WorldWideScience

Sample records for nondestructive degradation evaluation

  1. Nondestructive evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Martz, H.E.

    1997-02-01

    Research reported in the thrust area of nondestructive evaluation includes: advanced 3-D imaging technologies; new techniques in laser ultrasonic testing; infrared computed tomography for thermal NDE of materials, structures, sources, and processes; automated defect detection for large laser optics; multistatic micropower impulse radar imaging for nondestructive evaluation; and multi-modal NDE for AVLIS pod shielding components.

  2. Nondestructive evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, S.

    1993-03-01

    This report discusses Nondestructive Evaluation (NDE) thrust area which supports initiatives that advance inspection science and technology. The goal of the NDE thrust area is to provide cutting-edge technologies that have promise of inspection tools three to five years in the future. In selecting projects, the thrust area anticipates the needs of existing and future Lawrence Livermore National Laboratory (LLNL) programs. NDE provides materials characterization inspections, finished parts, and complex objects to find flaws and fabrication defects and to determine their physical and chemical characteristics. NDE also encompasses process monitoring and control sensors and the monitoring of in-service damage. For concurrent engineering, NDE becomes a frontline technology and strongly impacts issues of certification and of life prediction and extension. In FY-92, in addition to supporting LLNL programs and the activities of nuclear weapons contractors, NDE has initiated several projects with government agencies and private industries to study aging infrastructures and to advance manufacturing processes. Examples of these projects are (1) the Aging Airplanes Inspection Program for the Federal Aviation Administration, (2) Signal Processing of Acoustic Signatures of Heart Valves for Shiley, Inc.; and (3) Turbine Blade Inspection for the Air Force, jointly with Southwest Research Institute and Garrett. In FY-92, the primary contributions of the NDE thrust area, described in this report were in fieldable chemical sensor systems, computed tomography, and laser generation and detection of ultrasonic energy.

  3. Non-destructive evaluation of specialty coating degradation using terahertz time-domain spectroscopy

    Science.gov (United States)

    Nicoletti, Carley R.; Cramer, Laura; Fletcher, Alan; Zimdars, David; Iqbal, Zafar; Federici, John F.

    2017-05-01

    The Terahertz Time Domain Reflection Spectroscopy (THz-TDS) method of paint layer diagnostics is a non-contact electromagnetic technique analogous to pulsed-ultrasound with the added capability of spectroscopic characterization. The THz-TDS sensor emits a near-single cycle electromagnetic pulse with a bandwidth from 0.1 to 3 THz. This wide bandwidth pulse is focused on the coating, and echo pulses are generated from each interface (air-coating, layer-layer, coating-substrate). In this paper, the THz-TDS method is applied to specialty aircraft coatings. The THz-TDS method is able to penetrate the whole coating stack and sample the properties of each layer. Because the reflected pulses from individual layers typically overlap in time, the complex permittivity function and thickness of each layer is determined by a best fit of the measured reflection (either in time or frequency domain) to a layered model of the paint. The THz- TDS method is applied to specialty coatings prior to and during accelerated aging on a series of test coupons. The coupons are also examined during aging using ATR (attenuated total reflectance)-FTIR spectroscopy, Raman scattering spectroscopy, and Scanning Electron Microscopy (SEM) to ascertain, quantify, and understand the breakdown mechanisms of the coatings. In addition, the same samples are characterized using THz-TDS techniques to determine if the THz-TDS method can be utilized as a non-destructive evaluation technique to sense degradation of the coatings. Our results suggest that the degradation mechanism begins in the top coat layer. In this layer, 254 nm UV illumination in combination with the presence of moisture works partially with oxides as catalysts to decompose the polymer matrix thereby creating porosity in the top coat layer. Since the catalytic effect is partial, loss of the oxides by chemical reaction can also occur. As the topcoat layer becomes more porous, it allows water vapor to permeate the topcoat layer and interact

  4. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    International Nuclear Information System (INIS)

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-01

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm −1 to 68 cm −1 to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100° C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  5. Review of the status of nondestructive measurement techniques to quantify material property degradation due to aging and planning for further evaluation

    International Nuclear Information System (INIS)

    Doctor, S.R.; Boyd, D.M.; Bruemmer, S.M.; Green, E.R.; Schuster, G.J.; Simonen, E.P.

    1989-01-01

    The materials used in nuclear reactors are inspected periodically during the service life of the power plant to detect degradation that might occur. These inspections follow the rules specified in Section XI of the ASME Boiler and Pressure Vessel Code. These inspections are designed to detect service-induced failure mechanisms. This program is designed not to look at the detection of defects but the making of nondestructive measurements to quantify the material properties that a defect may reside in or the incipient condition(s) that may initiate a defect. This program is intended to provide an assessment of the technologies that are available to quantify with nondestructive measurements material properties or material property changes related to degradation due to aging of structural components in light water reactors. In addition, a program plan will be developed that describes the work necessary to create adequate engineering data bases for demonstrating and validating prototypic systems for making these measurements. The main thrust this year has been an extensive review of literature and an assessment of the technology. The second major activity was the planning of a workshop to bring together 30 leading experts in materials and nondestructive evaluation to discuss the state-of-the-art and to address where future work should go

  6. Nondestructive evaluation sourcebook

    International Nuclear Information System (INIS)

    Ammirato, F.V.; Walker, S.M.; Nottingham, L.D.; Stephens, H.; Shankar, R.; Krzywosz, K.; Gothard, M.

    1991-09-01

    Utility executives and upper level managers often make decisions based on inspection data and opinions of inspection personnel regarding inservice inspections of critical components such as pressure vessels, piping, steam generators, and turbine-generator rotors. Few utility executives and upper level managers, however, are well versed in the non-destructive evaluation (NDE) technology that is applied in their nuclear plants. The capabilities and limitations of NDE technology, even though well established and documented for many applications, are not well known at the upper management level. The purpose of this sourcebook is to provide utility upper management and executives with information that explains how NDE is performed in their plants, how the NDE data is used, what training and qualifications are required for NDE personnel, and where and how to get more information. The sourcebook is not intended as an NDE textbook or training manual; its main objective, rather, is to provide an overview of NDE and to give the reader access to the wide selection of available, detailed information on NDE and its application in nuclear plants. Although the sourcebook addresses mainly nuclear plant NDE, much of the information is applicable to fossil plants. 6 refs

  7. Electromagnetic nondestructive evaluation

    National Research Council Canada - National Science Library

    Takagi, T; Bowler, J. R; Yoshida, Y; Miya, Kenzo

    1997-01-01

    ..., the Japanese Society for Non-Destructive Inspection, the Institute of Electrical Engineers of Japan, the Japan Society of Plasma Science and Nuclear Fusion Research, the Atomic Energy Society of Japan, the Iron and Steel Institute of Japan, the Japan Society for Precision Engineering and the Cryogenic Association of Japan. The event was cosponsored b...

  8. Nondestructive Evaluation for Aerospace Composites

    Science.gov (United States)

    Leckey, Cara; Cramer, Elliott; Perey, Daniel

    2015-01-01

    Nondestructive evaluation (NDE) techniques are important for enabling NASA's missions in space exploration and aeronautics. The expanded and continued use of composite materials for aerospace components and vehicles leads to a need for advanced NDE techniques capable of quantitatively characterizing damage in composites. Quantitative damage detection techniques help to ensure safety, reliability and durability of space and aeronautic vehicles. This presentation will give a broad outline of NASA's range of technical work and an overview of the NDE research performed in the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center. The presentation will focus on ongoing research in the development of NDE techniques for composite materials and structures, including development of automated data processing tools to turn NDE data into quantitative location and sizing results. Composites focused NDE research in the areas of ultrasonics, thermography, X-ray computed tomography, and NDE modeling will be discussed.

  9. Analytical nondestructive evaluation for materials characterization

    International Nuclear Information System (INIS)

    Raj, Baldev

    1993-01-01

    Science and technology of nondestructive testing and evaluation has contributed immensely to the safety and productivity of industrial plants. In recent years, nondestructive evaluation (NDE) has emerged as a frontline research area of equal if not greater technological relevance, for materials characterization as well. A comprehensive range of techniques from qualitative nondestructive testing for quality control of engineering products and materials to quantitative NDE for materials characterization is being used by the engineering industry and materials researchers, for better understanding of the manufacturing practices and materials behaviour. Quantitative NDE is considered essential for ensuring fitness for purpose at the start of the life in case the component has been designed using fracture mechanics parameters. Quantitative NDE is also vital for assessing degradation of material during service. Moreover, quantitative NDE enables characterization of dynamics of certain phenomenon (not achievable by destructive test methodologies) leading to better understanding of the performance of materials in relation to unavoidable defects in the materials. As the next logical step, the need for an analytical approach to NDE is felt. The need and motivation for such an approach is addressed and the means to achieve this objective are identified. It is argued that analytical NDE is essential to meet the challenges of characterization, intelligent processing of materials and life prediction of components and plants. These requirements are of significant importance in the context of recent developments in materials engineering, and for enhancing the competitive advantage of Indian engineering industry in the international market. (author). 9 refs., 3 figs

  10. Nondestructive evaluation of civil infrastructures

    Science.gov (United States)

    Chong, Ken P.; Scalzi, John B.; Carino, Nicholas J.

    1995-05-01

    Construction is the largest industry in the world, amounting to 10% of the world's gross domestic product. Civil infrastructure systems are generally the most expensive investments/assets in any country. In the U.S. it is estimated at 20 trillion dollars. In addition, these systems have long service life compared with any other kinds of commercial product and are rarely replaceable once they are erected. Yet the feedback and controls ont he 'state of health' of constructed systems are practically nonexistent. Nondestructive evaluation is an essential part of this feedback and monitoring systems for infrastructures. NSF and NIST NDE initiative as well as workshops and recent awards/projects are described in this paper.

  11. Active spectral imaging nondestructive evaluation (SINDE) camera

    Energy Technology Data Exchange (ETDEWEB)

    Simova, E.; Rochefort, P.A., E-mail: eli.simova@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    A proof-of-concept video camera for active spectral imaging nondestructive evaluation has been demonstrated. An active multispectral imaging technique has been implemented in the visible and near infrared by using light emitting diodes with wavelengths spanning from 400 to 970 nm. This shows how the camera can be used in nondestructive evaluation to inspect surfaces and spectrally identify materials and corrosion. (author)

  12. Review of the status of nondestructive measurement techniques to quantify material property degradation due to aging and planning for further evaluation

    International Nuclear Information System (INIS)

    Boyd, D.M.; Bruemmer, S.M.; Green, E.R.; Schuster, G.J.; Simonen, E.P.

    1989-01-01

    The materials used in nuclear reactors are inspected periodically during the service life of the power plant to detect degradation that might occur. These inspections follow the rules specified in Section XI of the ASME Boiler and Pressure Vessel Code. These inspections are designed to detect service-induced failure mechanisms. This program is designed not to look at the detection of defects but the marking of nondestructive measurements to quantify the material properties that a defect may reside in or the incipient condition(s) that may initiate a defect. This program is intended to provide an assessment of the technologies that are available to quantify with nondestructive measurements material properties or material property changes related to degradation due to aging of structural components in light water reactors. In addition, a program plan will be developed that describes the work necessary to create adequate engineering data bases for demonstrating and validating prototypic systems for making these measurements. The main thrust this year has been an extensive review of literature and an assessment of the technology. The second major activity was the planning of a workshop to bring together 30 leading experts in materials and NDE to discuss the state-of-the-art and to address where future work should go

  13. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  14. Nondestructive evaluation techniques for thick concrete

    Science.gov (United States)

    Clayton, Dwight A.

    2017-04-01

    The use of concrete structures has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs), especially with license period extensions to sixty years and possibly beyond. Unlike most metallic materials, reinforced concrete used in NPPs is a heterogeneous material, a composite with a low-density matrix, a mixture of cement, sand, aggregate and water, and a high-density reinforcement, made up of steel rebar or tendons. This structural complexity makes nondestructive evaluation (NDE) a challenging task. While the standard Synthetic Aperture Focusing Technique (SAFT) is adequate for many defects with shallow concrete cover, some defects that are located under deep concrete cover are not easily identified using the standard SAFT techniques. For many degradation mechanisms, particularly defects under deep cover, the use of advanced signal processing techniques is required. A variety of test specimens were evaluated using several advanced signal processing techniques ranging from a large specimen representative of a NPP containment wall (2.134 m x 2.134 m x 1.016 m) with twenty embedded defects, to specimens with accelerated alkali-silica reaction (ASR), and specimens with freeze-thaw damage. The first technique examined in this paper generates frequency banded SAFT reconstructions using wavelet packet decomposition and reconstruction. While the frequency banded SAFT reconstructions show a vast improvement over the standard SAFT for defects under deep cover, a second technique, Model Based Iterative Reconstruction (MBIR), has been initiated to address the limitations of the frequency banded SAFT (such as multiple reflections for a single defect).

  15. Opportunities for Nondestructive Evaluation: Quantitative Characterization (Postprint)

    Science.gov (United States)

    2017-07-01

    Press (Katt, 2016), and MSA was defined in its announce- ment of the workshop as "digitally enabled reliable 864 MATERIALS EV AL U A TI ON • JULY 2017...designed experi- ments and incorporating best practices from statistics have also been defined for nondestructive evaluation (NOE) characterization...characteri· zation. Representative examples include the measure- ment of elastic moduli from ultrasound and conductivity from eddy current. However. research

  16. Superconducting Quantum Interferometers for Nondestructive Evaluation

    OpenAIRE

    Faley, M. I.; Kostyurina, E. A.; Kalashnikov, K. V.; Maslennikov, Yu. V.; Koshelets, V. P.; Dunin-Borkowski, R. E.

    2017-01-01

    We review stationary and mobile systems that are used for the nondestructive evaluation of room temperature objects and are based on superconducting quantum interference devices (SQUIDs). The systems are optimized for samples whose dimensions are between 10 micrometers and several meters. Stray magnetic fields from small samples (10 µm–10 cm) are studied using a SQUID microscope equipped with a magnetic flux antenna, which is fed through the walls of liquid nitrogen cryostat and a hole in the...

  17. Nondestructive Evaluation Program: Progress in 1986

    International Nuclear Information System (INIS)

    1987-07-01

    The increasing cost of equipment for power generating plants and the potential increases in productivity and safety available through rapidly developing Nondestructive Evaluation (NDE) technology led EPRI to initiate a Nondestructive Evaluation Program in 1974. To date, the major focus has been on light water reactor inspection problems; however, increased application to other systems is now under way. This report presents a comprehensive review of the EPRI effort in the NDE area. Most of the report consists of contractor-supplied progress reports on each current project. An organizational plan of the program is presented in overview. In addition, organization from several viewpoints is presented, e.g., in-service inspection operators, R and D personnel, and utility representatives. The report summarizes significant progress made since the previous EPRI Special Report NP-4315-SR was issued in May 1986. Section 1 contains information about the program organization, and the sections that follow contain contractor-supplied progress reports of each current project. The progress reports are grouped by plant components - pipe, pressure vessel, steam generator and boiler tubes, and turbine. In addition, Part 6 is devoted to discussions of technology transfer

  18. Review of progress in quantitative nondestructive evaluation

    CERN Document Server

    Chimenti, Dale

    1999-01-01

    This series provides a comprehensive review of the latest research results in quantitative nondestructive evaluation (NDE). Leading investigators working in government agencies, major industries, and universities present a broad spectrum of work extending from basic research to early engineering applications. An international assembly of noted authorities in NDE thoroughly cover such topics as: elastic waves, guided waves, and eddy-current detection, inversion, and modeling; radiography and computed tomography, thermal techniques, and acoustic emission; laser ultrasonics, optical methods, and microwaves; signal processing and image analysis and reconstruction, with an emphasis on interpretation for defect detection; and NDE sensors and fields, both ultrasonic and electromagnetic; engineered materials and composites, bonded joints, pipes, tubing, and biomedical materials; linear and nonlinear properties, ultrasonic backscatter and microstructure, coatings and layers, residual stress and texture, and constructi...

  19. Review of progress in quantitative nondestructive evaluation. Volume 7

    International Nuclear Information System (INIS)

    Thompson, D.O.; Chimenti, D.E.

    1988-01-01

    Research in nondestructive evaluation theory, techniques, and equipment for materials ranging from metals to composites is described in the 218 papers contained in these conference proceedings. The topics covered include the fundamentals of ultrasonic, eddy current, and thermal wave testing; imaging, tomography, and inversion; sensors and probes; image enhancement and signal processing; adhesive bond and composite testing; electronic materials and device evaluation; materials characterization for aspects such as microstructure, bonds and interfaces, acoustoelasticity, stress, and texture; ferromagnetic materials and weldment testing; crack and deformation evaluation; nondestructive applications in process control; and nondestructive evaluation systems and reliability assessment

  20. Superconducting Quantum Interferometers for Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    M. I. Faley

    2017-12-01

    Full Text Available We review stationary and mobile systems that are used for the nondestructive evaluation of room temperature objects and are based on superconducting quantum interference devices (SQUIDs. The systems are optimized for samples whose dimensions are between 10 micrometers and several meters. Stray magnetic fields from small samples (10 µm–10 cm are studied using a SQUID microscope equipped with a magnetic flux antenna, which is fed through the walls of liquid nitrogen cryostat and a hole in the SQUID’s pick-up loop and returned sidewards from the SQUID back to the sample. The SQUID microscope does not disturb the magnetization of the sample during image recording due to the decoupling of the magnetic flux antenna from the modulation and feedback coil. For larger samples, we use a hand-held mobile liquid nitrogen minicryostat with a first order planar gradiometric SQUID sensor. Low-Tc DC SQUID systems that are designed for NDE measurements of bio-objects are able to operate with sufficient resolution in a magnetically unshielded environment. High-Tc DC SQUID magnetometers that are operated in a magnetic shield demonstrate a magnetic field resolution of ~4 fT/√Hz at 77 K. This sensitivity is improved to ~2 fT/√Hz at 77 K by using a soft magnetic flux antenna.

  1. Proceedings CORENDE: Regional congress on nondestructive and structural evaluation

    International Nuclear Information System (INIS)

    1997-01-01

    Works are presented at the CORENDE: Regional Congress on Nondestructive and Structural Evaluation organized by the National Atomic Energy Commission and the National Technological University (Mendoza). This congress wants to be the forum where people from research, industry and marketing might meet and discuss ideas towards the fostering of these new cultural habits. Papers covering all disciplines contributing to the evaluation of components, systems and structures are welcome: nondestructive evaluation methods and techniques (ultrasound, eddy currents and other electromagnetic methods, acoustic emission, radiography, thermography, leak testing, dye-penetrants, visual inspection, etc.), personnel certification, welding inspection, nondestructive metallography, optics and lasers, fluid-structure interaction, vibrations, extensometry, modelling of structures [es

  2. Use of nondestructive evaluation to detect moisture in flexible pavements.

    Science.gov (United States)

    2006-01-01

    The purpose of this study was to identify the currently available nondestructive evaluation technology that holds the greatest potential to detect moisture in flexible pavements and then apply the technology in multiple locations throughout Virginia....

  3. Non-Destructive Evaluation of Aerospace Composites

    Science.gov (United States)

    2009-03-01

    is likely to be lost, not captured by a detector. Milton Kerker explains it this way: This effect can be observed when a cylinder such as a spider...terahertz_tr4000.asp. 36. Amaro, A., Santos , J. and Cirne, J. Comparative study of different non-destructive testing techniques in the characterization and

  4. Ionizing radiations for non-destructive evaluation

    International Nuclear Information System (INIS)

    Raj, Baldev; Venkataraman, B.

    1989-01-01

    A state of the art of major non-destructive testing (NDT) techniques based on ionising radiations is presented. These techniques are broadly classified into three categories, namely, radiography, radiation gaging and analytical applications. The basic principles behind each method are explained and salient features of each technique which make it suitable for a particular task are described. Several illustrative applications drawn from the nuclear industry are given. The monograph is intended to serve as an introductory guide to scientist and engineers engaged in NDT activities. (M.G.B.). 32 refs., 13 figs., 5 tabs

  5. DC potential drop method for evaluating material degradation

    International Nuclear Information System (INIS)

    Seok, Chang Sung; Bae, Bong Kook; Koo, Jae Mean

    2004-01-01

    The remaining life estimation for the aged components in power plants as well as chemical plants are very important because mechanical properties of the components are degraded with in-service exposure time in high temperatures. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, nondestructive techniques are needed to evaluate the degradation. In this study, test materials with several different degradation levels were prepared by isothermal aging heat treatment at 630 .deg. C. The DC potential drop method and destructive methods such as tensile and fracture toughness were used in order to evaluate the degradation of 1Cr-1Mo-0.25V steels. In this result, we can see that tensile strength and fracture toughness can be calculated from resistivity and it is possible to evaluate material degradation using DC potential drop method, non-destructive method

  6. Industrial non-destructive testing and evaluation using computed tomography

    International Nuclear Information System (INIS)

    Wells, Peter; Davis, J.; Banci, N.

    1995-01-01

    Since the introduction of computed tomography (CT) as a medical diagnostic tool in 1972, there has been a steady growth in the use of CT for industrial nondestructive testing and evaluation. This paper briefly describes the tomography method, and then discusses two industrial CT instruments currently being developed in Australia. The advantages and limitations of the CT process over conventional radiographic methods will be noted. The field instrument is powered by a portable generator and is capable of providing cross-sectional images near ground line of wooden poles up to 450 mm in diameter. Strength degrading features such as rot, cracks and termite infestations are readily seen in the resultant images which take about six minutes to acquire, process and display. The second instrument is being constructed at Intico Pty Ltd in Coburg, Victoria, and uses, in the first instance, an Ir 192 source and a single detector and energy analyser that allows energy discrimination between the various iridium gamma-ray emissions. 10 refs., 12 figs

  7. Recent nondestructive evaluation systems using x rays

    International Nuclear Information System (INIS)

    Fujii, Masashi; Matsuura, Shigeo.

    1985-01-01

    With popularization of image memory and image processing systems, computer-aided testing (CAT) technology is finding way into the field of X-ray nondestructive inspection. Conventional methods using X-ray film are being replaced by computed radiographs using imaging plates or X-ray television, and the conventional two-dimensional projection image technology is being replaced by the CT scanner technology that offers three-dimensional images. In the field of electronic devices and parts such as semiconductors and printed circuit boards, ''TOSMICRON'' series featuring ultrahigh magnification power and outstanding operability have been developed to cope with the trend of increasing in device size and in precision requirements. These systems can be connected on line with a high-speed image processing equipment having image processing hardware to achieve unattended defect detection, size determination and classification. (author)

  8. Nondestructive evaluation of creep-fatigue damage: an interim report

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1977-02-01

    In view of the uncertainties involved in designing against creep-fatigue failure and the consequences of such failures in Class 1 nuclear components that operate at elevated temperature, the possibility of intermittent or even continuous non-destructive examination of these components has been considered. In this interim report some preliminary results on magnetic force and ultrasonic evaluation of creep-fatigue damage in an LMFBR steam generator material are presented. These results indicate that the non-destructive evaluation of pure creep damage will be extremely difficult. A set of biaxial creep-fatigue tests that are designed to discriminate between various failure theories is also described

  9. Nondestructive Evaluation of Thick Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL

    2015-01-01

    Materials issues are a key concern for the existing nuclear reactor fleet in the United States as material degradation can lead to increased maintenance, increased downtime, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of both known and new forms of degradation. A multitude of concrete-based structures are typically part of a light water reactor plant to provide foundation, support, shielding, and containment functions. The size and complexity of nuclear power plant containment structures and the heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. This paper examines the benefits of using time-frequency analysis with Synthetic Aperture Focusing Technique (SAFT). By using wavelet packet decomposition, the original ultrasound signals are decomposed into various frequency bands that facilitates highly selective analysis of the signal’s frequency content and can be visualized using the familiar SAFT image reconstruction algorithm.

  10. Nondestructive evaluation of thick concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Electronics and Electronic Systems Research Div.

    2015-07-01

    Materials issues are a key concern for the existing nuclear reactor fleet in the United States as material degradation can lead to increased maintenance, increased downtime, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of both known and new forms of degradation. A multitude of concrete-based structures are typically part of a light water reactor plant to provide foundation, support, shielding, and containment functions. The size and complexity of nuclear power plant containment structures and the heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. This paper examines the benefits of using time-frequency analysis with Synthetic Aperture Focusing Technique (SAFT). By using wavelet packet decomposition, the original ultrasound signals are decomposed into various frequency bands that facilitates highly selective analysis of the signal's frequency content and can be visualized using the familiar SAFT image reconstruction algorithm.

  11. Online Preventative Non-Destructive Evaluation in Automated Fibre Placement

    NARCIS (Netherlands)

    Tonnaer, R.; Shroff, S.; Groves, R.M.

    2016-01-01

    The strict quality requirements for aerospace composite struc- tures give rise to costly quality control procedures. In automated bre placement (AFP) these procedures rely heavily on manual work and inspection. This research aims at performing preventative non-destructive evaluation of composite

  12. Application of liquid crystals in thermal nondestructive evaluation

    International Nuclear Information System (INIS)

    Panakal, J.P.; Mukherjee, S.; Ghosh, J.K.

    1983-01-01

    In recent years, thermal nondestructive evaluation using Cholestric liquid crystals have found wide applications in industry. Thermography using Cholesteric liquid crystals can be used for detection of nonbonds in metallic composites, hot spots in electronic circuits and preliminary examination of welded pressure vessels. This paper presents the results of experiments on thermography of components using encapsulated liquid crystals. (author)

  13. Artificial intelligence to maximise contributions of nondestructive evaluation to materials science and technology

    International Nuclear Information System (INIS)

    Baldev Raj; Rajagopalan, C.

    1996-01-01

    The paper reviews the current status of Nondestructive Testing and Evaluation (NDT and E), in relation to materials science and technology. It suggests a path of growth for Nondestructive Testing and Evaluation, taking into account the increase in data and knowledge. We recommend Artificial Intelligence (AI) concepts for maximising the contributions of and benefits from, Nondestructive Testing and Evaluation. (author)

  14. Technology Evaluation Report: Non-destructive ...

    Science.gov (United States)

    Technology Evaluation Report HSRP is working to develop tools and information that will help detect the intentional introduction of chemical or biological contaminants in buildings or water systems, the containment of these contaminants, the decontamination of buildings and/or water systems, and the management of wastes generated from decontamination and cleanup operations. Evaluation of the performance of CBI Polymers’ DeconGelTM 1108, Environmental Alternatives, Inc.’s (EAI’s) Rad-Release II (RRII), Environmental Alternatives, Inc.’s SuperGel, and Intek Technologies’ LH-21. The objective of evaluating these technologies was to test their ability to remove radioactive cesium (Cs)-137 from the mixed building material coupons of brick with mortar, tile with grout, granite with mortar, all mortar and all grout coupons.

  15. Proceedings: 19th International Nondestructive Testing and Evaluation of Wood Symposium

    Science.gov (United States)

    Robert J. Ross; Raquel Gonçalves; Xiping Wang

    2015-01-01

    The 19th International Nondestructive Testing and Evaluation of Wood Symposium was hosted by the University of Campinas, College of Agricultural Engineering (FEAGRI/UNICAMP), and the Brazilian Association of Nondestructive Testing and Evaluation (ABENDI) in Rio de Janeiro, Brazil, on September 22–25, 2015. This Symposium was a forum for those involved in nondestructive...

  16. Online Preventative Non-Destructive Evaluation in Automated Fibre Placement

    OpenAIRE

    Tonnaer, R.; Shroff, S.; Groves, R.M.

    2016-01-01

    The strict quality requirements for aerospace composite struc- tures give rise to costly quality control procedures. In automated bre placement (AFP) these procedures rely heavily on manual work and inspection. This research aims at performing preventative non-destructive evaluation of composite laminate quality based on an online geometric analysis of the placed bre. A robot mounted laser pro le sensor, in combination with robot positional data, is used to create a 3D model of the bre. These...

  17. Nondestructive Evaluation of the VSC-17 Cask

    International Nuclear Information System (INIS)

    Sheryl Morton; Al Carlson; Cecilia Hoffman; James Rivera; Phil Winston; Koji Shirai; Shin Takahashi; Masaharo Tanaka

    2006-01-01

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC 17) spent nuclear fuel storage cask, originally located at the INL Test Area North, as a candidate to study cask performance because it had been used to store fuel as part of a dry cask storage demonstration project for over 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. The INL team met with the CRIEPI representatives in December of 2004 to discuss the next steps. As a result of that meeting, CRIEPI requested that in the summer 2005 INL perform additional surveys on the VSC 17 cask with participation of CRIEPI scientists. This document summarizes the evaluation methods used on the VSC 17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution

  18. Nondestructive Evaluation of the VSC-17 Cask

    Energy Technology Data Exchange (ETDEWEB)

    Sheryl Morton; Al Carlson; Cecilia Hoffman; James Rivera; Phil Winston; Koji Shirai; Shin Takahashi; Masaharo Tanaka

    2006-01-01

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC 17) spent nuclear fuel storage cask, originally located at the INL Test Area North, as a candidate to study cask performance because it had been used to store fuel as part of a dry cask storage demonstration project for over 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. The INL team met with the CRIEPI representatives in December of 2004 to discuss the next steps. As a result of that meeting, CRIEPI requested that in the summer 2005 INL perform additional surveys on the VSC 17 cask with participation of CRIEPI scientists. This document summarizes the evaluation methods used on the VSC 17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution.

  19. Ultrasonic nondestructive evaluation systems industrial application issues

    CERN Document Server

    Callegari, Sergio; Montisci, Augusto; Ricci, Marco; Versaci, Mario

    2015-01-01

    This book covers the practical implementation of ultrasonic NDT techniques in an industrial environment, discussing several issues that may emerge and proposing strategies for addressing them successfully.  It aims to bridge advanced academic research results and their application to industrial procedures. The topics covered in the text range from the basic operation of an ultrasonic NDT system to the simulation of the measurement operations; from the choice and generation of the signals energizing the system to the different ways of exploiting the probes and their output signals; and from quality assessment evaluation to the use of soft computing techniques for classification. Throughout the text, an effort is made to embrace a system view where the physical and technological aspects of sensing are addressed together with higher abstraction levels, such as signal and information processing. Consequently, the book aims at guiding the reader through the various tasks requested for developing a complete ultras...

  20. Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Konstantinos G. Dassios

    2013-01-01

    Full Text Available Infrared thermography (IRT and acoustic emission (AE are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material’s performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.

  1. Nondestructive methods for quality evaluation of livestock products.

    Science.gov (United States)

    Narsaiah, K; Jha, Shyam N

    2012-06-01

    The muscles derived from livestock are highly perishable. Rapid and nondestructive methods are essential for quality assurance of such products. Potential nondestructive methods, which can supplement or replace many of traditional time consuming destructive methods, include colour and computer image analysis, NIR spectroscopy, NMRI, electronic nose, ultrasound, X-ray imaging and biosensors. These methods are briefly described and the research work involving them for products derived from livestock is reviewed. These methods will be helpful in rapid screening of large number of samples, monitoring distribution networks, quick product recall and enhance traceability in the value chain of livestock products. With new developments in the areas of basic science related to these methods, colour, image processing, NIR spectroscopy, biosensors and ultrasonic analysis are expected to be widespread and cost effective for large scale meat quality evaluation in near future.

  2. Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors, Technical Progress Report for FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, P.; Meyer, R.M.; Fricke, J.M.; Prowant, M.S.; Coble, J.B.; Griffin, J.W.; Pitman, S.G.; Dahl, M.E.; Kafentzis, T.A.; Roosendaal, T.J.

    2012-09-01

    The overall objective of this project was to investigate the effectiveness of nondestructive examination (NDE) technology in detecting material degradation precursors by initiating and growing cracks in selected materials and using NDE methods to measure crack precursors prior to the onset of cracking. Nuclear reactor components are subject to stresses over time that are not precisely known and that make the life expectancy of components difficult to determine. To prevent future issues with the operation of these plants because of unforeseen failure of components, NDE technology is needed that can be used to identify and quantify precursors to macroscopic degradation of materials. Some of the NDE methods being researched as possible solutions to the precursor detection problem are magnetic Barkhausen noise, nonlinear ultrasonics, acoustic emission, eddy current measurements, and guided wave technology. In FY12, the objective was to complete preliminary assessment of advanced NDE techniques for sensitivity to degradation precursors, using prototypical degradation mechanisms in laboratory-scale measurements. This present document reports on the deliverable that meets the following milestone: M3LW-12OR0402143 – Report detailing an initial demonstration on samples from the crack-initiation tests will be provided (demonstrating acceleration of the work).

  3. Efficient Nondestructive Evaluation of Prototype Carbon Fiber Reinforced Structures

    Science.gov (United States)

    Russell, Samuel S.; Walker, James L.; Workman, Gary; Thom, Robert (Technical Monitor)

    2002-01-01

    Thermography inspection is an optic based technology that can reduce the time and cost required to inspect propellant tanks or aero structures fabricated from composite materials. Usually areas identified as suspect in the thermography inspection are examined with ultrasonic methods to better define depth, orientation and the nature of the anomaly. This combination of nondestructive evaluation techniques results in a rapid and comprehensive inspection of composite structures. Examples of application of this inspection philosophy to prototype will be presented. Methods organizing the inspection and evaluating the results will be considered.

  4. Evaluation Of Cooling Tower Degradation

    International Nuclear Information System (INIS)

    Djunaidi

    2001-01-01

    Cooling tower degradation has been evaluated for the last 10 years. Its heat transfer capacity has been decreasing after several years of operation due to aging. Evaluation is carried out by calculating the degradation rate, namely the annual increase of outlet temperatures of the cooling tower. Data was randomly taken daily at 15 MW reactor power. Data was taken after the reactor operation of ± 8 hours. Evaluation since 1990 shows that the degradation rate is nearly one degree per year. This degradation can be by minimized, replacement of damaged components, non-excessive operation and design modification of the cooling tower namely by extending the period of contract between water and air

  5. Non-destructive evaluation studies for cultural heritage

    International Nuclear Information System (INIS)

    Jayakumar, T.; Babu Rao, C.; Kumar, Anish; Rajkumar, K.V.; Sharma, G.K.; Raj, Baldev

    2009-01-01

    The results of the nondestructive evaluation studies carried out on the Delhi iron pillar and the musical pillars of the Vithala temple at Hampi, Karnataka are discussed. While studies on Delhi iron pillar were carried out with a primary aim to understand the methodology of fabrication of this pillar, the studies on the musical pillars were carried out to finger print/petroligically characterize the stones used in the construction of the musical pillars and to understand the origin of various sounds generated on tapping of the musical pillars by carrying out various acoustic studies. (author)

  6. Non-Destructive Evaluation (NDE) Applications of THz Radiation

    Science.gov (United States)

    Zimdars, David

    2005-03-01

    The technology and applications of time domain terahertz (THz) imaging to non-destructive evaluation (NDE) will be discussed. THz imaging has shown great promise in 2 and 3 dimensional non-contact inspection of non-conductive materials such as plastics, foam, composites, ceramics, paper, wood and glass. THz imaging employs safe low power non-ionizing electromagnetic pulses, with lateral resolution weapons and explosives will also be discussed, as well as the application of terahertz sensors for high speed industrial process monitoring and quality control.

  7. Reports from the Yayoi symposium on quantitative non-destructive evaluation, (1)

    International Nuclear Information System (INIS)

    1990-02-01

    The report consists of four parts. The first part deals with nondestructive evaluation in the nuclear power industry, focusing on in-service inspection in nuclear power plant, eddy current crack detection test of steam generator heat-exchanger tube, and nondestructive test of thin-wall components. The second part discusses inverse problems and quantification for nondestructive evaluation, centering on the identification of defect by boundary element method, quantification by using supersonic wave, defect shape recognition by the electrical potential method, and a neural network applied to crack type recognition. The third part deals with the application of electromagnetic phenomena to nondestructive evaluation, focusing on a superconducting quantum interference device, electromagnetic measurement in the iron industry, and nondestructive measurement of residual stress by magnetic process. The fourth part discusses visualization techniques for nondestructive evaluation, focusing on image processing, neutron radiography, X-ray CT, defect diagnosis by infrared rays, and visualization of magnetic field. (N.K.)

  8. Nondestructive evaluation of dissipative behavior of reinforced concrete structure

    International Nuclear Information System (INIS)

    Luong, M.P.

    2001-01-01

    Current technological developments tend toward increased exploitation of materials strengths and toward tackling extreme loads and environmental actions such as offshore structures subject to wind and wave loading, or buildings in seismic area. Concrete is widely used as a construction material because of its high strength-cost ratio in many applications. Experience of earthquakes and laboratory tests has shown that well designed and detailed reinforced concrete is suitable for earthquake resistant structures. The most severe likely earthquake can be survived if the members are sufficiently ductile to absorb and dissipate seismic energy by inelastic deformation. This requires a designer to assess realistically the acceptable levels of strength and to ensure adequate dissipation. This paper proposes the use of infrared thermography as a nondestructive, noncontact and real-time technique to examine diverse mechanisms of dissipation and to illustrate the onset of damage process, stress concentration and heat dissipation localization in loaded zone. In addition, this technique can be used as a nondestructive method for evaluating the fatigue limit of concrete structure subject to repeated loading

  9. Nondestructive Evaluation of Adhesive Bonds via Ultrasonic Phase Measurements

    Science.gov (United States)

    Haldren, Harold A.; Perey, Daniel F.; Yost, William T.; Cramer, K. Elliott; Gupta, Mool C.

    2016-01-01

    The use of advanced composites utilizing adhesively bonded structures offers advantages in weight and cost for both the aerospace and automotive industries. Conventional nondestructive evaluation (NDE) has proved unable to reliably detect weak bonds or bond deterioration during service life conditions. A new nondestructive technique for quantitatively measuring adhesive bond strength is demonstrated. In this paper, an ultrasonic technique employing constant frequency pulsed phased-locked loop (CFPPLL) circuitry to monitor the phase response of a bonded structure from change in thermal stress is discussed. Theoretical research suggests that the thermal response of a bonded interface relates well with the quality of the adhesive bond. In particular, the effective stiffness of the adhesive-adherent interface may be extracted from the thermal phase response of the structure. The sensitivity of the CFPPLL instrument allows detection of bond pathologies that have been previously difficult-to-detect. Theoretical results with this ultrasonic technique on single epoxy lap joint (SLJ) specimens are presented and discussed. This technique has the potential to advance the use of adhesive bonds - and by association, advanced composite structures - by providing a reliable method to measure adhesive bond strength, thus permitting more complex, lightweight, and safe designs.

  10. Non-destructive evaluation on mechanical properties of nuclear graphite with porous structure

    International Nuclear Information System (INIS)

    Shibata, Taiju; Hanawa, Satoshi; Sumita, Junya; Tada, Tatsuya; Sawa, Kazuhiro; Iyoku, Tatsuo

    2005-01-01

    As a research subjects of 'Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' we started the study of development of non-destructive evaluation methods for mechanical properties of graphite components. The micro-indentation and ultrasonic wave methods are focused to evaluate the degradation of graphite components in VHTR core. For the micro-indentation method, the test apparatus was designed for the indentation test on graphite specimens with some stress levels. It is expected the stress condition is evaluated by the indentation load-depth characteristics and hardness. For the ultrasonic wave method, ultrasonic wave testing machine and probes were prepared for experiments. It is expected that the stress and inner porous conditions are evaluated by the wave propagation characteristics with wave-pore interaction model. R and D plan to develop the non-destructive evaluation method for graphite is presented in this paper. (This study is the result of contract research in the fiscal year of 2004, Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' which is entrusted to the Japan Atomic Energy Research Institute from the Ministry of Education, Culture, Sports, Science and Technology of Japan.) (author)

  11. Development of nondestructive evaluation methods for ceramic coatings

    International Nuclear Information System (INIS)

    Ellingson, W. A.; Deemer, C.; Sun, J. G.; Erdman, S.; Muliere, D.; Wheeler, B.

    2002-01-01

    Various nondestructive evaluation (NDE) technologies are being developed to study the use of ceramic coatings on components in the hot-gas path of advanced low-emission gas-fired turbines. The types of ceramic coatings include thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs). TBCs are under development for vanes, blades, and combustor liners to allow hotter gas-path temperatures, and EBCs are under development to reduce environmental damage to high-temperature components made of ceramic matrix composites. The NDE methods will be used to (a) provide data to assess the reliability of new coating application processes, (b) identify defective components that could cause unscheduled outages, (c) track growth rates of defects during component use in engines, and (d) allow rational judgment for replace/repair/re-use decisions regarding components. Advances in TBC application, both electron beam-physical vapor deposition (EB-PVD) and air plasma spraying (APS), are allowing higher temperatures in the hot-gas path. However, as TBCs become ''prime reliant,'' their condition at scheduled or unscheduled outages must be known. NDE methods are under development to assess the condition of the TBC for pre-spall conditions. EB-PVD test samples with up to 70 thermal cycles have been studied by a newly developed method involving polarized laser back-scatter NDE. Results suggest a correlation between the NDE laser data and the TBC/bond-coat topography. This finding is important because several theories directed toward understanding the pre-spall condition suggest that the topography in the thermally grown oxide layer changes significantly as a function of the number of thermal cycles. Tests have also been conducted with this NDE method on APS TBCs. Results suggest that the pre-spall condition is detected for these coatings. One-sided, high-speed thermal imaging also has shown promise for NDE of APS coatings. Testing of SiC/SiC composites for combustor liners

  12. Non-destructive evaluation of steels using magnetic methods

    International Nuclear Information System (INIS)

    Jiles, D.C.

    2010-01-01

    The so-called 'technical magnetization processes' are those where there are changes in magnetization with magnetic field. These therefore include magnetic hysteresis and the Barkhausen effect. In terms of the length scales that they address, these range from macroscopic hysteresis measurements down to microscopic Barkhausen effect measurements. At length scales, on the range of a few tens of nanometers, magnetic force microscopy (MFM) can also be included among the arsenal of available magnetic NDE techniques. The variation in magnetization with field is dependent on the structure of the material and therefore these technical magnetization processes can be exploited for non-destructive evaluation. Magnetic methods can be used to address two main classes of problems in materials evaluation: detection of defects and determination of intrinsic properties. These methods can be used for the determination of material conditions such as residual stress since the magnetic and mechanical properties of materials are closely related via the magnetoelastic coupling. (author)

  13. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Barker, Alan M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Santos-Villalobos, Hector J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Albright, Austin P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoegh, Kyle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  14. Austenitic Biomaterial Cracks Evaluation by Advanced Nondestructive Techniques

    Directory of Open Access Journals (Sweden)

    Milan Smetana

    2017-01-01

    Full Text Available The article deals with Non-Destructive Evaluation (NDE of austenitic stainless steels. Eddy current, ultrasonic testing and non-contact magnetic field mapping methods are used for this purpose. ECA (Eddy Current Array and TOFD (Time of Flight Diffraction are methods that have become widely-used in the field of NDE and this is the reason for their utilization. Magnetic field mapping is nowadays an effective method of evaluation of surface-breaking defects mainly in ferromagnetic materials. The fluxgate sensor-based measurement is presented and discussed. The artificial fatigue and stress-corrosion material’s cracks are inspected. Experimental results are presented and discussed in this paper.

  15. Numerical modeling for the electromagnetic non-destructive evaluation: application to the non-destructive evaluation of concrete

    International Nuclear Information System (INIS)

    Travassos, L.

    2007-06-01

    Concrete is the most common building material and accounts for a large part of the systems that are necessary for a country to operate smoothly including buildings, roads, and bridges. Nondestructive testing is one of the techniques that can be used to assess the structural condition. It provides non perceptible information that conventional techniques of evaluation unable to do. The main objective of this work is the numerical simulation of a particular technique of nondestructive testing: the radar. The numerical modeling of the radar assessment of concrete structures make it possible to envisage the behavior of the system and its capacity to detect defects in various configurations. To achieve this objective, it was implemented electromagnetic wave propagation models in concrete structures, by using various numerical techniques to examine different aspects of the radar inspection. First of all, we implemented the finite-difference time-domain method in 3D which allows to take into account concrete characteristics such as porosity, salt content and the degree of saturation of the mixture by using Debye models. In addition, a procedure to improve the radiation pattern of bow-tie antennas is presented. This approach involves the Moment Method in conjunction with the Multi objective Genetic Algorithm. Finally, we implemented imaging algorithms which can perform fast and precise characterization of buried targets in inhomogeneous medium by using three different methods. The performance of the proposed algorithms is confirmed by numerical simulations. (author)

  16. Nondestructive Evaluation (NDE) for Inspection of Composite Sandwich Structures

    Science.gov (United States)

    Zalameda, Joseph N.; Parker, F. Raymond

    2014-01-01

    Composite honeycomb structures are widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Flash thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Flash thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are discussed. Limitations to the thermal detection of the core are investigated. In addition to flash thermography, X-ray computed tomography is used. The aluminum honeycomb core provides excellent X-ray contrast compared to the composite face sheet. The X-ray CT technique was used to detect impact damage, core crushing, and skin to core disbonds. Additionally, the X-ray CT technique is used to validate the thermography results.

  17. Operation of the EPRI nondestructive evaluation center: 1985 annual report

    International Nuclear Information System (INIS)

    Nemzek, T.A.; Stone, R.M.; Ammirato, F.V.; Becker, F.L.; Krzywosz, K.; Pherigo, G.L.; Wilson, G.H. III.

    1986-08-01

    This report describes the Electric Power Research Institute (EPRI) Nuclear Division funded nondestructive evaluation (NDE) project activities carried out at the EPRI NDE Center in 1985. The continuing objective of the Center is transfer of research and development results funded by EPRI and other related projects to useful field application. This is being accomplished by qualification and refinement of equipment and techniques, training under realistic conditions, and encouragement of greater involvement of the academic community in NDE education. Significant assistance has been provided to the nuclear utility industry under this project in the form of improved, field-ready equipment and procedures; critically needed assessments of inspection method capability; demonstrations of effectiveness of examination methods; rapid response for critical, short-term problems; and training for specific utility industry needs. This effort has specifically addressed steam generator, piping, steam turbine, and heavy section inspection problems

  18. Nondestructive Evaluation of Carbon Fiber Bicycle Frames Using Infrared Thermography

    Science.gov (United States)

    Ibarra-Castanedo, Clemente; Klein, Matthieu; Maldague, Xavier; Sanchez-Beato, Alvaro

    2017-01-01

    Bicycle frames made of carbon fibre are extremely popular for high-performance cycling due to the stiffness-to-weight ratio, which enables greater power transfer. However, products manufactured using carbon fibre are sensitive to impact damage. Therefore, intelligent nondestructive evaluation is a required step to prevent failures and ensure a secure usage of the bicycle. This work proposes an inspection method based on active thermography, a proven technique successfully applied to other materials. Different configurations for the inspection are tested, including power and heating time. Moreover, experiments are applied to a real bicycle frame with generated impact damage of different energies. Tests show excellent results, detecting the generated damage during the inspection. When the results are combined with advanced image post-processing methods, the SNR is greatly increased, and the size and localization of the defects are clearly visible in the images. PMID:29156650

  19. Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Vannier, M.W.; Ackerman, J.L.; Sawicka, B.D.; Gronemeyer, S.; Kriz, R.J.

    1987-01-01

    Advanced nondestructive evaluation methods are being developed to characterize ceramic materials and allow improvement of process technology. If one can spatially determine porosity, map organic binder/plasticizer distributions, measure average through-volume and in-plane density, as well as detect inclusions, process and machining operations may be modified to enhance the reliability of ceramics. Two modes of X-ray tomographic imaging -- advanced film (analog) tomography and computed tomography -- are being developed to provide flaw detection and density profile mapping capability. Nuclear magnetic resonance imaging is being developed to determine porosity and map the distribution of organic binder/plasticizer. Ultrasonic backscatter and through-transmission are being developed to measure average through-thickness densities and detect surface inclusions

  20. Efficiency evaluation test of waste non-destructive analysis device

    International Nuclear Information System (INIS)

    Maeda, Kouichi; Ogasawara, Kensuke; Nisizawa, Ichio

    2000-03-01

    A device for non-destructive analysis of plutonium in alpha solid waste has been installed in NUCEF; Nuclear Fuel Cycle Safety Engineering Research Facility. The device has been designed to determine the amount of radioisotopes in carton-boxes, 45 l steel cans and 200 l steel cans containing relatively low density waste. Considering the waste density and the heterogeneity of radio-sources, the proper distance between the detector and the waste, and the open degree of the collimator have been settled, because real waste may contain several kinds of material and the heterogeneity of radioactivity. It has been confirmed from the evaluation of the detect limit that plutonium of about 8 MBq can be determined with the accuracy of 10% and the device may be proper for the practical application. (author)

  1. Non-destructive evaluation of water ingress in photovoltaic modules

    Science.gov (United States)

    Bora, Mihail; Kotovsky, Jack

    2017-03-07

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, a focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.

  2. Non-Destructive Analysis of Degradation Mechanisms in Cycle-Aged Graphite/LiCoO2 Batteries

    Directory of Open Access Journals (Sweden)

    Liqiang Zhang

    2014-09-01

    Full Text Available Non-destructive analysis of degradation mechanisms can be very beneficial for the prognostics and health management (PHM study of lithium-ion batteries. In this paper, a type of graphite/LiCoO2 battery was cycle aged at high ambient temperature, then 25 parameters of the multi-physics model were identified. Nine key parameters degraded with the cycle life, and they were treated as indicators of battery degradation. Accordingly, the degradation mechanism was discussed by using the multi-physics model and key parameters, and the reasons for capacity fade and the internal resistance increase were analyzed in detail. All evidence indicates that the formation reaction of the solid electrolyte interface (SEI film is the main cause of battery degradation at high ambient temperature.

  3. Super-resolution image reconstruction for ultrasonic nondestructive evaluation.

    Science.gov (United States)

    Li, Shanglei; Chu, Tsuchin Philip

    2013-12-01

    Ultrasonic testing is one of the most successful nondestructive evaluation (NDE) techniques for the inspection of carbon-fiber-reinforced polymer (CFRP) materials. This paper discusses the application of the iterative backprojection (IBP) super-resolution image reconstruction technique to carbon epoxy laminates with simulated defects to obtain high-resolution images for NDE. Super-resolution image reconstruction is an approach used to overcome the inherent resolution limitations of an existing ultrasonic system. It can greatly improve the image quality and allow more detailed inspection of the region of interest (ROI) with high resolution, improving defect evaluation and accuracy. First, three artificially simulated delamination defects in a CFRP panel were considered to evaluate and validate the application of the IBP method. The results of the validation indicate that both the contrast-tonoise ratio (CNR) and the peak signal-to-noise ratio (PSNR) value of the super-resolution result are better than the bicubic interpolation method. Then, the IBP method was applied to the low-resolution ultrasonic C-scan image sequence with subpixel displacement of two types of defects (delamination and porosity) which were obtained by the micro-scanning imaging technique. The result demonstrated that super-resolution images achieved better visual quality with an improved image resolution compared with raw C-scan images.

  4. Use of nondestructive evaluation methods to improve power plant availability

    International Nuclear Information System (INIS)

    Weber, R.M.

    1985-01-01

    On an ever-increasing basis, utilities are relying on nondestructive evaluation (NDE) as a management and planning tool. In addition to the conventional ASME Code and Technical Specification-required examinations, progressive utilities are utilizing NDE sampling programs to monitor existing conditions and search for potential situations affecting plant safety and reliability. Improved NDE detection and sizing procedures give management personnel the accurate information needed to make the ''go/no go'' decisions on repair programs which can significantly affect plant availability. As the burden of regulatory-imposed inspection requirements increases, plant personnel are increasingly cognizant that NDE is a significant factor in their plant's outage schedule. Whether an outage is scheduled or forced, NDE becomes part of each plant's program to assure the safety and reliability of its critical components. Knowledge and planning of NDE application is important because of the time expended in examination performance and subsequent data evaluation. Managers who are knowledgeable in NDE application can effectively improve plant availability by scheduling NDE as an integral part of their maintenance programs. Examination results can then be used in making decisions directly affecting availability

  5. PREDICTION OF DISSOLVER LIFETIMES THROUGH NON-DESTRUCTIVE EVALUATION AND LABORATORY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Woodsmall, T.; Hinz, W.; Edwards, T.

    2011-10-03

    Non-destructive evaluation was used as the primary method of monitoring the corrosion degradation of nuclear material dissolvers and assessing the remaining lifetimes. Materials were typically processed in nitric acid based (4-14M) solutions containing fluoride concentrations less than 0.2 M. The primary corrosion issue for the stainless steel dissolvers is the occurrence of localized corrosion near the tank bottom and the heat affected zones of the welds. Laboratory data for a range of operational conditions, including solution chemistry and temperature, was used to assess the impact of processing changes on the dissolver corrosion rate. Experimental and NDE-based general corrosion rates were found to be in reasonable agreement for standard dissolution chemistries consisting of nitric acid with fluorides and at temperatures less than 95 C. Greater differences were observed when chloride was present as an impurity and temperatures exceeded 100 C.

  6. A Review of Microwave Thermography Nondestructive Testing and Evaluation

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2017-05-01

    Full Text Available Microwave thermography (MWT has many advantages including strong penetrability, selective heating, volumetric heating, significant energy savings, uniform heating, and good thermal efficiency. MWT has received growing interest due to its potential to overcome some of the limitations of microwave nondestructive testing (NDT and thermal NDT. Moreover, during the last few decades MWT has attracted growing interest in materials assessment. In this paper, a comprehensive review of MWT techniques for materials evaluation is conducted based on a detailed literature survey. First, the basic principles of MWT are described. Different types of MWT, including microwave pulsed thermography, microwave step thermography, microwave pulsed phase thermography, and microwave lock-in thermography are defined and introduced. Then, MWT case studies are discussed. Next, comparisons with other thermography and NDT methods are conducted. Finally, the trends in MWT research are outlined, including new theoretical studies, simulations and modelling, signal processing algorithms, internal properties characterization, automatic separation and inspection systems. This work provides a summary of MWT, which can be utilized for material failures prevention and quality control.

  7. A Review of Microwave Thermography Nondestructive Testing and Evaluation.

    Science.gov (United States)

    Zhang, Hong; Yang, Ruizhen; He, Yunze; Foudazi, Ali; Cheng, Liang; Tian, Guiyun

    2017-05-15

    Microwave thermography (MWT) has many advantages including strong penetrability, selective heating, volumetric heating, significant energy savings, uniform heating, and good thermal efficiency. MWT has received growing interest due to its potential to overcome some of the limitations of microwave nondestructive testing (NDT) and thermal NDT. Moreover, during the last few decades MWT has attracted growing interest in materials assessment. In this paper, a comprehensive review of MWT techniques for materials evaluation is conducted based on a detailed literature survey. First, the basic principles of MWT are described. Different types of MWT, including microwave pulsed thermography, microwave step thermography, microwave pulsed phase thermography, and microwave lock-in thermography are defined and introduced. Then, MWT case studies are discussed. Next, comparisons with other thermography and NDT methods are conducted. Finally, the trends in MWT research are outlined, including new theoretical studies, simulations and modelling, signal processing algorithms, internal properties characterization, automatic separation and inspection systems. This work provides a summary of MWT, which can be utilized for material failures prevention and quality control.

  8. A Review of Microwave Thermography Nondestructive Testing and Evaluation

    Science.gov (United States)

    Zhang, Hong; Yang, Ruizhen; He, Yunze; Foudazi, Ali; Cheng, Liang; Tian, Guiyun

    2017-01-01

    Microwave thermography (MWT) has many advantages including strong penetrability, selective heating, volumetric heating, significant energy savings, uniform heating, and good thermal efficiency. MWT has received growing interest due to its potential to overcome some of the limitations of microwave nondestructive testing (NDT) and thermal NDT. Moreover, during the last few decades MWT has attracted growing interest in materials assessment. In this paper, a comprehensive review of MWT techniques for materials evaluation is conducted based on a detailed literature survey. First, the basic principles of MWT are described. Different types of MWT, including microwave pulsed thermography, microwave step thermography, microwave pulsed phase thermography, and microwave lock-in thermography are defined and introduced. Then, MWT case studies are discussed. Next, comparisons with other thermography and NDT methods are conducted. Finally, the trends in MWT research are outlined, including new theoretical studies, simulations and modelling, signal processing algorithms, internal properties characterization, automatic separation and inspection systems. This work provides a summary of MWT, which can be utilized for material failures prevention and quality control. PMID:28505130

  9. Large Area Nondestructive Evaluation of a Fatigue Loaded Composite Structure

    Science.gov (United States)

    Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Madaras, Eric I.

    2016-01-01

    Large area nondestructive evaluation (NDE) inspections are required for fatigue testing of composite structures to track damage initiation and growth. Of particular interest is the progression of damage leading to ultimate failure to validate damage progression models. In this work, passive thermography and acoustic emission NDE were used to track damage growth up to failure of a composite three-stringer panel. Fourteen acoustic emission sensors were placed on the composite panel. The signals from the array were acquired simultaneously and allowed for acoustic emission location. In addition, real time thermal data of the composite structure were acquired during loading. Details are presented on the mapping of the acoustic emission locations directly onto the thermal imagery to confirm areas of damage growth leading to ultimate failure. This required synchronizing the acoustic emission and thermal data with the applied loading. In addition, processing of the thermal imagery which included contrast enhancement, removal of optical barrel distortion and correction of angular rotation before mapping the acoustic event locations are discussed.

  10. Microwave-Interrogated Embedded Sensor System for Nondestructive Evaluation (NDE) of Complex Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. and Lawrence Livermore National Lab propose to develop a new class of microwave-interrogated embedded sensors for nondestructive evaluation...

  11. Non-destructive system to evaluate critical properties of asphalt compaction : [research brief].

    Science.gov (United States)

    2013-12-01

    The Wisconsin Highway Research Program sponsored a two-stage investigation to develop a non-destructive system to evaluate critical compaction properties and characteristics of asphalt pavements during the densification process. Stage One activities ...

  12. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  13. A Review of Issues and Strategies in Non-Destructive Evaluation of Fiber Reinforced Structural Composites

    National Research Council Canada - National Science Library

    Vary, Alex

    1979-01-01

    This paper emphasizes the need for advanced nondestructive evaluation (NDE) techniques for quantitative assessment of the mechanical strength and integrity of fiber composites during manufacture and service and following repair operations...

  14. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  15. Magnetic sensor for nondestructive evaluation of deteriorated prestressing strand : phase II.

    Science.gov (United States)

    2011-08-01

    This report gives an account of the execution and achievements in Phase II of the project completed through August 2011. The main objective of this project is to advance the practical development of a nondestructive testing and evaluation method usin...

  16. Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis

    Science.gov (United States)

    Abdul-Aziz, Ali; Baaklini, George Y.

    2001-01-01

    Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate

  17. Nondestructive evaluation of warm mix asphalt through resonant column testing.

    Science.gov (United States)

    2014-02-01

    Non-destructive testing has been used for decades to characterize engineering properties of hot-mix asphalt. Among such tests is the resonant column (RC) test, which is commonly used to characterize soil materials. The resonant column device at Penn ...

  18. NonDestructive Evaluation for Industrial & Development Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, James F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-12

    Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.

  19. Experimental Design for Evaluating Selected Nondestructive Measurement Technologies - Advanced Reactor Technology Milestone: M3AT-16PN2301043

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pitman, Stan G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roy, Surajit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Good, Morris S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walker, Cody M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-16

    The harsh environments in advanced reactors (AdvRx) increase the possibility of degradation of safety-critical passive components, and therefore pose a particular challenge for deployment and extended operation of these concepts. Nondestructive evaluation technologies are an essential element for obtaining information on passive component condition in AdvRx, with the development of sensor technologies for nondestructively inspecting AdvRx passive components identified as a key need. Given the challenges posed by AdvRx environments and the potential needs for reducing the burden posed by periodic in-service inspection of hard-to-access and hard-to-replace components, a viable solution may be provided by online condition monitoring of components. This report identifies the key challenges that will need to be overcome for sensor development in this context, and documents an experimental plan for sensor development, test, and evaluation. The focus of initial research and development is on sodium fast reactors, with the eventual goal of the research being developing the necessary sensor technology, quantifying sensor survivability and long-term measurement reliability for nondestructively inspecting critical components. Materials for sensor development that are likely to withstand the harsh environments are described, along with a status on the fabrication of reference specimens, and the planned approach for design and evaluation of the sensor and measurement technology.

  20. Nondestructive Evaluation of Ceramic Matrix Composite Combustor Components

    Science.gov (United States)

    Sun, Jiangang G.; Verrilli, Michael J.; Stephan, Robert R.; Barnett, Terry R.; Ojard, Greg C.

    2003-01-01

    Combustor liners fabricated from a SiC/SiC composite (silicon carbide fibers in a silicon carbide matrix) were nondestructively interrogated before and after combustion rig testing by x-ray, ultrasonic, and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications correlated with reduced material properties obtained after rig testing. The thermography indications in the SiC/SiC liners were delaminations and damaged fiber tows, as determined through microstructural examinations.

  1. Automated Non-Destructive Testing Array Evaluation System

    International Nuclear Information System (INIS)

    Wei, T.; Zavaljevski, N.; Bakhtiari, S.; Miron, A.; Kupperman, D.

    2004-01-01

    Utilities perform eddy current tests on nuclear power plant steam generator (SG) tubes to detect degradation. This report summarizes the status of ongoing research to develop signal processing algorithms that automate analysis of eddy current test data. The research focuses on analyzing array probe data for detecting, classifying, and characterizing degradation in SG tubes

  2. Automated Non-Destructive Testing Array Evaluation System

    Energy Technology Data Exchange (ETDEWEB)

    Wei, T.; Zavaljevski, N.; Bakhtiari, S.; Miron, A.; Jupperman, D.

    2004-12-31

    Utilities perform eddy current tests on nuclear power plant steam generator (SG) tubes to detect degradation. This report summarizes the status of ongoing research to develop signal processing algorithms that automate analysis of eddy current test data. The research focuses on analyzing array probe data for detecting, classifying, and characterizing degradation in SG tubes.

  3. Frequency domain reflectometry modeling for nondestructive evaluation of nuclear power plant cables

    Science.gov (United States)

    Glass, S. W.; Fifield, L. S.; Jones, A. M.; Hartman, T. S.

    2018-04-01

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to

  4. Non-Destructive Evaluation of Polyolefin Thermal Aging Using Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    2017-04-19

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for non-destructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.

  5. Non-destructive evaluation by terahertz spectroscopy for penetration of acid solutions into epoxy resin

    Directory of Open Access Journals (Sweden)

    M. Kusano

    2016-11-01

    Full Text Available Epoxy resins are used as high-performance thermosetting linings to protect substrates under corrosive environments. However, in a severe corrosive chemical solution, such protective layers may degrade with long time due to penetrations of solvent and solute molecules into resin network. In this regard, the terahertz time-domain spectroscopy (THz-TDS is a promising tool for non-destructive evaluation of the penetrant amounts due to high transparency of such plastic materials and high sensitivity to the molecular vibrations in terahertz spectral range. In this work, the complex refractive indexes n and κ of epoxy specimens were measured after immersion into sulfuric acid solutions and compared with penetrated mass fractions of water and acid ions. It was found that n and κ depended linearly with water and sulfuric acid mass fraction in specimens, and κ of sulfuric acid immersed specimens was lager at higher frequency. While the calculated Δκ agreed well with THz-TDS measurement by THz-TDS, the calculated Δn was higher than the measurement. The difference may be attributed to the water and sulfuric states in the specimen.

  6. Nondestructive evaluation of potential quality of creosote-treated piles removed from service

    Science.gov (United States)

    Xiping. Wang; Robert J. Ross; John R. Erickson; John W. Forsman; Gary D. McGinnis; Rodney C. De Groot

    2001-01-01

    Stress-wave-based nondestructive evaluation methods were used to evaluate the potential quality and modulus of elasticity (MOE) of wood from creosote-treated Douglas-fir and southern pine piles removed from service. Stress-wave measurements were conducted on each pile section. Stress-wave propagation speeds were obtained to estimate the MOE of the wood. Tests were then...

  7. Review of Micro/Nano Nondestructive Evaluation Technique (II): Measurement of Acoustic Properties

    International Nuclear Information System (INIS)

    Kim, Chung Seok; Park, Ik Keun

    2012-01-01

    The present paper reviews the micro and nano nondestructive evaluation(NDE) technique that is possible to investigate the surface and measure the acoustic properties. The technical theory, features and applications of the ultrasonic atomic force microscopy(UAFM) and scanning acoustic microscopy(SAM) are illustrated. Especially, these technologies are possible to evaluate the mechanical properties in micro/nano structure and surface through the measurement of acoustic properties in addition to the observation of surface and subsurface. Consequently, it is thought that technique developments and applications of these micro/nano NDE in advanced industrial parts together with present nondestructive industry are widely possible hereafter.

  8. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    International Nuclear Information System (INIS)

    Joo, Kyung Mun; Hong, Jun Hee

    2015-01-01

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  9. Low velocity impact testing and nondestructive evaluation of transparent materials

    International Nuclear Information System (INIS)

    Brennan, R. E.; Green, W. H.

    2011-01-01

    Advanced transparent materials are used in protective systems for enhancing the survivability of ground vehicles, air vehicles, and personnel in applications such as face shields, riot gear, and vehicle windows. Low velocity impact damage can limit visibility and compromise the structural integrity of a transparent system, increasing the likelihood of further damage or penetration from a high velocity impact strike. For this reason, it is critical to determine damage tolerance levels of transparent systems to indicate whether or not a component should be replaced. In this study, transparent laminate systems will be tested by comparing baseline conditions to experimentally controlled damage states. Destructive testing including air gun and sphere impact testing will be used to replicate low velocity impacts in the field. Characterization of the damaged state will include basic visual inspection as well as nondestructive techniques including cross-polarization, x-ray, and ultrasound. The combination of destructive testing and characterization of the resulting damage can help to establish a damage acceptance criterion for materials used in protective systems.

  10. Non-destructive evaluation of concrete using ultrasonic pulse velocity

    International Nuclear Information System (INIS)

    Lawson, I.

    2008-06-01

    Ultrasonic pulse velocity is one of the most popular non-destructive techniques used in the assessment of concrete properties. This thesis investigates the relationship between using ultrasonic pulse velocity (UPV) and the conventional compressive strength tests to determine concrete uniformity. The specimens used in the studies were made of concrete with a paste content of 18% and the constituents of the specimens varied in different water-cement ratios (w/c). The UPV measurement and compressive strength tests were carried out at the concrete age of 2, 7, 15 and 28 days. The UPV and the compressive strength of concrete increase with age, but the growth rate varies with mixture proportion. A relationship curve is drawn between UPV and compressive strength for concrete having different w/c from 0.35 to 0.7. Tests were also performed using Ultrasonic Pulse Velocity Method (UPVM) in detecting discontinuity and determining its depth during the early age of concrete. The test results indicate that the UPVM can be used to assess the in-situ properties of concrete or for quality control on site. The accuracy of the UPVM in detecting discontinuities ranges from 55.75 to 98.70% for ages 3 to 28 (full strength) respectively. (au)

  11. Comparison of magnetic nondestructive methods applied for inspection of steel degradation

    Czech Academy of Sciences Publication Activity Database

    Takahashi, S.; Kobayashi, S.; Tomáš, Ivan; Dupre, L.; Vértesy, G.

    2017-01-01

    Roč. 91, Jun (2017), s. 54-60 ISSN 0963-8695 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : magnetic hysteresis * magnetic NDT * steel degradation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.726, year: 2016

  12. Timber bridge evaluation : a global nondestructive approach using impact generated FRFs

    Science.gov (United States)

    Angus Morison; C.D. Van Karsen; H.A. Evensen; J.B. Ligon; J.R. Erickson; R.J. Ross; J.W. Forsman

    2002-01-01

    Bridges require periodic inspections to ensure the safety of those using the structure. A visual inspection has historically been the most common form of investigation for timber bridges. This poses many problems when inspecting bridge timbers since often the damage is internal, leaving no visible signs of decay on the surface. Localized nondestructive evaluation (NDE...

  13. Nondestructive spectroscopic and imaging techniques for quality evaluation and assessment of fish and fish products.

    Science.gov (United States)

    He, Hong-Ju; Wu, Di; Sun, Da-Wen

    2015-01-01

    Nowadays, people have increasingly realized the importance of acquiring high quality and nutritional values of fish and fish products in their daily diet. Quality evaluation and assessment are always expected and conducted by using rapid and nondestructive methods in order to satisfy both producers and consumers. During the past two decades, spectroscopic and imaging techniques have been developed to nondestructively estimate and measure quality attributes of fish and fish products. Among these noninvasive methods, visible/near-infrared (VIS/NIR) spectroscopy, computer/machine vision, and hyperspectral imaging have been regarded as powerful and effective analytical tools for fish quality analysis and control. VIS/NIR spectroscopy has been widely applied to determine intrinsic quality characteristics of fish samples, such as moisture, protein, fat, and salt. Computer/machine vision on the other hand mainly focuses on the estimation of external features like color, weight, size, and surface defects. Recently, by incorporating both spectroscopy and imaging techniques in one system, hyperspectral imaging cannot only measure the contents of different quality attributes simultaneously, but also obtain the spatial distribution of such attributes when the quality of fish samples are evaluated and measured. This paper systematically reviews the research advances of these three nondestructive optical techniques in the application of fish quality evaluation and determination and discuss future trends in the developments of nondestructive technologies for further quality characterization in fish and fish products.

  14. Nondestructive Evaluation and Health Monitoring of Adhesively Bonded Composite Structures

    Science.gov (United States)

    Roth, William Walker

    As the growth of fiber reinforced composite materials continues in many industries, structural designers will have to look to new methods of joining components. In order to take full advantage of composite materials, such as increased stiffness, decreased weight, tailored material properties and increased fatigue life, mechanical fasteners will need to be replaced by adhesive bonding or welding, when possible. Mechanical fasteners require the drilling of holes, which damages the laminate and becomes the source of further fatigue damage. Also, an increase in laminate thickness or inclusion of other features is required for the material to withstand the bearing stress needed to preload fasteners. Adhesives transfer the load over a large area, do not require additional machining operations, provide increased stiffness through the joint, provide corrosion protection when joining dissimilar materials, and provide vibrational damping. Additionally, the repair of composite structures, which will become a major concern in the near future, will require the use of adhesive bonding for thermoset composites. In order for adhesives to be used to join primary aerospace structures they must meet certification requirements, which includes proof that the joint can withstand the required ultimate load without structural failure. For most components, nondestructive inspection is used to find critical flaws, which is combined with fracture mechanics to ensure that the structure can meet the requirements. This process works for some of the adhesive flaws, but other critical defects are not easily detected. Weak interface bonding is particularly challenging. This type of defect results in an interphase zone that may be only a dozen microns in thickness. Traditional bulk wave ultrasonic techniques cannot easily distinguish this zone from the interface between adherend and adhesive. This work considers two approaches to help solve this problem. Guided elastic wave propagation along

  15. Physics-Based Imaging Methods for Terahertz Nondestructive Evaluation Applications

    Science.gov (United States)

    Kniffin, Gabriel Paul

    Lying between the microwave and far infrared (IR) regions, the "terahertz gap" is a relatively unexplored frequency band in the electromagnetic spectrum that exhibits a unique combination of properties from its neighbors. Like in IR, many materials have characteristic absorption spectra in the terahertz (THz) band, facilitating the spectroscopic "fingerprinting" of compounds such as drugs and explosives. In addition, non-polar dielectric materials such as clothing, paper, and plastic are transparent to THz, just as they are to microwaves and millimeter waves. These factors, combined with sub-millimeter wavelengths and non-ionizing energy levels, makes sensing in the THz band uniquely suited for many NDE applications. In a typical nondestructive test, the objective is to detect a feature of interest within the object and provide an accurate estimate of some geometrical property of the feature. Notable examples include the thickness of a pharmaceutical tablet coating layer or the 3D location, size, and shape of a flaw or defect in an integrated circuit. While the material properties of the object under test are often tightly controlled and are generally known a priori, many objects of interest exhibit irregular surface topographies such as varying degrees of curvature over the extent of their surfaces. Common THz pulsed imaging (TPI) methods originally developed for objects with planar surfaces have been adapted for objects with curved surfaces through use of mechanical scanning procedures in which measurements are taken at normal incidence over the extent of the surface. While effective, these methods often require expensive robotic arm assemblies, the cost and complexity of which would likely be prohibitive should a large volume of tests be needed to be carried out on a production line. This work presents a robust and efficient physics-based image processing approach based on the mature field of parabolic equation methods, common to undersea acoustics, seismology

  16. Magnetic non-destructive evaluation of hardening of cold rolled reactor pressure vessel steel

    Science.gov (United States)

    Wang, Xuejiao; Qiang, Wenjiang; Shu, Guogang

    2017-08-01

    Non-destructive test (NDT) of reactor pressure vessel (RPV) steel is urgently required due to the life extension program of nuclear power plant. Here magnetic NDT of cold rolled RPV steel is studied. The strength, hardness and coercivity increase with the increasing deformation, and a good linear correlation between the increment of coercivity, hardness and yield strength is found, which may be helpful to develop magnetic NDT of degradation of RPV steel. It is also found that besides dislocation density, the distribution of dislocations may affect coercivity as well.

  17. Nondestructive Magnetic Adaptive Testing of nuclear reactor pressure vessel steel degradation

    Czech Academy of Sciences Publication Activity Database

    Tomáš, Ivan; Vértesy, G.; Gillemot, F.; Székely, R.

    2012-01-01

    Roč. 432, 1-3 (2012), s. 371-377 ISSN 0022-3115 R&D Projects: GA ČR GA101/09/1323 Institutional research plan: CEZ:AV0Z10100520 Keywords : neutron irradiation * steel degradation * nuclear reactor pressure vessel * magnetic NDT * magnetic minor hysteresis loops * Magnetic Adaptive Testing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.211, year: 2012 http://dx.doi.org/10.1016/j.jnucmat.2012.09.006

  18. High temperature ultrasonic transducers for the generation of guided waves for non-destructive evaluation of pipes

    Energy Technology Data Exchange (ETDEWEB)

    Sinding, K.; Searfass, C.; Malarich, N.; Reinhardt, B.; Tittmann, B. R. [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-02-18

    Applications for non-destructive evaluation and structural health monitoring of steam generators require ultrasonic transducers capable of withstanding the high temperatures of the pipes and heat exchangers. These applications require a strong coupling of the transducer to the heat exchanger’s complex geometry at the elevated temperatures. Our objective is to use spray-on piezo-electrics for depositing comb transducers onto the curved surfaces. This paper shows results for composite transducers such as lead zirconate titanate/ bismuth titanate and bismuth titanate/ lithium niobate. The comb transducers were prepared by precision laser ablation. The feasibility of producing second harmonic waves in rods with these spay-on comb transducers was demonstrated and paves the way toward measuring material degradation early-on before crack initiation occurs.

  19. The Assessment of Cement Mortars after Thermal Degradation by Acoustic Non-destructive Methods

    Science.gov (United States)

    Topolář, L.; Štefková, D.; Hoduláková, M.

    2017-10-01

    Thanks, the terrorist attacks on the worldwide interest in the design of structures for fire greatly increased. One of the advantages of concrete over other building materials is its inherent fire-resistive properties. The concrete structural components still must be able to withstand dead and live loads without collapse even though the rise in temperature causes a decrease in the strength and modulus of elasticity for concrete and steel reinforcement. In addition, fully developed fires cause expansion of structural components and the resulting stresses and strains must be resisted. This paper reports the results of measurements by Impact-echo method and measurement by ultrasound. Both methods are based on the acoustic properties of the material which are dependent on its condition. These acoustic methods allow identifying defects and are thus suitable for monitoring the building structure condition. The results are obtained in the laboratory during the degradation of composite materials based on cement by high-temperature.

  20. Computational electromagnetics and model-based inversion a modern paradigm for eddy-current nondestructive evaluation

    CERN Document Server

    Sabbagh, Harold A; Sabbagh, Elias H; Aldrin, John C; Knopp, Jeremy S

    2013-01-01

    Computational Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy Current Nondestructive Evaluation describes the natural marriage of the computer to eddy-current NDE. Three distinct topics are emphasized in the book: (a) fundamental mathematical principles of volume-integral equations as a subset of computational electromagnetics, (b) mathematical algorithms applied to signal-processing and inverse scattering problems, and (c) applications of these two topics to problems in which real and model data are used. By showing how mathematics and the computer can solve problems more effectively than current analog practices, this book defines the modern technology of eddy-current NDE. This book will be useful to advanced students and practitioners in the fields of computational electromagnetics, electromagnetic inverse-scattering theory, nondestructive evaluation, materials evaluation and biomedical imaging. Users of eddy-current NDE technology in industries as varied as nuclear power, aerospace,...

  1. Thermal Protection Systems Nondestructive Evaluation Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for evaluation of bondline and in-depth integrity for lightweight rigid and/or flexible ablative materials, Physical Optics Corporation (POC)...

  2. Visualization of Tooth for Non-Destructive Evaluation from CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Chae, Ok Sam [Kyung Hee University, Seoul (Korea, Republic of)

    2009-06-15

    This paper reports an effort to develop 3D tooth visualization system from CT sequence images as a part of the non-destructive evaluation suitable for the simulation of endodontics, orthodontics and other dental treatments. We focus on the segmentation and visualization for the individual tooth. In dental CT images teeth are touching the adjacent teeth or surrounded by the alveolar bones with similar intensity. We propose an improved level set method with shape prior to separate a tooth from other teeth as well as the alveolar bones. Reconstructed 3D model of individual tooth based on the segmentation results indicates that our technique is a very conducive tool for tooth visualization, evaluation and diagnosis. Some comparative visualization results validate the non-destructive function of our method.

  3. A study of the stress wave factor technique for nondestructive evaluation of composite materials

    Science.gov (United States)

    Sarrafzadeh-Khoee, A.; Kiernan, M. T.; Duke, J. C., Jr.; Henneke, E. G., II

    1986-01-01

    The acousto-ultrasonic method of nondestructive evaluation is an extremely sensitive means of assessing material response. Efforts continue to complete the understanding of this method. In order to achieve the full sensitivity of the technique, extreme care must be taken in its performance. This report provides an update of the efforts to advance the understanding of this method and to increase its application to the nondestructive evaluation of composite materials. Included are descriptions of a novel optical system that is capable of measuring in-plane and out-of-plane displacements, an IBM PC-based data acquisition system, an extensive data analysis software package, the azimuthal variation of acousto-ultrasonic behavior in graphite/epoxy laminates, and preliminary examination of processing variation in graphite-aluminum tubes.

  4. Nondestructive evaluation of standing trees with a stress wave method.

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Michael McClellan; R. James Barbour; John R. Erickson; John W. Forsman; Gary D. McGinnis

    2001-01-01

    The primary objective of this study was to investigate the usefulness of a stress wave technique for evaluating wood strength and stiffness of young-growth western hemlock and Sitka spruce in standing trees. A secondary objective was to determine if the effects of silvicultural practices on wood quality can be identified using this technique. Stress wave measurements...

  5. Addition of magnetic markers for non-destructive evaluation of polymer composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Pereira Fulco

    2011-12-01

    Full Text Available Polymer composite pipes are an appealing option as a substitute for conventional steel pipes, particularly due to their inherent corrosion resistance. However, the composite pipes currently used do not allow non-destructive evaluation (NDE using instrumented devices which operate with magnetic sensors. The present work aims at the development of polymer composites with the addition magnetic markers to allow the application non-destructive evaluation techniques which use magnetic sensors. Glass-polyester composite flat, circular plates were fabricated with the addition of ferrite particles (barium ferrite and strontium ferrite and four types of notches were introduced on the plates' surfaces. The influence of these notches on the measured magnetic properties of each material was measured. X-ray diffraction (XRD, X-ray fluorescence (XRF and Brunauer, Emmett, and Teller (BET nitrogen adsorption were used for the characterization of the ferrite particles. Particle dispersion in the polymer matrix was analyzed by scanning electron microscopy (SEM. According to the results, a particular variation in magnetic field was detected over the region surrounding each type of notch. The results suggest that the proposed technique has great potential for damage detection in polymer composites using magnetic sensors and thus constitute a valuable contribution which may ultimately lead to the development of non-destructive evaluation techniques for assessing the structural integrity polymer composite pipes.

  6. Statistical signal processing methods for ultrasonic nondestructive evaluation

    International Nuclear Information System (INIS)

    Saniie, J.

    1992-06-01

    Order statistics and morphological filters belong to a class of nonlinear filters that have recently found many applications in signal analysis and image processing. In this paper, order statistics and morphological filters have been applied to enhance the features of the ultrasonic signal when it has been contaminated by multiple interfering microstructure echoes with random amplitudes and phases. These interfering echoes (i.e., speckles or grain scattering noise) often become significant to the point where detection of flaw echoes becomes very difficult. We have examined order statistic, and morphological filters for improved ultrasonic flaw detection. In particular, the performance of these filters has been evaluated using different ranks of order statistics (minimum, median, maximum), and different shapes of structuring elements in the application of morphological filters. The processed experimental results in testing steel samples demonstrate that these filters are capable of improving flaw detection in ultrasonic systems

  7. Nondestructive damage detection and evaluation technique for seismically damaged structures

    Science.gov (United States)

    Adachi, Yukio; Unjoh, Shigeki; Kondoh, Masuo; Ohsumi, Michio

    1999-02-01

    The development of quantitative damage detection and evaluation technique, and damage detection technique for invisible damages of structures are required according to the lessons from the 1995 Hyogo-ken Nanbu earthquake. In this study, two quantitative damage sensing techniques for highway bridge structures are proposed. One method is to measure the change of vibration characteristics of the bridge structure. According to the damage detection test for damaged bridge column by shaking table test, this method can successfully detect the vibration characteristic change caused by damage progress due to increment excitations. The other method is to use self-diagnosis intelligent materials. According to the reinforced concrete beam specimen test, the second method can detect the damage by rupture of intelligent sensors, such as optical fiber or carbon fiber reinforced plastic rod.

  8. Method for non-destructive evaluation of ceramic coatings

    Science.gov (United States)

    Peterson, Kristen A.; Rosen, Elias P.; Jordan, Eric H.; Shahbazmohamadi, Sina; Vakhtin, Andrei B.

    2016-11-08

    A method for evaluating the condition of a ceramic coating deposited on a substrate comprising illuminating the ceramic coating with light, measuring the intensity of light returned from the ceramic coating as function of depth in the coating and transverse position on the coating, and analyzing the measured light intensities to obtain one or more of intensity of the light returned from the exposed coating surface relative to the intensity of light returned from the coating/substrate interface, intensity of the light returned from the coating/substrate interface relative to the intensity of light returned from the bulk of the ceramic coating, determination of roughness at the exposed surface of the ceramic coating, and determination of roughness of the interface between the ceramic coating and underlying bond coat or substrate.

  9. Investigation and development of a non-destructive system to evaluate critical properties of asphalt pavements during the compaction process.

    Science.gov (United States)

    2013-10-01

    The purpose of this report is to present findings from a two-stage investigation to develop a non-destructive system to : evaluate critical properties and characteristics of asphalt pavements during the compaction process. The first stage aligned : c...

  10. Nondestructive evaluation of mechanically stabilized earth walls with frequency-modulated continuous wave (FM-CW) radar.

    Science.gov (United States)

    2014-06-01

    Effective techniques for a nondestructive evaluation of mechanically stabilized earth (MSE) walls during normal operation : or immediately after an earthquake event are yet to be developed. MSE walls often have a rough surface finishing for the : pur...

  11. An accurately controllable imitative stress corrosion cracking for electromagnetic nondestructive testing and evaluations

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Uchimoto, Tetsuya; Takagi, Toshiyuki; Hashizume, Hidetoshi

    2012-01-01

    Highlights: ► We propose a method to simulate stress corrosion cracking. ► The method offers nondestructive signals similar to those of actual cracking. ► Visual and eddy current examinations validate the method. - Abstract: This study proposes a simple and cost-effective approach to fabricate an artificial flaw that is identical to stress corrosion cracking especially from the viewpoint of electromagnetic nondestructive evaluations. The key idea of the approach is to embed a partially-bonded region inside a material by bonding together surfaces that have grooves. The region is regarded as an area of uniform non-zero conductivity from an electromagnetic nondestructive point of view, and thus simulates the characteristics of stress corrosion cracking. Since the grooves are introduced using electro-discharge machining, one can control the profile of the imitative stress corrosion cracking accurately. After numerical simulation to evaluate the spatial resolution of conventional eddy current testing, six specimens made of type 316L austenitic stainless steel were fabricated on the basis of the results of the simulations. Visual and eddy current examinations were carried out to demonstrate that the artificial flaws well simulated the characteristics of actual stress corrosion cracking. Subsequent destructive test confirmed that the bonding did not change the depth profiles of the artificial flaw.

  12. Infrared Contrast Analysis Technique for Flash Thermography Nondestructive Evaluation

    Science.gov (United States)

    Koshti, Ajay

    2014-01-01

    The paper deals with the infrared flash thermography inspection to detect and analyze delamination-like anomalies in nonmetallic materials. It provides information on an IR Contrast technique that involves extracting normalized contrast verses time evolutions from the flash thermography infrared video data. The paper provides the analytical model used in the simulation of infrared image contrast. The contrast evolution simulation is achieved through calibration on measured contrast evolutions from many flat bottom holes in the subject material. The paper also provides formulas to calculate values of the thermal measurement features from the measured contrast evolution curve. Many thermal measurement features of the contrast evolution that relate to the anomaly characteristics are calculated. The measurement features and the contrast simulation are used to evaluate flash thermography inspection data in order to characterize the delamination-like anomalies. In addition, the contrast evolution prediction is matched to the measured anomaly contrast evolution to provide an assessment of the anomaly depth and width in terms of depth and diameter of the corresponding equivalent flat-bottom hole (EFBH) or equivalent uniform gap (EUG). The paper provides anomaly edge detection technique called the half-max technique which is also used to estimate width of an indication. The EFBH/EUG and half-max width estimations are used to assess anomaly size. The paper also provides some information on the "IR Contrast" software application, half-max technique and IR Contrast feature imaging application, which are based on models provided in this paper.

  13. Evaluation of corrosion of prestressing steel in concrete using non-destructive techniques

    International Nuclear Information System (INIS)

    Ali, M.G.; Maddocks, A.R.

    2003-01-01

    Use of high strength steel in pre-stressed concrete structures has been in use in Australia for many decades. Highway bridges, among other structures, have extensively used pre-stress-ing and post-tensioning techniques. Although prestressing offers many competitive edges to it's traditional rival reinforced concrete, the consequence of damage to prestressing tendons could be catastrophic. Periodic visual inspections of prestressed concrete bridges throughout the world have demonstrated the growing problem of deterioration of prestressing steel as a result of corrosion. Early detection of damage to prestressing steel therefore is of paramount importance. Unfortunately no reliable and practical non-destructive evaluation technique has been available for assessing the condition of prestressing steel within concrete although a number of techniques appear promising. The following inspection methods have been highlighted in recent literature for their use as non-destructive inspection methods for prestressed concrete structures. In addition to the techniques discussed, a number of destructive, or invasive techniques also exist for determination of the corrosion status of prestressing tendons in prestressed structures. The following non-destructive techniques are discussed in some detail: Radiography; Computed Tomography; Surface Penetrating Radar; Impact Echo; Acoustic Emission Monitoring; Magnetic Field Disturbance Technique; Remnant Magnetism Method; Linear Polarisation Method; Electrical Resistance and Surface Potential Survey. The portability, limitations and use in Australia of these techniques are summarised in a table

  14. Optical Calibration Process Developed for Neural-Network-Based Optical Nondestructive Evaluation Method

    Science.gov (United States)

    Decker, Arthur J.

    2004-01-01

    A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation

  15. Application of non-destructive evaluation and signal processing for diagnosis of historic heritage buildings

    OpenAIRE

    Gosálbez Castillo, Jorge; Salazar Afanador, Addisson; Safont Armero, Gonzalo; Bosch Roig, Ignacio; Miralles Ricós, Ramón; Vergara Domínguez, Luís; ALBERT PÉREZ, VICENTE

    2011-01-01

    In this work, signal processing techniques are combined with non-destructive evaluation (NDE) to evaluate the capability for detecting defects in historic walls. To join this aim, ashlar masonry walls of 3x2x0.2m have been made at laboratory facilities with controlled and localized defects. These scale walls have been inspected by means ultrasound and ground penetrating radar (GPR) with loads of different weights (0Tn, 10Tn, 50Tn and 80Tn). The ultrasonic and GPR signals provided ...

  16. Virtual reality presentation for nondestructive evaluation of rebar corrosion in concrete based on IBEM

    International Nuclear Information System (INIS)

    Kyung, Je Woon; Leelarkiet, V.; Ohtsu, Masayasu; Yokata, Masaru

    2004-01-01

    In order to evaluate the corrosion of reinforcing steel-bars (rebar) in concrete, a nondestructive evaluation by the half-cell potential method is currently applied. In this study, potentials measured on a concrete surface are compensated into those on the concrete-rebar interface by the inverse boundary element method (IBEM). Because these potentials are obtained three-dimensionally (3-D), 3-D visualization is desirable. To this end, a visualization system has been developed by using VRML (Virtual Reality Modeling Language). As an application, results of a reinforced concrete (RC) slab with corroded rebars are visualized and discussed.

  17. Virtual reality presentation for nondestructive evaluation of rebar corrosion in concrete based on IBEM

    Energy Technology Data Exchange (ETDEWEB)

    Kyung, Je Woon; Leelarkiet, V.; Ohtsu, Masayasu [Kumamoto University, Kumamoto (Japan); Yokata, Masaru [Dept. of Civil Engineering, Shikoku Research Institute, Takamastu (Japan)

    2004-11-15

    In order to evaluate the corrosion of reinforcing steel-bars (rebar) in concrete, a nondestructive evaluation by the half-cell potential method is currently applied. In this study, potentials measured on a concrete surface are compensated into those on the concrete-rebar interface by the inverse boundary element method (IBEM). Because these potentials are obtained three-dimensionally (3-D), 3-D visualization is desirable. To this end, a visualization system has been developed by using VRML (Virtual Reality Modeling Language). As an application, results of a reinforced concrete (RC) slab with corroded rebars are visualized and discussed.

  18. Virtual Reality Presentation for Nondestructive Evaluation of Rebar Corrosion in Concrete based on Inverse BEM

    Energy Technology Data Exchange (ETDEWEB)

    Kyung, Je Woon [EJtech Co., Seongnam (Korea, Republic of); Yokota, Masaru [Shikoku Research Institute Inc., Takamastu (Japan); Leelalerkiet, V.; Ohtsu, Masayasu [Kumamoto University, Kumamoto (Japan)

    2005-06-15

    In order to evaluate the corrosion of reinforcing steel-bars (rebar) in concrete, a nondestructive evaluation by the half-cell potential method is currently applied. In this study, potentials measured on a concrete surface are compensated into those on the concrete-rebar interface by the inverse boundary element method (IBEM). Because these potentials are obtained three-dimensionally (3-D), 3-D visualization is desirable. To this end, a visualization system has been developed by using VRML (Virtual Reality Modeling Language). As an application, results of a reinforced concrete (RC) slab with corroded rebars are visualized and discussed

  19. Electromagnetic Nondestructive Evaluation of Wire Insulation and Models of Insulation Material Properties

    Science.gov (United States)

    Bowler, Nicola; Kessler, Michael R.; Li, Li; Hondred, Peter R.; Chen, Tianming

    2012-01-01

    Polymers have been widely used as wiring electrical insulation materials in space/air-craft. The dielectric properties of insulation polymers can change over time, however, due to various aging processes such as exposure to heat, humidity and mechanical stress. Therefore, the study of polymers used in electrical insulation of wiring is important to the aerospace industry due to potential loss of life and aircraft in the event of an electrical fire caused by breakdown of wiring insulation. Part of this research is focused on studying the mechanisms of various environmental aging process of the polymers used in electrical wiring insulation and the ways in which their dielectric properties change as the material is subject to the aging processes. The other part of the project is to determine the feasibility of a new capacitive nondestructive testing method to indicate degradation in the wiring insulation, by measuring its permittivity.

  20. The real defect and its nondestructive characterization

    International Nuclear Information System (INIS)

    Licht, H.

    1982-01-01

    Nondestructive test techniques to evaluate defect severity and component degradation are typically based on transmission of energy into the material to be inspected. The capabilities of such techniques are controlled by physical phenomena which generally do not coincide with inspection requirements. This paper reviews several recent developments (mainly in ultrasonic and eddy current testing) which highlight the state of the art

  1. Enhancement of Spatial Resolution Using a Metamaterial Sensor in Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Adriana Savin

    2015-11-01

    Full Text Available The current stage of non-destructive evaluation techniques imposes the development of new electromagnetic methods that are based on high spatial resolution and increased sensitivity. Printed circuit boards, integrated circuit boards, composite materials with polymeric matrix containing conductive fibers, as well as some types of biosensors are devices of interest in using such evaluation methods. In order to achieve high performance, the work frequencies must be either radiofrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. Detection of these waves, containing required information, can be done using sensors with metamaterial lenses. We propose in this paper the enhancement of the spatial resolution using electromagnetic methods, which can be accomplished in this case using evanescent waves that appear in the current study in slits of materials such as the spaces between carbon fibers in Carbon Fibers Reinforced Plastics or in materials of interest in the nondestructive evaluation field with industrial applications, where microscopic cracks are present. We propose herein a unique design of the metamaterials for use in nondestructive evaluation based on Conical Swiss Rolls configurations, which assure the robust concentration/focusing of the incident electromagnetic waves (practically impossible to be focused using classical materials, as well as the robust manipulation of evanescent waves. Applying this testing method, spatial resolution of approximately λ/2000 can be achieved. This testing method can be successfully applied in a variety of applications of paramount importance such as defect/damage detection in materials used in a variety of industrial applications, such as automotive and aviation technologies.

  2. Non-destructive Magnetic Evaluation of Laser Weld Quality in Hot Rolled Coils

    Science.gov (United States)

    Mohapatra, J. N.; Chakradhar, I.; Rao, K. R. C.; Rao, V. V. L.; Kaza, Marutiram

    2015-06-01

    Weld quality evaluation was conducted on laser welded thin sectsions (2 mm) of hot-rolled (HR) low-carbon steel coils during cold rolling process. The analysis revealed that the poor welds consisting of the weld defects like incomplete fusion, cluster of porosity, and large difference in hardness between the weld zone and base metal were responsible for the weld failures. Experiments were conducted by varying the welding parameters; laser power and welding speed to optimize the parameters for minimizing the weld defects. The optimized weld process parameters have helped elimination of weld defects and the results are verified with microscopy and microhardness measurements. As destructive evaluation techniques are time consuming and not always permitted in industrial applications, attempts have been made in the present investigation for the utilization of suitable non-destructive techniques for the evaluation of weld quality. Non-destructive magnetic techniques of magnetic hysteresis loop and magnetic Barkhausen emissions were used in the present investigation to establish possible correlations of magnetic properties across the weld seam with the mechanical property (microhardness) for evaluation of weld quality. It is inferred that the magnetic properties of coercivity and inverse of root mean square voltage can be effectively utilized to determine weld quality in HR steel coils.

  3. A reverberation-ray matrix method for guided wave-based non-destructive evaluation.

    Science.gov (United States)

    Zhu, Kaige; Qing, Xinlin P; Liu, Bin

    2017-05-01

    The paper presents an application of the reverberation-ray matrix (RRM) method for guided wave-based non-destructive evaluation (NDE). An exact analytical model for elastic wave propagation in multilayered anisotropic composites is developed with the RRM method. Dispersion curves, namely phase and group velocities varying with frequencies, can be calculated based on the analytical model, which are critical to the guided wave-based NDE. In addition, the characteristics of the guided wave propagation along different directions in laminated composites with different anisotropic degrees are investigated. Finally, the results obtained from the model are verified by finite element simulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Barkhausen noise used as a nondestructive evaluation technic of mechanical damage

    International Nuclear Information System (INIS)

    Billy, F.

    1993-12-01

    The results of the application of a micro-magnetic technic relying on magnetic Barkhausen emission in order to proceed to the Nondestructive Evaluation of ferromagnetic materials mechanically damaged are presented. The first experiment, conducted on test specimens of two kinds (mild steel and Cr-Mo-V alloy), for different strain rates, proved that damage increase was measurable by Barkhausen noise. A verification was then performed on an industrial full-size structure, representing the problem posed to EDF, and mechanically fatigued. The trends obtained on test specimens were confirmed, in spite of a larger dispersion of the results. (author). 8 figs., 3 refs

  5. A DATA FUSION SYSTEM FOR THE NONDESTRUCTIVE EVALUATION OF NON-PIGGABLE PIPES

    Energy Technology Data Exchange (ETDEWEB)

    Shreekanth Mandayam; Robi Polikar; John C. Chen

    2004-04-01

    The objectives of this research project are: (1) To design sensor data fusion algorithms that can synergistically combine defect related information from heterogeneous sensors used in gas pipeline inspection for reliably and accurately predicting the condition of the pipe-wall. (2) To develop efficient data management techniques for signals obtained during multisensor interrogation of a gas pipeline. During this reporting period, Rowan University designed, developed and exercised multisensor data fusion algorithms for identifying defect related information present in magnetic flux leakage, ultrasonic testing and thermal imaging nondestructive evaluation signatures of a test-specimen suite representative of benign and anomalous indications in gas transmission pipelines.

  6. Additive Manufacturing (AM) Activities and Non-Destructive Evaluation (NDE) at GSFC

    Science.gov (United States)

    Jones, Justin S.

    2017-01-01

    NASA personnel will be meeting with a delegation from the Japan Aerospace Exploration Agency (JAXA) Office of Safety and Mission Assurance (OSMA) at Langley Research Center on 2217 through 3217. The purpose of the meeting is a technical interchange between NASA and JAXA to discuss Non-Destructive Evaluation (NDE) of Additive Manufacturing (AM) parts and the HALT process (relates to accelerated life testing). The visitors will be a small group of Japanese citizens. Goddard Space Flight Center (GSFC) has been asked to participate in the meeting, either in person or via teleconference. This presentation covers NDE efforts at GSFC and provides a cursory overview of AM and lab capabilities.

  7. Using the World-Wide Web to Facilitate Communications of Non-Destructive Evaluation

    Science.gov (United States)

    McBurney, Sean

    1995-01-01

    The high reliability required for Aeronautical components is a major reason for extensive Nondestructive Testing and Evaluation. Here at Langley Research Center (LaRC), there are highly trained and certified personal to conduct such testing to prevent hazards from occurring in the workplace and on the research projects for the National Aeronautics and Space Administration (NASA). The purpose of my studies was to develop a communication source to educate others of the services and equipment offered here. This was accomplished by creating documents that are accessible to all in the industry via the World Wide Web.

  8. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.

    Science.gov (United States)

    Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu

    2017-11-24

    The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

  9. Nondestructive evaluation of Bakwan paddy grains moisture content by means of spectrophotometry

    Science.gov (United States)

    Makky, M.; Putry, R. E.; Nakano, K.; Santosa

    2018-03-01

    Paddy grains moisture content (MC) strongly correlated to the physical properties of rice after being milled. Incorrect MC will cause higher percentage of broken rice and prompts the grains to be more fragile. In general, paddy grains with 13 – 14% MC are ideal for post-harvest processing. The objective of this study is to measure the MC of intact paddy grain from CV. Bakwan by means of non-destructive evaluation using NIR spectral assessment. Paddy grains samples with identical MC were put into 30 mm tube glass and measured using NIR spectrophotometer. The electromagnetic radiation absorbance under consideration upon spectral measurement fell between 1000 and 2500 nm. The grains’ actual MC was then measured by primary method, based on weight measurement i.e. oven method. In this study, the spectral data of the grains was then processed by means of Principal Component Analysis (PCA) before correlated with its MCs by Partial Least Square (PLS) method. The model calibration obtained correlation (r) of 0.983 and RMSEC of 1.684. Moreover, model validation produced correlation (r) of 0.973, RMSEP of 2.095, and bias of 0.2, indicating that the MC of paddy grains can be precisely identified by non-destructive evaluation using spectral analysis.

  10. Scanning laser-line source technique for nondestructive evaluation of cracks in human teeth.

    Science.gov (United States)

    Sun, Kaihua; Yuan, Ling; Shen, Zhonghua; Xu, Zhihong; Zhu, Qingping; Ni, Xiaowu; Lu, Jian

    2014-04-10

    This paper describes the first application of a remote nondestructive laser ultrasonic (LU) system for clinical diagnosis of cracks in human teeth, to our knowledge. It performs non-contact cracks detection on small-dimension teeth samples. Two extracted teeth with different types of cracks (cracked tooth and craze lines), which have different crack depths, are used as experimental samples. A series of ultrasonic waves were generated by a scanning laser-line source technique and detected with a laser-Doppler vibrometer on the two samples. The B-scan images and peak-to-peak amplitude variation curves of surface acoustic waves were obtained for evaluating the cracks' position and depth. The simulation results calculated by finite element method were combined with the experimental results for accurately measuring the depth of crack. The results demonstrate that this LU system has been successfully applied on crack evaluation of human teeth. And as a remote, nondestructive technique, it has great potential for early in vivo diagnosis of cracked tooth and even the future clinical dental tests.

  11. Nondestructive evaluation of soluble solid content in strawberry by near infrared spectroscopy

    Science.gov (United States)

    Guo, Zhiming; Huang, Wenqian; Chen, Liping; Wang, Xiu; Peng, Yankun

    This paper indicates the feasibility to use near infrared (NIR) spectroscopy combined with synergy interval partial least squares (siPLS) algorithms as a rapid nondestructive method to estimate the soluble solid content (SSC) in strawberry. Spectral preprocessing methods were optimized selected by cross-validation in the model calibration. Partial least squares (PLS) algorithm was conducted on the calibration of regression model. The performance of the final model was back-evaluated according to root mean square error of calibration (RMSEC) and correlation coefficient (R2 c) in calibration set, and tested by mean square error of prediction (RMSEP) and correlation coefficient (R2 p) in prediction set. The optimal siPLS model was obtained with after first derivation spectra preprocessing. The measurement results of best model were achieved as follow: RMSEC = 0.2259, R2 c = 0.9590 in the calibration set; and RMSEP = 0.2892, R2 p = 0.9390 in the prediction set. This work demonstrated that NIR spectroscopy and siPLS with efficient spectral preprocessing is a useful tool for nondestructively evaluation SSC in strawberry.

  12. Nondestructive evaluation of ceramic and metal matrix composites for NASA's HITEMP and enabling propulsion materials programs

    Science.gov (United States)

    Generazio, Edward R.

    1992-01-01

    In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.

  13. Nondestructive evaluation of adhesive bond strength using the stress wave factor technique

    Science.gov (United States)

    Dos Reis, Henrique L. M.; Krautz, Harold E.

    1986-01-01

    Acousto-ultrasonic nondestructive evaluation has been conducted to evaluate the adhesive bond strength between rubber and steel plates using the stress wave factor (SWF) measurement technique. Specimens with different bond strength were manufactured and tested using the SWF technique. Two approaches were used to define the SWF. One approach defines the SWF as the signal energy and the other approach defines the SWF as the square root of the zero moment of the frequency spectrum of the received signal. The strength of the rubber-steel adhesive joint was then evaluated using the destructive peel strength test method. It was observed that in both approaches higher values of the SWF measurements correspond to higher values of the peel strength test data. Therefore, these results show that the stress wave factor technique has the potential of being used in quality assurance of the adhesive bond strength between rubber and steel substrates.

  14. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.

    Science.gov (United States)

    Bogas, J Alexandre; Gomes, M Glória; Gomes, Augusto

    2013-07-01

    In this paper the compressive strength of a wide range of structural lightweight aggregate concrete mixes is evaluated by the non-destructive ultrasonic pulse velocity method. This study involves about 84 different compositions tested between 3 and 180 days for compressive strengths ranging from about 30 to 80 MPa. The influence of several factors on the relation between the ultrasonic pulse velocity and compressive strength is examined. These factors include the cement type and content, amount of water, type of admixture, initial wetting conditions, type and volume of aggregate and the partial replacement of normal weight coarse and fine aggregates by lightweight aggregates. It is found that lightweight and normal weight concretes are affected differently by mix design parameters. In addition, the prediction of the concrete's compressive strength by means of the non-destructive ultrasonic pulse velocity test is studied. Based on the dependence of the ultrasonic pulse velocity on the density and elasticity of concrete, a simplified expression is proposed to estimate the compressive strength, regardless the type of concrete and its composition. More than 200 results for different types of aggregates and concrete compositions were analyzed and high correlation coefficients were obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Non-Destructive Evaluation of Grain Structure Using Air-Coupled Ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Belvin, A. D.; Burrell, R. K.; Cole, E.G.

    2009-08-01

    Cast material has a grain structure that is relatively non-uniform. There is a desire to evaluate the grain structure of this material non-destructively. Traditionally, grain size measurement is a destructive process involving the sectioning and metallographic imaging of the material. Generally, this is performed on a representative sample on a periodic basis. Sampling is inefficient and costly. Furthermore, the resulting data may not provide an accurate description of the entire part's average grain size or grain size variation. This project is designed to develop a non-destructive acoustic scanning technique, using Chirp waveforms, to quantify average grain size and grain size variation across the surface of a cast material. A Chirp is a signal in which the frequency increases or decreases over time (frequency modulation). As a Chirp passes through a material, the material's grains reduce the signal (attenuation) by absorbing the signal energy. Geophysics research has shown a direct correlation with Chirp wave attenuation and mean grain size in geological structures. The goal of this project is to demonstrate that Chirp waveform attenuation can be used to measure grain size and grain variation in cast metals (uranium and other materials of interest). An off-axis ultrasonic inspection technique using air-coupled ultrasonics has been developed to determine grain size in cast materials. The technique gives a uniform response across the volume of the component. This technique has been demonstrated to provide generalized trends of grain variation over the samples investigated.

  16. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  17. An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials

    Directory of Open Access Journals (Sweden)

    Adriana Savin

    2015-07-01

    Full Text Available This paper proposes the study and implementation of a sensor with a metamaterial (MM lens in electromagnetic nondestructive evaluation (eNDE. Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000.

  18. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Gopalsami, N.; Dieckman, S.; Hentea, T.; Vaitekunas, J.J.

    1989-01-01

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  19. Evaluation of degradation due to ageing of the power cables with pvc insulation and jacket. Development of the indentation test

    International Nuclear Information System (INIS)

    Puiu, D.; Gyongyosi, T.; Dinu, E.

    2010-01-01

    The environmental conditions (temperature, radiation) from NPP lead to the ageing of the organic components of the power cable. The effective evaluation of the degradation due to ageing of the cable components, at the observation time, requires knowledge of some electrical and mechanical parameters, useful to characterize the cable condition. In order to develop a non-destructive method for evaluation of degradation due to ageing of the NPP power cables, an experimental device was made able to establish the compressive modulus in power cable components (jacket and insulation). The paper contains a description of the experimental device (indentation device), the working method for determination the compressive modulus values, results and conclusions. The paper presents original contributions in the development of the non-destructive method and of its application area being dedicated to the specialists working in research and technological engineering. (authors)

  20. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    International Nuclear Information System (INIS)

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-01-01

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning

  1. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2016-06-01

    Full Text Available Terahertz (THz time-domain spectroscopy (TDS imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations.

  2. Current nondestructive evaluation research and development trends in the United States

    International Nuclear Information System (INIS)

    Jackson, Jerry

    1992-01-01

    An underlying theme present in much of the nondestructive evaluation (NDE) research and development occurring in the United States as well as worldwide is the application of physics and engineering principles toward understanding and optimizing NDE processes. Expanding this trend of using mathematical models for NDE processes is critical to the entire spectrum of NDE technology. In NDE research, modeling anchors the investigation in scientific, proven principles and establishes a firm technical basis to guide the design and development of inspection equipment and approaches. It also provides for understanding the capabilities and the limitations of whatever designs are selected and ultimately applied in the field. This paper reviews the status of these efforts, presents several examples where mathematical modeling is being profitably used for practical inspection work, and shows the path being taken in ongoing research.

  3. Application of laser ultrasonic non-destructive evaluation technique to additive manufacturing

    Science.gov (United States)

    Manzo, Anthony J.; Kenderian, Shant; Helvajian, Henry

    2016-04-01

    The change in properties of a propagating ultrasonic wave has been a mainstay characterization tool of the nondestructive evaluation (NDE) industry for identifying subsurface defects (e.g. damage). A variant of this concept could be applicable to 3D additive manufacturing where the existence of defects (e.g. pores) within a sub-layer could mark a product as non-qualifying. We have been exploring the utility of pulsed laser ultrasonic excitation coupled with CW laser heterodyne detection as an all optical scheme for characterizing sub surface layer properties. The all-optical approach permits a straight forward integration into a laser additive processing tool. To test the concept, we have developed an experimental system that generates pulsed ultrasonic waves (the probe) with high bandwidth (>30-200 microns) beams. Current tests include characterizing properties of spot weld joints between two thin stainless steel plates. The long term objective is to transition the technique into a laser additive manufacturing tool.

  4. Evaluation of High-Speed Railway Bridges Based on a Nondestructive Monitoring System

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2016-01-01

    Full Text Available Recently, trains’ velocities in Korea increased more than the speed used in the design of some bridges. Accordingly, this paper demonstrates the evaluation of a railway bridge due to high-speed trains’ movement. A nondestructive monitoring system is used to assess the bridge performance under train speeds of 290, 360, 400 and 406 km/h. This system is comprised of a wireless short-term acceleration system and strain monitoring sensors attached to the bridge girder. The results of the analytical methods in time and frequency domains are presented. The following conclusions are obtained: the cross-correlation models for accelerations and strain measurements are effective to predict the performance of the bridge; the static behavior is increased with train speed developments; and the vibration, torsion, fatigue and frequency contents analyses of the bridge show that the bridge is safe under applied trains’ speeds.

  5. Nondestructive evaluation of free acid content in apples using near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Sohn, M.R.; Cho, R.K.

    1998-01-01

    In non-destructive evaluation of free acid content in apples by near- infrared spectroscopy(NIRS), browning and heat treatment of squeezed apple juice affected to the accuracy but titratable alkali concentration did not. The free acid content in apples after harvest was able to determine using different apples in harvest time for calibration making. The result of MLR, multiple correlation coefficient(R) was 0.77 and standard error of prediction(SEP) was 0.03%. The free acid content in apples during storage was able to determine using calibration equation established with stored apples, R was 0.90 and SEP was ca. 0.04%. The prediction accuracy by NIR was not sufficient for use of quantitative analysis of free acid content in apple, but classification of low and high level in acid content was supposed to be applicable

  6. Process for Nondestructive Evaluation of the Quality of a Crimped Wire Connector

    Science.gov (United States)

    Yost, William T. (Inventor); Cramer, Karl E. (Inventor); Perey, Daniel F. (Inventor); Williams, Keith A. (Inventor)

    2014-01-01

    A process and apparatus for collecting data for nondestructive evaluation of the quality of a crimped wire connector are provided. The process involves providing a crimping tool having an anvil and opposing jaw for crimping a terminal onto a stranded wire, moving the jaw relative to the anvil to close the distance between the jaw and the anvil and thereby compress the terminal against the wire, while transmitting ultrasonic waves that are propagated through the terminal-wire combination and received at a receiving ultrasonic transducer as the jaw is moved relative to the anvil, and detecting and recording the position of the jaw relative to the anvil as a function of time and detecting and recording the amplitude of the ultrasonic wave that is received at the receiving ultrasonic transducer as a function of time as the jaw is moved relative to the anvil.

  7. Experimental program for development and evaluation of nondestructive assay techniques for plutonium holdup

    International Nuclear Information System (INIS)

    Brumbach, S.B.

    1977-05-01

    An outline is presented for an experimental program to develop and evaluate nondestructive assay techniques applicable to holdup measurement in plutonium-containing fuel fabrication facilities. The current state-of-the-art in holdup measurements is reviewed. Various aspects of the fuel fabrication process and the fabrication facility are considered for their potential impact on holdup measurements. The measurement techniques considered are those using gamma-ray counting, neutron counting, and temperature measurement. The advantages and disadvantages of each technique are discussed. Potential difficulties in applying the techniques to holdup measurement are identified. Experiments are proposed to determine the effects of such problems as variation in sample thickness, in sample distribution, and in background radiation. These experiments are also directed toward identification of techniques most appropriate to various applications. Also proposed are experiments to quantify the uncertainties expected for each measurement

  8. Nondestructive Evaluation Techniques for Development and Characterization of Carbon Nanotube Based Superstructures

    Science.gov (United States)

    Wincheski, Buzz; Kim, Jae-Woo; Sauti, Godfrey; Wainwright, Elliot; Williams, Phillip; Siochi, Emile J.

    2014-01-01

    Recently, multiple commercial vendors have developed capability for the production of large-scale quantities of high-quality carbon nanotube sheets and yarns. While the materials have found use in electrical shielding applications, development of structural systems composed of a high volume fraction of carbon nanotubes is still lacking. A recent NASA program seeks to address this by prototyping a structural nanotube composite with strength-toweight ratio exceeding current state-of-the-art carbon fiber composites. Commercially available carbon nanotube sheets, tapes, and yarns are being processed into high volume fraction carbon nanotube-polymer nanocomposites. Nondestructive evaluation techniques have been applied throughout this development effort for material characterization and process control. This paper will report on the progress of these efforts, including magnetic characterization of residual catalyst content, Raman scattering characterization of nanotube diameter, defect ratio, and nanotube strain, and polarized Raman scattering for characterization of nanotube alignment.

  9. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    Science.gov (United States)

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-01-01

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations. PMID:27314352

  10. Bonding and nondestructive evaluation of graphite/PEEK composite and titanium adherends with thermoplastic adhesives

    Science.gov (United States)

    Hodges, W. T.; Tyeryar, J. R.; Berry, M.

    1985-01-01

    Bonded single overlap shear specimens were fabricated from Graphite/PEEK (Polyetheretherketone) composite adherends and titanium adherends. Six advanced thermoplastic adhesives were used for the bonding. The specimens were bonded by an electromagnetic induction technique producing high heating rates and high-strength bonds in a few minutes. This contrasts with conventionally heated presses or autoclaves that take hours to process comparable quality bonds. The Graphite/PEEK composites were highly resistant to delamination during the testing. This allowed the specimen to fail exclusively through the bondline, even at very high shear loads. Nondestructive evaluation of bonded specimens was performed ultrasonically by energizing the entire thickness of the material through the bondline and measuring acoustic impedance parameters. Destructive testing confirmed the unique ultrasonic profiles of strong and weak bonds, establishing a standard for predicting relative bond strength in subsequent specimens.

  11. A DATA FUSION SYSTEM FOR THE NONDESTRUCTIVE EVALUATION OF NON-PIGGABLE PIPES

    Energy Technology Data Exchange (ETDEWEB)

    Shreekanth Mandayam; Robi Polikar; John C. Chen

    2004-04-01

    The objectives of this research project are: (1) To design sensor data fusion algorithms that can synergistically combine defect related information from heterogeneous sensors used in gas pipeline inspection for reliably and accurately predicting the condition of the pipe-wall. (2) To develop efficient data management techniques for signals obtained during multisensor interrogation of a gas pipeline. During this reporting period, Rowan University fabricated test specimens with simulated defects for nondestructive evaluation (NDE); designed and developed two versions of a test platform for performing multi-sensor interrogation of test specimens under loaded conditions simulating pressurized gas pipelines; and performed magnetic flux leakage (MFL), ultrasonic testing (UT), thermal imaging and acoustic emission (AE) NDE on the test specimens. The data resulting from this work will be employed for designing multi-sensor data fusion algorithms.

  12. A DATA FUSION SYSTEM FOR THE NONDESTRUCTIVE EVALUATION OF NON-PIGGABLE PIPES

    Energy Technology Data Exchange (ETDEWEB)

    Shreekanth Mandayam; Robi Polikar; John C. Chen

    2005-02-01

    The objectives of this research project are: (1) To design sensor data fusion algorithms that can synergistically combine defect related information from heterogeneous sensors used in gas pipeline inspection for reliably and accurately predicting the condition of the pipe-wall. (2) To develop efficient data management techniques for signals obtained during multisensor interrogation of a gas pipeline. During this reporting period, Rowan University designed, developed and exercised multisensor data fusion algorithms for identifying defect related information present in magnetic flux leakage, ultrasonic testing, thermal imaging and acoustic emission nondestructive evaluation signatures of a test-specimen suite representative of benign and anomalous indications in gas transmission pipelines. Specifically, the algorithms presented in the earlier reports were augmented to predict information related to defect depth (severity).

  13. A DATA FUSION SYSTEM FOR THE NONDESTRUCTIVE EVALUATION OF NON-PIGGABLE PIPES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Shreekanth Mandayam; Dr. Robi Polikar; Dr. John C. Chen

    2003-06-01

    The objectives of this research project are: (1) To design sensor data fusion algorithms that can synergistically combine defect related information from heterogeneous sensors used in gas pipeline inspection for reliably and accurately predicting the condition of the pipe-wall. (2) To develop efficient data management techniques for signals obtained during multisensor interrogation of a gas pipeline. During this reporting period, Rowan University fabricated test specimens with simulated defects for nondestructive evaluation (NDE); designed and developed two versions of a test platform for performing multi-sensor interrogation of test specimens under loaded conditions simulating pressurized gas pipelines; and performed acoustic emission (AE) NDE on the test specimens. The data resulting from this work will be employed for designing multi-sensor data fusion algorithms during the next reporting period.

  14. Evaluating the Quality of Reinforced Concrete Electric Railway Poles by Thermal Nondestructive Testing

    Directory of Open Access Journals (Sweden)

    Dmitry Valeryevich Sannikov

    2018-02-01

    Full Text Available Thermal nondestructive testing can be used to inspect reinforced concrete supports that are widely used in various industries. Corrosion damage is a typical defect found in these supports. Corrosion usually starts as a separation between the concrete and the steel rebar. Damage is exacerbated by pressure that is caused by the formation of corrosion products. The most logical method for using IR to detect corrosion or a disbond would be to heat up the rebar by resistive or inductive heating. In both cases, monitoring the dynamic temperature distributions on the pole allows for the evaluation of reinforcement quality. The thermal properties of steel, concrete, air, and corrosion products differ greatly. The magnitude of temperature anomalies and their behavior over time depend on the presence of corrosion products, air gaps, and the quality of contact between rebar and concrete.

  15. Standard practice for digital imaging and communication nondestructive evaluation (DICONDE) for computed radiography (CR) test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of computed radiography (CR) imaging and data acquisition equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This practice is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information objec...

  16. An Assessment of Nondestructive Evaluation Capability for Complex Additive Manufacturing Aerospace Components

    Science.gov (United States)

    Walker, James; Beshears, Ron; Lambert, Dennis; Tilson, William

    2016-01-01

    The primary focus of this work is to investigate some of the fundamental relationships between processing, mechanical testing, materials characterization, and NDE for additively manufactured (AM) components using the powder bed fusion direct melt laser sintered process. The goal is to understand the criticality of defects unique to the AM process and then how conventional nondestructive evaluation methods as well as some of the more non-traditional methods such as computed tomography, are effected by the AM material. Specific defects including cracking, porosity and partially/unfused powder will be addressed. Besides line-of-site NDE, as appropriate these inspection capabilities will be put into the context of complex AM geometries where hidden features obscure, or inhibit traditional NDE methods.

  17. Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report

    Science.gov (United States)

    Waller, Jess M.; Parker, Bradford H.; Hodges, Kenneth L.; Burke, Eric R.; Walker, James L.

    2014-01-01

    This report summarizes the National Aeronautics and Space Administrations (NASA) state of the art of nondestructive evaluation (NDE) for additive manufacturing (AM), or "3-D printed", hardware. NASA's unique need for highly customized spacecraft and instrumentation is suited for AM, which offers a compelling alternative to traditional subtractive manufacturing approaches. The Agency has an opportunity to push the envelope on how this technology is used in zero gravity, an enable in-space manufacturing of flight spares and replacement hardware crucial for long-duration, manned missions to Mars. The Agency is leveraging AM technology developed internally and by industry, academia, and other government agencies for its unique needs. Recent technical interchange meetings and workshops attended by NASA have identified NDE as a universal need for all aspects of additive manufacturing. The impact of NDE on AM is cross cutting and spans materials, processing quality assurance, testing and modeling disciplines. Appropriate NDE methods are needed before, during, and after the AM production process.

  18. Thermographic Non-Destructive Evaluation for Natural Fiber-Reinforced Composite Laminates

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2018-02-01

    Full Text Available Natural fibers, including mineral and plant fibers, are increasingly used for polymer composite materials due to their low environmental impact. In this paper, thermographic non-destructive inspection techniques were used to evaluate and characterize basalt, jute/hemp and bagasse fibers composite panels. Different defects were analyzed in terms of impact damage, delaminations and resin abnormalities. Of particular interest, homogeneous particleboards of sugarcane bagasse, a new plant fiber material, were studied. Pulsed phase thermography and principal component thermography were used as the post-processing methods. In addition, ultrasonic C-scan and continuous wave terahertz imaging were also carried out on the mineral fiber laminates for comparative purposes. Finally, an analytical comparison of different methods was given.

  19. Improving the Repair Planning System for Mining Equipment on the Basis of Non-destructive Evaluation Data

    Science.gov (United States)

    Drygin, Michael; Kuryshkin, Nicholas

    2017-11-01

    The article tells about forming a new concept of scheduled preventive repair system of the equipment at coal mining enterprises, based on the use of modem non-destructive evaluation methods. The approach to the solution for this task is based on the system-oriented analysis of the regulatory documentation, non-destructive evaluation methods and means, experimental studies with compilation of statistics and subsequent grapho-analytical analysis. The main result of the work is a feasible explanation of using non-destructive evaluation methods within the current scheduled preventive repair system, their high efficiency and the potential of gradual transition to condition-based maintenance. In practice wide use of nondestructive evaluation means w;ill allow to reduce significantly the number of equipment failures and to repair only the nodes in pre-accident condition. Considering the import phase-out policy, the solution for this task will allow to adapt the SPR system to Russian market economy conditions and give the opportunity of commercial move by reducing the expenses for maintenance of Russian-made and imported equipment.

  20. Impact-Echo for the evaluation of concrete structures, In : Non-destructive evaluation of reinforced concrete structures, Volume 2: Non-destructive testing methods

    OpenAIRE

    ABRAHAM, Odile; POPOVICS, John

    2010-01-01

    This chapter describes the impact echo non-destructive test method. After a summary of the history of the development of the method, the basic physical phenomena underlying the method are presented. Then data analysis approaches and signal processing techniques, including time and frequency domain processing, are described. A description of the needed equipment and classical measurement configurations are reviewed. Finally classical applications of the impact echo method are summarized.

  1. New approach in paediatric dentistry: ultrasonic nondestructive evaluation of restorative dental materials. Experimental study.

    Science.gov (United States)

    Ferrazzano, G F; Cantile, T; Coda, M; Ingenito, A

    2015-09-01

    The ultrasonic inspection is a non invasive method which is very developed in the industrial field, for the non-destructive evaluation of materials, and in the medical field, for the ultrasound diagnostic analysis. In paediatric dentistry the most widely used non- destructive evaluation is the X-ray technique. Radiographs are valuable aids in the oral health care of infants, children, adolescents, allowing dentists to diagnose and treat oral diseases that cannot be detected during a visual clinical examination. The aim of this in vitro study was to analyse the ultrasonic non-destructive evaluation (UT-NDE) technique to inspect both dental materials internal structure and the form and position of internal defects in order to obtain a diagnostic method, free of ionising radiations, in paediatric dentistry. Moreover the ultrasonic inspection (UT) could be a rapid method of diagnosis in uncooperative paediatric patients. Study Design: Experimental samples were manufactured with the characteristics of a large composite or glass ionomer cement paediatric dental restoration, in terms of either size or operative technique used. Characteristics of the common restorations were analysed and reproduced in vitro, using the same operative conditions, also adding operative defects into some samples. All the samples were subjected to an innovative UT test using the pulse echo immersion scanning technique. Both C-scans and full volume scans were carried out during the experimental programme. To enhance the data obtained from the UT scan, a digital system (Ecus Inspection software) for signal detection, archiving, processing and displaying was used. UT images showed the presence of internal defects in the dental materials. It was also possible to inspect very thin discontinuity such as the one represented by the fluid resin. In order to execute the statistical analysis, the values of electric voltage measured in five higher white points and in five higher grey points of the pictures

  2. Nondestructive evaluation method on mechanical property change of graphite components in the HTGR by ultrasonic wave propagation with grain/pore microstructure

    International Nuclear Information System (INIS)

    Shibata, Taiju; Ishihara, Masahiro

    2003-01-01

    Oxidation damage is one of the crucial factors to degrade mechanical properties of graphite components in the HTGRs. The oxidation increases the porosity of graphite and, hence, results in degradation. In order to evaluate the oxidation damage at neutron irradiated conditions, a new analytical method by ultrasonic wave propagation characteristics was developed. Irradiation effects, a dimensional change and a pinning of dislocations in crystals, on the propagation characteristics in graphite are taken into consideration in the method. It was shown that an equivalent velocity of the wave in graphite is increased by the irradiation, and that a signal height of a propagated waveform is increased by the irradiation, and it decreases with increasing porosity caused by the oxidation. The Young's modulus for an ideal graphite polycrystals without pore was evaluated by considering the wave velocity in them in order to evaluate the change of the apparent modulus at simultaneous irradiated and oxidized conditions as an application of the developed method. It was also shown that the oxidation-induced change of the modulus is appropriately evaluated by the method, suggesting that it is possible to evaluate the change for the irradiated conditions. It can be said from this study that the developed method is promising to evaluate the oxidation damage on graphite components in the HTGRs by nondestructive way. (author)

  3. Non-destructive evaluation of spiral-welded pipes using flexural guided waves

    Science.gov (United States)

    Zhang, Xiaowei; Tang, Zhifeng; Lü, Fuzai; Pan, Xiaohong

    2016-02-01

    Millions of miles of pipes are being used in both civil and industrial fields. Spiral-welded pipes, which are widely applied in fields such as drainage, architecture as well as oil and gas storage and transportation, are difficult to inspect due to their complex geometry. Guided waves have shown a great potential in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) for such cases. Flexural guided waves that propagate at a helix angle relative to the axial direction of pipe, are the most appropriate modes for inspecting spiral-welded pipes. The classical Normal Mode Expansion method (NME) is adopted to disseminate the forced response and perturbation analysis of a steel pipe with respect to a time delay circular loading. A time delay circular array transducer (TDCAT) is proposed for the purpose of exciting pure flexural mode in pipes. Pure flexural mode can be excited when the time delay parameter is specifically designed. The theoretical prediction is verified by finite element numerical evaluation and spiral-welded pipe inspection experiment.

  4. Development of PZT-excited stroboscopic shearography for full-field nondestructive evaluation

    Science.gov (United States)

    Asemani, Hamidreza; Park, Jinwoo; Lee, Jung-Ryul; Soltani, Nasser

    2017-05-01

    Nondestructive evaluation using shearography requires a way to stress the inspection target. This technique is able to directly measure the displacement gradient distribution on the object surface. Shearography visualizes the internal structural damages as the anomalous pattern in the shearograpic fringe pattern. A piezoelectric (PZT) excitation system is able to generate loadings in the vibrational, acoustic, and ultrasonic regimes. In this paper, we propose a PZT-excited stroboscopic shearography. The PZT excitation could generate vibrational loading, a stationary wavefield, and a nonstationary propagation wave to fulfill the external loading requirement of shearography. The sweeping of the PZT excitation frequency, the formation of a standing wave, and a small shearing to suppress the incident wave were powerful controllable tools to detect the defects. The sweeping of the PZT excitation frequency enabled us to determine one of the defect-sensitive frequencies almost in real time. In addition, because the defect sensitive frequencies always existed in wide and plural ranges, the risk of the defect being overlooked by the inspector could be alleviated. The results of evaluation using stroboscopic shearography showed that an artificial 20 mm-diameter defect could be visualized at the excitation frequencies of 5-8 kHz range and 12.5-15.5 kHz range. This technique provided full field reliable and repeatable inspection results. Additionally, the proposed method overcame the important drawback of the time-averaged shearography, being required to identify the resonance vibration frequency sensitive to the defect.

  5. A time-domain finite element boundary integration method for ultrasonic nondestructive evaluation.

    Science.gov (United States)

    Shi, Fan; Choi, Wonjae; Skelton, Elizabeth A; Lowe, Michael J S; Craster, Richard V

    2014-12-01

    A 2-D and 3-D numerical modeling approach for calculating the elastic wave scattering signals from complex stress-free defects is evaluated. In this method, efficient boundary integration across the complex boundary of the defect is coupled with a time-domain finite element (FE) solver. The model is designed to simulate time-domain ultrasonic nondestructive evaluation in bulk media. This approach makes use of the hybrid concept of linking a local numerical model to compute the near-field scattering behavior and theoretical mathematical formulas for postprocessing to calculate the received signals. It minimizes the number of monitoring signals from the FE calculation so that the computation effort in postprocessing decreases significantly. In addition, by neglecting the conventional regular monitoring box, the region for FE calculation can be made smaller. In this paper, the boundary integral method is implemented in a commercial FE code, and it is validated by comparing the scattering signals with results from corresponding full FE models. The coupled method is then implemented in real inspection scenarios in both 2-D and 3-D, and the accuracy and the efficiency are demonstrated. The limitations of the proposed model and future works are also discussed.

  6. Framework for incorporating nondestructive evaluation (NDE) into pavement and bridge management systems

    Science.gov (United States)

    Sobanjo, John O.; Tawfiq, Kamal S.

    1999-02-01

    One of the major components of an infrastructure management system is the condition assessment or deterioration modeling. With application to highway pavements and bridges, this paper presents conceptually how nondestructive evaluation (NDE) results can be utilized to provide a quantitative assessment of the infrastructure condition in a format usable for network-level pavement management systems and bridge management systems. NDE techniques typically applied to pavements include Visual Rating, Falling Weight Deflectometer, Dynaflect, Seismic Pavement Analyzer, and the Ground Penetrating Radar (GPR). Bridges can also be evaluated using the GPR. NDE is particularly useful at the network level of infrastructure management because of the mobility of conducting the tests. Detailed mechanistic methods have been suggested for NDE interpretation but this method may not be practical at network level. Interpretation of NDE results, through knowledge-based systems and intelligent databases indicate the defects and residual capacity of infrastructures. Measured physical properties and defects in the infrastructure component materials can be correlated to existing scales of condition assessment such as in the NBI and PONTIS formats for bridge management and also to an index or rating such as the PSI in highway pavements.

  7. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.; Coble, J.B.; Hashemian, H.M.; Konnick, R.; Ray, S.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).

  8. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  9. Development of a Nondestructive Non-Contact Acousto-Thermal Evaluation Technique for Damage Detection in Materials (Preprint)

    Science.gov (United States)

    2011-11-01

    evaluate incipient thermal damage in composite structures. An aluminum aircraft wheel with a crack was used to show the applicability of the technique...ultrasonic and thermography NDE techniques have been valuable in detecting damage due to sub-surface delamination. Thermal exposure of PMCs can cause...AFRL-RX-WP-TP-2011-4366 DEVELOPMENT OF A NONDESTRUCTIVE NON- CONTACT ACOUSTO-THERMAL EVALUATION TECHNIQUE FOR DAMAGE DETECTION IN MATERIALS

  10. Development of Nondestructive Non-Contact Acousto-Thermal Evaluation Technique for Damage Detection in Materials (Postprint)

    Science.gov (United States)

    2012-09-01

    used to demonstrate the capability of the NCATS technique to evaluate incipient thermal damage in composite structures. An aluminum alloy aircraft wheel...extensive damage that can be detected visually without much difficulty. When the damage is not visible, ultrasonic and thermography NDE techniques have...AFRL-RX-WP-JA-2014-0223 DEVELOPMENT OF NONDESTRUCTIVE NON- CONTACT ACOUSTO-THERMAL EVALUATION TECHNIQUE FOR DAMAGE DETECTION IN MATERIALS

  11. Phenomenological and mechanics aspects of nondestructive evaluation and characterization by sound and ultrasound of material and fracture properties

    Science.gov (United States)

    Fu, L. S. W.

    1982-01-01

    Developments in fracture mechanics and elastic wave theory enhance the understanding of many physical phenomena in a mathematical context. Available literature in the material, and fracture characterization by NDT, and the related mathematical methods in mechanics that provide fundamental underlying principles for its interpretation and evaluation are reviewed. Information on the energy release mechanism of defects and the interaction of microstructures within the material is basic in the formulation of the mechanics problems that supply guidance for nondestructive evaluation (NDE).

  12. Time-Domain Terahertz Reflection Holograhic Tomography Nondestructive Evaluation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a single-sided time-domain terahertz reflection holographic tomographic imaging (TD-THz RHT) nondestructive...

  13. Using expert opinion to quantify accuracy and reliability of nondestructive evaluation on bridges : [project brief].

    Science.gov (United States)

    2015-08-01

    Research is currently being conducted to improve bridge inspection practices. One potential : improvement is the use of nondestructive testing equipment to supplement visual inspection. To : consider the costs and benefits of this equipment, data abo...

  14. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Encouraged by Phase I accomplishments, the proposed Phase II program will significantly mature and align the development of a Space Qualified Non-Destructive...

  15. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Encouraged by Phase I accomplishments, the proposed Phase II program will significantly mature and align the development of a Space Qualified Non-Destructive...

  16. Non-destructive evaluation of timber structures in a historical building of Tiradentes , MG

    OpenAIRE

    Luciana Barbosa de Abreu; José Tarcísio Lima; Giovanni Francisco Rabelo; Francisco Carlos Gomes; Paulo Fernando Trugilho; Felipe de Souza Eloy

    2013-01-01

    Problems related to the durability of wood are commonly found in historical buildings structures. Preservation and conservation resolutions must be adopted, in order to avoid losses and substitutions, which mischaracterize buildings. Non-destructive methods for detecting deterioration should be used in order to substantiate decisions and increase the longevity of historical heritage. This work was carried out in order to perform non-destructive essays to infer about the integrity of a beam an...

  17. Nondestructive evaluation of braided carbon fiber composites with artificial defect using HTS-SQUID gradiometer

    International Nuclear Information System (INIS)

    Shinyama, Y.; Yamaji, T.; Hatsukade, Y.; Takai, Y.; Aly-Hassan, M.S.; Nakai, A.; Hamada, H.; Tanaka, S.

    2011-01-01

    We applied a current-injection-based NDE method using a HTS-SQUID gradiometer to a braided CFRP with artificial cracks. Current distributions in the braided CFRP were estimated from measured field gradient distributions. A small crack, in which a few carbon-fiber bundles were cut, was well detected from the current distributions. A cross-section of the CFRP showed that a density of the bundles at edges is higher than the other part. The experimental results demonstrated the capability of the method to detect sub-mm cracks. Braided carbon fiber reinforced plastics (CFRPs) are one of multifunctional materials with superior properties such as mechanical strength to normal CFRPs since the braided CFRPs have continuous fiber bundles. In this paper, we applied the current-injection-based nondestructive evaluation (NDE) method using a HTS-SQUID gradiometer to the braided CFRP for the detection of the breakage of the bundles. We prepared planar braided CFRP samples with and without artificial cracks of 1 and 2 mm lengths, and measured the current density distribution above the samples using the NDE method. In the measurement results, not only a few completely-cut bundles but also the additional partially-cut bundles were detected from decrease in the measured current density along the cut bundle around the cracks. From these results, we showed that it is possible to inspect a few partially-cut bundles in the braided CFRPs by the NDE method.

  18. Non-destructive Evaluation of Bonds Between Fiberglass Composite and Metal

    Science.gov (United States)

    Zhao, Selina; Sonta, Kestutis; Perey, Daniel F.; Cramer, K. E.; Berger, Libby

    2015-01-01

    To assess the integrity and reliability of an adhesive joint in an automotive composite component, several non-destructive evaluation (NDE) methodologies are correlated to lap shear bond strengths. A glass-fabric-reinforced composite structure was bonded to a metallic structure with a two-part epoxy adhesive. Samples were subsequently cut and tested in shear, and flaws were found in some areas. This study aims to develop a reliable and portable NDE system for service-level adhesive inspection in the automotive industry. The results of the experimental investigation using several NDE methods are presented and discussed. Fiberglass-to-metal bonding is the ideal configuration for NDE via thermography using excitation with induction heating, due to the conductive metal and non-conductive glass-fiber-reinforced composites. Excitation can be either by a research-grade induction heater of highly defined frequency and intensity, or by a service-level heater, such as would be used for sealing windshields in a body shop. The thermographs thus produced can be captured via a high-resolution infrared camera, with principal component analysis and 2D spatial Laplacian processing. Alternatively, the thermographs can be captured by low resolution thermochromic microencapsulated liquid crystal film imaging, which needs no post-processing and can be very inexpensive. These samples were also examined with phased-array ultrasound. The NDE methods are compared to the lap shear values and to each other for approximate cost, accuracy, and time and level of expertise needed.

  19. Interrelationship of Nondestructive Evaluation Methodologies Applied to Testing of Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Leifeste, Mark R.

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are commonly used in spacecraft for containment of pressurized gases and fluids, incorporating strength and weight savings. The energy stored is capable of extensive spacecraft damage and personal injury in the event of sudden failure. These apparently simple structures, composed of a metallic media impermeable liner and fiber/resin composite overwrap are really complex structures with numerous material and structural phenomena interacting during pressurized use which requires multiple, interrelated monitoring methodologies to monitor and understand subtle changes critical to safe use. Testing of COPVs at NASA Johnson Space Center White Sands T est Facility (WSTF) has employed multiple in-situ, real-time nondestructive evaluation (NDE) methodologies as well as pre- and post-test comparative techniques to monitor changes in material and structural parameters during advanced pressurized testing. The use of NDE methodologies and their relationship to monitoring changes is discussed based on testing of real-world spacecraft COPVs. Lessons learned are used to present recommendations for use in testing, as well as a discussion of potential applications to vessel health monitoring in future applications.

  20. Analytical model of tilted driver–pickup coils for eddy current nondestructive evaluation

    Science.gov (United States)

    Cao, Bing-Hua; Li, Chao; Fan, Meng-Bao; Ye, Bo; Tian, Gui-Yun

    2018-03-01

    A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil. It is frequently observed in an eddy current (EC) array probe. In this work, a tilted non-coaxial driver-pickup probe above a multilayered conducting plate is analytically modeled with spatial transformation for eddy current nondestructive evaluation. Basically, the core of the formulation is to obtain the projection of magnetic vector potential (MVP) from the driver coil onto the vector along the tilted pickup coil, which is divided into two key steps. The first step is to make a projection of MVP along the pickup coil onto a horizontal plane, and the second one is to build the relationship between the projected MVP and the MVP along the driver coil. Afterwards, an analytical model for the case of a layered plate is established with the reflection and transmission theory of electromagnetic fields. The calculated values from the resulting model indicate good agreement with those from the finite element model (FEM) and experiments, which validates the developed analytical model. Project supported by the National Natural Science Foundation of China (Grant Nos. 61701500, 51677187, and 51465024).

  1. PHOTOACOUSTIC NON-DESTRUCTIVE EVALUATION AND IMAGING OF CARIES IN DENTAL SAMPLES

    International Nuclear Information System (INIS)

    Li, T.; Dewhurst, R. J.

    2010-01-01

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 deg. C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  2. Evaluation of scanners for C-scan imaging in nondestructive inspection of aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Gieske, J.H.

    1994-04-01

    The goal of this project was to produce a document that contains information on the usability and performance of commercially available, fieldable, and portable scanner systems as they apply to aircraft NDI inspections. In particular, the scanners are used to generate images of eddy current, ultrasonic, or bond tester inspection data. The scanner designs include manual scanners, semiautomated scanners, and fully automated scanners. A brief description of the functionality of each scanner type, a sketch, and a fist of the companies that support the particular design are provided. Vendors of each scanner type provided hands-on demonstrations of their equipment on real aircraft samples in the FAA Aging Aircraft Nondestructive Inspection Validation Center (AANC) in Albuquerque, NM. From evaluations recorded during the demonstrations, a matrix of scanner features and factors and ranking of the capabilities and limitations of the design, portability, articulation, performance, usability, and computer hardware/software was constructed to provide a quick reference for comparing the different scanner types. Illustrations of C-scan images obtained during the demonstration are shown.

  3. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    Science.gov (United States)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  4. Numerical modeling for the electromagnetic non-destructive evaluation: application to the non-destructive evaluation of concrete; Modelisation numerique pour l'evaluation non destructive electromagnetique: application au controle non destructif des structures en beton

    Energy Technology Data Exchange (ETDEWEB)

    Travassos, L

    2007-06-15

    Concrete is the most common building material and accounts for a large part of the systems that are necessary for a country to operate smoothly including buildings, roads, and bridges. Nondestructive testing is one of the techniques that can be used to assess the structural condition. It provides non perceptible information that conventional techniques of evaluation unable to do. The main objective of this work is the numerical simulation of a particular technique of nondestructive testing: the radar. The numerical modeling of the radar assessment of concrete structures make it possible to envisage the behavior of the system and its capacity to detect defects in various configurations. To achieve this objective, it was implemented electromagnetic wave propagation models in concrete structures, by using various numerical techniques to examine different aspects of the radar inspection. First of all, we implemented the finite-difference time-domain method in 3D which allows to take into account concrete characteristics such as porosity, salt content and the degree of saturation of the mixture by using Debye models. In addition, a procedure to improve the radiation pattern of bow-tie antennas is presented. This approach involves the Moment Method in conjunction with the Multi objective Genetic Algorithm. Finally, we implemented imaging algorithms which can perform fast and precise characterization of buried targets in inhomogeneous medium by using three different methods. The performance of the proposed algorithms is confirmed by numerical simulations. (author)

  5. Low-Cost Quality Control and Nondestructive Evaluation Technologies for General Aviation Structures

    Science.gov (United States)

    Cramer, K. Elliott; Gavinsky, Bob; Semanskee, Grant

    1998-01-01

    NASA's Advanced General Aviation Transport Experiments (AGATE) Program has as a goal to reduce the overall cost of producing private aviation aircraft while maintaining the safety of these aircraft. In order to successfully meet this goal, it is necessary to develop nondestructive inspection techniques which will facilitate the production of the materials used in these aircraft and assure the quality necessary to maintain airworthiness. This paper will discuss a particular class of general aviation materials and several nondestructive inspection techniques that have proven effective for making these inspections. Additionally, this paper will discuss the investigation and application of other commercially available quality control techniques applicable to these structures.

  6. Fabrication of imitative stress corrosion cracking using diffusion bonding for the development of nondestructive testing and evaluations

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi

    2011-01-01

    This study reports a method to fabricate imitative stress corrosion cracking suitable for the development of nondestructive testing and evaluation methods. The method is to embed a partially-bonded region, which simulates the characteristics of stress corrosion cracking, inside a material by bonding together surfaces having artificial grooves. Since the sizes of the grooves are smaller than the spatial resolution of nondestructive testing method applied, the material property realized can be regarded as uniform as the actual stress corrosion cracking. The grooves are introduced using mechanical machining, which enables one to control the characteristics of the simulated flaw. Four specimens made of type 316L austenitic stainless steel are fabricated. The method is demonstrated by visual and eddy current examinations. (author)

  7. Microwave and Millimeter Wave Nondestructive Evaluation of the Space Shuttle External Tank Insulating Foam

    Science.gov (United States)

    Shrestha, S.; Kharkovsky, S.; Zoughi, R.; Hepburn, F

    2005-01-01

    The Space Shuttle Columbia s catastrophic failure has been attributed to a piece of external fuel tank insulating SOFI (Spray On Foam Insulation) foam striking the leading edge of the left wing of the orbiter causing significant damage to some of the protecting heat tiles. The accident emphasizes the growing need to develop effective, robust and life-cycle oriented methods of nondestructive testing and evaluation (NDT&E) of complex conductor-backed insulating foam and protective acreage heat tiles used in the space shuttle fleet and in future multi-launch space vehicles. The insulating SOFI foam is constructed from closed-cell foam. In the microwave regime this foam is in the family of low permittivity and low loss dielectric materials. Near-field microwave and millimeter wave NDT methods were one of the techniques chosen for this purpose. To this end several flat and thick SOFI foam panels, two structurally complex panels similar to the external fuel tank and a "blind" panel were used in this investigation. Several anomalies such as voids and disbonds were embedded in these panels at various locations. The location and properties of the embedded anomalies in the "blind" panel were not disclosed to the investigating team prior to the investigation. Three frequency bands were used in this investigation covering a frequency range of 8-75 GHz. Moreover, the influence of signal polarization was also investigated. Overall the results of this investigation were very promising for detecting the presence of anomalies in different panels covered with relatively thick insulating SOFI foam. Different types of anomalies were detected in foam up to 9 in thick. Many of the anomalies in the more complex panels were also detected. When investigating the blind panel no false positives were detected. Anomalies in between and underneath bolt heads were not easily detected. This paper presents the results of this investigation along with a discussion of the capabilities of the method

  8. Non-Destructive Evaluation of Aircraft Structural Components and Composite Materials at DSTO Using Sonic Thermography

    Science.gov (United States)

    2011-02-01

    256 Indium Antimonide (InSb) detector elements with a sensitivity of 20 mK in the operating wavelength band of 3-5 µm. The detectors are operated in...DSTO RESEARCH LIBRARY THESAURUS Nondestructive tests, thermography, fatigue tests, crack propagation, Aluminum alloys, acoustics 19. ABSTRACT This

  9. Evaluation of the MIT-Scan-T2 for non-destructive PCC pavement thickness determination.

    Science.gov (United States)

    2008-07-01

    The MIT-Scan-T2 device is marketed as a non-destructive way to determine pavement thickness on both : HMA and PCC pavements. PCC pavement thickness determination is an important incentivedisincentive : measurement for the Iowa DOT and contractors. Th...

  10. Non-destructive seed evaluation with impact measurements and X-ray analysis

    NARCIS (Netherlands)

    Burg, van der W.J.; Jalink, H.; Zwol, van R.A.; Aartse, J.W.; Bino, R.J.

    1995-01-01

    Non-destructive testing is important in the search for seed characteristics that relate to quality. It provides a means for consecutive testing on a seed by seed basis. If the tests are fast and can be automated they can form the basis for rapid new analysis methods or online sorting. X-ray analysis

  11. Evaluating a non-destructive method for calibrating tree biomass equations derived from tree branching architecture

    NARCIS (Netherlands)

    MacFarlane, D.W.; Kuyah, S.; Mulia, R.; Dietz, J.; Muthuri, C.; Noordwijk, van M.

    2014-01-01

    Functional branch analysis (FBA) is a promising non-destructive alternative to the standard destructive method of tree biomass equation development. In FBA, a theoretical model of tree branching architecture is calibrated with measurements of tree stems and branches to estimate the coefficients of

  12. Sequencing degraded DNA from non-destructively sampled museum specimens for RAD-tagging and low-coverage shotgun phylogenetics.

    Directory of Open Access Journals (Sweden)

    Mandy Man-Ying Tin

    Full Text Available Ancient and archival DNA samples are valuable resources for the study of diverse historical processes. In particular, museum specimens provide access to biotas distant in time and space, and can provide insights into ecological and evolutionary changes over time. However, archival specimens are difficult to handle; they are often fragile and irreplaceable, and typically contain only short segments of denatured DNA. Here we present a set of tools for processing such samples for state-of-the-art genetic analysis. First, we report a protocol for minimally destructive DNA extraction of insect museum specimens, which produced sequenceable DNA from all of the samples assayed. The 11 specimens analyzed had fragmented DNA, rarely exceeding 100 bp in length, and could not be amplified by conventional PCR targeting the mitochondrial cytochrome oxidase I gene. Our approach made these samples amenable to analysis with commonly used next-generation sequencing-based molecular analytic tools, including RAD-tagging and shotgun genome re-sequencing. First, we used museum ant specimens from three species, each with its own reference genome, for RAD-tag mapping. Were able to use the degraded DNA sequences, which were sequenced in full, to identify duplicate reads and filter them prior to base calling. Second, we re-sequenced six Hawaiian Drosophila species, with millions of years of divergence, but with only a single available reference genome. Despite a shallow coverage of 0.37 ± 0.42 per base, we could recover a sufficient number of overlapping SNPs to fully resolve the species tree, which was consistent with earlier karyotypic studies, and previous molecular studies, at least in the regions of the tree that these studies could resolve. Although developed for use with degraded DNA, all of these techniques are readily applicable to more recent tissue, and are suitable for liquid handling automation.

  13. Sequencing degraded DNA from non-destructively sampled museum specimens for RAD-tagging and low-coverage shotgun phylogenetics.

    Science.gov (United States)

    Tin, Mandy Man-Ying; Economo, Evan Philip; Mikheyev, Alexander Sergeyevich

    2014-01-01

    Ancient and archival DNA samples are valuable resources for the study of diverse historical processes. In particular, museum specimens provide access to biotas distant in time and space, and can provide insights into ecological and evolutionary changes over time. However, archival specimens are difficult to handle; they are often fragile and irreplaceable, and typically contain only short segments of denatured DNA. Here we present a set of tools for processing such samples for state-of-the-art genetic analysis. First, we report a protocol for minimally destructive DNA extraction of insect museum specimens, which produced sequenceable DNA from all of the samples assayed. The 11 specimens analyzed had fragmented DNA, rarely exceeding 100 bp in length, and could not be amplified by conventional PCR targeting the mitochondrial cytochrome oxidase I gene. Our approach made these samples amenable to analysis with commonly used next-generation sequencing-based molecular analytic tools, including RAD-tagging and shotgun genome re-sequencing. First, we used museum ant specimens from three species, each with its own reference genome, for RAD-tag mapping. Were able to use the degraded DNA sequences, which were sequenced in full, to identify duplicate reads and filter them prior to base calling. Second, we re-sequenced six Hawaiian Drosophila species, with millions of years of divergence, but with only a single available reference genome. Despite a shallow coverage of 0.37 ± 0.42 per base, we could recover a sufficient number of overlapping SNPs to fully resolve the species tree, which was consistent with earlier karyotypic studies, and previous molecular studies, at least in the regions of the tree that these studies could resolve. Although developed for use with degraded DNA, all of these techniques are readily applicable to more recent tissue, and are suitable for liquid handling automation.

  14. Non-destructive testing principles and accurate evaluation of the hydraulic measure impact range using the DC method

    Science.gov (United States)

    Qiu, Liming; Shen, Rongxi; Song, Dazhao; Wang, Enyuan; Liu, Zhentang; Niu, Yue; Jia, Haishan; Xia, Shankui; Zheng, Xiangxin

    2017-12-01

    An accurate and non-destructive evaluation method for the hydraulic measure impact range in coal seams is urgently needed. Aiming at the application demands, a theoretical study and field test are presented using the direct current (DC) method to evaluate the impact range of coal seam hydraulic measures. We firstly analyzed the law of the apparent resistivity response of an abnormal conductive zone in a coal seam, and then investigated the principle of non-destructive testing of the coal seam hydraulic measure impact range using the DC method, and used an accurate evaluation method based on the apparent resistivity cloud chart. Finally, taking hydraulic fracturing and hydraulic flushing as examples, field experiments were carried out in coal mines to evaluate the impact ranges. The results showed that: (1) in the process of hydraulic fracturing, coal conductivity was enhanced by high-pressure water in the coal seam, and after hydraulic fracturing, the boundary of the apparent resistivity decrease area was the boundary impact range. (2) In the process of hydraulic flushing, coal conductivity was reduced by holes and cracks in the coal seam, and after hydraulic flushing, the boundary of the apparent resistivity increase area was the boundary impact range. (3) After the implementation of the hydraulic measures, there may be some blind zones in the coal seam; in hydraulic fracturing blind zones, the apparent resistivity increased or stayed constant, while in hydraulic flushing blind zones, the apparent resistivity decreased or stayed constant. The DC method realized a comprehensive and non-destructive evaluation of the impact range of the hydraulic measures, and greatly reduced the time and cost of evaluation.

  15. Application of advanced non-destructive testing to evaluate the foundation depth of the existing structures

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc; Phan Chanh Vu; Bui Xuan Huy; Tran Thanh Luan; Nguyen Kien Chinh; Le Danh Chuan

    2004-01-01

    The applications of Parallel Seismic Test to evaluate deep foundations of the existing structures are still new in Vietnam. Under the framework of the basic VAEC project (2003) and project VIE/8/013, the parallel seismic test method (PSM) was evaluated at Center for Nuclear Techniques, Hochiminh City. Background information on principle and general description of the method as it is typically applied in the evaluation of deep foundations are also summarized. A suitable test site was selected, where the foundation depths can be controlled for the parallel seismic tests were conducted by impacting the driven piles, and the travel times down the pile, through the soil, to a receiver located in an adjacent water-filled borehole were measured. The primary objective of the test program is to evaluated the accuracy of method in determining the pile length, to evaluate the capabilities of the method and the equipped system SPL-97, to define the type of material which comprises a deep foundation, the distance of the compression wave can travel through the adjacent soil before the signal attenuates beyond recognition and the ware velocities in the various soil strata encountered. The parallel seismic testing program is described and results are presented. Parallel seismic tests, as conventionally practiced, i.e. with short distance between a structure and an access hole, can be used to define the bottom of the piles, as well as to identify the material type from the computed velocity in the structural material. The conventional approach of using changes of slop of the plot versus first arrival to identify the bottom of a deep foundation works best when the piles are in a soil with uniform stiffness and the accuracy of the evaluated depths can be obtained about ± 0.5 m. Supplementing this approach of interpretation by the examining the amplitudes of the first arrival on a plot with the same scale for all records allows one to better interpret signals in more common

  16. Degradation modeling with application to aging and maintenance effectiveness evaluations

    International Nuclear Information System (INIS)

    Samanta, P.K.; Vesely, W.E.; Hsu, F.; Subudhi, M.

    1991-01-01

    This paper describes a modeling approach to analyze light water reactor component degradation and failure data to understand the aging process of components. As used here, degradation modeling is the analysis of information on component degradation in order to develop models of the process and its implications. This particular modeling focuses on the analysis of the times of component degradations, to model how the rate of degradation changes with the age of the component. The methodology presented also discusses the effectiveness of maintenance as applicable to aging evaluations. The specific applications which are performed show quantitative models of component degradation rates and component failure rates from plant-specific data. The statistical techniques which are developed and applied allow aging trends to be effectively identified in the degradation data, and in the failure data. Initial estimates of the effectiveness of maintenance in limiting degradations from becoming failures also are developed. These results are important first steps in degradation modeling, and show that degradation can be modeled to identify aging trends

  17. Degradation modeling with application to aging and maintenance effectiveness evaluations

    International Nuclear Information System (INIS)

    Samanta, P.K.; Hsu, F.; Subduhi, M.; Vesely, W.E.

    1990-01-01

    This paper describes a modeling approach to analyze component degradation and failure data to understand the aging process of components. As used here, degradation modeling is the analysis of information on component degradation in order to develop models of the process and its implications. This particular modeling focuses on the analysis of the times of component degradations, to model how the rate of degradation changes with the age of the component. The methodology presented also discusses the effectiveness of maintenance as applicable to aging evaluations. The specific applications which are performed show quantitative models of component degradation rates and component failure rates from plant-specific data. The statistical techniques which are developed and applied allow aging trends to be effectively identified in the degradation data, and in the failure data. Initial estimates of the effectiveness of maintenance in limiting degradations from becoming failures also are developed. These results are important first steps in degradation modeling, and show that degradation can be modeled to identify aging trends. 2 refs., 8 figs

  18. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    International Nuclear Information System (INIS)

    Fan, Chengguang; Drinkwater, Bruce W.

    2014-01-01

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded

  19. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Chengguang [College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, PR China and Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom); Drinkwater, Bruce W. [Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom)

    2014-02-18

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.

  20. Evaluation and improvement of nondestructive evaluation reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Bates, D.J.; Deffenbaugh, J.D.; Good, M.S.; Heasler, P.G.; Mart, G.A.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Van Fleet, L.G.

    1987-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection (ISI) of Light Water Reactors (NDE Reliability) Program at Pacific Northwest Laboratory (PNL) was established to determine the reliability of current ISI techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this NRC program are to: determine the reliability of ultrasonic ISI performed on commercial light-water reactor (LWR) primary systems, using probabilistic fracture mechanics analysis, determine the impact of NDE unreliability on system safety and determine the level of inspection reliability required to ensure a suitably low failure probability, evaluate the degree of reliability improvement that could be achieved using improved and advanced NDE techniques, based on material properties, service conditions, and NDE uncertainties, recommend revisions to ASME Code, Section XI, and Regulatory Requirements that will ensure suitably low failure probabilities. The scope of this program is limited to ISI of primary systems; the results and recommendations may also be applicable to Class II piping systems

  1. Nondestructive Evaluation of Functionally Graded Subsurface Damage on Cylinders in Nuclear Installations Based on Circumferential SH Waves

    Directory of Open Access Journals (Sweden)

    Zhen Qu

    2016-01-01

    Full Text Available Subsurface damage could affect the service life of structures. In nuclear engineering, nondestructive evaluation and detection of the evaluation of the subsurface damage region are of great importance to ensure the safety of nuclear installations. In this paper, we propose the use of circumferential horizontal shear (SH waves to detect mechanical properties of subsurface regions of damage on cylindrical structures. The regions of surface damage are considered to be functionally graded material (FGM and the cylinder is considered to be a layered structure. The Bessel functions and the power series technique are employed to solve the governing equations. By analyzing the SH waves in the 12Cr-ODS ferritic steel cylinder, which is frequently applied in the nuclear installations, we discuss the relationship between the phase velocities of SH waves in the cylinder with subsurface layers of damage and the mechanical properties of the subsurface damaged regions. The results show that the subsurface damage could lead to decrease of the SH waves’ phase velocity. The gradient parameters, which represent the degree of subsurface damage, can be evaluated by the variation of the SH waves’ phase velocity. Research results of this study can provide theoretical guidance in nondestructive evaluation for use in the analysis of the reliability and durability of nuclear installations.

  2. A Nondestructive Evaluation Method: Measuring the Fixed Strength of Spot-Welded Joint Points by Surface Electrical Resistivity.

    Science.gov (United States)

    Shimamoto, Akira; Yamashita, Keitaro; Inoue, Hirofumi; Yang, Sung-Mo; Iwata, Masahiro; Ike, Natsuko

    2013-04-01

    Destructive tests are generally applied to evaluate the fixed strength of spot-welding nuggets of zinc-plated steel (which is a widely used primary structural material for automobiles). These destructive tests, however, are expensive and time-consuming. This paper proposes a nondestructive method for evaluating the fixed strength of the welded joints using surface electrical resistance. A direct current nugget-tester and probes have been developed by the authors for this purpose. The proposed nondestructive method uses the relative decrease in surface electrical resistance, α . The proposed method also considers the effect of the corona bond. The nugget diameter is estimated by two factors: R Quota , which is calculated from variation of resistance, and a constant that represents the area of the corona bond. Since the maximum tensile strength is correlated with the nugget diameter, it can be inferred from the estimated nugget diameter. When appropriate measuring conditions for the surface electrical resistance are chosen, the proposed method can effectively evaluate the fixed strength of the spot-welded joints even if the steel sheet is zinc-plated.

  3. Nondestructive X-ray analysis and petrophysical evaluation of a Cybele votive plaque

    Science.gov (United States)

    Vladimirov, Valentin

    2005-09-01

    A votive plaque to Cybele, a unique stone monument from the Roman province of Thracia, was studied by nondestructive X-ray analysis and petrophysical methods (including free-water saturation and ultrasonic velocities) with the aim of determining the mechanical properties of the stone and the efficiency of the conservation procedures. It was shown that treatment with Paraloid B 72 toluol solution results in large increase in Young's and shear modulus of the stone. The analysis of two supposedly detached fragments of the monument indicated that one of them is probably not part of the original material.

  4. Combined Non-destructive Testing (NDT) methods for evaluating concrete quality

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of combining Non-destructive measurements on concrete. Local crushed granite and hematite were used as coarse aggregates; mining sand and river sand were used as fine aggregates to produce various density and strength of concrete. Concrete samples (150 mm cubes and interlocked blocks) were prepared by changing mix ratio, water to cement ratio (w/c) and types of aggregates. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  5. Photothermal Analysis Applied To Non-Destructive Evaluation Of Paint On Polymer Substrates

    Science.gov (United States)

    Vergne, D.; Busse, G.

    1988-10-01

    The decoration and protection quality of coatings on polymers is of considerable interest for industrial applications. However, at present there is no non-destructive (NDE) method to monitor the quality of these coatings during the manufacturing process or while they are in use. As an approach for such a method we use photothermal analysis where the propagation and reflection of optically generated thermal waves is investigated. We found that one can monitor the drying process, the effect of surface temperature treatment, and coating thickness (accuracy + 2 μm in 50 μm thickness). The information obtained with this remote NDE method is adequate for most industrial applications, eg car manufacturing.

  6. Development and optimization of thermographic techniques for Non-Destructive Evaluation of multilayered structures

    Science.gov (United States)

    Gavrilov, Dmitry J.

    Quality control of modern materials is of the utmost importance in science and industry. Methods for nondestructive evaluation of material properties and the presence of defects are numerous. They differ in terms of their sensitivity and applicability in various conditions, and they provide different kinds of data such as the speed of sound in the material, its hardness, radiation absorption, etc. Based on measured characteristics an analyst makes a decision on the material studied. This work addresses a class of methods known as active thermographic analysis. Thermography analyzes the temperature of the surface of the sample under different external conditions. By keeping track of temperature changes at the surface caused by a deposition of heat on the sample one can determine its material properties such as theand processing the data captured it is possible to make decisions on parameters of this sample. Among the data which can be acquired are such important information as the location of internal defects (e.g., detachments, hollows, inclusions), thickness of the material layers, thermal parameters of the material and the location of internal defects (e.g., detachments, hollows, inclusions). The first part of this research investigates a method for analysis of layered composite materials using the approach based on interference of so called temperature waves. As demonstrated using the expressions derived, one can determine the thermal properties of the layers of the sample by applying a harmonically modulated heat flux to the surfaces and measuring the phase of the periodically changing surface temperature. This approach can be of use in the field of designing and analysis of composite thermal insulation coatings. In the second part of this work a method of analyzing objects of fine art was investigated, particularly - detection of subsurface defects. In the process of preserving art it is of primary importance to determine whether restoration is necessary

  7. Evaluation of the degradation of clonidine-loaded PLGA microspheres.

    Science.gov (United States)

    Gaignaux, Amélie; Réeff, Jonathan; De Vriese, Carine; Goole, Jonathan; Amighi, Karim

    2013-01-01

    The release of an encapsulated drug is dependent on diffusion and/or degradation/erosion processes. This work aimed to better understand the degradation mechanism of clonidine-loaded microparticles. Gel permeation chromatography was used to evaluate the degradation of the polymer. The water-uptake and the weight loss were determined gravimetrically. The swelling behaviour and the morphological changes of the formulations were observed by microscopy. The glass transition temperature and the crystallinity were also determined by differential scanning calorimetry and X-ray diffraction, respectively. The pH of the medium and inside the microspheres was assessed. The microspheres captured a large amount of water, allowing a decrease in the molecular weight of the polymer. The pH of the medium decreased after release of the degradation products and the pH inside the microparticles remained constant due to the neutralization of these acidic products. Clonidine and buffers both had an action on the degradation.

  8. Destructive and non-destructive evaluation methods of interface on F82H HIPed joints

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Hirotatsu, E-mail: hkishi@mmm.muroran-it.ac.jp [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Muramatsu, Yusuke [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Asakura, Yuki [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Endo, Tetsuo [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Kohyama, Akira [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan)

    2016-11-01

    Highlights: • The first wall of F82H steel will be fabricated by the HIP method. • Inspection techniques need to be developed for the HIPed interface. • Both destructive and non-destructive inspection techniques are introduced. - Abstract: The first walls of F82H steel with built-in cooling channels will be assembled thin plates and rectangular pipes by a HIP method. Silicon oxides form on an interface of HIPed joints during HIPing and result in the lowering of toughness of the HIPed joints. A large issue is investigation method of HIPed interface. The flexibility of specimen size for the investigation will be necessary because of the thin wall of cooling channels. A small specimen destructive test technique which is able to distinguish a base metal and an excellent HIPed joint has been desired, and recent researches find out a torsion test method to solve the issue. Non-destructive test technique is another issue for the inspection of the first wall. An ultrasonic inspection method is a candidate but silicon oxides are too small to produce good flaw echo from oxides, some solutions will be necessary. Present research introduces the current status of development of small specimen destructive test technique and the ultrasonic method for the first wall inspection.

  9. Non-destructive evaluation of timber structures in a historical building of Tiradentes , MG

    Directory of Open Access Journals (Sweden)

    Luciana Barbosa de Abreu

    2013-09-01

    Full Text Available Problems related to the durability of wood are commonly found in historical buildings structures. Preservation and conservation resolutions must be adopted, in order to avoid losses and substitutions, which mischaracterize buildings. Non-destructive methods for detecting deterioration should be used in order to substantiate decisions and increase the longevity of historical heritage. This work was carried out in order to perform non-destructive essays to infer about the integrity of a beam and a pillar of the original construction of the Sobrado Ramalho, a historical building of the city of Tiradentes, MG. The equipments utilized were the Stress Wave Timer and resistograph. Samples of the elements were taken for analysis of density. The results showed that, in both structures, to calculate the dynamic modulus of elasticity, there was no significant difference for the application of stress wave timer on the alignments studied. There was no significant difference between the directions of application of the resistograph on the pillar, due to its apparent entirety and regular sessions, practically square, and to not being loaded eccentrically. In the case of the beam, there was significant difference, presumably because it has cracks in its traction line. The equipments, unknown by professionals of heritage conservation allow promising methodologies for inspection of timber structures in service.

  10. Enhancement of nondestructive evaluation techniques for magnetic and nonmagnetic structural components (Final report for doctoral fellowship)

    International Nuclear Information System (INIS)

    Chen, Zhenmao

    2000-03-01

    In this report, research works performed in the Structural Safety Engineering Group of OEC/JNC are summarized as the final report of the doctoral fellowship. The main objective of this study is for the enhancement of the nondestructive evaluation techniques for structural components of both magnetic and nonmagnetic material. Studies in three topics have been carried out aiming at the quantitative evaluation of crack with the eddy current testing and the validation of a natural magnetic field based NDE method for detecting mechanical damages in a paramagnetic material. In the first part of the study, an approach to the reconstruction of the natural crack was proposed and implemented with an idealized crack model for its validation. In the second part, the correlation of the natural magnetization and the mechanical damages in the SUS304 stainless steel was investigated by using an experimental approach. In part 3, an inverse method of the measured magnetic fields is proposed for the reconstruction of magnetic charges in the inspected material by using an optimization method and wavelet. As the first work, an approach to the reconstruction of an idealized natural crack of non-vanishing conductivity is proposed with use of signals of eddy current testing. Two numerical models are introduced at first for modeling the natural crack in order to represented it with a set of crack parameters. A method for the rapid prediction of the eddy current testing signals coming from these idealized cracks is given then by extending a knowledge based fast forward solver to the case of a non-vanishing conductivity. Based on this fast forward solver, the inverse algorithm of conjugate gradient method is updated to identify the crack parameters. Several examples are presented finally as a validation of the proposed strategy. The results show that both the two numerical models can give reasonable reconstruction results for signal of low noise. The model concerning the touch of crack

  11. Preliminary technique assessment for nondestructive evaluation certification of the NNWSI [Nevada Nuclear Waste Storage Investigations] disposal container closure

    International Nuclear Information System (INIS)

    Day, R.A.

    1988-01-01

    Under the direction of the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) program, the Nevada Nuclear Waste Storage Investigations (NNWSI) project is evaluating a candidate repository site at Yucca Mountain, Nevada, for permanent disposal of high-level nuclear waste. The Lawrence Livermore National Laboratory (LLNL), a participant in the NNWSI project, is developing waste package designs to meet the NRC requirements. One aspect of this waste package is the nondestructive testing of the final closure of the waste container. The container closure weld can best be nondestructively examined (NDE) by a combination of ultrasonics and liquid penetrants. This combination can be applied remotely and can meet stringent quality control requirements common to nuclear applications. Further development in remote systems and inspection will be required to meet anticipated requirements for flaw detection reliability and sensitivity. New research is not required but might reduce cost or inspection time. Ultrasonic and liquid penetrant methods can examine all closure methods currently being considered, which include fusion welding and inertial welding, among others. These NDE methods also have a history of application in high radiation environments and a well developed technology base for remote operation that can be used to reduce development and design costs. 43 refs., 23 figs., 3 tabs

  12. Evaluating Degradation at Railway Crossings Using Axle Box Acceleration Measurements

    Directory of Open Access Journals (Sweden)

    Zilong Wei

    2017-09-01

    Full Text Available In this paper, we investigate the capability of an axle box acceleration (ABA system to evaluate the degradation at railway crossings. For this purpose, information from multiple sensors, namely, ABA signals, 3D rail profiles, Global Positioning System (GPS and tachometer recordings, was collected from both nominal and degraded crossings. By proper correlation of the gathered data, an algorithm was proposed to distinguish the characteristic ABA related to the degradation and then to evaluate the health condition of crossings. The algorithm was then demonstrated on a crossing with an unknown degradation status, and its capability was verified via a 3D profile measurement. The results indicate that the ABA system is effective at monitoring two types of degradations. The first type is uneven deformation between the wing rail and crossing nose, corresponding to characteristic ABA frequencies of 230–350 and 460–650 Hz. The second type is local irregularity in the longitudinal slope of the crossing nose, corresponding to characteristic ABA frequencies of 460–650 Hz. The types and severity of the degradation can be evaluated by the spatial distribution and energy concentration of the characteristic frequencies of the ABA signals.

  13. Evaluating Degradation at Railway Crossings Using Axle Box Acceleration Measurements.

    Science.gov (United States)

    Wei, Zilong; Núñez, Alfredo; Li, Zili; Dollevoet, Rolf

    2017-09-29

    In this paper, we investigate the capability of an axle box acceleration (ABA) system to evaluate the degradation at railway crossings. For this purpose, information from multiple sensors, namely, ABA signals, 3D rail profiles, Global Positioning System (GPS) and tachometer recordings, was collected from both nominal and degraded crossings. By proper correlation of the gathered data, an algorithm was proposed to distinguish the characteristic ABA related to the degradation and then to evaluate the health condition of crossings. The algorithm was then demonstrated on a crossing with an unknown degradation status, and its capability was verified via a 3D profile measurement. The results indicate that the ABA system is effective at monitoring two types of degradations. The first type is uneven deformation between the wing rail and crossing nose, corresponding to characteristic ABA frequencies of 230-350 and 460-650 Hz. The second type is local irregularity in the longitudinal slope of the crossing nose, corresponding to characteristic ABA frequencies of 460-650 Hz. The types and severity of the degradation can be evaluated by the spatial distribution and energy concentration of the characteristic frequencies of the ABA signals.

  14. Evaluation of fretting failures on PWR fuel by post-irradiation examinations and modeling in the DEGRAD-1 code

    Energy Technology Data Exchange (ETDEWEB)

    Castanheira, Myrthes; Silva, Jose Eduardo Rosa da; Lucki, Georgi; Terremoto, Luis A.A.; Silva, Antonio Teixeira e; Teodoro, Celso A.; Damy, Margaret de A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: myrthes@ipen.br

    2007-07-01

    One of the major recognized causes of fuel rod failures is fretting of the clad due to the entrapment of debris in a fuel rod spacer. Such debris, inadvertently dropped into the primary system during maintenance operations, includes various sizes of particles. Intermediate size particles, such as metal cuttings, electrical connectors, metal fittings, pieces of wire, and small nuts and bolts can become trapped between fuel rods in a spacer where hydraulically induced vibrations can cause fretting failure of the fuel rod. An evaluation of debris fretting failure on PWR fuel is presented. The inquiries on fuel rods failures are based on results of analysis using post-irradiation non-destructive examination. The complementary analysis includes a modeling approach by code DEGRAD-1 to characterize the degradation phenomenon after primary failure integrated in the reactor operational history. (author)

  15. Evaluation of fretting failures on PWR fuel by post-irradiation examinations and modeling in the DEGRAD-1 code

    International Nuclear Information System (INIS)

    Castanheira, Myrthes; Silva, Jose Eduardo Rosa da; Lucki, Georgi; Terremoto, Luis A.A.; Silva, Antonio Teixeira e; Teodoro, Celso A.; Damy, Margaret de A.

    2007-01-01

    One of the major recognized causes of fuel rod failures is fretting of the clad due to the entrapment of debris in a fuel rod spacer. Such debris, inadvertently dropped into the primary system during maintenance operations, includes various sizes of particles. Intermediate size particles, such as metal cuttings, electrical connectors, metal fittings, pieces of wire, and small nuts and bolts can become trapped between fuel rods in a spacer where hydraulically induced vibrations can cause fretting failure of the fuel rod. An evaluation of debris fretting failure on PWR fuel is presented. The inquiries on fuel rods failures are based on results of analysis using post-irradiation non-destructive examination. The complementary analysis includes a modeling approach by code DEGRAD-1 to characterize the degradation phenomenon after primary failure integrated in the reactor operational history. (author)

  16. Non-destructive ultrasonic evaluation of thermal damage in cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Masse, S.; Vetter, G.; Boch, P. [Ecole Superieure de Physique et de Chimie Industrielles, Paris (France). Lab. of Ceramics and Minerals

    2002-07-01

    Thermal damage in cementitious materials (cement paste and microconcretes) subjected to high temperatures (T) up to 1000 C was monitored using a non-destructive, ultrasonic method of measurement of Young's modulus (E). Four cements were used: a Portland cement, two slag cements, and a ternary blend cement. Microconcretes were made by mixing cement, silica fume, quartz sand, and superplasticizer. Heat treating the materials at increasing T results in a decrease in E, more pronounced in microconcretes than in pastes. For a given sort of material (i.e. pastes or microconcretes) the curves of E/E{sub 0} = f[T] follow the same trend, whatever the kind of cement. (orig.)

  17. Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Macedo Silva, Edgard de, E-mail: edgard@cefetpb.edu.br [Centro federal de Educacao Tecnologica da Paraiba (CEFET PB), Area da Industria, Avenida 1o de Maio, 720 - 58015-430 - Joao Pessoa/PB (Brazil); Costa de Albuquerque, Victor Hugo, E-mail: victor.albuquerque@fe.up.pt [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Pereira Leite, Josinaldo, E-mail: josinaldo@ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Gomes Varela, Antonio Carlos, E-mail: varela@cefetpb.edu.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Pinho de Moura, Elineudo, E-mail: elineudo@pq.cnpq.br [Universidade Federal do Ceara (UFC), Departamento de Engenharia Metalurgica e de Materiais, Campus do Pici, Bloco 715, 60455-760 - Fortaleza/CE (Brazil); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.pt [Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Mecanica e Gestao Industrial (DEMEGI)/Instituto de Engenharia Mecanica e Gestao Industrial - INEGI, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2009-08-15

    Duplex stainless steel presents special mechanical properties such as, for example, mechanical and corrosion strength, becoming competitive in relation to the other types of stainless steel. One of the great problems of duplex stainless steel microstructural changes study is related to embrittlement above 300 deg. C, with the precipitation of the {alpha}' phase occurring over the ferritic microstructure. Aiming to characterise embrittlement of duplex stainless steel, hardening kinetics, from 425 to 475 deg. C, was analysed through the speed of sound, Charpy impact energy, X-ray diffraction, hardness and microscopy parameters. The presence of two hardening stages, detected through the speed of sound, was observed, one being of brittle characteristic and the other ductile. Moreover, the speed of sound showed a direct correlation with the material's hardness. Thus, it is concluded that the speed of sound is a promising nondestructive parameter to follow-up embrittlement in duplex stainless steel.

  18. Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing

    International Nuclear Information System (INIS)

    Macedo Silva, Edgard de; Costa de Albuquerque, Victor Hugo; Pereira Leite, Josinaldo; Gomes Varela, Antonio Carlos; Pinho de Moura, Elineudo; Tavares, Joao Manuel R.S.

    2009-01-01

    Duplex stainless steel presents special mechanical properties such as, for example, mechanical and corrosion strength, becoming competitive in relation to the other types of stainless steel. One of the great problems of duplex stainless steel microstructural changes study is related to embrittlement above 300 deg. C, with the precipitation of the α' phase occurring over the ferritic microstructure. Aiming to characterise embrittlement of duplex stainless steel, hardening kinetics, from 425 to 475 deg. C, was analysed through the speed of sound, Charpy impact energy, X-ray diffraction, hardness and microscopy parameters. The presence of two hardening stages, detected through the speed of sound, was observed, one being of brittle characteristic and the other ductile. Moreover, the speed of sound showed a direct correlation with the material's hardness. Thus, it is concluded that the speed of sound is a promising nondestructive parameter to follow-up embrittlement in duplex stainless steel.

  19. Nondestructive evaluation of defects in carbon fiber reinforced polymer (CFRP) composites

    Science.gov (United States)

    Ngo, Andrew C. Y.; Goh, Henry K. H.; Lin, Karen K.; Liew, W. H.

    2017-04-01

    Carbon fiber reinforced polymer (CFRP) composites are increasingly used in aerospace applications due to its superior mechanical properties and reduced weight. Adhesive bonding is commonly used to join the composite parts since it is capable of joining incompatible or dissimilar components. However, insufficient adhesive or contamination in the adhesive bonds might occur and pose as threats to the integrity of the plane during service. It is thus important to look for suitable nondestructive testing (NDT) techniques to detect and characterize the sub-surface defects within the CFRP composites. Some of the common NDT techniques include ultrasonic techniques and thermography. In this work, we report the use of the abovementioned techniques for improved interpretation of the results.

  20. Magnetic non-destructive evaluation of ruptures of tensile armor in oil risers

    International Nuclear Information System (INIS)

    Pérez-Benitez, J A; Padovese, L R

    2012-01-01

    Risers are flexible multilayered pipes formed by an inner flexible metal structure surrounded by polymer layers and spiral wound steel ligaments, also known as armor wires. Since these risers are used to link subsea pipelines to floating oil and gas production installations, and their failure could produce catastrophic consequences, some methods have been proposed to monitor the armor integrity. However, until now there is no practical method that allows the automatic non-destructive detection of individual armor wire rupture. In this work we show a method using magnetic Barkhausen noise that has shown high efficiency in the detection of armor wire rupture. The results are examined under the cyclic and static load conditions of the riser. This work also analyzes the theory behind the singular dependence of the magnetic Barkhausen noise on the applied tension in riser armor wires. (paper)

  1. Magnetic non-destructive evaluation of ruptures of tensile armor in oil risers

    Science.gov (United States)

    Pérez-Benitez, J. A.; Padovese, L. R.

    2012-04-01

    Risers are flexible multilayered pipes formed by an inner flexible metal structure surrounded by polymer layers and spiral wound steel ligaments, also known as armor wires. Since these risers are used to link subsea pipelines to floating oil and gas production installations, and their failure could produce catastrophic consequences, some methods have been proposed to monitor the armor integrity. However, until now there is no practical method that allows the automatic non-destructive detection of individual armor wire rupture. In this work we show a method using magnetic Barkhausen noise that has shown high efficiency in the detection of armor wire rupture. The results are examined under the cyclic and static load conditions of the riser. This work also analyzes the theory behind the singular dependence of the magnetic Barkhausen noise on the applied tension in riser armor wires.

  2. Test and Evaluation of the Magnograph (TM) unit, a nondestructive wire rope tester

    Science.gov (United States)

    Underbakke, L. D.; Haynes, H. H.

    1982-07-01

    The nondestructive wire rope test device, a unitized AC/DC Magnograph, was tested for operational characteristics prior to acquisition by Naval field activities and start of inspection programs. The Magnograph was tested for loss of metallic area (LMA) and local fault (LF) detection accuracy. Wire ropes 1/2, 3/4, 1-1/8, 1-1/2, 2, and 2-1/2 inches in diameter were tested on a wire rope test track to find the accuracy of the unit. Two mining wire ropes, guy wires of a 1,000-ft-tall tower, and wire rope for 400-, 250-, and 30-ton cranes were used to determine operational characteristics of the Magnograph.

  3. Evaluation of depth of surface-breaking slit by nondestructive self-calibrating technique using laser based ultrasound

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Choi, Sang Woo; Ha, Sang Bong

    2002-01-01

    It is required to evaluate nondestructively the crack depth of surface-breaking cracks for the assurance of safety of structure. Optical generation of ultrasound produces well defined pulses with a repeatable frequency content, that are free of any mechanical resonances; they are broad band and are ideal for the measurement of attenuation and scattering over a wide frequency range. Self-calibrating surface signal transmission measurement is very sensitive and practical tool for surface-breaking crack depth. In his paper, the self-calibrating technique by laser-based ultrasound is used to evaluate the depth of surface-breaking crack of material. It is suggested that the relationship between the signal transmission and crack depth can be used as a practical model for predicting the surface-breaking crack depths from the signal transmission measured in structure

  4. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  5. Non-destructive electrochemical techniques applied to the corrosion evaluation of the liner structures in nuclear power plants

    International Nuclear Information System (INIS)

    Martinez, I.; Castillo, A.; Andrade, C.

    2008-01-01

    The liner structure in nuclear power plants provides containment for the operation and therefore the study of its durability and integrity during its service life is an important issue. There are several causes for the deterioration of the liner, which in general involve corrosion due to its metallic nature. The present paper is aimed at describing the assessment of corrosion problems of two liners from two different nuclear power plants, which were evaluated using non-destructive electrochemical techniques. In spite of the testing difficulties arisen, from the results extracted it can be concluded that the electrochemical techniques applied are adequate for the corrosion evaluation. They provide important information about the integrity of the structure and allow for its evolution with time to be assessed

  6. Nondestructive evaluation algorithm of fatigue cracks and far-side corrosion around a rivet fastener in multi-layered structures

    Energy Technology Data Exchange (ETDEWEB)

    Le, Min Hhuy; Kim, Jung Min [Research Center for IT-based Real Time NDT for Nano-Damage Tolerance, Chosun University, Gwangju (Korea, Republic of); Kim, Sejin; Wang, Dabin [Dept. of Control and Instrumentation Engineering, Graduate School, Chosun University, Gwangju (Korea, Republic of); Hwang, Young Ha [Avionics System Technology Center, KITECH, Youngcheon (Korea, Republic of)

    2016-09-15

    This research proposes a nondestructive inspection system for inspecting and localizing corrosion and fatigue cracks around rivets in air-intake structures. The system uses 64 InSb Hall sensor elements arrayed at a high spatial interval of 0.52 mm. Rivet detection and damage detection algorithms will be proposed. Analysis of the receiver operating characteristic curve and Probability of detection (POD) will be carried out to evaluate the performance of the system and detection algorithms. Artificial corrosion around a rivet with a minimum volume of 11.02 mm{sup 3} could be detected with 90/95% POD and artificial fatigue crack with minimum length of 2.95 mm from rivet body.

  7. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Science.gov (United States)

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  8. Industrial non-destructive testing and evaluation using X-ray and gamma-ray computed tomography

    International Nuclear Information System (INIS)

    Wells, P.; Davis, J.R.; Morgan, M.J.; Som, S.S.; Grant, J.; Benci, N.; Skerrett, D.S.

    1994-01-01

    X-ray and gamma-ray computed tomography provides cross-sectional images of objects in a totally non-destructive manner. The purpose of this paper is to describe briefly an overview of computed tomography and its application to testing and evaluation of industrially relevant materials in an Australian context. A number of instruments will be discussed that use either x-ray of γ-rays, and that are designed to cover a range of material densities and specific characteristics such as spatial resolution and contrast resolution. The paper also canvasses some possible future developments in both 2D and 3D tomographic imaging and associated areas of automated feature extraction and classification from those images, with a particular emphasis on the tomographic imaging of sawlogs in order to maximise the return from this valuable resource. 15 refs., 8 figs

  9. First-year evaluation of a nondestructive assay system for the examination of ORNL TRU waste

    International Nuclear Information System (INIS)

    Schultz, F.J.; Haff, K.W.; Coffey, D.E.; Norris, L.B.; Caldwell, J.T.; Close, D.A.; Kuckertz, T.H.; Kunz, W.E.; Pratt, J.C.

    1984-04-01

    The Oak Ridge National Laboratory has been selected as the demonstration site for a new transuranic neutron assay system (NAS) developed at the Los Alamos National Laboratory. In addition, in order to meet specific ORNL program objectives, an upgraded segmented gamma-ray drum scanner has been integrated into the nondestructive assay (NDA) system to serve as a radioisotope identifier and as a quantitative assay backup to the NAS. A verification study, wherein selected waste drums will be emptied into glove boxes and their contents sampled and subsequently gamma-ray assayed, will take place in FY 1984. Results will be compared to those obtained from the NDA techniques. The NAS uses pulsed-neutron interrogation (differential- dieaway technique) and passive neutron measurements to determine fissile component and an upper-limit estimate of the total TRU activity contained in each waste drum. Of the 171 waste drums assayed to date, nine drums were determined to contain less than 10 nCi/g TRU isotopes. An additional number of drums (approximately 20%) are expected to be categorized as non-TRU, which is presently defined as less than 100 nCi/g TRU concentration. This requires a detailed analysis of the data which includes waste matrix compensation, systematic qualitative and quantitative gamma-ray analyses, and interpretation of neutron multiplicity data. Reproducibility of the active assay measurements on a single waste drum indicate agreement to +-3% relative error. 14 references, 24 figures, 8 tables

  10. Evaluating degradation at railway crossings using axle box acceleration measurements

    NARCIS (Netherlands)

    Wei, Z.; Nunez Vicencio, Alfredo; Li, Z.; Dollevoet, R.P.B.J.

    2017-01-01

    In this paper, we investigate the capability of an axle box acceleration (ABA) system to evaluate the degradation at railway crossings. For this purpose, information from multiple sensors, namely, ABA signals, 3D rail profiles, Global Positioning System (GPS) and tachometer recordings, was

  11. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  12. Nondestructive testing method

    International Nuclear Information System (INIS)

    Porter, J.F.

    1996-01-01

    Nondestructive testing (NDT) is the use of physical and chemical methods for evaluating material integrity without impairing its intended usefulness or continuing service. Nondestructive tests are used by manufaturer's for the following reasons: 1) to ensure product reliability; 2) to prevent accidents and save human lives; 3) to aid in better product design; 4) to control manufacturing processes; and 5) to maintain a uniform quality level. Nondestructive testing is used extensively on power plants, oil and chemical refineries, offshore oil rigs and pipeline (NDT can even be conducted underwater), welds on tanks, boilers, pressure vessels and heat exchengers. NDT is now being used for testing concrete and composite materials. Because of the criticality of its application, NDT should be performed and the results evaluated by qualified personnel. There are five basic nondestructive examination methods: 1) liquid penetrant testing - method used for detecting surface flaws in materials. This method can be used for metallic and nonmetallic materials, portable and relatively inexpensive. 2) magnetic particle testing - method used to detect surface and subsurface flaws in ferromagnetic materials; 3) radiographic testing - method used to detect internal flaws and significant variation in material composition and thickness; 4) ultrasonic testing - method used to detect internal and external flaws in materials. This method uses ultrasonics to measure thickness of a material or to examine the internal structure for discontinuities. 5) eddy current testing - method used to detect surface and subsurface flaws in conductive materials. Not one nondestructive examination method can find all discontinuities in all of the materials capable of being tested. The most important consideration is for the specifier of the test to be familiar with the test method and its applicability to the type and geometry of the material and the flaws to be detected

  13. Evaluation of Cs-134 and Cs-137 in sugar by non-destructive analysis

    Energy Technology Data Exchange (ETDEWEB)

    Correira, Filipe Lopes de Barros; Santos Júnior, José Araújo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Medeiros, Nilson Vicente da Silva; Santos Junior, Otávio Pereira dos, E-mail: filipelbck@gmail.com, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: josineide.santos@ufpe.br, E-mail: nilson.medeiros@ufpe.br, E-mail: otavio.santos@vitoria.ifpe.edu.br [Universidade Federal de Pernambuco (RAE/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Grupo de Radioecologia; Vieira, José Wilson, E-mail: jose.wilson59@uol.com.br [Instituto Federal de Pernambuco (IFPE), Recife (Brazil); Valois, Rhaiana Caminha, E-mail: rhaianavalois@hotmail.com [Colégio Militar do Recife, PE (Brazil)

    2017-07-01

    The spread of anthropogenic radioisotopes in the environment comes from nuclear tests and accidents that occurred in the past, which justifies constant monitoring, to guarantee the safety and control of the activities that involve these applications. Brazil, when exporting some food products, depending on the country of origin, a radiometric report is required, especially for sugar that has high world consumption and the possibility of contamination of the population, when radioisotope is present. Therefore, the investigation of the levels of Cs-134 and Cs-137 in sugar matrices is necessary to predict radioecological emergency situations. The National Nuclear Energy Commission, the agency that oversees nuclear applications in Brazil, With Resolution No. 102 of December 22, 2010 approved regulatory positions, including levels of action for food control, recommended to restrict the marketing of food products in Brazil. General, whose specific activity is higher than the limit of 1.0 kBq / kg for the said isotopes of cesium independently. Aiming for improvements in the analyzes that are already performed in the Laboratory of Radioecology and Environmental Control of the Department of Nuclear Energy of the Federal University of Pernambuco to assurance the quality of sugar marketed in Brazil, a standard procedure for the analysis of these radionuclides in this matrix was determined. High resolution gamma spectrometry with non-destructive analysis was used to perform the tests. Priority was given to parameters that directly influence the qualitative and quantitative analysis of these radioactive elements, such as calibration in energy and efficiency, resolution, influence of self-absorption, counting statistics directly associated with the time of analysis, influence of background radiation and geometry analysis. (author)

  14. Evaluation of Cs-134 and Cs-137 in sugar by non-destructive analysis

    International Nuclear Information System (INIS)

    Correira, Filipe Lopes de Barros; Santos Júnior, José Araújo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Medeiros, Nilson Vicente da Silva; Santos Junior, Otávio Pereira dos; Valois, Rhaiana Caminha

    2017-01-01

    The spread of anthropogenic radioisotopes in the environment comes from nuclear tests and accidents that occurred in the past, which justifies constant monitoring, to guarantee the safety and control of the activities that involve these applications. Brazil, when exporting some food products, depending on the country of origin, a radiometric report is required, especially for sugar that has high world consumption and the possibility of contamination of the population, when radioisotope is present. Therefore, the investigation of the levels of Cs-134 and Cs-137 in sugar matrices is necessary to predict radioecological emergency situations. The National Nuclear Energy Commission, the agency that oversees nuclear applications in Brazil, With Resolution No. 102 of December 22, 2010 approved regulatory positions, including levels of action for food control, recommended to restrict the marketing of food products in Brazil. General, whose specific activity is higher than the limit of 1.0 kBq / kg for the said isotopes of cesium independently. Aiming for improvements in the analyzes that are already performed in the Laboratory of Radioecology and Environmental Control of the Department of Nuclear Energy of the Federal University of Pernambuco to assurance the quality of sugar marketed in Brazil, a standard procedure for the analysis of these radionuclides in this matrix was determined. High resolution gamma spectrometry with non-destructive analysis was used to perform the tests. Priority was given to parameters that directly influence the qualitative and quantitative analysis of these radioactive elements, such as calibration in energy and efficiency, resolution, influence of self-absorption, counting statistics directly associated with the time of analysis, influence of background radiation and geometry analysis. (author)

  15. Laser Induced Fluorescence (LIF) Nondestructive Evaluation of Incipient Heat Damage in Polymer Matrix Composites, A2476

    Science.gov (United States)

    2017-02-15

    default/files/datasheets/CYCOM_5250-4_032012. pdf . CYCOM 977-3 Tech Data Sheet. Technical Data Sheet for CYCOM® 977-3 Epoxy Resin System, Cytec... resin due to the addition of a thermoplastic toughened phase to the epoxy that forms the matrix (CYCOM® 977-3 Technical Data Sheet), the LIF response is...Technology Application, NASA Contractor Report 178272. Luoma & Rowland, 1986. G. A. Luoma & R. D. Rowland, “Environmental Degradation of an Epoxy Resin

  16. Evaluation of diagnostic technique for degradation of low-voltage electric cables with silicone rubber insulator

    International Nuclear Information System (INIS)

    Mikami, Masao

    2005-01-01

    As a part of countermeasures against ageing problems of nuclear power plants, it is requested to establish non-destructive diagnostic technique for their degradation of low voltage electric cables and assessment standard of their life. Having aimed at investigating the degradation of low-voltage electric cable with silicone rubber insulator, change of its surface hardness at elevated temperature were measured by indenter modules. Moreover, we also measured the elongation at break, which is regarded as general degradation index of electric cables, and the surface hardness with a micro hardness meter. Consequently, it is seen that the indenter modulus measurement is (1) capable to obtain general feature of the thermal degradation of silicone rubber insulator, (2) applicable to diagnose the degree of degradation of the electric cable by converting the result to elongation at break, (3) well correlated with the hardness measurement of the electric cable with the micro hardness meter. (author)

  17. Evaluation of non-destructive density determination for QA/QC acceptance testing : research project capsule.

    Science.gov (United States)

    2017-08-01

    LTRCs Geotechnical and Asphalt groups will be conducting two separate field and laboratory evaluations. The Geotechnical group will evaluate field densities of soil layers and the asphalt group will evaluate field densities on asphalt pavement lay...

  18. The evaluation of the status of nondestructive testing (NDT) companies in the Philippines

    International Nuclear Information System (INIS)

    Mateo, Alejandro J.

    2002-10-01

    This research study assessed the present status of the NDT companies practicing the five techniques and methods in nondestructive testing and found answers to the following questions: what is the profile of the NDT companies and NDT personnel in terms of type, category of the company, number of years in operation, capitalization, nature of NDT services offered, number of certified NDT personnel their age, sex, marital status, educational attainment, monthly salary, NDT training and work experience of NDT personnel; what is the level of adequacy of the NDT companies based on the following organization-related factors: financial support human resources, availability of NDT/office equipment/vehicles, available facilities and quality systems; what is the status of the NDT companies in terms of level of performance, in-house activities, level of competitiveness and conformity with PNS-146:1998; are there significant differences in the perceptions of the respondent's on the status of the NDT companies when grouped according to age, sex, salary, work experience; and what personal and organizational-related factors affect the status of the NDT companies. The research study provided for the researcher an opportunity to identify and analyse the problems and concern of the local NDT sector to be able to recommend solutions for the NDT to attain the status of a profession and/or career and with all NDT companies and NDT personnel act as professionals in the performance of NDT services and other NDT-related activities. The study will achieve the following objectives: to the accredited NDT companies, the accreditation will provide the recognition of the companies as to the quality of personnel, equipment, and services they provide to the client; to the client, the accredited NDT companies will provide the assurance of the quality of personnel, equipment and service provided; to the other NDT companies, the accreditation of the NDT company will provide the impetus that they

  19. Evaluation of X-ray System for Nondestructive Testing on Radioactive Waste Drums

    International Nuclear Information System (INIS)

    Park, Jong Kil; Maeng, Seong Jun; Lee, Yeon Ee; Hwang, Tae Won

    2008-01-01

    The physical and chemical properties of radioactive waste drums, which have been temporarily stored on site, should be characterized before their shipment to a disposal facility in order to prove that the properties meet the acceptance guideline. The investigation of NDT(Nondestructive Test) method was figured out that the contents in drum, the quantitative analysis of free standing water and void fraction can be examined with X-ray NDT techniques. This paper describes the characteristics of X-ray NDT such as its principles, the considerations for selection of X-ray system, etc. And then, the waste drum characteristics such as drum type and dimension, contents in drum, etc. were examined, which are necessary to estimate the optimal X-ray energy for NDT of a drum. The estimation results were that: the proper X-ray energy is under 3 MeV to test the drums of 320 β and less; both X-ray systems of 450 keV and/or 3 MeV might be needed considering the economical efficiency and the realization. The number of drums that can be tested with 450 keV and 3 MeV X-ray system was figured out as 42,327 and 18,105 drums (based on storage of 2006. 12), respectively. Four testing scenarios were derived considering equipment procurement method, outsourcing or not, etc. The economical and feasibility assessment for the scenarios was resulted in that an optimal scenario is dependent on the acceptance guide line, the waste generator's policy on the waste treatment and the delivery to a disposal facility, etc. For example, it might be desirable that a waste generator purchases two 450 keV mobile system to examine the drums containing low density waste, and that outsourcing examination for the high density drums, if all NDT items such as quantitative analysis for 'free standing water' and 'void fraction', and confirmation of contents in drum have to be characterized. However, one 450 keV mobile system seems to be required to test only the contents in 13,000 drums per year.

  20. Nondestructive examination requirements for PWR vessel internals

    International Nuclear Information System (INIS)

    Spanner, J.

    2015-01-01

    This paper describes the requirements for the nondestructive examination of pressurized water reactor (PWR) vessel internals in accordance with the requirements of the EPRI Material Reliability Program (MRP) inspection standard for PWR internals (MRP-228) and the American Society of Mechanical Engineers Section XI In-service Inspection. The MRP vessel internals examinations have been performed at nuclear plants in the USA since 2009. The objective of the inspection standard is to provide the requirements for the nondestructive examination (NDE) methods implemented to support the inspection and evaluation of the internals. The inspection standard contains requirements specific to the inspection methodologies involved as well as requirements for qualification of the NDE procedures, equipment and personnel used to perform the vessel internals inspections. The qualification requirements for the NDE systems will be summarized. Six PWR plants in the USA have completed inspections of their internals using the Inspection and Evaluation Guideline (MRP-227) and the Inspection Standard (MRP-228). Examination results show few instances of service-induced degradation flaws, as expected. The few instances of degradation have mostly occurred in bolting

  1. The Effect of Localized Damage on the Electrical Conductivity of Bare Carbon Fiber Tow and its Use as a Non-Destructive Evaluation Tool for Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Wentzel, Daniel

    2015-01-01

    Composite materials are beneficial because of their high specific strength and low weight. Safety, Destructive testing and destructive testing, Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE). Problem: Neither NDT nor NDE can provide sufficient data to determine life expectancy or quantify the damage state of a composite material.

  2. Photocatalytic degradation of rosuvastatin: Analytical studies and toxicity evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Tiele Caprioli, E-mail: tiele@enq.ufrgs.br [Chemical Engineering Department, Federal University of Rio Grande do Sul, Rua Engenheiro Luiz Englert s/n, CEP: 90040-040 Porto Alegre, RS (Brazil); Pizzolato, Tânia Mara [Chemical Institute, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Arenzon, Alexandre [Ecology Center, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Segalin, Jeferson [Biotechnology Center, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, CEP: 91501-970 Porto Alegre, RS (Brazil); Lansarin, Marla Azário [Chemical Engineering Department, Federal University of Rio Grande do Sul, Rua Engenheiro Luiz Englert s/n, CEP: 90040-040 Porto Alegre, RS (Brazil)

    2015-01-01

    Photocatalytic degradation of rosuvastatin, which is a drug that has been used to reduce blood cholesterol levels, was studied in this work employing ZnO as catalyst. The experiments were carried out in a temperature-controlled batch reactor that was irradiated with UV light. Preliminary the effects of the photocatalyst loading, the initial pH and the initial rosuvastatin concentration were evaluated. The experimental results showed that rosuvastatin degradation is primarily a photocatalytic process, with pseudo-first order kinetics. The byproducts that were generated during the oxidative process were identified using nano-ultra performance liquid chromatography tandem mass spectrometry (nano-UPLC–MS/MS) and acute toxicity tests using Daphnia magna were done to evaluate the toxicity of the untreated rosuvastatin solution and the reactor effluent. - Highlights: • The photocatalytic degradation of rosuvastatin was studied under UV irradiation. • Commercial catalyst ZnO was used. • Initial rosuvastatin concentration, photocatalyst loading and pH were evaluated. • The byproducts generated during the oxidative process were detected and identified. • Acute toxicity tests using Daphnia magna were carried out.

  3. Non-destructive mapping of dampness and salts in degraded wall paintings in hypogeous buildings: the case of St. Clement at mass fresco in St. Clement Basilica, Rome.

    Science.gov (United States)

    Di Tullio, Valeria; Proietti, Noemi; Gobbino, Marco; Capitani, Donatella; Olmi, Roberto; Priori, Saverio; Riminesi, Cristiano; Giani, Elisabetta

    2010-03-01

    As is well known, the deterioration of wall paintings due to the capillary rise of water through the walls is a very widespread problem. In this paper, a study of microclimate monitoring, unilateral nuclear magnetic resonance (NMR), and evanescent-field dielectrometry (EFD) was applied to map non-destructively, in situ, and in a quantitative way the distribution of the moisture in an ancient deteriorated wall painting of the eleventh century. Both unilateral NMR and EFD are quite new, fully portable, and non-destructive techniques, and their combination is absolutely new. The approach reported here is proposed as a new analytical protocol to afford the problem of mapping, non-destructively, the moisture in a deteriorated wall painting in a hypogeous building such as that of the second level of St. Clement Basilica, Rome (Italy), where the use of IR thermography is impaired due to the environmental conditions, and the gravimetric tests are forbidden due to the preciousness of the artifact. The moisture distribution was mapped at different depths, from the very first layers of the painted film to a depth of 2 cm. It has also been shown how the map obtained in the first layers of the artwork is affected by the environmental conditions typical of a hypogeous building, whereas the maps obtained at higher depths are representative of the moisture due to the capillary rise of water from the ground. The quantitative analysis of the moisture was performed by calibrating NMR and EFD signals with purposely prepared specimens. This study may be applied before and after performing any intervention aimed at restoring and improving the state of conservation of this type of artwork and reducing the dampness or extracting salts (driven by the variation of moisture content) and monitoring the effectiveness of the performed interventions during the time. This protocol is applicable to any type of porous material.

  4. Development of a non-destructive testing technique using ultrasonic wave for evaluation of irradiation embrittlement in nuclear materials

    Science.gov (United States)

    Ishii, T.; Ooka, N.; Hoshiya, T.; Kobayashi, H.; Saito, J.; Niimi, M.; Tsuji, H.

    2002-12-01

    To develop a non-destructive testing technique for evaluating embrittlement of irradiated materials, the correlation between ultrasonic characteristics and embrittlement was investigated from the results of the ultrasonic wave measurement and the Charpy impact test of irradiated specimens of commercial A533B-1 steel and welded material at the hot laboratory of the Japan Materials Testing Reactor (JMTR) in the Japan Atomic Energy Research Institute (JAERI). After irradiation at 523 or 563 K up to a fast neutron fluence of 1×10 24 N/m 2 ( E>1 MeV), velocities of both shear and longitudinal waves in the irradiated specimen were lower than those in the unirradiated one. The decrease in the velocities may be caused by the reductions of the shear and Young's moduli in the irradiated specimen. The attenuation coefficient of the longitudinal wave in the irradiated specimens increased compared with unirradiated ones. With increasing the shift amount of the Charpy transition temperature at 41 J absorbed energy, the velocity and attenuation coefficient of the ultrasonic waves decreased and increased, respectively.

  5. Research Developments in Nondestructive Evaluation and Structural Health Monitoring for the Sustainment of Composite Aerospace Structures at NASA

    Science.gov (United States)

    Cramer, K. Elliott

    2016-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable both the use and sustainment of composites in commercial aircraft structures. One key to the sustainment of these large composite structures is the rapid, in-situ characterization of a wide range of potential defects that may occur during the vehicle's life. Additionally, in many applications it is necessary to monitor changes in these materials over their lifetime. Quantitative characterization through Nondestructive Evaluation (NDE) of defects such as reduced bond strength, microcracking, and delamination damage due to impact, are of particular interest. This paper will present an overview of NASA's applications of NDE technologies being developed for the characterization and sustainment of advanced aerospace composites. The approaches presented include investigation of conventional, guided wave, and phase sensitive ultrasonic methods and infrared thermography techniques for NDE. Finally, the use of simulation tools for optimizing and validating these techniques will also be discussed.

  6. Nondestructive pavement evaluation using finite element analysis based soft computing models.

    Science.gov (United States)

    2009-09-15

    Evaluating structural condition of existing, in-service pavements constitutes annually a major part of the : maintenance and rehabilitation activities undertaken by State Highway Agencies (SHAs). Accurate : estimation of pavement geometry and layer m...

  7. Degradation of the ethyl glucuronide content in hair by hydrogen peroxide and a non-destructive assay for oxidative hair treatment using infra-red spectroscopy.

    Science.gov (United States)

    Ammann, Dominic; Becker, Roland; Kohl, Anka; Hänisch, Jessica; Nehls, Irene

    2014-11-01

    The assessment of quantification results of the alcohol abuse marker ethyl glucuronide (EtG) in hair in comparison to the cut-off values for the drinking behavior may be complicated by cosmetic hair bleaching. Thus, the impact of increasing exposure to hydrogen peroxide on the EtG content of hair was investigated. Simultaneously, the change of absorbance in the range of 1000-1100 cm(-1) indicative for the oxidation of cystine was investigated non-destructively by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) using pulverized portions of the respective hair samples. Hair samples treated with hydrogen peroxide consistently displayed a significantly increased absorbance at 1040 cm(-1) associated with the formation of cysteic acid. The EtG content decreased significantly if the hair was treated with alkaline hydrogen peroxide as during cosmetic bleaching. It could be shown that ATR-FTIR is capable of detecting an exposure to hydrogen peroxide when still no brightening was visible and already before the EtG content deteriorated significantly. Thus, hair samples suspected of having been exposed to oxidative treatment may be checked non-destructively by a readily available technique. This assay is also possible retrospectively after EtG extraction and using archived samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Testing an Impedance Non-destructive Method to Evaluate Steel-Fiber Concrete Samples

    Science.gov (United States)

    Komarkova, Tereza; Fiala, Pavel; Steinbauer, Miloslav; Roubal, Zdenek

    2018-02-01

    Steel-fiber reinforced concrete is a composite material characterized by outstanding tensile properties and resistance to the development of cracks. The concrete, however, exhibits such characteristics only on the condition that the steel fibers in the final, hardened composite have been distributed evenly. The current methods to evaluate the distribution and concentration of a fiber composite are either destructive or exhibit a limited capability of evaluating the concentration and orientation of the fibers. In this context, the paper discusses tests related to the evaluation of the density and orientation of fibers in a composite material. Compared to the approaches used to date, the proposed technique is based on the evaluation of the electrical impedance Z in the band close to the resonance of the sensor-sample configuration. Using analytically expressed equations, we can evaluate the monitored part of the composite and its density at various depths of the tested sample. The method employs test blocks of composites, utilizing the resonance of the measuring device and the measured sample set; the desired state occurs within the interval of between f=3 kHz and 400 kHz.

  9. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) program at the Pacific Northwest Laboratory was established by the NRC to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1986 through September 1987. (author)

  10. Evaluation of nano/micro composites for nondestructive repair of delaminated structures

    Science.gov (United States)

    Venkiteela, Giri; Klein, Matthew; Najm, Husam; Perumalsamy, Balaguru

    2012-04-01

    Results of an experimental evaluation of nano/micro inorganic composites are presented in this paper. Alkali alumino silicates matrices reinforced with nano/micro fibers were used to repair (glue) fractured concrete prisms and test them in three point bending. Further, shear strength of matrices were also obtained using push-up tests. The variables evaluated were mix composition, temperature and specimen size. It is observed that flexural tensile strength of 1000 psi can be achieved from the developed matrices. In some instances when repaired broken prisms were tested, the failure occurred by creation of a new fracture surface. The developed matrices had the fluidity to fill very thin delamination, which can be pumped to reach delamination through small drilled holes. The results show that the compositions obtained in this study have excellent potential for application involving the repair of delamination.

  11. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactor (NDE Reliability) program at the Pacific Northwest Laboratory was established by the NRC to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1986 through September 1987

  12. Automatic x-ray image characterisation for non-destructive evaluation

    OpenAIRE

    Yin, Ying; Tian, Gui Yun

    2006-01-01

    In this paper, firstly we introduce an automatic welding defect inspection system for X-ray image\\ud evaluation, then, a novel image segmentation approach is proposed. In this approach, we first apply\\ud an adaptive morphological filter (AMF) with an appropriate structuring element to remove noise and\\ud most of the background image which is useless for defect identification. Secondly, edges were derived\\ud from edge detection by using the Sobel operator. Morphological processing is used to m...

  13. Nondestructive Evaluation of Young's Moduli of Full-Size wood Laminated Composite Poles

    Science.gov (United States)

    Cheng Piao; Todd F. Shube; Chung Y. Hse; R.C. Tang

    2004-01-01

    An exploratory study was conducted to evaluate the Young's moduli of wood laminated composite poles (LCP) by using a free transverse vibration method. Full-size LCP, 6.1 m long and 10.2 cm in diameter, were lab-fabricated with 9 and/or 12 southern yellow pine [SYP] strips of thickness, 1.9 cm, 2.9 cm and 3.8 cm. The frequency of free transverse vibration in a LCP...

  14. Research on Characterization of Damage States in Continuous Fiber Composites Using Ultrasonic Nondestructive Evaluation.

    Science.gov (United States)

    1986-05-01

    inch styrofoam for I P XY Platter HP 7470A Tria Diiizn COMPUTER Decwriter III Oscilloscope Mn O 12 rne Data 6000Mn O 12 rne Transducer WatereBath 5052 ...Material Microstructure, Ultrasonic Factors and Fracture Toughness of a Two Phase Titanium Alloy ," Materials Evaluation, Vol. 41, 1983, pp.309-314. 37...attachment on the transducer. RESULTS The technique developed here was first applied to an aluminium sample. Fig.2a shows the first and second gat- ed

  15. Non-destructive concrete strength evaluation using smart piezoelectric transducer—a comparative study

    Science.gov (United States)

    Lim, Yee Yan; Zee Kwong, Kok; Liew, Willey Yun Hsien; Kiong Soh, Chee

    2016-08-01

    Concrete strength monitoring, providing information related to the readiness of the structure for service, is important for the safety and resource planning in the construction industry. In this paper, a semi-analytical model of surface bonded piezoelectric (lead zirconate titanate) based wave propagation (WP) technique was developed for strength evaluation of mortar with different mix, throughout the curing process. Mechanical parameters of the mortar specimen were mathematically evaluated from the surface wave (R-wave) and pressure wave (P-wave) using elastic wave equations. These parameters were then empirically correlated to the strength. The model was found to be very robust as it could be generalized to account for different water to cement (W/C) ratio. The performance of the WP technique was then compared to the electromechanical impedance technique and other conventional techniques, such as the ultrasonic pulse velocity (UPV) test and the rebound hammer test. Results showed that the WP technique performed equally well as the conventional counterparts. The proposed technique is also advantageous over embedded WP technique and the UPV test, in terms of its capability to capture two types of waves for the evaluation of dynamic modulus of elasticity and Poisson’s ratio. A separate study was finally conducted to verify the applicability of this technique on heterogeneous concrete specimen. With the inherent capability of the WP technique in enabling autonomous, real-time, online and remote monitoring, it could potentially replace its conventional counterparts, in providing a more effective technique for the monitoring of concrete strength.

  16. Application of the bead flush method to welded pipes to evaluate residual stresses nondestructively

    International Nuclear Information System (INIS)

    Nakamura, H.; Yamamoto, M.

    2002-01-01

    To assess the structural integrity of welded structures during the design and in-service inspection, it is important to evaluate welding residual stresses. Recently, the design process of structures has shifted from 'the design by rule' to 'the design by analysis' using the FEM (finite element method) codes. As the design process advances, analytical processes have formed a link in the chain of manufacturing and in-service inspection procedures. Under this circumstance, authors have proposed a new method called 'the Bead Flush Method', to evaluate the welding residual stresses by utilizing the FEM data constructed during the structural design. In this method, eigenstrains as sources of residual stresses are calculated from released elastic strains after removal of reinforcement of the weld by applying the inverse analysis. Then, residual stresses as well as displacements at any location concerned are evaluated by imposing eigenstrains as initial strains in the FEM analysis. Mechanical properties required through this analysis are the elastic constants at room temperature. No further properties, such as temperature dependencies of the yield strength and the thermal coefficient, are needed. By now, we have confirmed its utility for welded plates by computer simulations and experiments. In this study, further development of this method for application to welded pipes was attempted. Despite its relatively simple shape of pipes (axe symmetrical) compared with welded plates (3-dimentional), welded pipe problems are more complicated than those of welded plates from a view point of the inverse analysis. As a first step, a basic formulization was attempted to overcome this difficulty and future problems to be solved were made clear. Then computer simulations of the bead flush method conducted for a thin walled welded pipe confirmed its utility. Refs. 2 (author)

  17. Quality Degradation of Chinese White Lotus Seeds Caused by Dampening during Processing and Storage: Rapid and Nondestructive Discrimination Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Lu Xu

    2015-01-01

    Full Text Available Dampening during processing or storage can largely influence the quality of white lotus seeds (WLS. This paper investigated the feasibility of using near-infrared (NIR spectroscopy and chemometrics for rapid and nondestructive discrimination of the dampened WLS. Regular (n=167 and dampened (n=118 WLS objects were collected from five main producing areas and NIR reflectance spectra (4000–12000 cm−1 were measured for bare kernels. The influence of spectral preprocessing methods, including smoothing, taking second-order derivatives (D2, and standard normal variate (SNV, on partial least squares discrimination analysis (PLSDA was compared to select the optimal data preprocessing method. A moving-window strategy was combined with PLSDA (MWPLSDA to select the most informative wavelength intervals for classification. Based on the selected spectral ranges, the sensitivity, specificity, and accuracy were 0.927, 0.950, and 0.937 for SNV-MWPLSDA, respectively.

  18. DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Vormelker, P.

    2009-07-31

    Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

  19. Analysis of Microstructure Using Thermoelectric Diagnostics for Non-Destructive Evaluation of Materials

    Science.gov (United States)

    Park, Y. D.; Kaydanov, V. I.; Mishra, B.; Olson, D. L.

    2005-04-01

    Measurements of Thermoelectric power (TEP) were used to evaluate microstructural analysis in HSLA steel weldments and retained austenite volume fraction for TRIP steel. First, the measurements of TEP for weld microstructure across weldment have shown good correlation with hardness profile. The different TEP values indicated that changes in weld microstructure can be correlated with TEP values measured. Second, it was demonstrated that retained austenite volume fraction were well correlated to TEP measurements for transformation induced plasticity (TRIP) steels. The results suggest that TEP measurements can be correlated to retained austenite volume fraction for TRIP steels, which do not have same chemical composition and thermal heat treatment processes. The retained austenite volume fraction also was measured by X-ray diffraction (XRD) method. With the introduction of these advanced TEP coefficient measurement techniques, the welding and steel industry will be using analytical tools similar to those instruments applied in the semiconductor industry.

  20. Non-destructive evaluation of impact damage on carbon fiber laminates: Comparison between ESPI and Shearography

    Energy Technology Data Exchange (ETDEWEB)

    Pagliarulo, V., E-mail: v.pagliarulo@isasi.cnr.it; Ferraro, P. [CNR National Research Council, ISASI, Institute of Applied Sciences and Intelligent Systems, via Campi Flegrei 34, 80078 Pozzuoli, NA (Italy); Lopresto, V.; Langella, A. [Dpt. Of Chemicals, Materials and Production Engin., University of Naples “Federico II”, P.leTecchio 80, Naples (Italy); Antonucci, V.; Ricciardi, M. R. [CNR National Research Council, IPCB, Institute of Polymer Composites and Biomedical Materials, P.E. Fermi, Portici (Italy)

    2016-06-28

    The aim of this paper is to investigate the ability of two different interferometric NDT techniques to detect and evaluate barely visible impact damage on composite laminates. The interferometric techniques allow to investigate large and complex structures. Electronic Speckle Pattern Interferometry (ESPI) works through real-time surface illumination by visible laser (i.e. 532 nm) and the range and the accuracy are related to the wavelength. While the ESPI works with the “classic” holographic configuration, that is reference beam and object beam, the Shearography uses the object image itself as reference: two object images are overlapped creating a shear image. This makes the method much less sensitive to external vibrations and noise but with one difference, it measures the first derivative of the displacement. In this work, different specimens at different impact energies have been investigated by means of both methods. The delaminated areas have been estimated and compared.

  1. Finite element modeling of stress corrosion cracking for electromagnetic nondestructive evaluations

    International Nuclear Information System (INIS)

    Wang, J.; Yusa, N.; Hashizume, H.

    2012-01-01

    This paper discusses appropriate numerical model for a stress corrosion crack (SCC) from the viewpoint of anisotropy of their conductivity. Two SCCs, which are introduced into a plate of type 316 stainless steel, are considered. Finite element simulations are carried out to evaluate the conductivity. In the simulations, the cracks are modeled as a region with a constant width on the basis of the destructive tests. The results show the conductivity on direction of width has large effect to the accuracy of numerical modeling of SCC, whereas the conductivities on direction of length and depth almost do not have remarkable effects. The results obtained by this study indicate that distribution of conductivity along the surface of a crack would be more important than the anisotropy in modeling SCCs in finite element simulations

  2. NATO Advanced Study Institute on Nondestructive Evaluation of Semiconductor Materials and Devices

    CERN Document Server

    1979-01-01

    From September 19-29, a NATO Advanced Study Institute on Non­ destructive Evaluation of Semiconductor Materials and Devices was held at the Villa Tuscolano in Frascati, Italy. A total of 80 attendees and lecturers participated in the program which covered many of the important topics in this field. The subject matter was divided to emphasize the following different types of problems: electrical measurements; acoustic measurements; scanning techniques; optical methods; backscatter methods; x-ray observations; accele­ rated life tests. It would be difficult to give a full discussion of such an Institute without going through the major points of each speaker. Clearly this is the proper task of the eventual readers of these Proceedings. Instead, it would be preferable to stress some general issues. What came through very clearly is that the measurements of the basic scientists in materials and device phenomena are of sub­ stantial immediate concern to the device technologies and end users.

  3. Linear Array Ultrasonic Testing Of A Thick Concrete Specimens For Non-Destructive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States); Zammerachi, Mattia [Univ. of Minnesota, Minneapolis, MN (United States); Ezell, N. Dianne Bull [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The University of Minnesota and Oak Ridge National Laboratory are collaborating on the design and construction of a concrete specimen with sufficient reinforcement density and cross-sectional size to represent a light water reactor (LWR) containment wall with various defects. The preliminary analysis of the collected data using extended synthetic aperture focussin technique (SAFT) reconstruction indicated a great potential of the ultrasound array technology for locating relatively shallow distresses. However, the resolution and reliability of the analysis is inversely proportional to the defect depth and the amount of reinforcement between the measurement point and the defect location. The objective of this round of testing is to evaluate repeatability of the obtained reconstructions from measurements with different frequencies as well as to examine the effect of the duration of the sending ultrasound signal on the resulting reconstructions. Two series of testing are performed in this study. The objective of the first series is to evaluate repeatability of the measurements and resulting reconstructed images. The measurements use three center frequencies. Five measurements are performed at each location with and without lifting the device. The analysis of the collected data suggested that a linear array ultrasound system can produce reliably repeatable reconstructions using 50 kHz signals for relatively shallow depths (less than 0.5 m). However, for reconstructions at the greater depths the use of lower frequency and/or signal filtering to reduce the effect of signal noise may be required. The objective of the second series of testing is to obtain measurements with various impulse signal durations. The entire grid on the smooth surface is tested with four different various impulse signal durations. An analysis of the resulting extended SAFT reconstructions suggested that Kirchhoff-based migration leads to easier interpreting reconstructions when shorter duration

  4. 3D Ultrasonic Non-destructive Evaluation of Spot Welds Using an Enhanced Total Focusing Method

    Science.gov (United States)

    Jasiuniene, Elena; Samaitis, Vykintas; Mazeika, Liudas; Sanderson, Ruth

    2015-02-01

    Spot welds are used to join sheets of metals in the automotive industry. When spot weld quality is evaluated using conventional ultrasonic manual pulse-echo method, the reliability of the inspection is affected by selection of the probe diameter and the positioning of the probe in the weld center. The application of a 2D matrix array is a potential solution to the aforementioned problems. The objective of this work was to develop a signal processing algorithm to reconstruct the 3D spot weld volume showing the size of the nugget and the defects in it. In order to achieve this, the conventional total focusing method was enhanced by taking into account the directivities of the single elements of the array and the divergence of the ultrasonic beam due to the propagation distance. Enhancements enabled a reduction in the background noise and uniform sensitivity at different depths to be obtained. The proposed algorithm was verified using a finite element model of ultrasonic wave propagation simulating three common spot weld conditions: a good weld, an undersized weld, and a weld containing a pore. The investigations have demonstrated that proposed method enables the determination of the size of the nugget and detection of discontinuities.

  5. Voluntary Consensus Organization Standards for Nondestructive Evaluation of Thin-Walled Metallic Liners and Composite Overwraps in Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor

    2012-01-01

    NASA fracture control requirements outlined in NASA-STD-5009 and NASA-STD-5014 are predicated on the availability and use of sensitive nondestructive evaluation (NDE) methods that can detect and monitor defects, thereby providing data that can be used to predict failure or reduce the risk of failure in fracture critical components. However, in the case of composite materials and components, including composite overwrapped pressure vessels (COPVs), the effect of defects is poorly understood, the NDE methods used to evaluate locate and size defects are typically at lower technical readiness level than analogous NDE methods used for metals, and demonstration studies to verify the probability of detection (POD) are generally lacking or unavailable. These factors together make failure prediction of fracture critical composite materials and components based on size, quantity, or orientation of defects nearly impossible. Also, when inspecting metal liners in as-manufactured COPVs, sensitivity is lost and only the inner surface of the liner is accessible. Also, NDE of COPVs as applied during manufacturing varies significantly from manufacturer to manufacturer and has not yet been standardized. Although requirements exist to perform NDE immediately after manufacturing to establish initial integrity of the parts, procedural detail for NDE of composites is still nonexistent or under development. For example, in practice, only a visual inspection of COPVs is performed during manufacturing and service, leaving in question whether defects of concern, for example, bridging, overwrap winding anomalies, impact damage below visible threshold, out-of-family strain growth, and liner buckling have been adequately detected and monitored. To address these shortcomings, in 2005 the NASA Nondestructive Evaluation Working Group (NNWG) began funding work to develop and adopt standards for nondestructive evaluation of aerospace composites in collaboration with the American Society for Testing

  6. Nondestructive chemical imaging of wood at the micro-scale: advanced technology to complement macro-scale evaluations

    Science.gov (United States)

    Barbara L. Illman; Julia Sedlmair; Miriam Unger; Carol Hirschmugl

    2013-01-01

    Chemical images help understanding of wood properties, durability, and cell wall deconstruction for conversion of lignocellulose to biofuels, nanocellulose and other value added chemicals in forest biorefineries. We describe here a new method for nondestructive chemical imaging of wood and wood-based materials at the micro-scale to complement macro-scale methods based...

  7. Evaluation of Bioaugmentation with Entrapped Degrading Cells as a Soil Remediation Technology

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Dechesne, Arnaud; Binning, Philip John

    2010-01-01

    Soil augmentation with microbial degraders immobilized on carriers is evaluated as a potential remediation technology using a mathematical model that includes degradation within spatially distributed carriers and diffusion or advectiondispersion as contaminant mass transfer mechanisms. The total...... degraders have low intrinsic degradation rates and that only limited carrier to soil volume ratios are practically feasible, bioaugmented soils are characterized by low effective degradation ratesandcanbeconsidered fully mixed. A simple exponential model is then sufficient to predict biodegradation...

  8. A Gradient-Field Pulsed Eddy Current Probe for Evaluation of Hidden Material Degradation in Conductive Structures Based on Lift-Off Invariance.

    Science.gov (United States)

    Li, Yong; Jing, Haoqing; Zainal Abidin, Ilham Mukriz; Yan, Bei

    2017-04-25

    Coated conductive structures are widely adopted in such engineering fields as aerospace, nuclear energy, etc. The hostile and corrosive environment leaves in-service coated conductive structures vulnerable to Hidden Material Degradation (HMD) occurring under the protection coating. It is highly demanded that HMD can be non-intrusively assessed using non-destructive evaluation techniques. In light of the advantages of Gradient-field Pulsed Eddy Current technique (GPEC) over other non-destructive evaluation methods in corrosion evaluation, in this paper the GPEC probe for quantitative evaluation of HMD is intensively investigated. Closed-form expressions of GPEC responses to HMD are formulated via analytical modeling. The Lift-off Invariance (LOI) in GPEC signals, which makes the HMD evaluation immune to the variation in thickness of the protection coating, is introduced and analyzed through simulations involving HMD with variable depths and conductivities. A fast inverse method employing magnitude and time of the LOI point in GPEC signals for simultaneously evaluating the conductivity and thickness of HMD region is proposed, and subsequently verified by finite element modeling and experiments. It has been found from the results that along with the proposed inverse method the GPEC probe is applicable to evaluation of HMD in coated conductive structures without much loss in accuracy.

  9. The role of ultrasonic velocity and Schmidt hammer hardness - The simple and economical non-destructive test for the evaluation of mechanical properties of weathered granite

    Science.gov (United States)

    Jobli, Ahmad Fadzil; Hampden, Ahmad Zaidi; Tawie, Rudy

    2017-08-01

    One of the most significant techniques for evaluation of rock strength is by using the simple and economical non-destructive test (NDT). Previous literatures confirm that there were good correlations between NDTs to the strength properties of granite rocks. The present work deals with the use of Ultrasonic Pulse Velocity and Schmidt Hammer Hardness test to predict the mechanical properties of weathered granite. Cylindrical specimens with the length to diameter ratio of two were prepared for this study and were characterized based on different weathering states. Each of the rock specimens was tested under non-destructive test and then followed by uniaxial compression test to assess the mechanical properties. It was found that good correlations established between the NDTs and the uniaxial compressive strength. The correlation between uniaxial compressive strength and rebound hardness number was demonstrated by exponential form; UCS = 6.31e0.057N, while linear correlations was obtained between the uniaxial compressive strength and the ultrasonic pulse velocity; UCS = 0.023Vp - 21.43. It was also noticed that the increase of uniaxial compression strength was parallel to the increase of elastic modulus and can be presented by a linear equation; UCS = 1.039Et50 + 4.252. Based on the reported results, it is clear that the mechanical properties or weathered granite can be estimated by means of non-destructive test.

  10. Nondestructive evaluation of materials

    International Nuclear Information System (INIS)

    Mitra, Amitava; Parida, Narayan; Bhattacharya, D.K.; Goswami, N.G.

    1997-01-01

    The workshop was an attempt to share the experiences of NML in the areas of NDT along with the wisdom and experiences of a few other selected Indian experts. This proceedings contain the lectures delivered during the workshop. This includes the current trends in conventional NDT and E like ultrasonic, eddy current, infrared thermography, residual stress by x-ray diffraction. The magnetic NDT and acoustic emission techniques have also been dealt in great detail. Lectures on pattern recognition and on digital signal processing and their significance to NDT and E have been included in this collection. The materials assessment by MDBT and the use of sensor for NDT are other topics covered in the workshop. The use of NDT in the more specific area of fracture mechanics and texture analysis and an overall view of the role of NDT and E in component integrity assessment were dealt with during the workshop and are included in this proceedings

  11. Quantitative Nondestructive Evaluation

    Science.gov (United States)

    1979-10-01

    technology progressed units with 1000 kV became available. Then with the development of the Van de Graaff generator and betatron, multimillion-volt...customers. Particle accelerator sources typically employ a Van de Graaff generator to bombard a suitable target (beryllium) with positive ions. Again...Eddy Current Generated in a Flat Plate by a Magnetic Field 30 11. Eddy Currents Produced in a Cylindrical Body by an Encircling Coil 30 12

  12. Non-destructive three-dimensional evaluation of pores at different welded joints and their effects on joints strength.

    Science.gov (United States)

    Nomoto, Rie; Takayama, Yasuko; Tsuchida, Fujio; Nakajima, Hiroyuki

    2010-12-01

    The purpose of this study was to measure the porosity in different laser welded cast alloys non-destructively using X-ray micro-focus computerized tomography (micro-CT) and to evaluate the effect of porosity on the tensile strength of the welded joints. The welding procedure was conducted in rectangular cast metals, CoCr, Ti and platinum added gold alloy (AuPt). The metal plates were butted CoCr to CoCr (CoCr/CoCr) or Ti to Ti (Ti/Ti) for welding of similar metals and Ti to AuPt (Ti/AuPt) for welding of dissimilar metals. Specimens were welded under several laser-welding conditions; with groove (normal), without groove (no groove), spatter, crack, or no overlapped welding (no overlap) (n=5). Porosity in the welded area was evaluated using a micro-CT. Tensile strength of the welded specimens was measured at a crosshead speed of 1mm/min. Multiple comparisons of the group means were performed using ANOVA and Fisher's multiple comparisons test (α=.05). The relationship between the porosity and the tensile strength was investigated with a regression analysis. Three-dimensional images of Ti/AuPt could not be obtained due to metal artifacts and the tensile specimens of Ti/AuPt were debonded prior to the tensile test. All other welded specimens had porosity in the welded area and the porosities ranged from 0.01% to 0.17%. The fractures of most of the CoCr/CoCr and Ti/Ti specimens occurred in the parent metals. Joint strength had no relationship with the porosity in the welded area (R(2)=0.148 for CoCr/CoCr, R(2)=0.088 for Ti/Ti, respectively). The small amount of porosity caused by the laser-welding procedures did not affect the joint strength. The joint strength of Ti/AuPt was too weak to be used clinically. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    Science.gov (United States)

    Yan, Y.; Qian, S.; Littrell, K.; Parish, C. M.; Plummer, L. K.

    2015-05-01

    A nondestructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless-steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Our study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount (≈20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor can be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for determining absolute hydrogen concentrations.

  14. Nondestructive examination

    International Nuclear Information System (INIS)

    Mletzko, U.

    1980-01-01

    Visual examination is treated as a method for the control of size and shape of components, surface quality and weld performance. Dye penetrant, magnetic particle and eddy current examinations are treated as methods for the evaluation of surface defects and material properties. The limitations to certain materials, defect sizes and types are shown. (orig./RW)

  15. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    Science.gov (United States)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  16. Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management.

    Science.gov (United States)

    2015-06-01

    Remote sensing technologies allow for the condition evaluation of bridge decks at near highway speed. : Data collection at near highway speed for assessment of the top of the concrete deck and proof of : concept testing for the underside of the deck ...

  17. EVALUATION AND MAPPING OF RANGELANDS DEGRADATION USING REMOTELY SENSED DATA

    Directory of Open Access Journals (Sweden)

    Majid Ajorlo

    2005-05-01

    Full Text Available The empirical and scientifically documents prove that misuse of natural resource causes degradation in it. So natural resources conservation is important in approaching sustainable development aims. In current study, Landsat Thematic Mapper images and grazing gradient method have been used to map the extent and degree of rangeland degradation. In during ground-based data measuring, factors such as vegetation cover, litter, plant diversity, bare soil, and stone & gravels were estimated as biophysical indicators of degradation. The next stage, after geometric correction and doing some necessary pre-processing practices on the study area’s images; the best and suitable vegetation index has been selected to map rangeland degradation among the Normalized Difference Vegetation Index (NDVI, Soil Adjusted Vegetation Index (SAVI, and Perpendicular Vegetation Index (PVI. Then using suitable vegetation index and distance parameter was produced the rangelands degradation map. The results of ground-based data analysis reveal that there is a significant relation between increasing distance from critical points and plant diversity and also percentage of litter. Also there is significant relation between vegetation cover percent and distance from village, i.e. the vegetation cover percent increases by increasing distance from villages, while it wasn’t the same around the stock watering points. The result of analysis about bare soil and distance from critical point was the same to vegetation cover changes manner. Also there wasn’t significant relation between stones & gravels index and distance from critical points. The results of image processing show that, NDVI appears to be sensitive to vegetation changes along the grazing gradient and it can be suitable vegetation index to map rangeland degradation. The degradation map shows that there is high degradation around the critical points. These areas need urgent attention for soil conservation. Generally, it

  18. Evaluation of the performance degradation at PAFC effect of catalyst degradation on electrode performance

    Energy Technology Data Exchange (ETDEWEB)

    Nishizaki, K.; Uchida, H.; Watanabe, M. [Yamanashi Univ., Kofu (Japan)] [and others

    1996-12-31

    Aiming commercialization of Phosphoric Acid Fuel Cell (PAFC) power plant, many researches and developments have been contributed. Over 20000 hours operations have been demonstrated by many PAFC power plants. But there is no effective method for the estimation of lifetime of electrochemical cells without a practical long-term operation. Conducted by New Energy and Industrial Technology Development Organization (NEDO), cooperative research projects aiming development of PAFC lifetime estimation method have started since 1995 FY in Japan. As part of this project, this work has been performed to clarify basic phenomena of the performance degradation at PAFCs jointly by Yamanashi University, Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) and PAFC manufacturers (Toshiba Co., Mitsubishi Electric Co, Fuji Electric Co.). Among several main causes of the cell performance degradation, effects of catalyst degradation (reduction in metal surface area, dealloying, changes in catalyst support) on PAFC cathode performances are discussed in this work.

  19. Non-destructive flavour evaluation of red onion (Allium cepa L.) ecotypes: an electronic-nose-based approach.

    Science.gov (United States)

    Russo, Mariateresa; di Sanzo, Rosa; Cefaly, Vittoria; Carabetta, Sonia; Serra, Demetrio; Fuda, Salvatore

    2013-11-15

    This work reports preliminary results on the potential of a metal oxide sensor (MOS)-based electronic nose, as a non-destructive method to discriminate three "Tropea Red Onion" PGI ecotypes (TrT, TrMC and TrA) from each other and the common red onion (RO), which is usually used to counterfeit. The signals from the sensor array were processed using a canonical discriminant function analysis (DFA) pattern recognition technique. The DFA on onion samples showed a clear separation among the four onion groups with an overall correct classification rate (CR) of 97.5%. Onion flavour is closely linked to pungency and thus to the pyruvic acid content. The e-nose analysis results are in good agreement with pyruvic acid analysis. This work demonstrated that artificial olfactory systems have potential for use as an innovative, rapid and specific non-destructive technique, and may provide a method to protect food products against counterfeiting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Non-destructive monitoring of mouse embryo development and its qualitative evaluation at the molecular level using Raman spectroscopy

    Science.gov (United States)

    Ishigaki, Mika; Hashimoto, Kosuke; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    Current research focuses on embryonic development and quality not only by considering fundamental biology, but also by aiming to improve assisted reproduction technologies, such as in vitro fertilization. In this study, we explored the development of mouse embryo and its quality based on molecular information, obtained nondestructively using Raman spectroscopy. The detailed analysis of Raman spectra measured in situ during embryonic development revealed a temporary increase in protein content after fertilization. Proteins with a β-sheet structure—present in the early stages of embryonic development—are derived from maternal oocytes, while α-helical proteins are additionally generated by switching on a gene after fertilization. The transition from maternal to embryonic control during development can be non-destructively profiled, thus facilitating the in situ assessment of structural changes and component variation in proteins generated by metabolic activity. Furthermore, it was indicated that embryos with low-grade morphology had high concentrations of lipids and hydroxyapatite. This technique could be used for embryo quality testing in the future.

  1. Non-destructive analysis in a study of the religious art objects

    Energy Technology Data Exchange (ETDEWEB)

    Vornicu, Nicoleta; Bibire, Cristina [Metropolitan Center of Research TABOR, Metropolitanate of Moldavia and Bukovina, Closca 9, 700066 Iasi (Romania); Geba, Maria, E-mail: cmctaboriasi@yahoo.co [Cultural Heritage Restoration - Conservation Centre ' Moldova' , National Museum Complex, Iasi (Romania)

    2009-08-01

    The icon Descending of the Saint Spirit from Bucium Church, dating in the year 1814 and was done in tempera on wood technology. The characterization of cultural heritage materials is essential for the comprehension of their degradation mechanisms. The present study aims at identifying the pigments in the various layers, establishing the possible existence of an organic binder and scientifically evaluating the state of preservation. To this end, were used non-destructive methods, as: microscopic (SEM), XRF and spectroscopic (FTIR).

  2. Non-destructive analysis in a study of the religious art objects

    International Nuclear Information System (INIS)

    Vornicu, Nicoleta; Bibire, Cristina; Geba, Maria

    2009-01-01

    The icon Descending of the Saint Spirit from Bucium Church, dating in the year 1814 and was done in tempera on wood technology. The characterization of cultural heritage materials is essential for the comprehension of their degradation mechanisms. The present study aims at identifying the pigments in the various layers, establishing the possible existence of an organic binder and scientifically evaluating the state of preservation. To this end, were used non-destructive methods, as: microscopic (SEM), XRF and spectroscopic (FTIR).

  3. Nondestructive Characterization of Aged Components

    Energy Technology Data Exchange (ETDEWEB)

    Panetta, Paul D.; Toloczko, Mychailo B.; Garner, Francis A.; Balachov, Iouri I.

    2003-10-21

    may be used for material properties measurements. A more appealing solution is to use nondestructive evaluation (NDE) methods.

  4. Analyses of component degradation to evaluate maintenance effectiveness and aging effects

    International Nuclear Information System (INIS)

    Samanta, P.K.; Hsu, F.; Subudhi, M.; Vesely, W.E.

    1991-01-01

    This paper describes degradation modeling, an approach for analyzing degradation and failure of components to understand the aging process of components. As used in our study, degradation modeling is the analysis of information on degradation of components for developing models of the degradation process and its implications. This modeling focuses on the analysis of the times of degradations of components, to model how the rate of degradation changes with the age of the component. With this methodology we also determine the effectiveness of maintenance as applicable to aging evaluations. The specific applications which are performed show quantitative models of degradation rates of components and failure rates of components from plant-specific data. The statistical techniques allow aging trends to be identified in the degradation data and in the failure data. Initial estimates of the effectiveness of maintenance in limiting degradations from becoming failures are developed. These results are important first steps in degradation modeling, and show that degradation can be modeled to identify aging trends. 2 refs., 8 figs., 1 tab

  5. Aging material evaluation and studies by non-destructive techniques (AMES-NDT) - a European network project

    International Nuclear Information System (INIS)

    Dobmann, Gerd; Debarberis, Luigi; Coste, Jean-Francois

    2001-01-01

    This paper presents results obtained in a round-robin action organized in a concerted action of ten partners in the EURATOM program of the European Community. The objective of the research was to document the state of the art of available non-destructive testing (NDT) techniques in order to characterize material aging phenomena based on a reduction of Charpy-V energy and a shift in the fracture appearance transition temperature. Therefore, samples from the Japanese nuclear reactor pressure vessel JRQ-steel (ASMT Standard A533-B Class 1) have been thermally treated at 700 deg. C for 18 h with a subsequent water quenching. Besides micromagnetic and electromagnetic NDT, the positron annihilation technique, ultrasonic reverberation by using Laser ultrasonics and the thermo-electrical power have been applied to characterize the aged material states

  6. Non-destructive testing and flaw evaluation as a means of improving the reliability of reactor components

    International Nuclear Information System (INIS)

    Prot, A.C.; Saglio, R.; Asty, M.; Pigeon, M.

    1978-01-01

    The paper reports on developments in those non-destructive testing techniques which can contribute to the reliability of nuclear components, especially in techniques to be used for periodic inspection. A description is given of the most recent improvements in ultrasonic testing, eddy currents and acoustic emission, emphasis being placed on what they can contribute to reliability. For example, it is shown how the systematic use of a flaw sizing technique can improve techniques for analysing the harmful effects of flaws (e.g. fracture mechanics analysis). There is also a description of the problem of the large differences between tests carried out in fabrication and the more sophisticated tests used in periodic inspection and it is shown what effect this can have on the reliability of facilities. The importance of problems associated with the testing of austenitic steels and welds of dissimilar metals is stressed, as is the need for finding solutions to these problems quickly. (author)

  7. Non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Hull, B.; John, V.

    1988-01-01

    This text covers, the underlying principles and some major applications of non-destructive inspection methods. Complete chapters are devoted to each of the following: liquid penetration inspection, magnetic particle inspection, electrical testing, ultrasonic testing and radiography. The concluding chapter introduces the reader to some of the more recent developments in non-destructive inspection.

  8. Delamination evaluation of thermal barrier coating on turbine blade owing to isothermal degradation using ultrasonic C-scan image

    International Nuclear Information System (INIS)

    Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung

    2016-01-01

    Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived

  9. Delamination evaluation of thermal barrier coating on turbine blade owing to isothermal degradation using ultrasonic C-scan image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-10-15

    Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

  10. Evaluating mechanical properties and degradation of YTZP dental implants

    International Nuclear Information System (INIS)

    Sevilla, Pablo; Sandino, Clara; Arciniegas, Milena; Martinez-Gomis, Jordi; Peraire, Maria; Gil, Francisco Javier

    2010-01-01

    Lately new biomedical grade yttria stabilized zirconia (YTZP) dental implants have appeared in the implantology market. This material has better aesthetical properties than conventional titanium used for implants but long term behaviour of these new implants is not yet well known. The aim of this paper is to quantify the mechanical response of YTZP dental implants previously degraded under different time conditions and compare the toughness and fatigue strength with titanium implants. Mechanical response has been studied by means of mechanical testing following the ISO 14801 for Standards for dental implants and by finite element analysis. Accelerated hydrothermal degradation has been achieved by means of water vapour and studied by X-ray diffraction and nanoindentation tests. The results show that the degradation suffered by YTZP dental implants will not have a significant effect on the mechanical behaviour. Otherwise the fracture toughness of YTZP ceramics is still insufficient in certain implantation conditions.

  11. Lifetime Evaluation of PV Inverters considering Panel Degradation Rates and Installation Sites

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    The PV inverter lifetime is affected by the installed sites related to different solar irradiance and ambient temperature profiles. In fact, the installation site also affects the PV panel degradation rate, and thus the long-term power production. Prior-art lifetime analysis in PV inverters has...... not yet investigated the impact of panel degradation. This paper thus evaluates the lifetime of PV inverters considering panel degradation rates and installation sites. Evaluations have been carried out on PV systems installed in Denmark and Arizona. The results reveal that the PV panel degradation rate...... has a considerable impact on the PV inverter lifetime, especially in the hot climate (e.g., Arizona), where the panel degrades at a faster rate. In that case, the PV inverter lifetime estimation can be deviated by 54%, if the impact of PV panel degradation is not taken into account....

  12. Evaluation of mechano-chemical degradation induced stresses of polyolefin pipes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Ho [Korea Univ., Seoul (Korea, Republic of); Chudnovsky, Alexander [The University of Illinois, Chicago (United States)

    2008-07-01

    The fracture phenomena in engineering thermoplastics resulting from chemical degradation is usually observed in the form of a microcrack network within a surface layer of degraded polymer exposed to a combined action of mechanical stresses and chemically aggressive environment. Degradation of polymers is usually manifested in a reduction of molecular weight, increase of crystallinity in semi crystalline polymers, increase of material density, a subtle increase in yield strength, and a dramatic reduction in toughness. The critical level of degradation for fracture initiation depends on the rates of toughness deterioration and build-up of the degradation related stresses as well as on the manufacturing and service stresses. In this paper, the evaluation of mechano-chemical degradation induced stress is attempted, and the application of the evaluated stress to the fracture initiation of polymer pipes is presented.

  13. Evaluation of mechano-chemical degradation induced stresses of polyolefin pipes

    International Nuclear Information System (INIS)

    Choi, Byoung Ho; Chudnovsky, Alexander

    2008-01-01

    The fracture phenomena in engineering thermoplastics resulting from chemical degradation is usually observed in the form of a microcrack network within a surface layer of degraded polymer exposed to a combined action of mechanical stresses and chemically aggressive environment. Degradation of polymers is usually manifested in a reduction of molecular weight, increase of crystallinity in semi crystalline polymers, increase of material density, a subtle increase in yield strength, and a dramatic reduction in toughness. The critical level of degradation for fracture initiation depends on the rates of toughness deterioration and build-up of the degradation related stresses as well as on the manufacturing and service stresses. In this paper, the evaluation of mechano-chemical degradation induced stress is attempted, and the application of the evaluated stress to the fracture initiation of polymer pipes is presented

  14. Methods for Evaluating the Biodegradability of Environmentally Degradable Polymers

    NARCIS (Netherlands)

    Zee, van der M.

    2014-01-01

    This chapter presents an overview of the current knowledge on experimental methods for monitoring the biodegradability of polymeric materials. The focus is, in particular, on the biodegradation of materials under environmental conditions. Examples of in vivo degradation of polymers used in

  15. Development and evaluation of degradable hydroxyapatite/sodium ...

    Indian Academy of Sciences (India)

    R MORSY. Biophysics Lab, Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt. MS received 13 November 2015; accepted 24 February 2016. Abstract. This study was designed to develop innovative degradable hydroxyapatite (HAp)-based systems working as potential carriers for low-dose drugs ...

  16. Development and evaluation of degradable hydroxyapatite/sodium ...

    Indian Academy of Sciences (India)

    Abstract. This study was designed to develop innovative degradable hydroxyapatite (HAp)-based systems working as potential carriers for low-dose drugs. The HAp-based systems combine three components: HAp, sodium silicate and citric acid (HSC), which together could exhibit optimal characteristics as drug carriers.

  17. GIS-based evaluation and spatial distribution characteristics of land degradation in Bijiang watershed.

    Science.gov (United States)

    Zhao, Xiaoqing; Dai, Jinhua; Wang, Jianping

    2013-01-01

    Land degradation is one of the significant issues the human beings are confronted with, which has become a bottleneck of restricting the sustainable development of the regional society and economy. In order to ascertain the root causes contributed to the land degradation and characteristics of land degradation, Bijiang watershed, the most important Lead-Zinc mine area of Lanping county of Yunnan Province, was selected as the study area. One evaluation index system for land degradation that consists of 5 single factors(water-soil erosion intensity, geological disaster risk, cultivation intensity of arable land, pollution of heavy metals in soil and biodiversity deterioration) was established and 13 indicators were chosen, and the entropy method was adopted to assign weights to each single factor. By using the tools of Geographic Information System (GIS), the land degradation degree was evaluated and one spatial distribution map for land degradation was accomplished. In this study, the land of the whole watershed was divided into 4 types, including extremely-severe degradation area, severely-degraded area, moderately-degraded area and slightly-degraded area, and some solutions for ecological restoration and rehabilitation were also put forward in this study. The study results indicated that: (1) Water-soil erosion intension and pollution of heavy metals in soil have made greater contribution to the comprehensive land degradation in Bijiang watershed; (2) There is an apparent difference regarding land degradation degree in Bijiang watershed. The moderately-degraded area accounts for the most part in the region, which covers 79.66% of the whole watershed. The severely-degraded area accounts for 15.98% and the slightly-degraded regions and extremely severe degradation area accounts for 1.08% and 3.28% respectively; (3) There is an evident regularity of spatial distribution in land degradation in Bijiang watershed. The moderately-degraded areas mainly distribute in the

  18. Nondestructive controls and testings: the new developments and their applications

    International Nuclear Information System (INIS)

    Recolin, P.; Bremnes, O.; Chassignole, B.; Schumm, A.; Chassignole, B.; Doudet, L.; Dupond, O.; Fouquet, T.; Richard, B.; Delnondedieu, M.; Calmon, P.; Mahaut, S.; Sollier, T.; Haiat, G.; Leberre, S.; Benoist, Ph.; Casula, O.; Lasserre, F.; Pasquier, T.; Legrandjacques, L.; Lutsen, M.; Levy, R.; Piriou, M.; Glass, B.; Chanussot, J.M.; Cattiaux, G.; Fleury, G.; Thiery, Ch.; Breysse, D.; Abraham, O.

    2005-01-01

    This document provides the proceedings of the conference on nondestructive controls and testings, held at Paris the 18 November 2004. Ten presentations were discussed on the following topics: the nondestructive testing of shipbuilding, the nondestructive evaluation simulation, the ultrasonic testing of austenitic stainless steels joints, qualification of the PWR vessels control, evaluation of the nuclear power plants materials aging, automation of the PWR primary coolant circuit testing, the photothermal imaging facing the liquid penetrant testing, geometry control with adaptative transducers, industrial tomography developments, nondestructive evaluation of the reinforced concretes structures. (A.L.B.)

  19. Indenter portable equipment. Measurement of the recovery time for the non-destructive power cable ageing evaluation

    International Nuclear Information System (INIS)

    Dinu, E.; Cepisca, C.; Puiu, D.; Gyongyosi, T.; Corbescu, B.; Deloreanu, G.

    2016-01-01

    Have been sampled 5 cable sections with 4 m long, HXH FE 180 E90; 3x 25 mm type. Samples have been thermal accelerating aged (by Loule Lenz effect); the equivalent operation time in NPP being of 0, 10, 20, 30 and 40 years. The recovery time (TR) is an indicator of the viscoelastic properties of the material. This parameter has been shown to be very sensitive to degradation resulting from thermal ageing and/or irradiation for a variety of materials tested to date (PVC, XLPE, EPR and CSPE). TR increase with insulation material degradation. The TR measurement has been incorporated into a recently developed portable indenter. Therefore, this technique can be used for on-site measurements. The results are useful to identify, model and manage the power cable material ageing phenomenon in the NPP. (authors)

  20. Lifetime Evaluation of Grid-Connected PV Inverters Considering Panel Degradation Rates and Installation Sites

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2018-01-01

    Lifetime of PV inverters is affected by the installation sites related to different solar irradiance and ambient temperature profiles (also referred to as mission profiles). In fact, the installation site also affects the degradation rate of the PV panels, and thus long-term energy production...... and reliability. Prior-art lifetime analysis in PV inverters has not yet investigated the impact of PV panel degradations. This paper thus evaluates the lifetime of PV inverters considering panel degradation rates and mission profiles. Evaluations have been carried out on PV systems installed in Denmark...... and Arizona. The results reveal that the PV panel degradation rate has a considerable impact on the PV inverter lifetime, especially in the hot climate (e.g., Arizona), where the panel degrades at a faster rate. In that case, the PV inverter lifetime prediction can be deviated by 54%, if the impact of PV...

  1. NAFTA Guidance for Evaluating and Calculating Degradation Kinetics in Environmental Media :DD Memo

    Science.gov (United States)

    Signed Division Director memo, December 17, 2012, with original announcement to EFED scientists of tools and approaches for evaluating and calculating degradation kinetics in environmental media. There is more updated information that this available.

  2. Nondestructive testing of weldings

    International Nuclear Information System (INIS)

    Ruth, U.

    1984-02-01

    Today the nondestructive testing of materials with transverse weldings would be often neglect. Because the production of this parts will get more expensive it is interesting to test the parts eg. cans with ultrasound. Within this research program we developed a testing device for automatically testing of materials with transverse weldings, e.g. tubes. Functional characteristics: after putting in the test tube in the testing device the transducer is adjusted automatically to the best adjustment. This takes place with three step motors. The mechanic of adjustments gets its information from an optimal computer. The optimal computer processes the signals, which it gets from the automatic evaluator during the adjustment and stores the optimal adjustment parameters. With an additional equipment on can identify the exact source of error, if the testing device turns out and the repairing of the part can take place very fast. With an appropiate mechanical science the devide is useable in a production line with high flow rate. (orig.) [de

  3. A preformulation evaluation of a photosensitive surface active compound, explaining concentration dependent degradation.

    Science.gov (United States)

    Sigfridsson, Kalle; Carlsson, Karin E

    2017-11-15

    A candidate drug within the cardiovascular area was identified during early research and evaluated for further development. The aim was to understand and explain the degradation mechanisms for the present compound. The stability of the active pharmaceutical ingredient (API) in solution and solid state was studied during different conditions. The bulk compound was exposed to elevated temperatures, increased relative humidity and stressed light conditions. Degradation of the drug in solutions was followed in the presence versus absence of ethylenediaminetetraacetic acid (EDTA), during aerobic versus anaerobic conditions, stored protected from light versus exposed to light and as a function of pH and concentration. It was possible to improve the stability by adding EDTA and completely abolish degradation by storing dissolved compound at anaerobic conditions. Solutions of API were stable between pH3 and 7, with some degradation at pH1, when stored protected from light and at 22°C, but degrade rapidly when exposed to ambient light conditions. The degradation products were identified by mass spectroscopy. Degradation schemes were drawn. There was concentration dependence in the degradation of dissolved drug when exposed to light, showing a titration behavior that concurred with the measured critical micelle/aggregation concentration (CMC/CAC) of the compound. The compound was stable in solution during the investigated time period, at concentrations above CMC/CAC, where the molecule was protected from photodegradation when the compound aggregated. Below CMC/CAC, a significant degradation of the API occurred. This may be a potential explanation why other surface active compounds show concentration dependent degradation. The photosensitivity was also observed for the neutral compound in crystalline and amorphous form, as well as for the crystalline chloride salt of the drug. However, the degradation of amorphous form was faster compared to crystalline material. No

  4. Rapid and efficient degradation of bisphenol A by chloroperoxidase from Caldariomyces fumago: product analysis and ecotoxicity evaluation of the degraded solution.

    Science.gov (United States)

    Dong, Xiaobo; Li, Haiyun; Jiang, Yucheng; Hu, Mancheng; Li, Shuni; Zhai, Quanguo

    2016-09-01

    To degrade enzymatically bisphenol A (BPA) that causes serious environmental concerns and is difficult to be degraded by chemical or physical methods. BPA (150 mg l(-1)) was completely degraded by chloroperoxidase (CPO)/H2O2 within 7 min at room temperature, atmospheric pressure with the enzyme at 6 μg CPO ml(-1). The degradation products were identified by HPLC-MS, which suggested involvement of multiple steps. Enzymatic treatment followed by existing bioremediation technologies (activated sludge) enhanced removal of COD from 9 to 54 %. Using an ecotoxicity evaluation with Chlorella pyrenoidosa, the degradation products had a lower toxicity than BPA. BPA can be degraded rapidly and efficiently under mild conditions with chloroperoxidase at 6 μg ml(-1). The degradation products had a lower toxicity than BPA.

  5. Evaluation of Network Failure induced IPTV degradation in Metro Networks

    DEFF Research Database (Denmark)

    Wessing, Henrik; Berger, Michael Stübert; Yu, Hao

    2009-01-01

    In this paper, we evaluate future network services and classify them according to their network requirements. IPTV is used as candidate service to evaluate the performance of Carrier Ethernet OAM update mechanisms and requirements. The latter is done through quality measurements using MDI...

  6. Force degradation of closed coil springs: an in vitro evaluation.

    Science.gov (United States)

    Angolkar, P V; Arnold, J V; Nanda, R S; Duncanson, M G

    1992-08-01

    This in vitro study was designed to determine the force degradation of closed coil springs made of stainless steel (SS), cobalt-chromium-nickel (Co-Cr-Ni) and nickel-titanium (Niti) alloys, when they were extended to generate an initial force value in the range of 150 to 160 gm. The specimens were divided into two groups. Group I included SS, Co-Cr-Ni, and two nickel-titanium spring types (Niti 1 and Niti 2), 0.010 x 0.030 inch with an initial length of 12 mm. Group II was comprised of SS, Co-Cr-Ni, and Niti 3 0.010 x 0.036-inch springs, with an initial length of 6 mm. A universal testing machine was used to measure force. A pilot study determined the extension required for each spring type, so that the initial force was in the range of 150 to 160 gm. Initial force was recorded, and then the springs were extended to the respective distances at 4 hours, 24 hours, 3 days, 7 days, 14 days, 21 days, and 28 days resulting in a total of eight time periods. Between the time intervals, all springs were extended to the same initial extension on specially designed racks and stored in a salivary substitute at 37 degrees C. Means and standard deviations of force values, percent force loss, and mean extension were statistically analyzed. All springs showed a force loss over time. Of the total, the major force loss for most springs was found to occur in the first 24 hours.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. A Miniature Membrane Reactor for Evaluation of Process Design Options on the Enzymatic Degradation of Pectin

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham; Pinelo, Manuel; Arnous, Anis

    2011-01-01

    The objective of this paper is to assess if a membrane microbioreactor system could potentially be used to diagnose consequences of different process design and reactor operation options relevant for larger-scale enzymatic degradation of pectin reactions. The membrane microbioreactor prototype...... design affected the membrane rejection profile. The results obtained thus underlined the suitability of a miniature membrane reactor system for evaluating different process design options that are relevant for larger-scale reactions of enzymatic pectin degradation....

  8. Upgrading of highly elapsed degradation damage evaluation of structural materials for the light water reactors

    International Nuclear Information System (INIS)

    Katada, Yasuyuki; Matsushima, Shinobu; Sato, Shunji

    1998-01-01

    In this study, for degradation of structural materials in accompanying with highly yearly lapse of the nuclear power plants, it was an aim to elucidate interaction between material degradation and degradation under high hot water environment. And, another aims consisted in intention of expansion protection and recovery evaluation of damage due to laser processing method and so on for welded portion showing extreme material degradation and in preparation of damage region diagram based on the obtained data. In this fiscal year, on interaction between materials and environmental degradation, it was found that as stress corrosion cracking of materials hardened by shot peening shows a resemble shapes of stress-strain curve in CERT and CLRT, shapes of load-time curve were much different. On comparison of the SP material and non-processing material, as peak current showing activity of newly created surface shows no difference, re-passivation of the SP material was found to be too late. And, on recovery evaluation of material degradation damage, as it was found that constant melt depth was essential to evaluate corrosion, a condition preparation aimed for melt depth of more than 1 mm. As only small amount of bubbles were observed at molten metal part on YAG laser processing, it was found that many small bubbles scatter at thermal effect part. (G.K.)

  9. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    Science.gov (United States)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  10. Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Leão, Bruna A; Tótola, Marcos R; Borges, Arnaldo C

    2011-02-01

    The acute toxicity of bacterial surfactants LBBMA111A, LBBMA155, LBBMA168, LBBMA191 and LBBMA201 and the synthetic surfactant sodium dodecyl sulfate (SDS) on the bioluminescent bacterium Vibrio fischeri was evaluated by measuring the reduction of light emission (EC(20)) by this microorganism when exposed to different surfactant concentrations. Moreover, the toxic effects of different concentrations of biological and synthetic surfactants on the growth of pure cultures of isolates Acinetobacter baumannii LBBMA04, Acinetobacter junni LBBMA36, Pseudomonas sp. LBBMA101B and Acinetobacter baumanni LBBMAES11 were evaluated in mineral medium supplemented with glucose. The EC(20) values obtained confirmed that the biosurfactants have a significantly lower toxicity to V. fischeri than the SDS. After 30 min of exposure, bacterial luminescence was almost completely inhibited by SDS at a concentration of 4710 mg L(-1). Growth reduction of pure bacterial cultures caused by the addition of biosurfactants to the growth medium was lower than that caused by SDS. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. 3D Nondestructive Visualization and Evaluation of TRISO Particles Distribution in HTGR Fuel Pebbles Using Cone-Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Gongyi Yu

    2017-01-01

    Full Text Available A nonuniform distribution of tristructural isotropic (TRISO particles within a high-temperature gas-cooled reactor (HTGR pebble may lead to excessive thermal gradients and nonuniform thermal expansion during operation. If the particles are closely clustered, local hotspots may form, leading to excessive stresses on particle layers and an increased probability of particle failure. Although X-ray digital radiography (DR is currently used to evaluate the TRISO distributions in pebbles, X-ray DR projection images are two-dimensional in nature, which would potentially miss some details for 3D evaluation. This paper proposes a method of 3D visualization and evaluation of the TRISO distribution in HTGR pebbles using cone-beam computed tomography (CBCT: first, a pebble is scanned on our high-resolution CBCT, and 2D cross-sectional images are reconstructed; secondly, all cross-sectional images are restructured to form the 3D model of the pebble; then, volume rendering is applied to segment and display the TRISO particles in 3D for visualization and distribution evaluation. For method validation, several pebbles were scanned and the 3D distributions of the TRISO particles within the pebbles were produced. Experiment results show that the proposed method provides more 3D than DR, which will facilitate pebble fabrication research and production quality control.

  12. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation.

    Science.gov (United States)

    Kim, Ju-Won; Park, Seunghee

    2018-01-02

    In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.

  13. Non-destructive evaluation of fiber-reinforced composites with a fast 2D fiber-optic laser-ultrasound scanner

    Science.gov (United States)

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; Shtokolov, Alex; O'Donnell, Matthew

    2015-03-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for high speed non-destructive testing and evaluation (NDT&E) of aircraft composites. The performance of the LU system is demonstrated on a composite sample typically used in the aircraft industry. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed diode-pumped laser delivering nanosecond laser pulses at a 1 kHz repetition rate with a pulse energy of 2 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals in a 1-10 MHz frequency range at the same point (an 8 μm focal spot) on the composite surface. A fast (up to 100 mm/s) 2D translation system is employed to move the sample during scanning and produce a complete B-scan consisting of one thousand A-scans in less than a second. The sensitivity of this system, in terms of the noise equivalent pressure, is found to be only 10 dB above the Nyquist thermal noise limit. To our knowledge, this is the best reported sensitivity for a non-contact ultrasonic detector of this dimension.

  14. Tensile testing as a novel method for quantitatively evaluating bioabsorbable material degradation.

    Science.gov (United States)

    Bowen, Patrick K; Gelbaugh, Jesse A; Mercier, Phillip J; Goldman, Jeremy; Drelich, Jaroslaw

    2012-11-01

    Bioabsorbable metallic materials have become a topic of interest in the field of interventional cardiology because of their potential application in stents. A well-defined, quantitative method for evaluating the degradation rate of candidate materials is currently needed in this area. In this study, biodegradation of 0.25-mm iron and magnesium wires was simulated in vitro through immersion in cell-culture medium with and without a fibrin coating (meant to imitate the neointima). The immersed samples were corroded under physiological conditions (37°C, 5% CO(2)). Iron degraded in a highly localized manner, producing voluminous corrosion product while magnesium degraded more uniformly. To estimate the degradation rate in a quantitative manner, both raw and corroded samples underwent tensile testing using a protocol similar to that used on polymeric nanofibers. The effective ultimate tensile stress (tensile stress holding constant cross-sectional area) was determined to be the mechanical metric that exhibited the smallest amount of variability. When the effective tensile stress data were aggregated, a statistically significant downward, linear trend in strength was observed in both materials (Fe and Mg) with and without the fibrin coating. It was also demonstrated that tensile testing is able to distinguish between the higher degradation rate of the bare wires and the lower degradation rate of the fibrin-coated wires with confidence. Copyright © 2012 Wiley Periodicals, Inc.

  15. Pavement Evaluation and Overlay Design Using Vibratory Nondestructive Testing and Layered Elastic Theory. Volume I. Development of Procedure.

    Science.gov (United States)

    1980-03-01

    MAR AX R A WEISS DOT-FA73WAX-377 UNCLAS7SIFIED FAA-RD-77-186-VOL-1 NL I sport H. FAA-I-/-II.I PAVEMENT EVALUATION AND OVERLAY DESIGN USING VIBRATORY...00003300 665* WE’CCI 00003305 666* VMR =VM+BC2*SCO*( (BC1-FREQR)/OMEGR)**2 00003310 667* WR= VMR *AG/16.0 00003315 668* OMEG=OMEGT 00003320 669* RBA𔃾.0...2)/SOT**4 00003375 680m ADYNT=(FDYNT/SOT)*(1.0.ALPH1*FPSIT+ALPH2*FPSIT**2) 00003380 681* OMETR=SQRT(SKOT/ VMR ) 00003385 .1682* OM-(C1,BBF*BBA*(AOYN**2

  16. Non-destructive controls

    International Nuclear Information System (INIS)

    Nouvet, A.

    1978-01-01

    The non-destructive controls permit, while respecting their integrity, the direct and individual examination of parts or complete objects as they are manufactured, as well as to follow the evolution of their eventual defects while in operation. The choice of control methods depends on the manufacturing process and shapes of parts, on the physical properties of their components as well as the nature, position and size of the defects which are likely to be detected. Whether it is a question of controls by means of ionizing radiation, flux of neutrons, ultrasons, acoustic source, sweating, magnetoscopy. Foucault currents, thermography, detection of leaks or non-destructive metallography, each has a limited field of application such that they are less competitive than complementary [fr

  17. Nondestructive evaluation of crystallized-particle size in lactose-powder by terahertz time-domain spectroscopy

    Science.gov (United States)

    Yamauchi, Satoshi; Hatakeyama, Sakura; Imai, Yoh; Tonouchi, Masayoshi

    2014-03-01

    Transmission-type terahertz time-domain spectroscopy is applied to evaluate crystallized lactose particle of size below 30 μm, which is far too small compared to the wavelength of incident terahertz (THz)-wave. The THz-absorption spectrum of lactose is successfully deconvoluted by Lorentzian to two spectra with peaks at 17.1 cm-1 (0.53 THz) and 45.6 cm-1 (1.37 THz) derived from α-lactose monohydrate, and a spectrum at 39.7 cm-1 (1.19 THz) from anhydrous β-lactose after removal of the broad-band spectrum by polynomial cubic function. Lactose is mainly crystallized into α-lactose monohydrate from the supersaturated solution at room temperature with a small amount of anhydrous β-lactose below 4%. The absorption feature is dependent on the crystallized particle size and the integrated intensity ratio of the two absorptions due to α-lactose monohydrate is correlated in linear for the size.

  18. Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L. Seeds Using LED-Induced Hyperspectral Reflectance Imaging

    Directory of Open Access Journals (Sweden)

    Changyeun Mo

    2014-04-01

    Full Text Available In this study, we developed a viability evaluation method for pepper (Capsicum annuum L. seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares–discriminant analysis (PLS-DA model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB, which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400–700 nm yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600–700 nm yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  19. In situ mobile subaquatic archaeometry evaluated by non-destructive Raman microscopy of gemstones lying under impure waters

    Science.gov (United States)

    Smith, David C.

    2003-08-01

    A series of laboratory simulations have been made in order to evaluate the credibility of carrying out physico-chemical analysis of cultural heritage items by Raman spectral fingerprinting using a mobile Raman microscope in situ under natural impure water in subaquatic or submarine conditions. Three different kinds of gemstone (zircon, microcline and sodalite) were successively placed under different kinds of impure water into which a low power microscope objective was immersed to eliminate the normal aerial pathway between the objective and the object to be analysed. According to the nature of the impurities (inorganic or organic, dissolved or suspended, transparent or coloured) the results obtained variously gave Raman band intensities stronger than, similar to or weaker than those of spectra obtained without water, i.e. in air. The significant point is that after only minor spectral treatment the less good spectra nevertheless yielded exploitable data with most, if not all, of the key Raman bands being detected. Thus the problems of fluorescence or peak absences under water are of a similar degree of magnitude to the other problems inherent with the Raman spectroscopic technique in aerial conditions, e.g. relative peak intensities varying with crystal orientation; peak positions varying with chemical composition. These results indicate that even if at certain sites of submerged cities or sunken ships, the combination of animal, vegetal, mineral and microbial impurities join together to inhibit or hinder the success of subaquatic or submarine archaeometry, there will certainly be other sites where such activity is indeed credible.

  20. Non-destructive evaluation of bacteria-infected watermelon seeds using visible/near-infrared hyperspectral imaging.

    Science.gov (United States)

    Lee, Hoonsoo; Kim, Moon S; Song, Yu-Rim; Oh, Chang-Sik; Lim, Hyoun-Sub; Lee, Wang-Hee; Kang, Jum-Soon; Cho, Byoung-Kwan

    2017-03-01

    There is a need to minimize economic damage by sorting infected seeds from healthy seeds before seeding. However, current methods of detecting infected seeds, such as seedling grow-out, enzyme-linked immunosorbent assays, the polymerase chain reaction (PCR) and the real-time PCR have a critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to evaluate the potential of visible/near-infrared (Vis/NIR) hyperspectral imaging system for detecting bacteria-infected watermelon seeds. A hyperspectral Vis/NIR reflectance imaging system (spectral region of 400-1000 nm) was constructed to obtain hyperspectral reflectance images for 336 bacteria-infected watermelon seeds, which were then subjected to partial least square discriminant analysis (PLS-DA) and a least-squares support vector machine (LS-SVM) to classify bacteria-infected watermelon seeds from healthy watermelon seeds. The developed system detected bacteria-infected watermelon seeds with an accuracy > 90% (PLS-DA: 91.7%, LS-SVM: 90.5%), suggesting that the Vis/NIR hyperspectral imaging system is effective for quarantining bacteria-infected watermelon seeds. The results of the present study show that it is possible to use the Vis/NIR hyperspectral imaging system for detecting bacteria-infected watermelon seeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging.

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Lee, Kangjin; Kim, Moon S; Cho, Byoung-Kwan; Lim, Jongguk; Kang, Sukwon

    2014-04-24

    In this study, we developed a viability evaluation method for pepper (Capsicum annuum L.) seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400-700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares-discriminant analysis (PLS-DA) model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB), which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400-700 nm) yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600-700 nm) yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  2. Evaluation of ruminal degradation profiles of forages using bags made from different textiles

    Directory of Open Access Journals (Sweden)

    Tiago Neves Pereira Valente

    2011-11-01

    Full Text Available The objective of this study was to evaluate the in situ degradation profiles of dry matter (DM and neutral detergent fiber (NDF of different forages using nylon (50 µm, F57 (Ankom® and non-woven textile (NWT - 100 g/m² bags. Eight forage samples were used: sugarcane, corn silage, elephant grass cut at 50 and 250 days of regrowth, corn straw, signal grass hay, coast cross hay, and fresh alfalfa. Samples were incubated for 0, 3, 6, 12, 18, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240, and 312 hours. Two bags of each textile were used at each incubation time, totaling 768 bags, using two crossbred Holstein × Zebu steers fitted with ruminal canullae. There was difference in the common rate of lag and degradation (λ of DM for all forages, except for sugarcane. In general, higher λ estimates were obtained using nylon, followed by NWT and F57. Concerning NDF degradation profiles, differences in λ were observed for all forages. Greater estimates were obtained using nylon. Degradation profiles of DM and NDF must not be evaluated using F57 and NWT. These textiles underestimate the degradation rate due to constraints regarding exchange between bags' content and rumen environment.

  3. Ultrasonic Nondestructive Evaluation of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) During Large-Scale Load Testing and Rod Push-Out Testing

    Science.gov (United States)

    Johnston, Patrick H.; Juarez, Peter D.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. The HWB has long been a focus of NASA's environmentally responsible aviation (ERA) project, following a building block approach to structures development, culminating with the testing of a nearly full-scale multi-bay box (MBB), representing a segment of the pressurized, non-circular fuselage portion of the HWB. PRSEUS is an integral structural concept wherein skins, frames, stringers and tear straps made of variable number of layers of dry warp-knit carbon-fiber stacks are stitched together, then resin-infused and cured in an out-of-autoclave process. The PRSEUS concept has the potential for reducing the weight and cost and increasing the structural efficiency of transport aircraft structures. A key feature of PRSEUS is the damage-arresting nature of the stitches, which enables the use of fail-safe design principles. During the load testing of the MBB, ultrasonic nondestructive evaluation (NDE) was used to monitor several sites of intentional barely-visible impact damage (BVID) as well as to survey the areas surrounding the failure cracks after final loading to catastrophic failure. The damage-arresting ability of PRSEUS was confirmed by the results of NDE. In parallel with the large-scale structural testing of the MBB, mechanical tests were conducted of the PRSEUS rod-to-overwrap bonds, as measured by pushing the rod axially from a short length of stringer.

  4. Evaluating anthropogenic risk of grassland and forest habitat degradation using land-cover data

    Science.gov (United States)

    Kurt Riitters; James Wickham; Timothy Wade

    2009-01-01

    The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple...

  5. A Hybrid Domain Degradation Feature Extraction Method for Motor Bearing Based on Distance Evaluation Technique

    Directory of Open Access Journals (Sweden)

    Baiyan Chen

    2017-01-01

    Full Text Available The vibration signal of the motor bearing has strong nonstationary and nonlinear characteristics, and it is arduous to accurately recognize the degradation state of the motor bearing with traditional single time or frequency domain indexes. A hybrid domain feature extraction method based on distance evaluation technique (DET is proposed to solve this problem. Firstly, the vibration signal of the motor bearing is decomposed by ensemble empirical mode decomposition (EEMD. The proper intrinsic mode function (IMF component that is the most sensitive to the degradation of the motor bearing is selected according to the sensitive IMF selection algorithm based on the similarity evaluation. Then the distance evaluation factor of each characteristic parameter is calculated by the DET method. The differential method is used to extract sensitive characteristic parameters which compose the characteristic matrix. And then the extracted degradation characteristic matrix is used as the input of support vector machine (SVM to identify the degradation state. Finally, It is demonstrated that the proposed hybrid domain feature extraction method has higher recognition accuracy and shorter recognition time by comparative analysis. The positive performance of the method is verified.

  6. Evaluation of anaerobic degradation, biogas and digestate production of cereal silages using nylon-bags.

    Science.gov (United States)

    Negri, Marco; Bacenetti, Jacopo; Fiala, Marco; Bocchi, Stefano

    2016-06-01

    In this study, the degradation efficiency and the biogas and digestate production during anaerobic digestion were evaluated for the cereal silages most used to feed biogas plants. To this purpose, silages of: maize from the whole plant, maize from the ear, triticale and wheat were digested, inside of nylon bags, in laboratory scale digesters, for 75days. Overall, the test involved 288 nylon bags. After 75days of digestion, the maize ear silage shows the highest degradation efficiency (about 98%) while wheat silage the lowest (about 83%). The biogas production ranges from 438 to 852Nm(3)/t of dry matter for wheat and ear maize silage, respectively. For all the cereal silages, the degradation as well as the biogas production are faster at the beginning of the digestion time. Digestate mass, expressed as percentage of the fresh matter, ranges from 38% to 84% for wheat and maize ear silage, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Evaluating polymer degradation with complex mixtures using a simplified surface area method.

    Science.gov (United States)

    Steele, Kandace M; Pelham, Todd; Phalen, Robert N

    2017-09-01

    Chemical-resistant gloves, designed to protect workers from chemical hazards, are made from a variety of polymer materials such as plastic, rubber, and synthetic rubber. One material does not provide protection against all chemicals, thus proper polymer selection is critical. Standardized testing, such as chemical degradation tests, are used to aid in the selection process. The current methods of degradation ratings based on changes in weight or tensile properties can be expensive and data often do not exist for complex chemical mixtures. There are hundreds of thousands of chemical products on the market that do not have chemical resistance data for polymer selection. The method described in this study provides an inexpensive alternative to gravimetric analysis. This method uses surface area change to evaluate degradation of a polymer material. Degradation tests for 5 polymer types against 50 complex mixtures were conducted using both gravimetric and surface area methods. The percent change data were compared between the two methods. The resulting regression line was y = 0.48x + 0.019, in units of percent, and the Pearson correlation coefficient was r = 0.9537 (p ≤ 0.05), which indicated a strong correlation between percent weight change and percent surface area change. On average, the percent change for surface area was about half that of the weight change. Using this information, an equivalent rating system was developed for determining the chemical degradation of polymer gloves using surface area.

  8. Developing Raman spectroscopy for the nondestructive testing of composite materials.

    Science.gov (United States)

    2009-08-01

    The proposed research will develop the application of Raman Spectroscopy as a nondestructive evaluation tool for the condition assessment of carbon fiber composites. Composite materials are increasingly being used in engineered structures and compone...

  9. Degradation and performance evaluation of PV module in desert climate conditions with estimate uncertainty in measuring

    Directory of Open Access Journals (Sweden)

    Fezzani Amor

    2017-01-01

    Full Text Available The performance of photovoltaic (PV module is affected by outdoor conditions. Outdoor testing consists installing a module, and collecting electrical performance data and climatic data over a certain period of time. It can also include the study of long-term performance under real work conditions. Tests are operated in URAER located in desert region of Ghardaïa (Algeria characterized by high irradiation and temperature levels. The degradation of PV module with temperature and time exposure to sunlight contributes significantly to the final output from the module, as the output reduces each year. This paper presents a comparative study of different methods to evaluate the degradation of PV module after a long term exposure of more than 12 years in desert region and calculates uncertainties in measuring. Firstly, this evaluation uses three methods: Visual inspection, data given by Solmetric PVA-600 Analyzer translated at Standard Test Condition (STC and based on the investigation results of the translation equations as ICE 60891. Secondly, the degradation rates calculated for all methods. Finally, a comparison between a degradation rates given by Solmetric PVA-600 analyzer, calculated by simulation model and calculated by two methods (ICE 60891 procedures 1, 2. We achieved a detailed uncertainty study in order to improve the procedure and measurement instrument.

  10. Evaluation of Degradation in Nanofilled Adhesive Resins Using Quantitative Light-Induced Fluorescence

    Directory of Open Access Journals (Sweden)

    Tae-Young Park

    2014-01-01

    Full Text Available The aim of this study was to evaluate degradation in commercial dental nanofilled adhesive resins using quantitative light-induced fluorescence (QLF. Three adhesives were selected: D/E resin (DR, Single Bond Plus (SB, and G-Bond (GB. The adhesives were mixed with porphyrin for the QLF analysis. Specimens were prepared by dispensing blended adhesives into a flexible mold and polymerizing. Then, the QLF analysis of the specimens was done and the porphyrin values (Simple Plaque Score and ΔR were measured. After thermocycling of the specimens (5000 cycles, 5 to 55°C for the degradation, the specimens were assayed by QLF again. The porphyrin values were analyzed using paired t-test at a 95% confidence level. A significant reduction in SPS was observed in all groups after thermocycling. The ΔR significantly decreased after thermocycling except area ΔR30 of SB group. Overall, porphyrin values decreased after thermocycling which indicates that the degradation of the adhesive resins may be measured by the change of porphyrin value. The QLF method could be used to evaluate the degradation of adhesive resin.

  11. Nondestructive testing with thermography

    Science.gov (United States)

    Ibarra-Castanedo, Clemente; Tarpani, José Ricardo; Maldague, Xavier P. V.

    2013-11-01

    Thermography is a nondestructive testing (NDT) technique based on the principle that two dissimilar materials, i.e., possessing different thermo-physical properties, would produce two distinctive thermal signatures that can be revealed by an infrared sensor, such as a thermal camera. The fields of NDT applications are expanding from classical building or electronic components monitoring to more recent ones such as inspection of artworks or composite materials. Furthermore, thermography can be conveniently used as a didactic tool for physics education in universities given that it provides the possibility of visualizing fundamental principles, such as thermal physics and mechanics among others.

  12. In-Situ Nondestructive Evaluation of Kevlar(Registered Trademark)and Carbon Fiber Reinforced Composite Micromechanics for Improved Composite Overwrapped Pressure Vessel Health Monitoring

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor

    2012-01-01

    NASA has been faced with recertification and life extension issues for epoxy-impregnated Kevlar 49 (K/Ep) and carbon (C/Ep) composite overwrapped pressure vessels (COPVs) used in various systems on the Space Shuttle and International Space Station, respectively. Each COPV has varying criticality, damage and repair histories, time at pressure, and pressure cycles. COPVs are of particular concern due to the insidious and catastrophic burst-before-leak failure mode caused by stress rupture (SR) of the composite overwrap. SR life has been defined [1] as the minimum time during which the composite maintains structural integrity considering the combined effects of stress level(s), time at stress level(s), and associated environment. SR has none of the features of predictability associated with metal pressure vessels, such as crack geometry, growth rate and size, or other features that lend themselves to nondestructive evaluation (NDE). In essence, the variability or surprise factor associated with SR cannot be eliminated. C/Ep COPVs are also susceptible to impact damage that can lead to reduced burst pressure even when the amount of damage to the COPV is below the visual detection threshold [2], thus necessitating implementation of a mechanical damage control plan [1]. Last, COPVs can also fail prematurely due to material or design noncompliance. In each case (SR, impact or noncompliance), out-of-family behavior is expected leading to a higher probability of failure at a given stress, hence, greater uncertainty in performance. For these reasons, NASA has been actively engaged in research to develop NDE methods that can be used during post-manufacture qualification, in-service inspection, and in-situ structural health monitoring. Acoustic emission (AE) is one of the more promising NDE techniques for detecting and monitoring, in real-time, the strain energy release and corresponding stress-wave propagation produced by actively growing flaws and defects in composite

  13. Hydrodynamic characterization and evaluation of an open channel reactor for the degradation of paracetamol

    International Nuclear Information System (INIS)

    Abreu Zamora, Maria A.; Gonzalez Lopez, Dagoberto E.; Robaina Leon, Yalaina; Dominguez Catasus, Judith; Borroto Portela, Jorge I.; Jauregui Haza, Ulises J.

    2015-01-01

    The conventional wastewater treatment plants do not guarantee the degradation of Persistent Organic Pollutants (POPs). Advanced oxidation processes, like photodegradation that use artificial ultraviolet and solar radiation, are proposed as an alternative for the treatment of contaminated water with POPs. In the present work, the hydrodynamic characterization and evaluation of an open channel reactor for the degradation of paracetamol are presented. The hydrodynamic characterization was performed through the analysis of the residence time distribution using a radioisotope 99m Tc. This process was done in two steps. First, the open channel reactor was evaluated in continuous mode operation. To study the influence of the fluid volume in the reactor and the diameter of the flow distributor's orifices on the flow pattern, an experimental 3 2 design with two replicas in the center was used. The dependent variables were the number of perfectly mixed tanks (J), the mean residence time of the model (τ) and the experimental mean residence time (Trm). The model of perfectly mixed tanks in series exchanging with stagnant zones was assumed as the best model. In a second moment, the mixing time of the system operating in close loop mode was determined. Finally, the degradation of paracetamol in aqueous dissolution trough photolysis, photolysis intensified with H 2 O 2 , photo-Fenton with artificial ultraviolet radiation and photo-Fenton with solar radiation was evaluated. The results show that the photo-Fenton processes employing artificial ultraviolet and solar radiation warranty the total degradation of the pharmaceutical after 15 minutes of reaction. (Author)

  14. New evaluation method of material degradation considering synergistic effects of radiation damage

    International Nuclear Information System (INIS)

    Miwa, Yukio; Kaji, Yoshiyuki; Okubo, Nariaki; Kondo, Keietsu; Tsukada, Takashi

    2008-01-01

    In core structural materials of next generation reactors such as a liquid-metal cooled fast breeding reactor and a supercritical-water cooled thermal or first reactor, materials' degradation behavior by neutron irradiation damage and thermal (cyclic) stress should be considered with fair accuracy in design process (including maintenance and repair plans), because the materials are used under higher temperature gradients and higher neutron flux fields than those in the present light water reactors. In the current experimental design rules, service lives of core structural components were determined by the materials degradation such as the increase of ductile-to-brittle transition temperature after post irradiation examination data. However, other materials degradations such as irradiation-assisted stress corrosion cracking (IASCC), which occurs by the degradation synergistically interacting with radiation hardening, local chemical composition change, swelling and radiation creep, should be considered reasonably in the design process of the next generation reactors, because of the anticipation of the beneficial effects by synergy of radiation damage. The radiation hardening and local chemical composition change at grain boundaries due to radiation-induced segregation increased with increasing dose. Above some threshold dose, swelling increased rapidly with increasing dose. Residual stress due to thermal stress and welding procedure decreased with increasing dose. To predict material failure by IASCC with reasonable accuracy, in this study, each material degradation phenomenon with different dose dependence was modeled with consideration of radiation induced stress relaxation. And then the models were integrated to simulate the failure behavior for the duration of reactor operation period. In this paper, the models obtained by ion-irradiation experiments and compared by data from neutron irradiation experiments were presented, and the concept of our new evaluation

  15. A study on the evaluation of material degradation using ball indentation method

    International Nuclear Information System (INIS)

    Kim, Jeong Pyo; Seok, Chang Sung; Ahn, Ha Neul

    2000-01-01

    As huge energy transfer systems like a nuclear power plant, steam power plant and petrochemical plant are operated for a long time, mechanical properties are changed by degradation. The life time of the systems can be affected by the mechanical properties. BI(Ball Indentation) test has a potential to replace conventional fracture tests like a uniaxial tensile test, fracture toughness test, hardness test and so on. In this paper, we would like to present the aging evaluation technique by the BI method. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. Tensile tests, fracture toughness tests, hardness tests and BI tests were performed. The results of the BI tests were in good agreement with fracture characteristics by a standard fracture test method. The IDE(Indentation Deformation Energy) of a BI technique as a new parameter for evaluating a degradation was suggested and the new IDE parameter clearly depicts the degradation degree

  16. Thermal shock resistance of ceramic fibre composites characterized by non-destructive methods

    Directory of Open Access Journals (Sweden)

    M. Dimitrijević

    2008-12-01

    Full Text Available Alumina based ceramic fibres and alumina based ceramic were used to produce composite material. Behaviour of composite ceramics after thermal shock treatments was investigated. Thermal shock of the samples was evaluated using water quench test. Surface deterioration level of samples was monitored by image analysis before and after a number of quenching cycles. Ultrasonic measurements were done on samples after quench tests. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities. Strengths deterioration was calculated using the non-destructive measurements and correlated to degradation of surface area and number of quenches. The addition of small amount of ceramic fibres improves the strengths and diminishes the loss of mechanical properties of samples during thermal shock experiments.

  17. Evaluation of Lithium-ion Battery Second Life Performance and Degradation

    DEFF Research Database (Denmark)

    Martinez-Laserna, Egoitz; Sarasketa-Zabala, Elixabet; Stroe, Daniel Loan

    2016-01-01

    Reusing electric vehicle batteries once they have been retired from the automotive application is stated as one of the possible solutions to reduce electric vehicle costs. Many publications in the literature have analyzed the economic viability of such a solution, and some car manufacturers have...... recently started running several projects to demonstrate the technical viability of the so-called battery second life. Nevertheless, the performance and degradation of second life batteries remain an unknown topic and one of the biggest gaps in the literature. The present work aims at evaluating...... the effects of lithium-ion (Li-ion) battery State of Health (SOH) and ageing history over the second life performance on two different applications: a residential demand management application and a power smoothing renewable integration application. The performance and degradation of second life batteries...

  18. A Study on the High Frequency Ultrasonic Attenuation Characterization in Artificially Aging Degraded 2.25Cr-1Mo Steel

    International Nuclear Information System (INIS)

    Park, Ik Keun; Park, Un Su; Kim, Chung Seok; Kim, Hyun Mook; Kwun, Sook In; Byeon, Jai Won

    2001-01-01

    The destructive method is reliable and widely used lot the estimation of material degradation but, it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials used at high temperature by nondestructive evaluation such as electric resistance method, replica method, Barkhausen noise method, electro-chemical method and ultrasonic method are strongly desired. Ultrasonic nondestructive evaluation technique has been reported good to attain efficiency of measurement, high sensitivity of measurement, and rapidity and reliability of result interpretation. In this study, it was verified experimentally the feasibility of the evaluation of degraded 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at 630 .deg. C by high frequency longitudinal wave method investigating the change of attenuation coefficient by FFT analysis and wavelet transform. Because of carbide precipitation increase and spheroidization near grain boundary of microstructure to aging degradation, attenuation coefficient had a tendency to increase as degradation proceeded. It was identified possibly to evaluate degradation using the characteristics of high-frequency ultrasonics. Frequency dependence of ultrasonic attenuation coefficient to aging degradation appeared large, which made sure that attenuation coefficient is an important parameter for evaluation of aging degradation

  19. Radiation degradation and hemolytic toxicity evaluation of mono azo reactive dyes

    International Nuclear Information System (INIS)

    Saeed, Q.U.; Bhatti, I.A.; Ashraf, A.

    2017-01-01

    Monoazo reactive dyes have been synthesized and subjected to degradation before their application. Advanced oxidation process has been recognized as a promising radiation technology for the remediation of hazardous organic compounds. Radiation induced degradation of two mono azo reactive dyes have been tried at different absorbed dose, 5 kGy,10 kGy and 15 kGy. Aqueous solutions of these dyes were treated with gamma radiation using Cs 137 radiation source at Nuclear Institute of Agriculture and Biology (NIAB) Faisalabad. Dyes were evaluated spectrophotometrically by UV-visible and fourier transform infra red (FT-IR) spectroscopic techniques before and after irradiation to analyse their percentage decolorization and degradation. Maximum percentage decolorization of 93% and 63% was achieved for mono azo dyes D1 and D2 at 15 kGy absorbed dose. Toxicity study of these dyes was also tested by haemolytic activity assay. Percentage haemolytic activity of untreated dyes was found within permissible limit showing non toxicity of dye solutions. (author)

  20. Evaluating paper degradation progress. Cross-linking between chromatographic, spectroscopic and chemical results

    Science.gov (United States)

    Łojewski, Tomasz; Zięba, Katarzyna; Knapik, Arkadiusz; Bagniuk, Jacek; Lubańska, Anna; Łojewska, Joanna

    2010-09-01

    The study presents an overview of the chromatographic (SEC), spectroscopic (FTIR, UV/VIS), viscometric (DP) and chemical methods (titration, pH) used for the evaluation of the degradation progress of various kinds of paper under various conditions. The methods were chosen to follow different routes of paper degradation. Model paper samples represented boundary paper types from pure cellulose cotton paper, through softwood to low quality acidic, sized groundwood paper The accelerated ageing conditions were adjusted to achieve maximum effect (climatic chamber RH 59%, 90oC) and also to mimic the environment inside books (closed vials). The results were settled on the literature data on the degradation mechanisms and compared in terms of the paper types and ageing conditions. The estimators of coupled de-polymerisation and oxidation have been proposed based on the correlation between SEC, UV/VIS and titrative coppper number determination. The overall oxidation index derived from FTIR results was shown to correlate with the summary -CHO and -COOH concentration determined by titrative methods.

  1. Nondestructive sensing and stress transferring evaluation of carbon nanotube, nanofiber, and Ni nanowire strands/polymer composites using an electro-micromechanical technique

    Science.gov (United States)

    Park, Joung-Man; Kim, Sung-Ju; Jung, Jin-Gyu; Hansen, George; Yoon, Dong-Jin

    2006-03-01

    Nondestructive damage sensing and load transfer mechanisms of carbon nanotube (CNT), nanofiber (CNF), and Ni nanowire strands/epoxy composites were investigated using electro-micromechanical technique. Electrospun PVDF nanofiber was also prepared as a piezoelectric sensor. High volume% CNT/epoxy composites showed significantly higher tensile properties than neat and low volume% CNT/epoxy composites. CNF /epoxy composites with smaller aspect ratio showed higher apparent modulus due to high volume content in case of shorter aspect ratio. Using Ni nanowire strands/silicone composites with different content, load sensing response of electrical contact resistivity was investigated under tensile and compression condition. The mechanical properties of Ni nanowire strands with different type and content/epoxy composites were indirectly measured apparent modulus using uniformed cyclic loading and electro-pullout test. CNT or Ni nanowire strands/epoxy composites showed humidity and temperature sensing within limited ranges, 20 vol% reinforcement. Thermal treated electrospun PVDF nanofiber showed higher mechanical properties than the untreated case due to increased crystallization, whereas load sensing decreased in heat treated case. Electrospun PVDF nanofiber web also responded the sensing effect on humidity and temperature. Nanocomposites using CNT, CNF, Ni nanowire strands, and electrospun PVDF nanofiber web can be applicable practically for multifunctional applications nondestructively.

  2. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability.

    Science.gov (United States)

    Park, Joung-Man; Kim, Dae-Sik; Kim, Sung-Ryong

    2003-08-15

    Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole (PBO, Zylon) and poly(p-phenylene terephthalamide) (PPTA, Kevlar) fibers/epoxy composites were investigated using a micromechanical technique and nondestructive acoustic emission (AE). The interfacial shear strength (IFSS) and work of adhesion, Wa, of PBO or Kevlar fiber/epoxy composites increased with oxygen-plasma treatment, due to induced hydrogen and covalent bondings at their interface. Plasma-treated Kevlar fiber showed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum values. The work of adhesion and the polar term were proportional to the IFSS directly for both PBO and Kevlar fibers. The microfibril fracture pattern of two plasma-treated fibers appeared obviously. Unlike in slow cooling, in rapid cooling, case kink band and kicking in PBO fiber appeared, whereas buckling in the Kevlar fiber was observed mainly due to compressive and residual stresses. Based on the propagation of microfibril failure toward the core region, the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly compared to the untreated case. The results of nondestructive AE were consistent with microfailure modes.

  3. Organophosphorus insecticides: Toxic effects and bioanalytical tests for evaluating toxicity during degradation processes

    Directory of Open Access Journals (Sweden)

    Čolović Mirjana B.

    2013-01-01

    Full Text Available Organophosphorus insecticides have been the most applied group of insecticides for the last two decades. Their main toxic effects are related to irreversible inactivation of acetylcholinesterase (AChE. Actually, they covalently bind to serine OH group in the enzyme active site forming phosphorylated enzyme that cannot hydrolyze acetylcholine. Organophosphorus insecticides in the environment undergo the natural degradation pathway including mainly homogeneous and heterogeneous hydrolysis (especially at high pH generating non-inhibiting products. Additionally, thio organophosphates are easily oxidized by naturally present oxidants and UV light, forming more toxic and stable oxons. Thus, oxidative degradation procedures, generally referred as advanced oxidation processes (AOP, have been applied for their efficient removal from contaminated waters. The most applied bioassays to monitor the organophosphate toxicity i.e. the detoxification degree during AOP are Vibrio fischeri and AChE bioassays. Vibrio fischeri toxicity test exploits bioluminescence as the measure of luciferase activity of this marine bacterium, whereas AChE bioassay is based on AChE activity inhibition. Both bioanalytical techniques are rapid (several minutes, simple, sensitive and reproducible. Vibrio fischeri test seems to be a versatile indicator of toxic compounds generated in AOP for organophosphorus insecticides degradation. However, detection of neurotoxic AChE inhibitors, which can be formed in AOP of some organophosphates, requires AChE bioassays. Therefore, AChE toxicity test is more appropriate for monitoring the degradation processes of thio organophosphates, because more toxic oxo organophosphates might be formed and overlooked by Vibrio fischeri bioluminescence inhibition. In addition, during organophosphates removal by AOP, compounds with strong genotoxic potential may be formed, which cannot be detected by standard toxicity tests. For this reason, determination of

  4. Improvement of the reliability on nondestructive inspection

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Kim, Young H. [Sungkyunkwan Univ., Suwon (Korea, Republic of); Lee, Hyang Beom [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan National Univ., Gunsan (Korea, Republic of); Jung, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of); Park, Ik Keun; Park, Eun Soo [Seoul Nationl Univ., Seoul (Korea, Republic of)

    2002-03-15

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time.

  5. Industrial strategy for nondestructive control

    International Nuclear Information System (INIS)

    Martin, P.; Michaut, J.P.

    1994-01-01

    For Electricite de France, the nondestructive control strategy passes by a responsibility of services, a competition between companies, a clarification of the market access and a dialogue with the companies

  6. High-Resolution and Non-destructive Evaluation of the Spatial Distribution of Nitrate and Its Dynamics in Spinach (Spinacia oleracea L. Leaves by Near-Infrared Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Hao-Yu Yang

    2017-11-01

    Full Text Available Nitrate is an important component of the nitrogen cycle and is therefore present in all plants. However, excessive nitrogen fertilization results in a high nitrate content in vegetables, which is unhealthy for humans. Understanding the spatial distribution of nitrate in leaves is beneficial for improving nitrogen assimilation efficiency and reducing its content in vegetables. In this study, near-infrared (NIR hyperspectral imaging was used for the non-destructive and effective evaluation of nitrate content in spinach (Spinacia oleracea L. leaves. Leaf samples with different nitrate contents were collected under various fertilization conditions, and reference data were obtained using reflectometer apparatus RQflex 10. Partial least squares regression analysis revealed that there was a high correlation between the reference data and NIR spectra (r2 = 0.74, root mean squared error of cross-validation = 710.16 mg/kg. Furthermore, the nitrate content in spinach leaves was successfully mapped at a high spatial resolution, clearly displaying its distribution in the petiole, vein, and blade. Finally, the mapping results demonstrated dynamic changes in the nitrate content in intact leaf samples under different storage conditions, showing the value of this non-destructive tool for future analyses of the nitrate content in vegetables.

  7. A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Kyung Cho; Kang, Suk Chull; Goo, Cheol Soo; Kim, Jin Ho; Park, Jae Seok; Joo, Geum Jong; Park, Chi Seung

    2004-01-01

    Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed

  8. A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Cho; Kang, Suk Chull; Goo, Cheol Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Jin Ho; Park, Jae Seok; Joo, Geum Jong; Park, Chi Seung [KAITEC, Seoul (Korea, Republic of)

    2004-08-15

    Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed

  9. Breeding of in-situ Petroleum Degrading Bacteria in Hangzhou Bay and evaluating for the In-situ repair effect

    Science.gov (United States)

    Lan, Ru; Lin, Hai; Qiao, Bing; Dong, Yingbo; Zhang, Wei; Chang, Wen

    2018-02-01

    In this paper, the restoration behaviour of the in-situ microorganisms in seawater and sediments to the marine accident oil spill was researched. The experimental study on the breeding of in-situ petroleum-degrading bacteria in the seawater and sediments of Hangzhou Bay and the restoration of oil spill were carried out. Making use of the reinforced microbial flora, combined with physical and chemical methods in field environment, petroleum degrading and restoration experiment were performed, the effect of the breeding of in-situ degrading bacteria was evaluated, and the standard process of in-situ bacteria sampling, laboratory screening, domestication and degradation efficiency testing were formed. This study laid a foundation for further evaluation of the advantages and disadvantages for the petroleum-degrading bacteria of Hangzhou Bay during the process of in-situ restoration. The results showed that in-situ microbes of Hangzhou Bay could reach the growth peak in 5 days with the suitable environmental factors and sufficient nutrient elements, and the degradation efficiency could reach 65.2% (or 74.8% after acclimation). And also the microbes could adapt to the local sea water and environmental conditions, with a certain degree of degradation. The research results could provide parameter support for causal judgment and quantitative assessment of oil spill damage.

  10. DOCUMENTATION PROTOCOLS TO GENERATE RISK INDICATORS REGARDING DEGRADATION PROCESSES FOR CULTURAL HERITAGE RISK EVALUATION

    Directory of Open Access Journals (Sweden)

    A. Kioussi

    2013-07-01

    Full Text Available Sustainable maintenance and preservation of cultural heritage assets depends highly on its resilience to external or internal alterations and to various hazards. Risk assessment of a heritage asset's can be defined as the identification of all potential hazards affecting it and the evaluation of the asset's vulnerability (building materials and building structure conservation state.Potential hazards for cultural heritage are complex and varying. The risk of decay and damage associated with monuments is not limited to certain long term natural processes, sudden events and human impact (macroscale of the heritage asset but is also a function of the degradation processes within materials and structural elements due to physical and chemical procedures. Obviously, these factors cover different scales of the problem. The deteriorating processes in materials may be triggered by external influences or caused because of internal chemical and/or physical variations of materials properties and characteristics. Therefore risk evaluation should be dealt in the direction of revealing the specific active decay and damage mechanism both in mesoscale [type of decay and damage] and microscale [decay phenomenon mechanism] level. A prerequisite for risk indicators identification and development is the existence of an organised source of comparable and interoperable data about heritage assets under observation. This unified source of information offers a knowledge based background of the asset's vulnerability through the diagnosis of building materials' and building structure's conservation state, through the identification of all potential hazards affecting these and through mapping of its possible alterations during its entire life-time. In this framework the identification and analysis of risks regarding degradation processes for the development of qualitative and quantitative indicators can be supported by documentation protocols. The data investigated by such

  11. Evaluate the role of organic acids in the protection of ligands from radiolytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Anneka [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mezyk, Stehpen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterman, Dean [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    In the Advanced TALSPEAK process, the bis(2-ethylhexyl)phosphoric acid (HDEHP) extractant used in the traditional TALSPEAK process is replaced by the extractant 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]). In addition, the aqueous phase complexant and buffer used in traditional TALSPEAK is replaced with the combination of N-(2-hydroxyethyl)ethylenediamine-N,N’,N’-triacetic acid (HEDTA) and citric acid. In order to evaluate the possible impacts of gamma radiolysis upon the efficacy of the Advanced TALSPEAK flowsheet, aqueous and organic phases corresponding to the extraction section of the proposed flowsheet were irradiated in the INL test loop under an ambient atmosphere. The results of these studies conducted at INL, led INL researchers to conclude that the scarcity of values of rate constants for the reaction of hydroxyl radical with the components of the Advanced TALSPEAK process chemistry was severely limiting the interpretation of the results of radiolysis studies performed at the INL. In this work, the rate of reaction of hydroxyl radical with citric acid at several pH values was measured using a competitive pulse radiolysis technique. This report describes those results and is written in completion of milestone M3FT-16IN030102028, the goal of which was to evaluate the role of organic acids in the protection of ligands from radiolytic degradation. The results reported here demonstrate the importance of obtaining hydroxyl radical reaction rate data for the conditions that closely resemble actual solution conditions expected to be used in an actual solvent extraction process. This report describes those results and is written in completion of milestone M3FT-16IN030102028, the goal of which was to evaluate the role of organic acids in the protection of ligands from radiolytic degradation.

  12. Evaluation of the degradation effect on the processability of high molecular weight polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Shinzato, Rodrigo; Otaguro, Harumi; Lima, Luis F.C.P.; Parra, Duclerc F.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente], E-mail: rodrigo.shinzato@gmail.com, E-mail: ablugao@ipen.br; Artel, Beatriz W.H. [Empresa Brasileira de Radiacao Ltda. (EMBRARAD), Cotia, SP (Brazil)

    2007-07-01

    One way to improve the processability of high molecular weight and melt strength of Polypropylene (PP) is reducing its molecular weight by chain scission with increase of flow index. Nevertheless, the more significant occurrence of chain scission in its structure, further improved its processability is at expense of physical properties. It is well known that the high energy radiation creates free radicals in the polymer chains that subsequently stabilize forming structures. These structures composed by low molecular weight chains and by grafted, branched and crosslinked chains modify the physical and chemical properties of the polymer, depending of their distribution. The low molecular weight chains become from the degradation process by high energy irradiation, which decreases the melt strength and improves its processability. So, this work has the objective to evaluate the degradation of the high molecular weight PP using different irradiation doses. Two kinds of PP samples were utilized. The first one, without additive, presented a flow index of 1.9 g/10 min, and the second, additivated with 0.2 wt % of antioxidant phenolic, Irganox 1010, with a flow index of 0.9 g/10 min. These samples were irradiated with doses of 12.5 and 20.0 kGy. The results of flow index and melt strength obtained with these two kinds of samples showed the antioxidant and the radiation action. (author)

  13. Evaluation of Extraction and Degradation Methods to Obtain Chickpeasaponin B1 from Chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Kun Cheng

    2017-02-01

    Full Text Available The objective of this research is to implement extraction and degradation methods for the obtainment of 3-O-[α-l-rhamnopyranosyl-(1→2-β-d-galactopyranosyl] soyasapogenol B (chickpeasaponin B1 from chickpea. The effects of microwave-assisted extraction (MAE processing parameters—such as ethanol concentration, solvent/solid ratio, extraction temperature, microwave irradiation power, and irradiation time—were evaluated. Using 1g of material with 8 mL of 70% aqueous ethanol and an extraction time of 10 min at 70 °C under irradiation power 400W provided optimal extraction conditions. Compared with the conventional extraction techniques, including heat reflux extraction (HRE, Soxhlet extraction (SE, and ultrasonic extraction (UE, MAE produced higher extraction efficiency under a lower extraction time. DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one saponin can be degraded to structurally stable saponin B by the loss of its DDMP group. The influence of pH and the concentration of potassium hydroxide on transformation efficiency of the target compound was investigated. A solution of 0.25 M potassium hydroxide in 75% aqueous ethanol was suitable for converting the corresponding DDMP saponins of chickpeasaponin B1. The implementation by the combining MAE technique and alkaline hydrolysis method for preparing chickpeasaponin B1 provides a convenient technology for future applications.

  14. In vivo degradation of processed dermal sheep collagen evaluated with transmission electron microscopy

    NARCIS (Netherlands)

    van Wachem, P.B.; van Luyn, M.J.A.; Nieuwenhuis, P.; Koerten, H.K.; Olde damink, L.H.H.; Olde-Damink, L.; ten Hoopen, Hermina W.M.; Feijen, Jan

    1991-01-01

    The in vivo degradation of hexamethylenediisocyanate-tanned dermal sheep collagen was studied with transmission electron microscopy. Discs of hexamethylenediisocyanate-tanned dermal sheep collagen were subcutaneously implanted in rats. Both an intra- and an extracellular route of degradation could

  15. INVIVO DEGRADATION OF PROCESSED DERMAL SHEEP COLLAGEN EVALUATED WITH TRANSMISSION ELECTRON-MICROSCOPY

    NARCIS (Netherlands)

    VANWACHEM, PB; VANLUYN, MJA; NIEUWENHUIS, P; KOERTEN, HK; DAMINK, LO; TENHOOPEN, H; FEIJEN, J

    The in vivo degradation of hexamethylenediisocyanate-tanned dermal sheep collagen was studied with transmission electron microscopy. Discs of hexamethylenediisocyanate-tanned dermal sheep collagen were subcutaneously implanted in rats. Both an intra- and an extracellular route of degradation could

  16. Direct evaluation of intrinsic optoelectronic performance of organic photovoltaic cells with minimizing impurity and degradation effects

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, Akinori [Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Tsuji, Masashi; Seki, Shu [Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2011-07-15

    A correlation between the photovoltaic performance and dynamics of transient photoconductivity is investigated by flash-photolysis time-resolved microwave conductivity (FP-TRMC). This electrode-less technique offers chances to mitigate barriers for direct, speedy, and robust evaluation of bulk heterojunction (BHJ) film. We examined the blend ratio, process (solvent and thermal annealing), and impurity (a metal complex of Pd) and degradation effects in BHJ films consisting of poly(3-hexylthiophene) (P3HT) and methanofullerene (PCBM). The minimum charge carrier mobility of 0.22 cm{sup 2}V{sup -1}s{sup -1} was found in P3HT:PCBM = 1:1 film along with 3.26% power conversion efficiency. The revealed good correlation is not only applicable to process optimization, but also expected as a facile screening method to survey the potential of optoelectronic materials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information

    International Nuclear Information System (INIS)

    Wang, Lizhi; Pan, Rong; Li, Xiaoyang; Jiang, Tongmin

    2013-01-01

    Accelerated degradation testing (ADT) is a common approach in reliability prediction, especially for products with high reliability. However, oftentimes the laboratory condition of ADT is different from the field condition; thus, to predict field failure, one need to calibrate the prediction made by using ADT data. In this paper a Bayesian evaluation method is proposed to integrate the ADT data from laboratory with the failure data from field. Calibration factors are introduced to calibrate the difference between the lab and the field conditions so as to predict a product's actual field reliability more accurately. The information fusion and statistical inference procedure are carried out through a Bayesian approach and Markov chain Monte Carlo methods. The proposed method is demonstrated by two examples and the sensitivity analysis to prior distribution assumption

  18. Evaluation of corrosion degradation of amalgams by immersion and fracture test.

    Science.gov (United States)

    Horasawa, Noriko; Takahashi, Shigeo; Marek, Miroslav

    2003-12-01

    In this study an immersion and fracture test was used to evaluate the susceptibility of dental amalgams to degradation of their mechanical strength by corrosion. Specimens of each of the six types of high-copper amalgams and one type of low-copper amalgam were prepared and tested. Cylindrical specimens were grooved using a diamond cutoff blade and immersed in 1% NaCl to which H2O2 was added to increase the oxidation power. After two weeks of exposure the specimens and controls were fractured and the loss of strength was calculated. Two amalgams showed a significant loss of strength. The test procedure is relatively simple and does not require sophisticated electrochemical or analytical instrumentation. A higher resolution power might be achieved by increasing the severity of corrosion or the number of replicate tests.

  19. Plastic matters: an analytical procedure to evaluate the degradability of contemporary works of art.

    Science.gov (United States)

    Lazzari, Massimo; Ledo-Suárez, Ana; López, Thaïs; Scalarone, Dominique; López-Quintela, M Arturo

    2011-03-01

    The most significant results concerning a chemical study to evaluate the degradability of polymeric components in four contemporary works of art, partially or completely realized in plastics, are presented and discussed in this paper. The procedure applied is mainly based on the use of Fourier transform IR and UV-vis spectroscopies and pyrolysis-gas chromatography/mass spectrometry, and consists of the following steps: (1) compositional analysis of the artworks, with particular attention to components which may have a negative effect on the overall ageing; (2) evaluation of the actual state of conservation; (3) investigation of the accelerated ageing of reference polymer samples; and (4) monitoring of the natural ageing of the artworks. On such a basis, the following could be concluded. Stage Evidence by Loris Cecchini is made of poly(ether urethane) elastomer which contains a high amount of phthalates. Their exudation gives a sticky appearance to the artwork and their removal during ageing is the main cause of the loss of flexibility. The latex used by Andrés Pinal for tailoring Traxe de Home is a natural polyisoprene, whose oxidative degradation accounts for the extensive deterioration and yellowing of the artwork. The plaster sculptures of 3D Bodyscans 1:9 by Karin Sander are coated with an aliphatic epoxy resin. Its oxidation with formation of amides is the cause of the surface yellowing. The adhesive used by Dario Villalba for Tierra, Ladrillo y Agua is a commercial poly(vinyl acetate). Simulated photoageing suggests a fast deterioration due to deacetylation and cross-linking, which possibly is the main reason for the actual detachment of debris from the support.

  20. Preliminary evaluation of local drug delivery of amphotericin B and in vivo degradation of chitosan and polyethylene glycol blended sponges.

    Science.gov (United States)

    Parker, Ashley Cox; Rhodes, Cheyenne; Jennings, Jessica Amber; Hittle, Lauren; Shirtliff, Mark; Bumgardner, Joel D; Haggard, Warren O

    2016-01-01

    This research investigated the combination of polyethylene glycol with chitosan in point-of-care loaded sponges made by one or two lyophilizations for adjunctive local antifungal delivery in musculoskeletal wounds. Blended and control chitosan sponges were evaluated in vitro for antifungal release and activity, degradation, cytocompatibility, and characterized for spectroscopic, crystallinity, thermal, and morphologic material properties. In vivo biocompatibility and degradation of sponges were also evaluated in a rat intramuscular pouch model 4 and 10 days after implantation. Blended sponges released amphotericin B active against Candida albicans (>0.25 µg/mL) over 72 h and did not elicit cytotoxicity response of fibroblasts. Blended sponges exhibited decreases in surface roughness, decreased thermal decomposition temperatures, as well as small Fourier transform infrared spectroscopy and crystallinity differences, compared with chitosan-only sponges. Three of the four blended sponge formulations exhibited 31%-94% increases in in vitro degradation from the chitosan sponges after 10 days, but did not demonstrate the same increase in in vivo degradation. Low inflammatory in vivo tissue response to blended and chitosan-only sponges was similar over 10 days. These results demonstrated that adding polyethylene glycol to chitosan sponges does improve local antifungal release, cytocompatibility, and in vitro degradation, but does not increase in vivo degradation. © 2015 Wiley Periodicals, Inc.

  1. Nondestructive measurement of environmental radioactive strontium

    Directory of Open Access Journals (Sweden)

    Saiba Shuntaro

    2014-03-01

    Full Text Available The Fukushima Daiichi nuclear power plant accident was triggered by the 2011 Great East Japan Earthquake. The main radioactivity concerns after the accident are I-131 (half-life: 8.0 days, Cs-134 (2.1 years, Cs-137 (30 years, Sr-89 (51 days, and Sr-90 (29 years. We are aiming to establish a new nondestructive measurement and detection technique that will enable us to realize a quantitative evaluation of strontium radioactivity without chemical separation processing. This technique is needed to detect radiation contained in foods, environmental water, and soil, to prevent us from undesired internal exposure to radiation.

  2. Quantitative Evaluation of Range Degradation According to the Gradient of the Compensator in Passive Scattering Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Wook Geun; Min, Chul Hee [Radiation Convergence Engineering, Yonsei University, Seoul (Korea, Republic of); Kim, Chan Kyu; Kim, Hak Soo; Jeong, Jong Hwi; Lee, Se Byeong [Proton Therapy Center, National Center Center, Seoul (Korea, Republic of)

    2017-04-15

    The Bragg peak enables proton therapy to deliver a high conformal target dose without exit dose. The passive scattering proton therapy employees patient-specific aperture and range compensator to shape the lateral and distal beam, and to deliver conformal dose to the target volume. The inaccurate dose calculation could cause underdose in the target volume and overdose in the normal tissues. The purpose of this study is to quantitatively evaluate the range degradation due to the slope of the range compensator using TOPAS Monte Carlo (MC) tool. The current study quantitatively evaluates the scattering effect due to the compensator slope with MC method. Our results show that not only patient geometry but also range compensator significantly contributes to the dose degradation. The current study quantitatively evaluates the scattering effect due to the compensator slope with MC method. Our results show that not only patient geometry but also range compensator significantly contributes to the dose degradation.

  3. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils.

    Science.gov (United States)

    Katsenovich, Yelena P; Miralles-Wilhelm, Fernando R

    2009-09-01

    The longevity and reactivity of nanoscale zerovalent iron (nZVI) and palladized bimetallic particles (BNP) were evaluated in batch and column experiments for remediation of a trichloroethene (TCE)-contaminated plume within a clayey soil from Oak Ridge Reservation (ORR). Comparative studies assessing the viability of BNP and nZVI confirmed that particle behavior is severely affected by clay sediments. Surface morphology and composition analyses using SEM and SEM-energy-dispersive spectroscopy spectrum revealed particle agglomeration through the formation of clay-iron aggregates of greater mass during the early phase of the experiment. Batch study results suggest that TCE degradation in ORR clayey soil follows a pseudo-first-order kinetic model exhibiting reaction rate constants (k) of 0.05-0.24 day(-1) at varied iron-to-soil ratios. Despite high reactivity in water, BNP were less effective in the site-derived clay sediment with calculated TCE removal efficiencies of 98.7% and 19.59%, respectively. A column experiment was conducted to investigate particle longevity and indicator parameters of the TCE degradation process under flow conditions. It revealed that the TCE removal efficiency gradually declined over the course of the experiment from 86-93% to 51-52%, correlating to a progressive increase in oxidation-reduction potential (ORP) from -485 to -250 mV and pH drop from 8.2-8.6 to 7.4-7.5. The rate of nZVI deactivation reaction was found to be a first order with a k(d) value of 0.0058 day(-1). SEM images of residual nZVI revealed heavily agglomerated particles. However, despite widespread oxidation and agglomeration, particles managed to maintain some capacity for oxidation. A quantitative analysis of nZVI deactivation has the potential of predicting nZVI longevity in order to improve the design strategy of TCE remediation.

  4. Long-term reliability evaluation of nuclear containments with tendon force degradation

    International Nuclear Information System (INIS)

    Kim, Sang-Hyo; Choi, Moon-Seock; Joung, Jung-Yeun; Kim, Kun-Soo

    2013-01-01

    Highlights: • A probabilistic model on long-term degradation of tendon force is developed. • By using the model, we performed reliability evaluation of nuclear containment. • The analysis is also performed for the case with the strict maintenance programme. • We showed how to satisfy the target safety in the containments facing life extension. - Abstract: The long-term reliability of nuclear containment is important for operating nuclear power plants. In particular, long-term reliability should be clarified when the service life of nuclear containment is being extended. This study focuses not only on determining the reliability of nuclear containment but also presenting the reliability improvement by strengthening the containment itself or by running a strict maintenance programme. The degradation characteristics of tendon force are estimated from the data recorded during in-service inspection of containments. A reliability analysis is conducted for a limit state of through-wall cracking, which is conservative, but most crucial limit state. The results of this analysis indicate that reliability is the lowest at 3/4 height of the containment wall. Therefore, this location is the most vulnerable for the specific limit state considered in this analysis. Furthermore, changes in structural reliability owing to an increase in the number of inspecting tendons are analysed for verifying the effect of the maintenance program's intensity on expected containment reliability. In the last part of this study, an example of obtaining target reliability of nuclear containment by strengthening its structural resistance is presented. A case study is conducted for exemplifying the effect of strengthening work on containment reliability, especially during extended service life

  5. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    Science.gov (United States)

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  6. Recent improvements concerning nondestructive testing

    International Nuclear Information System (INIS)

    Asty, M.

    1984-12-01

    Rare are the techniques of which development is not already touched by microelectronics and micro-data processing. Nondestructive testing and more particularly ultrasonic and Foucault current testing follow this general rule. With some examples, this paper focuses on the potential of numerical signal processing [fr

  7. Nondestructive testing at the CEA

    International Nuclear Information System (INIS)

    Colomer, J.; Lucas, G.

    1976-01-01

    The different nondestructive testing methods used at the CEA are presented: X-ray or gamma radiography, X-ray stress analysis, neutron radiography, ultrasonic testing, eddy currents, electrical testing, microwaves, thermal testing, acoustic emission, optical holography, tracer techniques. (102 references are cited) [fr

  8. Research process of nondestructive testing pitting corrosion in metal material

    Directory of Open Access Journals (Sweden)

    Bo ZHANG

    2017-12-01

    Full Text Available Pitting corrosion directly affects the usability and service life of metal material, so the effective nondestructive testing and evaluation on pitting corrosion is of great significance for fatigue life prediction because of data supporting. The features of pitting corrosion are elaborated, and the relation between the pitting corrosion parameters and fatigue performance is pointed out. Through introducing the fundamental principles of pitting corrosion including mainly magnetic flux leakage inspection, pulsed eddy current and guided waves, the research status of nondestructive testing technology for pitting corrosion is summarized, and the key steps of nondestructive testing technologies are compared and analyzed from the theoretical model, signal processing to industrial applications. Based on the analysis of the signal processing specificity of different nondestructive testing technologies in detecting pitting corrosion, the visualization combined with image processing and signal analysis are indicated as the critical problems of accurate extraction of pitting defect information and quantitative characterization for pitting corrosion. The study on non-contact nondestructive testing technologies is important for improving the detection precision and its application in industries.

  9. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2017-03-01

    Full Text Available Non-destructive and timely determination of leaf nitrogen (N concentration is urgently needed for N management in pear orchards. A two-year field experiment was conducted in a commercial pear orchard with five N application rates: 0 (N0, 165 (N1, 330 (N2, 660 (N3, and 990 (N4 kg·N·ha−1. The mid-portion leaves on the year’s shoot were selected for the spectral measurement first and then N concentration determination in the laboratory at 50 and 80 days after full bloom (DAB. Three methods of in-field spectral measurement (25° bare fibre under solar conditions, black background attached to plant probe, and white background attached to plant probe were compared. We also investigated the modelling performances of four chemometric techniques (principal components regression, PCR; partial least squares regression, PLSR; stepwise multiple linear regression, SMLR; and back propagation neural network, BPNN and three vegetation indices (difference spectral index, normalized difference spectral index, and ratio spectral index. Due to the low correlation of reflectance obtained by the 25° field of view method, all of the modelling was performed on two spectral datasets—both acquired by a plant probe. Results showed that the best modelling and prediction accuracy were found in the model established by PLSR and spectra measured with a black background. The randomly-separated subsets of calibration (n = 1000 and validation (n = 420 of this model resulted in high R2 values of 0.86 and 0.85, respectively, as well as a low mean relative error (<6%. Furthermore, a higher coefficient of determination between the leaf N concentration and fruit yield was found at 50 DAB samplings in both 2015 (R2 = 0.77 and 2014 (R2 = 0.59. Thus, the leaf N concentration was suggested to be determined at 50 DAB by visible/near-infrared spectroscopy and the threshold should be 24–27 g/kg.

  10. Magnetic Non-destructive Testing of Plastically Deformed Mild Steel

    Directory of Open Access Journals (Sweden)

    Jozef Pala

    2004-01-01

    Full Text Available The Barkhausen noise analysis and coercive field measurement have been used as magnetic non-destructive testing methods for plastically deformed high quality carbon steel specimens. The strain dependence of root mean square value and power spectrum of the Barkhausen noise and the coercive field are explained in terms of the dislocation density. The specimens have been subjected to different magnetizing frequencies to show the overlapping nature of the Barkhausen noise. The results are discussed in the context of usage of magnetic non-destructive testing to evaluate the plastic deformation of high quality carbon steel products.

  11. Evaluation of Thermally Induced Degradation of Branched Polypropylene by Using Rheology and Different Constitutive Equations

    Directory of Open Access Journals (Sweden)

    Jiri Drabek

    2016-08-01

    Full Text Available In this work, virgin as well as thermally degraded branched polypropylenes were investigated by using rotational and Sentmanat extensional rheometers, gel permeation chromatography and different constitutive equations. Based on the obtained experimental data and theoretical analysis, it has been found that even if both chain scission and branching takes place during thermal degradation of the tested polypropylene, the melt strength (quantified via the level of extensional strain hardening can increase at short degradation times. It was found that constitutive equations such as Generalized Newtonian law, modified White-Metzner model, Yao and Extended Yao models have the capability to describe and interpret the measured steady-state rheological data of the virgin as well as thermally degraded branched polypropylenes. Specific attention has been paid to understanding molecular changes during thermal degradation of branched polypropylene by using physical parameters of utilized constitutive equations.

  12. Research on nondestructive examination methods for CANDU fuel channel inspection

    International Nuclear Information System (INIS)

    Soare, M.; Petriu, F.; Toma, V.; Revenco, V.; Calinescu, A.; Ciocan, R.; Iordache, C.; Popescu, L.; Mihalache, M.; Murgescu, C.

    1995-01-01

    The requirements of the 1994 edition of CAN/CSA-N285.4 Periodic Inspection Standard, which address all known and postulated degradation mechanisms and introduce material surveillance demands, involve a growing need for improved nondestructive examination (NDE) methods and technologies. In order to have a proper technical support in its decisions concerning fuel channel inspections at Cernavoda NPP, the Romanian Power Authority (RENEL) initiated a Research Program regarding the nondestructive characterization of the fuel channels structural integrity. The paper presents the most significant results obtained on this Research Program: the ENDUS experimental system for Laboratory simulation of the fuel channel inspection, ultrasonic Rayleigh-Lamb waves technique for pressure tubes examination, phase analysis technique for near-surface flaws, influence of the metallurgical state of the pressure tube material on the eddy current defectoscopic signals, characterization of plastic deformation and fracture of zirconium alloys by acoustic emission. (author)

  13. Implementing REDD+ (Reducing Emissions from Deforestation and Degradation): evidence on governance, evaluation and impacts from the REDD-ALERT project

    NARCIS (Netherlands)

    Matthews, R.B.; Noordwijk, van M.; Lambin, E.; Meyfroidt, P.; Gupta, J.; Verschot, L.; Hergoualc'h, K.; Veldkamp, E.

    2014-01-01

    Abstract The REDD-ALERT (Reducing Emissions from Deforestation and Degradation from Alternative Land Uses in the Rainforests of the Tropics) project started in 2009 and finished in 2012, and had the aim of evaluating mechanisms that translate international-level agreements into instruments that

  14. An evaluation of direct seeding for reforestation of degraded lands in central São Paulo State, Brazil

    Science.gov (United States)

    Vera L. Engel; John A. Parrotta

    2001-01-01

    As part of a larger study evaluating several silvicultural techniques for restoring tropical moist forests on abandoned agricultural lands in southeastern Brazil, direct seeding with five early-successional Atlantic forest species was tested at three degraded sites, characterized by different soil types and land-use histories, within the Environmental Protection Area...

  15. Long-term evaluation of degradation and foreign-body reaction of subcutaneously implanted poly(DL-lactide-epsilon-caprolactone)

    NARCIS (Netherlands)

    denDunnen, WFA; Robinson, PH; vanWessel, R; Pennings, AJ; vanLeeuwen, MBM; Schakenraad, JM

    1997-01-01

    The aim of this study was to evaluate the degradation and foreign-body reaction of poly(DL-lactide-epsilon-caprolactone) (PLA(85)CL(50)) bars. This specific biomaterial is used for the construction of nerve guides, which can be used in the reconstruction of short nerve gaps. Subcutaneously implanted

  16. Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers.

    Science.gov (United States)

    Guo, Wenbin; Tao, Jian; Yang, Chao; Song, Cunjiang; Geng, Weitao; Li, Qiang; Wang, Yuanyuan; Kong, Meimei; Wang, Shufang

    2012-01-01

    Environmentally Degradable Parameter ((Ed)K) is of importance in the describing of biodegradability of environmentally biodegradable polymers (BDPs). In this study, a concept (Ed)K was introduced. A test procedure of using the ISO 14852 method and detecting the evolved carbon dioxide as an analytical parameter was developed, and the calculated (Ed)K was used as an indicator for the ultimate biodegradability of materials. Starch and polyethylene used as reference materials were defined as the (Ed)K values of 100 and 0, respectively. Natural soil samples were inoculated into bioreactors, followed by determining the rates of biodegradation of the reference materials and 15 commercial BDPs over a 2-week test period. Finally, a formula was deduced to calculate the value of (Ed)K for each material. The (Ed)K values of the tested materials have a positive correlation to their biodegradation rates in the simulated soil environment, and they indicated the relative biodegradation rate of each material among all the tested materials. Therefore, the (Ed)K was shown to be a reliable indicator for quantitatively evaluating the potential biodegradability of BDPs in the natural environment.

  17. Introduction of Environmentally Degradable Parameters to Evaluate the Biodegradability of Biodegradable Polymers

    Science.gov (United States)

    Yang, Chao; Song, Cunjiang; Geng, Weitao; Li, Qiang; Wang, Yuanyuan; Kong, Meimei; Wang, Shufang

    2012-01-01

    Environmentally Degradable Parameter (Ed K) is of importance in the describing of biodegradability of environmentally biodegradable polymers (BDPs). In this study, a concept Ed K was introduced. A test procedure of using the ISO 14852 method and detecting the evolved carbon dioxide as an analytical parameter was developed, and the calculated Ed K was used as an indicator for the ultimate biodegradability of materials. Starch and polyethylene used as reference materials were defined as the Ed K values of 100 and 0, respectively. Natural soil samples were inoculated into bioreactors, followed by determining the rates of biodegradation of the reference materials and 15 commercial BDPs over a 2-week test period. Finally, a formula was deduced to calculate the value of Ed K for each material. The Ed K values of the tested materials have a positive correlation to their biodegradation rates in the simulated soil environment, and they indicated the relative biodegradation rate of each material among all the tested materials. Therefore, the Ed K was shown to be a reliable indicator for quantitatively evaluating the potential biodegradability of BDPs in the natural environment. PMID:22675455

  18. Evaluation of the Activities of Concentrated Crude Mannan-degrading Enzymes Produced by Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Siti Norita, M.

    2010-01-01

    Full Text Available The mannan-degrading enzymes produced by Aspergillus niger were concentrated and the activities were evaluated. The optimum pH for β-mannanase, endoglucanase and α-galactosidase were obtained at pH 3.5 while pH optimum for β-mannosidase was occurred at pH 3.0. The β-mannanase, endoglucanase, β-mannosidase and α-galactosidase was stable at pH 3.5 to 7, pH 3.5 to 6.5, pH 4 to 7 and pH 3.5 to 5.0, respectively. The enzymes obtained in this study were characterized and defined as acidic proteins. The β-mannanases from A. niger had two optimum temperatures (at 50 °C and 60 °C and its half-life was 6 h and 4 h at 60 °C and 70 °C, respectively. The β-mannosidase, endoglucanase and α-galactosidase displayed optimal activity at 70 °C, 60 °C and 50 – 60 °C, respectively. The β-mannosidase had half-life of 1.5 h at 70 °C, while α-galactosidase had a half-life of 2.5 h at 60 °C and endoglucanase had a half-life of 6 h at 60 °C and 45 min at 70 °C.

  19. Nondestructive Measurement of Dynamic Modulus for Cellulose Nanofibril Films

    Science.gov (United States)

    Yan Qing; Robert J. Ross; Zhiyong Cai; Yiqiang Wu

    2013-01-01

    Nondestructive evaluation of cellulose nanofibril (CNF) films was performed using cantilever beam vibration (CBV) and acoustic methods to measure dynamic modulus. Static modulus was tested using tensile tension method. Correlation analysis shows the data measured by CBV has little linear relationship with static modulus, possessing a correlation coefficient (R

  20. Nondestructive inspection using neutron beams

    International Nuclear Information System (INIS)

    2013-01-01

    Neutron-abased experimental techniques such as neutronography, diffraction, or composition and elemental analysis are well established. They have important advantages in the non-destructive analysis of materials, making them a suitable option for quality-control protocols in industrial production lines. In addition, they are highly complementary to other non-destructive techniques, particularly X-ray analysis. Examples of industrial use include studies of pipes and ducts, concrete, or aeronautical components. Notwithstanding the above, the high cost associated with the construction and operation of the requisite neutron facilities has been an important limiting factor for their widespread use by the industrial sector. In this brief contribution, we explore the emerging (and already demonstrated) possibility of using compact, proton-accelerator-based neutron sources. these novel sources can be built and ran at a cost as low as a few ME, making them a competitive option to the more intense spallation or fission-based facilities for industrial applications. (Author)

  1. Evaluation of Thermally Induced Degradation of Branched Polypropylene by Using Rheology and Different Constitutive Equations

    OpenAIRE

    Jiri Drabek; Martin Zatloukal

    2016-01-01

    In this work, virgin as well as thermally degraded branched polypropylenes were investigated by using rotational and Sentmanat extensional rheometers, gel permeation chromatography and different constitutive equations. Based on the obtained experimental data and theoretical analysis, it has been found that even if both chain scission and branching takes place during thermal degradation of the tested polypropylene, the melt strength (quantified via the level of extensional strain hardening) ca...

  2. Development of Testing Platform and Comparison Studies for Wood Nondestructive Testing

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-01-01

    Full Text Available Stress wave based techniques have been developed for evaluating the quality of the wooden materials nondestructively. However the existing techniques have some shortcomings due to the significant variation of the wood properties and are now in need of updating. There are also stress wave based instruments which have been widely used for nondestructive testing of wood. But most of them are inflexible and unsuitable for the tentative studies. This paper proposed and implemented a wood nondestructive testing platform based on NI virtual instrument. Three wood nondestructive testing methods, including peak time interval measurement, cross-correlation, and spectrum analysis, were also tested on this platform with serious decay sample, early decay sample, and defect-free sample. The results show that new methods can be verified easily and the researches of wood nondestructive testing will be accelerated with the designed platform.

  3. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    Science.gov (United States)

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  4. Blue light induced free radicals from riboflavin in degradation of crystal violet by microbial viability evaluation.

    Science.gov (United States)

    Liang, Ji-Yuan; Yuann, Jeu-Ming P; Hsie, Zong-Jhe; Huang, Shiuh-Tsuen; Chen, Chiing-Chang

    2017-09-01

    Crystal violet (CV) is applied in daily use mainly as a commercial dye and antimicrobial agent. Waste water containing CV may affect aquatic ecosystems. Riboflavin, also known as vitamin B 2 , is non-toxic and an essential vitamin required for the functions of the human body. Riboflavin is photosensitive to UV and visible light in terms of generating reactive oxygen species. This study investigated the potential application of blue light on riboflavin, so as to come up with an effective way of degrading CV during its treatment. Photosensitivity of CV leading to degradation in the presence of riboflavin was investigated by light intensity, exposure time, and irradiation dosage. The degradation of CV during riboflavin photolysis treatment was studied by a UV/vis spectrometry and chromatography. The effects of CV degradation on microbial viability are relevant when considering the influences on the ecosystem. This study proved that riboflavin photochemical treatment with blue light degrades CV dye by ROS formation. The riboflavin photolysis-treated CV solution appeared to be transparent during conformational transformations of the CV that was rearranged by free radical species generated from riboflavin photolysis. After riboflavin photolysis, colony-forming units (CFUs) were determined for each CV solution. CFU preservation was 85.2% for the CV dissolved riboflavin solution treated with blue light irradiation at 2.0mW/cm 2 for 120min. Degradation of CV by riboflavin photochemical procedures can greatly reduce antimicrobial ability and serve as an environmental friendly waste water treatment method. Our results presented here concerning riboflavin photolysis in degradation of CV provide a novel technique, and a simple and safe practice for environmental decontamination processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Non-destructive Techniques for Classifying Aircraft Coating Degradation

    Science.gov (United States)

    2015-03-26

    Transform Infrared Spectroscopy ( FTIR ) device. While less accurate than a normal bench-top device, and measures reflectance spectra rather than...where all incident radiation is absorbed . The blackbody model relates the emitted radiance of an object to its temperature LBB(λ, T ) = 2hc2 λ5 1 ehc...2.7 Raman Spectroscopy The dominant scattering process for photons is Rayleigh scattering where an in- coming photon is absorbed and re-emitted in a

  6. Evaluation of the potential of p-nitrophenol degradation in dredged sediment by pulsed discharge plasma.

    Science.gov (United States)

    Wang, Tiecheng; Qu, Guangzhou; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2015-11-01

    Hazardous pollutants in dredged sediment pose great threats to ecological environment and human health. A novel approach, named pulsed discharge plasma (PDP), was employed for the degradation of p-nitrophenol (PNP) in dredged sediment. Experimental results showed that 92.9% of PNP in sediment was smoothly removed in 60 min, and the degradation process fitted the first-order kinetic model. Roles of some active species in PNP degradation in sediment were studied by various gas plasmas, OH radical scavenger, hydrated electron scavenger and O2(·-) scavenger; and the results presented that O3, OH radical, eaq(-) and O2(·-) all played significant roles in PNP removal, and eaq(-) and O2(·-) mainly participated in other oxidising active species formation. FTIR analysis showed that PNP molecular structure was destroyed after PDP treatment. The main degradation intermediates were identified as hydroquinone, benzoquinone, phenol, acetic acid, NO2(-) and NO3(-). PNP degradation pathway in dredged sediment was proposed. It is expected to contribute to an alternative for sediment remediation by pulse discharge plasma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The 30 Years of the Korean Society for Nondestructive Testing

    International Nuclear Information System (INIS)

    2010-05-01

    The contents of this book are development of nondestructive testings; the origin of nondestructive testing, history of Korea on nondestructive testing and present condition of nondestructive testing in Korea, history of society, activity of society; structure and activity of society, publication of society academic project, educational work, international exchange, and the future and direction of development of the Korean society for nondestructive testing.

  8. Evaluation of Degradation of Isothermally Aged Plasma-Sprayed Thermal Barrier Coating

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Jae Mean; Seok, Chang Sung; Kang, Min Sung; Kim, Dae Jin [Sungkyunkwan University, Seoul (Korea, Republic of); Lee, Dong Hoon [HYUNDAI STEEL CO., Incheon (Korea, Republic of); Kim, Mun Young [KPS Gas Turbine Technology Service Center, Seongnam (Korea, Republic of)

    2010-04-15

    The thermal barrier coating of a gas turbine blade was degraded by isothermal heating in a furnace and by varying the exposure time and temperature. Then, a micro-Vickers hardness test was conducted on the cross section of the bond coat and Ni-based superalloy substrate. Further, the thickness of TGO(Thermally Grown Oxide) was measured by using an image analyzer, and the changes in the microstructure and element contents in the coating were analyzed by using an optical microscope and by performing SEM-EDX analysis. No significant change was observed in the Vickers hardness of the bond coat when the coated specimen was degraded at a high temperature: delamination was observed between the top coat and the bond coat when the coating was degraded for 50 h at a temperature 1,151 .deg. C.

  9. Non-Destructive Inspection Lab (NDI)

    Data.gov (United States)

    Federal Laboratory Consortium — The NDI specializes in applied research, development and performance of nondestructive inspection procedures (flourescent penetrant, magnetic particle, ultrasonics,...

  10. Photooxidation processes for an azo dye in aqueous media: modeling of degradation kinetic and ecological parameters evaluation.

    Science.gov (United States)

    Kusic, Hrvoje; Juretic, Daria; Koprivanac, Natalija; Marin, Vedrana; Božić, Ana Lončarić

    2011-01-30

    Three photooxidation processes, UV/H(2)O(2), UV/S(2)O(8)(2-) and UV/O(3) were applied to the treatment of model wastewater containing non-biodegradable organic pollutant, azo dye Acid Orange 7 (AO7). Dye degradation was monitored using UV/VIS and total organic carbon (TOC) analysis, determining decolorization, the degradation/formation of naphthalene and benzene structured AO7 by-products, and the mineralization of model wastewater. The water quality during the treatment was evaluated on the bases of ecological parameters: chemical (COD) and biochemical (BOD(5)) oxygen demand and toxicity on Vibrio fischeri determining the EC(50) value. The main goals of the study were to develop an appropriate mathematic model (MM) predicting the behavior of the systems under investigation, and to evaluate the toxicity and biodegradability of the model wastewater during treatments. MM developed showed a high accuracy in predicting the degradation of AO7 when considering the following observed parameters: decolorization, formation/degradation of by-products and mineralization. Good agreement of the data predicted and the empirically obtained was confirmed by calculated standard deviations. The biodegradability of model wastewater was significantly improved by three processes after mineralizing a half of the initially present organic content. The toxicity AO7 model wastewater was decreased as well. The differences in monitored ecological parameters during the treatment indicated the formation of different by-products of dye degradation regarding the oxidant type applied. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. The use of robotics for nondestructive inspection of steel highway bridges and structures: interim report.

    Science.gov (United States)

    1998-01-01

    This interim report describes the progress during the first year of a project to develop robotics hardware for nondestructive evaluation of steel structures. The project objectives are to (1) develop and test an improved prototype (POLECAT-II) crawli...

  12. A quantitative non-destructive residual stress assessment tool for pipelines.

    Science.gov (United States)

    2014-09-01

    G2MT successfully demonstrated the eStress system, a powerful new nondestructive evaluation : system for analyzing through-thickness residual stresses in mechanical damaged areas of steel : pipelines. The eStress system is designed to help pipe...

  13. Isolation and Identification of Endosulfan-Degrading Bacteria and Evaluation of Their Bioremediation in Kor River, Iran

    OpenAIRE

    Kafilzadeh, Farshid; Ebrahimnezhad, Moslem; Tahery, Yaghoob

    2014-01-01

    Objectives Endosulfan is a lipophilic insecticide, which causes severe health issues due to its environmental stability, toxicity, and biological reservation in organisms. It is found in the atmosphere, soil, sediments, surface waters, rain, and food in almost equal proportions. The aim of this study was to isolate and identify endosulfan-degrading bacteria from the Kor River and evaluate the possibility of applying bioremediation in reducing environmental pollution in the desired region. Met...

  14. Probability of Detection (POD) Analysis for the Advanced Retirement for Cause (RFC)/Engine Structural Integrity Program (ENSIP) Nondestructive Evaluation (NDE) System-Volume 3: Material Correlation Study

    National Research Council Canada - National Science Library

    Berens, Alan

    2000-01-01

    .... Volume 1 presents a description of changes made to the probability of detection (POD) analysis program of Mil-STD-1823 and the statistical evaluation of modifications that were made to version 3 of the Eddy Current Inspection System (ECIS v3...

  15. Criticality Safety Evaluation for Small Sample Preparation and Non-Destructive Assay (NDA) Operations in Wing 7 Basement of the CMR Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kunkle, Paige Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zhang, Ning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-02

    Nuclear Criticality Safety (NCS) has reviewed the fissionable material small sample preparation and NDA operations in Wing 7 Basement of the CMR Facility. This is a Level-1 evaluation conducted in accordance with NCS-AP-004 [Reference 1], formerly NCS-GUIDE-01, and the guidance set forth on use of the Standard Criticality Safety Requirements (SCSRs) [Reference 2]. As stated in Reference 2, the criticality safety evaluation consists of both the SCSR CSED and the SCSR Application CSED. The SCSR CSED is a Level-3 CSED [Reference 3]. This Level-1 CSED is the SCSR Application CSED. This SCSR Application (Level-1) evaluation does not derive controls, it simply applies controls derived from the SCSR CSED (Level-3) for the application of operations conducted here. The controls derived in the SCSR CSED (Level-3) were evaluated via the process described in Section 6.6.5 of SD-130 (also reproduced in Section 4.3.5 of NCS-AP-004 [Reference 1]) and were determined to not meet the requirements for consideration of elevation into the safety basis documentation for CMR. According to the guidance set forth on use of the SCSRs [Reference 2], the SCSR CSED (Level-3) is also applicable to the CMR Facility because the process and the normal and credible abnormal conditions in question are bounded by those that are described in the SCSR CSED. The controls derived in the SCSR CSED include allowances for solid materials and solution operations. Based on the operations conducted at this location, there are less-than-accountable (LTA) amounts of 233U. Based on the evaluation documented herein, the normal and credible abnormal conditions that might arise during the execution of this process will remain subcritical with the following recommended controls.

  16. Nondestructive analysis of irradiated fuels

    International Nuclear Information System (INIS)

    Dudey, N.D.; Frick, D.C.

    1977-01-01

    The principal nondestructive examination techniques presently used to assess the physical integrity of reactor fuels and cladding materials include gamma-scanning, profilometry, eddy current, visual inspection, rod-to-rod spacing, and neutron radiography. LWR fuels are generally examined during annual refueling outages, and are conducted underwater in the spent fuel pool. FBR fuels are primarily examined in hot cells after fuel discharge. Although the NDE techniques are identical, LWR fuel examinations emphasize tests to demonstrate adherence to technical specification and reliable fuel performance; whereas, FBR fuel examinations emphasize aspects more related to the relative performance of different types of fuel and cladding materials subjected to variable irradiation conditions

  17. Nondestructive detection of microstructural fatigue damage

    International Nuclear Information System (INIS)

    Willems, H.; Persch, H.; Voss, B.; Falk, L.

    1989-01-01

    Ultrasonic as well as magnetic investigations have been performed on a pressure vessel steel (A533, B class 1) in order to study the influence of fatigue loading on both elastic and magnetic material properties. Using laboratory specimens under two different loading conditions (tension-tension loading, tension-compression loading), material characteristics like ultrasonic velocity, ultrasonic absorption, coercivity, incremental permeability were measured and evaluated as a function of consumed lifetime. Only in case of macroscopic plastic deformation, significant changes of the measuring quantities were observed. Otherwise the effects are so small that the nondestructive detection of microstructural changes due to high-cycle fatigue loading seems not to be feasible under practical conditions (for example at pressure vessels) with the techniques used. (orig.) [de

  18. Nondestructive detection of microstructural fatigue damage

    International Nuclear Information System (INIS)

    Willems, H.; Persch, H.

    1990-02-01

    Ultrasonic as well as magnetic investigations have been performed on a pressure vessel steel (A533, B class 1) in order to study the influence of fatigue loading on both elastic and magnetic material properties. Using laboratory specimens under two different loading conditions (tension-tension loading, tension-compression loading), material characteristics like ultrasonic velocity, ultrasonic absorption, coercivity, incremental permeability were measured and evaluated as a function of consumed lifetime. Only in case of macroscopic plastic deformation, significant changes of the measuring quantities were observed. Otherwise the effects are so small that the nondestructive detection of microstructural changes due to fatigue loading seems not to be feasible under practical conditions (for example at pressure vessels) with the techniques used. Besides a zero measurement, additional measurements on a 1:5 model vessel at JRC Ispra could not be carried out, because the planned fatigue tests were not performed by JRC Ispra during the research period

  19. Evaluation of Degradation Kinetic of Tomato Paste Color in Heat Processing and Modeling of These Changes by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    M. Ganjeh

    2015-12-01

    Full Text Available Color is an important qualitative factor in tomato products such as tomato paste which is affected by heat processing. The main goal of this study was to evaluate the degradation kinetics of tomato paste color during heat processing by Arrhenius equation and modeling of these changes by response surface methodology (RSM. Considering this purpose, tomato paste was processed at three temperatures of 60, 70 and 80 °C for 25-100 minutes and by three main color indices including L, a and b, a/b ratio, total color difference (TCD, Saturation index (SI and hue angle (HU was analyzed. Degradation kinetics of these parameters was evaluated by Arrhenius equation and their changing trends were modeled by RSM. All parameters except TCA (zero order followed a first order reaction. The b index by highest and TCA and a/b by least activation energies had the maximum and minimum sensitivity to the temperature changes, respectively. Also, TCD and b had the maximum and minimum changing rates, respectively. All responses were influenced by independent parameters (the influence of temperature was more than time and RSM was capable of modeling and predicting these responses. In general, Arrhenius equation was appropriate to evaluate degradation kinetics of tomato paste color changes and RSM was able to estimate independent and interaction effects of time and temperature so that quadratic models were capable to predict these changes by a high accuracy (R2 > 0.95.

  20. Degradation Effect on Reliability Evaluation of Aluminum Electrolytic Capacitor in Backup Power Converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    DC capacitors in power electronic converters are a major constraint on improvement of power density as well as reliability. In this paper, according to the degradation data of electrolytic capacitors through the accelerated test, the time-to-failure of the capacitor cell is acquired and it can be...

  1. Evaluation of soluble organic compounds generated by radiological degradation of asphalt

    International Nuclear Information System (INIS)

    Fukumoto, M.; Nishikawa, Y.; Kagawa, A.; Kawamura, K.

    2000-12-01

    The soluble organic compounds generated by radiological degradation of asphalt (γ ray) were confirmed as a part of influence of the bituminized waste degradation in the TRU waste repository. Especially, the influence of the nitrate was focused on. As a result, the concentration of the soluble organic compounds generated by radiological degradation of asphalt (10 MGy, γ ray which is correspond to absorbed dose of asphalt for 1,000,000 years) were lower (each formic acid: about 50 mg/dm 3 , acetic acid: about 30 mg/dm 3 and oxalic acid: about 2 mg/dm 3 ) than that of the formic acid, the acetic acid and the oxalic acid which Valcke et al. had shown (the influence of the organic at the solubility examination which uses Pu and Am). Moreover, the change in the concentration of TOC and the soluble organic compounds (formic acid, acetic acid and oxalic acid) is little under the existence of nitrate ion. That is, the formic acid and acetic acid which can be organic ligands were generated little by oxidative decomposition of asphalt in the process that nitrate ion becomes nitride ion by radiation. The influence of the soluble organic compounds by the radiological degradation of the asphalt (γ ray) on adsorption and solubility by the complexation of radionuclides in the performance assessment can be limited. (author)

  2. Evaluation of Aliphatic and Aromatic Compounds Degradation by Indigenous Bacteria Isolated from Soil Contaminated with Petroleum

    Directory of Open Access Journals (Sweden)

    Farhad Gilavand

    2015-12-01

    Full Text Available Background:  The major of this study was to isolate oil-degrading bacteria from soil contaminated with petroleum and examining the removal of hydrocarbons by these bacteria. Methods: Oil-degrading colonies were purified from the samples obtained of around Ahvaz oil wells. Organic matter degradation was investigated with 1 g of crude oil in basal salt medium (BSM as sole carbon source. The growth rate was determined through total protein assay and hydrocarbon consuming was measured through organic carbon oxidation and titration by dichromate as oxidizing agent. Results: Two potential isolates named S1 and S2 strains were screened and identified as Planococcus and Pseudomonas aeruginosa. As results for S1 and S2 could degrade 80.86 and 65.6% of olive oil, 59.6 and 35.33 of crude oil, while 32 and 26.15 % of coal tar were consumed during 14 days incubation. Conclusion: The results of this investigation showed these indigenous strains high capability to biodegradation at short time and are desirable alternatives for treatment of oil pollutants.

  3. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization

    Science.gov (United States)

    Ojha, Nupur; Pradhan, Neha; Singh, Surjit; Barla, Anil; Shrivastava, Anamika; Khatua, Pradip; Rai, Vivek; Bose, Sutapa

    2017-01-01

    Plastic in any form is a nuisance to the well-being of the environment. The ‘pestilence’ caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only resulted in furthering the pollution by releasing toxic gases into the atmosphere; whereas; biological methods have been found to be eco-friendly however they are not cost effective. This paves the way for the current study where fungal isolates have been used to degrade polyethylene sheets (HDPE, LDPE). Two potential fungal strains, namely, Penicillium oxalicum NS4 (KU559906) and Penicillium chrysogenum NS10 (KU559907) had been isolated and identified to have plastic degrading abilities. Further, the growth medium for the strains was optimized with the help of RSM. The plastic sheets were subjected to treatment with microbial culture for 90 days. The extent of degradation was analyzed by, FE-SEM, AFM and FTIR. Morphological changes in the plastic sheet were determined.

  4. FIELD EVALUATION OF THE LIGNIN-DEGRADING FUNGUS PHANEROCHAETE SORDIDA TO TREAT CREOSOTE-CONTAMINATED SOIL

    Science.gov (United States)

    A field study to determine the ability of selected lignin-degrading fungi to remediate soil contaminated with creosote was performed at a wood-treating facility in south central Mississippi in the autumn of 1991. The effects of solid-phase bioremediation with Phanerochaete sordid...

  5. Nondestructive Evaluation Technology Initiatives Program II (NTIP II). Delivery Order 10, Task 010-015: In Search of Excellence - An Historical Review

    Science.gov (United States)

    2006-05-01

    opportunities arose, some new technologists educated in physics, physical chemistry , materials science, electronic instrumentation, and similar...the evaluation and improvement of the detection capability of the methodology.[4.81] • Turbine Engine Sustainment Initiative ( TESI ) Advanced Disk...Turbine Engine Sustainment Initiative ( TESI ) with the goal of enhancing the Air Force’s NDI/E capability to accurately locate certain critical, diffi

  6. Degradation of flumequine by the Fenton and photo-Fenton processes: Evaluation of residual antimicrobial activity

    International Nuclear Information System (INIS)

    Rodrigues-Silva, Caio; Maniero, Milena Guedes; Rath, Susanne; Guimarães, José Roberto

    2013-01-01

    Flumequine is a broad-spectrum antimicrobial agent of the quinolone class, and it is widely used as a veterinary drug in food-producing animals. The presence of flumequine in the environment may contribute to the development of drug resistant bacterial strains. In this study, water samples fortified with flumequine (500 μg L −1 ) were degraded using the Fenton and photo-Fenton processes. The maximum degradation efficiency for flumequine by the Fenton process was approximately 40% (0.5 mmol L −1 Fe(II), 2.0 mmol L −1 H 2 O 2 and 15 min). By applying UV radiation (photo-Fenton process), the efficiency reached more than 94% in 60 min when 0.25 mmol L −1 Fe(II) and 10.0 mmol L −1 H 2 O 2 were used. Under these conditions, the Fenton process was able to reduce the biological activity, whereas the photo-Fenton process eliminated almost all of the antimicrobial activity because it was not detected. Four byproducts with an m/z of 244, 238, 220 and 202 were identified by mass spectrometry, and a degradation pathway for flumequine was proposed. The byproducts were derived from decarboxylation and defluorination reactions and from modifications in the alkylamino chain of the fluoroquinolone. - Highlights: ► Photo-Fenton process achieved the maximum performance, degrading 94% of flumequine. ► As the flumequine concentration decreased, antimicrobial activity also decreased. ► Four byproducts with m/z of 244, 238, 220 and 202 were identified. ► A degradation pathway for flumequine was proposed

  7. Degradation of flumequine by the Fenton and photo-Fenton processes: Evaluation of residual antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues-Silva, Caio; Maniero, Milena Guedes [School of Civil Engineering, Architecture and Urbanism, University of Campinas — UNICAMP, P.O. Box 6021, CEP 13083-852, Campinas, SP (Brazil); Rath, Susanne [Chemistry Institute, University of Campinas — UNICAMP, P.O. Box 6154, CEP 13084-971, Campinas, SP (Brazil); Guimarães, José Roberto, E-mail: jorober@fec.unicamp.br [School of Civil Engineering, Architecture and Urbanism, University of Campinas — UNICAMP, P.O. Box 6021, CEP 13083-852, Campinas, SP (Brazil)

    2013-02-15

    Flumequine is a broad-spectrum antimicrobial agent of the quinolone class, and it is widely used as a veterinary drug in food-producing animals. The presence of flumequine in the environment may contribute to the development of drug resistant bacterial strains. In this study, water samples fortified with flumequine (500 μg L{sup −1}) were degraded using the Fenton and photo-Fenton processes. The maximum degradation efficiency for flumequine by the Fenton process was approximately 40% (0.5 mmol L{sup −1} Fe(II), 2.0 mmol L{sup −1} H{sub 2}O{sub 2} and 15 min). By applying UV radiation (photo-Fenton process), the efficiency reached more than 94% in 60 min when 0.25 mmol L{sup −1} Fe(II) and 10.0 mmol L{sup −1} H{sub 2}O{sub 2} were used. Under these conditions, the Fenton process was able to reduce the biological activity, whereas the photo-Fenton process eliminated almost all of the antimicrobial activity because it was not detected. Four byproducts with an m/z of 244, 238, 220 and 202 were identified by mass spectrometry, and a degradation pathway for flumequine was proposed. The byproducts were derived from decarboxylation and defluorination reactions and from modifications in the alkylamino chain of the fluoroquinolone. - Highlights: ► Photo-Fenton process achieved the maximum performance, degrading 94% of flumequine. ► As the flumequine concentration decreased, antimicrobial activity also decreased. ► Four byproducts with m/z of 244, 238, 220 and 202 were identified. ► A degradation pathway for flumequine was proposed.

  8. Experimental device, corresponding forward model and processing of the experimental data using wavelet analysis for tomographic image reconstruction applied to eddy current nondestructive evaluation

    International Nuclear Information System (INIS)

    Joubert, P.Y.; Madaoui, N.

    1999-01-01

    In the context of eddy current non destructive evaluation using a tomographic image reconstruction process, the success of the reconstruction depends not only on the choice of the forward model and of the inversion algorithms, but also on the ability to extract the pertinent data from the raw signal provided by the sensor. We present in this paper, an experimental device designed for imaging purposes, the corresponding forward model, and a pre-processing of the experimental data using wavelet analysis. These three steps implemented with an inversion algorithm, will allow in the future to perform image reconstruction of 3-D flaws. (authors)

  9. Evaluation of ionic degradation and slot corrosion of metallic brackets by the action of different dentifrices

    Directory of Open Access Journals (Sweden)

    Gustavo Antônio Martins Brandão

    2013-02-01

    Full Text Available OBJECTIVE: To evaluate the in vitro ionic degradation and slot base corrosion of metallic brackets subjected to brushing with dentifrices, through analysis of chemical composition by Energy Dispersive Spectroscopy (EDS and qualitative analysis by Scanning Electron Microscopy (SEM. METHODS: Thirty eight brackets were selected and randomly divided into four experimental groups (n = 7. Two groups (n = 5 worked as positive and negative controls. Simulated orthodontic braces were assembled using 0.019 x 0.025-in stainless steel wires and elastomeric rings. The groups were divided according to surface treatment: G1 (Máxima Proteção Anticáries®; G2 (Total 12®; G3 (Sensitive®; G4 (Branqueador®; Positive control (artificial saliva and Negative control (no treatment. Twenty eight brushing cycles were performed and evaluations were made before (T0 and after (T1 experiment. RESULTS: The Wilcoxon test showed no difference in ionic concentrations of titanium (Ti, chromium (Cr, iron (Fe and nickel (Ni between groups. G2 presented significant reduction (p OBJETIVO: avaliar in vitro a degradação iônica e corrosão do fundo do slot de braquetes metálicos submetidos à escovação com dentifrícios, realizando análises da composição química por Espectroscopia de Energia Dispersiva (EDS e qualitativa por Microscopia Eletrônica de Varredura (MEV. MÉTODOS: foram selecionados 38 braquetes divididos aleatoriamente em quatro grupos experimentais (n = 7. Dois grupos (n = 5 funcionaram como controles positivo e negativo. Aparelhos ortodônticos simulados foram confeccionados com fios de aço inoxidável 0,019" x 0,025" e anéis elastoméricos. Os grupos foram divididos de acordo com o tratamento de superfície: G1 (Máxima Proteção Anticáries®; G2 (Total 12®; G3 (Sensitive®; G4 (Branqueador®; Controle Positivo (saliva artificial e Controle Negativo (sem tratamento. Foram realizados 28 ciclos de escovação e avaliações antes (T0 e após (T1 o

  10. Development of computer based ultrasonic flaw detector for nondestructive testing

    International Nuclear Information System (INIS)

    Lee, Weon Heum; Kim, Jin Koo; Kim, Yang Rae; Choi, Kwan Sun; Kim, Sun Hyung; Lee, Sun Heum

    1996-01-01

    Ultrasonic Testing is one of the most widely used method of Nondestructive testing for Pre-Service Inspection(PSI) and In-Service Inspection(ISI) in the structure of Bridges, Power plants, chemical plants and heavy industrial fields. It is very important target to estimate safety, remain life, Quality Control of the Structure. Also, a lot of research for quantities evaluation and analysis inspection data is proceeding. But traditional portable ultrasonic flaw detector had been following disadvantages. 1) Analog ultrasonic flaw detector decreased credibility of ultrasonic test, because it is impossible for saying data and digital signal processing. 2) Stand-alone digital ultrasonic flaw detector cannot effectively evaluate received signals because of lack of its storage memory. To overcome this shortcoming, we develop the computer based ultrasonic flaw detector for nondestructive testing. It can store the received signal and effectively evaluate the signal, and then enhance the reliability of the testing results.

  11. Using ALS and MODIS data to evaluate degradation in different forests types over the Xingu basin - Brazilian Amazon

    Science.gov (United States)

    Moura, Y.; Aragão, L. E.; Galvão, L. S.; Dalagnol, R.; Lyapustin, A.; Santos, E. G.; Espirito-Santo, F.

    2017-12-01

    Degradation of Amazon rainforests represents a vital threat to carbon storage, climate regulation and biodiversity; however its effect on tropical ecosystems is largely unknown. In this study we evaluate the effects of forest degradation on forest structure and functioning over the Xingu Basin in the Brazilian Amazon. The vegetation types in the area is dominated by Open Ombrophilous Forest (Asc), Semi-decidiuous Forest (Fse) and Dense Ombrophilous Forest (Dse). We used Airborne Laser Scanning (ALS) data together with time series of optical remote sensing images from the Moderate Resolution Imaging Spectroradiometer (MODIS) bi-directional corrected using the Multi-Angle Implementation for Atmospheric Correction (MAIAC). We derive time-series (2008 to 2016) of the Enhanced Vegetation Index (EVI) and Green-Red Normalized Difference (GRND) to analyze the dynamics of degraded areas with related changes in canopy structure and greenness values, respectively. Airborne ALS measurements showed the largest tree heights in the Dse class with values up to 40m tall. Asc and Fse vegetation types reached up to 30m and 25m in height, respectively. Differences in canopy structure were also evident from the analysis of canopy volume models (CVMs). Asc showed higher proportion of sunlit, as expected for open forest types. Fse showed gaps predominantly in lower height levels, and a higher overall proportion of shaded crown. Full canopy closure was reached at about15 m height for both Asc and Dse, and at about 20 m height for Fse. We also used a base map of degraded areas (available from Imazon - Instituto do Homen e Meio Ambiente da Amazônia) to follow these regions throughout time using EVI and GRND from MODIS. All three forest types displayed seasonal cycles. Notable differences in amplitude were detected during the periods when degradation occurred and both indexes showed a decrease in their response. However, there were marked differences in timing and amplitude depending on

  12. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components

    DEFF Research Database (Denmark)

    Riccardi, M.; Mele, G.; Pulvento, C.

    2014-01-01

    Leaf chlorophyll content provides valuable information about physiological status of plants; it is directly linked to photosynthetic potential and primary production. In vitro assessment by wet chemical extraction is the standard method for leaf chlorophyll determination. This measurement is expe...... of foliar chlorophyll content and had a lower amount of noise in the whole range of chlorophyll studied compared with SPAD and other leaf image processing based models when applied to quinoa and amaranth....... components analysis of digital images acquired with a standard SLR camera. Digital images of leaves from different genotypes of quinoa and amaranth were acquired directly in the field. Mean values of each RGB component were evaluated via image analysis software and correlated to leaf chlorophyll provided...

  13. Non-destructive testing at Chalk River

    International Nuclear Information System (INIS)

    Hilborn, J.W.

    1976-01-01

    In 1969 CRNL recognized the need for a strong group skilled in non-destructive test procedures. Within two years a new branch called Quality Control Branch was staffed and working. This branch engages in all aspects of non-destructive testing including development of new techniques, new applications of known technology, and special problems in support of operating reactors. (author)

  14. Nondestructive examination using neutron activated positron annihilation

    Science.gov (United States)

    Akers, Douglas W.; Denison, Arthur B.

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  15. Thermoelectric generator testing and RTG degradation mechanisms evaluation. Progress report No. 35

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, A.; Shields, V.

    1980-05-01

    The n-type selenide legs after 14,000 hours continue to show reasonable agreement with the 3M Co. published data. In the ingradient testing after 14,700 hours the n-legs show serious degradation in power to load. Weight loss measurements on the first samples of material produced by G.E. match the results previously obtained on R.C.A. material from the MHW program. The remaining MHW generator on test Q1-A has accumulated 22,519 hours and performance remains stable. The 18 couple modules S/N-1 and -3 previously tested at RCA show no significant change in operation during the current JPL testing. No changes in the trends of degradation of LES 8 and 9 and the Voyager RTGs have been observed.

  16. Evaluation of the anaerobic degradation of black liquor from a Kraft pulp plant with addition of organic co-substrates.

    Science.gov (United States)

    Buzzini, A P; Sakamoto, I K; Varesche, M B; Pires, E C

    2009-01-01

    The purpose of this study was to assess the anaerobic degradation of black liquor with and without additional carbon sources. Batch experiments were conducted using black liquor, from an integrated pulp and paper mill adding ethanol, methanol and nutrients. The PCR/DGGE technique was used to characterize the structure of the microbial community. The addition of extra sources of carbon did not significantly influence the degradation of black liquor under the conditions evaluated and the microbial community was similar in all experiments. It was observed an increase in some members of the archaeal in reactors that had the best efficiencies for removal of black liquor (around 7.5%). Either ethanol or methanol can be used as co-substrates because the produce the same quantitative and qualitative effect.

  17. Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fabiańska, Aleksandra; Białk-Bielińska, Anna; Stepnowski, Piotr [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); Stolte, Stefan [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland); UFT-Centre of Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße UFT, D-28359 Bremen (Germany); Siedlecka, Ewa Maria, E-mail: ewa.siedlecka@ug.edu.pl [Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-952 Gdansk (Poland)

    2014-09-15

    Highlights: • SNs were electrochemically oxidized at BDD in one compartment reactor. • The efficiency of SN degradation was the highest in effluents from municipal WWTP. • The electro-degradation SNs based on oxidation but reduction was also possible. • Electrochemical oxidation of SNs led in some cases to mixtures toxic to L. minor. - Abstract: The investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants. Increased degradation efficiency was observed in higher temperature and in acidic pH. Due to the presence of chlorine and nitrate SNs were more effectively oxidized from municipal wastewater treatment plant (WWTP) effluents than from pure supporting electrolyte Na{sub 2}SO{sub 4}. The intermediates identified by LC–MS and GC–MS analysis suggested that the hydroxyl radicals attack mainly the S-N bond, but also the aromatic ring systems (aniline, pyrimidine or triazole) of SNs. Finally, the toxicity of the SNs solutions and effluents after electrochemical treatment was assessed through the measurement of growth inhibition of green algae (Scenedesmus vacualatus) and duckweed (Lemna minor). Toxicity of SMR, STZ, SMN solutions before and after electrochemical oxidation and SDM solution after the process in L. minor test was observed. No significant toxicity of studied SNs was observed in algae test.

  18. Non-destructive tests for railway evaluation: Detection of fouling and joint interpretation of GPR and track geometric parameters - COST Action TU1208

    Science.gov (United States)

    Solla, Mercedes; Fontul, Simona; Marecos, Vânia; Loizos, Andreas

    2016-04-01

    During the last years high-performance railway lines have increased both their number and capabilities. As all types of infrastructures, railways have to maintain a proper behaviour during the entire life cycle. This work is focused on the analysis of the GPR method and its capabilities to detect defects in both infra and superstructure in railways. Different GPR systems and frequency antennas (air-coupled with antennas of 1.0 and 1.8 GHz, and ground-coupled with antennas of 1.0 and 2.3 GHz) were compared to establish the best procedures. For the assessment of the ground conditions, both GPR systems were used in combination with Falling Weight Deflectometer (FWD) load tests, in order to evaluate the bearing capacity of the subgrade. Moreover, Light Falling Weight Deflectometer (LFWD) measures were performed for the validation of the interpretation of the damaged areas identified from GPR and FWD tests. Finally, to corroborate the joint interpretation of GPR and FWD-LFWD, drill cores were extracted in the damaged areas identified based on the field data. Comparing all the data, a good agreement was obtained between the methods, when identifying both anomalous deflections and reflections. It was also demonstrated that ground-coupled systems have clear advantages compared to air-coupled systems since these antennas provide both better signal penetration and vertical resolution to detect fine details like cracking. Regarding the assessment of the thickness, three different high-speed track infrastructure solutions were constructed in a physical model, using asphalt as subballast layer. Four different antennas were used, two ground- and two air-coupled systems. Two different methodologies were assumed to calibrate the velocity of wave propagation: coring and metal plate. Comparing the results obtained, it was observed that the ground-coupled system provided higher values of wave velocity than the air-coupled system. The velocity values were also obtained by the

  19. Probabilistic procedure to evaluate integrity of degraded pipes under internal pressure and bending moment

    International Nuclear Information System (INIS)

    Roos, E.; Herter, K.-H.; Julisch, P.; Otremba, F.; Schuler, X.

    2003-01-01

    The determination of critical crack sizes or permissible/allowable loading levels in pipes with degraded pipe sections (circumferential cracks) for the assurance of component integrity is usually based on deterministic approaches. Therefore along with numerical calculational methods (finite element (FE) analyses) limit load calculations, such as e.g. the 'Plastic limit load concept' and the 'Flow stress concept' as well as fracture mechanics approximation methods as e.g. the R-curve method or the 'Ductile fracture handbook' and the R6-Method are currently used for practical application. Numerous experimental tests on both ferritic and austenitic pipes with different pipe dimensions were investigated at MPA Stuttgart. The geometries of the pipes were comparable to actual piping systems in Nuclear Power Plants, both BWR as well as PWR. Through wall cracks and part wall through cracks on the inside surface of the pipes were considered. The results of these tests were used to determine the flow stresses used within the limit load calculations. Therefore the deterministic concepts assessing the integrity of degraded pipes are available A new post-calculation of the above mentioned tests was performed using probabilistic approaches to assure the component integrity of degraded piping systems. As a result the calculated probability of failure was compared to experimental behaviour during the pipe test. Different reliability techniques were used for the verification of the probabilistic approaches. (author)

  20. Preclinical Evaluation of Degradation Kinetics and Elemental Mapping of First and Second Generation Bioresorbable Magnesium Scaffolds.

    Science.gov (United States)

    Joner, Michael; Ruppelt, Philipp; Zumstein, Philine; Lapointe-Corriveau, Capucine; Leclerc, Guy; Bulin, Anna; Castellanos, Maria Isabel; Wittchow, Eric; Haude, Michael; Waksman, Ron

    2018-02-20

    Because vascular restoration therapy using bioresorbable vascular scaffolds (BRS) remains an appealing concept to restore vasoreactivity, understanding of biodegradation remains paramount during preclinical testing. Qualitative characterization of biodegradation was performed in 41 DREAMS 1G up to 3 years, while degradation kinetics were acquired in 54 DREAMS 2G implanted into porcine coronary arteries for 28, 90 and 180 days, 1 and 2 years. Assessment of end product composition was achieved in DREAMS 2G at 180 days. Myocardium was examined, while an OCT attenuation score was derived at strut-level from 180 days to 2 years in DREAMS 2G. Degradation of DREAMS entails two corrosive phases. At 1 year, 94.8% of the magnesium was bioabsorbed in DREAMS 2G and at 2 years, magnesium was completely replaced by amorphous calcium phosphate. Von Kossa staining revealed variable peri-strut mineralization at all time points and only small focal myocardial emboli observed in 1 animal of the 180 days cohort. Strut discontinuity density was low at 28 days (of 0.5 ± 0.57 per mm) and increased to a density above 7.5 per mm up to 1 year. OCT attenuation score correlated well with strut-based degradation analysis up to 2 years. While the current set of data supports vascular safety, clinical trials are warranted to prove the concept of vascular restoration following DREAMS implantation.

  1. Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation to Mankin score.

    Science.gov (United States)

    Afara, I; Prasadam, I; Crawford, R; Xiao, Y; Oloyede, A

    2012-11-01

    The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (1) menisectomy (MSX); (2) anterior cruciate ligament transection (ACLT); and (3) intra-articular injection of mono-ido-acetate (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made near-infrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wave number range 4,000-12,500 cm(-1). Following spectral data acquisition, the specimens were fixed and Safranin-O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankin scores of the samples tested. Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrates that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankin score (R(2) = 88.85%). We conclude that NIR is a viable tool for evaluating articular cartilage health and physical properties such as change in thickness with degeneration. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Qualifying program on Non-Destructive Testing, Visual Inspection of the welding (level 2)

    International Nuclear Information System (INIS)

    Shafee, M. A.

    2011-01-01

    Nondestructive testing is a wide group of analysis technique used in science and industry to evaluate the properties of a material, component or system without causing damage. Common Non-Destructive Testing methods include ultrasonic, magnetic-particle, liquid penetrate, radiographic, visual inspection and eddy-current testing. AAEA put the new book of the Non-Destructive Testing publication series that focused on Q ualifying program on Non-Destructive Testing, visual inspection of welding-level 2 . This book was done in accordance with the Arab standard certification of Non-Destructive Testing (ARAB-NDT-CERT-002) which is agreeing with the ISO-9712 (2005) and IAEA- TEC-DOC-487. It includes twenty one chapters dealing with engineering materials used in industry, the mechanical behavior of metals, metal forming equipments, welding, metallurgy, testing of welds, introduction to Non-Destructive Testing, defects in metals, welding defects and discontinuities, introduction to visual inspection theory, properties and tools of visual testing, visual testing, quality control regulations, standards, codes and specifications, procedures of welding inspections, responsibility of welding test inspector, qualification of Non-Destructive Testing inspector and health safety during working.

  3. An assessment of nondestructive testing technologies for chemical weapons monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, T.T.

    1993-05-01

    The US Department of Energy (DOE), with the US Army Chemical Research, Development and Engineering Center (CRDEC) under the sponsorship of the Defense Nuclear Agency (DNA), completed testing of Nondestructive Evaluation (NDE) technology on live agent systems. The tests were conducted at Tooele Army Depot during August 1992. The Nondestructive Evaluation systems were tested for potential use in verifying chemical treaty requirements. Five technologies, two neutron and three acoustic, were developed at DOE laboratories. Two systems from the United Kingdom (one neutron and one acoustic) were also included in the field trials. All systems tested showed the ability to distinguish among the VX, GB, and Mustard. Three of the systems (two acoustic and one neutron) were used by On-Site Inspection Agency (OSIA) personnel.

  4. Image processing in nondestructive testing

    International Nuclear Information System (INIS)

    Janney, D.H.

    1979-01-01

    The paper examines the applicability of image processing for more certain detection of defects, making possible an increase in sampled population at little increase in cost or obtaining better radiographic resolution while using less experienced personnel. Optical methods have low cost and high speed, but are often inflexible or difficult to implement. Computerized methods can be flexible, use powerful mathematical techniques, but are difficult to implement for very high throughput. Recent developments in microprocessors and in electronic analog image analyzers may resolve the shortcomings of these two classical methods of image analysis. Examples of image processing applications in nondestructive testing include weld inspection, dimensional verification of reactor fuel assemblies, inspection of fuel pellets for laser fusion research, and medical radiography

  5. Soil Degradation Evaluated by a 27 years Landsat image (Vis-Nir-Swir-Tir), climate and digital elevation derivatives

    Science.gov (United States)

    Dematte, J. A., Sr.; Santos, N. V.; de Almeida Malzoni, M. M.; Poppiel, R. R.; Fongaro, C. T.; Rizzo, R.; Safanelli, J. L.; Sayão, V. M.; Mendes, W. S.

    2017-12-01

    According to Food and Agriculture Organization of the United Nations, 30% of the global soils are degraded. Therefore, novel researches on soil degradation process are imperative to prevent damages on social and environmental dynamics. Since we have a wide world dimension, and few manpower, we have to focus on high dimensional evaluation techniques such as remote sensing. The main goal of this work was to develop a method, based on a 27 years time-series of satellite images (Landsat), from which determine the most important factors on soil degradation. The area is located in south Brazil with a 1400 km2 area. The steps of the method are as follows: a) we collected images from the area and based on a novel technique determined the areas with exposed soils; b) we quantified soil properties such as clay and capacity of ionic exchange based on pixel spectra signature; c) the technique also indicated how many times a single pixel was with bare soil during the period; d) we also determined the surface temperature based on band 6; e) using elevation model we created the layers LS factor, drainage density, topographic wetness index, solar radiation; f) we also determined climate information (water balance); g) organic matter (OM) was also estimated. All factors from item a to f were balanced and overlapped (GIS) to generate an index of soil degradation, SD (fig 1a) - values from 1 (low risk) to 5 (high risk). We concluded that 30% of the area is degraded. SD presented coherent values with OM and validate the method. We observed that areas with higher SD (5) contain 43.6% less OM than the ones with low risk (1). In addition, the soil spectral reflectance curve was analyzed concluding that degraded soils shows higher intensity. The current land use (fig 1b) was correlated demonstrating that a higher risk of SD happens mainly in sugar cane (41.6%) in contrast to pasture (16.9%) and forestry (11.7%). Therefore, this approach allows land uses decision-making and public policies.

  6. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of

  7. Evaluation of the Fatigue Performance and Degradability of Resorbable PLDLLA-TMC Osteofixations

    Science.gov (United States)

    Landes, Constantin; Ballon, Alexander; Ghanaati, Shahram; Ebel, Daniel; Ulrich, Dieter; Spohn, Uwe; Heunemann, Ute; Sader, Robert; Jaeger, Raimund

    2013-01-01

    The fatigue performance of explanted in-situ degraded osteofixations/osteosyntheses, fabricated from poly (70L-lactide-co-24DL-lactide-6-trimethylane-carbonate or PLDLLA-TMC) copolymer was compared to that of virgin products. The fatigue test was performed on 21 explants retrieved from 12 women and 6 men; 16-46 years by a custom-designed three-point bend apparatus using a staircase method and a specified failure criterion (an increase of the deflection of the specimen > 1 mm) with run-out designated as “no failure” after 150,000 loading cycles. While all the virgin products showed run-out at 38N, all of the specimens fabricated from explants failed at this load level. For the explant specimens, although there was a trend of decreased failure load with increased in-situ time, this decrease was pronounced after 4 months in-situ, however, not yet statistically significant, while a 6-month in-situ explant had significantly less failure load. Three and four month in-situ explants had highly significant differences in failure load between measurements close and distant to the osteotomy line: p=0.0017 (the region of maximum load in-situ). In the virgin products, there were only traces of melt joining and cooling, left from a stage in the manufacturing process. For the implants retrieved after 4.5 months in-situ, the fracture surfaces showed signs of degradation of the implants, possibly caused by hydrolysis, and for those retrieved after 9 months in-situ, there were cracks and pores. Thus, the morphological results are consistent with those obtained in the fatigue test. The present results suggest that resorbable osteofixations fabricated from PLDLLA-TMC are stable enough to allow loading of the healing bone and degrade reliably PMID:24363786

  8. Evaluating the Potential Importance of Monoterpene Degradation for Global Acetone Production

    Science.gov (United States)

    Kelp, M. M.; Brewer, J.; Keller, C. A.; Fischer, E. V.

    2015-12-01

    Acetone is one of the most abundant volatile organic compounds (VOCs) in the atmosphere, but estimates of the global source of acetone vary widely. A better understanding of acetone sources is essential because acetone serves as a source of HOx in the upper troposphere and as a precursor to the NOx reservoir species peroxyacetyl nitrate (PAN). Although there are primary anthropogenic and pyrogenic sources of acetone, the dominant acetone sources are thought to be from direct biogenic emissions and photochemical production, particularly from the oxidation of iso-alkanes. Recent work suggests that the photochemical degradation of monoterpenes may also represent a significant contribution to global acetone production. We investigate that hypothesis using the GEOS-Chem chemical transport model. In this work, we calculate the emissions of eight terpene species (α-pinene, β-pinene, limonene, Δ3-carene, myrcene, sabinene, trans-β-ocimene, and an 'other monoterpenes' category which contains 34 other trace species) and couple these with upper and lower bound literature yields from species-specific chamber studies. We compare the simulated acetone distributions against in situ acetone measurements from a global suite of NASA aircraft campaigns. When simulating an upper bound on yields, the model-to-measurement comparison improves for North America at both the surface and in the upper troposphere. The inclusion of acetone production from monoterpene degradation also improves the ability of the model to reproduce observations of acetone in East Asian outflow. However, in general the addition of monoterpenes degrades the model comparison for the Southern Hemisphere.

  9. Evaluation of Phytate-Degrading Lactobacillus Culture Administration to Broiler Chickens

    Science.gov (United States)

    Askelson, Tyler E.; Campasino, Ashley; Lee, Jason T.

    2014-01-01

    Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics. PMID:24271165

  10. Isolation and identification of endosulfan-degrading bacteria and evaluation of their bioremediation in kor river, iran.

    Science.gov (United States)

    Kafilzadeh, Farshid; Ebrahimnezhad, Moslem; Tahery, Yaghoob

    2015-02-01

    Endosulfan is a lipophilic insecticide, which causes severe health issues due to its environmental stability, toxicity, and biological reservation in organisms. It is found in the atmosphere, soil, sediments, surface waters, rain, and food in almost equal proportions. The aim of this study was to isolate and identify endosulfan-degrading bacteria from the Kor River and evaluate the possibility of applying bioremediation in reducing environmental pollution in the desired region. Samples of surface sediments and water were collected from three different stations in two seasons (summer and autumn), as these are areas with high agricultural activity. Isolated bacteria were identified by various biochemical tests and morphological characteristics. The amounts of degradation of endosulfan isomers and metabolites produced as a result of biodegradation were then analyzed using gas chromatography/mass spectrometry. In this study, the following five bacterial genera were able to degrade endosulfan: Klebsiella, Acinetobacter, Alcaligenes, Flavobacterium, and Bacillus. During biodegradation, metabolites of endosulfan diol, endosulfan lactone, and endosulfan ether were also produced, but these had lesser toxicity compared with the original compound (i.e., endosulfan). The five genera isolated can be used as a biocatalyst for bioremediation of endosulfan.

  11. Short-Term Degradation of Bi-Component Electrospun Fibers: Qualitative and Quantitative Evaluations via AFM Analysis

    Directory of Open Access Journals (Sweden)

    Marica Marrese

    2018-03-01

    Full Text Available Electrospun polymeric fibers are currently used as 3D models for in vitro applications in biomedical areas, i.e., tissue engineering, cell and drug delivery. The high customization of the electrospinning process offers numerous opportunities to manipulate and control surface area, fiber diameter, and fiber density to evaluate the response of cells under different morphological and/or biochemical stimuli. The aim of this study was to investigate—via atomic force microscopy (AFM—the chemical and morphological changes in bi-component electrospun fibers (BEFs during the in vitro degradation process using a biological medium. BEFs were fabricated by electrospinning a mixture of synthetic-polycaprolactone (PCL-and natural polymers (gelatin into a binary solution. During the hydrolytic degradation of protein, no significant remarkable effects were recognized in terms of fiber integrity. However, increases in surface roughness as well as a decrease in fiber diameter as a function of the degradation conditions were detected. We suggest that morphological and chemical changes due to the local release of gelatin positively influence cell behavior in culture, in terms of cell adhesion and spreading, thus working to mimic the native microenvironment of natural tissues.

  12. Forced degradation studies of lansoprazole using LC-ESI HRMS and 1 H-NMR experiments: in vitro toxicity evaluation of major degradation products.

    Science.gov (United States)

    Shankar, G; Borkar, R M; Suresh, U; Guntuku, L; Naidu, V G M; Nagesh, N; Srinivas, R

    2017-07-01

    Regulatory agencies from all over the world have set up stringent guidelines with regard to drug degradation products due to their toxic effects or carcinogenicity. Lansoprazole, a proton-pump inhibitor, was subjected to forced degradation studies as per ICH guidelines Q1A (R2). The drug was found to degrade under acidic, basic, neutral hydrolysis and oxidative stress conditions, whereas it was found to be stable under thermal and photolytic conditions. The chromatographic separation of the drug and its degradation products were achieved on a Hiber Purospher, C18 (250 × 4.6 mm, 5 μ) column using 10 mM ammonium acetate and acetonitrile as a mobile phase in a gradient elution mode at a flow rate of 1.0 ml/min. The eight degradation products (DP1-8) were identified and characterized by UPLC/ESI/HRMS with in-source CID experiments combined with accurate mass measurements. DP-1, DP-2 and DP-3 were formed in acidic, DP-4 in basic, DP-5 in neutral and DP-1, DP-6, DP-7 and DP-8 were in oxidation stress condition Among eight degradation products, five were hitherto unknown degradation products. In addition, one of the major degradation products, DP-2, was isolated by using semi preparative HPLC and other two, DP-6 and DP-7 were synthesized. The cytotoxic effect of these degradation products (DP-2, DP-6 and DP-7) were tested on normal human cells such as HEK 293 (embryonic kidney cells) and RWPE-1(normal prostate epithelial cells) by MTT assay. From the results of cytotoxicity, it was found that lansoprazole as well as its degradation products (DP-2, DP-6 and DP-7) were nontoxic up to 50-μM concentrations, and the latter showed slightly higher cytotoxicity when compared with that of lansoprazole. DNA binding studies using spectroscopic techniques indicate that DP-2, DP-6 and DP-7 molecules interact with ctDNA and may bind to its surface. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Evaluation of the performance degradation at PAFC effect of electrolyte fill-level on electrode performance

    Energy Technology Data Exchange (ETDEWEB)

    Kitai, Takashi; Uchida, Hiroyuki; Watanabe, Masahiro [Yamanashi Univ., Kofu (Japan)] [and others

    1996-12-31

    As a complimentary research project to the demonstration project of 5MW and 1MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY, with the objective of establishing an estimation method for the service life-time of the cell stacks. This work has been performed in the Basic Research Project, as part of that project on PAFC`s, selecting four subjects (Electrocatalysts degradation, Electrolyte fill-level, Cell material corrosion, Electrolyte loss) as the essential factors relating to the life-time. In this report, we will exhibit the effect of the electrolyte fill-level on the electrode performances.

  14. Evaluating robustness of a diesel-degrading bacterial consortium isolated from contaminated soil

    DEFF Research Database (Denmark)

    Sydow, Mateusz; Owsianiak, Mikolaj; Szczepaniak, Zuzanna

    2016-01-01

    kinetics on individual hydrocarbons. However, despite this low resistance, structural and functional resilience were high, as verified by re-exposing the hydrocarbon-perturbed consortium to diesel fuel. The high resilience is either due to the short exposure time, insufficient for permanent changes...... in consortium structure and function, or the ability of some consortium members to be maintained during exposure on degradation intermediates produced by other members. Thus, the consortium is expected to cope with short-term exposures to narrow carbon feeds, while maintaining its structural and functional...... integrity, which remains an advantage over biodegradation approaches using single species cultures....

  15. Magnetic nondestructive technology for detection of tempered martensite embrittlement

    Science.gov (United States)

    Kashefi, Mehrdad; Rafsanjani, Ali; Kahrobaee, Saeed; Alaee, Moeen

    2012-11-01

    A nondestructive eddy current technique is used to evaluate tempered martensite embrittlement in 4340 AISI steels after quench and tempering in the range 240-550 °C. A relation between the responses of the magnetic induction (normalized impedance of the coil) and destructive Charpy impact test results has been established. The study shows that the eddy current method could be used to separate brittle parts due to the microstructure changes.

  16. Investigation of sensitivity of Preisach analysis for nondestructive testing

    Czech Academy of Sciences Publication Activity Database

    Melikhov, Yevgeniy; Tomáš, Ivan; Perevertov, Oleksiy; Kadlecová, Jana; Jiles, D. C.; Lo, Ch. C. H.

    2001-01-01

    Roč. 37, č. 6 (2001), s. 3907-3912 ISSN 0018-9464 R&D Project s: GA ČR GA101/99/1662; GA MŠk ME 140 Grant - others:XX(XC) Joint project KONTAKT; -(XX) CMS-9532056; -(XX) INT-9732135 Institutional research plan: CEZ:AV0Z1010914 Keywords : Jiles-Altherton model * nondestructive evaluation * Preisach model Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.891, year: 2001

  17. NON-DESTRUCTIVE TECHNIQUES IN THE CONSERVATION FIELD IN THE USA

    OpenAIRE

    de Miguel, Berta; Pardo Redondo, Gabriel

    2015-01-01

    [EN] Nondestructive evaluation techniques are extensively used in the field of architectural heritage conservation in the United States. This paper outlines the most used techniques, classifying them in visual assessment techniques, and techniques based on wave propagation. Depending on the type of wave, the latter group is subdivided in electromagnetic and acoustic techniques. The final section includes a two nondestructive techniques facilitators: unmanned aerial vehicles and Tablet PC Anno...

  18. ECOSYSTEM APPROACH FOR EVALUATING DEGRADATION PROCESSES AND NATURE PROTECTION IN INNER ASIA

    Directory of Open Access Journals (Sweden)

    Chultem Dugarjav

    2010-01-01

    Full Text Available he paper presents results of eco-biological assessment of Inner Asian ecosystems using the example of Mongolia as a case study. The comprehensive environmental analysis of changes in Mongolia’s environment included approaches based on three principles: (1 formal, (2 administrative division, and (3 landscape-ecological. We analyzed ecosystems that have undergone at last three levels of alterations (moderate, heavy, and very heavy due to anthropogenic factors. Based on our analysis of degradation processes that result in heavy and very heavy anthropogenic alteration of the natural environment, we isolated 5 groups of hazardous degradation processes: (1 rangeland overgrowth with shrubs, (2 deforestation of forest-steppe ecosystems, (3 desertification of ecosystems on light soils, (4 depletion of ecosystems of hydromorphic landscapes, and (5 narcotization of agrocenoses in modified ecosystems. The comprehensive assessment of adverse changes of natural habitats has enabled a revision of the state policy for the organization of the optimum network of wildlife reserves for conservation of floristic and faunistic diversity.

  19. Thermoelectric generator testing and RTG degradation mechanisms evaluation. Progress report No. 37

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, A.; Shields, V.

    1980-09-01

    The n-type selenide legs after 16,500 hours continue to show reasonable agreement with the 3M Co. published thermal conductivity data. In the ingradient testing after 17,000 hours the 3 surviving n-legs (out of 5) show serious degradation in power to load. Small scale ratcheting has been observed on the four p-legs but no large scale effects. Weight loss for both coated and uncoated material produced by G.E. are reported. No significant discrepancies with the results previously obtained on R.C.A. material from the MHW program have been found. Thermal conductivity measurements are also in agreement. The remaining MHW generator on test, Q1-A, has accumulated 25,600 hours and performance remains stable. The 18 couple modules S/N-1 and -3 previously tested at RCA show no significant change in operation during the current JPL testing. No changes in the trends of degradation of LES 8 and 9 and the Voyager RTGs have been observed.

  20. Thermoelectric generator testing and RTG degradation mechanisms evaluation. Progress report No. 36

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, A.; Shields, V.

    1980-07-01

    The n-type selenide legs after 15,000 hours continue to show reasonable agreement with the 3M Co. published thermal conductivity data. In the ingradient testing after 16,500 hours the 3 surviving n-legs (out of 5) show serious degradation in power to load. Weight loss and thermoelectricity property measurements on the first samples of material produced by G.E. continue to correspond to the results previously obtained on R.C.A. material from the MHW program. The remaining MHW generator on test, Q1-A, has accumulated 23,679 hours and performance remains stable. The 18 couple modules S/N-1 and -3 previously tested at RCA show no significant change in operation during the current JPL testing. A comparison of LES 8/9 RTG's with an improved version of DEGRA is shown. No changes in the trends of degradation of LES 8 and 9 and the Voyager RTGs have been observed.

  1. Evaluation of the degradation of the service water system in nuclear plants

    International Nuclear Information System (INIS)

    Salaices A, E.

    2003-01-01

    The service water system, the circulation water system, the cooling water system and the protection against fires system so much in nuclear plants as in fossils plants they are being degraded by a wide variety of mechanisms. These mechanisms include microbiologically influenced corrosion, cavitation, erosion-corrosion, erosion by solid particles, corrosion in cracks, stings, general corrosion, galvanic corrosion, sedimentation and obstructions and incrustations in the heat exchangers. In the last years were developed predictive models for the more common degradation forms and were installed in a new application of the CHECWORKS TM code called Cooling Water Application (CWA). This application of the code provides a new technology that so much nuclear facilities as fossil ones can use to modelling specific systems and to carry out corrosion predictions in each one of its components. Presently work the results of the employment of the CHECWORKS CWA code are described to carry out predictions of 12 different corrosion mechanisms that affect to the service water system of a nuclear plant, as well as the recommendations and options that the plant can to consider to reduce indexes of damages. This work can be used for to optimize inspections to the service water system and it gives the bases for similar changes in other nuclear plants. (Author)

  2. In vitro evaluation of force degradation of elastomeric chains used in Orthodontics

    Directory of Open Access Journals (Sweden)

    André Weissheimer

    2013-02-01

    Full Text Available OBJECTIVE: To analyze the in vitro force degradation of four different brands of elastomeric chains: American Orthodontics, Morelli, Ormco and TP Orthodontics. METHODS: The sample consisted of 80 gray elastomeric chains that were divided into four groups according to their respective manufacturers. Chain stretching was standardized at 21 mm with initial force release ranging from 300 g to 370 g. The samples were kept in artificial saliva at a constant temperature of 37°C and the degradation force was recorded at the following time intervals: initial, 1, 3, 5, 7 and 9 hours, and 1, 7, 14, 21, 28, and 35 days. RESULTS: There was a statistically significant difference between the groups regarding the force degradation, mainly within the first day, as a force loss of 50-55% was observed during that time in relation to the initial force. The force delivered at 35 days ranged from 122 g to 148 g. CONCLUSION: All groups showed force degradation over time, regardless of their trademarks, a force loss of 59-69% was observed in the first hour compared to baseline. However, because the variation in force degradation depends on the trademark, studies such as the present one are important for guiding the clinical use of these materials.OBJETIVO: analisar, in vitro, a degradação de força, ao longo do tempo, de elastômeros das marcas comerciais American Orthodontics, Morelli, Ormco e TP Orthodontics. MÉTODOS: a amostra constituiu-se de 80 segmentos de elastômeros em cadeia fechada na cor cinza, divididos em quatro grupos, conforme o fabricante. A distensão foi padronizada em 21mm, com liberação de força inicial variando de 300 a 370g de força. As amostras foram mantidas em saliva artificial em temperatura constante de 37ºC, e a força avaliada nos seguintes intervalos: inicial, 1h, 3h, 5h, 7h, 9h, 1 dia, 7 dias, 14 dias, 21 dias, 28 dias e 35 dias. RESULTADOS: houve diferença estatisticamente significativa na degradação de força entre os

  3. Nondestructive characterization of fatigue damage with thermography

    Science.gov (United States)

    Roesner, Henrik; Sathish, Shamachary; Meyendorf, Norbert

    2001-08-01

    A thermal imaging NDE method has been developed for nondestructive characterization of early stages of fatigue damage. The method is based on evaluation of the thermal effects induced in a material by a short-term mechanical loading. The mechanical loading causes in addition to thermoelastic temperature change, an increase due to heat dissipation that depends upon the microstructure of the material in a characteristic manner. The origin of this heat dissipation is the mechanical damping process. Utilizing the initial temperature rise due to a short-term mechanical loading, the dissipated energy per cycle was evaluated as a thermal parameter. This new thermal NDE parameter allows a quantitative characterization of the mechanical hysteresis, without the need for calibration to eliminate influences of thermal boundary conditions. The measurement of the thermal NDE parameters has been performed on Ti-6Al-4V dog-bone specimens, fatigued in low cycle fatigue (LCF) as well as in high cycle fatigue (HCF) experiments. Characteristic dependence of the NDE parameters on the already accumulated fatigue damage has been observed. The advantage of the thermal method is the applicability to components under service conditions because of simplicity, rapid measurements (a few seconds) and the ability of locally resolved evaluations.

  4. Research on non-destructive evaluation : workshop.

    Science.gov (United States)

    2013-09-01

    The workshop held on March 28 at the MDOT Aeronautics Auditorium in Lansing, : Michigan, was organized with the goal of providing an overview of readily available and : proven NDE technologies and the process of integrating these technologies into th...

  5. Surgical Nondestructive Evaluation (SuNDE)

    Science.gov (United States)

    2011-07-01

    become available that use CMOS digital X- ray detectors controlled by software that runs on a tablet PC. These systems are being used in the dental ...between inspector and inspection area.  No direct line-of-sight to the inspection area.  No direct lighting.  Sealants and aircraft lubricating

  6. Evaluation of Nondestructive Underwater Timber Inspection Techniques

    Science.gov (United States)

    1984-08-01

    possible to codice their presnce. Figure 1. Characteristics of marine borers. 3 Table 1. Accuracy Requirements for Timber Piles [Nomenclature at end of...Athens GA NAVSEASYSCOM Code OOC-D. Washington. DC: Codk PMS 395 A 3. Washington. DC; Code PMS 395 A2. Wasi~ington. DC; Codic PMS 396.3311 (Rekas), Wash

  7. Systematic evaluation of nondestructive testing methods

    International Nuclear Information System (INIS)

    Segal, Y.; Notea, A.; Segal, E.

    1977-01-01

    The main task of an NDT engineer is to select the best method, considering the cost-benefit value of different available systems and taking into account the special existing constraints. The aim of the paper is to suggest a tool that will enable characterization of measuring systems. The derivation of the characterization parameters and functions has to be general, i.e., suitable for all possible measuring methods, independent of their principle of operation. Quite often the properties measured during the NDT procedure are not the wanted ones, but there must be a correlation between the measured property and the performance of the product. One has to bear in mind that the ultimate choice between systems is not, in practice, just based on the mathematical optimization approach that is presented. Factors like cost-benefit, availability of trained manpower, service, real-time information, weight, volume, etc., may be crucial problems, and they may well dictate the final selection

  8. Nondestructive testing: Neutron radiography and neutron activation. (Latest citations from the INSPEC: Information services for the physics and engineering communities database). Published Search

    International Nuclear Information System (INIS)

    1993-08-01

    The bibliography contains citations concerning the technology of neutron radiography and neutron activation for nondestructive testing of materials. The development and evaluation of neutron activation analysis and neutron diffraction examination of liquids and solids are presented. Citations also discuss nondestructive assay, verification, evaluation, and multielement analysis of biomedical, environmental, industrial, and geological materials. Nondestructive identification of chemical agents, explosives, weapons, and drugs in sealed containers are explored. (Contains a minimum of 83 citations and includes a subject term index and title list.)

  9. Evaluation of strength degradation in seismic loading of Holocene bay mud from Marin County, California

    Science.gov (United States)

    Rau, Gretchen Anne

    Cyclic simple shear tests performed on Holocene bay mud at the University of California at Berkeley following the 1989 Loma Prieta earthquake, suggested that the response of silty clay to cyclic loading might be more severe than earlier research had indicated. A program of laboratory testing was therefore carried out to investigate the potential strength degradation of Holocene bay mud subjected to a range of conditions representative of those expected in a major earthquake. The results show that the volumetric cyclic threshold shear strain is between 0.02% and 0.04%. The reduction of shear modulus with increasing strain amplitude is generally consistent with data presented in an earlier study on Holocene bay mud from another location. The damping ratios for the first cycle of loading are consistent with the limits suggested for cohesive soils from earlier studies. The shear stress in the first cycle of loading exhibits approximately a 13--16% increase per order of magnitude increase in strain rate, which is on the higher end of the range of values presented in studies on other cohesive soils. The post-cyclic monotonic strengths are within +/-10% of the monotonic strengths of specimens that had not undergone cyclic loading. There were no clear effects of varying the strain amplitude, frequency of loading, or strain rate, but dissipation of pore pressures between the' end of cyclic loading and the beginning of monotonic shear increases the strength by an average of 8%. One-dimensional site response analysis was performed to estimate the amplitude and number of cycles of shear strain in moderate to large earthquakes, and it showed that up to five cycles or more of shear strain amplitudes exceeding I% could be expected. Therefore, the strength degradation that was observed in the cyclic testing is within the range of interest for geotechnical earthquake engineering. A comparison between the cyclic response of the specimens from Hamilton Air Force Base and specimens

  10. Nondestructive controls and testings: the new developments and their applications; Controles et examens non destructifs: les developpements recents et leurs applications

    Energy Technology Data Exchange (ETDEWEB)

    Recolin, P. [Centre d' Etude des Structures et Materiaux Navals (CESMAN), DCN Propulsion, 44 - La Montagne (France); Bremnes, O.; Chassignole, B.; Schumm, A.; Chassignole, B.; Doudet, L.; Dupond, O.; Fouquet, T.; Richard, B.; Delnondedieu, M. [Electricite de France (EDF/RD), 92 - Clamart (France); Calmon, P.; Mahaut, S.; Sollier, T.; Haiat, G.; Leberre, S.; Benoist, Ph.; Casula, O. [CEA Saclay Dir. de la Recherche Technologique, 91 - Gif sur Yvette (France); Lasserre, F.; Pasquier, T.; Legrandjacques, L. [FRAMATOME ANP/Intercontrole, 94 - Rungis (France); Lutsen, M. [Electricite de France (EDF CEIDRE), 93 - Saint-Denis (France); Levy, R. [AREVA/Intercontrole, 75 - Paris (France); Piriou, M.; Glass, B.; Chanussot, J.M. [FRAMATOME ANP, 92 - Paris-La-Defence (France); Cattiaux, G. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France); Fleury, G. [IMASONIC, 25 - Besancon (France); Thiery, Ch. [CEA Bruyeres-le-Chatel, 91 (France); COFREND, 75 - Paris (France); Breysse, D. [Bordeaux-1 Univ., 33 (France); Abraham, O. [Ecole Nationale des Ponts et Chaussees (ENPC), Laboratoire Central des Ponts et Chaussees (LCPC), 75 - Paris (France)

    2005-07-01

    This document provides the proceedings of the conference on nondestructive controls and testings, held at Paris the 18 November 2004. Ten presentations were discussed on the following topics: the nondestructive testing of shipbuilding, the nondestructive evaluation simulation, the ultrasonic testing of austenitic stainless steels joints, qualification of the PWR vessels control, evaluation of the nuclear power plants materials aging, automation of the PWR primary coolant circuit testing, the photothermal imaging facing the liquid penetrant testing, geometry control with adaptative transducers, industrial tomography developments, nondestructive evaluation of the reinforced concretes structures. (A.L.B.)

  11. Gamma radiation/H{sub 2}O{sub 2} treatment of a nonylphenol ethoxylates: Degradation, cytotoxicity, and mutagenicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Munawar, E-mail: bosalvee@yahoo.com [National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar-25120 (Pakistan); Bhatti, Ijaz Ahmad [Department of Chemistry, University of Agriculture, Faisalabad-38040 (Pakistan)

    2015-12-15

    Highlights: • Nonylphenol ethoxylates undergone gamma ray/H{sub 2}O{sub 2} treatment. • Treatment efficiency was evaluated on the basis of degradation and toxicity reduction. • A significant reductions in COD and TOC were achieved. • Radiolytic by-products were low carbon carboxylic acids. • AOP reduced the cytotoxicity and mutagenicity considerably. - Abstract: Gamma radiation/H{sub 2}O{sub 2} treatment of nonylphenol polyethoxylates (NPEO) was performed and treatment effect was evaluated on the basis of degradation, chemical oxygen demand (COD) and total organic carbon (TOC), and toxicity reduction efficiencies. The radiolytic by-products were determined by Fourier Transform Infrared Spectroscopy (FTIR), High-Performance Liquid Chromatography (HPLC), and Gas Chromatography–Mass Spectrometry (GC–MS) techniques. Low mass carboxylic acids, aldehyde, ketone, and acetic acid were identified as the by-products of the NPEO degradation. NPEO sample irradiated to the absorbed dose of 15 kGy/4.58% H{sub 2}O{sub 2} showed more than 90% degradation. Allium cepa (A. cepa), brine shrimp, heamolytic tests were used for cytotoxicity study, while mutagenicity was evaluated through Ames test (TA98 and TA100 strains) of treated and un-treated NPEO. The reductions in COD and TOC were greater than 70% and 50%, respectively. Gamma radiation/H{sub 2}O{sub 2} treatment revealed a considerable reduction in cytotoxicity and mutagenicity. A. cepa, heamolytic and shrimp assays showed cytotoxicity reduction up to 68.65%, 77%, and 94%, respectively. The mutagenicity reduced up to 62%, 74%, and 79% (TA98) and 68%, 78%, and 82% (TA100), respectively of NPEO-6, NPEO-9, and NPEO-30 irradiated to the absorbed dose of 15 kGy/4.58% H{sub 2}O{sub 2}. NPEO-6 detoxified more efficiently versus NPEO-9 and NPEO-30 and results showed that Gamma radiation/H{sub 2}O{sub 2} treatment has the potential to mineralize and detoxify NPEO.

  12. Program of thermoelectric generator testing and RTG degradation mechanisms evaluation. Progress report No. 38

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, A.; Shields, V.

    1980-11-01

    The n-type gadolinium selenide legs after 17,500 hours continue to show reasonable agreement with the 3M Co. published thermal conductivity data. Weight loss for both coated and uncoated Si-Ge material produced by G.E. are reported. No significant discrepancies with the results previously obtained on R.C.A. material from the MHW program have been found. Thermal conductivity measurements are also in agreement. The remaining MHW generator on test, Q1-A, has accumulated 26,800 hours and performance remains stable. The performance of the 18 couple modules S/N-1, S/N-2, and S/N-3 to date is summarized. Telemetry data indicate no changes in the trends of degradation of LES 8 and 9 and the Voyager RTGs.

  13. Evaluation of the degradation of a zinc coating exposed to a damp industrial environment

    International Nuclear Information System (INIS)

    Naquid G, C.; Ayala R, V.

    2001-01-01

    The purpose of this work is to characterize and identify the degradation mechanism of a galvanized coating exposed to a dry arid industrial environment, but this one with events of high humidity (rains) and contaminated with copper salts. It was demonstrated that the atmospheric corrosion was accelerated by the presence of copper deposits and sulfur over the samples surface. Likewise it was tried to correlate the contact time (staying time) between the coating and the contaminated environment, the p H value (acid media) and the presence of salts (copper sulfates) in solution, with the deterioration grade of the galvanized coating. The analytical techniques applied in the study were: optical microscopy, scanning electron microscopy, X-ray diffraction and chemical analysis by X-ray dispersive energy spectroscopy. (Author)

  14. Nondestructive analysis of sugar content on watermelon using MRI device

    International Nuclear Information System (INIS)

    Miki, Takashi; Saito, Kazuyoshi; Hayashi, Seiji

    1996-01-01

    So far, the use of superconducting magnets has been limited to chemical analysis and medical inspection. To develop a new use, we have tried to apply common MRI devices as nondestructive sugar content detector of watermelon. To estimate the sugar content, a new technique using multiple regression analysis of two NMR relaxation times was developed. It was found that the coefficient of multiple regression at the center of the watermelon exceeded 0.9 and the standard error of prediction was around 0.5, and that the over-ripened part of flesh called 'nieka' in watermelon could be distinguished because its T 2 was much longer than that of the ordinary part. An evaluation rate of sugar content could be below 6s per watermelon. It is concluded that multiple analysis of T 1 and T 2 on intact watermelon can be applied as a noninvasive, nondestructive indicator of sugar content. (author)

  15. New technologies in electromagnetic non-destructive testing

    CERN Document Server

    Huang, Songling

    2016-01-01

    This book introduces novel developments in the field of electromagnetic non-destructive testing and evaluation (NDT/E). The topics include electromagnetic ultrasonic guided wave testing, pulsed eddy current testing, remote field eddy current testing, low frequency eddy current testing, metal magnetic memory testing, and magnetic flux leakage testing. Considering the increasing concern about the safety maintenance of critical structures in various industries and everyday life, these topics presented here will be of particular interest to the readers in the NDT/E field. This book covers both theoretical researches and the engineering applications of the electromagnetic NDT technology. It could serve as a valuable reference for college students and relevant NDT technicians. It is also a useful material for qualification training and higher learning for nondestructive testing professionals.

  16. Evaluation of full and degraded mission reliability and mission dependability for intermittently operated, multi-functional systems

    International Nuclear Information System (INIS)

    Sols, Alberto; Ramirez-Marquez, Jose E.; Verma, Dinesh; Vitoriano, Begona

    2007-01-01

    Availability is one of the metrics often used in the evaluation of system effectiveness. Its use as an effectiveness metric is often dictated by the nature of the system under consideration. While some systems operate continuously, many others operate on an intermittent basis where each operational period may often involve a different set of missions. This is the most likely scenario for complex multi-functional systems, where each specific system mission may require the availability of a different combination of system elements. Similarly, for these systems, not only is it important to know whether a mission can be initiated, it is just as important to know whether the system is capable of completing such a mission. Thus, for these systems, additional measures become relevant to provide a more holistic assessment of system effectiveness. This paper presents techniques for the evaluation of both full and degraded mission reliability and mission dependability for coherent, intermittently operated multi-functional systems. These metrics complement previously developed availability and degraded availability measures of multi-functional systems, in the comprehensive assessment of system effectiveness

  17. Tutoring system for nondestructive testing using computer

    International Nuclear Information System (INIS)

    Kim, Jin Koo; Koh, Sung Nam; Shim, Yun Ju; Kim, Min Koo

    1997-01-01

    This paper is written to introduce a multimedia tutoring system for nondestructive testing using personal computer. Nondestructive testing, one of the chief methods for inspecting welds and many other components, is very difficult for the NDT inspectors to understand its technical basis without a wide experience. And it is necessary for considerable repeated education and training for keeping their knowledge. The tutoring system that can simulate NDT works is suggested to solve the above problem based on reasonable condition. The tutoring system shows basic theories of nondestructive testing in a book-style with video images and hyper-links, and it offers practices, in which users can simulate the testing equipment. The book-style and simulation practices provide effective and individual environments for learning nondestructive testing.

  18. PEM fuel cell degradation

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. While significant progress has been made in understanding degradation mechanisms and improving materials, further improvements in durability are required to meet commercialization targets. Catalyst and electrode durability remains a primary degradation mode, with much work reported on understanding how the catalyst and electrode structure degrades. Accelerated Stress Tests (ASTs) are used to rapidly evaluate component degradation, however the results are sometimes easy, and other times difficult to correlate. Tests that were developed to accelerate degradation of single components are shown to also affect other component's degradation modes. Non-ideal examples of this include ASTs examining catalyst degradation performances losses due to catalyst degradation do not always well correlate with catalyst surface area and also lead to losses in mass transport.

  19. Evaluation of the performance degradation at PAFC effect of operating conditions on acid loss

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Hideaki; Uchida, Hiroyuki; Watanabe, Masahiro [Yamanashi Univ., Kofu (Japan)] [and others

    1996-12-31

    As a complimentary research project to the demonstration project of 5MW and 1 MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY conducted by NEDO, with the objective of establishing an estimation method for the service life-time of the cell stacks. As part of this project, this work has been performed to clarify basic phenomena of the performance degradation at PAFCs jointly by Yamanashi University, PAFC-TRA and PAFC manufacturers. The acid loss into exhaust gases is one of life limiting factors in PAFCs. To design the cells of long-life, it is important to estimate the phosphoric acid loss and to contrive ideas eliminating it. With the objective of obtaining basic data for simulating the acid loss in the large size cells, the effect of the operating conditions on the acid loss into exhaust gases has been studied experimentally by using a single cell with an active electrode area of 100 cm{sup 2}.

  20. Biomimetic synthesis of silver nanoparticles and evaluation of their catalytic activity towards degradation of methyl orange

    Science.gov (United States)

    Manjari Mishra, Pravat; Bihari Pani, Khirod

    2017-11-01

    This paper described the significant effect of process variables like reductant concentrations, substrate concentration, reaction pH and reaction temperature on the size, morphology and yield of the silver nanoparticles (AgNPs) synthesized using aqueous leaf extract of a medicinal plant Momordica charantia (Bitter guard). By means of UV-vis spectroscopy, XRD analysis, TEM analysis and Fluorescence analysis, it is observed that the reaction solution containing 10-3 M of AgNO3 of pH 5.3  +  10 ml of aqueous leaf extract at normal room temperature, was optimum for synthesis of stable, polydisperse, predominantly spherical AgNPs with average size of 12.15 nm. FT-IR and TEM studies confirmed the stability of AgNPs was due to the capping of phytoconstituents present in the leaf extract. The aqueous solution of leaf extract containing AgNPs showed remarkable catalytic activity towards degradation of methyl orange (MO) in aqueous medium.

  1. Synthesis of molecularly imprinted photocatalysts containing low TiO2 loading: Evaluation for the degradation of pharmaceuticals

    International Nuclear Information System (INIS)

    Coelho de Escobar, Cícero; Lansarin, Marla Azário; Zimnoch dos Santos, João Henrique

    2016-01-01

    Highlights: • Molecularly imprinted photocatalyst (MIP) containing low TiO 2 loading were prepared by acid-catalyzed sol–gel process. • Seven pharmaceutical compounds were evaluated as a template. • Comparing to the P25, MIP has shown an increase of adsorption up to 752%. • Comparing to the P25, MIP has shown an increase of degradation up to 427%. • The presence of specific cavities on the silica domain could explain the better results for MIP. - Abstract: A molecularly imprinted (MI) photocatalyst containing a low TiO 2 loading (7.00–16.60 mg L −1 of TiO 2 ) was prepared via an acid-catalyzed sol–gel route using different classes of pharmaceutical compounds (i.e., Atorvastatin, Diclofenac, Ibuprofen, Tioconazole, Valsartan, Ketoconazole and Gentamicine) as the template. Herein, our main goal was to test the hypothesis that photocatalysts based on molecular imprinting may improve the degradation performance of pharmaceutical compounds compared to that of a commercial sample (Degussa P25) due to presence of specific cavities in the silica domain. To elucidate certain trends between the performance of photocatalysts and their structural and textural properties, as well the effect of the structure of the drugs on molecular imprinting, the data were analyzed in terms of pore diameter, pore volume, surface area, zeta potential and six-membered ring percentage of silica. In comparison to the commercial sample (P25), we have shown that adsorption and degradation were enhanced from 48 to 752% and from 5 to 427%, respectively. A comparison with the control system (non-imprinted) indicates that the increased performance of the MI systems was due to the presence of specific cavities on the silica domain, and the textural and structural aspects also support this conclusion. The MI photocatalyst was reusable for seven cycles of reuse in which approximately 60% of its photocatalytic efficiency was preserved for the system containing Diclofenac as the template.

  2. Evaluation of Selective Clearing and Temporary Closures Practices in Degraded Systems of Arid Chaco (Argentina)

    OpenAIRE

    Rubén Coirini; Marcos Karlin; Gabriela Llaya; Sofía Sánchez; Ana Contreras; Ricardo Zapata

    2017-01-01

    Agro-silvopastoral systems have a very important agroecological function in the world, especially in marginal areas. In this paper two silvopastoral treatments were evaluated over four sites from Chancaní and Los Medanitos, Pocho Department, Córdoba (Argentina); they were evaluated by applying manual selective clearance and closures (CD), comparing them with nearby sites without clearance and closure (CSD) and controls (T). Type and amount of forageable biomass, sprouts and trees were evaluat...

  3. Structural characterization and evaluation of antioxidant, anticancer and hypoglycemic activity of radiation degraded oat (Avena sativa) β- glucan

    Science.gov (United States)

    Hussain, Peerzada R.; Rather, Sarver A.; Suradkar, Prashant P.

    2018-03-01

    Oat β-D-glucan after extraction was degraded at doses of 3, 6, 9, 12 and 15 kGy. The average molecular weight decreased to 45 kDa at dose of 15 kGy from an initial value of 200 kDa in native sample. XRD analysis revealed no significant change in diffraction pattern of irradiated samples when compared with control, except a decrease in intensity of x-ray diffraction. The results of the antioxidant activity revealed decrease in EC50 values and corresponding increase in antioxidant activity of radiation degraded oat β-D-glucan. Results of the anticancer studies indicated that cytotoxicity of gamma irradiated oat β-D-glucan in cancer cell lines was highest against colo-205 and MCF7 cancer cells compared to T47D cell and no cytotoxicity was observed in normal cell lines at all concentrations used. Evaluation of hypoglycemic activity showed highest inhibition in α-glucosidase activity compared to α-amylase activity due to gamma irradiation of oat β-D-glucan. Comparison of the EC50 values of known standards and gamma irradiated oat beta-glucan samples indicates that radiation treatment significantly modified the biological activity of the beta-glucan samples. Therefore, it is suggested that gamma irradiation can be used for producing low molecular weight oat β-D-glucan; which can help in modifying the biological activities.

  4. Pesticide Degrading Bacteria in Aquatic Environment: Bioprospecting and Evaluation of Biotechnological Potential

    Directory of Open Access Journals (Sweden)

    Daniel Rodrigues dos Santos

    2016-07-01

    Full Text Available Pesticides play an important role in the increase of productivity in agro-industry and the extensive use of these substances cause environmental, economic and social damage in time. Microbial activity is an essential part in the dynamics and the destination of pesticides in the environment. This research focuses in prospecting and characterizing bacterial strains which are potentially able to degrade/tolerate Atrazine, Chlorpyrifos, Methyl parathion and Picloram. Bacteria were isolated from water samples collected according to the degree of salinity along the Pacoti River's estuary (Ceara, located in the semi-arid region of northeastern Brazil. A total of 49 bacterial strains were isolated, all of which tolerated/ downgraded concentrations up to 200mg/L of picloram, atrazine and methyl parathion. Tested in pesticide mixtures, the percentage and tolerance level showed that 73% grew in concentrations up to 200mg/L, 17,4% tolerated/ downgraded up to 150ml/L and the remainder only grew in concentrations under 100ml/L. The strains which had the best performance against pesticides, by points, were P1 (13Db e 14D; P2 (10E; P3 (2M, 9M, 10M, 12Mb, 14M, 17M 18Mp 19M e 20M. A high percentage of isolates (67% expressed luminescence when exposed to the pesticides atrazine and methyl parathion in concentrations between 150 and 200ml/L. DOI: http://dx.doi.org/10.17807/orbital.v8i4.748

  5. Evaluation of electrochemical oxidation techniques for degradation of dye effluents--a comparative approach.

    Science.gov (United States)

    Raghu, S; Lee, Chang Woo; Chellammal, S; Palanichamy, S; Basha, C Ahmed

    2009-11-15

    The high energy cost of an electrochemical method is the fatal drawback that hinders its large scale application in wastewater treatment. The traditional single-chamber electrochemical method used in the waste water treatment mainly focused on anodic oxidation, but hydrogen produced on the cathode and indirect electrochemical treatment involves application of an electrical current to the wastewater containing chloride to convert into chlorine/hypochlorite. The two-compartment electrolytic cell, separated by an anion exchange membrane, has been developed in this work. In the new reactor, indirect oxidation at anode, indirect oxidation by hydrogen peroxide and ultraviolet/hydrogen peroxide (UV/H(2)O(2)) at cathode can occur simultaneously. The electrochemically produced hydrogen peroxide at the cathode by reduction of oxygen is affected by passing atmospheric air. Therefore "dual electrochemical oxidation" in one electrochemical reactor was achieved successfully. Compared to a traditional one-cell reactor, this reactor reduces the energy cost approximately by 25-40%, and thus the present work becomes significant in wastewater treatment. Experiments were carried out at different current densities using Ti/RuO(2)/IrO(2) as anode and carbon felt gas diffusion electrode used as a cathode fed with oxygen containing gases to produce hydrogen peroxide. During the various stages of electrolysis, the parameters such as, effect of pH, chemical oxygen demand (COD), colour, energy consumption were monitored. UV-vis spectrometry, Fourier transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC) studies were carried out to assess efficiencies of dye degradation.

  6. In Vitro Evaluation the Influence of Glass-Ceramic Degradation Products on Osteoblast Cells.

    Directory of Open Access Journals (Sweden)

    Israa K. Sabree

    2016-03-01

    Full Text Available Regenerative medicine focuses on using biomaterials as three-dimensional (3D porous scaffolds, specifically designed to mimic the nature of host tissue and hence to promote cell growth and tissue regeneration. 3D bioactive glass-ceramic scaffolds are one of the most frequently studied types of scaffolds for bone tissue engineering because of their excellent bioactivity and potential for stimulating osteogenesis and angiogenesis. For such purposes, porous 3D 70%SiO2-30%CaO bioactive glass-ceramic scaffolds with three different pore sizes and identical porosity are used in present study to investigate In vitro, the effect of pore size on the degradation rate of scaffold which is achieved through examining changes in the composition of the immersion solution(SBF, simulated body fluid, and to investigate the action of released ions from the bioactive glass-ceramic scaffold during soaking process on osteoblast cells The results confirmed that all three scaffolds behaved in a similar manner and the ions release from the three scaffolds were of comparable concentration, which may be attributable to the identical porosity for all the scaffolds in addition to the using static immersion which delays ions diffusion. The pH of culture media increased from 7.6 to 8.2 after one day soaking. The optical microscopy images demonstrated that high ion concentration (Si, Ca, P in the culture medium could have a negative effect on the cells and induce cell death, while low concentration of ionic dissolution products induces osteoblast proliferation in dilute culture medium.

  7. Needs for development in nondestructive testing for advanced reactor systems

    International Nuclear Information System (INIS)

    McClung, R.W.

    1978-01-01

    The needs for development of nondestructive testing (NDT) techniques and equipment were surveyed and analyzed relative to problem areas for the Liquid-Metal Fast Breeder Reactor, the Molten-Salt Breeder Reactor, and the Advanced Gas-Cooled Reactor. The paper first discusses the developmental needs that are broad-based requirements in nondestrutive testing, and the respective methods applicable, in general, to all components and reactor systems. Next, the requirements of generic materials and components that are common to all advanced reactor systems are examined. Generally, nondestructive techniques should be improved to provide better reliability and quantitativeness, improved flaw characterization, and more efficient data processing. Specific recommendations relative to such methods as ultrasonics, eddy currents, acoustic emission, radiography, etc., are made. NDT needs common to all reactors include those related to materials properties and degradation, welds, fuels, piping, steam generators, etc. The scope of applicability ranges from initial design and material development stages through process control and manufacturing inspection to in-service examination

  8. Magnetic Nondestructive Testing Techniques of Constructional Steel

    Directory of Open Access Journals (Sweden)

    Xiong Er-gang

    2016-01-01

    Full Text Available Steel is a kind of ferromagnetic material, which is extensively applied in such fields as buildings, bridges, railways, machines and lifeline engineering etc. Those engineering structures built of constructional steel will unavoidably experience some damages during their service lifetime, thus which will influence the distribution regularity of internal forces in structures, result in over-stresses, cause the local failure of structures, and even lead to collapse of the whole structure. Therefore, it is a pressing topic to study how to directly evaluate the real-time stressed states of structural members, damages and steel characteristics in present structural health monitoring and diagnosing fields. And the achievements of this research will be of theoretical significance and of application value of engineering. This paper summarizes varieties of new magnetic nondestructive testing techniques used in constructional steel, respectively investigates the testing principles, characteristics and application for the magnetic Barkhausen noise technique, magnetic acoustic emission technique, magnetic flux leakage technique, magnetic memory technique and magnetic absorption technique, and points out the problems present in the application of these new techniques to actual testing and the further research objective.

  9. Nondestructive electromagnetic characterization of uniaxial materials

    Science.gov (United States)

    Rogers, Neil G.

    In this dissertation, a method for the simultaneous non-destructive extraction of the permittivity and permeability of a dielectric magnetic uniaxial anisotropic media is developed and several key contributions are demonstrated. The method utilizes a single fixture in which the MUT is clamped between two rectangular waveguides with 6" x 6" PEC flanges. The transmission and reflection coefficients are measured, then compared with theoretically calculated coefficients to find a least squares solution to the minimization problem. One of the key contributions of this work is the development of the total parallel plate spectral-domain Green's function by two independent methods. The Green's function is thereby shown to be correct in form and in physical meaning. A second significant contribution of this work to the scientific community is the evaluation of one of the inverse Fourier transform integrals in the complex plane. This significantly enhances the efficiency of the extraction code. A third significant contribution is the measurement of a number of uniaxial anisotropic materials, many of which were envisioned, designed and constructed in-house using 3D printing technology. The results are shown to be good in the transverse dimension, but mildly unstable in the longitudinal dimension. A secondary contribution of this work that warrants mention is the inclusion of a flexible, complete, working code for the extraction process. Although such codes have been written before, they have not been published in the literature for broader use.

  10. Non-destructive measurement of cultural property

    Energy Technology Data Exchange (ETDEWEB)

    Hirao, Yoshimitsu [Tokyo National Research Inst. of Cultural Properties, Tokyo (Japan). Dept. of Conservation Science

    1997-02-01

    Non-destructive analytical method is favored for the measurement of samples from the field of cultural properties. Among many scientific methods, X-ray fluorescence spectrometry and X-ray diffraction method are frequently applied in this field. X-ray fluorescence spectrometer is the main method for the measurement of chemical composition of cultural properties when sample is not taken out. It is the most important concept during the measurement, that samples should be kept in the safety condition without any difficulty or defect. Because a sample from the field of cultural properties could not be cut or could not be laid down in some cases, instruments should be improved to admit these samples and conditions. It is one of the solutions for this point to equip a large sample chamber in the instrument. Several new instruments with large sample chamber which was specially designed for the cultural properties were explained. Applications of these instruments were also explained for the real archaeological and historical samples. Even the measurements is not quantitative and qualitative analysis only, the results is evaluated to be valuable for the understanding of the samples. The micro focus X-ray fluorescence spectrometer was also applied in this field. The method gave not only the ordinary chemical composition but also the structure of the samples by mapping. (author)

  11. Evaluation and Control of Soil Degradation in Russia on the Basis of the Assessment of Soil Ecological Functions

    Science.gov (United States)

    Yakovlev, Aleksandr

    2016-04-01

    Sustainable development of the territory is possible only under certain environmental requirements. These requirements are based on the implementation of the concept, conventionally called "zero land degradation", which cannot be reached in the process of real land use. "Zero degradation" is the establishment of acceptable ecological state of the environment and permissible anthropogenic impact on it, wherein self-healing of nature quality is possible and there is no accumulation of irreversible environmental damage. The values of parameters that characterize the relationship between the ecological state of the environment, in particular, land degradation, and the socio-economic development of the Russian Federation are represented in the materials of recent issues of the Russian State environmental report (2012 - 2014). Environmental problems in Russia are actively discussed in relation to issues of environmental and socio-economic development of the neighboring countries of the Eurasian region. So the Law "On Soil Protection", which was developed and adopted by the Union: Russia, Belarus, Kazakhstan, is dedicated to the protection of soil and soil degradation control. Ecological Doctrine of Russia (2012) and the State Environmental Program (2012-2020) identify the main strategic steps to combat land degradation in our country. In the first place, it has been tasked to identify and eliminate past environmental damage followed by the organization of nature "from scratch", in accordance with environmental regulations. Currently the Ministry of natural resources of Russia started implementation of the Federal program on environmental-economic assessment and the elimination of past environmental damage. The main steps of this program are: the works related to the inventory of degraded and contaminated lands and their subsequent reclamation and return to the appropriate land use system. The territory must comply with officially approved environmental requirements. The

  12. Nondestructive testing of PWR type fuel rods by eddy currents and metrology in the OSIRIS reactor pool

    International Nuclear Information System (INIS)

    Faure, M.; Marchand, L.

    1985-02-01

    The Saclay Reactor Department has developed a nondestructive test bench, now installed above channel 1 of the OSIRIS reactor. As part of investigations into the dynamics of PWR fuel degradation, a number of fuel rods underwent metrological and eddy current inspection, after irradiation [fr

  13. Proceedings for the nondestructive assay and nondestructive examination waste characterization conference. No. 5

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains paper presented at the 5th Nondestructive Assay and nondestructive Examination Waste Characterization conference. Topics included compliance, neutron NDA techniques, gamma NDA techniques, tomographic methods, and NDA modality and information combination techniques. Individual reports have been processed separately for the United States Department of Energy databases

  14. Proceedings for the nondestructive assay and nondestructive examination waste characterization conference. No. 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report contains paper presented at the 5th Nondestructive Assay and nondestructive Examination Waste Characterization conference. Topics included compliance, neutron NDA techniques, gamma NDA techniques, tomographic methods, and NDA modality and information combination techniques. Individual reports have been processed separately for the United States Department of Energy databases.

  15. Technical evaluation report on the proposed design modifications and technical specification changes on grid voltage degradation for the Millstone Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1982-01-01

    This report documents the technical evaluation of the proposed design modifications and Technical Specification change for protection of Class 1E equipment from grid voltage degradation for the Millstone Nuclear Power Station, Unit 1. The review criteria are based on several IEEE standards and the Code of Federal Regulations. The evaluation finds that the licensee has not provided sufficient information on the undervoltage protection system to allow a complete evaluation into the adequacy of protecting the Class 1E equipment from sustained voltage degradation

  16. Evaluating the Use of Monocytes with a Degradable Polyurethane for Vascular Tissue Regeneration

    Science.gov (United States)

    Battiston, Kyle Giovanni

    Monocytes are one of the first cell types present following the implantation of a biomaterial or tissue engineered construct. Depending on the monocyte activation state supported by the biomaterial, monocytes and their derived macrophages (MDMs) can act as positive contributors to tissue regeneration and wound healing, or conversely promote a chronic inflammatory response that leads to fibrous encapsulation and implant rejection. A degradable polar hydrophobic iconic polyurethane (D-PHI) has been shown to reduce pro-inflammatory monocyte/macrophage response compared to tissue culture polystyrene (TCPS), a substrate routinely used for in vitro culture of cells, as well as poly(lactide- co-glycolide) (PLGA), a standard synthetic biodegradable biomaterial in the tissue engineering field. D-PHI has also shown properties suitable for use in a vascular tissue engineering context. In order to understand the mechanism through which D-PHI attenuates pro-inflammatory monocyte response, this thesis investigated the ability of D-PHI to modulate interactions with adsorbed serum proteins and the properties of D-PHI that were important for this activity. D-PHI was shown to regulate protein adsorption in a manner that produced divergent monocyte responses compared to TCPS and PLGA when coated with the serum proteins alpha2-macroglobulin or immunoglobulin G (IgG). In the case of IgG, D-PHI was shown to reduce pro-inflammatory binding site exposure as a function of the material's polar, hydrophobic, and ionic character. Due to the favourable monocyte activation state supported by D-PHI, and the importance of monocytes/macrophages in regulating the response of tissue-specific cell types in vivo, the ability of a D-PHI-stimulated monocyte/macrophage activation state to contribute to modulating the response of vascular smooth muscle cells (VSMCs) in a vascular tissue engineering context was investigated. D-PHI- stimulated monocytes promoted VSMC growth and migration through biomolecule

  17. Evaluating ipe (Tabebuia, Bignoniaceae) logging in Amazonia: sustainable management or catalyst for forest degradation?

    Science.gov (United States)

    Mark Schulze; James Grogan; Chris Uhl; Marco Lentini; Edson. Vidal

    2008-01-01

    Prized for their dense, rot-resistant wood, Tabebuia impetiginosa and T. serratifolia (vernacular name = ipeˆ ) are among the most valuable Amazonian timbers. We analyzed the geographical extent, spread and trajectory of ipeˆ logging in Brazilian Amazonia, and evaluated harvest pressure on this forest resource. We also examine Tabebuia population response to reduced-...

  18. Non-destructive study of iron gall inks in manuscripts

    Science.gov (United States)

    Duh, Jelena; Krstić, Dragica; Desnica, Vladan; Fazinić, Stjepko

    2018-02-01

    The aim of this research is to establish an effective procedure of iron gall ink characterization using complementary non-destructive methods. By this, it is possible to better understand correlation of chemical composition of the inks and the state of preservation of iron gall ink manuscripts, as well as the effects of conservation treatment performed upon them. This study was undertaken on a bound 16th century manuscript comprised of different types of paper and ink from the National and University Library in Zagreb. Analytical methods used included Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF). Paper fibers were identified by optical microscopy and the degradation state, as well as ink differentiation, transit metal migrations and detection of stains, with ultraviolet (UV) and infrared (IR) photography. The techniques applied on original writing materials gave important information about paper and ink composition, its preservation state and efficiency of conservation treatment performed upon them.

  19. Precision Diagnosis, Monitoring and Control of Structural Component Degradation in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Han, J. H.; Choi, M. S.; Lee, D. H.; Hur, D. H.; Na, J. W.; Kim, K. M.; Hong, J. H.; Kim, H. S.

    2007-06-01

    The occurrence of structural material degradations in NPPs and their progress during operation are directly related to the safety and the integrity of NPPs. The various kinds of material degradation are usually examined by methods of material integrity evaluation and non-destructive evaluation(NDE). Material integrity evaluation is well known as classical method to interpret cause and mechanism of degradation and failure, however, this method has a limitation of detection and diagnosis for actual condition of flaws and defects occurring during plant operation, particularly for their formation in the early stage. NDE used widely for detection of defects formed on structural materials provides many information for safety regulation, plant management, repairing, however, this technique has a generic problem in its reliability due to low detectability and ability of signal analysis, etc. The objective of this research project is to develop the advanced technologies ensuring a precision diagnosis on the various kind of defects in structural materials of NPP and a high performance in material degradation evaluation. Many of the advanced technologies were developed in the 1st phase of this project. They contributed to interpret more precisely the root causes of degradation, failure and to establish the proper measures for the safety and integrity of NPPs. The accomplishment of comprehensive technology developed as planned will be practically applied to the nuclear industries and contributed to improve the safety and integrity of NPPs

  20. Evaluating potential chlorinated methanes degradation mechanisms and treatments in interception trenches filled with concrete-based construction wastes

    Science.gov (United States)

    Rodríguez-Fernandez, Diana; Torrentó, Clara; Rosell, Mònica; Audí-Miró, Carme; Soler, Albert

    2014-05-01

    conditions in the trenches with in situ chemical oxidation (ISCO), which would be able to remove the rest of the accompanying pollutants, is proposed and merits evaluation. Preliminary batch experiments were performed to evaluate the feasibility of different chemical oxidation reactions (permanganate, persulphate, hydrogen peroxide and Fenton) on the complex contaminated recharge water which were, in general, more effective for degrading the chlorinated ethenes than for the chlorinated methanes (Torrentó et al. EGU 2012). Therefore, this study seeks to improve the understanding of CF and CT degradation mechanisms/processes that are going on in the interception trenches as well as to select between the two most effective chemical oxidation remediation treatments (persulphate and permanganate) taking into account their efficiency respect the chlorinated methanes removal, the generated acute toxicity and the applicability of the carbon isotopic fractionation as an indicator of the effectiveness of the future in situ remediation. Additionally, ongoing batch experiments are expected to elucidate if CT is undergoing abiotic reductive dechlorination by Fe-bearing minerals such as hydrophobic green rust (Ayala-Luis et al., 2012) which transform CT into non-chlorinated substances such as formic acid and carbon monoxide. This unstable iron compound might be formed in the interception trenches during chloride induced corrosion of iron mineral phases present in the concrete-based construction wastes (Sagoe-Crentsil and Glasser, 1993). The role of other minerals like iron oxy-hydroxides, carbonates or sulphides cannot be discarded at all. The potential of δ13C values to assess the efficiency of this abiotic CT degradation reaction will be also evaluated. References Ayala-Luis, K.; Cooper, N.; Bender C. and Hansen. H. (2012) Efficient dechlorination of carbon tetrachloride by hydrophobic green rust intercaled with dodecanoate anions. Environmental Science & Technology 46, 3390

  1. Evaluation of Selective Clearing and Temporary Closures Practices in Degraded Systems of Arid Chaco (Argentina

    Directory of Open Access Journals (Sweden)

    Rubén Coirini

    2017-06-01

    Full Text Available Agro-silvopastoral systems have a very important agroecological function in the world, especially in marginal areas. In this paper two silvopastoral treatments were evaluated over four sites from Chancaní and Los Medanitos, Pocho Department, Córdoba (Argentina; they were evaluated by applying manual selective clearance and closures (CD, comparing them with nearby sites without clearance and closure (CSD and controls (T. Type and amount of forageable biomass, sprouts and trees were evaluated to define the baseline. Soil (0-15 cm was sampled and the variables organic carbon (Corg, total nitrogen (Nt, C/N relation and nitrogen of nitrates (N-NO3 were determined. A design of divided parcels was applied and, with the obtained data, a variance analysis was made, comparing between treatments. The results (three years of evaluation showed higher forage productivity values in CD compared to CSD and T. The closure effect was evidenced also in the indicator species ratio and in the sprouting increment. In CD and CSD changes were evidenced in the pasture quality, rising the proportion of desirable species compared to Intermediate and undesirable species. Besides, the percentage of bare soil was reduced compared to T. Forestry regeneration increased in the deforested sites (CD, compared to CSD+T. The Corg, Nt y C/N analyzed variables did not show important variations depending on treatments and years. It is shown that in CD sites there is a rise (although not significant in soil N-NO3 values by the second year after the clearance was applied.

  2. Rapid Evaluation of Power Degradation in Series Connection of Single Feeding Microsized Microbial Fuel Cells

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-07-08

    We have developed a sustainable, single feeding, microsized, air-cathode and membrane-free microbial fuel cells with a volume of 40 mu L each, which we have used for rapid evaluation of power generation and viability of a series array of three cells seeking higher voltage levels. Contrary to expectations, the achieved power density was modest (45 mWm(-3)), limited due to non-uniformities in assembly and the single-channel feeding system.

  3. Radiation resistance of polymer materials. Degradation evaluation by accelerated testing for application condition

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Sorimachi, Masami

    2010-02-01

    This paper presents re-evaluated radiation resistance property data of polymer materials, which had been tested in past times in TAKASAKI Quantum Beam Science Directorate, for the future study of ageing evaluation of low voltage electric cable insulation materials used in light-water nuclear reactors. The radiation resistance of 25 types of plastics and rubbers materials applied in practical environments was evaluated by the accelerated testing of gamma-ray irradiation under oxygen pressure, and was compared with the radiation resistance determined from the traditional testing by irradiation with a high dose rate in air. The polymer materials were formulated to be similar or equivalent to practical materials, and the most of formulation (chemical compounds and quantities) were described. For all materials, the tensile properties (elongation at break, ultimate strength, 100% or 200% modulus), electric resistivity, gel-fraction, and density were measured after irradiation in oxidation conditions and irradiation in air with a high dose rate (non-oxidation conditions). The data of relations between each properties and total dose at various conditions were compiled, and the relations among the changes of mechanical properties, electrical properties, and radiation induced chemical reactions were discussed. (author)

  4. A study on the degradation evaluation for Cr-Mo steel in power plants by grain deformation measuring and ultrasonic method

    International Nuclear Information System (INIS)

    Lee, Sang Guk

    2002-01-01

    Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep and thermal fatigue damage due to severe operating conditions such as high temperature and high pressure for an extended period time. Conventional measurement techniques for measuring creep damage have low practicality and applied only to component surfaces with good accessibility. In this paper, the grain deformation and ultrasonic measurement for degraded specimens were carried out for the purpose of a practical evaluation for creep damage. Relationships between the grain deformation and ultrasonic properties for material degradation were established through these two measuring methods. As a result of grain deformation and ultrasonic tests for crept specimens, we conformed that deformation index and sound velocity linearly decreased, and also attenuation coefficient and ultrasonic noise linearly increased in proportion to the increase of creep degradation, respectively.

  5. Evaluation of the the temperature and humidity effect in the Atrazine degradation in the Saldana soil (Tolima) for liquid chromatography of high resolution

    International Nuclear Information System (INIS)

    Acevedo Buitrago Baudilio; Guerrero Jairo A; Lozano Amanda; Fuentes Cilia

    2000-01-01

    In this study was designed an experiment under laboratory conditions with temperature and soil moisture controlled. The effect of these two factors was evaluated in atrazine degradation in silty loam soil, pH 6.23 (1:1 w), and 1.48% organic carbon. The extraction process of AT and deetilatrazine (DEA), and deisopropilatrazine (DIA) metabolites of the soil was carried out with methanol followed by a clean up with dichloromethane-buffer phosphate pH 10,0.01 M. Separation and quantification of the compounds was carried out by high performance liquid chromatography (HPLC). Soil moisture was not a significant factor in atrazine degradation process, while the temperature was the factor that regulates the herbicide degradation. Atrazine degradation at 30oC was faster than at 20o C. DIA and DEA metabolites were not detected in any soil field samples

  6. Nondestructive testing of nuclear reactor components integrity

    International Nuclear Information System (INIS)

    Mala, M.; Miklos, M.

    2011-01-01

    Nuclear energy must respond to current challenges in the energy market. The significant parameters are increase of the nuclear fuel price, closed fuel cycle, reduction and safe and the final disposal of high level radioactive waste. Nowadays, the discussions on suitable energy mix are taking place not only here in Czech Republic, but also in many other European countries. It is necessary to establish an appropriate ratio among the production of electricity from conventional, nuclear and renewable energy sources. Also, it is necessary to find ways how to streamline the economy, central part of the nuclear fuel cycle and thereby to increase the competitiveness of nuclear energy. This streamlining can be carried out by improving utilization of existing nuclear fuel with maintaining a high degree of nuclear facilities safety. Increasing operational reliability and safety together with increasing utilization of nuclear fuel place increasing demands on monitoring of changes during fuel burnup. The potential fuel assembly damages in light water reactors are prevented by the introduction of new procedures and programs of the fuel assembly monitoring. One of them is the Post Irradiation Inspection Program (PIIP) which is a good tool for monitoring of chemical regime impact on the fuel assembly cladding behavior. Main nondestructive techniques that are used at nuclear power plants for the fuel assembly integrity evaluation are ultrasonic measurements, eddy current measurements, radiographic testing, acoustic techniques and others. Ultrasonic system is usual tool for leak fuel rod evaluation and it is also used at Temelin NPP. Since 2009, Temelin NPP has cooperated with Research Center Rez Ltd in frame of PIIP program at both units WWER 1000. This program was established for US VVantage6 fuel assemblies and also it continues for Russian TVSA-T fuel assemblies. (author)

  7. Non-destructive decontamination of building materials

    Science.gov (United States)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  8. Nondestructive Examination Guidance for Dry Storage Casks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suffield, Sarah R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suter, Jonathan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lareau, John P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qiao, Hong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moran, Traci L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-30

    In this report, an assessment of NDE methods is performed for components of NUHOMS 80 and 102 dry storage system components in an effort to assist NRC staff with review of license renewal applications. The report considers concrete components associated with the horizontal storage modules (HSMs) as well as metal components in the HSMs. In addition, the report considers the dry shielded canister (DSC). Scope is limited to NDE methods that are considered most likely to be proposed by licensees. The document, ACI 349.3R, Evaluation of Existing Nuclear Safety-Related Concrete Structures, is used as the basis for the majority of the NDE methods summarized for inspecting HSM concrete components. Two other documents, ACI 228.2R, Nondestructive Test Methods for Evaluation of Concrete in Structures, and ORNL/TM-2007/191, Inspection of Nuclear Power Plant Structure--Overview of Methods and Related Application, supplement the list with additional technologies that are considered applicable. For the canister, the ASME B&PV Code is used as the basis for NDE methods considered, along with currently funded efforts through industry (Electric Power Research Institute [EPRI]) and the U.S. Department of Energy (DOE) to develop inspection technologies for canisters. The report provides a description of HSM and DSC components with a focus on those aspects of design considered relevant to inspection. This is followed by a brief description of other concrete structural components such as bridge decks, dams, and reactor containment structures in an effort to facilitate comparison between these structures and HSM concrete components and infer which NDE methods may work best for certain HSM concrete components based on experience with these other structures. Brief overviews of the NDE methods are provided with a focus on issues and influencing factors that may impact implementation or performance. An analysis is performed to determine which NDE methods are most applicable to specific

  9. Durability and degradation analysis of hydrocarbon ionomer membranes in polymer electrolyte fuel cells accelerated stress evaluation

    Science.gov (United States)

    Shimizu, Ryo; Tsuji, Junichi; Sato, Nobuyuki; Takano, Jun; Itami, Shunsuke; Kusakabe, Masato; Miyatake, Kenji; Iiyama, Akihiro; Uchida, Makoto

    2017-11-01

    The chemical durabilities of two proton-conducting hydrocarbon polymer electrolyte membranes, sulfonated benzophenone poly(arylene ether ketone) (SPK) semiblock copolymer and sulfonated phenylene poly(arylene ether ketone) (SPP) semiblock copolymer are evaluated under accelerated open circuit voltage (OCV) conditions in a polymer electrolyte fuel cell (PEFC). Post-test characterization of the membrane electrodes assemblies (MEAs) is carried out via gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. These results are compared with those of the initial MEAs. The SPP cell shows the highest OCV at 1000 h, and, in the post-test analysis, the SPP membrane retains up to 80% of the original molecular weight, based on the GPC results, and 90% of the hydrophilic structure, based on the NMR results. The hydrophilic structure of the SPP membrane is more stable after the durability evaluation than that of the SPK. From these results, the SPP membrane, with its simple hydrophilic structure, which does not include ketone groups, is seen to be significantly more resistant to radical attack. This structure leads to high chemical durability and thus impedes the chemical decomposition of the membrane.

  10. Evaluation of toughness degradation by small punch (SP) tests for neutron irradiated structural steels

    International Nuclear Information System (INIS)

    Misawa, Toshihei; Hamaguchi, Yoshikazu; Kimura, Akihiko; Eto, Motokuni; Suzuki, Masahide; Nakajima, Nobuya.

    1992-01-01

    The small punch (SP) test as one of the useful small specimen testing technique (SSTT) has been developed to evaluate the fracture toughness, ductile-brittle transition temperature (DBTT) and tensile properties for neutron irradiated structural materials. The SP tests using the miniaturized specimens of φ3 mm TEM disk and 10 mm 2 coupon were performed for six kinds of ferritic steels of F-82, F-82H, HT-9, JFMS, 2.25-1Mo and SQV2A. It was shown that the temperature dependence of SP fracture energies with scatter in miniaturized testing can give reliable information on the DBTT by use of the statistical analysis based on the Weibull distribution. A good correlation between the DBTT of the SP tests and that of the standard CVN test has been obtained for the various nuclear ferritic steels. The SP test was performed for cryogenic austenitic steels as a way of evaluating elastic-plastic fracture toughness, J IC , on the basis of a universal empirical relationship between J IC and SP equivalent fracture strain, ε-bar qf . The SP testing using the neutron irradiated specimens of 2.25Cr-1Mo, F-82, F-82H and HT-9 steels was successfully applied and presented the neutron radiation induced changes on the DBTT, fracture toughness and tensile properties. (author)

  11. Evaluation of effectiveness of bacterial product which can degrade pesticide-dimethoate on the scale of true practice test

    International Nuclear Information System (INIS)

    Pham Thi Le Ha; Tran Thi Thuy; Le Hai; Nguyen Duy Hang; Vo Thi Thu Ha; Nguyen Tuong Ly Lan; Le Tat Mua; Tran Kim Duyen; Mai Hoang Lam

    2004-01-01

    Dimethoate, an organophosphate pesticide has been widely used in Dalat, Lamdong. It is much toxic to birds, human being and other mammals. Its widespread use has caused environmental concern on the basic of frequent detection of dimethoate in soil and water. Microorganisms are key agents in the degradation of waste, oil and a vast array of organic pesticide in terrestrial and aquatic ecosystems. In previous study, bacteria products which can degrade. Dimethoate were produced. The present study was designed to evaluate the effectiveness of bacterial product which can degrade Pesticide-Dimethoate on the scale of true practice test. The results indicated that application bacteria product to soil grown with Cauliflower and Chinese Cabbage sprayed with organic phosphorus pesticides (Dimethoate and Chloropyrifos), the pesticide residues in soil, water and vegetables were as follow: The residues of Dimethoate and Chloropyrifos in soil grown with Cauliflower, Chinese cabbages are different. They concentrated mostly in the surface litter and top soil layers with the depth from 0 to 20 cm. From the depth of 20 cm to 100 cm, the pesticide residues were ignorable. Residue of Chloropyrifos in soil was small as well. Dimethoate residues in soil grown with Cauliflower were higher than that of Chinese cabbages. On the basis of the environmental criteria of Ministry for Science, Technology and Environment (6/95), Dimethoate residues in soil grown with cauliflowers were in excess of the maximum limit. In the case of using bacteria product to soil, pesticide residues in soil were decreased. The results also indicated that Chloropyrifos residues in water (water obtained at the depth of 75 cm and 100 cm by days) were small. Residue of Dimethoate in water small. Residue of Dimethoate in water obtained from the Cauliflower bed were higher than of Chinese cabbages one. Using bacteria product to soil, pesticide residues in water decreased. On the basis of the environmental criteria of

  12. Synthesis of molecularly imprinted photocatalysts containing low TiO{sub 2} loading: Evaluation for the degradation of pharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Coelho de Escobar, Cícero; Lansarin, Marla Azário [Departamento de Engenharia Química—Universidade Federal do Rio Grande do Sul, Rua Eng. Luis Englert s/n, 90040-040 Porto Alegre, RS (Brazil); Zimnoch dos Santos, João Henrique, E-mail: jhzds@iq.ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre CEP 91500-000 (Brazil)

    2016-04-05

    Highlights: • Molecularly imprinted photocatalyst (MIP) containing low TiO{sub 2} loading were prepared by acid-catalyzed sol–gel process. • Seven pharmaceutical compounds were evaluated as a template. • Comparing to the P25, MIP has shown an increase of adsorption up to 752%. • Comparing to the P25, MIP has shown an increase of degradation up to 427%. • The presence of specific cavities on the silica domain could explain the better results for MIP. - Abstract: A molecularly imprinted (MI) photocatalyst containing a low TiO{sub 2} loading (7.00–16.60 mg L{sup −1} of TiO{sub 2}) was prepared via an acid-catalyzed sol–gel route using different classes of pharmaceutical compounds (i.e., Atorvastatin, Diclofenac, Ibuprofen, Tioconazole, Valsartan, Ketoconazole and Gentamicine) as the template. Herein, our main goal was to test the hypothesis that photocatalysts based on molecular imprinting may improve the degradation performance of pharmaceutical compounds compared to that of a commercial sample (Degussa P25) due to presence of specific cavities in the silica domain. To elucidate certain trends between the performance of photocatalysts and their structural and textural properties, as well the effect of the structure of the drugs on molecular imprinting, the data were analyzed in terms of pore diameter, pore volume, surface area, zeta potential and six-membered ring percentage of silica. In comparison to the commercial sample (P25), we have shown that adsorption and degradation were enhanced from 48 to 752% and from 5 to 427%, respectively. A comparison with the control system (non-imprinted) indicates that the increased performance of the MI systems was due to the presence of specific cavities on the silica domain, and the textural and structural aspects also support this conclusion. The MI photocatalyst was reusable for seven cycles of reuse in which approximately 60% of its photocatalytic efficiency was preserved for the system containing

  13. Nondestructive Strength Grading of Structural Timber

    Directory of Open Access Journals (Sweden)

    P. Kuklík

    2000-01-01

    Full Text Available The paper is concerned with the investigation of the use of non-destructive testing methods for the grading of structural timber and for the determination of the performance of structural timber elements. The investigations dealt with the ultrasonic method and the methods of longitudinal and transverse vibrations. The usability of these methods was verified at samples with the structural dimensions. The principle of the work lies in the search for statistic relationships between parameters characterising the timber quality (e.g. bending strength, modulus of elasticity and magnitudes measured by the above mentioned non-destructive testing methods (e.g. natural frequency, dynamic modulus of elasticity.

  14. THz imaging techniques for nondestructive inspections

    Science.gov (United States)

    Kawase, Kodo; Shibuya, Takayuki; Hayashi, Shin'ichiro; Suizu, Koji

    2010-08-01

    We have suggested a wide range of real-life applications using novel terahertz imaging techniques. A high-resolution terahertz tomography has been demonstrated by ultra short terahertz pulses using optical fiber and a nonlinear organic crystal. We also describe a nondestructive inspection system that can monitor the soot distribution in a ceramic filter using millimeter-to-terahertz wave computed tomography. Further, we report on the thickness measurement of very thin films using high-sensitivity metal mesh filter. These techniques are directly applicable to the nondestructive testing in industries.

  15. Non-Destructive Testing for Concrete Structure

    International Nuclear Information System (INIS)

    Tengku Sarah Tengku Amran; Noor Azreen Masenwat; Mohamad Pauzi Ismail

    2015-01-01

    Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. It is essential in the inspection of alteration, repair and new construction in the building industry. There are a number of non-destructive testing techniques that can be applied to determine the integrity of concrete in a completed structure. Each has its own advantages and limitations. For concrete, these problems relate to strength, cracking, dimensions, delamination, and inhomogeneities. NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development. This paper discussed the concrete inspection using combined methods of NDT. (author)

  16. PRELIMINARY EVALUATION OF THE POSSIBLE REUSE OF A FOOD INDUSTRY EFFLUENT DEGRADED VIA PHOTOCHEMISTRY

    Directory of Open Access Journals (Sweden)

    Andréia Eliane Marchini

    2011-11-01

    Full Text Available The effluent reuse in industrial processes is an interesting alternative, especially nowadays, because of the serious environmental problems faced by the population every day. This practice reduces wastewater generation and saves money for the companies. This study aimed to evaluate the possible reuse of a food industry effluent through the use of a photochemical process, with direct UV radiation incidence. The samples of the raw and treated effluent were tested to measure pH, conductivity, total organic carbon (TOC, spectrophotometry, turbidity, total solids, fixed and volatile solids and toxicity. The photochemical treatment caused complete removal of the effluent color, a 92% reduction of the total organic carbon, and a reduction of the levels of acute toxicity, what indicates the efficiency of the photodegradation in removing contaminating agents in industrial effluents. The inorganic carbon value was high, indicating a high concentration of carbonate and bicarbonate dissolved in the effluent. To classify this treated effluent, according to current legislation, it is necessary to monitor other parameters in details. According to the tests performed for this work, it is possible to conclude that a company can make use of an effluent generated on the production line and, in a not very distant future, direct on the production line.

  17. Evaluation of Electrical Tree Degradation in Cross-Linked Polyethylene Cable Using Weibull Process of Propagation Time

    Directory of Open Access Journals (Sweden)

    Donguk Jang

    2017-11-01

    Full Text Available The main purpose of this paper is to evaluate electrical tree degradation for cross-linked polyethylene (XLPE cable insulation for three difference models. In order to show the distribution characteristics using phase resolved partial discharge (PD, we acquire data by using a PD detecting system. These acquired data presented four 2D distributions such as phase angle-average discharge distribution, pulse magnitude-pulse number distribution, phase angle-pulse number distribution, and phase angle-maximum discharge derived from the distribution of PD. From the analysis of these distributions, each of the tree models are proved to hold its unique characteristics and the results were then applied as basic specific qualities. In order to evaluate the progresses of an electrical tree, we proposed methods using parameters by means of Weibull distribution to the time of tree propagation. We measured the time of tree propagation for 16 specimens of each artificial tree models from initiation stage, middle stage, and final stage respectively, using these breakdown data, we estimated the shape parameter, scale parameter, and mean time to failure. It is possible to analyze the difference in lifetime between the initial stage, the middle stage, and the final stage, and could be used to predict the lifetime of an XLPE cable from these results.

  18. Evaluation of Force Degradation Pattern of Elastomeric Ligatures and Elastomeric Separators in Active Tieback State

    Directory of Open Access Journals (Sweden)

    Amir Mohammadi

    2015-12-01

    Full Text Available Background and aims. The purpose of this study was to evaluate initial force and force decay of commercially available elastomeric ligatures and elastomeric separators in active tieback state in a simulated oral environment. Materials and methods. A total of 288 elastomeric ligatures and elastomeric separators from three manufacturers (Dentaurum, RMO, 3M Unitek were stretched to 100% and 150% of their original inner diameter. Force levels were measured initially and at 3-minute, 24-hour, and 1-, 2-, 3- and 4-week intervals. Data were analyzed by univariate analysis of variance and a post hoc Tukey test. Results. The means of initial forces of elastomeric ligatures and separators from three above-mentioned companies, when stretched to 100% of their inner diameters, were 199, 305 and 284 g, and 330, 416, 330 g; when they were stretched to 150% of their inner diameters the values were 286, 422 and 375 g, and 433, 540 and 504 g, respectively. In active tieback state, 11‒18% of the initial force of the specimens was lost within the first 3 minutes and 29‒63% of the force decay occurred in the first 24 hours; then force decay rate decreased. 62‒81% of the initial force was lost in 4 weeks. Although force decay pattern was identical in all the products, the initial force and force decay of Dentaurum elastomeric products were less than the similar products of other companies (P<0.05. Under the same conditions, the force of elastomeric separators was greater than elastomeric ligatures of the same company. Conclusion. Regarding the force pattern of elastomeric ligatures and separators and optimal force for tooth movement, many of these products can be selected for applying orthodontic forces in active tieback state.

  19. EVALUATION OF CONTAMINATION OF Zn-Pb INDUSTRY DEGRADED AREAS USING SPATIAL INFORMATION

    Directory of Open Access Journals (Sweden)

    Rafał Rozpondek

    2017-06-01

    Full Text Available The aim of this study was to evaluate soil contamination by heavy metals of selected area in the vicinity of the Zinc Smelter „Miasteczko Śląskie” (surface area: 147 ha, 1050 x 1400 meters for purpose of future reclamation, remediation and monitoring. The study used GIS. Network of 29 measuring points was planned, with particular emphasis on the area with the least amount of pure vegetation. In March 2016, two samples of soil were taken from the top layer of soil 0 - 20cm. Samples were analyzed in terms of pH, soil organic matter and total heavy metal content (As, Ba, Cd, Cu, Ni, Pb i Zn. Values of pH maintained in range of 3,7 - 7,9, organic matter 0,8 – 47,1% of solid content, As 0 – 32,5mg/kg, Ba 14 – 804mg/kg, Cd 0 – 19mg/kg, Cu 3 – 58mg/kg, Pb 22 – 1893mg/kg, Zn 36 – 1377mg/kg. In collected samples Ni was not detected. Spatial distributions of results were created. A significant data range and spatial differentiation was noted. On the base of the Regulation of the Minister of the Environment from September 1st, 2016 on the method of conducting the assessment of contamination of surface of the earth, areas contaminated with heavy metals were selected. Two different concentration limits were adopted: first in accordance with the actual method of land use (permissible values for group III - woodland and second relating to the possible undertaking of measures targeted at changing the land use (limit values for Group I - residential areas, recreational areas. On the basis of generated models, the area of the surface size that contains values higher than allowed in the quoted regulation were determined and calculated. In case of group III the values were exceeded for: Zn (surface area 0,9ha, Pb (46ha i Cd (27,8ha. For group I: As (0,3ha, Ba (10,2ha, Cd (53,9ha, Pb (120,8ha i Zn (20,2ha. The concentrations of Ni and Cu were lower than the limit value. The paper also determined zones with the highest contents of heavy metals. In

  20. High modulus biodegradable polyurethanes for applications in cardiovascular stents: Evaluation of in-vitro degradation and cell viability

    Directory of Open Access Journals (Sweden)

    Melissa eSagarito

    2015-05-01

    Full Text Available We have recently reported the mechanical properties and hydrolytic degradation behaviour of a series of NovoSorb™ [1] biodegradable polyurethanes (PUs prepared by varying the hard segment (HS weight percentage from 60-100. In this study the in-vitro degradation behaviour of the PUs with and without extracellular matrix (ECM coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C conditions to allow complete degradation. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of Human Umbilical Vein Endothelial Cells (HUVEC were examined.The results showed that for most PUs in the series the degradation medium turned acidic and the extent of this was dependent on the HS percentage. As the HS decreased, a drop in pH was observed, suggesting that the by-products of soft segment (SS degradation causing the solution to be acidic. Most of the samples were completely eroded by 18 weeks, except PU containing more than 70% HS which only showed partial degradation with no significant change in appearance. The cytotoxicity tests on HUVEC cells of the aqueous extracts obtained after 18 weeks incubation showed that toxicity was dependent on 3 factors: dose, percentage of HS and degradation time. HUVEC growth is similar to but not identical to that observed with tissue culture polystyrene (TCPS standard. The results from this in-vitro cytotoxicity study suggest that the mixture of degradation products formed during the accelerated degradation of this PU series are not toxic to cells under the experimental conditions used.