partial least squares regression analysis revealed that there was a high correlation between the reference data and NIR spectra (r2 = 0.74, root mean squared error of cross-validation = 710.16 mg/kg. Furthermore, the nitrate content in spinach leaves was successfully mapped at a high spatial resolution, clearly displaying its distribution in the petiole, vein, and blade. Finally, the mapping results demonstrated dynamic changes in the nitrate content in intact leaf samples under different storage conditions, showing the value of this non-destructive tool for future analyses of the nitrate content in vegetables.

  8. Comparative study of photocatalytic oxidation on the degradation of formaldehyde and fuzzy mathematics evaluation of filters

    Science.gov (United States)

    Yu, Huili; Zhang, Jieting

    2012-04-01

    In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.

  9. Evaluation of Extraction and Degradation Methods to Obtain Chickpeasaponin B1 from Chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Kun Cheng

    2017-02-01

    Full Text Available The objective of this research is to implement extraction and degradation methods for the obtainment of 3-O-[α-l-rhamnopyranosyl-(1→2-β-d-galactopyranosyl] soyasapogenol B (chickpeasaponin B1 from chickpea. The effects of microwave-assisted extraction (MAE processing parameters—such as ethanol concentration, solvent/solid ratio, extraction temperature, microwave irradiation power, and irradiation time—were evaluated. Using 1g of material with 8 mL of 70% aqueous ethanol and an extraction time of 10 min at 70 °C under irradiation power 400W provided optimal extraction conditions. Compared with the conventional extraction techniques, including heat reflux extraction (HRE, Soxhlet extraction (SE, and ultrasonic extraction (UE, MAE produced higher extraction efficiency under a lower extraction time. DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one saponin can be degraded to structurally stable saponin B by the loss of its DDMP group. The influence of pH and the concentration of potassium hydroxide on transformation efficiency of the target compound was investigated. A solution of 0.25 M potassium hydroxide in 75% aqueous ethanol was suitable for converting the corresponding DDMP saponins of chickpeasaponin B1. The implementation by the combining MAE technique and alkaline hydrolysis method for preparing chickpeasaponin B1 provides a convenient technology for future applications.

  10. Evaluation of Extraction and Degradation Methods to Obtain Chickpeasaponin B1 from Chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Cheng, Kun; Gao, Hua; Wang, Rong-Rong; Liu, Yang; Hou, Yu-Xue; Liu, Xiao-Hong; Liu, Kun; Wang, Wei

    2017-02-21

    The objective of this research is to implement extraction and degradation methods for the obtainment of 3- O -[α-l-rhamnopyranosyl-(1→2)-β-d-galactopyranosyl] soyasapogenol B (chickpeasaponin B1) from chickpea. The effects of microwave-assisted extraction (MAE) processing parameters-such as ethanol concentration, solvent/solid ratio, extraction temperature, microwave irradiation power, and irradiation time-were evaluated. Using 1g of material with 8 mL of 70% aqueous ethanol and an extraction time of 10 min at 70 °C under irradiation power 400W provided optimal extraction conditions. Compared with the conventional extraction techniques, including heat reflux extraction (HRE), Soxhlet extraction (SE), and ultrasonic extraction (UE), MAE produced higher extraction efficiency under a lower extraction time. DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4 H -pyran-4-one) saponin can be degraded to structurally stable saponin B by the loss of its DDMP group. The influence of pH and the concentration of potassium hydroxide on transformation efficiency of the target compound was investigated. A solution of 0.25 M potassium hydroxide in 75% aqueous ethanol was suitable for converting the corresponding DDMP saponins of chickpeasaponin B1. The implementation by the combining MAE technique and alkaline hydrolysis method for preparing chickpeasaponin B1 provides a convenient technology for future applications.

  11. Nondestructive testing of materials

    International Nuclear Information System (INIS)

    NUKEM has transferred know-how from reactor technology to materials testing. The high and to a large extent new quality standards in the nuclear industry necessitate reliable measuring and testing equipment of the highest precision. Many of the tasks presented to us could not be solved with the equipment available on the market, for which reason we have developed our own measuring, testing and control systems. We have therefore acquired considerable experience in dealing with specific measuring, testing and control tasks and can handle even out-of-the-way problems that are submitted to us from a wide variety of fields. Our mechanical systems for the checking of close-tolerance gaps, the automatic determination of pellet dimensions and the measurement of absolute lengths and absolute velocities are in use in many different industrial fields. We have succeeded in solving unusual testing and sorting problems with the aid of automated surface testing equipment working on optical principles. Our main activities in the field of non-destructive testing have been concentrated on ultrasonic and eddy current testing and, of late, acoustic emission analysis. NUKEM ultrasonic systems are notable for their high defect detection rate and testing accuracy, combined with high testing speed. The equipment we supply includes ultrasonic rotary systems for the production testing of quality tubes, ultrasonic immersion systems for the final testing of reactor cladding tubes, weld testing equipment, and test equipment for the bonds in multi-layer plates. (orig./RW) [de

  12. Nondestructive Testing with Shearography

    International Nuclear Information System (INIS)

    Chang, Seog Weon

    2001-01-01

    Nondestructive testing(NDT) is one of the fundamental tools to improve the quality of commercial and industrial products. NDT is potentially a major application of interferometry. Interferometry(ESPI, Shearography, ect) has successfully been applied in various industrial environments such as high performance aircraft, home appliance, automotive, and laminates on engine structures, etc. Today's industry demands high performance components with toughest mechanical features and ultimate safety standards. Especially in automotive and aircraft industry the development process focuses on tailor-made design and solutions to meet customer specifications. To reconcile economy, ligh-weight construction has become a key issue. Many companies are looking for new advanced NDT techniques to archive cost efficiency over the limitations of classical methods. ESPI and shearography allow a rapid, full field and 3D-measurement without contact. In this paper recent applications of ESPI and shearography for NDT are described. Advanced features of classical techniques are specified and new applications in material and component testing are presented

  13. Nonlinear Wave Mixing Technique for Nondestructive Assessment of Infrastructure Materials

    Science.gov (United States)

    Ju, Taeho

    To operate safely, structures and components need to be inspected or monitored either periodically or in real time for potential failure. For this purpose, ultrasonic nondestructive evaluation (NDE) techniques have been used extensively. Most of these ultrasonic NDE techniques utilize only the linear behavior of the ultrasound. These linear techniques are effective in detecting discontinuities in materials such as cracks, voids, interfaces, inclusions, etc. However, in many engineering materials, it is the accumulation of microdamage that leads to degradation and eventual failure of a component. Unfortunately, it is difficult for linear ultrasonic NDE techniques to characterize or quantify such damage. On the other hand, the acoustic nonlinearity parameter (ANLP) of a material is often positively correlated with such damage in a material. Thus, nonlinear ultrasonic NDE methods have been used in recently years to characterize cumulative damage such as fatigue in metallic materials, aging in polymeric materials, and degradation of cement-based materials due to chemical reactions. In this thesis, we focus on developing a suit of novel nonlinear ultrasonic NDE techniques based on the interactions of nonlinear ultrasonic waves, namely wave mixing. First, a noncollinear wave mixing technique is developed to detect localized damage in a homogeneous material by using a pair of noncollinear a longitudinal wave (L-wave) and a shear wave (S-wave). This pair of incident waves make it possible to conduct NDE from a single side of the component, a condition that is often encountered in practical applications. The proposed noncollinear wave mixing technique is verified experimentally by carrying out measurements on aluminum alloy (AA 6061) samples. Numerical simulations using the Finite Element Method (FEM) are also conducted to further demonstrate the potential of the proposed technique to detect localized damage in structural components. Second, the aforementioned nonlinear

  14. INVIVO DEGRADATION OF PROCESSED DERMAL SHEEP COLLAGEN EVALUATED WITH TRANSMISSION ELECTRON-MICROSCOPY

    NARCIS (Netherlands)

    VANWACHEM, PB; VANLUYN, MJA; NIEUWENHUIS, P; KOERTEN, HK; DAMINK, LO; TENHOOPEN, H; FEIJEN, J

    The in vivo degradation of hexamethylenediisocyanate-tanned dermal sheep collagen was studied with transmission electron microscopy. Discs of hexamethylenediisocyanate-tanned dermal sheep collagen were subcutaneously implanted in rats. Both an intra- and an extracellular route of degradation could

  15. In vivo degradation of processed dermal sheep collagen evaluated with transmission electron microscopy

    NARCIS (Netherlands)

    van Wachem, P.B.; van Luyn, M.J.A.; Nieuwenhuis, P.; Koerten, H.K.; Olde damink, L.H.H.; Olde-Damink, L.; ten Hoopen, Hermina W.M.; Feijen, Jan

    1991-01-01

    The in vivo degradation of hexamethylenediisocyanate-tanned dermal sheep collagen was studied with transmission electron microscopy. Discs of hexamethylenediisocyanate-tanned dermal sheep collagen were subcutaneously implanted in rats. Both an intra- and an extracellular route of degradation could

  16. A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information

    International Nuclear Information System (INIS)

    Wang, Lizhi; Pan, Rong; Li, Xiaoyang; Jiang, Tongmin

    2013-01-01

    Accelerated degradation testing (ADT) is a common approach in reliability prediction, especially for products with high reliability. However, oftentimes the laboratory condition of ADT is different from the field condition; thus, to predict field failure, one need to calibrate the prediction made by using ADT data. In this paper a Bayesian evaluation method is proposed to integrate the ADT data from laboratory with the failure data from field. Calibration factors are introduced to calibrate the difference between the lab and the field conditions so as to predict a product's actual field reliability more accurately. The information fusion and statistical inference procedure are carried out through a Bayesian approach and Markov chain Monte Carlo methods. The proposed method is demonstrated by two examples and the sensitivity analysis to prior distribution assumption

  17. Evaluation of initial degradation in stress corrosion cracking by magnetic methods

    International Nuclear Information System (INIS)

    Takaya, Shigeru; Suzuki, Takayuki; Matsumoto, Yoshihiro; Demachi, Kazuyuki; Uesaka, Mitsuru

    2003-01-01

    Two magnetic methods are proposed for the evaluation of initial degradations of type 304 stainless steel in stress corrosion cracking (SCC). The first one is the measurement of the distribution of chromium depletion by means of a magnetic force microscope (MFM). MFM observations are performed for some samples sensitized in various conditions, and the obtained results coincide with the expected ones from the chromium behavior. Moreover, the phase distributions in the solution-annealed and sensitized states are observed by electron backscatter pattern technique. The observation results show that the phase transformation from the austenite phase to the martensite phase occurred along grain boundaries where the chromium was depleted. The second one is the detection of initial SCC cracks by measurement of magnetic flux densities. In-situ measurement of magnetic flux density during the SCC test and MFM observation reveal the relation of initial SCC cracks and magnetic properties. (author)

  18. Evaluation of an in vitro faecal degradation method for early assessment of the impact of colonic degradation on colonic absorption in humans.

    Science.gov (United States)

    Tannergren, Christer; Borde, Anders; Boreström, Cecilia; Abrahamsson, Bertil; Lindahl, Anders

    2014-06-16

    The objective of this study was to develop and evaluate an in vitro method to investigate bacterial-mediated luminal degradation of drugs in colon in humans. This would be a valuable tool for the assessment of drug candidates during early drug development, especially for compounds intended to be developed as oral extended release formulations. Freshly prepared faecal homogenate from healthy human volunteers (n=3-18), dog (n=6) and rat (colon and caecal content, n=3) was homogenised with 3.8 parts (w/w) physiological saline under anaerobical conditions. Four model compounds (almokalant, budesonide, ximelagatran and metoprolol) were then incubated (n=3-18) separately in the human faecal homogenate for up to 120min at 37°C. In addition, ximelagatran was also incubated in the faecal or colonic content from dog and rat. The mean (±SD) in vitro half-life for almokalant, budesonide and ximelagatran was 39±1, 68±21 and 26±12min, respectively, in the human faecal homogenate. Metoprolol was found to be stable in the in vitro model. The in vitro degradation data was then compared to literature data on fraction absorbed after direct colon administration in humans. The percentage of drug remaining after 60min of in vitro incubation correlated (R(2)=0.90) with the fraction absorbed from colon in humans. The mean in vitro half-life of ximelagatran was similar in human faeces (26±12min) and rat colon content (34±31min), but significantly (pdegradation in vivo was rapidly degraded in the faecal homogenates as well as quantitatively since a correlation was established between percentage degraded in vitro at 60min and fraction absorbed in the colon for the model drugs, which have no other absorption limiting properties. Also, the method is easy to use from a technical point of view, which suggests that the method is suitable for use in early assessment of colonic absorption of extended release formulation candidates. Further improvement of the confidence in the use of the

  19. Quantitative Evaluation of Range Degradation According to the Gradient of the Compensator in Passive Scattering Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Wook Geun; Min, Chul Hee [Radiation Convergence Engineering, Yonsei University, Seoul (Korea, Republic of); Kim, Chan Kyu; Kim, Hak Soo; Jeong, Jong Hwi; Lee, Se Byeong [Proton Therapy Center, National Center Center, Seoul (Korea, Republic of)

    2017-04-15

    The Bragg peak enables proton therapy to deliver a high conformal target dose without exit dose. The passive scattering proton therapy employees patient-specific aperture and range compensator to shape the lateral and distal beam, and to deliver conformal dose to the target volume. The inaccurate dose calculation could cause underdose in the target volume and overdose in the normal tissues. The purpose of this study is to quantitatively evaluate the range degradation due to the slope of the range compensator using TOPAS Monte Carlo (MC) tool. The current study quantitatively evaluates the scattering effect due to the compensator slope with MC method. Our results show that not only patient geometry but also range compensator significantly contributes to the dose degradation. The current study quantitatively evaluates the scattering effect due to the compensator slope with MC method. Our results show that not only patient geometry but also range compensator significantly contributes to the dose degradation.

  20. Long-term reliability evaluation of nuclear containments with tendon force degradation

    International Nuclear Information System (INIS)

    Kim, Sang-Hyo; Choi, Moon-Seock; Joung, Jung-Yeun; Kim, Kun-Soo

    2013-01-01

    Highlights: • A probabilistic model on long-term degradation of tendon force is developed. • By using the model, we performed reliability evaluation of nuclear containment. • The analysis is also performed for the case with the strict maintenance programme. • We showed how to satisfy the target safety in the containments facing life extension. - Abstract: The long-term reliability of nuclear containment is important for operating nuclear power plants. In particular, long-term reliability should be clarified when the service life of nuclear containment is being extended. This study focuses not only on determining the reliability of nuclear containment but also presenting the reliability improvement by strengthening the containment itself or by running a strict maintenance programme. The degradation characteristics of tendon force are estimated from the data recorded during in-service inspection of containments. A reliability analysis is conducted for a limit state of through-wall cracking, which is conservative, but most crucial limit state. The results of this analysis indicate that reliability is the lowest at 3/4 height of the containment wall. Therefore, this location is the most vulnerable for the specific limit state considered in this analysis. Furthermore, changes in structural reliability owing to an increase in the number of inspecting tendons are analysed for verifying the effect of the maintenance program's intensity on expected containment reliability. In the last part of this study, an example of obtaining target reliability of nuclear containment by strengthening its structural resistance is presented. A case study is conducted for exemplifying the effect of strengthening work on containment reliability, especially during extended service life

  1. Evaluation of the influence of fluoroquinolone chemical structure on stability: forced degradation and in silico studies

    Directory of Open Access Journals (Sweden)

    André Valle de Bairros

    2018-05-01

    Full Text Available ABSTRACT Fluoroquinolones are a known antibacterial class commonly used around the world. These compounds present relative stability and they may show some adverse effects according their distinct chemical structures. The chemical hydrolysis of five fluoroquinolones was studied using alkaline and photolytic degradation aiming to observe the differences in molecular reactivity. DFT/B3LYP-6.31G* was used to assist with understanding the chemical structure degradation. Gemifloxacin underwent degradation in alkaline medium. Gemifloxacin and danofloxacin showed more degradation perceptual indices in comparison with ciprofloxacin, enrofloxacin and norfloxacin in photolytic conditions. Some structural features were observed which may influence degradation, such as the presence of five member rings attached to the quinolone ring and the electrostatic positive charges, showed in maps of potential electrostatic charges. These measurements may be used in the design of effective and more stable fluoroquinolones as well as the investigation of degradation products from stress stability assays.

  2. Evaluation of the veracity of one work by the artist Di Cavalcanti through non-destructive techniques: XRF, imaging and brush stroke analysis

    International Nuclear Information System (INIS)

    Kajiya, E.A.M.; Campos, P.H.O.V.; Rizzutto, M.A.; Appoloni, C.R.; Lopes, F.

    2014-01-01

    This paper presents systematic studies and analysis that contributed to the identification of the forgery of a work by the artist Emiliano Augusto Cavalcanti de Albuquerque e Melo, known as Di Cavalcanti. The use of several areas of expertise such as brush stroke analysis (“pinacologia”), applied physics, and art history resulted in an accurate diagnosis for ascertaining the authenticity of the work entitled “Violeiro” (1950). For this work we used non-destructive methods such as techniques of infrared, ultraviolet, visible and tangential light imaging combined with chemical analysis of the pigments by portable X-Ray Fluorescence (XRF) and graphic gesture analysis. Each applied method of analysis produced specific information that made possible the identification of materials and techniques employed and we concluded that this work is not consistent with patterns characteristic of the artist Di Cavalcanti. - Highlights: • Identification of the forgery of an easel painting of Di Cavalcanti. • Diagnosis for ascertaining the authenticity of the work entitled “Violeiro” (1950). • X-Ray fluorescence spectroscopy and image analysis. • Image analyses allow some identification as hidden underlying lines. • Materials and techniques not characteristic of the artist

  3. Review of inservice inspection and nondestructive examination practices at DOE Category A test and research reactors

    International Nuclear Information System (INIS)

    Anderson, M.T.; Aldrich, D.A.

    1990-09-01

    In-service inspection (ISI) programs are used at commercial nuclear power plants for monitoring the pressure boundary integrity of various systems and components to ensure their continued safe operation. The Department of Energy (DOE) operates several test and research reactors. This report represents an evaluation of the ISI and nondestructive examination (NDE) practices at five DOE Category A (> 20 MW thermal) reactors as compared, where applicable, to the current ISI activities of commercial nuclear power facilities. The purpose of an inservice inspection (ISI) program is to establish regular surveillance of safety-related components to ensure their safe and reliable operation. The integrity of materials comprising these components is generally monitored by means of periodic nondestructive examinations (NDE), which, if appropriately performed, provide methods for identifying degradation that could render components unable to perform their intended safety functions. The reactors evaluated during this review were the Experimental Breeder Reactor 2 and the Fast Flux Test Facility (liquid-metal cooled plants), the Advanced Test Reactor and the High Flux Isotopes Reactor (light-water cooled reactors), and the High Flux Beam Reactor (a heavy-water cooled facility). Although these facilities are extremely diverse in design and operation, they all have less stored energy, smaller inventories of radionuclides, and generally, more remote locations than commercial reactors. However, all DOE test and research facilities contain components similar to those of commercial reactors for which continued integrity is important to maintain plant safety. 10 refs., 6 tabs

  4. 26+ Year Old Photovoltaic Power Plant: Degradation and Reliability Evaluation of Crystalline Silicon Modules -- South Array

    Science.gov (United States)

    Olakonu, Kolapo

    As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kW dc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kW ac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power

  5. Evaluation of temperature-enhanced gain degradation of verticle npn and lateral pnp bipolar transistors

    International Nuclear Information System (INIS)

    Witczak, S.C.; Lacoe, R.C.; Galloway, K.F.

    1997-01-01

    The effect of dose rate on radiation-induced gain degradation is compared for verticle npn and lateral pnp bipolar transistors. High dose rate irradiations at elevated temperatures are more effective at simulating low dose rate degradation in the lateral pnp transistors

  6. Nondestructive measurement of environmental radioactive strontium

    Directory of Open Access Journals (Sweden)

    Saiba Shuntaro

    2014-03-01

    Full Text Available The Fukushima Daiichi nuclear power plant accident was triggered by the 2011 Great East Japan Earthquake. The main radioactivity concerns after the accident are I-131 (half-life: 8.0 days, Cs-134 (2.1 years, Cs-137 (30 years, Sr-89 (51 days, and Sr-90 (29 years. We are aiming to establish a new nondestructive measurement and detection technique that will enable us to realize a quantitative evaluation of strontium radioactivity without chemical separation processing. This technique is needed to detect radiation contained in foods, environmental water, and soil, to prevent us from undesired internal exposure to radiation.

  7. Implementing REDD+ (Reducing Emissions from Deforestation and Degradation): evidence on governance, evaluation and impacts from the REDD-ALERT project

    NARCIS (Netherlands)

    Matthews, R.B.; Noordwijk, van M.; Lambin, E.; Meyfroidt, P.; Gupta, J.; Verschot, L.; Hergoualc'h, K.; Veldkamp, E.

    2014-01-01

    Abstract The REDD-ALERT (Reducing Emissions from Deforestation and Degradation from Alternative Land Uses in the Rainforests of the Tropics) project started in 2009 and finished in 2012, and had the aim of evaluating mechanisms that translate international-level agreements into instruments that

  8. Implementing REDD+ (Reducing Emissions from Deforestation and Degradation): evidence on governance, evaluation and impacts from the REDD-ALERT project

    NARCIS (Netherlands)

    Mathews, R.B.; van Noordwijk, M.; Lambin, E.; Meyfroidt, P.; Gupta, J.; Verchot, L.; Hergoualc'h, K.; Veldkamp, E.

    2014-01-01

    The REDD-ALERT (Reducing Emissions from Deforestation and Degradation from Alternative Land Uses in the Rainforests of the Tropics) project started in 2009 and finished in 2012, and had the aim of evaluating mechanisms that translate international-level agreements into instruments that would help

  9. Long-term evaluation of degradation and foreign-body reaction of subcutaneously implanted poly(DL-lactide-epsilon-caprolactone)

    NARCIS (Netherlands)

    denDunnen, WFA; Robinson, PH; vanWessel, R; Pennings, AJ; vanLeeuwen, MBM; Schakenraad, JM

    1997-01-01

    The aim of this study was to evaluate the degradation and foreign-body reaction of poly(DL-lactide-epsilon-caprolactone) (PLA(85)CL(50)) bars. This specific biomaterial is used for the construction of nerve guides, which can be used in the reconstruction of short nerve gaps. Subcutaneously implanted

  10. Nondestructive characterization of low-level transuranic waste

    International Nuclear Information System (INIS)

    Barna, B.A.; Reinhardt, W.W.

    1981-10-01

    The use of nondestructive evaluation (NDE) methods is proposed for characterization of transuranic (TRU) waste stored at the Radioactive Waste Management Complex. These NDE methods include real-time x-ray radiography, real-time neutron radiography, x-ray and neutron computed tomography, thermal imaging, container weighing, visual examination, and acoustic measurements. An integrated NDE system is proposed for characterization and certification of TRU waste destined for eventual shipment to the Waste Isolation Pilot Plant in New Mexico. Methods for automating both the classification waste and control of a complete nondestructive evaluation/nondestructive assay system are presented. Feasibility testing of the different NDE methods, including real-time x-ray radiography, and development of automated waste classification techniques are covered as part of a five year effort designed to yield a production waste characterization system

  11. Degradation of lindane by microorganisms. Evaluation of inhibitory effect on microbial activity using radiorespirometry

    International Nuclear Information System (INIS)

    Farghaly, M.; Zayed, S.M.A.D.; Soliman, S.M.

    1997-01-01

    The degradation of U- 14 C-lindane in two type of Egyptian soil was studied under laboratory conditions. The rate of mineralization of lindane was slow. Evolution of 14 CO 2 increased with time and amounted to 3.5-5.5% of the initial concentration within 90 days. At this period both soil types contained about 88% of the applied radiocarbon; 33-37% of the initial dose being bound to the soil. The methanol 14 C-extractables showed by TLC and HPLC analysis the presence of lindane as main product together with traces of minor metabolites. In addition, the effect of different rates of application of lindane on the respiratory activity of soil microorganisms was evaluated using U- 14 C-glucose as substrate. Concentrations up to 5 mgkg -1 caused a short term suppression of 14 CO 2 evolution. A dose of 10 mgkg -1 significantly inhibited soil respiration as determined by 14 Co 2 evolution for the 11 day period of the experiment. (author). 8 refs, 6 figs, 3 tabs

  12. Evaluating Anthropogenic Risk of Grassland and Forest Habitat Degradation using Land-Cover Data

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2009-09-01

    Full Text Available The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple spatial scales. A landscape mosaic model classifies a given location according to the amounts of intensive agriculture and intensive development in its surrounding landscape, providing measures of anthropogenic risks attributable to habitat isolation and edge effects at that location. The model is implemented using a land-cover map (0.09 ha/pixel of the conterminous United States and six landscape sizes (4.4, 15.2, 65.6, 591, 5300, and 47800 ha to evaluate the spatial scales of anthropogenic risk. Statistics for grassland and forest habitat are extracted by geographic overlays of the maps of land-cover and landscape mosaics. Depending on landscape size, 81 to 94 percent of all grassland and forest habitat occurs in landscapes that are dominated by natural land-cover including habitat itself. Within those natural-dominated landscapes, 50 percent of grassland and 59 percent of forest is within 590 m of intensive agriculture and/or intensive developed land which is typically a minor component of total landscape area. The conclusion is that anthropogenic risk attributable to habitat patch isolation affects a small proportion of the total grassland or forest habitat area, while the majority of habitat area is exposed to edge effects.

  13. 49 CFR 192.243 - Nondestructive testing.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nondestructive testing. 192.243 Section 192.243... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.243 Nondestructive testing. (a) Nondestructive testing of welds must be performed by any process, other than trepanning, that...

  14. Evaluation of Maltose-Induced Chemical Degradation at the Interface of Bilayer Tablets.

    Science.gov (United States)

    Matsuzaki, Naoya; Yamamoto, Yousuke; Murayama, Daisuke; Katakawa, Yoshifumi; Mimura, Hisashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-01-01

    Fixed dose combination tablets consisting of mirabegron (MB) and solifenacin succinate (SS) were developed and formulated into bilayer tablets in the current study. The results of a chemical stability study showed that the original formulation for the tablets led to a significant increase of unknown degradants in the SS layer. Two compatibility studies were conducted to simulate the interface between the MB and SS layers, and the results revealed that the degradants only formed in the presence of both active pharmaceutical ingredients (APIs), and that the presence of maltose in the SS layer was critical to inducing degradation. High resolution mass spectroscopy coupled with high performance liquid chromatography was used to determine the chemical structures of the degradants, which were identified to MB derivatives bearing one or two sugar units. These findings therefore suggested that the degradation of the API could be attributed to the addition of sugar units from maltose to MB under the acidic conditions caused by SS. With this in mind, we developed a new formulation by replacing maltose with hydroxypropyl cellulose as a polymer-type binder. The results showed that this formulation suppressed the formation of the degradants. The results of this study have shown that chemical degradation can occur at the interface of bilayer tablets and that an alternative strategy is available to formulate more stable MB/SS bilayer tablets.

  15. Recent improvements concerning nondestructive testing

    International Nuclear Information System (INIS)

    Asty, M.

    1984-12-01

    Rare are the techniques of which development is not already touched by microelectronics and micro-data processing. Nondestructive testing and more particularly ultrasonic and Foucault current testing follow this general rule. With some examples, this paper focuses on the potential of numerical signal processing [fr

  16. Nondestructive testing at the CEA

    International Nuclear Information System (INIS)

    Colomer, J.; Lucas, G.

    1976-01-01

    The different nondestructive testing methods used at the CEA are presented: X-ray or gamma radiography, X-ray stress analysis, neutron radiography, ultrasonic testing, eddy currents, electrical testing, microwaves, thermal testing, acoustic emission, optical holography, tracer techniques. (102 references are cited) [fr

  17. An analysis of pipe degradation shape using potential drop method

    International Nuclear Information System (INIS)

    Jegal, S.; Lee, S. H.

    1999-01-01

    The Potential Drop (PD) method, one of NDE (Non-Destructive Evaluation) method is used to analyze the thickness distribution of pipes degraded by FAC (Flow Accelerated Corrosion). A DCPD (Direct Current Potential Drop) system which can measure PD for direct current was made, and the specimens with line defects and cylinder type defects have been used for experiments to prove the theory of Potential Drop method and to find out the effects of each factors. The experiment to find out defect distributions has been performed and it is found that PD method can analyze almost correct position of defects

  18. Synthesis, Characterization, and Evaluation of Boron-Doped Iron Oxides for the Photocatalytic Degradation of Atrazine under Visible Light

    Directory of Open Access Journals (Sweden)

    Shan Hu

    2012-01-01

    Full Text Available Photocatalytic degradation of atrazine by boron-doped iron oxides under visible light irradiation was investigated. In this work, boron-doped goethite and hematite were successfully prepared by sol-gel method with trimethylborate as boron precursor. The powders were characterized by XRD, UV-vis diffuse reflectance spectra, and porosimetry analysis. The results showed that boron doping could influence the crystal structure, enlarge the BET surface area, improve light absorption ability, and narrow their band-gap energy. The photocatalytic activity of B-doped iron oxides was evaluated in the degradation of atrazine under the visible light irradiation, and B-doped iron oxides showed higher atrazine degradation rate than that of pristine iron oxides. Particularly, B-doped goethite exhibited better photocatalytic activity than B-doped hematite.

  19. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2017-03-01

    Full Text Available Non-destructive and timely determination of leaf nitrogen (N concentration is urgently needed for N management in pear orchards. A two-year field experiment was conducted in a commercial pear orchard with five N application rates: 0 (N0, 165 (N1, 330 (N2, 660 (N3, and 990 (N4 kg·N·ha−1. The mid-portion leaves on the year’s shoot were selected for the spectral measurement first and then N concentration determination in the laboratory at 50 and 80 days after full bloom (DAB. Three methods of in-field spectral measurement (25° bare fibre under solar conditions, black background attached to plant probe, and white background attached to plant probe were compared. We also investigated the modelling performances of four chemometric techniques (principal components regression, PCR; partial least squares regression, PLSR; stepwise multiple linear regression, SMLR; and back propagation neural network, BPNN and three vegetation indices (difference spectral index, normalized difference spectral index, and ratio spectral index. Due to the low correlation of reflectance obtained by the 25° field of view method, all of the modelling was performed on two spectral datasets—both acquired by a plant probe. Results showed that the best modelling and prediction accuracy were found in the model established by PLSR and spectra measured with a black background. The randomly-separated subsets of calibration (n = 1000 and validation (n = 420 of this model resulted in high R2 values of 0.86 and 0.85, respectively, as well as a low mean relative error (<6%. Furthermore, a higher coefficient of determination between the leaf N concentration and fruit yield was found at 50 DAB samplings in both 2015 (R2 = 0.77 and 2014 (R2 = 0.59. Thus, the leaf N concentration was suggested to be determined at 50 DAB by visible/near-infrared spectroscopy and the threshold should be 24–27 g/kg.

  20. Research process of nondestructive testing pitting corrosion in metal material

    Directory of Open Access Journals (Sweden)

    Bo ZHANG

    2017-12-01

    Full Text Available Pitting corrosion directly affects the usability and service life of metal material, so the effective nondestructive testing and evaluation on pitting corrosion is of great significance for fatigue life prediction because of data supporting. The features of pitting corrosion are elaborated, and the relation between the pitting corrosion parameters and fatigue performance is pointed out. Through introducing the fundamental principles of pitting corrosion including mainly magnetic flux leakage inspection, pulsed eddy current and guided waves, the research status of nondestructive testing technology for pitting corrosion is summarized, and the key steps of nondestructive testing technologies are compared and analyzed from the theoretical model, signal processing to industrial applications. Based on the analysis of the signal processing specificity of different nondestructive testing technologies in detecting pitting corrosion, the visualization combined with image processing and signal analysis are indicated as the critical problems of accurate extraction of pitting defect information and quantitative characterization for pitting corrosion. The study on non-contact nondestructive testing technologies is important for improving the detection precision and its application in industries.

  1. Evaluation of semiarid grassland degradation in North China from multiple perspectives

    Science.gov (United States)

    Han, D.; Wang, G.; Xue, B. L.; Xu, X.

    2017-12-01

    There has been increasing interest in grassland ecosystem degradation resulting from intensive human activity and climate change, especially in arid and semiarid regions. Species composition, grassland desertification, and aboveground biomass (AGB) are used as indicators of grassland degradation in this study. We comprehensively analyzed variations in these three indicators in semiarid grassland in North China, on multiple time scales, based on MODIS products and field sampling datasets. Since 1984, species composition has become simpler and species indicative of grassland degradation, such as Potentilla acaulis and Artemisia frigida, have become dominant. These changes indicate that serious grassland degradation has occurred since 1984. Grassland degradation was also analyzed on shorter time scales. Analyses of interannual variations during 2005-2015 showed that desertification decreased and average AGB in the growth season increased over the study area, indicating that grassland was recovering. Analyses of spatial variations showed that the position of slightly desertified grassland shifted and formed a band in the west, where the lowest AGB in the growth season was recorded but tendency ratio of AGB increased from 2005 to 2015. Climatic factors had critical effects on grassland degradation, as identified by the three indicators on different time scales. The simpler species composition resulted from the increase in average temperature and decrease in average precipitation over the past 30 years. For nearly a decade, an increase in precipitation and decreases in temperature and potential evapotranspiration reduced desertification and increased AGB in the growth season overall. Consequently, there has distinct difference in grassland degradation between analysis results on above two time scales, indicating multiple perspectives should be considered to accurately assess the state and characteristics of grassland degradation.

  2. Research on nondestructive examination methods for CANDU fuel channel inspection

    International Nuclear Information System (INIS)

    Soare, M.; Petriu, F.; Toma, V.; Revenco, V.; Calinescu, A.; Ciocan, R.; Iordache, C.; Popescu, L.; Mihalache, M.; Murgescu, C.

    1995-01-01

    The requirements of the 1994 edition of CAN/CSA-N285.4 Periodic Inspection Standard, which address all known and postulated degradation mechanisms and introduce material surveillance demands, involve a growing need for improved nondestructive examination (NDE) methods and technologies. In order to have a proper technical support in its decisions concerning fuel channel inspections at Cernavoda NPP, the Romanian Power Authority (RENEL) initiated a Research Program regarding the nondestructive characterization of the fuel channels structural integrity. The paper presents the most significant results obtained on this Research Program: the ENDUS experimental system for Laboratory simulation of the fuel channel inspection, ultrasonic Rayleigh-Lamb waves technique for pressure tubes examination, phase analysis technique for near-surface flaws, influence of the metallurgical state of the pressure tube material on the eddy current defectoscopic signals, characterization of plastic deformation and fracture of zirconium alloys by acoustic emission. (author)

  3. Magnetic Non-destructive Testing of Plastically Deformed Mild Steel

    Directory of Open Access Journals (Sweden)

    Jozef Pala

    2004-01-01

    Full Text Available The Barkhausen noise analysis and coercive field measurement have been used as magnetic non-destructive testing methods for plastically deformed high quality carbon steel specimens. The strain dependence of root mean square value and power spectrum of the Barkhausen noise and the coercive field are explained in terms of the dislocation density. The specimens have been subjected to different magnetizing frequencies to show the overlapping nature of the Barkhausen noise. The results are discussed in the context of usage of magnetic non-destructive testing to evaluate the plastic deformation of high quality carbon steel products.

  4. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    Science.gov (United States)

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  5. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands.

    Science.gov (United States)

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of "nurse plants" an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  6. Radiation control in the nondestructive inspection

    International Nuclear Information System (INIS)

    Kariya, Yukihiro

    1982-01-01

    In the early days of radiation nondestructive inspection about ten years ago, the loss of radiation sources and careless radiation exposure gave the impression of radiography inspection being immediately slipshod management. In this problem, the peculiar nature of the business in this field is involved. In Nondestructive Inspection Co., Ltd., besides the safety management of radioisotopes, the radiation exposure control of personnel in the regular inspection of nuclear power plants has become increasingly important. The following matters are described: radiation utilization in nondestructive inspection (X- and #betta#-ray radiography, #betta#-ray leak test on shield), radiation control problems in nondestructive inspection business (the peculiar aspects of the business, the analysis of the incidents related with nondestructive inspection), and the practice of radiation control in nondestructive inspection in Nondestructive Inspection Co., Ltd. (Mori, K.)

  7. Blue light induced free radicals from riboflavin in degradation of crystal violet by microbial viability evaluation.

    Science.gov (United States)

    Liang, Ji-Yuan; Yuann, Jeu-Ming P; Hsie, Zong-Jhe; Huang, Shiuh-Tsuen; Chen, Chiing-Chang

    2017-09-01

    Crystal violet (CV) is applied in daily use mainly as a commercial dye and antimicrobial agent. Waste water containing CV may affect aquatic ecosystems. Riboflavin, also known as vitamin B 2 , is non-toxic and an essential vitamin required for the functions of the human body. Riboflavin is photosensitive to UV and visible light in terms of generating reactive oxygen species. This study investigated the potential application of blue light on riboflavin, so as to come up with an effective way of degrading CV during its treatment. Photosensitivity of CV leading to degradation in the presence of riboflavin was investigated by light intensity, exposure time, and irradiation dosage. The degradation of CV during riboflavin photolysis treatment was studied by a UV/vis spectrometry and chromatography. The effects of CV degradation on microbial viability are relevant when considering the influences on the ecosystem. This study proved that riboflavin photochemical treatment with blue light degrades CV dye by ROS formation. The riboflavin photolysis-treated CV solution appeared to be transparent during conformational transformations of the CV that was rearranged by free radical species generated from riboflavin photolysis. After riboflavin photolysis, colony-forming units (CFUs) were determined for each CV solution. CFU preservation was 85.2% for the CV dissolved riboflavin solution treated with blue light irradiation at 2.0mW/cm 2 for 120min. Degradation of CV by riboflavin photochemical procedures can greatly reduce antimicrobial ability and serve as an environmental friendly waste water treatment method. Our results presented here concerning riboflavin photolysis in degradation of CV provide a novel technique, and a simple and safe practice for environmental decontamination processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Nondestructive test for assembly relationship of initiating explosive device

    International Nuclear Information System (INIS)

    Wang Xiangang; Zhang Chaozong; Guo Zhiping

    2009-01-01

    A 3D computed tomography (CT) method to inspect assembly relationship of initiating explosive device and to nondestructively evaluate assembly relationship by building geometric model from CT images was described. The experiment result proves that this method accurately inspects assembly relationship of initiating explosive device. (authors)

  9. X-ray tomography as a non-destructive tool for evaluating the preservation of primary isotope signatures and mineralogy of Mesozoic fossils

    Science.gov (United States)

    Santillan, J. D.; Boyce, J. W.; Eagle, R.; Martin, T.; Tuetken, T.; Eiler, J.

    2010-12-01

    The stable isotope compositions of carbonate and phosphate components in fossil teeth and bone are widely used to infer information on paleoclimate and the physiology of extinct organisms. Recently the potential for measuring the body temperatures of extinct vertebrates from analyses of 13C-18O bond ordering in fossil teeth has been demonstrated (Eagle et al. 2010). The interpretation of these isotopic signatures relies on an assessment of the resistance of fossil bioapatite to alteration, as diffusion within, and partial recrystallization, or replacement of the original bioapatite will lead to measured compositions that represent mixtures between primary and secondary phases and/or otherwise inaccurate apparent temperatures. X-ray computed tomography (CT) allows 3-D density maps of teeth to be made at micron-scale resolution. Such density maps have the potential to record textural evidence for alteration, recrystallization, or replacement of enamel. Because it is non-destructive, CT can be used prior to stable isotope analysis to identify potentially problematic samples without consuming or damaging scientifically significant specimens. As a test, we have applied CT to tooth fragments containing both dentin and enamel from Late Jurassic sauropods and a Late Cretaceous theropod that yielded a range of clumped isotope temperatures from anomalously high ˜60oC to physiologically plausible ≤40oC. This range of temperatures suggests partial, high-temperature modification of some specimens, but possible preservation of primary signals in others. Three-dimensional CT volumes generated using General Electric Phoenix|x-ray CT instruments were compared with visible light and back-scattered electron images of the same samples. The tube-detector combination used for the CT study consisted of a 180 kV nanofocus transmission tube coupled with a 127 micron pixel pitch detector ( ˜3-12μ m voxel edges), allowing us to clearly map out alteration zones in high contrast, while

  10. Nondestructive testing of concrete structures

    International Nuclear Information System (INIS)

    Rufino, Randy R.; Relunia, Estrella

    1999-01-01

    Nondestructive testing of concrete is highly inhomogeneous which makes it cumbersome to setup experimental procedures and analyze experimental data. However, recent research and development activities have discovered the different methods of NDT, like the electromagnetic method, ultrasonic pulse velocity test, pulse echo/impact echo test, infrared thermography, radar or short pulse radar techniques, neutron and gamma radiometry, radiography, carbonation test and half-cell potential method available for NDT of concrete structures. NDT of concrete is emerging as a useful tool for quality control and assurance. This papers also describes the more common NDT methods discussed during the two-week course on 'Nondestructive Testing of Concrete Structures', held at the Malaysian Institute for Nuclear Technology Research (MINT) in Malaysia, which was jointly organized by MINT and the International Atomic Energy Agency (IAEA)

  11. Nondestructive assay of sale materials

    International Nuclear Information System (INIS)

    Rodenburg, W.W.; Fleissner, J.G.

    1981-01-01

    This paper covers three primary areas: (1) reasons for performing nondestructive assay on SALE materials; (2) techniques used; and (3) discussion of investigators' revised results. The study shows that nondestructive calorimetric assay of plutonium offers a viable alternative to traditional wet chemical techniques. For these samples, the precision ranged from 0.4 to 0.6% with biases less than 0.2%. Thus, for those materials where sampling errors are the predominant source of uncertainty, this technique can provide improved accuracy and precision while saving time and money as well as reducing the amount of liquid wastes to be handled. In addition, high resolution gamma-ray spectroscopy measurements of solids can provide isotopic analysis data in a cost effective and timely manner. The timeliness of the method can be especially useful to the plant operator for production control and quality control measurements

  12. European conference on nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Klyuev, V V

    1985-01-01

    Information on the 3-d European conference on nondestructive testing (NT) held in October, 1984 in Florence, is presented. Plenary reports were devoted to complex use of different NT methods, tendencies to NT automation and robotics, transition from defectoscopy to quality control, determination of phisico-mechanical properties of items using different control methods, formulation of unified international programs on professional training and qualification. Section reports cover the following directions: NT use in aviation and astronautics, construction, welding engineering, studying works of art; personnel training, economics, NT functioning, automation, calibration, standardization, quality control over metallic and nonmetallic objects. Some reports concerned nondestructive testing of items during their use. Attention is paied to radiographic testing and neutron radiography as well as to image processing. NT equipment was also discussed.

  13. Basic metallurgy for nondestructive testing

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    For this chapter, reader will be served with the basic knowledge on metallurgy for nondestructive testing. One the main application of nondestructive testing is to detect discontinuity of mass defect in metal. As we already know, metal are widely used in many application such as in building as a system, component and engineering product. Steel and iron are metal that usually used in industry, especially heavy industry such as gas and petroleum industry, chemistry, electric generation, automobile, and military device. Based on this, basic knowledge on metallurgy must need by NDT practitioner. The combination between metallurgy and datas from radiography testing can make radiographer good interpretation on quality of the metal inspected and can used to make a good decision either to accept or not certain product, system or components.

  14. Nondestructive inspection using neutron beams

    International Nuclear Information System (INIS)

    2013-01-01

    Neutron-abased experimental techniques such as neutronography, diffraction, or composition and elemental analysis are well established. They have important advantages in the non-destructive analysis of materials, making them a suitable option for quality-control protocols in industrial production lines. In addition, they are highly complementary to other non-destructive techniques, particularly X-ray analysis. Examples of industrial use include studies of pipes and ducts, concrete, or aeronautical components. Notwithstanding the above, the high cost associated with the construction and operation of the requisite neutron facilities has been an important limiting factor for their widespread use by the industrial sector. In this brief contribution, we explore the emerging (and already demonstrated) possibility of using compact, proton-accelerator-based neutron sources. these novel sources can be built and ran at a cost as low as a few ME, making them a competitive option to the more intense spallation or fission-based facilities for industrial applications. (Author)

  15. Evaluation of Degradation of Isothermally Aged Plasma-Sprayed Thermal Barrier Coating

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Jae Mean; Seok, Chang Sung; Kang, Min Sung; Kim, Dae Jin [Sungkyunkwan University, Seoul (Korea, Republic of); Lee, Dong Hoon [HYUNDAI STEEL CO., Incheon (Korea, Republic of); Kim, Mun Young [KPS Gas Turbine Technology Service Center, Seongnam (Korea, Republic of)

    2010-04-15

    The thermal barrier coating of a gas turbine blade was degraded by isothermal heating in a furnace and by varying the exposure time and temperature. Then, a micro-Vickers hardness test was conducted on the cross section of the bond coat and Ni-based superalloy substrate. Further, the thickness of TGO(Thermally Grown Oxide) was measured by using an image analyzer, and the changes in the microstructure and element contents in the coating were analyzed by using an optical microscope and by performing SEM-EDX analysis. No significant change was observed in the Vickers hardness of the bond coat when the coated specimen was degraded at a high temperature: delamination was observed between the top coat and the bond coat when the coating was degraded for 50 h at a temperature 1,151 .deg. C.

  16. Evaluating robustness of a diesel-degrading bacterial consortium isolated from contaminated soil

    DEFF Research Database (Denmark)

    Sydow, Mateusz; Owsianiak, Mikolaj; Szczepaniak, Zuzanna

    2016-01-01

    It is not known whether diesel-degrading bacterial communities are structurally and functionally robust when exposed to different hydrocarbon types. Here, we exposed a diesel-degrading consortium to model either alkanes, cycloalkanes or aromatic hydrocarbons as carbon sources to study its...... structural resistance. The structural resistance was low, with changes in relative abundances of up to four orders of magnitude, depending on hydrocarbon type and bacterial taxon. This low resistance is explained by the presence of hydrocarbon-degrading specialists in the consortium and differences in growth...... kinetics on individual hydrocarbons. However, despite this low resistance, structural and functional resilience were high, as verified by re-exposing the hydrocarbon-perturbed consortium to diesel fuel. The high resilience is either due to the short exposure time, insufficient for permanent changes...

  17. Evaluation of Degradation Kinetic of Tomato Paste Color in Heat Processing and Modeling of These Changes by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    M. Ganjeh

    2015-12-01

    Full Text Available Color is an important qualitative factor in tomato products such as tomato paste which is affected by heat processing. The main goal of this study was to evaluate the degradation kinetics of tomato paste color during heat processing by Arrhenius equation and modeling of these changes by response surface methodology (RSM. Considering this purpose, tomato paste was processed at three temperatures of 60, 70 and 80 °C for 25-100 minutes and by three main color indices including L, a and b, a/b ratio, total color difference (TCD, Saturation index (SI and hue angle (HU was analyzed. Degradation kinetics of these parameters was evaluated by Arrhenius equation and their changing trends were modeled by RSM. All parameters except TCA (zero order followed a first order reaction. The b index by highest and TCA and a/b by least activation energies had the maximum and minimum sensitivity to the temperature changes, respectively. Also, TCD and b had the maximum and minimum changing rates, respectively. All responses were influenced by independent parameters (the influence of temperature was more than time and RSM was capable of modeling and predicting these responses. In general, Arrhenius equation was appropriate to evaluate degradation kinetics of tomato paste color changes and RSM was able to estimate independent and interaction effects of time and temperature so that quadratic models were capable to predict these changes by a high accuracy (R2 > 0.95.

  18. New Approaches to Evaluate the Biological Degradation of RDX in Groundwater

    Science.gov (United States)

    2014-08-27

    again indicate the diversity of active microorganisms associated with RDX biodegradation in the environmental samples. When cheese whey was absent...34  2.2 Task 2 – Geochemical and Environmental Conditions Affecting RDX Biodegradation ............ 36  2.2.1 Objective...Degrading Microorganisms . 49  2.3.1 Objective

  19. Evaluation of Aliphatic and Aromatic Compounds Degradation by Indigenous Bacteria Isolated from Soil Contaminated with Petroleum

    Directory of Open Access Journals (Sweden)

    Farhad Gilavand

    2015-12-01

    Full Text Available Background:  The major of this study was to isolate oil-degrading bacteria from soil contaminated with petroleum and examining the removal of hydrocarbons by these bacteria. Methods: Oil-degrading colonies were purified from the samples obtained of around Ahvaz oil wells. Organic matter degradation was investigated with 1 g of crude oil in basal salt medium (BSM as sole carbon source. The growth rate was determined through total protein assay and hydrocarbon consuming was measured through organic carbon oxidation and titration by dichromate as oxidizing agent. Results: Two potential isolates named S1 and S2 strains were screened and identified as Planococcus and Pseudomonas aeruginosa. As results for S1 and S2 could degrade 80.86 and 65.6% of olive oil, 59.6 and 35.33 of crude oil, while 32 and 26.15 % of coal tar were consumed during 14 days incubation. Conclusion: The results of this investigation showed these indigenous strains high capability to biodegradation at short time and are desirable alternatives for treatment of oil pollutants.

  20. A Framework for Evaluating the Effects of Degraded Digital I and C Systems on Human Performance

    International Nuclear Information System (INIS)

    OHara, J.; Gunther, B.; Hughes, N.; Barnes, V.

    2009-01-01

    New and advanced reactors will use integrated digital instrumentation and control (I and C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator situation awareness and performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission has initiated a research project to investigate the effects of degraded I and C systems on human performance and plant operations. The ultimate objective of this project is to develop the technical basis for human factors review guidance for conditions of degraded I and C, including complete failure. Based on the results of this effort, NRC will determine the need for developing new guidance or revising NUREG-0800, NUREG-0711, NUREG-0700 and other pertinent NRC review guidance. This paper reports on the first phase of the research, the development of a framework for linking degraded I and C system conditions to human performance. The framework consists of three levels: I and C subsystems, human-system interfaces, and human performance. Each level is composed of a number of discrete elements. This paper will describe the elements at each level and their integration. In the next phase of the research, the framework will be used to systematically investigate the human performance consequences of various classes of failures

  1. Evaluation of soluble organic compounds generated by radiological degradation of asphalt

    International Nuclear Information System (INIS)

    Fukumoto, M.; Nishikawa, Y.; Kagawa, A.; Kawamura, K.

    2000-12-01

    The soluble organic compounds generated by radiological degradation of asphalt (γ ray) were confirmed as a part of influence of the bituminized waste degradation in the TRU waste repository. Especially, the influence of the nitrate was focused on. As a result, the concentration of the soluble organic compounds generated by radiological degradation of asphalt (10 MGy, γ ray which is correspond to absorbed dose of asphalt for 1,000,000 years) were lower (each formic acid: about 50 mg/dm 3 , acetic acid: about 30 mg/dm 3 and oxalic acid: about 2 mg/dm 3 ) than that of the formic acid, the acetic acid and the oxalic acid which Valcke et al. had shown (the influence of the organic at the solubility examination which uses Pu and Am). Moreover, the change in the concentration of TOC and the soluble organic compounds (formic acid, acetic acid and oxalic acid) is little under the existence of nitrate ion. That is, the formic acid and acetic acid which can be organic ligands were generated little by oxidative decomposition of asphalt in the process that nitrate ion becomes nitride ion by radiation. The influence of the soluble organic compounds by the radiological degradation of the asphalt (γ ray) on adsorption and solubility by the complexation of radionuclides in the performance assessment can be limited. (author)

  2. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization

    Science.gov (United States)

    Ojha, Nupur; Pradhan, Neha; Singh, Surjit; Barla, Anil; Shrivastava, Anamika; Khatua, Pradip; Rai, Vivek; Bose, Sutapa

    2017-01-01

    Plastic in any form is a nuisance to the well-being of the environment. The ‘pestilence’ caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only resulted in furthering the pollution by releasing toxic gases into the atmosphere; whereas; biological methods have been found to be eco-friendly however they are not cost effective. This paves the way for the current study where fungal isolates have been used to degrade polyethylene sheets (HDPE, LDPE). Two potential fungal strains, namely, Penicillium oxalicum NS4 (KU559906) and Penicillium chrysogenum NS10 (KU559907) had been isolated and identified to have plastic degrading abilities. Further, the growth medium for the strains was optimized with the help of RSM. The plastic sheets were subjected to treatment with microbial culture for 90 days. The extent of degradation was analyzed by, FE-SEM, AFM and FTIR. Morphological changes in the plastic sheet were determined.

  3. Kinetic Evaluation of Imidacloprid Degradation in Mice Organs Treated with Olive Oil Polyphenols Extract

    OpenAIRE

    Broznić, Dalibor; Marinić, Jelena; Tota, Marin; Čanadi Jurešić, Gordana; Milin, Čedomila

    2008-01-01

    Imidacloprid is a highly effective insecticide, acting as agonists at the insect nicotinic acetylcholine receptor. Nevertheless, imidacloprid itself or its metabolites could exhibit toxicity in mammals. Imidacloprid biotransformation involves oxidative cleavage, releasing the 6-chloronicotinic acid. Therefore, the concentration of imidacloprid and 6-chloronicotinic acid was used to characterize degradation kinetics and distribution of imidacloprid in mice liver, kidneys and lungs. Additionall...

  4. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization.

    Science.gov (United States)

    Ojha, Nupur; Pradhan, Neha; Singh, Surjit; Barla, Anil; Shrivastava, Anamika; Khatua, Pradip; Rai, Vivek; Bose, Sutapa

    2017-01-04

    Plastic in any form is a nuisance to the well-being of the environment. The 'pestilence' caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only resulted in furthering the pollution by releasing toxic gases into the atmosphere; whereas; biological methods have been found to be eco-friendly however they are not cost effective. This paves the way for the current study where fungal isolates have been used to degrade polyethylene sheets (HDPE, LDPE). Two potential fungal strains, namely, Penicillium oxalicum NS4 (KU559906) and Penicillium chrysogenum NS10 (KU559907) had been isolated and identified to have plastic degrading abilities. Further, the growth medium for the strains was optimized with the help of RSM. The plastic sheets were subjected to treatment with microbial culture for 90 days. The extent of degradation was analyzed by, FE-SEM, AFM and FTIR. Morphological changes in the plastic sheet were determined.

  5. Evaluation and selection of indicators for land degradation and desertification monitoring: methodological approach.

    Science.gov (United States)

    Kosmas, C; Kairis, Or; Karavitis, Ch; Ritsema, C; Salvati, L; Acikalin, S; Alcala, M; Alfama, P; Atlhopheng, J; Barrera, J; Belgacem, A; Solé-Benet, A; Brito, J; Chaker, M; Chanda, R; Coelho, C; Darkoh, M; Diamantis, I; Ermolaeva, O; Fassouli, V; Fei, W; Feng, J; Fernandez, F; Ferreira, A; Gokceoglu, C; Gonzalez, D; Gungor, H; Hessel, R; Juying, J; Khatteli, H; Khitrov, N; Kounalaki, A; Laouina, A; Lollino, P; Lopes, M; Magole, L; Medina, L; Mendoza, M; Morais, P; Mulale, K; Ocakoglu, F; Ouessar, M; Ovalle, C; Perez, C; Perkins, J; Pliakas, F; Polemio, M; Pozo, A; Prat, C; Qinke, Y; Ramos, A; Ramos, J; Riquelme, J; Romanenkov, V; Rui, L; Santaloia, F; Sebego, R; Sghaier, M; Silva, N; Sizemskaya, M; Soares, J; Sonmez, H; Taamallah, H; Tezcan, L; Torri, D; Ungaro, F; Valente, S; de Vente, J; Zagal, E; Zeiliguer, A; Zhonging, W; Ziogas, A

    2014-11-01

    An approach to derive relationships for defining land degradation and desertification risk and developing appropriate tools for assessing the effectiveness of the various land management practices using indicators is presented in the present paper. In order to investigate which indicators are most effective in assessing the level of desertification risk, a total of 70 candidate indicators was selected providing information for the biophysical environment, socio-economic conditions, and land management characteristics. The indicators were defined in 1,672 field sites located in 17 study areas in the Mediterranean region, Eastern Europe, Latin America, Africa, and Asia. Based on an existing geo-referenced database, classes were designated for each indicator and a sensitivity score to desertification was assigned to each class based on existing research. The obtained data were analyzed for the various processes of land degradation at farm level. The derived methodology was assessed using independent indicators, such as the measured soil erosion rate, and the organic matter content of the soil. Based on regression analyses, the collected indicator set can be reduced to a number of effective indicators ranging from 8 to 17 in the various processes of land degradation. Among the most important indicators identified as affecting land degradation and desertification risk were rain seasonality, slope gradient, plant cover, rate of land abandonment, land-use intensity, and the level of policy implementation.

  6. Degradation of flumequine by the Fenton and photo-Fenton processes: Evaluation of residual antimicrobial activity

    International Nuclear Information System (INIS)

    Rodrigues-Silva, Caio; Maniero, Milena Guedes; Rath, Susanne; Guimarães, José Roberto

    2013-01-01

    Flumequine is a broad-spectrum antimicrobial agent of the quinolone class, and it is widely used as a veterinary drug in food-producing animals. The presence of flumequine in the environment may contribute to the development of drug resistant bacterial strains. In this study, water samples fortified with flumequine (500 μg L −1 ) were degraded using the Fenton and photo-Fenton processes. The maximum degradation efficiency for flumequine by the Fenton process was approximately 40% (0.5 mmol L −1 Fe(II), 2.0 mmol L −1 H 2 O 2 and 15 min). By applying UV radiation (photo-Fenton process), the efficiency reached more than 94% in 60 min when 0.25 mmol L −1 Fe(II) and 10.0 mmol L −1 H 2 O 2 were used. Under these conditions, the Fenton process was able to reduce the biological activity, whereas the photo-Fenton process eliminated almost all of the antimicrobial activity because it was not detected. Four byproducts with an m/z of 244, 238, 220 and 202 were identified by mass spectrometry, and a degradation pathway for flumequine was proposed. The byproducts were derived from decarboxylation and defluorination reactions and from modifications in the alkylamino chain of the fluoroquinolone. - Highlights: ► Photo-Fenton process achieved the maximum performance, degrading 94% of flumequine. ► As the flumequine concentration decreased, antimicrobial activity also decreased. ► Four byproducts with m/z of 244, 238, 220 and 202 were identified. ► A degradation pathway for flumequine was proposed

  7. Degradation of flumequine by the Fenton and photo-Fenton processes: Evaluation of residual antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues-Silva, Caio; Maniero, Milena Guedes [School of Civil Engineering, Architecture and Urbanism, University of Campinas — UNICAMP, P.O. Box 6021, CEP 13083-852, Campinas, SP (Brazil); Rath, Susanne [Chemistry Institute, University of Campinas — UNICAMP, P.O. Box 6154, CEP 13084-971, Campinas, SP (Brazil); Guimarães, José Roberto, E-mail: jorober@fec.unicamp.br [School of Civil Engineering, Architecture and Urbanism, University of Campinas — UNICAMP, P.O. Box 6021, CEP 13083-852, Campinas, SP (Brazil)

    2013-02-15

    Flumequine is a broad-spectrum antimicrobial agent of the quinolone class, and it is widely used as a veterinary drug in food-producing animals. The presence of flumequine in the environment may contribute to the development of drug resistant bacterial strains. In this study, water samples fortified with flumequine (500 μg L{sup −1}) were degraded using the Fenton and photo-Fenton processes. The maximum degradation efficiency for flumequine by the Fenton process was approximately 40% (0.5 mmol L{sup −1} Fe(II), 2.0 mmol L{sup −1} H{sub 2}O{sub 2} and 15 min). By applying UV radiation (photo-Fenton process), the efficiency reached more than 94% in 60 min when 0.25 mmol L{sup −1} Fe(II) and 10.0 mmol L{sup −1} H{sub 2}O{sub 2} were used. Under these conditions, the Fenton process was able to reduce the biological activity, whereas the photo-Fenton process eliminated almost all of the antimicrobial activity because it was not detected. Four byproducts with an m/z of 244, 238, 220 and 202 were identified by mass spectrometry, and a degradation pathway for flumequine was proposed. The byproducts were derived from decarboxylation and defluorination reactions and from modifications in the alkylamino chain of the fluoroquinolone. - Highlights: ► Photo-Fenton process achieved the maximum performance, degrading 94% of flumequine. ► As the flumequine concentration decreased, antimicrobial activity also decreased. ► Four byproducts with m/z of 244, 238, 220 and 202 were identified. ► A degradation pathway for flumequine was proposed.

  8. Fundamental investigation of hybrid high-temperature superconductor-semiconductor sensors for magnetic signals in non-destructive evaluation. Final report; Grundlegende Untersuchungen hybrider Hochtemperatursupraleiter-Halbleiter-Magnetfelddetektoren auf Siliziumsubstraten fuer Anwendungen in der zerstoerungsfreien Pruefung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, P.; Schmidl, F.; Linzen, S.; Schmidt, F.; Scherbel, J.

    2002-11-01

    A new magnetic sensor was realized using a Hall magnetometer coupled to an antenna out of high-temperature superconducting material. The resolution of the magnetometer was improved and a noise-limited field resolution of the system of 2.7 nT/{radical}(Hz) was obtained. The necessary thin film technology was developed and optimized. Further improvements will result in 0.5 nT/{radical}(Hz). The sensors were realized as single sensors as well as sensor arrays and successfully tested in a system for non-destructive evaluation. Within this system the cooling was established by a cryocooler which also cools down the electronics to about 80 K. (orig.) [German] Es wurde ein neuartiger Magnetfeldsensor realisiert, bei dem ein Hallmagnetometer mit einer Antenne aus Hochtemperatursupraleitenden Material gekoppelt wird. Die Magnetometerempfindlichkeit wird dadurch kiar verbessert und eine rauschbegrenzte Feldaufloesung des Systems von 2,7 nT{radical}(/Hz) erreicht. Die zur Herstellung noetige hybride Duennschichttechnologie wurde entwickelt und optimiert. Durch Layoutverbesserungen erscheinen Aufloesungen von 0,5 nT/{radical}(Hz) realisierbar. Die Sensoren wurden als Einzelsensor und Sensorarrays realisiert und in einer Anlage zur zerstoerungsfreien Pruefung erfolgreich getestet. Dabei erfolgte die Kuehlung mittels Kleinkuehler, der auch die Verarbeitungselektronik auf 80 K kuehlt. (orig.)

  9. Using ALS and MODIS data to evaluate degradation in different forests types over the Xingu basin - Brazilian Amazon

    Science.gov (United States)

    Moura, Y.; Aragão, L. E.; Galvão, L. S.; Dalagnol, R.; Lyapustin, A.; Santos, E. G.; Espirito-Santo, F.

    2017-12-01

    Degradation of Amazon rainforests represents a vital threat to carbon storage, climate regulation and biodiversity; however its effect on tropical ecosystems is largely unknown. In this study we evaluate the effects of forest degradation on forest structure and functioning over the Xingu Basin in the Brazilian Amazon. The vegetation types in the area is dominated by Open Ombrophilous Forest (Asc), Semi-decidiuous Forest (Fse) and Dense Ombrophilous Forest (Dse). We used Airborne Laser Scanning (ALS) data together with time series of optical remote sensing images from the Moderate Resolution Imaging Spectroradiometer (MODIS) bi-directional corrected using the Multi-Angle Implementation for Atmospheric Correction (MAIAC). We derive time-series (2008 to 2016) of the Enhanced Vegetation Index (EVI) and Green-Red Normalized Difference (GRND) to analyze the dynamics of degraded areas with related changes in canopy structure and greenness values, respectively. Airborne ALS measurements showed the largest tree heights in the Dse class with values up to 40m tall. Asc and Fse vegetation types reached up to 30m and 25m in height, respectively. Differences in canopy structure were also evident from the analysis of canopy volume models (CVMs). Asc showed higher proportion of sunlit, as expected for open forest types. Fse showed gaps predominantly in lower height levels, and a higher overall proportion of shaded crown. Full canopy closure was reached at about15 m height for both Asc and Dse, and at about 20 m height for Fse. We also used a base map of degraded areas (available from Imazon - Instituto do Homen e Meio Ambiente da Amazônia) to follow these regions throughout time using EVI and GRND from MODIS. All three forest types displayed seasonal cycles. Notable differences in amplitude were detected during the periods when degradation occurred and both indexes showed a decrease in their response. However, there were marked differences in timing and amplitude depending on

  10. Project GRETE: evaluation of non destructive testing techniques for monitoring of material degradation

    International Nuclear Information System (INIS)

    Coste, J.F.

    2001-01-01

    The material aging of major critical components of nuclear installations due to in-service conditions may lead to a degradation of their mechanical characteristics. The early detection of material changes and their monitoring using innovative non destructive testing techniques would allow to plan actions in order to prevent the apparition of macroscopic damage (e.g. cracks). One major difficulty in using these particular techniques is to correlate the changes in the measured NDT signals to the microstructural changes in the material due to aging. This problem may be solved through careful microstructural examinations of the material damage. The objective of the project GRETE is to illustrate the potential use of NDT techniques for the monitoring of material degradation through two examples: neutron irradiation of reactor pressure vessel steel and thermal fatigue of piping. The purpose of this paper is to present the project and its programme of work. (author)

  11. Tailoring oxides of copper-Cu_2O and CuO nanoparticles and evaluation of organic dyes degradation

    International Nuclear Information System (INIS)

    Raghav, Ragini; Aggarwal, Priyanka; Srivastava, Sudha

    2016-01-01

    We report a simple one-pot colloidal synthesis strategy tailoring cuprous or cupric nano-oxides in pure state. NaOH provided alkaline conditions (pH 12.5 -13) for nano-oxides formation, while its concentration regulated the oxidation state of the nano-oxides. The morphological, structural and optical properties of synthesized Cu_2O and CuO nanoparticles were studied by transmission electron microscopy (TEM), X-Ray diffraction (XRD) and UV-vis spectroscopy. Dye degradation capability of CuO and Cu2O nanoparticles was evaluated using four organic dyes - Malachite green, Methylene blue, Methyl orange and Methyl red. The results demonstrate effective degradation of all four dyes employing with almost comparable activity both Cu_2O and CuO nanoparticles.

  12. The 30 Years of the Korean Society for Nondestructive Testing

    International Nuclear Information System (INIS)

    2010-05-01

    The contents of this book are development of nondestructive testings; the origin of nondestructive testing, history of Korea on nondestructive testing and present condition of nondestructive testing in Korea, history of society, activity of society; structure and activity of society, publication of society academic project, educational work, international exchange, and the future and direction of development of the Korean society for nondestructive testing.

  13. Development of evaluation technique on ageing degradation of organic polymer in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yup; Nho, Young Chang; Jung, Sung Hee; Park, Eun Hee

    1999-03-01

    Radiation degradation of chlorosulfonated polyethylene (CSPE, Hypalon), crosslinked polyethylene (XLPE), poly (tetrafluoroethylene) (PTFE), poly (vinylidene fluoride) (PVDF), and ethylene rubber (EPR) of experimental formulation as cable insulating and sheathing materials were performed by accelerated ageing tests and was investigated by measuring the properties such as tensile strength, elongation, insulation resistance, melting temperature, oxygen index and thermal stimulated current. The status of radiation ageing test was reviewed and the requirement of qualification of nuclear equipment was documented.

  14. Development of evaluation technique on ageing degradation of organic polymer in nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Nho, Young Chang; Jung, Sung Hee; Park, Eun Hee

    1999-03-01

    Radiation degradation of chlorosulfonated polyethylene (CSPE, Hypalon), crosslinked polyethylene (XLPE), poly (tetrafluoroethylene) (PTFE), poly (vinylidene fluoride) (PVDF), and ethylene rubber (EPR) of experimental formulation as cable insulating and sheathing materials were performed by accelerated ageing tests and was investigated by measuring the properties such as tensile strength, elongation, insulation resistance, melting temperature, oxygen index and thermal stimulated current. The status of radiation ageing test was reviewed and the requirement of qualification of nuclear equipment was documented

  15. Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fabiańska, Aleksandra; Białk-Bielińska, Anna; Stepnowski, Piotr [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); Stolte, Stefan [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); UFT-Centre of Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße UFT, D-28359 Bremen (Germany); Siedlecka, Ewa Maria, E-mail: ewa.siedlecka@ug.edu.pl [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland)

    2014-09-15

    Highlights: • SNs were electrochemically oxidized at BDD in one compartment reactor. • The efficiency of SN degradation was the highest in effluents from municipal WWTP. • The electro-degradation SNs based on oxidation but reduction was also possible. • Electrochemical oxidation of SNs led in some cases to mixtures toxic to L. minor. - Abstract: The investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants. Increased degradation efficiency was observed in higher temperature and in acidic pH. Due to the presence of chlorine and nitrate SNs were more effectively oxidized from municipal wastewater treatment plant (WWTP) effluents than from pure supporting electrolyte Na{sub 2}SO{sub 4}. The intermediates identified by LC–MS and GC–MS analysis suggested that the hydroxyl radicals attack mainly the S-N bond, but also the aromatic ring systems (aniline, pyrimidine or triazole) of SNs. Finally, the toxicity of the SNs solutions and effluents after electrochemical treatment was assessed through the measurement of growth inhibition of green algae (Scenedesmus vacualatus) and duckweed (Lemna minor). Toxicity of SMR, STZ, SMN solutions before and after electrochemical oxidation and SDM solution after the process in L. minor test was observed. No significant toxicity of studied SNs was observed in algae test.

  16. Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation

    International Nuclear Information System (INIS)

    Fabiańska, Aleksandra; Białk-Bielińska, Anna; Stepnowski, Piotr; Stolte, Stefan; Siedlecka, Ewa Maria

    2014-01-01

    Highlights: • SNs were electrochemically oxidized at BDD in one compartment reactor. • The efficiency of SN degradation was the highest in effluents from municipal WWTP. • The electro-degradation SNs based on oxidation but reduction was also possible. • Electrochemical oxidation of SNs led in some cases to mixtures toxic to L. minor. - Abstract: The investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants. Increased degradation efficiency was observed in higher temperature and in acidic pH. Due to the presence of chlorine and nitrate SNs were more effectively oxidized from municipal wastewater treatment plant (WWTP) effluents than from pure supporting electrolyte Na 2 SO 4 . The intermediates identified by LC–MS and GC–MS analysis suggested that the hydroxyl radicals attack mainly the S-N bond, but also the aromatic ring systems (aniline, pyrimidine or triazole) of SNs. Finally, the toxicity of the SNs solutions and effluents after electrochemical treatment was assessed through the measurement of growth inhibition of green algae (Scenedesmus vacualatus) and duckweed (Lemna minor). Toxicity of SMR, STZ, SMN solutions before and after electrochemical oxidation and SDM solution after the process in L. minor test was observed. No significant toxicity of studied SNs was observed in algae test

  17. Probability of Detection (POD) Analysis for the Advanced Retirement for Cause (RFC)/Engine Structural Integrity Program (ENSIP) Nondestructive Evaluation (NDE) System-Volume 3: Material Correlation Study

    National Research Council Canada - National Science Library

    Berens, Alan

    2000-01-01

    .... Volume 1 presents a description of changes made to the probability of detection (POD) analysis program of Mil-STD-1823 and the statistical evaluation of modifications that were made to version 3 of the Eddy Current Inspection System (ECIS v3...

  18. Probabilistic procedure to evaluate integrity of degraded pipes under internal pressure and bending moment

    International Nuclear Information System (INIS)

    Roos, E.; Herter, K.-H.; Julisch, P.; Otremba, F.; Schuler, X.

    2003-01-01

    The determination of critical crack sizes or permissible/allowable loading levels in pipes with degraded pipe sections (circumferential cracks) for the assurance of component integrity is usually based on deterministic approaches. Therefore along with numerical calculational methods (finite element (FE) analyses) limit load calculations, such as e.g. the 'Plastic limit load concept' and the 'Flow stress concept' as well as fracture mechanics approximation methods as e.g. the R-curve method or the 'Ductile fracture handbook' and the R6-Method are currently used for practical application. Numerous experimental tests on both ferritic and austenitic pipes with different pipe dimensions were investigated at MPA Stuttgart. The geometries of the pipes were comparable to actual piping systems in Nuclear Power Plants, both BWR as well as PWR. Through wall cracks and part wall through cracks on the inside surface of the pipes were considered. The results of these tests were used to determine the flow stresses used within the limit load calculations. Therefore the deterministic concepts assessing the integrity of degraded pipes are available A new post-calculation of the above mentioned tests was performed using probabilistic approaches to assure the component integrity of degraded piping systems. As a result the calculated probability of failure was compared to experimental behaviour during the pipe test. Different reliability techniques were used for the verification of the probabilistic approaches. (author)

  19. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    International Nuclear Information System (INIS)

    Arora, Swati; Singh, Vinamrita; Arora, Manoj; Pal Tandon, Ram

    2012-01-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10 12 -10 13 cm -2 eV -1 , which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  20. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Swati, E-mail: drswatia@yahoo.com [Department of Physics, Zakir Husain College, University of Delhi, Delhi 110002 (India); Singh, Vinamrita [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arora, Manoj [Department of Physics, Ramjas College, University of Delhi, Delhi 110007 (India); Pal Tandon, Ram [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2012-08-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10{sup 12}-10{sup 13} cm{sup -2} eV{sup -1}, which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  1. Direct immunofluorescence and enzyme-linked immunosorbent assays for evaluating chlorinated hydrocarbon degrading bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; Franck, M.M.; Brey, J.; Fliermans, C.B. [Westinghouse Savannah River, Aiken, SC (United States). Environmental Biotechnology Section; Scott, D.; Lanclos, K. [Medical Coll. of Georgia, Augusta, GA (United States)

    1997-06-01

    Immunological procedures were developed to enumerate chlorinated hydrocarbon degrading bacteria. Polyclonal antibodies (Pabs) were produced by immunizing New Zealand white rabbits against 18 contaminant-degrading bacteria. These included methanotrophic and chlorobenzene (CB) degrading species. An enzyme-linked immunosorbent assay (ELISA) was used to test for specificity and sensitivity of the Pabs. Direct fluorescent antibodies (DFAs) were developed with these Pabs against select methanotrophic bacteria isolated from a trichloroethylene (TCE) contaminated landfill at the Savannah River Site (SRS) and cultures from the American Type Culture Collection (ATCC). Analysis of cross reactivity testing data showed some of the Pabs to be group specific while others were species specific. The threshold of sensitivity for the ELISA is 105 bacteria cells/ml. The DFA can detect as few as one bacterium per ml after concentration. Results from the DFA and ELISA techniques for enumeration of methanotrophic bacteria in groundwater were higher but not significantly different (P < 0.05) compared to indirect microbiological techniques such as MPN. These methods provide useful information on in situ community structure and function for bioremediation applications within 1--4 hours of sampling.

  2. Non-Destructive Inspection Lab (NDI)

    Data.gov (United States)

    Federal Laboratory Consortium — The NDI specializes in applied research, development and performance of nondestructive inspection procedures (flourescent penetrant, magnetic particle, ultrasonics,...

  3. Criticality Safety Evaluation for Small Sample Preparation and Non-Destructive Assay (NDA) Operations in Wing 7 Basement of the CMR Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kunkle, Paige Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zhang, Ning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-02

    Nuclear Criticality Safety (NCS) has reviewed the fissionable material small sample preparation and NDA operations in Wing 7 Basement of the CMR Facility. This is a Level-1 evaluation conducted in accordance with NCS-AP-004 [Reference 1], formerly NCS-GUIDE-01, and the guidance set forth on use of the Standard Criticality Safety Requirements (SCSRs) [Reference 2]. As stated in Reference 2, the criticality safety evaluation consists of both the SCSR CSED and the SCSR Application CSED. The SCSR CSED is a Level-3 CSED [Reference 3]. This Level-1 CSED is the SCSR Application CSED. This SCSR Application (Level-1) evaluation does not derive controls, it simply applies controls derived from the SCSR CSED (Level-3) for the application of operations conducted here. The controls derived in the SCSR CSED (Level-3) were evaluated via the process described in Section 6.6.5 of SD-130 (also reproduced in Section 4.3.5 of NCS-AP-004 [Reference 1]) and were determined to not meet the requirements for consideration of elevation into the safety basis documentation for CMR. According to the guidance set forth on use of the SCSRs [Reference 2], the SCSR CSED (Level-3) is also applicable to the CMR Facility because the process and the normal and credible abnormal conditions in question are bounded by those that are described in the SCSR CSED. The controls derived in the SCSR CSED include allowances for solid materials and solution operations. Based on the operations conducted at this location, there are less-than-accountable (LTA) amounts of 233U. Based on the evaluation documented herein, the normal and credible abnormal conditions that might arise during the execution of this process will remain subcritical with the following recommended controls.

  4. Non-destructive testing of rocket fuse by thermal neutron radiography

    International Nuclear Information System (INIS)

    An Fulin; Li Furong

    1999-01-01

    A neutron radiography system in reactor horizontal hole of Tsinghua University was introduced, and its capability of neutron radiography was evaluated by theory and experiment, the non-destructive testing for rocket fuse is successful

  5. Nondestructive testing for bridge diagnosis

    International Nuclear Information System (INIS)

    Oshima, Toshiyuki; Mikami, Shuichi; Yamazaki, Tomoyuki

    1997-01-01

    There are many motivations for bridge diagnosis using Nondestructive testing (NDT) to monitor its integrity. The measured frequency and damping on real bridge are compared in one figure as a function of span length and general aspects are explained. These date were measured in every construction of bridges and applied to design new bridges. Ultrasonic testing is also well used for concrete and steel members mainly to detect internal damages or delaminations. Detail analysis on reflected waves gives us more accurate information about the defect. Experimental results are shown as examples in this paper.

  6. Nondestructive analysis of irradiated fuels

    International Nuclear Information System (INIS)

    Dudey, N.D.; Frick, D.C.

    1977-01-01

    The principal nondestructive examination techniques presently used to assess the physical integrity of reactor fuels and cladding materials include gamma-scanning, profilometry, eddy current, visual inspection, rod-to-rod spacing, and neutron radiography. LWR fuels are generally examined during annual refueling outages, and are conducted underwater in the spent fuel pool. FBR fuels are primarily examined in hot cells after fuel discharge. Although the NDE techniques are identical, LWR fuel examinations emphasize tests to demonstrate adherence to technical specification and reliable fuel performance; whereas, FBR fuel examinations emphasize aspects more related to the relative performance of different types of fuel and cladding materials subjected to variable irradiation conditions

  7. Nondestructive detection of microstructural fatigue damage

    International Nuclear Information System (INIS)

    Willems, H.; Persch, H.

    1990-02-01

    Ultrasonic as well as magnetic investigations have been performed on a pressure vessel steel (A533, B class 1) in order to study the influence of fatigue loading on both elastic and magnetic material properties. Using laboratory specimens under two different loading conditions (tension-tension loading, tension-compression loading), material characteristics like ultrasonic velocity, ultrasonic absorption, coercivity, incremental permeability were measured and evaluated as a function of consumed lifetime. Only in case of macroscopic plastic deformation, significant changes of the measuring quantities were observed. Otherwise the effects are so small that the nondestructive detection of microstructural changes due to fatigue loading seems not to be feasible under practical conditions (for example at pressure vessels) with the techniques used. Besides a zero measurement, additional measurements on a 1:5 model vessel at JRC Ispra could not be carried out, because the planned fatigue tests were not performed by JRC Ispra during the research period

  8. Nondestructive detection of microstructural fatigue damage

    International Nuclear Information System (INIS)

    Willems, H.; Persch, H.; Voss, B.; Falk, L.

    1989-01-01

    Ultrasonic as well as magnetic investigations have been performed on a pressure vessel steel (A533, B class 1) in order to study the influence of fatigue loading on both elastic and magnetic material properties. Using laboratory specimens under two different loading conditions (tension-tension loading, tension-compression loading), material characteristics like ultrasonic velocity, ultrasonic absorption, coercivity, incremental permeability were measured and evaluated as a function of consumed lifetime. Only in case of macroscopic plastic deformation, significant changes of the measuring quantities were observed. Otherwise the effects are so small that the nondestructive detection of microstructural changes due to high-cycle fatigue loading seems not to be feasible under practical conditions (for example at pressure vessels) with the techniques used. (orig.) [de

  9. Experimental device, corresponding forward model and processing of the experimental data using wavelet analysis for tomographic image reconstruction applied to eddy current nondestructive evaluation

    International Nuclear Information System (INIS)

    Joubert, P.Y.; Madaoui, N.

    1999-01-01

    In the context of eddy current non destructive evaluation using a tomographic image reconstruction process, the success of the reconstruction depends not only on the choice of the forward model and of the inversion algorithms, but also on the ability to extract the pertinent data from the raw signal provided by the sensor. We present in this paper, an experimental device designed for imaging purposes, the corresponding forward model, and a pre-processing of the experimental data using wavelet analysis. These three steps implemented with an inversion algorithm, will allow in the future to perform image reconstruction of 3-D flaws. (authors)

  10. Soil Degradation Evaluated by a 27 years Landsat image (Vis-Nir-Swir-Tir), climate and digital elevation derivatives

    Science.gov (United States)

    Dematte, J. A., Sr.; Santos, N. V.; de Almeida Malzoni, M. M.; Poppiel, R. R.; Fongaro, C. T.; Rizzo, R.; Safanelli, J. L.; Sayão, V. M.; Mendes, W. S.

    2017-12-01

    According to Food and Agriculture Organization of the United Nations, 30% of the global soils are degraded. Therefore, novel researches on soil degradation process are imperative to prevent damages on social and environmental dynamics. Since we have a wide world dimension, and few manpower, we have to focus on high dimensional evaluation techniques such as remote sensing. The main goal of this work was to develop a method, based on a 27 years time-series of satellite images (Landsat), from which determine the most important factors on soil degradation. The area is located in south Brazil with a 1400 km2 area. The steps of the method are as follows: a) we collected images from the area and based on a novel technique determined the areas with exposed soils; b) we quantified soil properties such as clay and capacity of ionic exchange based on pixel spectra signature; c) the technique also indicated how many times a single pixel was with bare soil during the period; d) we also determined the surface temperature based on band 6; e) using elevation model we created the layers LS factor, drainage density, topographic wetness index, solar radiation; f) we also determined climate information (water balance); g) organic matter (OM) was also estimated. All factors from item a to f were balanced and overlapped (GIS) to generate an index of soil degradation, SD (fig 1a) - values from 1 (low risk) to 5 (high risk). We concluded that 30% of the area is degraded. SD presented coherent values with OM and validate the method. We observed that areas with higher SD (5) contain 43.6% less OM than the ones with low risk (1). In addition, the soil spectral reflectance curve was analyzed concluding that degraded soils shows higher intensity. The current land use (fig 1b) was correlated demonstrating that a higher risk of SD happens mainly in sugar cane (41.6%) in contrast to pasture (16.9%) and forestry (11.7%). Therefore, this approach allows land uses decision-making and public policies.

  11. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of

  12. Forced degradation studies of lansoprazole using LC-ESI HRMS and 1 H-NMR experiments: in vitro toxicity evaluation of major degradation products.

    Science.gov (United States)

    Shankar, G; Borkar, R M; Suresh, U; Guntuku, L; Naidu, V G M; Nagesh, N; Srinivas, R

    2017-07-01

    Regulatory agencies from all over the world have set up stringent guidelines with regard to drug degradation products due to their toxic effects or carcinogenicity. Lansoprazole, a proton-pump inhibitor, was subjected to forced degradation studies as per ICH guidelines Q1A (R2). The drug was found to degrade under acidic, basic, neutral hydrolysis and oxidative stress conditions, whereas it was found to be stable under thermal and photolytic conditions. The chromatographic separation of the drug and its degradation products were achieved on a Hiber Purospher, C18 (250 × 4.6 mm, 5 μ) column using 10 mM ammonium acetate and acetonitrile as a mobile phase in a gradient elution mode at a flow rate of 1.0 ml/min. The eight degradation products (DP1-8) were identified and characterized by UPLC/ESI/HRMS with in-source CID experiments combined with accurate mass measurements. DP-1, DP-2 and DP-3 were formed in acidic, DP-4 in basic, DP-5 in neutral and DP-1, DP-6, DP-7 and DP-8 were in oxidation stress condition Among eight degradation products, five were hitherto unknown degradation products. In addition, one of the major degradation products, DP-2, was isolated by using semi preparative HPLC and other two, DP-6 and DP-7 were synthesized. The cytotoxic effect of these degradation products (DP-2, DP-6 and DP-7) were tested on normal human cells such as HEK 293 (embryonic kidney cells) and RWPE-1(normal prostate epithelial cells) by MTT assay. From the results of cytotoxicity, it was found that lansoprazole as well as its degradation products (DP-2, DP-6 and DP-7) were nontoxic up to 50-μM concentrations, and the latter showed slightly higher cytotoxicity when compared with that of lansoprazole. DNA binding studies using spectroscopic techniques indicate that DP-2, DP-6 and DP-7 molecules interact with ctDNA and may bind to its surface. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Evaluation of phytate-degrading Lactobacillus culture administration to broiler chickens.

    Science.gov (United States)

    Askelson, Tyler E; Campasino, Ashley; Lee, Jason T; Duong, Tri

    2014-02-01

    Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics.

  14. Evaluation of the Fatigue Performance and Degradability of Resorbable PLDLLA-TMC Osteofixations

    Science.gov (United States)

    Landes, Constantin; Ballon, Alexander; Ghanaati, Shahram; Ebel, Daniel; Ulrich, Dieter; Spohn, Uwe; Heunemann, Ute; Sader, Robert; Jaeger, Raimund

    2013-01-01

    The fatigue performance of explanted in-situ degraded osteofixations/osteosyntheses, fabricated from poly (70L-lactide-co-24DL-lactide-6-trimethylane-carbonate or PLDLLA-TMC) copolymer was compared to that of virgin products. The fatigue test was performed on 21 explants retrieved from 12 women and 6 men; 16-46 years by a custom-designed three-point bend apparatus using a staircase method and a specified failure criterion (an increase of the deflection of the specimen > 1 mm) with run-out designated as “no failure” after 150,000 loading cycles. While all the virgin products showed run-out at 38N, all of the specimens fabricated from explants failed at this load level. For the explant specimens, although there was a trend of decreased failure load with increased in-situ time, this decrease was pronounced after 4 months in-situ, however, not yet statistically significant, while a 6-month in-situ explant had significantly less failure load. Three and four month in-situ explants had highly significant differences in failure load between measurements close and distant to the osteotomy line: p=0.0017 (the region of maximum load in-situ). In the virgin products, there were only traces of melt joining and cooling, left from a stage in the manufacturing process. For the implants retrieved after 4.5 months in-situ, the fracture surfaces showed signs of degradation of the implants, possibly caused by hydrolysis, and for those retrieved after 9 months in-situ, there were cracks and pores. Thus, the morphological results are consistent with those obtained in the fatigue test. The present results suggest that resorbable osteofixations fabricated from PLDLLA-TMC are stable enough to allow loading of the healing bone and degrade reliably PMID:24363786

  15. Short-Term Degradation of Bi-Component Electrospun Fibers: Qualitative and Quantitative Evaluations via AFM Analysis

    Directory of Open Access Journals (Sweden)

    Marica Marrese

    2018-03-01

    Full Text Available Electrospun polymeric fibers are currently used as 3D models for in vitro applications in biomedical areas, i.e., tissue engineering, cell and drug delivery. The high customization of the electrospinning process offers numerous opportunities to manipulate and control surface area, fiber diameter, and fiber density to evaluate the response of cells under different morphological and/or biochemical stimuli. The aim of this study was to investigate—via atomic force microscopy (AFM—the chemical and morphological changes in bi-component electrospun fibers (BEFs during the in vitro degradation process using a biological medium. BEFs were fabricated by electrospinning a mixture of synthetic-polycaprolactone (PCL-and natural polymers (gelatin into a binary solution. During the hydrolytic degradation of protein, no significant remarkable effects were recognized in terms of fiber integrity. However, increases in surface roughness as well as a decrease in fiber diameter as a function of the degradation conditions were detected. We suggest that morphological and chemical changes due to the local release of gelatin positively influence cell behavior in culture, in terms of cell adhesion and spreading, thus working to mimic the native microenvironment of natural tissues.

  16. A Miniature Membrane Reactor for Evaluation of Process Design Options on the Enzymatic Degradation of Pectin

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham; Pinelo, Manuel; Arnous, Anis

    2011-01-01

    was fabricated from poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) with a working volume of ∼190 μL. The prototype also contained the necessary sensors and actuators, i.e., pressure transducer, mixing via magnetic stirrer bar and a temperature controller. The functionality of the prototype...... was demonstrated by performing a continuous enzymatic degradation of pectin experiment for a range of reactor conditions: different membrane molecular weight cutoff (MWCO) values, enzyme-to-substrate ratios (E/S), and substrate feeding rates (F) were assessed. Based on the experimental data, it was found...

  17. Evaluation of the performance degradation at PAFC effect of electrolyte fill-level on electrode performance

    Energy Technology Data Exchange (ETDEWEB)

    Kitai, Takashi; Uchida, Hiroyuki; Watanabe, Masahiro [Yamanashi Univ., Kofu (Japan)] [and others

    1996-12-31

    As a complimentary research project to the demonstration project of 5MW and 1MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY, with the objective of establishing an estimation method for the service life-time of the cell stacks. This work has been performed in the Basic Research Project, as part of that project on PAFC`s, selecting four subjects (Electrocatalysts degradation, Electrolyte fill-level, Cell material corrosion, Electrolyte loss) as the essential factors relating to the life-time. In this report, we will exhibit the effect of the electrolyte fill-level on the electrode performances.

  18. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization

    OpenAIRE

    Ojha, Nupur; Pradhan, Neha; Singh, Surjit; Barla, Anil; Shrivastava, Anamika; Khatua, Pradip; Rai, Vivek; Bose, Sutapa

    2017-01-01

    Plastic in any form is a nuisance to the well-being of the environment. The ?pestilence? caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only r...

  19. Degradation Effect on Reliability Evaluation of Aluminum Electrolytic Capacitor in Backup Power Converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    DC capacitors in power electronic converters are a major constraint on improvement of power density as well as reliability. In this paper, according to the degradation data of electrolytic capacitors through the accelerated test, the time-to-failure of the capacitor cell is acquired and it can...... be further extended to lower stress levels. Then, in a case study of a fuel cell backup power application, the mission profile based lifetime expectancy of the individual capacitor and the capacitor bank is estimated in terms of the standby mode and operation mode. The lifetime prediction of the capacitor...

  20. Thermoelectric generator testing and RTG degradation mechanisms evaluation. Progress report No. 36

    International Nuclear Information System (INIS)

    Lockwood, A.; Shields, V.

    1980-07-01

    The n-type selenide legs after 15,000 hours continue to show reasonable agreement with the 3M Co. published thermal conductivity data. In the ingradient testing after 16,500 hours the 3 surviving n-legs (out of 5) show serious degradation in power to load. Weight loss and thermoelectricity property measurements on the first samples of material produced by G.E. continue to correspond to the results previously obtained on R.C.A. material from the MHW program. The remaining MHW generator on test, Q1-A, has accumulated 23,679 hours and performance remains stable. The 18 couple modules S/N-1 and -3 previously tested at RCA show no significant change in operation during the current JPL testing. A comparison of LES 8/9 RTG's with an improved version of DEGRA is shown. No changes in the trends of degradation of LES 8 and 9 and the Voyager RTGs have been observed