WorldWideScience

Sample records for nondestructive chemical analysis

  1. Hybrid chemical and nondestructive-analysis technique

    International Nuclear Information System (INIS)

    Hsue, S.T.; Marsh, S.F.; Marks, T.

    1982-01-01

    A hybrid chemical/NDA technique has been applied at the Los Alamos National Laboratory to the assay of plutonium in ion-exchange effluents. Typical effluent solutions contain low concentrations of plutonium and high concentrations of americium. A simple trioctylphosphine oxide (TOPO) separation can remove 99.9% of the americium. The organic phase that contains the separated plutonium can be accurately assayed by monitoring the uranium L x-ray intensities

  2. Nondestructive analysis and development

    Science.gov (United States)

    Moslehy, Faissal A.

    1993-01-01

    This final report summarizes the achievements of project #4 of the NASA/UCF Cooperative Agreement from January 1990 to December 1992. The objectives of this project are to review NASA's NDE program at Kennedy Space Center (KSC) and recommend means for enhancing the present testing capabilities through the use of improved or new technologies. During the period of the project, extensive development of a reliable nondestructive, non-contact vibration technique to determine and quantify the bond condition of the thermal protection system (TPS) tiles of the Space Shuttle Orbiter was undertaken. Experimental modal analysis (EMA) is used as a non-destructive technique for the evaluation of Space Shuttle thermal protection system (TPS) tile bond integrity. Finite element (FE) models for tile systems were developed and were used to generate their vibration characteristics (i.e. natural frequencies and mode shapes). Various TPS tile assembly configurations as well as different bond conditions were analyzed. Results of finite element analyses demonstrated a drop in natural frequencies and a change in mode shapes which correlate with both size and location of disbond. Results of experimental testing of tile panels correlated with FE results and demonstrated the feasibility of EMA as a viable technique for tile bond verification. Finally, testing performed on the Space Shuttle Columbia using a laser doppler velocimeter demonstrated the application of EMA, when combined with FE modeling, as a non-contact, non-destructive bond evaluation technique.

  3. An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements

    Science.gov (United States)

    Ross, H. Richard

    1993-01-01

    A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.

  4. Construction and Test of Low Cost X-Ray Tomography Scanner for Physical-Chemical Analysis and Nondestructive Inspections

    International Nuclear Information System (INIS)

    Oliveira, Jose Martins Jr. de; Martins, Antonio Cesar Germano

    2009-01-01

    X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe the development of a low cost micro-CT X-ray scanner that is being developed for nondestructive testing. This tomograph operates using a microfocus X-ray source and contains a silicon photodiode as detectors. The performance of the system, by its spatial resolution, has been estimated through its Modulation Transfer Function-MTF and the obtained value at 10% of MTF is 661 μm. It was built as a general purpose nondestructive testing device.

  5. Nondestructive inspection of chemical warfare based on API-TOF

    International Nuclear Information System (INIS)

    Wang Xinhua; Zheng Pu; He Tie; An Li; Yang Jie; Fan Yu

    2013-01-01

    Background: Real-time, fast, accurate, nondestructive inspection (NDI) and quantitative analysis for chemical warfare are very imperative for chemical defense, anti-terror and nation security. Purpose: Associated Particles Technique (APT)/Neutron Time of Flight (TOF) has been developed for non-invasive inspection of sealed containers with chemical warfare agents. Methods: A prototype equipment for chemical warfare is consisted of an APT neutron generator with a 3×3 matrix of semiconductor detectors of associated alpha-particles, the shielding protection of neutron and gamma-ray, arrayed NaI(Tl)-based detectors of gamma-rays, fully-digital data acquisition electronics, data analysis, decision-making software, support platform and remote control system. Inelastic scattering gamma-ray pulse height spectra of sarin, VX, mustard gas and adamsite induced by 14-MeV neutron are measured. The energies of these gamma rays are used to identify the inelastic scattering elements, and the intensities of the peaks at these energies are used to reveal their concentrations. Results: The characteristic peaks of inelastic scattering gamma-ray pulse height spectra show that the prototype equipment can fast and accurately inspect chemical warfare. Conclusion: The equipment can be used to detect not only chemical warfare agents but also other hazardous materials, such as chemical/toxic/drug materials, if their chemical composition is in any way different from that of the surrounding materials. (authors)

  6. Nondestructive analysis of irradiated fuels

    International Nuclear Information System (INIS)

    Dudey, N.D.; Frick, D.C.

    1977-01-01

    The principal nondestructive examination techniques presently used to assess the physical integrity of reactor fuels and cladding materials include gamma-scanning, profilometry, eddy current, visual inspection, rod-to-rod spacing, and neutron radiography. LWR fuels are generally examined during annual refueling outages, and are conducted underwater in the spent fuel pool. FBR fuels are primarily examined in hot cells after fuel discharge. Although the NDE techniques are identical, LWR fuel examinations emphasize tests to demonstrate adherence to technical specification and reliable fuel performance; whereas, FBR fuel examinations emphasize aspects more related to the relative performance of different types of fuel and cladding materials subjected to variable irradiation conditions

  7. Nondestructive analysis of the gold quarter liras

    International Nuclear Information System (INIS)

    Cakir, C.; Guerol, A.; Demir, L.; Sahin, Y.

    2009-01-01

    In this study, we have prepared seven Au-Cu standards in the concentration range of 18-24 (as carat) for nondestructive control of gold quarter liras. Some calibration curves for quantitative analysis of Au in the gold quarter liras that commercially present in Turkey have been plotted using these standard samples. The characteristic X-rays of Au and Cu emitted from these standard samples and the test sample with known composition are recorded by using a Ge(Li) detector. These calibration curves provide a nondestructive analysis of gold quarter liras with the uncertainties about 1.18%. (author)

  8. Nondestructive assay methodologies in nuclear forensics analysis

    International Nuclear Information System (INIS)

    Tomar, B.S.

    2016-01-01

    In the present chapter, the nondestructive assay (NDA) methodologies used for analysis of nuclear materials as a part of nuclear forensic investigation have been described. These NDA methodologies are based on (i) measurement of passive gamma and neutrons emitted by the radioisotopes present in the nuclear materials, (ii) measurement of gamma rays and neutrons emitted after the active interrogation of the nuclear materials with a source of X-rays, gamma rays or neutrons

  9. Nondestructive analysis of sugar content on watermelon using MRI device

    International Nuclear Information System (INIS)

    Miki, Takashi; Saito, Kazuyoshi; Hayashi, Seiji

    1996-01-01

    So far, the use of superconducting magnets has been limited to chemical analysis and medical inspection. To develop a new use, we have tried to apply common MRI devices as nondestructive sugar content detector of watermelon. To estimate the sugar content, a new technique using multiple regression analysis of two NMR relaxation times was developed. It was found that the coefficient of multiple regression at the center of the watermelon exceeded 0.9 and the standard error of prediction was around 0.5, and that the over-ripened part of flesh called 'nieka' in watermelon could be distinguished because its T 2 was much longer than that of the ordinary part. An evaluation rate of sugar content could be below 6s per watermelon. It is concluded that multiple analysis of T 1 and T 2 on intact watermelon can be applied as a noninvasive, nondestructive indicator of sugar content. (author)

  10. Nondestructive neutron activation analysis of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T. T.; Wikjord, A. G.

    1973-10-15

    Instrumentel neutron activation analysis was used to determine trace constituents in silicon carbide. Four commercial powders of different origin, an NBS reference material, and a single crystal were characterized. A total of 36 activation species were identified nondestructively by high resolution gamma spectrometry; quantitative results are given for 12 of the more predominant elements. The limitations of the method for certain elements are discussed. Consideration is given to the depression of the neutron flux by impurities with large neutron absorption cross sections. Radiation fields from the various specimens were estimated assuming all radionuclides have reached their saturation activities. (auth)

  11. Nondestructive analysis of plutonium contaminated soil

    International Nuclear Information System (INIS)

    Smith, H.E.; Taylor, L.H.

    1977-01-01

    Plutonium contaminated soil is currently being removed from a covered liquid waste disposal trench near the Pu Processing facility on the Hanford Project. This soil with the plutonium is being mined using remote techniques and equipment. The mined soil is being packaged for placement into retrievable storage, pending possible recovery. To meet the requirements of criticality safety and materials accountability, a nondestructive analysis program has been developed to determine the quantity of plutonium in each packing-storage container. This paper describes the total measurement program: equipment systems, calibration techniques, matrix assumption, instrument control program and a review of laboratory operating experience

  12. Collaborative, Nondestructive Analysis of Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Davidson, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eppich, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lindvall, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Parsons-Davis, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramon, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sharp, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Turin, H. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zidi, T. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Belamri, M. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Bounatiro, S. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Benbouzid, S. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Fellouh, A. S. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Idir, T. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Larbah, Y. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Moulay, M. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Noureddine, A. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France); Rahal, B. [Commissariat a l' Energie Atomique (COMENA), Gif-sur-Yvette (France)

    2017-12-14

    This report summarizes a joint nondestructive analysis exercise that LLNL, LANL, and COMENA discussed through a collaborative meeting in July 2017. This work was performed as one part of a collaboration with Algeria under Action Sheet 7: “Technical Cooperation and Assistance in Nuclear Forensics”. The primary intent of this exercise was for US and Algerian participants to jointly share results of nondestructive analyses (NDA) of a contaminated soil sample provided by the Algerians and to discuss key observations and analytical approaches. While the two samples were analyzed blind at LLNL and LANL, the soil samples were revealed after the exercise to have a common origin, and to have originated as an IAEA soil sample (IAEA-326, Bojanowski et al., 2001) provided to COMENA as part of a previous exercise. Comparative analysis revealed common findings between the laboratories, and also emphasized the need for standardized operating procedures to improve inter-comparability and confidence in conclusions. Recommended handling practices in the presence of sample heterogeneities were also discussed. This exercise provided an opportunity to demonstrate nuclear forensics analytical capabilities at COMENA, LANL, and LLNL, and identified areas that could benefit from future technical exchanges. Plans were made for a follow-on joint exercise in 2018, involving destructive analyses of the CUP-2 uranium ore concentrate standard.

  13. Nondestructive neutron activation analysis of volcanic samples: Hawaii

    International Nuclear Information System (INIS)

    Zoller, W.H.; Finnegan, D.L.; Crowe, B.

    1986-01-01

    Samples of volcanic emissions have been collected between and during eruptions of both Kilauea and Mauna Loa volcanoes during the last three years. Airborne particles have been collected on Teflon filters and acidic gases on base-impregnated cellulose filters. Chemically neutral gas-phase species are collected on charcoal-coated cellulose filters. The primary analytical technique used is nondestructive neutron activation analysis, which has been used to determine the quantities of up to 35 elements on the different filters. The use of neutron activation analysis makes it possible to analyze for a wide range of elements in the different matrices used for the collection and to learn about the distribution between particles and gas phases for each of the elements

  14. Analysis of a Single Hot Particle by a Combination of Non-Destructive Analytical Methods

    Energy Technology Data Exchange (ETDEWEB)

    Hrnecek, E.; Aldave de las Heras, L.; Bielewski, M.; Carlos, R. [EC JRC Institute for Transuranium Elements, Karlsruhe (Germany); Betti, M. [IAEA Environment Laboratories (Monaco)

    2013-07-15

    Radioactive substances are often released to the environment in the form of particles. The determination of their chemical composition is a key factor in the overall understanding of their environmental behaviour. The aim of this investigation was to identify the source of one single radioactive particle collected from the Irish Sea and to understand its fate in the environment and in human body fluids. As the particle was supposed to be analysed for its dissolution behaviour in humans after ingestion, it was necessary to gain as much information as possible beforehand on the chemical and isotopic composition by means of non-destructive analysis such as SEM, SIMS, {mu}-XRF and {mu}-XANES. In this paper, an overview of the different non-destructive methods applied for the analysis of this particle and the results obtained is given. Additionally, the dissolution behaviour in human digestive solutions is discussed. (author)

  15. Nondestructive fission gas release measurement and analysis

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Packard, D.R.

    1993-01-01

    Siemens Power Corporation (SPC) has performed reactor poolside gamma scanning measurements of fuel rods for fission gas release (FGR) detection for more than 10 yr. The measurement system has been previously described. Over the years, the data acquisition system, the method of spectrum analysis, and the means of reducing spectrum interference have been significantly improved. A personal computer (PC)-based multichannel analyzer (MCA) package is used to collect, display, and store high-resolution gamma-ray spectra measured in the fuel rod plenum. A PC spread sheet is used to fit the measured spectra and compute sample count rates after Compton background subtraction. A Zircaloy plenum spacer is often used to reduce positron annihilation interference that can arise from the INCONEL reg-sign plenum spring used in SPC-manufactured fuel rods

  16. Kalman filter analysis of delayed neutron nondestructive assay measurements

    International Nuclear Information System (INIS)

    Aumeier, S. E.

    1998-01-01

    The ability to nondestructively determine the presence and quantity of fissile and fertile nuclei in various matrices is important in several nuclear applications including international and domestics safeguards, radioactive waste characterization and nuclear facility operations. Material irradiation followed by delayed neutron counting is a well known and useful nondestructive assay technique used to determine the fissile-effective content of assay samples. Previous studies have demonstrated the feasibility of using Kalman filters to unfold individual isotopic contributions to delayed neutron measurements resulting from the assay of mixes of uranium and plutonium isotopes. However, the studies in question used simulated measurement data and idealized parameters. We present the results of the Kalman filter analysis of several measurements of U/Pu mixes taken using Argonne National Laboratory's delayed neutron nondestructive assay device. The results demonstrate the use of Kalman filters as a signal processing tool to determine the fissile and fertile isotopic content of an assay sample from the aggregate delayed neutron response following neutron irradiation

  17. Non-destructive analysis of spent nuclear fuel

    International Nuclear Information System (INIS)

    Popovic, D.

    1961-12-01

    Nondestructive analysis of fuel elements dealt with determining the isotope contents which provide information about the burnup level, quantities of fission products and neutron-multiplication properties of the irradiated fuel. Methods for determination of the isotope ratio of the spent fuel are both numerical and experimental. This report deals with the experimental method. This means development of the experimental methods for direct measurement of the isotope content. A number of procedures are described: measurements of α, β and γ activities of the isotopes; measurement of secondary effects of nuclear reactions with thermal neutrons and fast neutrons; measurement of cross sections; detection of prompt and delayed neutrons

  18. Analysis of Radiation Accident of Non-destructive Inspection and Rational Preparing Bills

    International Nuclear Information System (INIS)

    Bae, Junwoo; Yoo, Donghan; Kim, Hee Reyoung

    2013-01-01

    After 2006, according to enactment of Non-destructive Inspection Promotion Act, the number of non-destructive inspection companies and corresponding accident is increased sharply. In this research, it includes characteristic analysis of field of the non-destructive inspection. And from the result of analysis, the purpose of this research is discovering reason for 'Why there is higher accident ratio in non-destructive inspection field, relatively' and preparing effective bill for reducing radiation accidents. The number of worker for non-destructive inspect is increased steadily and non-destructive inspect worker take highest dose. Corresponding to these, it must be needed to prepare bills to protect non-destructive inspect workers. By analysis of accident case, there are many case of carelessness that tools are too heavy to carry it everywhere workers go. And there are some cases caused by deficiency of education that less understanding of radiation and poor operation by less understanding of structure of tools. Also, there is no data specialized to non-destructive inspect field. So, it has to take information from statistical data. Because of this, it is hard to analyze nondestructive inspect field accurately. So, it is required to; preparing rational bills to protect non-destructive inspect workers nondestructive inspect instrument lightening and easy manual which can understandable for low education background people accurate survey data from real worker. To accomplish these, we needs to do; analyze and comprehend the present law about non-destructive inspect worker understand non-destructive inspect instruments accurately and conduct research for developing material developing rational survey to measuring real condition for non-destructive inspect workers

  19. FY 1999 project on the development of new industry support type international standards. Standards development of chemical analysis and non-destructive inspection methods for pure titanium metals; 1999 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Junchitan no shiken hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    To propose it to ISOTC79 and ISOTC135, study was conducted for standardization of chemical analysis method and non-destructive inspection method for industrial use pure titanium. As the chemical analysis method, the inductively coupled plasma atomic emission spectrometry which has good detection limit was developed, and at the same time, the standardization of spark and/or glow discharged atomic emission spectrometry was developed. As the non-destructive inspection method, developmental study on the following was carried out: surface defect inspection method of pure titanium metals by laser scanning inspection system or CCD camera; internal defect inspection of pure titanium sheet and coil by plate wave ultrasonic inspection method; internal defect inspection of pure titanium bar by eddy current method; inspection of very small leakage of pressurized fluid through defects in pure titanium pipe and tube by pressure differential testing method. As a result of the study, standards of system performance and tolerance were determined in analysis of Pd, Si, Al, Cu, Mo, Zr, Nb, Ta and Y. Further, analytical conditions and application ranges of the spark discharged atomic emission spectrometry were made definite in terms of 19 elements including Mn, Fe, Ni, Cr, Sn, Pb, Si, Al, V, Cu, Mo, Zr, Nb, Ta, Co, B, Y, C and W. (NEDO)

  20. Uranium and thorium loadings determined by chemical and nondestructive methods in HTGR fuel rods for the Fort St. Vrain Early Validation Irradiation Experiment

    International Nuclear Information System (INIS)

    Angelini, P.; Rushton, J.E.

    1979-01-01

    The Fort St. Vrain Early Validation Irradiation Experiment is an irradiation test of reference and of improved High-Temperature Gas-Cooled Reactor fuels in the Fort St. Vrain Reactor. The irradiation test includes fuel rods fabricated at ORNL on an engineering scale fuel rod molding machine. Fuel rods were nondestructively assayed for 235 U content by a technique based on the detection of prompt-fission neutrons induced by thermal-neutron interrogation and were later chemically assayed by using the modified Davies Gray potentiometric titration method. The chemical analysis of the thorium content was determined by a volumetric titration method. The chemical assay method for uranium was evaluated and the results from the as-molded fuel rods agree with those from: (1) large samples of Triso-coated fissile particles, (2) physical mixtures of the three particle types, and (3) standard solutions to within 0.05%. Standard fuel rods were fabricated in order to evaluate and calibrate the nondestructive assay device. The agreement of the results from calibration methods was within 0.6%. The precision of the nondestructive assay device was established as approximately 0.6% by repeated measurements of standard rods. The precision was comparable to that estimated by Poisson statistics. A relative difference of 0.77 to 1.5% was found between the nondestructive and chemical determinations on the reactor grade fuel rods

  1. Nondestructive chemical imaging of wood at the micro-scale: advanced technology to complement macro-scale evaluations

    Science.gov (United States)

    Barbara L. Illman; Julia Sedlmair; Miriam Unger; Carol Hirschmugl

    2013-01-01

    Chemical images help understanding of wood properties, durability, and cell wall deconstruction for conversion of lignocellulose to biofuels, nanocellulose and other value added chemicals in forest biorefineries. We describe here a new method for nondestructive chemical imaging of wood and wood-based materials at the micro-scale to complement macro-scale methods based...

  2. Nondestructive evaluation using dipole model analysis with a scan type magnetic camera

    Science.gov (United States)

    Lee, Jinyi; Hwang, Jiseong

    2005-12-01

    Large structures such as nuclear power, thermal power, chemical and petroleum refining plants are drawing interest with regard to the economic aspect of extending component life in respect to the poor environment created by high pressure, high temperature, and fatigue, securing safety from corrosion and exceeding their designated life span. Therefore, technology that accurately calculates and predicts degradation and defects of aging materials is extremely important. Among different methods available, nondestructive testing using magnetic methods is effective in predicting and evaluating defects on the surface of or surrounding ferromagnetic structures. It is important to estimate the distribution of magnetic field intensity for applicable magnetic methods relating to industrial nondestructive evaluation. A magnetic camera provides distribution of a quantitative magnetic field with a homogeneous lift-off and spatial resolution. It is possible to interpret the distribution of magnetic field when the dipole model was introduced. This study proposed an algorithm for nondestructive evaluation using dipole model analysis with a scan type magnetic camera. The numerical and experimental considerations of the quantitative evaluation of several sizes and shapes of cracks using magnetic field images of the magnetic camera were examined.

  3. Efficiency evaluation test of waste non-destructive analysis device

    International Nuclear Information System (INIS)

    Maeda, Kouichi; Ogasawara, Kensuke; Nisizawa, Ichio

    2000-03-01

    A device for non-destructive analysis of plutonium in alpha solid waste has been installed in NUCEF; Nuclear Fuel Cycle Safety Engineering Research Facility. The device has been designed to determine the amount of radioisotopes in carton-boxes, 45 l steel cans and 200 l steel cans containing relatively low density waste. Considering the waste density and the heterogeneity of radio-sources, the proper distance between the detector and the waste, and the open degree of the collimator have been settled, because real waste may contain several kinds of material and the heterogeneity of radioactivity. It has been confirmed from the evaluation of the detect limit that plutonium of about 8 MBq can be determined with the accuracy of 10% and the device may be proper for the practical application. (author)

  4. Monte-Carlo Application for Nondestructive Nuclear Waste Analysis

    Science.gov (United States)

    Carasco, C.; Engels, R.; Frank, M.; Furletov, S.; Furletova, J.; Genreith, C.; Havenith, A.; Kemmerling, G.; Kettler, J.; Krings, T.; Ma, J.-L.; Mauerhofer, E.; Neike, D.; Payan, E.; Perot, B.; Rossbach, M.; Schitthelm, O.; Schumann, M.; Vasquez, R.

    2014-06-01

    Radioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radio-toxic and chemo-toxic contents. The Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety of the Forschungszentrum Jülich develops in the framework of cooperation nondestructive analytical techniques for the routine characterization of radioactive waste packages at industrial-scale. During the phase of research and development Monte Carlo techniques are used to simulate the transport of particle, especially photons, electrons and neutrons, through matter and to obtain the response of detection systems. The radiological characterization of low and intermediate level radioactive waste drums is performed by segmented γ-scanning (SGS). To precisely and accurately reconstruct the isotope specific activity content in waste drums by SGS measurement, an innovative method called SGSreco was developed. The Geant4 code was used to simulate the response of the collimated detection system for waste drums with different activity and matrix configurations. These simulations allow a far more detailed optimization, validation and benchmark of SGSreco, since the construction of test drums covering a broad range of activity and matrix properties is time consuming and cost intensive. The MEDINA (Multi Element Detection based on Instrumental Neutron Activation) test facility was developed to identify and quantify non-radioactive elements and substances in radioactive waste drums. MEDINA is based on prompt and delayed gamma neutron activation analysis (P&DGNAA) using a 14 MeV neutron generator. MCNP simulations were carried out to study the response of the MEDINA facility in terms of gamma spectra, time dependence of the neutron energy spectrum

  5. Nondestructive characterization of surface chemical wear films via X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Hershberger, J.; Ajayi, O.O.; Fenske, G.R

    2004-01-15

    This work describes and demonstrates a suite of techniques for the non-destructive examination of surface films formed from oil additives. X-Ray diffraction, reflectivity and fluorescence have been used in grazing-incidence geometry to provide information on the thickness, roughness, density, structure and composition of the layers that compose reaction films. The lubricating oils were not rinsed off the surfaces of the samples before analysis. Films were formed from neat polyalphaolefin (PAO) oil and PAO with chloroform, dimethyl disulfide, or zinc or molybdenum dialkyl dithiophosphate additive. A thick layer of crystalline FeO formed during wear lubricated by neat PAO.

  6. Uncertainty analysis of a nondestructive radioassay system for transuranic waste

    International Nuclear Information System (INIS)

    Harker, Y.D.; Blackwood, L.G.; Meachum, T.R.; Yoon, W.Y.

    1996-01-01

    Radioassay of transuranic waste in 207 liter drums currently stored at the Idaho National Engineering Laboratory is achieved using a Passive Active Neutron (PAN) nondestructive assay system. In order to meet data quality assurance requirements for shipping and eventual permanent storage of these drums at the Waste Isolation Pilot Plant in Carlsbad, New Mexico, the total uncertainty of the PAN system measurements must be assessed. In particular, the uncertainty calculations are required to include the effects of variations in waste matrix parameters and related variables on the final measurement results. Because of the complexities involved in introducing waste matrix parameter effects into the uncertainty calculations, standard methods of analysis (e.g., experimentation followed by propagation of errors) could not be implemented. Instead, a modified statistical sampling and verification approach was developed. In this modified approach the total performance of the PAN system is simulated using computer models of the assay system and the resultant output is compared with the known input to assess the total uncertainty. This paper describes the simulation process and illustrates its application to waste comprised of weapons grade plutonium-contaminated graphite molds

  7. Analysis of corrosion-product transport using nondestructive XRF and MS techniques

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Sawicki, J.A.

    1998-01-01

    This paper describes the application of X-ray fluorescence (XRF) and Moessbauer spectroscopy (MS) techniques to monitor corrosion-product transport (CPT) in water circuits of nuclear reactors. The combination of XRF and MS techniques was applied in studies of CPT crud filters from both primary- and secondary-side water circuits (i.e., radioactive and nonradioactive specimens) of CANDU reactors. The XRF-MS method allows nondestructive analysis of species collected on filters and provides more complete information about corrosion products than commonly used digestive methods of chemical analysis. Recent analyses of CPT specimens from the Darlington Nuclear Generating Station (NGS) primary side and the Bruce B NGS feedwater system are shown as examples. Some characteristics of primary and secondary water circuits are discussed using these new data. (author)

  8. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    International Nuclear Information System (INIS)

    Greenberg, M.; Ebel, D.S.

    2009-01-01

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length of ∼15 (micro)m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 (micro)m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.

  9. Chemical Security Analysis Center

    Data.gov (United States)

    Federal Laboratory Consortium — In 2006, by Presidential Directive, DHS established the Chemical Security Analysis Center (CSAC) to identify and assess chemical threats and vulnerabilities in the...

  10. NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS: PRINCIPLE AND RESULTS

    International Nuclear Information System (INIS)

    WIELOPOLSKI, L.; MITRA, S.; HENDREY, G.; ROGERS, H.; TORBERT, A.; PRIOR, S.

    2003-01-01

    Global warming is promoted by anthropogenic CO 2 emissions into the atmosphere, while at the same time it is partially mitigated by carbon sequestration by terrestrial ecosystems. However, improvement in the understanding and monitoring of below ground carbon processes is essential for evaluating strategies for carbon sequestration including quantification of carbon stores for credits. A system for non-destructive in situ carbon monitoring in soil, based on inelastic neutron scattering (INS), is described. The system can be operated in stationary or scanning mode and measures soil to depth of approximately 30 cm. There is a good agreement between results obtained from INS and standard chemical analysis of soil cores collected from the same study site

  11. Non-destructive microstructural analysis with depth resolution

    Energy Technology Data Exchange (ETDEWEB)

    Zolotoyabko, E. E-mail: zloto@tx.technion.ac.il; Quintana, J.P

    2003-01-01

    A depth-sensitive X-ray diffraction technique has been developed with the aim of studying microstructural modifications in inhomogeneous polycrystalline materials. In that method, diffraction profiles are measured at different X-ray energies varied by small steps. X-rays at higher energies probe deeper layers of material. Depth-resolved structural information is retrieved by comparing energy-dependent diffraction profiles. The method provides non-destructive depth profiling of the preferred orientation, grain size, microstrain fluctuations and residual strains. This technique is applied to the characterization of seashells. Similarly, energy-variable X-ray diffraction can be used for the non-destructive characterization of different laminated structures and composite materials.

  12. Non-destructive analysis of archaeological bronzes by nuclear techniques

    International Nuclear Information System (INIS)

    Respaldiza, M.A.; Gomez-Tubio, B.M.; Sanchez del Junco, A.; Barranco, F.; Saiz-Jimenez, C.

    1994-01-01

    This paper studies a method for overcoming the difficulty of corroded surfaces by means of nondestructive nuclear methods in the determination of the composition of archaeological bronzes. It consists of the combination of PIXE or XRF information with Gamma Ray Transmission (GRT) data. A wide range applicability of this combined method is established by comparison with profiles of concentrations along the bronzes' patina obtained by SEM-EDAX. (orig.)

  13. Nondestructive analysis of urinary calculi using micro computed tomography

    Directory of Open Access Journals (Sweden)

    Lingeman James E

    2004-12-01

    Full Text Available Abstract Background Micro computed tomography (micro CT has been shown to provide exceptionally high quality imaging of the fine structural detail within urinary calculi. We tested the idea that micro CT might also be used to identify the mineral composition of urinary stones non-destructively. Methods Micro CT x-ray attenuation values were measured for mineral that was positively identified by infrared microspectroscopy (FT-IR. To do this, human urinary stones were sectioned with a diamond wire saw. The cut surface was explored by FT-IR and regions of pure mineral were evaluated by micro CT to correlate x-ray attenuation values with mineral content. Additionally, intact stones were imaged with micro CT to visualize internal morphology and map the distribution of specific mineral components in 3-D. Results Micro CT images taken just beneath the cut surface of urinary stones showed excellent resolution of structural detail that could be correlated with structure visible in the optical image mode of FT-IR. Regions of pure mineral were not difficult to find by FT-IR for most stones and such regions could be localized on micro CT images of the cut surface. This was not true, however, for two brushite stones tested; in these, brushite was closely intermixed with calcium oxalate. Micro CT x-ray attenuation values were collected for six minerals that could be found in regions that appeared to be pure, including uric acid (3515 – 4995 micro CT attenuation units, AU, struvite (7242 – 7969 AU, cystine (8619 – 9921 AU, calcium oxalate dihydrate (13815 – 15797 AU, calcium oxalate monohydrate (16297 – 18449 AU, and hydroxyapatite (21144 – 23121 AU. These AU values did not overlap. Analysis of intact stones showed excellent resolution of structural detail and could discriminate multiple mineral types within heterogeneous stones. Conclusions Micro CT gives excellent structural detail of urinary stones, and these results demonstrate the feasibility

  14. Art, historical and cultural heritage objects studied with different non-destructive analysis

    International Nuclear Information System (INIS)

    Rizzutto, Marcia A.; Tabacniks, Manfredo H.; Added, Nemitala; Campos, Pedro H.O.V.; Curado, Jessica F.; Kajiya, Elizabeth A.M.

    2012-01-01

    Full text: Since 2003, the analysis of art, historical and cultural heritage objects has being performed at the Laboratorio de Analise de Materiais of the Instituto de Fisica of the Universidade de Sao Paulo (LAMFI-USP). Initially the studies were restricted to non-destructive methods using ion beams to characterize the chemical elements present in the objects. Recently, new analytical techniques and procedures have been incorporated to the better characterization of the objects and the examinations were expanded to other non-destructive analytical techniques such as portable X-Ray fluorescence (XRF), digitalized radiography, high resolution photography with visible, UV (ultraviolet) light and reflectography in the infrared region. These non-destructive analytical techniques systematically applied to the objects are helping the better understanding of these objects and allow studying them by examining their main components; their conservation status and also the creative process of the artist, particularly in easel paintings allow making new discoveries. The setup of the external beam in the LAMFI laboratory is configured to allow different simultaneous analysis by PIXE / PIGE (Particle Induced X-ray emission / Particle Induced gamma rays emission), RBS (Rutherford Backscattering) and IBL (Ion Beam Luminescence) and to expand the archaeometric results using ion beams. PIXE and XRF analysis are important to characterize the elements presents in the objects, pigments and others materials. The digitized radiography has provided important information about the internal structure of the objects, the manufacturing process, the internal particles existing and in case of easel paintings it can reveal features of the artist's creative process showing hidden images and the first paintings done by the artist in the background. Some Brazilian paintings studied by IR imaging revealed underlying drawings, which allowed us to discover the process of creation and also some

  15. Art, historical and cultural heritage objects studied with different non-destructive analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rizzutto, Marcia A.; Tabacniks, Manfredo H.; Added, Nemitala; Campos, Pedro H.O.V.; Curado, Jessica F.; Kajiya, Elizabeth A.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: Since 2003, the analysis of art, historical and cultural heritage objects has being performed at the Laboratorio de Analise de Materiais of the Instituto de Fisica of the Universidade de Sao Paulo (LAMFI-USP). Initially the studies were restricted to non-destructive methods using ion beams to characterize the chemical elements present in the objects. Recently, new analytical techniques and procedures have been incorporated to the better characterization of the objects and the examinations were expanded to other non-destructive analytical techniques such as portable X-Ray fluorescence (XRF), digitalized radiography, high resolution photography with visible, UV (ultraviolet) light and reflectography in the infrared region. These non-destructive analytical techniques systematically applied to the objects are helping the better understanding of these objects and allow studying them by examining their main components; their conservation status and also the creative process of the artist, particularly in easel paintings allow making new discoveries. The setup of the external beam in the LAMFI laboratory is configured to allow different simultaneous analysis by PIXE / PIGE (Particle Induced X-ray emission / Particle Induced gamma rays emission), RBS (Rutherford Backscattering) and IBL (Ion Beam Luminescence) and to expand the archaeometric results using ion beams. PIXE and XRF analysis are important to characterize the elements presents in the objects, pigments and others materials. The digitized radiography has provided important information about the internal structure of the objects, the manufacturing process, the internal particles existing and in case of easel paintings it can reveal features of the artist's creative process showing hidden images and the first paintings done by the artist in the background. Some Brazilian paintings studied by IR imaging revealed underlying drawings, which allowed us to discover the process of creation and also some

  16. A spent fuel assemblies monitoring device by nondestructive analysis 'PYTHON'

    International Nuclear Information System (INIS)

    Saad, M.; Broeskamp, M.; Hahn, H.; Bignan, G.; Boisset, M.; Silie, P.

    1995-01-01

    The monitoring of spent fuel assemblies (16 x 16 UOX) in KWG-reactor pool with the use of non-destructive methods (total Gamma and neutron counting) allow the control of average burn-up and the extremity burn-up. The measurements allow a safety-criticality control before loading the fuel assemblies into the transport casks. A device called PYTHON has been tested and qualified in France. This paper presents a description of the industrial PYTHON device and the results of the measurements. (orig.)

  17. Non-destructive Engineering

    International Nuclear Information System (INIS)

    Ko, Jin Hyeon; Ryu, Taek In; Ko, Jun Bin; Hwang, Yong Hwa

    2006-08-01

    This book gives descriptions of non-destructive engineering on outline of non-destructive test, weld defects, radiographic inspection radiography, ultrasonic inspection, magnetic particle testing, liquid penetrant testing, eddy current inspection method, strain measurement, acoustic emission inspection method, other non-destructive testing like leakage inspection method, and non-destructive mechanics for fault analysis such as Griffiths creaking theory, and stress analysis of creaking.

  18. Techniques involving extreme environment, nondestructive techniques, computer methods in metals research, and data analysis

    International Nuclear Information System (INIS)

    Bunshah, R.F.

    1976-01-01

    A number of different techniques which range over several different aspects of materials research are covered in this volume. They are concerned with property evaluation of 4 0 K and below, surface characterization, coating techniques, techniques for the fabrication of composite materials, computer methods, data evaluation and analysis, statistical design of experiments and non-destructive test techniques. Topics covered in this part include internal friction measurements; nondestructive testing techniques; statistical design of experiments and regression analysis in metallurgical research; and measurement of surfaces of engineering materials

  19. HPAT: A nondestructive analysis technique for plutonium and uranium solutions

    International Nuclear Information System (INIS)

    Aparo, M.; Mattia, B.; Zeppa, P.; Pagliai, V.; Frazzoli, F.V.

    1989-03-01

    Two experimental approaches for the nondestructive characterization of mixed solutions of plutonium and uranium, developed at BNEA - C.R.E. Casaccia, with the goal of measuring low plutonium concentration (<50 g/l) even in presence of high uranium content, are described in the following. Both methods are referred to as HPAT (Hybrid Passive-Active Technique) since they rely on the measurement of plutonium spontaneous emission in the LX-rays energy region as well as the transmission of KX photons from the fluorescence induced by a radioisotopic source on a suitable target. Experimental campaigns for the characterization of both techniques have been carried out at EUREX Plant Laboratories (C.R.E. Saluggia) and at Plutonium Plant Laboratories (C.R.E. Casaccia). Experimental results and theoretical value of the errors are reported. (author)

  20. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    Directory of Open Access Journals (Sweden)

    Batyaev V.F.

    2017-01-01

    Full Text Available The analysis of various non-destructive methods to control fissile materials (FM in large-size containers filled with radioactive waste (RAW has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one.

  1. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    Science.gov (United States)

    Batyaev, V. F.; Sklyarov, S. V.

    2017-09-01

    The analysis of various non-destructive methods to control fissile materials (FM) in large-size containers filled with radioactive waste (RAW) has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one. Note to the reader: the pdf file has been changed on September 22, 2017.

  2. Non-destructive digital imaging in poplar allows detailed analysis of adventitious rooting dynamics

    Science.gov (United States)

    R.J. Kodrzycki; R.B. Michaels; A.L. Friend; R.S. Zalesny; Ch.P. Mawata; D.W. McDonald

    2008-01-01

    The dynamics of root formation are difficult to observe directly over time without disturbing the rooting environment. A novel system for a non-destructive, non-invasive root analysis (RootViz FS, Phenotype Screening Corp.) was evaluated for its ability to analyze root formation from cuttings over a 32 day period in three poplar genotypes (DN70, P. Deltoides x...

  3. Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis

    CERN Document Server

    Selim, F A; Harmon, J F; Kwofie, J; Spaulding, R; Erickson, G; Roney, T

    2002-01-01

    Nondestructive assay and defect analysis probes based on bremsstrahlung-induced processes have been developed to identify elements and probe defects in large volume samples. Bremsstrahlung beams from (electron accelerators) with end-point energies both above and below neutron emission threshold have been used. Below neutron emission threshold these beams (from 6 MeV small pulsed linacs), which exhibit high penetration, create positrons via pair production inside the material and produce X-ray fluorescence (XRF) radiation. Chemical assays of heavy elements in thick samples up to 10 g/cm sup 2 thick are provided by energy dispersive XRF measurements. The pair-produced positrons annihilate within the material, thereby emitting 511 keV gamma radiation. Doppler broadening spectroscopy of the 511 keV radiation can be performed to characterize the material and measure defects in samples of any desired thickness. This technique has successfully measured induced strain due to tensile stress in steel samples of 0.64 cm...

  4. Prompt Gamma Activation Analysis (PGAA): Technique of choice for nondestructive bulk analysis of returned comet samples

    International Nuclear Information System (INIS)

    Lindstrom, D.J.; Lindstrom, R.M.

    1989-01-01

    Prompt gamma activation analysis (PGAA) is a well-developed analytical technique. The technique involves irradiation of samples in an external neutron beam from a nuclear reactor, with simultaneous counting of gamma rays produced in the sample by neutron capture. Capture of neutrons leads to excited nuclei which decay immediately with the emission of energetic gamma rays to the ground state. PGAA has several advantages over other techniques for the analysis of cometary materials: (1) It is nondestructive; (2) It can be used to determine abundances of a wide variety of elements, including most major and minor elements (Na, Mg, Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni), volatiles (H, C, N, F, Cl, S), and some trace elements (those with high neutron capture cross sections, including B, Cd, Nd, Sm, and Gd); and (3) It is a true bulk analysis technique. Recent developments should improve the technique's sensitivity and accuracy considerably

  5. Non-destructive analysis and identification of jade by PIXE

    International Nuclear Information System (INIS)

    Cheng, H.S.; Zhang, Z.Q.; Zhang, B.; Yang, F.J.

    2004-01-01

    This paper reports the experimental results of identifying jade by proton induced X-ray emission (PIXE) technique. It is found that the jade can be classified, according to the chemical composition determined by PIXE. The experimental results can differentiate ancient Chinese jade works of art from fakes if the material is the same

  6. Method and equipment for the non-destructive analysis of nuclear fuels

    International Nuclear Information System (INIS)

    Michaelis, W.

    1975-01-01

    This is a method for the non-destructive analysis of the content of fissile isotopes in nuclear fuels. In this analysis a neutron beam is directed to the nuclear fuel which is to be analysed. The beam penetrates the nuclear fuel, thus causing a secondany radiation by nuclear reactions which reaches a space directly surrounding the nuclear fuel and is measuned there. (orig./UA) [de

  7. PANDA-A novel instrument for non-destructive sample analysis

    International Nuclear Information System (INIS)

    Turunen, Jani; Peraejaervi, Kari; Poellaenen, Roy; Toivonen, Harri

    2010-01-01

    An instrument known as PANDA (Particles And Non-Destructive Analysis) for non-destructive sample analysis has been designed and built at the Finnish Radiation and Nuclear Safety Authority (STUK). In PANDA the measurement techniques and instruments designed for the basic research are applied to the analysis of environmental samples. PANDA has two vacuum chambers, one for loading samples and the other for measurements. In the measurement chamber there are two individual measurement positions. Currently the first one hosts an HPGe gamma detector and a position-sensitive alpha detector. The second measurement position is intended for precise characterization of found particles. PANDA's data are recorded in event mode and events are timestamped. In the present article the technical design of PANDA is presented in detail. In addition, its performance using depleted uranium particles and an air filter is demonstrated.

  8. Feasibility study of plutonium isotopic analysis of resin beads by nondestructive gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Li, T.K.

    1985-01-01

    We have initiated a feasibility study on the use of nondestructive low-energy gamma-ray spectroscopy for plutonium isotopic analysis on resin beads. Seven resin bead samples were measured, with each sample containing an average of 9 μg of plutonium; the isotopic compositions of the samples varied over a wide range. The gamma-ray spectroscopy results, obtained from 4-h counting-time measurements, were compared with mass spectrometry results. The average ratios of gamma-ray spectroscopy to mass spectrometry were 1.014 +- 0.025 for 238 Pu/ 239 Pu, 0.996 +- 0.018 for 240 Pu/ 239 Pu, and 0.980 +- 0.038 for 241 Pu/ 239 Pu. The rapid, automated, and accurate nondestructive isotopic analysis of resin beads may be very useful to process technicians and International Atomic Energy Agency inspectors. 3 refs., 1 fig., 3 tabs

  9. The use of magnetic Barkhausen noise analysis for nondestructive determination of stresses in structural elements

    International Nuclear Information System (INIS)

    Silva Junior, Silverio Ferreira da; Mansur, Tanius Rodrigues; Cruz, Julio Ricardo Barreto

    2007-01-01

    The knowledge about the stress state acting in structural elements has significant importance in the structural integrity evaluation of a specific component. The magnetic Barkhausen noise analysis can be used for this purpose. As a nondestructive testing method, it presents the advantage of not promote any changes in the tested component. In this paper, a study about the use of this new nondestructive test method for stress measurements is presented. The test system configuration and the reference standards used for this purpose, as well as the optimum test parameters determination are discussed. The experiments were carried out in ASTM A-36 steel, used for structural components manufacturing. A structure of this material was loaded and the resulting stresses were determined from strain gage measurements and Barkhausen noise analysis. The results obtained have showed a good sensitivity of the magnetic Barkhausen noise to stress changes occurred in the material. The main advantages and limitations of this test method for stress measurements are presented. (author)

  10. Digital image analysis applied to industrial nondestructive evaluation and automated parts assembly

    International Nuclear Information System (INIS)

    Janney, D.H.; Kruger, R.P.

    1979-01-01

    Many ideas of image enhancement and analysis are relevant to the needs of the nondestructive testing engineer. These ideas not only aid the engineer in the performance of his current responsibilities, they also open to him new areas of industrial development and automation which are logical extensions of classical testing problems. The paper begins with a tutorial on the fundamentals of computerized image enhancement as applied to nondestructive testing, then progresses through pattern recognition and automated inspection to automated, or robotic, assembly procedures. It is believed that such procedures are cost-effective in many instances, and are but the logical extension of those techniques now commonly used, but often limited to analysis of data from quality-assurance images. Many references are given in order to help the reader who wishes to pursue a given idea further

  11. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  12. Nondestructive study of corrosion by the analysis of diffused light

    Science.gov (United States)

    Hogert, Elsa N.; Landau, Monica R.; Marengo, Jose A.; Ruiz Gale, Maria F.; Gaggioli, Nestor G.; Paiva, Raul D., Jr.; Soga, Diogo; Muramatsu, Mikiya

    1999-07-01

    This work describes the application of mean intensity diffusion analysis to detect and analyze metallic corrosion phenomena. We present some new results in the characterization of the corrosion process using a model based in electroerosion phenomena. Valuable information is provided about surface microrelief changes, which is also useful for numerous engineering applications. The quality of our results supports the idea that this technique can contribute to a better analysis of corrosion processes, in particular in real time.

  13. Nondestructive neutron activation analysis of mineral materials. III

    International Nuclear Information System (INIS)

    Randa, Z.; Benada, J.; Kuncir, J.; Vobecky, M.

    1979-01-01

    A description is presented of sampling, calibration standards, the method of activation and measurement, activation product identification, the respective nuclear reactions, interfering admixtures, and pre-activation operations. The analysis is described of sulphides, halogenides, oxides, sulphates, carbonates, phosphates, silicates, aluminosilicates, composite minerals containing lanthanides, rocks, tektites, meteors, and plant materials. The method allows determining mainly F, Mg, Al, Ti, V, Nb, Rh, and I which cannot be determined by long-term activation (LTA). It is more sensitive than LTA in determining Ca, Cu, In, and Dy. The analysis takes less time, irradiation and measurement are less costly. The main mineral components are quickly found. (M.K.)

  14. Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering

    Science.gov (United States)

    Yan, Yong; Qian, Shuo; Garrison, Ben; Smith, Tyler; Kim, Peter

    2018-04-01

    A nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0 wt. % at 1100 °C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness, and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.

  15. Forensic Comparison of Soil Samples Using Nondestructive Elemental Analysis.

    Science.gov (United States)

    Uitdehaag, Stefan; Wiarda, Wim; Donders, Timme; Kuiper, Irene

    2017-07-01

    Soil can play an important role in forensic cases in linking suspects or objects to a crime scene by comparing samples from the crime scene with samples derived from items. This study uses an adapted ED-XRF analysis (sieving instead of grinding to prevent destruction of microfossils) to produce elemental composition data of 20 elements. Different data processing techniques and statistical distances were evaluated using data from 50 samples and the log-LR cost (C llr ). The best performing combination, Canberra distance, relative data, and square root values, is used to construct a discriminative model. Examples of the spatial resolution of the method in crime scenes are shown for three locations, and sampling strategy is discussed. Twelve test cases were analyzed, and results showed that the method is applicable. The study shows how the combination of an analysis technique, a database, and a discriminative model can be used to compare multiple soil samples quickly. © 2016 American Academy of Forensic Sciences.

  16. Elemental chemical characterization of coins of currently national circulating by X-ray fluorescence non-destructive techniques

    International Nuclear Information System (INIS)

    Olivera, Paula; Calcina, Esly

    2013-01-01

    Given the frequent counterfeit bills and coins is proposed in this paper to identify the elemental chemical composition; for now, the current official currencies circulating in our country, by Energy Dispersive X-ray Fluorescence technique and non-destructive methods, the goal is to compare with the false and establish the differences that could help identify them immediately taking advantage of the fast response of this technique. Have been identified the elements Al in the coins of 5 cents, Cu and Zn for 10 and 20 cents, Ni, Cu and Zn for 50 cents and a Un Nuevo Sol and Cr, Cu and Zn 2 coins 5 Nuevos Soles. 57 Peruvian coins of different production years and a counterfeit coin of 5 Nuevos Soles have been analyzed, finding Cu and Zn in central part and Fe in circulating edge ring, looking for this one the absence of Ni and Cr, which in the official currency was found. (authors).

  17. Nanogram determination of arsenic in biological reference materials by non-destructive Compton suppression neutron activation analysis

    International Nuclear Information System (INIS)

    Petra, M.; Landsberger, S.; Swift, G.

    1990-01-01

    Non-destructive epithermal neutron activation analysis in conjunction with Compton suppression has been applied to determine arsenic in seven biological standard reference materials from the National Institute of Standards and Technology. The accuracy is in excellent agreement with all the certified values and compilation results. For four of the materials detection limits between 1-4 ng/g were easily achieved while for three others they ranged from 18-50 ng/g. Overall analytical precision typically varied between 2-4% for five of the reference materials while for two other it was between 12-16%. These methods clearly demonstrate that through a judicious approach of anti-coincidence techniques, nanogram quantities of arsenic can be reliably determined without the need for labor intensive chemical separations. (orig.)

  18. Non-destructive Testing by Infrared Thermography Under Random Excitation and ARMA Analysis

    Science.gov (United States)

    Bodnar, J. L.; Nicolas, J. L.; Candoré, J. C.; Detalle, V.

    2012-11-01

    Photothermal thermography is a non-destructive testing (NDT) method, which has many applications in the field of control and characterization of thin materials. This technique is usually implemented under CW or flash excitation. Such excitations are not adapted for control of fragile materials or for multi-frequency analysis. To allow these analyses, in this article, the use of a new control mode is proposed: infrared thermography under random excitation and auto regressive moving average analysis. First, the principle of this NDT method is presented. Then, the method is shown to permit detection, with low energy constraints, of detachments situated in mural paintings.

  19. Nondestructive Testing

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Harold [Argonne National Laboratory

    1969-01-01

    A nondestructive test is an examination of an object in any manner which will not impair the future usefulness of the object. This booklet discusses a few basic methods of nondestructive testing, and some of their characteristics. In addition, it discusses possible future methods for nondestructive testing by taking a quick look at some of the methods now under study.

  20. Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation

    International Nuclear Information System (INIS)

    Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won

    2000-01-01

    Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch

  1. Multispectral UV imaging for fast and non-destructive quality control of chemical and physical tablet attributes

    DEFF Research Database (Denmark)

    Klukkert, Marten; Wu, Jian X; Rantanen, Jukka

    2016-01-01

    Monitoring of tablet quality attributes in direct vicinity of the production process requires analytical techniques that allow fast, non-destructive, and accurate tablet characterization. The overall objective of this study was to investigate the applicability of multispectral UV imaging...... as a reliable, rapid technique for estimation of the tablet API content and tablet hardness, as well as determination of tablet intactness and the tablet surface density profile. One of the aims was to establish an image analysis approach based on multivariate image analysis and pattern recognition to evaluate...... the potential of UV imaging for automatized quality control of tablets with respect to their intactness and surface density profile. Various tablets of different composition and different quality regarding their API content, radial tensile strength, intactness, and surface density profile were prepared using...

  2. Non-destructive analysis of spent nuclear fuel; Nedestruktivno odredjivanje istrosenog nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D [Institute of Nuclear Sciences Boris Kidric, Fizicka laboratorija, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Nondestructive analysis of fuel elements dealt with determining the isotope contents which provide information about the burnup level, quantities of fission products and neutron-multiplication properties of the irradiated fuel. Methods for determination of the isotope ratio of the spent fuel are both numerical and experimental. This report deals with the experimental method. This means development of the experimental methods for direct measurement of the isotope content. A number of procedures are described: measurements of {alpha}, {beta} and {gamma} activities of the isotopes; measurement of secondary effects of nuclear reactions with thermal neutrons and fast neutrons; measurement of cross sections; detection of prompt and delayed neutrons.

  3. Photothermal Analysis Applied To Non-Destructive Evaluation Of Paint On Polymer Substrates

    Science.gov (United States)

    Vergne, D.; Busse, G.

    1988-10-01

    The decoration and protection quality of coatings on polymers is of considerable interest for industrial applications. However, at present there is no non-destructive (NDE) method to monitor the quality of these coatings during the manufacturing process or while they are in use. As an approach for such a method we use photothermal analysis where the propagation and reflection of optically generated thermal waves is investigated. We found that one can monitor the drying process, the effect of surface temperature treatment, and coating thickness (accuracy + 2 μm in 50 μm thickness). The information obtained with this remote NDE method is adequate for most industrial applications, eg car manufacturing.

  4. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    Science.gov (United States)

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-01

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts. PMID:28788464

  5. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    Directory of Open Access Journals (Sweden)

    Alexander Maier

    2014-01-01

    Full Text Available Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  6. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts.

    Science.gov (United States)

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-14

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO₂-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car's base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  7. Usage of FTIR-ATR as Non-Destructive Analysis of Selected Toxic Dyes

    Directory of Open Access Journals (Sweden)

    Bartošová Alica

    2017-06-01

    Full Text Available The degradation of the environment which is due to the discharge of polluting wastewater from industrial sources poses a real problem in several countries. Textile industries use large volumes of water in their operations, discharging thus large volume of wastewater into the environment, most of which is untreated. The wastewater contains a variety of chemicals from various stages of process operations, including desizing, scouring, bleaching and dyeing. The main purpose of this paper is to introduce Infrared Spectrometry with Fourier transformation as a non-destructive method for study, identifation and rapid determination of selected representatives of cationic (Methylene Blue, azo (Congo Red, Eriochrome Black T and nitroso (Naphthol Green B dyes. In conjunction with the ATR technique, FTIR offers a reliable detection method of dyes without extraction by other dangerous substances.

  8. Usage of FTIR-ATR as Non-Destructive Analysis of Selected Toxic Dyes

    Science.gov (United States)

    Bartošová, Alica; Blinová, Lenka; Sirotiak, Maroš; Michalíková, Anna

    2017-06-01

    The degradation of the environment which is due to the discharge of polluting wastewater from industrial sources poses a real problem in several countries. Textile industries use large volumes of water in their operations, discharging thus large volume of wastewater into the environment, most of which is untreated. The wastewater contains a variety of chemicals from various stages of process operations, including desizing, scouring, bleaching and dyeing. The main purpose of this paper is to introduce Infrared Spectrometry with Fourier transformation as a non-destructive method for study, identifation and rapid determination of selected representatives of cationic (Methylene Blue), azo (Congo Red, Eriochrome Black T) and nitroso (Naphthol Green B) dyes. In conjunction with the ATR technique, FTIR offers a reliable detection method of dyes without extraction by other dangerous substances. Spectral interpretation of dye spectra revealed valuable information about the identification and characterization of each group of dyes.

  9. Impulse-response analysis of planar computed tomography for nondestructive test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Cheon; Kim, Seung Ho; Kim, Ho Kyung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    There have been reported that the use of radiation imaging such as digital radiography, computed tomography (CT), and digital tomosynthesis (DTS) for the nondestructive test (NDT) widely is spreading. These methods have merits and demerits of their own, in terms of image quality and inspection speed. Therefore, image for these methods for NDT should have acceptable image quality and high speed. In this study, we quantitatively evaluate impulse responses of reconstructed images from the filtered backprojection (FBP), which are most widely used in planar computed tomography (pCT) systems. We first evaluate image performance metrics due to the contrast, depth resolution, and then we design the figure of merit including image performance and system parameters, such as tube load and reconstruction speed. The final goal of this study is the application of these methods to the nondestructive test. In order to accomplish it, further study is needed. First of all, the results of the ASF from various numbers of views. Second, the analysis of modulation transfer function, noise power spectrum, and detective quantum efficiency from various angular range and numbers of views.

  10. Microstructure analysis for quantification of Barkhausen noise method and nondestructive evaluation of fracture characteristics

    International Nuclear Information System (INIS)

    Kim, Dong Won; Kwon, Dong Il

    1999-01-01

    Barkhausen noise method as a magnetic nondestructive test has the advantages for evaluating the properties of magnetic material more precisely and high-sensitively compared to other magnetic NDT methods. For a long time Barkhausen noise method was applied to measure the bulk magnetic properties of magnetic materials and recently to evaluate microstructure, stress analysis, fatigue, creep, and fracture characteristics as a NDT method. But so far Barkhausen noise method has been used as evaluating orientation of material properties rather qualitatively. For this reason, many NDT testing methods have seldom been applied to industrial plants and laboratories. In this study we make experiments on the variation of Barkhausen noise as microstructure, and quantify Barkhausen noise(rms voltage) via formula of velocity of magnetic domain walls using coercive force as retarding force of domain wall movement. As a result, we could evaluate the microstructure of magnetic materials and trends of fracture toughness quantitatively by measuring Barkhausen noise, therefore directly evaluate microstructure and fracture toughness by Barkhausen noise method as accurate in-situ nondestructive testing method.

  11. Nondestructive multielement analyses of airborne particulates by combined uses of instrumental neutron activation analysis and energy dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Matsuda, Yatsuka; Mizohata, Akira

    1974-01-01

    Combined uses of instrumental neutron activation analysis and energy dispersive X-ray fluorescence analysis make it possible to analyze nondestructively a considerably large number of elements in airborne particulates. We have confirmed that up to 45 elements can be analyzed without any chemical procedures for urban airborne particulate samples. As the radiation spectrometry by semiconductor detectors and the automatic data reduction by electronic computation are quite common to the two techniques, combined uses of them produce no special annoyance. Several elements can be analyzed by both of them and therefore the reliability of the analytical results can be comfirmed by comparing the data obtained by them with each other. It is noted that this confirmation can be made for the very same sample. In this article are described our experiences of multielement analyses of airborne particulates and some problems to be solved in further studies. (auth.)

  12. X-Ray analysis and methods for nondestructive control (On the 100-anniversary of X-ray foundation)

    International Nuclear Information System (INIS)

    Sosnin, F.R.

    1995-01-01

    Brief consideration is given to the history of X-ray discovery, formation of domestic X-ray industry. Principles of operation and potentialities of X-ray diffraction analysis, gammagraphy, radioscopy, radiometric analysis are described briefly. Domestic and foreign scientists, institutes and companies who contributed much to development of methods for nondestructive control are listed

  13. Nondestructive evaluation of the QT on the SG tubes affected by chemical cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Seok Shin; Cheon, Keun Young; Kim, Wang Bae [Central Research Institute, Daejeon (Korea, Republic of); Min, Kyong Mahn [UMI, Daejeon (Korea, Republic of)

    2012-10-15

    The major mechanisms of flaws detected on the currently operating steam generator(SG) tubes are wear and stress corrosion cracking(SCC) defects. Wear defect has continuously occurred in the upper tube bundle imposed to the flow induced vibration at the interaction between tube and its support structure. Meanwhile, SCC has been formed by a variety of mixed mode, such as the corrosion susceptible material, residual stress and secondary side chemical environment of the SG tubes. Recently, corrosion related defects were detected in the domestic OPR 1000 model SG tubes especially in the egg crate tube support plate(TSP), as a form of axially oriented outer diameter stress corrosion cracking (ODSCC). Therefore, the need to take corrective measures against the corrosion defects is required and various studies have been conducted to clarify the main causes of the defects. In general, as a representing SG tube materials, Ni based alloy 600 tubes have been widely applied and also adversely shown weak properties on the corrosion cracking resistivity. According to the studies on the factors developing corrosion cracking, densely accumulated sludge pile on the secondary side of the SG tubes have been mainly attributed to the formation of the corrosion defects. Therefore, it is imperative to secure applicable and efficient sludge removal process. In this paper, the chemical cleaning processes to dissolve and remove the sludge, thus promote the integrity of the SG tubes were introduced and eddy current testing(ECT) results on the pre cracked SG tubes to determine the effectiveness of those processes were represented as well.

  14. The non-destructive analysis of fluid inclusions in minerals using the proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, C.G.; Van Achterbergy, E. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Heinrich, C.A. [ETH Zentrum, Zurich, (Switzerland). Department Erdwissenschaften; Mernagh, T.P. [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany); Zaw, K. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1996-12-31

    The study of ore forming fluids trapped as fluid inclusions in minerals is the key to understanding fluid flow paths at the time of ore formation and to predicting the location of ore bodies within large-scale magmatic hydrothermal systems. The large penetration depths and the predictable nature of MeV proton trajectories and X-ray absorption enables reliable modelling of PIXE yields and the development of standardless quantitative analytical methods. This permits quantitative microanalysis of minerals at ppm levels, and more recently has enabled the development of methods for quantitative trace-element imaging and the quantitative, non-destructive analysis of individual fluid inclusions. This paper reports on recent developments in Proton Microprobe techniques with special emphasis on ore systems and fluid inclusion analysis. 6 refs., 2 figs.

  15. The non-destructive analysis of fluid inclusions in minerals using the proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, C G; Van Achterbergy, E [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Heinrich, C A [ETH Zentrum, Zurich, (Switzerland). Department Erdwissenschaften; Mernagh, T P [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany); Zaw, K [Tasmania Univ., Sandy Bay, TAS (Australia)

    1997-12-31

    The study of ore forming fluids trapped as fluid inclusions in minerals is the key to understanding fluid flow paths at the time of ore formation and to predicting the location of ore bodies within large-scale magmatic hydrothermal systems. The large penetration depths and the predictable nature of MeV proton trajectories and X-ray absorption enables reliable modelling of PIXE yields and the development of standardless quantitative analytical methods. This permits quantitative microanalysis of minerals at ppm levels, and more recently has enabled the development of methods for quantitative trace-element imaging and the quantitative, non-destructive analysis of individual fluid inclusions. This paper reports on recent developments in Proton Microprobe techniques with special emphasis on ore systems and fluid inclusion analysis. 6 refs., 2 figs.

  16. Multi-resolution analysis for region of interest extraction in thermographic nondestructive evaluation

    Science.gov (United States)

    Ortiz-Jaramillo, B.; Fandiño Toro, H. A.; Benitez-Restrepo, H. D.; Orjuela-Vargas, S. A.; Castellanos-Domínguez, G.; Philips, W.

    2012-03-01

    Infrared Non-Destructive Testing (INDT) is known as an effective and rapid method for nondestructive inspection. It can detect a broad range of near-surface structuring flaws in metallic and composite components. Those flaws are modeled as a smooth contour centered at peaks of stored thermal energy, termed Regions of Interest (ROI). Dedicated methodologies must detect the presence of those ROIs. In this paper, we present a methodology for ROI extraction in INDT tasks. The methodology deals with the difficulties due to the non-uniform heating. The non-uniform heating affects low spatial/frequencies and hinders the detection of relevant points in the image. In this paper, a methodology for ROI extraction in INDT using multi-resolution analysis is proposed, which is robust to ROI low contrast and non-uniform heating. The former methodology includes local correlation, Gaussian scale analysis and local edge detection. In this methodology local correlation between image and Gaussian window provides interest points related to ROIs. We use a Gaussian window because thermal behavior is well modeled by Gaussian smooth contours. Also, the Gaussian scale is used to analyze details in the image using multi-resolution analysis avoiding low contrast, non-uniform heating and selection of the Gaussian window size. Finally, local edge detection is used to provide a good estimation of the boundaries in the ROI. Thus, we provide a methodology for ROI extraction based on multi-resolution analysis that is better or equal compared with the other dedicate algorithms proposed in the state of art.

  17. Nondestructive assay of sale materials

    International Nuclear Information System (INIS)

    Rodenburg, W.W.; Fleissner, J.G.

    1981-01-01

    This paper covers three primary areas: (1) reasons for performing nondestructive assay on SALE materials; (2) techniques used; and (3) discussion of investigators' revised results. The study shows that nondestructive calorimetric assay of plutonium offers a viable alternative to traditional wet chemical techniques. For these samples, the precision ranged from 0.4 to 0.6% with biases less than 0.2%. Thus, for those materials where sampling errors are the predominant source of uncertainty, this technique can provide improved accuracy and precision while saving time and money as well as reducing the amount of liquid wastes to be handled. In addition, high resolution gamma-ray spectroscopy measurements of solids can provide isotopic analysis data in a cost effective and timely manner. The timeliness of the method can be especially useful to the plant operator for production control and quality control measurements

  18. Low-frequency nondestructive analysis of cracks in multilayer structures using a scanning magnetic microscope

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, M; Nappi, C; Sarnelli, E, E-mail: m.adamo@cib.na.cnr.i [Istituto di Cibernetica ' E Caianiello' , Via Campi Flegrei 34, I-80078 Pozzuoli (Italy)

    2010-09-15

    The use of a scanning magnetic microscope (SMM) with a high temperature superconducting quantum interference device (SQUID) for quantitative measurements in eddy current nondestructive analysis (NDA) is presented. The SQUID has been used to detect the weak magnetic field variations around a small defect, close to a structural part generating an intensive magnetic field. The experimental data for a deep crack close to a rivet in a multilayer conducting plate have been taken in a RF-shielded environment and discussed in the light of the theoretical predictions. The results show that eddy current NDA can distinguish subsurface crack signals from wider structural signals, with defects located 10 mm below the surface. Moreover, in order to visualize the structure of the probing current when a circular induction coil is used, the simulation of eddy currents in a thick unflawed conducting plate has been carried out.

  19. Low-frequency nondestructive analysis of cracks in multilayer structures using a scanning magnetic microscope

    International Nuclear Information System (INIS)

    Adamo, M; Nappi, C; Sarnelli, E

    2010-01-01

    The use of a scanning magnetic microscope (SMM) with a high temperature superconducting quantum interference device (SQUID) for quantitative measurements in eddy current nondestructive analysis (NDA) is presented. The SQUID has been used to detect the weak magnetic field variations around a small defect, close to a structural part generating an intensive magnetic field. The experimental data for a deep crack close to a rivet in a multilayer conducting plate have been taken in a RF-shielded environment and discussed in the light of the theoretical predictions. The results show that eddy current NDA can distinguish subsurface crack signals from wider structural signals, with defects located 10 mm below the surface. Moreover, in order to visualize the structure of the probing current when a circular induction coil is used, the simulation of eddy currents in a thick unflawed conducting plate has been carried out.

  20. Portable generator-based X RF instrument for non-destructive analysis at crime scenes

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Trombka, Jacob I.; Floyd, Samuel; Selavka, Carl; Zeosky, Gerald; Gahn, Norman; McClanahan, Timothy; Burbine, Thomas

    2005-01-01

    Unattended and remote detection systems find applications in space exploration, telemedicine, teleforensics, homeland security and nuclear non-proliferation programs. The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals investigate crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ, together with state and local forensic laboratories. A general-purpose X-ray fluorescence system has been built for non-destructive analyses of trace and invisible material at crime scenes. This portable instrument is based on a generator that can operate to 60 kV and a Schottky CdTe detector. The instrument has been shown to be successful for the analysis of gunshot residue and a number of bodily fluids at crime scenes

  1. Nondestructive Analysis of MET-5 Paint Can at TA35 Building 2 A-Wing Vault

    Energy Technology Data Exchange (ETDEWEB)

    Desimone, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vo, Duc Ta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-03

    In Building 2 A-wing vault MET-5 has some drums and other packages they wanted NEN-1 help identifying nondestructively. Measurements using a mechanically cooled portable high-purity germanium HPGe Ortec detective were taken of a paint can container labeled DU-2A to determine if any radioactive material was inside. The HPGe detector measures the gamma rays emitted by radioactive material and displays it as a spectrum. The spectrum is used to identify this radioactive material by using appropriate analysis software and identifying the gamma ray peaks. A paint can container, DU-2A, was analyzed with PeakEasy 4.84 and FRAM 5.2. The FRAM report is shown. The enrichment is 0.091% U235 and 99.907% U238. This material is depleted uranium. The measurement was performed in the near field, and to extract a mass a far field measurement will need to be taken.

  2. Application of nondestructive ion beam analysis to measure variations in the elemental composition of armor materials

    Energy Technology Data Exchange (ETDEWEB)

    Pallone, Arthur. E-mail: art.pallone@murraystate.edu; Demaree, John; Adams, Jane. E-mail: jadams@arl.army.mil

    2004-06-01

    Lightweight, state-of-the-art armors rely on ceramics for their enhanced performance. One goal of the United States Army is to expand the industrial base of companies that provide the armors. A systematic study of armor performance as a function of ceramic stoichiometry will result in a better understanding of the fundamental relations between composition and mechanical performance. One ceramic of interest is aluminum oxynitride (AlON). The stoichiometries of representative samples of AlON were investigated with the nondestructive techniques of Rutherford backscattering spectrometry and resonant nuclear reaction analysis. Future tests of the performance of the AlON samples are to be correlated with the stoichiometries, and hence will lead to optimum, standardized processes for the manufacture of the AlON.

  3. Non-destructive analysis of rape plant pod by neutron radiography

    International Nuclear Information System (INIS)

    Makino-Nakanishi, Tomoko; Inanaga, Shinobu; Kobayashi, Hisao.

    1991-01-01

    Since the ripening process of the rape plant pod has not been studied well, non-destructive analysis of the pod has been carried out by neutron radiography. From the water distribution in the pod, the formation of pod parenchyma as well as vascular system were clearly observed. During the ripening process of the pod water content and weight of the seed were measured. It was found that at the early stage of the ripening process the water content of the seed became maximum and began to decrease, whereas the weight of each seed was gradually increased throughout the ripening process. Neutron radiography, which shows the water content of the pod, will give the clue to the decrease of the water content of the seed from the middle of the ripening process. (author)

  4. Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis

    Science.gov (United States)

    Shi, Z. M.; Liu, L.; Peng, M.; Liu, C. C.; Tao, F. J.; Liu, C. S.

    2018-04-01

    Full-length bonded rock bolts are commonly used in mining, tunneling and slope engineering because of their simple design and resistance to corrosion. However, the length of a rock bolt and grouting quality do not often meet the required design standards in practice because of the concealment and complexity of bolt construction. Non-destructive testing is preferred when testing a rock bolt's quality because of the convenience, low cost and wide detection range. In this paper, a signal analysis method for the non-destructive sound wave testing of full-length bonded rock bolts is presented, which is based on the Hilbert-Huang transform (HHT). First, we introduce the HHT analysis method to calculate the bolt length and identify defect locations based on sound wave reflection test signals, which includes decomposing the test signal via empirical mode decomposition (EMD), selecting the intrinsic mode functions (IMF) using the Pearson Correlation Index (PCI) and calculating the instantaneous phase and frequency via the Hilbert transform (HT). Second, six model tests are conducted using different grouting defects and bolt protruding lengths to verify the effectiveness of the HHT analysis method. Lastly, the influence of the bolt protruding length on the test signal, identification of multiple reflections from defects, bolt end and protruding end, and mode mixing from EMD are discussed. The HHT analysis method can identify the bolt length and grouting defect locations from signals that contain noise at multiple reflected interfaces. The reflection from the long protruding end creates an irregular test signal with many frequency peaks on the spectrum. The reflections from defects barely change the original signal because they are low energy, which cannot be adequately resolved using existing methods. The HHT analysis method can identify reflections from the long protruding end of the bolt and multiple reflections from grouting defects based on mutations in the instantaneous

  5. Nondestructive assay of fluorine in geological and other materials by instrumental photon activation analysis with a microtron

    Energy Technology Data Exchange (ETDEWEB)

    Krausová, Ivana [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic); Mizera, Jiří, E-mail: mizera@ujf.cas.cz [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic); Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holešovičkách 41, 182 09 Praha 8 (Czech Republic); Řanda, Zdeněk; Chvátil, David; Krist, Pavel [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic)

    2015-01-01

    Reliable determination of low concentrations of fluorine in geological and coal samples is difficult. It usually requires tedious decomposition and dissolution of the sample followed by chemical conversion of fluorine into its anionic form. The present paper examines possibilities of non-destructive determination of fluorine, mainly in minerals, rocks and coal, by instrumental photon activation analysis (IPAA) using the MT-25 microtron. The fluorine assay consists of counting the positron–electron annihilation line of {sup 18}F at 511 keV, which is a product of the photonuclear reaction {sup 19}F(γ, n){sup 18}F and a pure positron emitter. The assay is complicated by the simultaneous formation of other positron emitters. The main contributors to interference in geological samples are from {sup 45}Ti and {sup 34m}Cl, whereas those from {sup 44}Sc and {sup 89}Zr are minor. Optimizing beam energy and irradiation-decay-counting times, together with using interfering element calibration standards, allowed reliable IPAA determination of fluorine in selected USGS and CRPG geochemical reference materials, NIST coal reference materials, and NIST RM 8414 Bovine Muscle. In agreement with the published data obtained by PIGE, the results of the F assay by IPAA have revealed erroneous reference values provided for the NIST reference materials SRM 1632 Bituminous Coal and RM 8414 Bovine Muscle. The detection limits in rock and coal samples are in the range of 10–100 μg g{sup −1}.

  6. Application of X-ray spectroscopy in nondestructive photon activation analysis

    International Nuclear Information System (INIS)

    Weise, H.-P.; Segebade, Chr.

    1977-01-01

    The use of X-ray spectroscopy for the qualitative and quantitative analysis of samples activated by 30 MeV bremsstrahlung from an electron linear accelerator. Detection limits are calculated from the measured X-ray spectra and compared with those for γ-ray spectroscopy. In general, the detection limits for γ-ray and X-ray spectroscopy are comparable. Higher sensitivities for X-ray spectroscopy are observed when only low intensity γ-rays are emitted by the activation products. X-ray spectroscopy should be applied in three cases: (a) low γ-ray emission probability, (b) extremely complicated γ-ray spectrum, (c) overlapping of γ-ray lines from different elements. γ-ray spectroscopy should be preferred for the analysis of light elements for two reasons: very strong absorption of low energy X-rays (low Z) within the sample, low X-ray emission probability for the activation products of light elements. Therefore no attempt was made to use X-ray spectroscopy for the analysis of elements below Ti. Some practical applications of X-ray spectroscopy in nondestructive multielement analysis are quoted. (T.G.)

  7. Nondestructive analysis of alkali-silica reaction damage in concrete slabs using shear waves

    Science.gov (United States)

    Khazanovich, Lev; Freeseman, Katelyn; Salles, Lucio; Clayton, Dwight

    2018-04-01

    Alkali-silica reaction (ASR) is the chemical reaction that occurs in concrete. It is caused by the interaction of alkalis in Portland cement and silica in aggregates and results in microcracks within the material. This type of damage has been the focus of nondestructive evaluation efforts in recent history, but no work was done on in-situ structures or large-scale samples. To address these limitations, an ultrasonic linear array device, MIRA, was utilized for this research. An experimental investigation was performed on four slabs with various levels of alkali-silica reaction at the Electric Power Research Institute (EPRI) [1]. One-period impulses with a target of 50kHz center frequency were selected in this study. We propose the use of the Hilbert Transform Indicator (HTI) for quantification of ASR damage [2]. A higher HTI value would be indicative of damaged concrete, while a low value represents sound concrete. In general, values below 90 are regarded as an indicator of sound concrete while values above 100 indicate the presence of damage [3]. The ability of the HTI values to distinguish between areas of damaged concrete was evident via the production of color intensity maps. The maps show that the control specimen, was in good condition, while other slabs exhibited higher levels of damage as indicated by the HTI values. It should be noted that extreme damage conditions were not present in any of the slabs. Evaluation of migration-based reconstructions can give a qualitative characterization of large scale or excessive subsurface damage. However, for detection of stochastic damage mechanisms such as freeze-thaw damage, evaluation of the individual time-history data can provide additional information. A comparison of the spatially diverse measurements on several concrete slabs with varying freeze-thaw damage levels is given in this study. Signal characterization scans of different levels of freeze-thaw damage at various transducer spacing is investigated. The

  8. Chemical analysis report 2014

    International Nuclear Information System (INIS)

    Elbouzidi, Saliha; Elyahyaoui, Adil; Ghassan, Acil; Marah, Hamid

    2014-01-01

    This report highlights the results of chemical analyzes related to Major elements, traces and heavy metals carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 120 samples. The report presents the analytical techniques used (parameters and methods), a legend and the results tables.

  9. Chemical analysis report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    This report highlights the results of chemical analyzes of fluorides, bromides, lithium and boron carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 120 samples. The report presents the analytical techniques used (parameters and methods), a legend and the results tables.

  10. Non-destructive analysis of sensory traits of dry-cured loins by MRI-computer vision techniques and data mining.

    Science.gov (United States)

    Caballero, Daniel; Antequera, Teresa; Caro, Andrés; Ávila, María Del Mar; G Rodríguez, Pablo; Perez-Palacios, Trinidad

    2017-07-01

    Magnetic resonance imaging (MRI) combined with computer vision techniques have been proposed as an alternative or complementary technique to determine the quality parameters of food in a non-destructive way. The aim of this work was to analyze the sensory attributes of dry-cured loins using this technique. For that, different MRI acquisition sequences (spin echo, gradient echo and turbo 3D), algorithms for MRI analysis (GLCM, NGLDM, GLRLM and GLCM-NGLDM-GLRLM) and predictive data mining techniques (multiple linear regression and isotonic regression) were tested. The correlation coefficient (R) and mean absolute error (MAE) were used to validate the prediction results. The combination of spin echo, GLCM and isotonic regression produced the most accurate results. In addition, the MRI data from dry-cured loins seems to be more suitable than the data from fresh loins. The application of predictive data mining techniques on computational texture features from the MRI data of loins enables the determination of the sensory traits of dry-cured loins in a non-destructive way. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Comparative study of destructive and non-destructive methods in the activation analysis of rocks

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.

    1978-01-01

    A comparative study between non-destructive thermal neutron activation analysis and activation analysis with radiochemical group separation is made Both methods are applied to the determination of trace elements minor and major elements in rocks. The treatment of the rocks, with special reference to the problems related to grinding and contamination by foreign elements is described. The choice of standards for multielement trace activation analysis is discussed. Two types of computer programs for the evalution of data obtained through Ge-li detector counting are used. All the phases of the destructive and non destructive analysis are described. In the destructive analysis, an adaptation of the group separation scheme developed by Morrison et al for the activation analysis of geological samples is made. The changes introduced make the radiochemical separation simpler and more rapid. Both destructive and non destructive methods are tested by means of the analysis of the United States Geological Survey standard rock AGV-1, which has been analysed by many authors. The same procedure is then applied to some alcaline rocks taken from the apatite mine of Jacupiranga, in the State of Sao Paulo, Brazil. The knowledge of the trace element concentration in these rocks is important for geochemical studies. A detailed study of the possible interferences encountered in the neutron activation analysis of these rocks is made, considering the interferences due to major activities, and to the proximity of the several gamma ray energies of the radioisotopes produced. Finally, the comparative study between the two methods is presented, using statistical tests for the quantitative evalution of results. (Author) [pt

  12. Completely non-destructive elemental analysis of bulky samples by PGA

    International Nuclear Information System (INIS)

    Oura, Y.; Nakahara, H.; Sueki, K.; Sato, W.; Tomizawa, T.

    1998-01-01

    A new non-destructive method is proposed for the elemental analysis of bulk samples. It is essentially a combination of PGA and NAA by a single neutron irradiation, and allows determinations of elemental contents of both major and minor constituents relative to that of some reference element. Major elements and some trace elements such as B, Sm, and Gd are mostly determined by the measurement of prompt gamma rays emitted when a bulky sample in its original form, namely, without any reduction of the sample size, is placed in the beam of neutrons guided from a nuclear reactor. Minor elements are then determined by the off-line measurements of gamma rays emitted from the radioactive nuclides produced within the sample by neutron capture reactions. As the radioactivity remaining in the sample becomes negligibly small after a few weeks cooling, the proposed method will be most usefully applied for the elemental analysis of bulky precious samples such as archaeological samples, and arts and crafts. In this presentation, applicability of the method will be demonstrated for porcelain and bronze samples. (author)

  13. Performance values of nondestructive analysis techniques in safeguards and nuclear materials management

    International Nuclear Information System (INIS)

    Guardini, S.

    1989-01-01

    Nondestructive assay (NDA) techniques have, in the past few years, become more and more important in nuclear material accountancy and control. This is essentially due to two reasons: (1) The improvements made in most NDA techniques led some of them to have performances close to destructive analysis (DA) (e.g., calorimetry and gamma spectrometry). (2) The parallel improvement of statistical tools and procedural inspection approaches led to abandoning the following scheme: (a) NDA for semiqualitative or consistency checks only (b) DA for quantitative measurements. As a consequence, NDA is now frequently used in scenarios that involve quantitative (by variable) analysis. On the other hand, it also became evident that the performances of some techniques were different depending on whether they were applied in the laboratory or in the field. It has only recently been realized that, generally speaking, this is due to objective reasons rather than to an incorrect application of the instruments. Speaking of claimed and actual status of NDA performances might be in this sense misleading; one should rather say: performances in different conditions. This paper provides support for this assumption

  14. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Material and High Explosives

    International Nuclear Information System (INIS)

    Seabury, E. H.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2009-01-01

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a 252 Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  15. Evaluation of Cs-134 and Cs-137 in sugar by non-destructive analysis

    Energy Technology Data Exchange (ETDEWEB)

    Correira, Filipe Lopes de Barros; Santos Júnior, José Araújo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Medeiros, Nilson Vicente da Silva; Santos Junior, Otávio Pereira dos, E-mail: filipelbck@gmail.com, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: josineide.santos@ufpe.br, E-mail: nilson.medeiros@ufpe.br, E-mail: otavio.santos@vitoria.ifpe.edu.br [Universidade Federal de Pernambuco (RAE/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Grupo de Radioecologia; Vieira, José Wilson, E-mail: jose.wilson59@uol.com.br [Instituto Federal de Pernambuco (IFPE), Recife (Brazil); Valois, Rhaiana Caminha, E-mail: rhaianavalois@hotmail.com [Colégio Militar do Recife, PE (Brazil)

    2017-07-01

    The spread of anthropogenic radioisotopes in the environment comes from nuclear tests and accidents that occurred in the past, which justifies constant monitoring, to guarantee the safety and control of the activities that involve these applications. Brazil, when exporting some food products, depending on the country of origin, a radiometric report is required, especially for sugar that has high world consumption and the possibility of contamination of the population, when radioisotope is present. Therefore, the investigation of the levels of Cs-134 and Cs-137 in sugar matrices is necessary to predict radioecological emergency situations. The National Nuclear Energy Commission, the agency that oversees nuclear applications in Brazil, With Resolution No. 102 of December 22, 2010 approved regulatory positions, including levels of action for food control, recommended to restrict the marketing of food products in Brazil. General, whose specific activity is higher than the limit of 1.0 kBq / kg for the said isotopes of cesium independently. Aiming for improvements in the analyzes that are already performed in the Laboratory of Radioecology and Environmental Control of the Department of Nuclear Energy of the Federal University of Pernambuco to assurance the quality of sugar marketed in Brazil, a standard procedure for the analysis of these radionuclides in this matrix was determined. High resolution gamma spectrometry with non-destructive analysis was used to perform the tests. Priority was given to parameters that directly influence the qualitative and quantitative analysis of these radioactive elements, such as calibration in energy and efficiency, resolution, influence of self-absorption, counting statistics directly associated with the time of analysis, influence of background radiation and geometry analysis. (author)

  16. Evaluation of Cs-134 and Cs-137 in sugar by non-destructive analysis

    International Nuclear Information System (INIS)

    Correira, Filipe Lopes de Barros; Santos Júnior, José Araújo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Medeiros, Nilson Vicente da Silva; Santos Junior, Otávio Pereira dos; Valois, Rhaiana Caminha

    2017-01-01

    The spread of anthropogenic radioisotopes in the environment comes from nuclear tests and accidents that occurred in the past, which justifies constant monitoring, to guarantee the safety and control of the activities that involve these applications. Brazil, when exporting some food products, depending on the country of origin, a radiometric report is required, especially for sugar that has high world consumption and the possibility of contamination of the population, when radioisotope is present. Therefore, the investigation of the levels of Cs-134 and Cs-137 in sugar matrices is necessary to predict radioecological emergency situations. The National Nuclear Energy Commission, the agency that oversees nuclear applications in Brazil, With Resolution No. 102 of December 22, 2010 approved regulatory positions, including levels of action for food control, recommended to restrict the marketing of food products in Brazil. General, whose specific activity is higher than the limit of 1.0 kBq / kg for the said isotopes of cesium independently. Aiming for improvements in the analyzes that are already performed in the Laboratory of Radioecology and Environmental Control of the Department of Nuclear Energy of the Federal University of Pernambuco to assurance the quality of sugar marketed in Brazil, a standard procedure for the analysis of these radionuclides in this matrix was determined. High resolution gamma spectrometry with non-destructive analysis was used to perform the tests. Priority was given to parameters that directly influence the qualitative and quantitative analysis of these radioactive elements, such as calibration in energy and efficiency, resolution, influence of self-absorption, counting statistics directly associated with the time of analysis, influence of background radiation and geometry analysis. (author)

  17. Chemical substructure analysis in toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Beauchamp, R.O. Jr. [Center for Information on Toxicology and Environment, Raleigh, NC (United States)

    1990-12-31

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  18. Chemical Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Uses state-of-the-art instrumentation for qualitative and quantitative analysis of organic and inorganic compounds, and biomolecules from gas, liquid, and...

  19. Microprocessors in automatic chemical analysis

    International Nuclear Information System (INIS)

    Goujon de Beauvivier, M.; Perez, J.-J.

    1979-01-01

    Application of microprocessors to programming and computing of solutions chemical analysis by a sequential technique is examined. Safety, performances reliability are compared to other methods. An example is given on uranium titration by spectrophotometry [fr

  20. Portable generator-based X RF instrument for non-destructive analysis at crime scenes

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Jeffrey S. [University of Connecticut, Department of Physics, Unit 3046 Storrs, CT 06269-3046 (United States)]. E-mail: schweitz@phys.uconn.edu; Trombka, Jacob I. [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States); Floyd, Samuel [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States); Selavka, Carl [Massachusetts State Police Crime Laboratory, 59 Horse Pond Road, Sudbury, MA 01776 (United States); Zeosky, Gerald [Forensic Investigation Center, Crime Laboratory Building, 22 State Campus, Albany, NY 12226 (United States); Gahn, Norman [Assistant District Attorney, Milwaukee County, District Attorney' s Office, 821 West State Street, Milwaukee, WI 53233-1427 (United States); McClanahan, Timothy [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States); Burbine, Thomas [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States)

    2005-12-15

    Unattended and remote detection systems find applications in space exploration, telemedicine, teleforensics, homeland security and nuclear non-proliferation programs. The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals investigate crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ, together with state and local forensic laboratories. A general-purpose X-ray fluorescence system has been built for non-destructive analyses of trace and invisible material at crime scenes. This portable instrument is based on a generator that can operate to 60 kV and a Schottky CdTe detector. The instrument has been shown to be successful for the analysis of gunshot residue and a number of bodily fluids at crime scenes.

  1. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano

    2017-01-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  2. Characterization of Old Nuclear Waste Packages Coupling Photon Activation Analysis and Complementary Non-Destructive Techniques

    International Nuclear Information System (INIS)

    Carrel, Frederick; Coulon, Romain; Laine, Frederic; Normand, Stephane; Sari, Adrien; Charbonnier, Bruno; Salmon, Corine

    2013-06-01

    Radiological characterization of nuclear waste packages is an industrial issue in order to select the best mode of storage. The characterization becomes crucial particularly for waste packages produced at the beginning of the French nuclear industry. For the latter, available information is often incomplete and some key parameters are sometimes missing (content of the package, alpha-activity, fissile mass...) In this case, the use of non-destructive methods, both passive and active, is an appropriate solution to characterize nuclear waste packages and to obtain all the information of interest. In this article, we present the results of a complete characterization carried out on the TE 1060 block, which is a nuclear waste package produced during the 1960's in Saclay. This characterization is part of the DEMSAC (Dismantling of Saclay's facilities) project (ICPE part). It has been carried out in the SAPHIR facility, located in Saclay and housing a linear electron accelerator. This work enables to show the great interest of active methods (photon activation analysis and high-energy imaging) as soon as passive techniques encounter severe limitations. (authors)

  3. Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy.

    Science.gov (United States)

    Vandenabeele, Peter; Tate, Jim; Moens, Luc

    2007-02-01

    Raman spectroscopy is a versatile technique that has frequently been applied for the investigation of art objects. By using mobile Raman instrumentation it is possible to investigate the artworks without the need for sampling. This work evaluates the use of a dedicated mobile spectrometer for the investigation of a range of museum objects in museums in Scotland, including antique Egyptian sarcophagi, a panel painting, painted surfaces on paper and textile, and the painted lid and soundboard of an early keyboard instrument. The investigations of these artefacts illustrate some analytical challenges that arise when analysing museum objects, including fluorescing varnish layers, ambient sunlight, large dimensions of artefacts and the need to handle fragile objects with care. Analysis of the musical instrument (the Mar virginals) was undertaken in the exhibition gallery, while on display, which meant that interaction with the public and health and safety issues had to be taken into account. Experimental set-up for the non-destructive Raman spectroscopic investigation of a textile banner in the National Museums of Scotland.

  4. Investigation of geochemical characteristics of some natural water systems by nondestructive radioactivation analysis

    International Nuclear Information System (INIS)

    Draskovic, R.

    1977-01-01

    In this thesis the new theoretical and systematized approaches to the investigation of continental water systems (rivers, lakes, swamps etc) with the aim of its biogeochemical characterization are given and discussed. By nondestructive radioactivation analysis some elements (Cr, Fe, Co, Sb, Sc, Na acro and trace elements level) in components of investigated water system are determined. These elements has been determined in materials dissolved in water, suspended and bed materials, soils and the living matter populating the rivers systems Danube, Sava, V.Morava, Tisa, Karas and some lakes also (plankton, algae, benthos, crustacea, benthos, shalls and fishes) in Yugoslavia. The results are presented and discussed on the basis of parameters ''content of elements'' (new theoretical approaches) for these systems (Csub(w)-water; Csub(s)-suspended and bed materials; Csub(t)-soils; Csub(vivo)-living matter: plankton - Csub(p); aglae - Csub(al); benthos - Csub(b); crustacea - Csub(c); fishes - Csub(f)) expressed in ppm. Distribution on parameters (Fsub(x,y)) for the pairs of components of water systems also are given. The ''contents of elements'' - parameters are biogeochemical standards characterizing investigated water systems and ecological and environmental important parameters, too

  5. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: silvasf@cdtn.br, E-mail: amandaraso@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  6. Fractal dimension analysis for robust ultrasonic non-destructive evaluation (NDE) of coarse grained materials

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2018-04-01

    Over the recent decades, there has been a growing demand on reliable and robust non-destructive evaluation (NDE) of structures and components made from coarse grained materials such as alloys, stainless steels, carbon-reinforced composites and concrete; however, when inspected using ultrasound, the flaw echoes are usually contaminated by high-level, time-invariant, and correlated grain noise originating from the microstructure and grain boundaries, leading to pretty low signal-to-noise ratio (SNR) and the flaw information being obscured or completely hidden by the grain noise. In this paper, the fractal dimension analysis of the A-scan echoes is investigated as a measure of complexity of the time series to distinguish the echoes originating from the real defects and the grain noise, and then the normalized fractal dimension coefficients are applied to the amplitudes as the weighting factor to enhance the SNR and defect detection. Experiments on industrial samples of the mild steel and the stainless steel are conducted and the results confirm the great benefits of the method.

  7. Nondestructive analysis of automotive paints with spectral domain optical coherence tomography.

    Science.gov (United States)

    Dong, Yue; Lawman, Samuel; Zheng, Yalin; Williams, Dominic; Zhang, Jinke; Shen, Yao-Chun

    2016-05-01

    We have demonstrated for the first time, to our knowledge, the use of optical coherence tomography (OCT) as an analytical tool for nondestructively characterizing the individual paint layer thickness of multiple layered automotive paints. A graph-based segmentation method was used for automatic analysis of the thickness distribution for the top layers of solid color paints. The thicknesses measured with OCT were in good agreement with the optical microscope and ultrasonic techniques that are the current standard in the automobile industry. Because of its high axial resolution (5.5 μm), the OCT technique was shown to be able to resolve the thickness of individual paint layers down to 11 μm. With its high lateral resolution (12.4 μm), the OCT system was also able to measure the cross-sectional area of the aluminum flakes in a metallic automotive paint. The range of values measured was 300-1850  μm2. In summary, the proposed OCT is a noncontact, high-resolution technique that has the potential for inclusion as part of the quality assurance process in automobile coating.

  8. Trace Chemical Analysis Methodology

    Science.gov (United States)

    1980-04-01

    147 65 Modified DR/2 spectrophotometer face ........... ... 150 66 Colorimetric oil analysis field test kit ......... .. 152 67 Pictorial step...Assisted Pattern Recognitio Perhaps the most promising application of pattern recogntiontechniques for this research effort is the elucidation ".f the...large compartment on the spectrophotomer face . The screwdriver is used to adjust the zero adjust and light ad- just knobs, and the stainless steel

  9. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    Science.gov (United States)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  10. Non-destructive analysis for the inspection and control of metalic monuments and historical manuscripts

    International Nuclear Information System (INIS)

    Faubel, W.; Heissler, S.; Klewe-Nebenius, H.; Willin, E.

    2003-01-01

    As a contribution to the increasing efforts to preserve cultural heritage of historical bronze monuments exposed to atmospheric corrosion as well as historical books and manuscripts non-destructive analytical methods are highly desirable enabling an in-situ examination of the surface status of an object. The development and application of novel non-destructive analytical methods based on the photoacoustic and photothermal deflection spectroscopy allowed to investigate the state of bronze patina as well as the effectiveness of conservation procedures for historical manuscripts. (orig.)

  11. An in-beam Compton-suppressed Ge spectrometer for nondestructive neutron activation analysis

    International Nuclear Information System (INIS)

    Zaghloul, R.; Abd El-Haleam, A.; Mostafa, M.; Gantner, E.; Ache, H.J.

    1993-04-01

    A high-efficiency compton background suppressed gamma-ray spectrometer by anti-coincidence counting with a NaI(Tl)-shield around a central HPGe-detector for in-beam prompt gamma-ray neutron activation analysis (AC-PGNAA) using a Cf-252 neutron source has been designed and built to provide simultaneous anti-coincidence spectrometry of natural, industrial and environmental samples. The spectrometer consists of a high-purity germanium detector as the main detector and a large volume cylindrical NaI(Tl) detector as a guard detector. The assembly has the ability to measure instantaneously, simultaneously and nondestructively bulk samples up to about 50 cm 3 . Major constituent elements in several rocks and minerals such as H, B, N, Na, Mg, Al, Si, Cl, K, Ca, P, S, Ti, Fe, Sm, Nd, Mn and Gd can be determined, while oxygen cannot be measured due to its small capture cross section (0.27 mb). Several important minor and trace elements such as B, Cd and Hg beside the low residual activity, rare earths and short-lived isotopes could be detected. The sensitivity of the AC-PGNAA technique is limited by the available neutron flux at the target matrix and the neutron absorption cross section of the elements of interest. PGNAA has the advantage to estimate the constituent elements which are difficult to be measured through the delayed gamm-ray measurements such as B, Bi, C, H, P, Tl, Be, Cl and S in industrial and reference materials and those elements which are transformed into other stable isotopes when undergoing neutron capture. The design of the spectrometer assembly, its properties and performance are described

  12. Review of research on non-destructive analysis of reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, S L; Gardner, D G [Westinghouse Electric Corp. (United States). Atomic Power Dept.

    1959-01-01

    This report contains a selected bibliography on the nondestructive assay of irradiated and unirradiated reactor fuel assemblies. The report also includes a discussion and evaluation of these papers in the light of the problems presented by variations in enrichment, alloying, cladding, geometrical arrangement, etc., among the many kinds of fuel assemblies. Suggestions for further development work are made. (author).

  13. The use of computers for the performance and analysis of non-destructive testing

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.

    1988-01-01

    Examples of the use of computers in non-destructive testing are related. Ultrasonic testing is especially addressed. The employment of computers means improvements for the user, the possibility of registering the reflector position, storage of test data and help with documentation. The test can be automated. The introduction of expert systems is expected for the future. 8 figs., 12 refs

  14. Nondestructive testing method

    International Nuclear Information System (INIS)

    Porter, J.F.

    1996-01-01

    Nondestructive testing (NDT) is the use of physical and chemical methods for evaluating material integrity without impairing its intended usefulness or continuing service. Nondestructive tests are used by manufaturer's for the following reasons: 1) to ensure product reliability; 2) to prevent accidents and save human lives; 3) to aid in better product design; 4) to control manufacturing processes; and 5) to maintain a uniform quality level. Nondestructive testing is used extensively on power plants, oil and chemical refineries, offshore oil rigs and pipeline (NDT can even be conducted underwater), welds on tanks, boilers, pressure vessels and heat exchengers. NDT is now being used for testing concrete and composite materials. Because of the criticality of its application, NDT should be performed and the results evaluated by qualified personnel. There are five basic nondestructive examination methods: 1) liquid penetrant testing - method used for detecting surface flaws in materials. This method can be used for metallic and nonmetallic materials, portable and relatively inexpensive. 2) magnetic particle testing - method used to detect surface and subsurface flaws in ferromagnetic materials; 3) radiographic testing - method used to detect internal flaws and significant variation in material composition and thickness; 4) ultrasonic testing - method used to detect internal and external flaws in materials. This method uses ultrasonics to measure thickness of a material or to examine the internal structure for discontinuities. 5) eddy current testing - method used to detect surface and subsurface flaws in conductive materials. Not one nondestructive examination method can find all discontinuities in all of the materials capable of being tested. The most important consideration is for the specifier of the test to be familiar with the test method and its applicability to the type and geometry of the material and the flaws to be detected

  15. Nondestructive testing: Neutron radiography and neutron activation. (Latest citations from the INSPEC: Information services for the physics and engineering communities database). Published Search

    International Nuclear Information System (INIS)

    1993-08-01

    The bibliography contains citations concerning the technology of neutron radiography and neutron activation for nondestructive testing of materials. The development and evaluation of neutron activation analysis and neutron diffraction examination of liquids and solids are presented. Citations also discuss nondestructive assay, verification, evaluation, and multielement analysis of biomedical, environmental, industrial, and geological materials. Nondestructive identification of chemical agents, explosives, weapons, and drugs in sealed containers are explored. (Contains a minimum of 83 citations and includes a subject term index and title list.)

  16. Nondestructive Analysis of Astromaterials by Micro-CT and Micro-XRF Analysis for PET Examination

    Science.gov (United States)

    Zeigler, R. A.; Righter, K.; Allen, C. C.

    2013-01-01

    An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of the PET is to characterize and classify returned samples and make this information available to the larger research community who then conduct more in-depth studies on the samples. The PET tries to minimize the impact their work has on the sample suite, which has in the past limited the PET work to largely visual, nonquantitative measurements (e.g., optical microscopy). More modern techniques can also be utilized by a PET to nondestructively characterize astromaterials in much more rigorous way. Here we discuss our recent investigations into the applications of micro-CT and micro-XRF analyses with Apollo samples and ANSMET meteorites and assess the usefulness of these techniques in future PET. Results: The application of micro computerized tomography (micro-CT) to astromaterials is not a new concept. The technique involves scanning samples with high-energy x-rays and constructing 3-dimensional images of the density of materials within the sample. The technique can routinely measure large samples (up to approx. 2700 cu cm) with a small individual voxel size (approx. 30 cu m), and has the sensitivity to distinguish the major rock forming minerals and identify clast populations within brecciated samples. We have recently run a test sample of a terrestrial breccia with a carbonate matrix and multiple igneous clast lithologies. The test results are promising and we will soon analyze a approx. 600 g piece of Apollo sample 14321 to map out the clast population within the sample. Benchtop micro x-ray fluorescence (micro-XRF) instruments can rapidly scan large areas (approx. 100 sq cm) with a small pixel size (approx. 25 microns) and measure the (semi) quantitative composition of largely unprepared surfaces for all elements between Be and U, often with sensitivity on the order of a approx. 100 ppm. Our recent

  17. Effectiveness Analysis of a Non-Destructive Single Event Burnout Test Methodology

    CERN Document Server

    Oser, P; Spiezia, G; Fadakis, E; Foucard, G; Peronnard, P; Masi, A; Gaillard, R

    2014-01-01

    It is essential to characterize power MosFETs regarding their tolerance to destructive Single Event Burnouts (SEB). Therefore, several non-destructive test methods have been developed to evaluate the SEB cross-section of power devices. A power MosFET has been evaluated using a test circuit, designed according to standard non-destructive test methods discussed in the literature. Guidelines suggest a prior adaptation of auxiliary components to the device sensitivity before the radiation test. With the first value chosen for the de-coupling capacitor, the external component initiated destructive events and affected the evaluation of the cross-section. As a result, the influence of auxiliary components on the device cross-section was studied. This paper presents the obtained experimental results, supported by SPICE simulations, to evaluate and discuss how the circuit effectiveness depends on the external components.

  18. Non-destructive analysis in a study of the religious art objects

    International Nuclear Information System (INIS)

    Vornicu, Nicoleta; Bibire, Cristina; Geba, Maria

    2009-01-01

    The icon Descending of the Saint Spirit from Bucium Church, dating in the year 1814 and was done in tempera on wood technology. The characterization of cultural heritage materials is essential for the comprehension of their degradation mechanisms. The present study aims at identifying the pigments in the various layers, establishing the possible existence of an organic binder and scientifically evaluating the state of preservation. To this end, were used non-destructive methods, as: microscopic (SEM), XRF and spectroscopic (FTIR).

  19. IDENTIFYING FRACTURE ORIGIN IN CERAMICS BY COMBINATION OF NONDESTRUCTIVE TESTING AND DISCRETE ELEMENT ANALYSIS

    International Nuclear Information System (INIS)

    Senapati, Rajeev; Zhang Jianmei

    2010-01-01

    Advanced ceramic materials have been extensively applied in aerospace, automobile and other industries. However, the reliability of the advanced ceramics is a major concern because of the brittle nature of the materials. In this paper, combination of nondestructive testing and numerical modeling Discrete Element Method is proposed to identify the fracture origin in ceramics. The nondestructive testing--laser scattering technology is first performed on the ceramic components to reveal the machining-induced damage such as cracks and the material-inherent flaws such as voids, then followed by the four point bending test. Discrete Element software package PFC 2D is used to simulate the four point bending test and try to identify where the fractures start. The numerical representation of the ceramic materials is done by generating a densely packed particle system using the specimen genesis procedure and then applying the suitable microparameters to the particle system. Simulation of four point bending test is performed on materials having no defects, materials having manufacturing-induced defects like cracks, and materials having material-inherent flaws like voids. The initiation and propagation of defects is modeled and the mean contact force on the loading ball is also plotted. The simulation prediction results are well in accordance with the nondestructive testing results.

  20. Use of destructive and nondestructive methods of analysis for quality assurance at MOX fuel production in the Russia

    International Nuclear Information System (INIS)

    Bibilashvili, Y.K.; Rudenko, V.S.; Chorokhov, N.A.; Korovin, Y.I.; Petrov, A.M.; Vorobiev, A.V.; Mukhortov, N.F.; Smirnov, Y.A.; Kudryavtsev, V.N.

    2000-01-01

    Parameters of MOX fuel with various plutonium contents are considered from the point of view of necessity of their control for quality assurance. Destructive and nondestructive methods used for this purpose in the Russia are described: controlled potential coulometry for determination of uranium or/and plutonium contents, their ratio and oxygen factor; mass spectrometry for determination of uranium and plutonium isotopic composition; chemical spectral emission method for determination of contents of 'metal' impurities, boron and silicon, and methods of determination of gas forming impurities. Capabilities of nondestructive gamma-ray spectrometry techniques are considered in detail and results of their use at measurement of uranium and plutonium isotopic composition in initial dioxides, at determination of contents of uranium and plutonium, and uniformity of their distribution in MOX powder and pellets. The necessity of correction of algorithm of the MGA program is shown for using the program at analyses of gamma-ray spectra of MOX with low contents of low burnup plutonium. (authors)

  1. Non-destructive neutron activation analysis studies on a withering disease of lowland rice occurring near an iodine plant

    International Nuclear Information System (INIS)

    Fukuzaki, N.; Moriyama, N.

    1985-01-01

    The withering disease of lowland rice that seems to be an injury caused by excess iodine was recognized in the paddy fields near an iodine isolation plant. To investigate the cause of this disease, a pot experiment of lowland rice was performed and iodine contents of soils and rice plants were determined by non-destructive neutron activation analysis. The soils of the disease-produced paddy fields were remarkably polluted with iodine, its content in roots of diseased rice plants was higher than the reported limiting values for the disease. (author)

  2. Fourier Transform Infrared Spectroscopy (FT-IR) and Simple Algorithm Analysis for Rapid and Non-Destructive Assessment of Developmental Cotton Fibers.

    Science.gov (United States)

    Liu, Yongliang; Kim, Hee-Jin

    2017-06-22

    With cotton fiber growth or maturation, cellulose content in cotton fibers markedly increases. Traditional chemical methods have been developed to determine cellulose content, but it is time-consuming and labor-intensive, mostly owing to the slow hydrolysis process of fiber cellulose components. As one approach, the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy technique has also been utilized to monitor cotton cellulose formation, by implementing various spectral interpretation strategies of both multivariate principal component analysis (PCA) and 1-, 2- or 3-band/-variable intensity or intensity ratios. The main objective of this study was to compare the correlations between cellulose content determined by chemical analysis and ATR FT-IR spectral indices acquired by the reported procedures, among developmental Texas Marker-1 (TM-1) and immature fiber ( im ) mutant cotton fibers. It was observed that the R value, CI IR , and the integrated intensity of the 895 cm -1 band exhibited strong and linear relationships with cellulose content. The results have demonstrated the suitability and utility of ATR FT-IR spectroscopy, combined with a simple algorithm analysis, in assessing cotton fiber cellulose content, maturity, and crystallinity in a manner which is rapid, routine, and non-destructive.

  3. Study on the identification method of chemical warfare agents with spectroscopy of neutron induced γ rays

    International Nuclear Information System (INIS)

    Liu Boxue; Li Yun; Li Xiangbao

    1996-01-01

    The paper briefly describes some non-destructive verification technologies of chemical warfare agents in-site, and some application of neutron induced gamma ray analysis, such as multi-elements analysis of coal, hidden explosive detection and identification of chemical agents. It also describes some problems in developing the portable isotopic neutron spectroscopy for non-destructive evaluation of chemical warfare agents

  4. Chemical analysis of geological samples

    International Nuclear Information System (INIS)

    Malhotra, R.K.

    1997-01-01

    Most of the analytical methodology used in geochemical exploration has been based on molecular absorption, atomic absorption, and ICP-AES, ICPMAS etc. Detection limit and precision are factors in the choice of methodology in search of metallic ores and are related to the accuracy of data. A brief outline of the various chemical analysis techniques explaining essentially the basics of measurement principles and instrumentation is discussed

  5. Evaluation of the veracity of one work by the artist Di Cavalcanti through non-destructive techniques: XRF, imaging and brush stroke analysis

    International Nuclear Information System (INIS)

    Kajiya, E.A.M.; Campos, P.H.O.V.; Rizzutto, M.A.; Appoloni, C.R.; Lopes, F.

    2014-01-01

    This paper presents systematic studies and analysis that contributed to the identification of the forgery of a work by the artist Emiliano Augusto Cavalcanti de Albuquerque e Melo, known as Di Cavalcanti. The use of several areas of expertise such as brush stroke analysis (“pinacologia”), applied physics, and art history resulted in an accurate diagnosis for ascertaining the authenticity of the work entitled “Violeiro” (1950). For this work we used non-destructive methods such as techniques of infrared, ultraviolet, visible and tangential light imaging combined with chemical analysis of the pigments by portable X-Ray Fluorescence (XRF) and graphic gesture analysis. Each applied method of analysis produced specific information that made possible the identification of materials and techniques employed and we concluded that this work is not consistent with patterns characteristic of the artist Di Cavalcanti. - Highlights: • Identification of the forgery of an easel painting of Di Cavalcanti. • Diagnosis for ascertaining the authenticity of the work entitled “Violeiro” (1950). • X-Ray fluorescence spectroscopy and image analysis. • Image analyses allow some identification as hidden underlying lines. • Materials and techniques not characteristic of the artist

  6. Nondestructive mapping of chemical composition and structural qualities of group III-nitride nanowires using submicron beam synchrotron-based X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, P.L., E-mail: plb2@njit.edu [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gautier, S. [LMOPS + UMI: Laboratoire Matériaux Optiques, Photonique et micro-nano Systèmes, UMR CNRS 7132, Université de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz, France, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gmili, Y.El.; Moudakir, T. [UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Sirenko, A.A. [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Kazimirov, A. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Cai, Z.-H. [Advanced Photon Source, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Martin, J. [LMOPS + UMI: Laboratoire Matériaux Optiques, Photonique et micro-nano Systèmes, UMR CNRS 7132, Université de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz, France, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Goh, W.H. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Martinez, A.; Ramdane, A.; Le Gratiet, L. [Laboratoire de Photonique et de Nanostructures, UPR CNRS 20, Route de Nozay, 91460 Marcoussis (France); Maloufi, N. [Laboratoire d' Etude des Textures et Application aux Matériaux UMR CNRS 7078 Ile du Saulcy 57045 METZ cedex 1 (France); Assouar, M.B. [Laboratoire de Physique des Milieux Ionisés et Applications, Nancy University, CNRS, BP 239, F-54506 Vandoeuvre-lès-Nancy Cédex (France); Ougazzaden, A. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France)

    2013-08-31

    Submicron beam synchrotron-based X-ray diffraction (XRD) techniques have been developed and used to accurately and nondestructively map chemical composition and material quality of selectively grown group III-nitride nanowires. GaN, AlGaN, and InGaN multi-quantum-well nanowires have been selectively grown on lattice matched and mismatched substrates, and the challenges associated with obtaining and interpreting submicron beam XRD results are addressed and solved. Nanoscale cathodoluminescence is used to examine exciton behavior, and energy-dispersive X-ray spectroscopy is used to verify chemical composition. Scanning transmission electron microscopy is later used to paint a more complete picture. The advantages of submicron beam XRD over other techniques are discussed in the context of this challenging material system. - Highlights: ► We used nano selective area growth to create nanowires of GaN, AlGaN and InGaN/GaN. ► We characterized them by synchrotron-based submicron beam X-ray diffraction (XRD). ► This technique accurately determined chemical and crystallographic properties. ► Challenges of XRD are addressed in the context of this challenging material system. ► Advantages of XRD over other characterization methods are discussed.

  7. Non-destructive analysis and appraisal of ancient Chinese porcelain by PIXE

    International Nuclear Information System (INIS)

    Cheng, H.S.; Zhang, Z.Q.; Xia, H.N.; Jiang, J.C.; Yang, F.J.

    2002-01-01

    This paper reports the results of the PIXE analysis on ancient Chinese blue and white porcelain fired at Kuan Kiln (Jingdezhen, Jiangxi province) during 13-19th century. The major, minor and trace element of porcelain body, white glaze and blue glaze were determined by PIXE. In this paper the chemical compositions of porcelain body, white glaze and blue glaze measured from Yuan (AD 1206-1368), Ming (AD 1368-1644) and Qing (AD 1616-1911) blue and white porcelain are present. The cobalt blue pigment used in Yuan, Ming and Qing are also discussed

  8. Non-destructive analysis and appraisal of ancient Chinese porcelain by PIXE

    Science.gov (United States)

    Cheng, H. S.; Zhang, Z. Q.; Xia, H. N.; Jiang, J. C.; Yang, F. J.

    2002-05-01

    This paper reports the results of the PIXE analysis on ancient Chinese blue and white porcelain fired at Kuan Kiln (Jingdezhen, Jiangxi province) during 13-19th century. The major, minor and trace element of porcelain body, white glaze and blue glaze were determined by PIXE. In this paper the chemical compositions of porcelain body, white glaze and blue glaze measured from Yuan (AD 1206-1368), Ming (AD 1368-1644) and Qing (AD 1616-1911) blue and white porcelain are present. The cobalt blue pigment used in Yuan, Ming and Qing are also discussed.

  9. Analysis of Thousands of Prehistoric Mediterranean Obsidian Artifacts Using a Nondestructive Portable X-Ray Fluorescence Spectrometer

    Science.gov (United States)

    Tykot, Robert

    A portable, hand-held X-ray fluorescence spectrometer has been used for a decade to elementally analyze prehistoric obsidian artifacts in the Mediterranean. Nearly 400 geological obsidian samples and 7500 obsidian artifacts have been analyzed. The pXRF can distinguish all individual sources, as well as assign artifacts specifically to most subsources. For the island sources of Lipari, Pantelleria, Sardinia, and Melos, it is important to address the usage of obsidian from specific subsources due to human selection based on physical properties of the raw material and their production practices, which may have changed over time from the Early Neolithic to the Bronze Age. The analysis of 50 or more artifacts from 60 different archaeological sites allows for statistical comparison between sites, and their contexts, geographic areas (e.g. coastal/inland, highland/lowland) and distance from geological sources. The frequency of transport between island sources and mainland sites is suggestive of maritime capabilities also for the transport of domesticated animals, ceramics, and other materials. This presentation will specifically address potential limitations of the portable XRF, including non-destructive surface analysis of potentially heterogeneous materials, and limited trace element detection compared to other analytical methods, versus its highly beneficial ``package'' of analyzing great numbers of artifacts non-destructively and rapidly without needing to export them from museums and facilities in many countries.

  10. Rapid chemical analysis of allanite

    International Nuclear Information System (INIS)

    Nishiyama, Goro; Hayashi, Hiroshi

    1981-01-01

    Rapid chemical analysis of allanite was studied by atomic absorption spectrophotometry. Powdered sample was fused with mixture of sodium carbonate anhydrous and borax (4 : 1 weight) in platinum crucible and sample solution was prepared. SiO 2 , Fe 2 O 3 , Al 2 O 3 , MnO and rare earth metals were determined by atomic absorption spectrophotometry, CaO, MgO and Ce 2 O 3 by titration, ThO 2 by colorimetry, and La 2 O 3 by flame photometry respectively. For sample solution treated with hydrofluoric acid and sulfuric acid. Na 2 O and K 2 O were determined by atomic absorption spectrophotometry, TiO 2 and P 2 O 5 by colorimetry. Chemical analyses for four samples were carried out and gave consistent results. (author)

  11. An extended chemical analysis of gallstone

    OpenAIRE

    Chandran, P.; Kuchhal, N. K.; Garg, P.; Pundir, C. S.

    2007-01-01

    Chemical composition of gall stones is essential for aetiopathogensis of gallstone disease. We have reported quantitative chemical analysis of total cholesterol bilirubin, calcium, iron and inorganic phosphate in 120 gallstones from haryana. To extend this chemical analysis of gall stones by studying more cases and by analyzing more chemical constituents. A quantitative chemical analysis of total cholesterol, total bilirubin, fatty acids, triglycerides, phospholipids, bile acids, soluble prot...

  12. Inverse Kinematic Analysis and Evaluation of a Robot for Nondestructive Testing Application

    Directory of Open Access Journals (Sweden)

    Zongxing Lu

    2015-01-01

    Full Text Available The robot system has been utilized in the nondestructive testing field in recent years. However, only a few studies have focused on the application of ultrasonic testing for complex work pieces with the robot system. The inverse kinematics problem of the 6-DOF robot should be resolved before the ultrasonic testing task. A new effective solution for curved-surface scanning with a 6-DOF robot system is proposed in this study. A new arm-wrist separateness method is adopted to solve the inverse problem of the robot system. Eight solutions of the joint angles can be acquired with the proposed inverse kinematics method. The shortest distance rule is adopted to optimize the inverse kinematics solutions. The best joint-angle solution is identified. Furthermore, a 3D-application software is developed to simulate ultrasonic trajectory planning for complex-shape work pieces with a 6-DOF robot. Finally, the validity of the scanning method is verified based on the C-scan results of a work piece with a curved surface. The developed robot ultrasonic testing system is validated. The proposed method provides an effective solution to this problem and would greatly benefit the development of industrial nondestructive testing.

  13. Chemical imaging and solid state analysis at compact surfaces using UV imaging

    DEFF Research Database (Denmark)

    Wu, Jian X.; Rehder, Sönke; van den Berg, Frans

    2014-01-01

    and excipients in a non-invasive way, as well as mapping the glibenclamide solid state form. An exploratory data analysis supported the critical evaluation of the mapping results and the selection of model parameters for the chemical mapping. The present study demonstrated that the multi-wavelength UV imaging......Fast non-destructive multi-wavelength UV imaging together with multivariate image analysis was utilized to visualize distribution of chemical components and their solid state form at compact surfaces. Amorphous and crystalline solid forms of the antidiabetic compound glibenclamide...

  14. Example value-impact analysis of non-destructive examination methods used for inservice inspection of BWR piping

    International Nuclear Information System (INIS)

    Tabatabai, A.S.; Simonen, F.A.

    1985-12-01

    This paper describes work recently completed at Pacific Northwest Laboratory (PNL) to use value-impact (V/I) analysis methods to help guide research to improve the effectiveness of inservice inspection (ISI) procedures at nuclear power plants. The example developed at PNL uses the results of probabilistic fracture mechanics and probabilistic risk analysis (PRA) studies to compare three generic categories of non-destructive examination (NDE) methods. These NDE methods are used to detect possible pipe cracks such as those induced by intergranular stress corrosion (IGSCC). The results of the analysis of this example include (1) quantification of the effectiveness of ISI in increasing plant safety in terms of reduction in core-melt frequency, (2) estimates of the industry cost of performing ISI, (3) estimates of radiation exposures to plant personnel as a result of performing ISI, and (4) potential areas of improvement in the NDE and ISI process

  15. Non-destructive, high-content analysis of wheat grain traits using X-ray micro computed tomography

    Directory of Open Access Journals (Sweden)

    Nathan Hughes

    2017-11-01

    Full Text Available Abstract Background Wheat is one of the most widely grown crop in temperate climates for food and animal feed. In order to meet the demands of the predicted population increase in an ever-changing climate, wheat production needs to dramatically increase. Spike and grain traits are critical determinants of final yield and grain uniformity a commercially desired trait, but their analysis is laborious and often requires destructive harvest. One of the current challenges is to develop an accurate, non-destructive method for spike and grain trait analysis capable of handling large populations. Results In this study we describe the development of a robust method for the accurate extraction and measurement of spike and grain morphometric parameters from images acquired by X-ray micro-computed tomography (μCT. The image analysis pipeline developed automatically identifies plant material of interest in μCT images, performs image analysis, and extracts morphometric data. As a proof of principle, this integrated methodology was used to analyse the spikes from a population of wheat plants subjected to high temperatures under two different water regimes. Temperature has a negative effect on spike height and grain number with the middle of the spike being the most affected region. The data also confirmed that increased grain volume was correlated with the decrease in grain number under mild stress. Conclusions Being able to quickly measure plant phenotypes in a non-destructive manner is crucial to advance our understanding of gene function and the effects of the environment. We report on the development of an image analysis pipeline capable of accurately and reliably extracting spike and grain traits from crops without the loss of positional information. This methodology was applied to the analysis of wheat spikes can be readily applied to other economically important crop species.

  16. Application of novel techniques of medical imaging to the non-destructive analysis of carbon-carbon composite materials

    Science.gov (United States)

    More, Nicole; Basse-Cathalinat, Bernard; Baquey, Charles; Lacroix, Francis; Ducassou, Dominique

    1983-09-01

    Rigorous control of all stages of the fabrication of a composite material is vital. It is best if this control uses non-destructive methods, so allowing the same item to be studied during the different stages of its manufacture. Much research has already been done to perfect such investigations in medicine, so providing a minimum of trauma to the patient. Most of these medical applications use radioactive isotopes. The present work describes the application of currently available techniques, employed in nuclear medicine, for the analysis of the density and porosity of carbon-carbon composite materials. Two most powerful medical techniques are applied to measure variations of density of a composite material. These are transmission computed tomography using X-rays and the absorption of photons. The quantitative measurement of porosity can be derived from a scintigraphic technique which allows a detailed non-invasive study of the interior of the composite and the spatial variation of porosity at every stage of its fabrication. For each type of investigation, the principle of the method, a description of the apparatus and several examples of results obtained are presented. The advantages and limitations of these techniques which complement those currently available are discussed, together with future possibilities for non-destructive control of industrial processes. It is likely that their proven success in medicine will be extended to the other fields described.

  17. Chemical analysis as production guide

    International Nuclear Information System (INIS)

    Bouzigues, H.; Fontaine, A.; Patigny, P.

    1975-01-01

    All piloting data of chemical processing plants are based on the results of analysis. The first part of this article describes a system of analysers adapted to the needs of the Pierrelatte plant, with management of signals collected by the factory computer. Part two shows the influence of analytical development in the establishment of material balance sheets for the Marcoule spent fuel processing plant. Part three stresses the contribution of the automation of analytical test processes at the La Hague spent fuel processing plant. In all three cases the progress in analytical methods greatly improves the safety, reliability and response time of the various operations [fr

  18. Radiation control in the nondestructive inspection

    International Nuclear Information System (INIS)

    Kariya, Yukihiro

    1982-01-01

    In the early days of radiation nondestructive inspection about ten years ago, the loss of radiation sources and careless radiation exposure gave the impression of radiography inspection being immediately slipshod management. In this problem, the peculiar nature of the business in this field is involved. In Nondestructive Inspection Co., Ltd., besides the safety management of radioisotopes, the radiation exposure control of personnel in the regular inspection of nuclear power plants has become increasingly important. The following matters are described: radiation utilization in nondestructive inspection (X- and #betta#-ray radiography, #betta#-ray leak test on shield), radiation control problems in nondestructive inspection business (the peculiar aspects of the business, the analysis of the incidents related with nondestructive inspection), and the practice of radiation control in nondestructive inspection in Nondestructive Inspection Co., Ltd. (Mori, K.)

  19. Analysis of nifedipine content in transdermal drug delivery system using non-destructive visible spectrophotometry technique

    International Nuclear Information System (INIS)

    Normaizira Hamidi; Normaizira Hamidi; Normaizira Hamidi; Mohd Nasir Taib; Mohd Nasir Taib; Wui, Wong Tin; Wui, Wong Tin

    2008-01-01

    The applicability of visible spectrophotometry technique as a tool to determine the drug content of polymeric film for use as a transdermal drug delivery system was investigated. Hydroxypropylmethycellulose (HPMC) was selected as the matrix polymer and nifedipine as the model drug. Blank and nifedipine-loaded HPMC films were prepared using the solvent evaporation method. The absorbance spectra of these films under the visible wavelengths between 400 and 800 nm were assessed and compared against the drug content values obtained by means of the conventional destructive UV- spectrophotometry technique. The latter required the use of a solvent system which contained methanol, a harmful organic component in pharmaceutical applications. The results indicated that the absorbance values, attributed to nifedipine, at the wavelengths of 545, 585, 638 and 755nm were significantly correlated to the drug content values obtained using the chemical assay method (Pearson correlation value: r = 0.990 and p < 0.01). The visible spectrophotometry technique is potentially suitable for use to determine the nifedipine content of films owing to its nature of characterization of transdermal drug delivery system which does not require sample destruction during the process of measurement. The samples are recoverable from test and analysis of the entire batch of samples is possible without the need of solvents and chemical reagents. (author)

  20. Chemical analysis by nuclear techniques

    International Nuclear Information System (INIS)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y.

    2002-01-01

    This state art report consists of four parts, production of micro-particles, analysis of boron, alpha tracking method and development of neutron induced prompt gamma ray spectroscopy (NIPS) system. The various methods for the production of micro-paticles such as mechanical method, electrolysis method, chemical method, spray method were described in the first part. The second part contains sample treatment, separation and concentration, analytical method, and application of boron analysis. The third part contains characteristics of alpha track, track dectectors, pretreatment of sample, neutron irradiation, etching conditions for various detectors, observation of track on the detector, etc. The last part contains basic theory, neutron source, collimator, neutron shields, calibration of NIPS, and application of NIPS system

  1. Chemical analysis by nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, S. C.; Kim, W. H.; Park, Y. J.; Song, B. C.; Jeon, Y. S.; Jee, K. Y.; Pyo, H. Y

    2002-01-01

    This state art report consists of four parts, production of micro-particles, analysis of boron, alpha tracking method and development of neutron induced prompt gamma ray spectroscopy (NIPS) system. The various methods for the production of micro-paticles such as mechanical method, electrolysis method, chemical method, spray method were described in the first part. The second part contains sample treatment, separation and concentration, analytical method, and application of boron analysis. The third part contains characteristics of alpha track, track dectectors, pretreatment of sample, neutron irradiation, etching conditions for various detectors, observation of track on the detector, etc. The last part contains basic theory, neutron source, collimator, neutron shields, calibration of NIPS, and application of NIPS system.

  2. Nondestructive analysis of lithographic patterns with natural line edge roughness from Mueller matrix ellipsometric data

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiuguo; Shi, Yating; Jiang, Hao [State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhang, Chuanwei [State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wuhan Eoptics Technology Co. Ltd., Wuhan, Hubei 430075 (China); Liu, Shiyuan, E-mail: shyliu@hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wuhan Eoptics Technology Co. Ltd., Wuhan, Hubei 430075 (China)

    2016-12-01

    Highlights: • MME is applied to characterize lithographic patterns with natural LER. • A computationally efficient approach based on EMA is proposed to model LER. • Both theoretical and experimental results verify the effective modeling approach. • The comparison between MME and SEM results reveals the potential of this technique. - Abstract: Mueller matrix ellipsometry (MME) is applied to characterize lithographic patterns with natural line edge roughness (LER). A computationally efficient approach based on effective medium approximation is proposed to model the effects of LER in MME measurements. We present both the theoretical and experimental results on lithographic patterns with realistic LER which demonstrate that MME in combination with the proposed effective modeling method is capable of quantifying LER amplitudes. Quantitative comparisons between the MME and scanning electron microscopy measured results also reveal the strong potential of this technique for in-line nondestructive line roughness monitoring.

  3. Non-Destructive Analysis of Degradation Mechanisms in Cycle-Aged Graphite/LiCoO2 Batteries

    Directory of Open Access Journals (Sweden)

    Liqiang Zhang

    2014-09-01

    Full Text Available Non-destructive analysis of degradation mechanisms can be very beneficial for the prognostics and health management (PHM study of lithium-ion batteries. In this paper, a type of graphite/LiCoO2 battery was cycle aged at high ambient temperature, then 25 parameters of the multi-physics model were identified. Nine key parameters degraded with the cycle life, and they were treated as indicators of battery degradation. Accordingly, the degradation mechanism was discussed by using the multi-physics model and key parameters, and the reasons for capacity fade and the internal resistance increase were analyzed in detail. All evidence indicates that the formation reaction of the solid electrolyte interface (SEI film is the main cause of battery degradation at high ambient temperature.

  4. Determination of Na, Mn and Cu in cocoon, raw silk and degummed silk by nondestructive activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Y; Ishiguro, Y [Industrial Research Inst. of Kanagawa Prefecture, Yokohama (Japan)

    1976-01-01

    The sodium, manganese and copper contained in cocoons, raw silk and degummed silk thread were determined by the nondestructive activation analysis. After each sample was irradiated with the thermal neutron flux of 5 x 10/sup 11/n/cm/sup 2/.sec, its ..gamma..-ray spectrum was measured with a NaI(Tl) detector. With the photoelectric peaks at 511 keV (/sup 64/Cu), 1368 keV (/sup 24/Na) and 847 keV (/sup 56/Mn), each element was quantitatively determined and its content was obtained. The measurement of the ..gamma..-ray spectra of samples with a Ge (Li) detector proved the presence of An, Sb, Fe, Zn, Cr, Sc, Co, etc. Large amounts of Na and Cu were detected in the sericin portion of cocoons, and the adhesion of Cu from a reeling-off machine to raw silk was also observed during the process of degumming cocoons to make raw silk.

  5. Spatial distribution pattern analysis of subtidal macroalgae assemblages by a non-destructive rapid assessment method

    Science.gov (United States)

    Guinda, Xabier; Juanes, José Antonio; Puente, Araceli; Echavarri-Erasun, Beatriz

    2012-01-01

    The extensive field work carried out over the last century has allowed the worldwide description of general distribution patterns and specific composition of rocky intertidal communities. However, the information concerning subtidal communities on hard substrates is more recent and scarce due to the difficulties associated with working in such environments. In this work, a non-destructive method is applied to the study and mapping of subtidal rocky bottom macroalgae assemblages on the coast of Cantabria (N Spain) which is quick, easy and economical. Gelidium corneum and Cystoseira baccata were the dominant species, however, the composition and coverage of macroalgae assemblages varied significantly at different locations and depth ranges. The high presence of Laminaria ochroleuca and Saccorhiza polyschides, characteristic of colder waters, shows the transitional character of this coastal area. The results obtained throughout this study have been very useful to the application of the European Water Framework Directive (WFD 2000/60/EC) and could be of great interest for the future conservation and management of these ecosystems (e.g. Habitats Directive 92/43/EEC).

  6. Analysis of non-destructive current simulators of flux compression generators.

    Science.gov (United States)

    O'Connor, K A; Curry, R D

    2014-06-01

    Development and evaluation of power conditioning systems and high power microwave components often used with flux compression generators (FCGs) requires repeated testing and characterization. In an effort to minimize the cost and time required for testing with explosive generators, non-destructive simulators of an FCG's output current have been developed. Flux compression generators and simulators of FCGs are unique pulsed power sources in that the current waveform exhibits a quasi-exponential increasing rate at which the current rises. Accurately reproducing the quasi-exponential current waveform of a FCG can be important in designing electroexplosive opening switches and other power conditioning components that are dependent on the integral of current action and the rate of energy dissipation. Three versions of FCG simulators have been developed that include an inductive network with decreasing impedance in time. A primary difference between these simulators is the voltage source driving them. It is shown that a capacitor-inductor-capacitor network driving a constant or decreasing inductive load can produce the desired high-order derivatives of the load current to replicate a quasi-exponential waveform. The operation of the FCG simulators is reviewed and described mathematically for the first time to aid in the design of new simulators. Experimental and calculated results of two recent simulators are reported with recommendations for future designs.

  7. Direct Analysis in Real Time Mass Spectrometry for the Nondestructive Investigation of Conservation Treatments of Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Marcello Manfredi

    2016-01-01

    Full Text Available Today the long-term conservation of cultural heritage is a big challenge: often the artworks were subjected to unknown interventions, which eventually were found to be harmful. The noninvasive investigation of the conservation treatments to which they were subjected to is a crucial step in order to undertake the best conservation strategies. We describe here the preliminary results on a quick and direct method for the nondestructive identification of the various interventions of parchment by means of direct analysis in real time (DART ionization and high-resolution time-of-flight mass spectrometry and chemometrics. The method has been developed for the noninvasive analysis of the Dead Sea Scrolls, one of the most important archaeological discoveries of the 20th century. In this study castor oil and glycerol parchment treatments, prepared on new parchment specimens, were investigated in order to evaluate two different types of operations. The method was able to identify both treatments. In order to investigate the effect of the ion source temperature on the mass spectra, the DART-MS analysis was also carried out at several temperatures. Due to the high sensitivity, simplicity, and no sample preparation requirement, the proposed analytical methodology could help conservators in the challenging analysis of unknown treatments in cultural heritage.

  8. [The Non-Destructive Analysis of Some Ancient Jade Artifacts Unearthed from Henan Province by a Variety of Optical Techniques].

    Science.gov (United States)

    Wang, Kai; Dong, Jun-qing; Zhao, Hong-xia; Gan, Fu-xi; Hu, Yong-qing; Pan, Wen-quan

    2015-09-01

    A total of 14 pieces of ancient jade artifact unearthed from Henan Province were non-destructively analyzed by means of a portable X-ray fluorescence spectrometer (pXRF), laser Raman spectroscopy (portable and mobile) and optical coherence tomography (OCT) technology, comprehensively. The raw materials of ancient jade artifacts could be determined accurately through the combination of pXRF and portable Raman spectrometer in a short time. With the advantages of small size and easy-operation, these two instruments are suitable to in situ non-destructive analysis of ancient jade artifacts. The results of the pXRF shows that these ancient jade artifacts can be divided into 6 categories such as rich in Si Al K, rich in Ca, rich in Si Ca, rich in Si Mg, rich in Si, rich in Ca P. Their main phases have been successfully identified by the portable Raman spectrometer. In the lab, the mobile confocal laser Raman spectrometer, which help us find the Raman vibration peak of [OH] in the tremolite jade, is used to make up the disadvantages of the portable Raman spectrometer such as lower spectral resolution, lower accuracy and narrower measuring range. We can use the OCT to analyze the transparency, fiber fineness and inclusion etc. of the jade artifacts. The confocal laser Raman spectroscopy combined with OCT is used to analyze 2 containing inclusion of tremolite jade samples. OCT image can visually display the distribution characteristics of the inclusion in these 2 samples. Confocal laser Raman spectroscopy can accurately locate the sample surface of inclusion, then we can observe the micro morphology and analyze its phase. The results show that the black inclusion is graphite. This work is very significant to study the geographical origin of jade. Through the study we find, the use of pXRF, laser Raman spectroscopy (portable and mobile) and OCT can be achieved on the identification and analysis of cultural relic's phase composition and texture feature and meet the basic

  9. Non-destructive characterization using pulsed fast-thermal neutrons

    International Nuclear Information System (INIS)

    Womble, P.C.

    1995-01-01

    Explosives, illicit drugs, and other contraband materials contain various chemical elements in quantities and ratios that differentiate them from each other and from innocuous substances. Furthermore, the major chemical elements in coal can provide information about various parameters of importance to the coal industry. In both examples, the non-destructive identification of chemical elements can be performed using pulsed fast-thermal neutrons that, through nuclear reactions, excite the nuclei of the various elements. This technique is being currently developed for the dismantling of nuclear weapons classified as trainers, and for the on-line coal bulk analysis. (orig.)

  10. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application.

    Science.gov (United States)

    Kumar, Raj; Sharma, Vishal

    2017-03-15

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%). Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A method of non-destructive quantitative analysis of the ancient ceramics with curved surface

    International Nuclear Information System (INIS)

    He Wenquan; Xiong Yingfei

    2002-01-01

    Generally the surface of the sample should be smooth and flat in XRF analysis, but the ancient ceramics and hardly match this condition. Two simple methods are put forward in fundamental method and empirical correction method of XRF analysis, so the analysis of little sample or the sample with curved surface can be easily completed

  12. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    International Nuclear Information System (INIS)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong

    2015-01-01

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency

  13. Rapid determination of fluorine in coral skeletons by non-destructive neutron activation analysis using 20F

    International Nuclear Information System (INIS)

    Ramos, A.A.; Ohde, S.; Sirirattanachai, S.; Snidvongs, A.

    2003-01-01

    A rapid non-destructive technique has been proposed for the determination of fluorine in coral skeletons by thermal neutron activation analysis, using the short half-life 20 F nuclide (11.0 s). About 0.2-0.5 g samples were irradiated for 10 seconds in a Triga Mark II Reactor. Soon after the irradiation (25-35 s), measurements of γ-rays were performed with each sample and standard. The method has the drawback of low sensitivity (∼20 ppm of F), and the manual operation employed in the cooling step could lead to less precise measurements. Fluorine in coral standards was determined within ∼8% of analytical precision. The result obtained for the dolomite standard was fairly consistent with literature values, but those for the limestone standard showed to be considerably higher than the reported values. The present method was applied for the determination of fluorine in modern corals from Khang Khao Island, Thailand and Okinawa, Japan. Two core samples of an ancient reef from Funafuti Atoll were measured for fluorine to compare with modern samples. In order to understand the environmental media in which coral grew, the partition of fluorine between seawater and coral skeletons is also discussed. (author)

  14. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency.

  15. Polychlorinated biphenyls pattern analysis: Potential nondestructive biomarker in vertebrates for exposure to cytochrome P450-inducing organochlorines

    Energy Technology Data Exchange (ETDEWEB)

    Brink, N.W. van den; Ruiter-Dijkman, E.M. De; Broekhuizen, S.; Reijnders, P.J.H.; Bosveld, A.T.C.

    2000-03-01

    Biomarkers are valuable instruments to assess the risks from exposure of organisms to organochlorines. In general, however, these biomarkers are either destructive to the animal of interest or extremely difficult to obtain otherwise. In this paper, the authors present a nondestructive biomarker for exposure to cytochrome P450-inducing organochlorines. This marker is based on a pattern analysis of metabolizable and nonmetabolizable polychlorinated biphenyl (PCB) congeners, which occur in several kinds of tissues (and even blood) that can be obtained without serious effects on the organism involved. The fraction of metabolizable PCB congeners is negatively correlated with exposure to PCBs, which are known to induce specific P450 isoenzymes. This relation can be modeled by a logistic curve, which can be used to define critical levels of exposure. In addition, this method creates an opportunity to analyze biomarker responses in archived tissues stored at standard freezing temperatures ({minus}20 C), at which responses to established biomarkers deteriorate. Furthermore, this method facilitates attribution of the enzyme induction to certain classes of compounds.

  16. Molecular activation analysis for chemical speciation studies

    International Nuclear Information System (INIS)

    Chai-Chifang

    1998-01-01

    The term of Molecular Activation Analysis (MAA) refers to an activation analysis method that is able to provide information about the chemical species of elements in system of interests, though its definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the total concentrations are often without any meaning when assessing health or environmental risks of trace elements.In practice, the MAA is a combination of conventional instrumental or radiochemical activation analysis and physical, chemical or biochemical separation techniques. The MAA is able to play a particular role in speciation studies. However, the critical point in the MAA is that it is not permitted to change the primitive chemical species of elements in systems, or the change has to be under control; in the meantime it is not allowed to form the 'new artifact' originally not present in systems. Some practical examples of MAA for chemical species research performed recently in our laboratory will be presented as follows: Chemical species of platinum group elements in sediment; Chemical species of iodine in marine algae; Chemical species of mercury in human tissues; Chemical species of selenium in corn; Chemical species of rare earth elements in natural plant, etc. The merits and limitations of MAA will be described as well. (author)

  17. Nondestructive Analysis of Apollo Samples by Micro-CT and Micro-XRF Analysis: A PET Style Examination

    Science.gov (United States)

    Zeigler, Ryan A.

    2014-01-01

    An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of a PET is to characterize and classify the returned samples, making this information available to the general research community who can then conduct more in-depth studies on the samples. A PET strives to minimize the impact their work has on the sample suite, which often limits the PET work to largely visual measurements and observations like optical microscopy. More modern techniques can also be utilized by future PET to nondestructively characterize astromaterials in a more rigorous way. Here we present our recent analyses of Apollo samples 14321 and 14305 by micro-CT and micro-XRF (respectively), assess the potential for discovery of "new" Apollo samples for scientific study, and evaluate the usefulness of these techniques in future PET efforts.

  18. Nondestructive, energy-dispersive x-ray fluorescence analysis of product-stream concentrations from reprocessed LWR fuels

    International Nuclear Information System (INIS)

    Camp, D.C.; Ruhter, W.D.; Benjamin, S.

    1979-01-01

    Energy-dispersive x-ray fluorescence analysis can be used for quantitative on-line monitoring of the product concentrations in single- or dual-element process streams in a reprocessing plant. The 122-keV gamma ray from 57 Co is used to excite the K x-rays of uranium and/or plutonium in nitric acid solution streams. A collimated HPGe detector is used to measure the excited x-ray intensities. Net solution radioactivity may be measured by eclipsing the exciting radiation, or by measuring it simultaneously with a second detector. The technique is nondestructive and noninvasive, and is easily adapted directly to pipes containing the solution of interest. The dynamic range of the technique extends from below 1 to 500 g/l. Measurement times depend on concentration, but better than 1% counting statistics can be obtained in 100 s for 400 g/l concentrations, and in 1000 s for as little as 10 g/l. Calibration accuracies of 0.3% or better over the entire dynamic range can be achieved easily using carefully prepared standards. Computer-based analysis equipment allows concentration changes in flowing streams to be dynamically monitored. Changes in acid normality of the stream will affect the concentration determined, hence it must also be determined by measuring the intensity of a transmitted 57 Co beam. The computer/disk-based pulse-height analysis system allows all necessary calculations to be done on-line. Experimental requirements for an in-plant installation or a test and evaluation are discussed

  19. Nondestructive testing at the CEA

    International Nuclear Information System (INIS)

    Colomer, J.; Lucas, G.

    1976-01-01

    The different nondestructive testing methods used at the CEA are presented: X-ray or gamma radiography, X-ray stress analysis, neutron radiography, ultrasonic testing, eddy currents, electrical testing, microwaves, thermal testing, acoustic emission, optical holography, tracer techniques. (102 references are cited) [fr

  20. The hoard of Becin - non-destructive analysis of the silver coins

    International Nuclear Information System (INIS)

    Rodrigues, M.; Schreiner, M.; Melcher, M.; Maeder, M.; Guerra, M.; Salomon, J.; Radtke, M.; Alram, M.; Schindel, N.

    2010-01-01

    We report the results of an analytical investigation on 416 silver-copper coins stemming from the Ottoman Empire (end of 16th and beginning of 17th centuries), using synchrotron micro X-ray fluorescence analysis (SRXRF). In the past, analyses had already been conducted with energy dispersive X-ray fluorescence analysis (EDXRF), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM/EDX) and proton induced X-ray emission spectroscopy (PIXE). With this combination of techniques it was possible to confirm the fineness of the coinage as well as to study the provenance of the alloy used for the coins. For the interpretation of the data statistical analysis (principal component analysis - PCA) has been performed. A definite local assignment was explored and significant clustering was obtained regarding the minor and trace elements composing the coin alloys. (orig.)

  1. A comparison of conventional and prototype nondestructive measurements on molten salt extraction residues

    International Nuclear Information System (INIS)

    Longmire, V.L.; Hurd, J.R.; Sedlacek, W.E.; Scarborough, A.M.

    1987-01-01

    Fourteen molten salt extraction residues were assayed by conventional and prototype nondestructive assay (NDA) techniques to be compared with destructive chemical analysis in an effort to identify acceptable NDA measurement methods for this matrix. NDA results on seven samples and destructive results on four samples are presented

  2. Ultrastructural Analysis of Urinary Stones by Microfocus Computed Tomography and Comparison with Chemical Analysis

    Directory of Open Access Journals (Sweden)

    Tolga Karakan

    2016-06-01

    Full Text Available Objective: To investigate the ultra-structure of urinary system stones using micro-focus computed tomography (MCT, which makes non-destructive analysis and to compare with wet chemical analysis. Methods: This study was carried out at the Ankara Train­ing and Research hospital. Renal stones, removed from 30 patients during percutaneous nephrolithotomy (PNL surgery, were included in the study. The stones were blindly evaluated by the specialists with MCT and chemi­cal analysis. Results: The comparison of the stone components be­tween chemical analysis and MCT, showed that the rate of consistence was very low (p0.05. It was also seen that there was no significant relation between its 3D structure being heterogeneous or homogenous. Conclusion: The stone analysis with MCT is a time con­suming and costly method. This method is useful to un­derstand the mechanisms of stone formation and an im­portant guide to develop the future treatment modalities.

  3. Chemical analysis of the Fornax Dwarf galaxy

    NARCIS (Netherlands)

    Letarte, Bruno

    2007-01-01

    This thesis is entitled “Chemical Analysis of the Fornax Dwarf Galaxy”, and it’s main goal is to determine what are the chemical elements present in the stars of this galaxy in order to try and understand it’s evolution. Galaxies are not “static” objects, they move, form stars and can interact with

  4. Chemical analysis of reactor and commercial columbium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The methods cover the chemical analysis of reactor and commercial columbium having chemical compositions within specified limits. The following analytical procedures are discussed along with apparatus, reagents, photometric practice, safety precautions, sampling, and rounding calculated values: nitrogen, by distillation (photometric) method; molybdenum and tungsten by the dithiol (photometric) method; iron by the 1,10-phenanthroline (photometric) method

  5. Non-destructive failure analysis and measurement for molded devices and complex assemblies with X-ray CT and 3D image processing techniques

    International Nuclear Information System (INIS)

    Yin, Xiaoming; Liew, Seaw Jia; Jiang, Ting Ying; Xu, Jian; Kakarala, Ramakrishna

    2013-01-01

    In both automotive and healthcare sectors, reliable failure analysis and accurate measurement of molded devices and complex assemblies are important. Current methods of failure analysis and measurement require these molded parts to be cross-sectioned so that internal features or dimensions can be accessible. As a result, the parts are deemed unusable and additional failure introduced by sectioning may cause misinterpretation of the results. X-ray CT and 3D image processing techniques provide a new nondestructive solution for failure analysis and measurement of molded devices and complex assemblies. These techniques simplify failure analysis and measurement of molded devices and assemblies, and improve the productivity of molding manufacturing significantly.

  6. Nondestructive elemental analysis of coins using accelerator-based thermal neutrons

    International Nuclear Information System (INIS)

    Khairi, F.Z.; Aksoy, A.; Al-Haddad, M.N.

    2007-01-01

    The accelerator-based thermal-neutrons activation analysis setup at KFUPM has an adequate thermal -neutron flux that can be advantageously used for the elemental analysis of a variety of samples including archeological ones. The thermal neutrons are derived from the moderation of fast neutrons from the D (d, n) He reaction which produces fast 2.5 MeV neutrons. A maximum thermals flux of about 2.5x10 n/m-s was achieved. For the purpose of determining the suitability of the set up for the analysis of contemporary and ancient coins, we carried out a feasibility study by irradiating a selected number of Saudi Arabian coins dating from 1958 to 1987 in the thermal-neutron flux. The induced gamma-ray activities were then counted using a HP-GMX detector coupled to a PC-based data acquisition and analysis system. The elements that were determined in the coins were copper (75%), nickel (around 25%) and manganese (<0.5%). Calibration curves were also established for these elements. The determined concentrations are in agreement with the data published by the Standard Catalogue of World Coins. (author)

  7. Using Raman spectroscopic imaging for non-destructive analysis of filler distribution in chalk filled polypropylene

    DEFF Research Database (Denmark)

    Boros, Evelin; Porse, Peter Bak; Nielsen, Inga

    2016-01-01

    A feasibility study on using Raman spectral imaging for visualization and analysis of filler distribution in chalk filled poly-propylene samples has been carried out. The spectral images were acquired using a Raman spectrometer with 785 nm light source.Eight injection-molded samples with concentr...

  8. Optical MEMS for chemical analysis and biomedicine

    CERN Document Server

    Jiang, Hongrui

    2016-01-01

    This book describes the current state of optical MEMS in chemical and biomedical analysis and brings together current trends and highlights topics representing the most exciting progress in recent years in the field.

  9. Non-destructive assay of fissile materials by detection and multiplicity analysis of spontaneous neutrons

    International Nuclear Information System (INIS)

    Prosdocimi, A.

    1979-01-01

    A method for determining the absolute reaction rate of nuclear events giving rise to neutron emission, according to their neutron multiplicity, is proposed. A typical application is the measurement of the (α, n) and spontaneous fission rates in a fissile material sample, particularly of Pu oxide composition. An analysis of random and correlated neutron pulses is carried out on the basis of sequential order without requiring any time interval analysis, then the primary nuclear events are sorted versus their neutron multiplicity. Suitable theoretical relationships enable to derive the absolute (α, n) and SF reaction rates when the physical parameters of the neutron detector and the multiplicity spectrumm of pulses are known. A typical device is described and the results of experiments leading to Pu-239 and Pu-240 assay are given

  10. Non-destructive analysis and detection of internal characteristics of spruce logs through X computerized tomography

    International Nuclear Information System (INIS)

    Longuetaud, F.

    2005-10-01

    Computerized tomography allows a direct access to internal features of scanned logs on the basis of density and moisture content variations. The objective of this work is to assess the feasibility of an automatic detection of internal characteristics with the final aim of conducting scientific analyses. The database is constituted by CT images of 24 spruces obtained with a medical CT scanner. Studied trees are representative of several social status and are coming from four stands located in North-Eastern France, themselves are representative of several age, density and fertility classes. The automatic processing developed are the following. First, pith detection in logs dealing with the problem of knot presence and ring eccentricity. The accuracy of the localisation was less than one mm. Secondly, the detection of the sapwood/heart-wood limit in logs dealing with the problem of knot presence (main source of difficulty). The error on the diameter was 1.8 mm which corresponds to a relative error of 1.3 per cent. Thirdly, the detection of the whorls location and comparison with an optical method. Fourthly the detection of individualized knots. This process allows to count knots and to locate them in a log (longitudinal position and azimuth); however, the validation of the method and extraction of branch diameter and inclination are still to be developed. An application of this work was a variability analysis of the sapwood content in the trunk: at the within-tree level, the sapwood width was found to be constant under the living crown; at the between-tree level, a strong correlation was found with the amount of living branches. A great number of analyses are possible from our work results, among others: architectural analysis with the pith tracking and the apex death occurrence; analysis of radial variations of the heart-wood shape; analysis of the knot distribution in logs. (author)

  11. Defect Detection in Alphonso using Statistical Method and Principal Component Analysis: A Non-Destructive Approach

    OpenAIRE

    Sandeep S. Musale; Pradeep M. Patil

    2014-01-01

    Natural image analysis uses textural property of the surface. Texture is defined as a spatial arrangement of local intensity attributes that are correlated within areas of visual scene corresponding to surface regions. Texture exhibits some sort of periodicity of the basic pattern of Spongy Tissue in alphonso mango. This leads to use textural property to identify different patterns of Spongy Tissue in alphonso for detection of defects in alphonso mango. Visual assessment of texture made by hu...

  12. Chemical analysis of water in hydrogeology

    International Nuclear Information System (INIS)

    Flakova, R.; Zenisova, Z.; Seman, M.

    2010-01-01

    The aim of the monograph is to give complete information on the chemical analysis of water hydrogeology not only for the students program of Geology study (Bachelor degree study), Engineering Geology and Hydrogeology (Master's degree study) and Engineering Geology (doctoral level study), but also for students from other colleges and universities schools in Slovakia, as well as in the Czech Republic, dealing with the chemical composition of water and its quality, from different perspectives. The benefit would be for professionals with hydrogeological, water and environmental practices, who can find there all the necessary information about proper water sampling, the units used in the chemical analysis of water, expressing the proper chemical composition of water in its various parameters through classification of chemical composition of the water up to the basic features of physical chemistry at thermodynamic calculations and hydrogeochemical modelling.

  13. Handbook of nondestructive evaluation

    National Research Council Canada - National Science Library

    Hellier, Charles

    2013-01-01

    "Fully revised to cover the latest nondestructive testing (NDT) procedures, this practical resource reviews established and emerging methods for examining materials without destroying them or altering their structure...

  14. Chemical methods of rock analysis

    National Research Council Canada - National Science Library

    Jeffery, P. G; Hutchison, D

    1981-01-01

    A practical guide to the methods in general use for the complete analysis of silicate rock material and for the determination of all those elements present in major, minor or trace amounts in silicate...

  15. Utilization of chemical derivatives in activation analysis

    International Nuclear Information System (INIS)

    Ehmann, W.D.

    1990-01-01

    Derivative activation analysis (DAA) is a method to enhance the sensitivity of nuclear activation analysis for the more elusive elements. It may also allow a degree of chemical speciation for the element of interest. DAA uses a preirradiation chemical reaction on the sample to initiate the formation of, or an exchange with, a chemical complex which contains a surrogate element, M. As a result, the amount of the element or the chemical species to be determined, X, is now represented by measurement of the amount of the surrogate element, M, that is made part of, or released by the complex species. The surrogate element is selected for its superior properties for nuclear activation analysis and the absence of interference reaction in its final determination by instrumental neutron activation analysis (INAA) after some preconcentration or separation chemistry. Published DAA studies have been limited to neutron activation analysis. DAA can offer the analyst some important advantages. It can determine elements, functional groups, or chemical species which cannot be determined directly by INAA, fast neutron activation analysis (FNAA), prompt gamma neutron activation analysis (PGNAA), or charged particle activation analysis (CPAA) procedures. When compared with conventional RNAA, there are fewer precautions with respect to handling of intensely radioactive samples, since the chemistry is done before the irradiation. The preirradiation chemistry may also eliminate many interferences that might occur in INAA and, through use of an appropriate surrogate element, can place the analytical gamma-ray line in an interference-free region of the gamma-ray spectrum

  16. Non-destructive micro-X-ray diffraction analysis of painted artefacts: Determination of detection limits for the chromium oxide-zinc oxide matrix

    International Nuclear Information System (INIS)

    Nel, P.; Lau, D.; Hay, D.; Wright, N.

    2006-01-01

    The development of micro-X-ray diffraction (micro-XRD) enables non-destructive, in situ analysis of crystalline pigments on artworks and archaeological objects. Pigments with X-ray diffraction patterns with large peak intensities may complicate the identification of other components with lower absorption coefficients, especially if present in low concentrations in the paint sample. Investigation of this issue involved: (1) micro-XRD examination and analysis of the amorphous and crystalline phases of fifteen pigment films and (2) micro-XRD examination and semi-quantitative analysis of various chromium oxide-zinc oxide mixtures, which established detection limits as low as 5 ± 2%

  17. Nondestructive analysis of silver in gold foil using synchrotron radiation X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Kasamatsu, Masaaki; Suzuki, Yasuhiro; Suzuki, Shinichi; Nakanishi, Toshio; Shimoda, Osamu; Nishiwaki, Yoshinori; Miyamoto, Naoki

    2005-01-01

    Small particles of gold foil detached from an indoor decoration might be important evidence to associate a suspect with a crime scene. We have investigated the application of elemental analysis using synchrotron radiation X-ray fluorescence spectrometry to discriminate small particles of gold foil. Eight kinds of gold foil samples collected in Japan were used in the experiments. As a result of synchrotron radiation X-ray fluorescence spectrometry, only two elements, gold and silver, were detected from all gold foil samples. The intensity ratios of AgK α /AuL α showed good correlation with the content ratios of Ag/Au. The variation of intensity ratio within a same sample was sufficiently small compared with those of different samples. Therefore the comparison of this intensity ratio can be an effective method to discriminate small particles originating from different types of gold foil. (author)

  18. ROBOCAL: An automated NDA [nondestructive analysis] calorimetry and gamma isotopic system

    International Nuclear Information System (INIS)

    Hurd, J.R.; Powell, W.D.; Ostenak, C.A.

    1989-01-01

    ROBOCAL, which is presently being developed and tested at Los Alamos National Laboratory, is a full-scale, prototype robotic system for remote calorimetric and gamma-ray analysis of special nuclear materials. It integrates a fully automated, multidrawer, vertical stacker-retriever system for staging unmeasured nuclear materials, and a fully automated gantry robot for computer-based selection and transfer of nuclear materials to calorimetric and gamma-ray measurement stations. Since ROBOCAL is designed for minimal operator intervention, a completely programmed user interface is provided to interact with the automated mechanical and assay systems. The assay system is designed to completely integrate calorimetric and gamma-ray data acquisition and to perform state-of-the-art analyses on both homogeneous and heterogeneous distributions of nuclear materials in a wide variety of matrices

  19. Use of muonic x rays for nondestructive analysis of bulk samples for low Z constituents

    International Nuclear Information System (INIS)

    Reidy, J.J.; Hutson, R.L.; Daniel, H.; Springer, K.

    1978-01-01

    Muonic x rays have been used in quantitative analysis on bulk samples of ''tissue equivalent'' material whose primary constituents are low Z elements (Z less than or equal to 20). The muonic x-ray spectrum resulting from negative muons stopping in ''tissue equivalent'' materials has been obtained. Relative muonic x-ray intensities were determined and correlated with atomic abundances in these materials. A comparison of the results for the various samples is presented. This work establishes the usefulness of this technique for analyses of gross specimens (greater than or equal to few grams) for elements with 6 less than or equal to Z less than or equal to 20 and atomic abundances greater than 0.15 percent

  20. Non-destructive Testing of Wood Defects Based on Discriminant Analysis Method

    Directory of Open Access Journals (Sweden)

    Wenshu LIN

    2015-09-01

    Full Text Available The defects of wood samples were tested by the technique of stress wave and ultrasonic technology, and the testing results were comparatively analyzed by using the Fisher discriminant analysis in the statistic software of SPSS. The differences of defect detection sensitivity and accuracy for stress wave and ultrasonic under different wood properties and defects were concluded. Therefore, in practical applications, according to different situations the corresponding wood non- destructive testing method should be used, or the two detection methods are applied at the same time in order to compensate for its shortcomings with each other to improve the ability to distinguish the timber defects. The results can provide a reference for further improvement of the reliability of timber defects detection.

  1. Fast and non-destructive pore structure analysis using terahertz time-domain spectroscopy.

    Science.gov (United States)

    Markl, Daniel; Bawuah, Prince; Ridgway, Cathy; van den Ban, Sander; Goodwin, Daniel J; Ketolainen, Jarkko; Gane, Patrick; Peiponen, Kai-Erik; Zeitler, J Axel

    2018-02-15

    Pharmaceutical tablets are typically manufactured by the uni-axial compaction of powder that is confined radially by a rigid die. The directional nature of the compaction process yields not only anisotropic mechanical properties (e.g. tensile strength) but also directional properties of the pore structure in the porous compact. This study derives a new quantitative parameter, S a , to describe the anisotropy in pore structure of pharmaceutical tablets based on terahertz time-domain spectroscopy measurements. The S a parameter analysis was applied to three different data sets including tablets with only one excipient (functionalised calcium carbonate), samples with one excipient (microcrystalline cellulose) and one drug (indomethacin), and a complex formulation (granulated product comprising several excipients and one drug). The overall porosity, tablet thickness, initial particle size distribution as well as the granule density were all found to affect the significant structural anisotropies that were observed in all investigated tablets. The S a parameter provides new insights into the microstructure of a tablet and its potential was particularly demonstrated for the analysis of formulations comprising several components. The results clearly indicate that material attributes, such as particle size and granule density, cause a change of the pore structure, which, therefore, directly impacts the liquid imbibition that is part of the disintegration process. We show, for the first time, how the granule density impacts the pore structure, which will also affect the performance of the tablet. It is thus of great importance to gain a better understanding of the relationship of the physical properties of material attributes (e.g. intragranular porosity, particle shape), the compaction process and the microstructure of the finished product. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  3. Noise-resistant spectral features for retrieving foliar chemical parameters

    Science.gov (United States)

    Foliar chemical constituents are important indicators for understanding vegetation growing status and ecosystem functionality. Provided the noncontact and nondestructive traits, the hyperspectral analysis is a superior and efficient method for deriving these parameters. In practical implementation o...

  4. Identification of cave minerals by Raman spectroscopy: new technology for non-destructive analysis

    Directory of Open Access Journals (Sweden)

    White William B.

    2006-07-01

    Full Text Available The usual tools are X-ray powder diffraction, the optical microscope, and the scanning electron microscope. X-ray diffraction gives a definitive fingerprint by which the mineral can be identified by comparison with a catalog of reference patterns. However, samples must be ground to powder and unstable hydrated minerals may decompose before analysis is complete. Raman spectroscopy also provides a fingerprint useful for mineral identification but with the additional advantage that some a-priori interpretation of the spectra is possible (distinguishing carbonates from sulfates, for example. Because excitation of the spectra is by means of a laser beam, it is possible to measure the spectra of samples in sealed glass containers, thus preserving unstable samples. Because laser beams can be focused, spectra can be obtained from individual grains. New technology has reduced the size of the instrument and also the sensitivity of the optical system to vibration and transport so that a portable instrument has become possible. The sampling probe is linked to the spectrometer by optical fibers so that large specimens can be examined without damage. Comparative spectra of common cave minerals demonstrate the value of Raman spectra as an identification technique.

  5. Non-destructive assay of EBR-II blanket elements using resonance transmission analysis

    International Nuclear Information System (INIS)

    Klann, R.T.; Poenitz, W.P.

    1998-01-01

    Resonance transmission analysis utilizing a faltered reactor beam was examined as a means of determining the 239 Pu content in Experimental Breeder Reactor-II depleted uranium blanket elements. The technique uses cadmium and gadolinium falters along with a 239 Pu fission chamber to isolate the 0.3 eV resonance in 239 Pu. In the energy range of this resonance (0.1 eV to 0.5 ev), the total microscopic cross-section of 239 Pu is significantly greater than the cross-sections of 238 U and 235 U. This large difference allows small changes in the 239 Pu content of a sample to result in large changes in the mass signal response. Tests with small stacks of depleted uranium and 239 Pu foils indicate a significant change in response based on the 239 Pu content of the foil stack. In addition, the tests indicate good agreement between the measured and predicted values of 239 Pu up to approximately two weight percent

  6. Non-destructive photon activation analysis of carbon and nitrogen in thin films

    International Nuclear Information System (INIS)

    Shikano, Koji; Katoh, Masaaki; Masumoto, Kazuyoshi; Ohtsuki, Tsutomu

    1998-01-01

    Study was made on interference nuclear reactions with 12 C(γ,n) 11 C and 14 N(γ,n) 13 N reactions, interference radioactivity from the matrix, and prevention of contamination from the atmosphere. The following were made clear: Interference nuclear reactions can be neglected by controlling the radiation energy of bremsstrahlung below 30 MeV; radiation interference can be avoided by starting measurement 20-30 min after irradiation, though 29 Al is formed from Si substrate; and contamination from the atmosphere can be controlled by He gas replacement. With graphite and boron nitride used as the reference standards, carbon in silicon carbide film and nitrogen in silicon nitride film were determined with the result that their concentrations in the films were 37.03±1.28 μg/cm 2 and 52.97±2.97 μg/cm 2 , respectively. The determination limits of this method were 0.3 μg for carbon and 3 μg for nitrogen. The measurement of film thickness distribution revealed that these film samples could be used as light element reference standards for charged particle activation analysis. (N.H.)

  7. Non-destructive analysis of chlorine in fly ash cement concrete

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Garwan, M.A.; Nagadi, M.M.; Maslehuddin, M.; Al-Amoudi, O.S.B.; Khateeb-ur-Rehman

    2009-01-01

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022±0.007 and 0.038±0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  8. Non-destructive analysis of chlorine in fly ash cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A.; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-08-11

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022{+-}0.007 and 0.038{+-}0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  9. Non-destructive X-ray Computed Tomography (XCT) Analysis of Sediment Variance in Marine Cores

    Science.gov (United States)

    Oti, E.; Polyak, L. V.; Dipre, G.; Sawyer, D.; Cook, A.

    2015-12-01

    Benthic activity within marine sediments can alter the physical properties of the sediment as well as indicate nutrient flux and ocean temperatures. We examine burrowing features in sediment cores from the western Arctic Ocean collected during the 2005 Healy-Oden TransArctic Expedition (HOTRAX) and from the Gulf of Mexico Integrated Ocean Drilling Program (IODP) Expedition 308. While traditional methods for studying bioturbation require physical dissection of the cores, we assess burrowing using an X-ray computed tomography (XCT) scanner. XCT noninvasively images the sediment cores in three dimensions and produces density sensitive images suitable for quantitative analysis. XCT units are recorded as Hounsfield Units (HU), where -999 is air, 0 is water, and 4000-5000 would be a higher density mineral, such as pyrite. We rely on the fundamental assumption that sediments are deposited horizontally, and we analyze the variance over each flat-lying slice. The variance describes the spread of pixel values over a slice. When sediments are reworked, drawing higher and lower density matrix into a layer, the variance increases. Examples of this can be seen in two slices in core 19H-3A from Site U1324 of IODP Expedition 308. The first slice, located 165.6 meters below sea floor consists of relatively undisturbed sediment. Because of this, the majority of the sediment values fall between 1406 and 1497 HU, thus giving the slice a comparatively small variance of 819.7. The second slice, located 166.1 meters below sea floor, features a lower density sediment matrix disturbed by burrow tubes and the inclusion of a high density mineral. As a result, the Hounsfield Units have a larger variance of 1,197.5, which is a result of sediment matrix values that range from 1220 to 1260 HU, the high-density mineral value of 1920 HU and the burrow tubes that range from 1300 to 1410 HU. Analyzing this variance allows us to observe changes in the sediment matrix and more specifically capture

  10. Comparison of different image analysis algorithms on MRI to predict physico-chemical and sensory attributes of loin

    DEFF Research Database (Denmark)

    Caballero, Daniel; Caro, Andrés; Dahl, Anders Bjorholm

    2018-01-01

    -chemical and sensory analysis. CFA reached low relationship for the quality parameters of loins, the remaining algorithms achieved correlation coefficients higher than 0.5 noting OPFTA that reached the highest correlation coefficients in all cases except for the L* coordinate color that GLCM obtained the highest...... correlation coefficient. These high correlation coefficients confirm the new algorithm as an alternative to the other computer vision approaches in order to compute the physico chemical and sensory parameters of meat products in a non-destructive and efficient way....

  11. Detection Of Cracks In Composite Materials Using Hybrid Non-Destructive Testing Method Based On Vibro-Thermography And Time-Frequency Analysis Of Ultrasonic Excitation Signal

    Directory of Open Access Journals (Sweden)

    Prokopowicz Wojciech

    2015-09-01

    Full Text Available The theme of the publication is to determine the possibility of diagnosing damage in composite materials using vibrio-thermography and frequency analysis and time-frequency of excitation signal. In order to verify the proposed method experiments were performed on a sample of the composite made in the technology of pressing prepregs. Analysis of the recorded signals and the thermograms were performed in MatLab environment. Hybrid non-destructive testing method based on thermogram and appropriate signal processing algorithm clearly showed damage in the sample composite material.

  12. Nondestructive techniques for the control of conditioned radioactive wastes

    International Nuclear Information System (INIS)

    Delprato, U.

    1987-01-01

    The final product of the radwaste conditioning process must satisfy certain requirments and physico-chemical properties in order to assure its safe long-term behaviour. Of course, the foreseen quality assurance and quality control should be conducted by means of non-destructive techniques. This work presents an over-view of various applicable non-destructive methods of analysis, showing their fields of investigation in testing waste packages, together with some arising practical problems. The most promising methods, such as eddy current testing, ultrasonic testing, γ-scanning, γ-spectroscopy, neutron counting and computerized tomography, are treated more deeply and some applications are presented. Particular attention is devoted to the development of a device based on computerized tomography; its essential components are reported and some design problems are also discussed

  13. Nondestructive inspection using neutron beams

    International Nuclear Information System (INIS)

    2013-01-01

    Neutron-abased experimental techniques such as neutronography, diffraction, or composition and elemental analysis are well established. They have important advantages in the non-destructive analysis of materials, making them a suitable option for quality-control protocols in industrial production lines. In addition, they are highly complementary to other non-destructive techniques, particularly X-ray analysis. Examples of industrial use include studies of pipes and ducts, concrete, or aeronautical components. Notwithstanding the above, the high cost associated with the construction and operation of the requisite neutron facilities has been an important limiting factor for their widespread use by the industrial sector. In this brief contribution, we explore the emerging (and already demonstrated) possibility of using compact, proton-accelerator-based neutron sources. these novel sources can be built and ran at a cost as low as a few ME, making them a competitive option to the more intense spallation or fission-based facilities for industrial applications. (Author)

  14. Chemical analysis of high purity graphite

    International Nuclear Information System (INIS)

    1993-03-01

    The Sub-Committee on Chemical Analysis of Graphite was organized in April 1989, under the Committee on Chemical Analysis of Nuclear Fuels and Reactor Materials, JAERI. The Sub-Committee carried out collaborative analyses among eleven participating laboratories for the certification of the Certified Reference Materials (CRMs), JAERI-G5 and G6, after developing and evaluating analytical methods during the period of September 1989 to March 1992. The certified values were given for ash, boron and silicon in the CRM based on the collaborative analysis. The values for ten elements (Al, Ca, Cr, Fe, Mg, Mo, Ni, Sr, Ti, V) were not certified, but given for information. Preparation, homogeneity testing and chemical analyses for certification of reference materials were described in this paper. (author) 52 refs

  15. Molecular activation analysis for chemical species studies

    International Nuclear Information System (INIS)

    Chai Zhifang; Mao Xueying; Wang Yuqi; Sun Jingxin; Qian Qingfang; Hou Xiaolin; Zhang Peiqun; Chen Chunying; Feng Weiyu; Ding Wenjun; Li Xiaolin; Li Chunsheng; Dai Xiongxin

    2001-01-01

    The Molecular Activation Analysis (MAA) mainly refers to an activation analysis method that is able to provide information about the chemical species of elements in systems of interest, though its exact definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the bulk contents or concentrations are often insignificant for judging biological, environmental or geochemical effects of elements. In this paper, the features, methodology and limitation of MAA were outlined. Further, the up-to-date MAA progress made in our laboratory was introduced as well. (author)

  16. Service activities of chemical analysis division

    International Nuclear Information System (INIS)

    Eom, Tae Yoon; Suh, Moo Yul; Park, Kyoung Kyun; Jung, Ki Suk; Joe, Kih Soo; Jee, Kwang Yong; Jung, Woo Sik; Sohn, Se Chul; Yeo, In Heong; Han, Sun Ho

    1988-12-01

    Progress of the Division during the year of 1988 was described on the service activities for various R and D projects carrying out in the Institute, for the fuel fabrication and conversion plant, and for the post-irradiation examination facility. Relevant analytical methodologies developed for the chemical analysis of an irradiated fuel, safeguards chemical analysis, and pool water monitoring were included such as chromatographic separation of lanthanides, polarographic determination of dissolved oxygen in water, and automation on potentiometric titration of uranium. Some of the laboratory manuals revised were also included in this progress report. (Author)

  17. Chemical analysis by nuclear methods. v. 2

    International Nuclear Information System (INIS)

    Alfassi, Z.B.

    1998-01-01

    'Chemical analysis by Nuclear Methods' is an effort of some renowned authors in field of nuclear chemistry and radiochemistry which is compiled by Alfassi, Z.B. and translated into Farsi version collected in two volumes. The second volume consists of the following chapters: Detecting ion recoil scattering and elastic scattering are dealt in the eleventh chapter, the twelfth chapter is devoted to nuclear reaction analysis using charged particles, X-ray emission is discussed at thirteenth chapter, the fourteenth chapter is about using ion microprobes, X-ray fluorescence analysis is discussed in the fifteenth chapter, alpha, beta and gamma ray scattering in chemical analysis are dealt in chapter sixteen, Moessbauer spectroscopy and positron annihilation are discussed in chapter seventeen and eighteen; The last two chapters are about isotope dilution analysis and radioimmunoassay

  18. An extended chemical analysis of gallstone.

    Science.gov (United States)

    Chandran, P; Kuchhal, N K; Garg, P; Pundir, C S

    2007-09-01

    Chemical composition of gall stones is essential for aetiopathogensis of gallstone disease. We have reported quantitative chemical analysis of total cholesterol bilirubin, calcium, iron and inorganic phosphate in 120 gallstones from haryana. To extend this chemical analysis of gall stones by studying more cases and by analyzing more chemical constituents. A quantitative chemical analysis of total cholesterol, total bilirubin, fatty acids, triglycerides, phospholipids, bile acids, soluble proteins, sodium potassium, magnesium, copper, oxalate and chlorides of biliary calculi (52 cholesterol, 76 mixed and 72 pigment) retrieved from surgical operation of 200 patients from Haryana state was carried out. Total cholesterol as the major component and total bilirubin, phospholipids, triglycerides, bile acids, fatty acids (esterified), soluble protein, calcium, magnesium, iron, copper, sodium, potassium, inorganic phosphate, oxalate and chloride as minor components were found in all types of calculi. The cholesterol stones had higher content of total cholesterol, phospholipids, fatty acids (esterified), inorganic phosphate and copper compared to mixed and pigment stones. The mixed stones had higher content of iron and triglycerides than to cholesterol and pigment stones. The pigment stones were richer in total bilirubin, bile acids, calcium, oxalate, magnesium, sodium, potassium, chloride and soluble protein compared to cholesterol and mixed stones. Although total cholesterol was a major component of cholesterol, mixed and pigment gall stone in Haryana, the content of most of the other lipids, cations and anions was different in different gall stones indicating their different mechanism of formation.

  19. Weed control based on real time patchy application of herbicides using image analysis as a non-destructive estimation method for weed infestation and herbicide effects

    DEFF Research Database (Denmark)

    Asif, Ali

    There is an increasing concern about excessive use of herbicides for weed control in arable lands. Usually the whole field is sprayed uniformly, while the distribution of weeds often is non-uniform. Often there are spots in a field where weed pressure is very low and has no significant effect...... on crop yield. The excessive use of spraying can potentially be reduced by spraying only those parts of the field where it has economic importance. The competition relation between weeds and crop was ana-lyzed in context of real time patch spray. A non-destructive image analysis method was developed...

  20. Non-destructive alpha-particle activation analysis of P, Cl, K and Ca in marine macro-alga samples using synthetic multielement reference material as comparative standard

    International Nuclear Information System (INIS)

    Iwata, Y.; Naitoh, H.; Suzuki, N.

    1992-01-01

    A Synthetic Reference Material (SyRM) composed with accurately known amounts of 12 elements has been prepared. The elemental composition of the SyRM is closely similar to that of marine macro-algae sample. The elemental composition of the SyRM was regulated by the starting materials used for the synthesis. The SyRM was used as a comparative standard for non-destructive alpha-particle activation analysis of marine macro-alga samples. P, Cl, K and Ca were determined simultaneously without correction for alpha range due to difference in the elemental composition between the analytical samples and the comparative standard. (author) 19 refs.; 4 tabs

  1. Failure analysis on a chemical waste pipe

    International Nuclear Information System (INIS)

    Ambler, J.R.

    1985-01-01

    A failure analysis of a chemical waste pipe illustrates how nuclear technology can spin off metallurgical consultant services. The pipe, made of zirconium alloy (Zr-2.5 wt percent Nb, UNS 60705), had cracked in several places, all at butt welds. A combination of fractography and metallography indicated delayed hydride cracking

  2. Calibrating Detailed Chemical Analysis of M dwarfs

    Science.gov (United States)

    Veyette, Mark; Muirhead, Philip Steven; Mann, Andrew; Brewer, John; Allard, France; Homeier, Derek

    2018-01-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications including studying the chemical evolution of the Galaxy, assessing membership in stellar kinematic groups, and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres has hindered similar analysis of M-dwarf stars. Large surveys of FGK abundances play an important role in developing methods to measure the compositions of M dwarfs by providing benchmark FGK stars that have widely-separated M dwarf companions. These systems allow us to empirically calibrate metallicity-sensitive features in M dwarf spectra. However, current methods to measure metallicity in M dwarfs from moderate-resolution spectra are limited to measuring overall metallicity and largely rely on astrophysical abundance correlations in stellar populations. In this talk, I will discuss how large, homogeneous catalogs of precise FGK abundances are crucial to advancing chemical analysis of M dwarfs beyond overall metallicity to direct measurements of individual elemental abundances. I will present a new method to analyze high-resolution, NIR spectra of M dwarfs that employs an empirical calibration of synthetic M dwarf spectra to infer effective temperature, Fe abundance, and Ti abundance. This work is a step toward detailed chemical analysis of M dwarfs at a similar precision achieved for FGK stars.

  3. Development of a non-destructive micro-analytical method for stable carbon isotope analysis of transmission electron microscope (TEM) samples

    Energy Technology Data Exchange (ETDEWEB)

    Hode, Tomas [Department of Geology, Portland State University, Portland, P.O. Box 751, OR 97201 (United States)], E-mail: hode@pdx.edu; Kristiansson, Per; Elfman, Mikael [Division of Nuclear Physics, Department of Physics, Lund Institute of Technology, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Hugo, Richard C.; Cady, Sherry L. [Department of Geology, Portland State University, Portland, P.O. Box 751, OR 97201 (United States)

    2009-10-01

    The biogenicity of ancient morphological microfossil-like objects can be established by linking morphological (e.g. cell remnants and extracellular polymeric matrix) and chemical (e.g. isotopes, biomarkers and biominerals) evidence indicative of microorganisms or microbial activity. We have developed a non-destructive micro-analytical ion beam system capable of measuring with high spatial resolution the stable carbon isotope ratios of thin samples used for transmission electron microscopy. The technique is based on elastic scattering of alpha particles with an energy of 2.751 MeV. At this energy the {sup 13}C cross section is enhanced relative to the pure Rutherford cross section for {sup 13}C, whereas the {sup 12}C cross section is reduced relative to its pure Rutherford cross section. Here we report the initial results of this experimental approach used to characterize ultramicrotomed sections of sulfur-embedded graphite and microbial cells.

  4. Probabilistic risk analysis in chemical engineering

    International Nuclear Information System (INIS)

    Schmalz, F.

    1991-01-01

    In risk analysis in the chemical industry, recognising potential risks is considered more important than assessing their quantitative extent. Even in assessing risks, emphasis is not on the probability involved but on the possible extent. Qualitative assessment has proved valuable here. Probabilistic methods are used in individual cases where the wide implications make it essential to be able to assess the reliability of safety precautions. In this case, assessment therefore centres on the reliability of technical systems and not on the extent of a chemical risk. 7 figs

  5. Microfabricated Gas Phase Chemical Analysis Systems

    International Nuclear Information System (INIS)

    FRYE-MASON, GREGORY CHARLES; HELLER, EDWIN J.; HIETALA, VINCENT M.; KOTTENSTETTE, RICHARD; LEWIS, PATRICK R.; MANGINELL, RONALD P.; MATZKE, CAROLYN M.; WONG, CHUNGNIN C.

    1999-01-01

    A portable, autonomous, hand-held chemical laboratory ((micro)ChemLab(trademark)) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described

  6. Nondestructive testing 89

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings contain 24 contributions, out of which 14 have been inputted in INIS. These deal with materials for nondestructive testing and various nondestructive testing systems, with the evaluation of radiograms and with the application of radiographic, ultrasonic and eddy current methods to the detection of defects in materials, to the inspection of nuclear reactor components and in other fields of technology. (B.S.)

  7. Non-destructive analysis of the oil composition of soybean seeds by natural abundance carbon-13 nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Yoshida, M.; Kano, H.; Ishida, N.; Yoshida, T.

    1989-01-01

    The signals of fatty acids in the form of triglycerides were observed in the 13 C NMR spectrum of an intact soybean seed. The major fatty acid component composition of triglycerides in a soybean seed, which includes linoleic acid, oleic acid and palmitic acid, was estimated by subtracting the spectra of authentic fatty acids from the spectrum of the intact soybean seeds. The fatty acid compositions of seeds of 11 Japanese soybean cultivars and 5 lines bred at the Asian Vegetable Research and Development Center (AVRDC) were estimated by this rapid (within 1hr for one seed) and nondestructive analytical method. (author)

  8. Visualization and Non-Destructive Quantification of Inkjet-Printed Pharmaceuticals on Different Substrates Using Raman Spectroscopy and Raman Chemical Imaging

    DEFF Research Database (Denmark)

    Edinger, Magnus; Bar-Shalom, Daniel; Rantanen, Jukka

    2017-01-01

    and ethanol was developed. Inkjet printing technology was used to apply haloperidol ink onto three different substrates. Custom-made inorganic compacts and dry foam, as well as marketed paracetamol tablets were used as the substrates. RESULTS: Therapeutic personalized doses were printed by using one to ten...... printing rounds on the substrates. The haloperidol content in the finished dosage forms were determined by high-performance liquid chromatography (HPLC). The distribution of the haloperidol on the dosage forms were visualized using Raman chemical imaging combined with principal components analysis (PCA...... prediction was observed for the paracetamol tablets. It was not possible to quantify haloperidol on the dry foam due to the low and varying density of the substrate. CONCLUSIONS: Raman spectroscopy is a useful tool for visualization and quality control of inkjet printed personalized medicine....

  9. Application of neutron activation analysis to biological materials. Pt. 4. Approach to simultaneous determination of trace elements in human eye tissues with non-destructive neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, T; Bando, M; Nakajima, A [Juntendo Univ., Tokyo (Japan). School of Medicine; Terai, M [Tokyo Metropolitan Univ. (Japan). Faculty of Science; Suzuki-Yasumoto, M [National Inst. of Radiological Sciences, Chiba (Japan)

    1980-01-01

    Fourteen trace elements (short-lived nuclides: Al, Br, Cu, Mn and V; long-lived nuclides: Ag, Au, Cd, Co, Cr, Fe, Sc, Se and Zn) in human eye tissues are determined simultaneously by non-destructive neutron activation analysis. The quantity of Al, Br, Fe, Se and Zn in the eye tissues (about 1 to more than 10 ..mu..g/g dry weight tissue) seems to be higher than that of other trace elements, although the content of each trace element in individual tissue is scattered in a wide range. Conjunctiva, iris (+ciliary body) and choroid (+pigment epithelium) seem to contain larger amount of various trace elements than other eye tissues. From correlation studies it is evident that the relative distribution of 14 trace elements in various eye tissues are similar, and furthermore the content of trace elements in the eye tissues may be correlated in each of the three groups (group A: Cd, Se and Zn; group B: Al, Cr, Fe, Se and V; group C: Al, Au, Fe and Se).

  10. Nondestructive testing of materials

    International Nuclear Information System (INIS)

    NUKEM has transferred know-how from reactor technology to materials testing. The high and to a large extent new quality standards in the nuclear industry necessitate reliable measuring and testing equipment of the highest precision. Many of the tasks presented to us could not be solved with the equipment available on the market, for which reason we have developed our own measuring, testing and control systems. We have therefore acquired considerable experience in dealing with specific measuring, testing and control tasks and can handle even out-of-the-way problems that are submitted to us from a wide variety of fields. Our mechanical systems for the checking of close-tolerance gaps, the automatic determination of pellet dimensions and the measurement of absolute lengths and absolute velocities are in use in many different industrial fields. We have succeeded in solving unusual testing and sorting problems with the aid of automated surface testing equipment working on optical principles. Our main activities in the field of non-destructive testing have been concentrated on ultrasonic and eddy current testing and, of late, acoustic emission analysis. NUKEM ultrasonic systems are notable for their high defect detection rate and testing accuracy, combined with high testing speed. The equipment we supply includes ultrasonic rotary systems for the production testing of quality tubes, ultrasonic immersion systems for the final testing of reactor cladding tubes, weld testing equipment, and test equipment for the bonds in multi-layer plates. (orig./RW) [de

  11. Chemical analysis quality assurance at the ICPP

    International Nuclear Information System (INIS)

    Hand, R.L.

    1990-01-01

    This document discusses the chemical analysis quality assurance program at the ICPP which involves records management, analytical methods quality control, analysis procedures and training and qualification. Since 1979, the major portion of the quality assurance program has been implemented on a central analytical computer system. The individual features provided by the system are storage, retrieval, and search capabilities over all general request and sample analysis information, automatic method selection for all process streams, automation of all method calculations, automatic assignment of bias and precision estimates at all analysis levels, with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of all process stream results for replicate agreement, automatic testing of process results against pre- established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of all analysis data plus all statistical testing to the Production Department

  12. Chemical analysis of refractories by plasma spectrometry

    International Nuclear Information System (INIS)

    Coutinho, C.A.

    1990-01-01

    X-ray spectrometry has been, since the last two or three decades, the traditional procedure for the chemical analysis of refractories, due to its high degree of accuracy and speed to produce analytical results. An interesting alternative to X-ray fluorescence is provided by the Inductively Coupled Plasma Spectrometry technique, for those laboratories where wet chemistry facilities are already available or process control is not required at high speed, or investiment costs have to be low. This paper presents results obtained by plasma spectroscopy for the analysis of silico - aluminous refractories, showing calibration curves, precion and detection limits. Considerations and comparisons with X-ray fluorescence are also made. (author) [pt

  13. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    Science.gov (United States)

    Cheng, Lin; Ding, Xunliang; Liu, Zhiguo; Pan, Qiuli; Chu, Xuelian

    2007-08-01

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  14. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lin [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing Radiation Center, Beijing, 100875 (China)], E-mail: chenglin@bnu.edu.cn; Ding Xunliang; Liu Zhiguo; Pan Qiuli; Chu Xuelian [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing Radiation Center, Beijing, 100875 (China)

    2007-08-15

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  15. Test-qualification experience with non-destructive material analysis system performed at Paks Nuclear Power Plant and its usage in non-nuclear fields

    International Nuclear Information System (INIS)

    Somogyi, Gy.; Szabo, D.

    2003-01-01

    The need for qualification of non-destructive material analysis has been recognised in controlling nuclear energy production process. This test-qualification has been performed as first of its kind after the task has been assigned by the National Nuclear Energy Agency. The input documents for the test were. Technical Specification, Analysis Technology, Technical Justification. Test-qualification has been performed with real form control bodies developed by the Rez Nuclear Research Institute, in which the planned defects has been produced by spark-chipping. The qualification procedure has been summarized in a Qualification Folder and given to the national agency to issue a qualification certificate. The procedure might be interesting mostly for companies delivering nuclear power plant assemblies. Similar needs are formulated in standards relative to the qualification of non-nuclear material testing methods (MSZ EN 17025 and EU). (Gy.M.)

  16. Chemical detection, identification, and analysis system

    International Nuclear Information System (INIS)

    Morel, R.S.; Gonzales, D.; Mniszewski, S.

    1990-01-01

    The chemical detection, identification, and analysis system (CDIAS) has three major goals. The first is to display safety information regarding chemical environment before personnel entry. The second is to archive personnel exposure to the environment. Third, the system assists users in identifying the stage of a chemical process in progress and suggests safety precautions associated with that process. In addition to these major goals, the system must be sufficiently compact to provide transportability, and it must be extremely simple to use in order to keep user interaction at a minimum. The system created to meet these goals includes several pieces of hardware and the integration of four software packages. The hardware consists of a low-oxygen, carbon monoxide, explosives, and hydrogen sulfide detector; an ion mobility spectrometer for airborne vapor detection; and a COMPAQ 386/20 portable computer. The software modules are a graphics kernel, an expert system shell, a data-base management system, and an interface management system. A supervisory module developed using the interface management system coordinates the interaction of the other software components. The system determines the safety of the environment using conventional data acquisition and analysis techniques. The low-oxygen, carbon monoxide, hydrogen sulfide, explosives, and vapor detectors are monitored for hazardous levels, and warnings are issued accordingly

  17. Non-destructive bulk analysis of the Buggenum sword by neutron resonance capture analysis and neutron diffraction

    International Nuclear Information System (INIS)

    Postma, H.; Clarijs, M.; Borella, A.; Schillebeeckx, P.; Kamermans, H.

    2010-01-01

    Two neutron based techniques, neutron resonance capture analysis (NRCA) and time-of-flight neutron-diffraction (TOF-ND) have been used to determine the elemental composition and structure of a precious and very well preserved all-metal sword from the Bronze Age. This Buggenum sword was on loan from the National Museum of Antiquities (NMA) in Leiden (NL). NRCA and TOF-ND experiments have been carried out at a number of more or less identical positions of the sword. The tin-bronze ratio and the relative amounts of some minor elements (Sb, As, Ag, In) have been determined. The results of neutron diffraction measurements showed considerable tin-segregation, and clear indications of hardening on the edges of the blade. In addition, radiographs using Bremsstrahlung revealed the construction of the hilt-blade connection. The work was carried out at the EC Joint Research Centre IRMM in Geel (B) and at the ISIS facility of the Rutherford Appleton Laboratory (UK). (author)

  18. The development of chemical speciation analysis

    International Nuclear Information System (INIS)

    Martin, R.; Santana, J.L.; Lima, L.; De La Rosa, D.; Melchor, K.

    2003-01-01

    The knowledge of many metals species on the environmental, its bioaccumulation, quantification and its effect in human body has been studied by a wide researchers groups in the last two decades. The development of speciation analysis has an vertiginous advance close to the developing of novel analytical techniques. Separation and quantification at low level is a problem that's has been afford by a coupling of high resolution chromatographic techniques like HPLC and HRGC with a specific method of detection (ICP-MS or CV-AAS). This methodological approach make possible the success in chemical speciation nowadays

  19. Laser chemical analysis: the recent developments

    International Nuclear Information System (INIS)

    Mauchien, P.

    1997-01-01

    This paper gives a general overview and describes the principles of the main laser-based techniques for physical and chemical analysis, and of their recent developments. Analytical techniques using laser radiations were actually developed at the end of the 1970's. The recent evolutions concern the 3 principal techniques of laser spectroscopy currently used: Raman, fluorescence (atomic and molecular) and ablation (ICP laser ablation-plasma coupling, optical emission spectroscopy on laser-induced plasma). The description of these different techniques is illustrated with some examples of applications. (J.S.)

  20. Activation and chemical analysis of drinking waters

    International Nuclear Information System (INIS)

    Sharma, H.K.; Mittal, V.K.; Sahota, H.S.

    1989-01-01

    Ground water samples from Patiala city have been analysed for 22 trace elements using neutron activation analysis and for seven chemical parameters using standard techniques. It was found that alkali and alkaline earth metals have high concentrations in all samples whereas the concentrations of toxic metals are low in the majority of samples. However, chromium and cadmium concentrations are higher in ground water taken from the industrial belt of the city. This indicates that the overall level of pollution is low, but that some measures are still needed to inhibit various industries from polluting the ground water. (author)

  1. Development of chemical equilibrium analysis code 'CHEEQ'

    International Nuclear Information System (INIS)

    Nagai, Shuichiro

    2006-08-01

    'CHEEQ' code which calculates the partial pressure and the mass of the system consisting of ideal gas and pure condensed phase compounds, was developed. Characteristics of 'CHEEQ' code are as follows. All the chemical equilibrium equations were described by the formation reactions from the mono-atomic gases in order to simplify the code structure and input preparation. Chemical equilibrium conditions, Σν i μ i =0 for the gaseous compounds and precipitated condensed phase compounds and Σν i μ i > 0 for the non-precipitated condensed phase compounds, were applied. Where, ν i and μ i are stoichiometric coefficient and chemical potential of component i. Virtual solid model was introduced to perform the calculation of constant partial pressure condition. 'CHEEQ' was consisted of following 3 parts, (1) analysis code, zc132. f. (2) thermodynamic data base, zmdb01 and (3) input data file, zindb. 'CHEEQ' code can calculate the system which consisted of elements (max.20), condensed phase compounds (max.100) and gaseous compounds. (max.200). Thermodynamic data base, zmdb01 contains about 1000 elements and compounds, and 200 of them were Actinide elements and their compounds. This report describes the basic equations, the outline of the solution procedure and instructions to prepare the input data and to evaluate the calculation results. (author)

  2. VALIDATION GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    Science.gov (United States)

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following guidelines for laboratories engaged in the forensic analysis of chemical evidence associated with terrorism. This document provides a baseline framework and guidance for...

  3. Low frequency electrical and magnetic methods for non-destructive analysis of fiber dispersion in fiber reinforced cementitious composites: an overview.

    Science.gov (United States)

    Faifer, Marco; Ferrara, Liberato; Ottoboni, Roberto; Toscani, Sergio

    2013-01-21

    Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progressive development will be described. Obtained correlation with actual fiber dispersion, as checked by means of destructive methods, as well as with the mechanical performance of the composite will also be presented, in an attempt to address the significance of the method from an engineering application perspective.

  4. Nondestructive testing for bridge diagnosis

    International Nuclear Information System (INIS)

    Oshima, Toshiyuki; Mikami, Shuichi; Yamazaki, Tomoyuki

    1997-01-01

    There are many motivations for bridge diagnosis using Nondestructive testing (NDT) to monitor its integrity. The measured frequency and damping on real bridge are compared in one figure as a function of span length and general aspects are explained. These date were measured in every construction of bridges and applied to design new bridges. Ultrasonic testing is also well used for concrete and steel members mainly to detect internal damages or delaminations. Detail analysis on reflected waves gives us more accurate information about the defect. Experimental results are shown as examples in this paper.

  5. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene.

    Science.gov (United States)

    Virkler, Kelly; Lednev, Igor K

    2009-07-01

    Body fluid traces recovered at crime scenes are among the most important types of evidence to forensic investigators. They contain valuable DNA evidence which can identify a suspect or victim as well as exonerate an innocent individual. The first step of identifying a particular body fluid is highly important since the nature of the fluid is itself very informative to the investigation, and the destructive nature of a screening test must be considered when only a small amount of material is available. The ability to characterize an unknown stain at the scene of the crime without having to wait for results from a laboratory is another very critical step in the development of forensic body fluid analysis. Driven by the importance for forensic applications, body fluid identification methods have been extensively developed in recent years. The systematic analysis of these new developments is vital for forensic investigators to be continuously educated on possible superior techniques. Significant advances in laser technology and the development of novel light detectors have dramatically improved spectroscopic methods for molecular characterization over the last decade. The application of this novel biospectroscopy for forensic purposes opens new and exciting opportunities for the development of on-field, non-destructive, confirmatory methods for body fluid identification at a crime scene. In addition, the biospectroscopy methods are universally applicable to all body fluids unlike the majority of current techniques which are valid for individual fluids only. This article analyzes the current methods being used to identify body fluid stains including blood, semen, saliva, vaginal fluid, urine, and sweat, and also focuses on new techniques that have been developed in the last 5-6 years. In addition, the potential of new biospectroscopic techniques based on Raman and fluorescence spectroscopy is evaluated for rapid, confirmatory, non-destructive identification of a body

  6. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    Science.gov (United States)

    Sloto, R.A.; Helmke, M.F.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.

  7. In Situ Nondestructive Analysis of Kalanchoe pinnata Leaf Surface Structure by Polarization-Modulation Infrared Reflection-Absorption Spectroscopy.

    Science.gov (United States)

    Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki; Enami, Shinichi; Shimoaka, Takafumi; Hasegawa, Takeshi

    2017-12-14

    The outermost surface of the leaves of land plants is covered with a lipid membrane called the cuticle that protects against various stress factors. Probing the molecular-level structure of the intact cuticle is highly desirable for understanding its multifunctional properties. We report the in situ characterization of the surface structure of Kalanchoe pinnata leaves using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Without sample pretreatment, PM-IRRAS measures the IR spectra of the leaf cuticle of a potted K. pinnata plant. The peak position of the CH 2 -related modes shows that the cuticular waxes on the leaf surface are mainly crystalline, and the alkyl chains are highly packed in an all-trans zigzag conformation. The surface selection rule of PM-IRRAS revealed the average orientation of the cuticular molecules, as indicated by the positive and negative signals of the IR peaks. This unique property of PM-IRRAS revealed that the alkyl chains of the waxes and the main chains of polysaccharides are oriented almost perpendicular to the leaf surface. The nondestructive, background-free, and environmental gas-free nature of PM-IRRAS allows the structure and chemistry of the leaf cuticle to be studied directly in its native environment.

  8. Systems analysis of past, present, and future chemical terrorism scenarios.

    Energy Technology Data Exchange (ETDEWEB)

    Hoette, Trisha Marie

    2012-03-01

    Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

  9. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Science.gov (United States)

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  10. Non-Destructive X-ray Spectrometric and Chromatographic Analysis of Metal Containers and Their Contents, from Ancient Macedonia

    Directory of Open Access Journals (Sweden)

    Christos S. Katsifas

    2018-06-01

    Full Text Available This work describes a holistic archaeometric approach to ancient Macedonian specimens. In the region of the ancient city Lete, the deceased members of a rich and important family were interred in a cluster of seven tombs (4th century BC. Among the numerous grave goods, there was also a set of metal containers preserving their original content. The physico-chemical analysis of the containers and their contents was performed in order to understand the purpose of their use. For the containers, Energy Dispersive micro-X-Ray Fluorescence (EDμXRF spectroscopy was implemented taking advantage of its non-invasive character. The case (B35 and the small pyxis (B37 were made of a binary Cu-Sn alloy accompanied by a slight amount of impurities (Fe, Pb, As and the two miniature bowls were made of almost pure Cu. For the study of the contents, a combination of EDμXRF, X-Ray Diffraction (XRD, and Gas Chromatography—Mass Spectrometry (GC-MS was carried out. Especially for the extraction of the volatile compounds, the Solid Phase Micro-Extraction (SPME technique was used in the headspace mode. Because of the detection of Br, High Pressure Liquid Chromatography coupled to a Diode-Array-Detector (HPLC-DAD was implemented, confirming the existence of the ancient dye shellfish purple (porphyra in Greek. The analytical results of the combined implementation of spectrometric and chromatographic analytical techniques of the metal containers and their contents expand our knowledge about the pharmaceutical practices in Macedonia during the 4th century BC.

  11. Nondestructive characterization of austenitic stainless steels

    International Nuclear Information System (INIS)

    Jayakumar, T.; Kumar, Anish

    2010-01-01

    The paper presents an overview of the non-destructive methodologies developed at the authors' laboratory for characterization of various microstructural features, residual stresses and corrosion in austenitic stainless steels. Various non-destructive evaluation (NDE) parameters such as ultrasonic velocity, ultrasonic attenuation, spectral analysis of the ultrasonic signals, magnetic hysteresis parameters and eddy current amplitude have been used for characterization of grain size, precipitation behaviour, texture, recrystallization, thermomechanical processing, degree of sensitization, formation of martensite from metastable austenite, assessment of residual stresses, degree of sensitization and propensity for intergranular corrosion in different austenitic steels. (author)

  12. Computational Chemical Synthesis Analysis and Pathway Design

    Directory of Open Access Journals (Sweden)

    Fan Feng

    2018-06-01

    Full Text Available With the idea of retrosynthetic analysis, which was raised in the 1960s, chemical synthesis analysis and pathway design have been transformed from a complex problem to a regular process of structural simplification. This review aims to summarize the developments of computer-assisted synthetic analysis and design in recent years, and how machine-learning algorithms contributed to them. LHASA system started the pioneering work of designing semi-empirical reaction modes in computers, with its following rule-based and network-searching work not only expanding the databases, but also building new approaches to indicating reaction rules. Programs like ARChem Route Designer replaced hand-coded reaction modes with automatically-extracted rules, and programs like Chematica changed traditional designing into network searching. Afterward, with the help of machine learning, two-step models which combine reaction rules and statistical methods became the main stream. Recently, fully data-driven learning methods using deep neural networks which even do not require any prior knowledge, were applied into this field. Up to now, however, these methods still cannot replace experienced human organic chemists due to their relatively low accuracies. Future new algorithms with the aid of powerful computational hardware will make this topic promising and with good prospects.

  13. Nondestructive Damage Assessment of Composite Structures Based on Wavelet Analysis of Modal Curvatures: State-of-the-Art Review and Description of Wavelet-Based Damage Assessment Benchmark

    Directory of Open Access Journals (Sweden)

    Andrzej Katunin

    2015-01-01

    Full Text Available The application of composite structures as elements of machines and vehicles working under various operational conditions causes degradation and occurrence of damage. Considering that composites are often used for responsible elements, for example, parts of aircrafts and other vehicles, it is extremely important to maintain them properly and detect, localize, and identify the damage occurring during their operation in possible early stage of its development. From a great variety of nondestructive testing methods developed to date, the vibration-based methods seem to be ones of the least expensive and simultaneously effective with appropriate processing of measurement data. Over the last decades a great popularity of vibration-based structural testing has been gained by wavelet analysis due to its high sensitivity to a damage. This paper presents an overview of results of numerous researchers working in the area of vibration-based damage assessment supported by the wavelet analysis and the detailed description of the Wavelet-based Structural Damage Assessment (WavStructDamAs Benchmark, which summarizes the author’s 5-year research in this area. The benchmark covers example problems of damage identification in various composite structures with various damage types using numerous wavelet transforms and supporting tools. The benchmark is openly available and allows performing the analysis on the example problems as well as on its own problems using available analysis tools.

  14. Non-destructive controls

    International Nuclear Information System (INIS)

    Nouvet, A.

    1978-01-01

    The non-destructive controls permit, while respecting their integrity, the direct and individual examination of parts or complete objects as they are manufactured, as well as to follow the evolution of their eventual defects while in operation. The choice of control methods depends on the manufacturing process and shapes of parts, on the physical properties of their components as well as the nature, position and size of the defects which are likely to be detected. Whether it is a question of controls by means of ionizing radiation, flux of neutrons, ultrasons, acoustic source, sweating, magnetoscopy. Foucault currents, thermography, detection of leaks or non-destructive metallography, each has a limited field of application such that they are less competitive than complementary [fr

  15. Nondestructive testing: welding industry

    International Nuclear Information System (INIS)

    Raj, Baldev; Subramanian, C.V.

    1992-01-01

    This chapter highlights various conventional and advanced nondestructive testing (NDT) techniques that have been used for weld evaluation. Welding Codes and Standards of International and National organisations that have been followed in India for various weld evaluation purposes are also included. The chapter also emphasises the importance of NDT by way of a few case studies that have been carried out on important critical welded components. (author). 12 refs., 17 figs., 1 appendix

  16. Rhizoslides: paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis.

    Science.gov (United States)

    Le Marié, Chantal; Kirchgessner, Norbert; Marschall, Daniela; Walter, Achim; Hund, Andreas

    2014-01-01

    A quantitative characterization of root system architecture is currently being attempted for various reasons. Non-destructive, rapid analyses of root system architecture are difficult to perform due to the hidden nature of the root. Hence, improved methods to measure root architecture are necessary to support knowledge-based plant breeding and to analyse root growth responses to environmental changes. Here, we report on the development of a novel method to reveal growth and architecture of maize root systems. The method is based on the cultivation of different root types within several layers of two-dimensional, large (50 × 60 cm) plates (rhizoslides). A central plexiglass screen stabilizes the system and is covered on both sides with germination paper providing water and nutrients for the developing root, followed by a transparent cover foil to prevent the roots from falling dry and to stabilize the system. The embryonic roots grow hidden between a Plexiglas surface and paper, whereas crown roots grow visible between paper and the transparent cover. Long cultivation with good image quality up to 20 days (four fully developed leaves) was enhanced by suppressing fungi with a fungicide. Based on hyperspectral microscopy imaging, the quality of different germination papers was tested and three provided sufficient contrast to distinguish between roots and background (segmentation). Illumination, image acquisition and segmentation were optimised to facilitate efficient root image analysis. Several software packages were evaluated with regard to their precision and the time investment needed to measure root system architecture. The software 'Smart Root' allowed precise evaluation of root development but needed substantial user interference. 'GiaRoots' provided the best segmentation method for batch processing in combination with a good analysis of global root characteristics but overestimated root length due to thinning artefacts. 'WhinRhizo' offered the most rapid

  17. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    Sep 12, 2017 ... Comparative Analysis on Chemical Composition of Bentonite Clays. Obtained from Ashaka and ... versatile material for geotechnical engineering and as well as their demand for ..... A PhD thesis submitted to the Chemical ...

  18. Do's and dont's of nondestructive assay measurements

    International Nuclear Information System (INIS)

    Menlove, H.O.

    Some of the problem areas and recommended procedures in the application of nondestructive analysis (NDA) instrumentation are discussed. To limit the scope of the present guide, only radiometric NDA techniques employing neutron and gamma signatures are considered. Thus, measurement techniques which primarily make use of alpha particles, beta particles, muonic x rays, heat signatures, etc., are not included. (U.S.)

  19. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    Science.gov (United States)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  20. Nondestructive Analysis of Tumor-Associated Membrane Protein Integrating Imaging and Amplified Detection in situ Based on Dual-Labeled DNAzyme.

    Science.gov (United States)

    Chen, Xiaoxia; Zhao, Jing; Chen, Tianshu; Gao, Tao; Zhu, Xiaoli; Li, Genxi

    2018-01-01

    Comprehensive analysis of the expression level and location of tumor-associated membrane proteins (TMPs) is of vital importance for the profiling of tumor cells. Currently, two kinds of independent techniques, i.e. ex situ detection and in situ imaging, are usually required for the quantification and localization of TMPs respectively, resulting in some inevitable problems. Methods: Herein, based on a well-designed and fluorophore-labeled DNAzyme, we develop an integrated and facile method, in which imaging and quantification of TMPs in situ are achieved simultaneously in a single system. The labeled DNAzyme not only produces localized fluorescence for the visualization of TMPs but also catalyzes the cleavage of a substrate to produce quantitative fluorescent signals that can be collected from solution for the sensitive detection of TMPs. Results: Results from the DNAzyme-based in situ imaging and quantification of TMPs match well with traditional immunofluorescence and western blotting. In addition to the advantage of two-in-one, the DNAzyme-based method is highly sensitivity, allowing the detection of TMPs in only 100 cells. Moreover, the method is nondestructive. Cells after analysis could retain their physiological activity and could be cultured for other applications. Conclusion: The integrated system provides solid results for both imaging and quantification of TMPs, making it a competitive method over some traditional techniques for the analysis of TMPs, which offers potential application as a toolbox in the future.

  1. Novel chemical analysis for thin films

    International Nuclear Information System (INIS)

    Usui, Toshio; Kamei, Masayuki; Aoki, Yuji; Morishita, Tadataka; Tanaka, Shoji

    1991-01-01

    Scanning electron microscopy and total-reflection-angle X-ray spectroscopy (SEM-TRAXS) was applied for fluorescence X-ray analysis of 50A- and 125A-thick Au thin films on Si(100). The intensity of the AuM line (2.15 keV) emitted from the Au thin films varied as a function of the take-off angle (θ t ) with respect to the film surface; the intensity of AuM line from the 125A-thick Au thin film was 1.5 times as large as that of SiK α line (1.74 keV) emitted from the Si substrate when θ t = 0deg-3deg, in the vicinity of a critical angle for total external reflection of the AuM line at Si (0.81deg). In addition, the intensity of the AuM line emitted from the 50A-thick Au thin film was also sufficiently strong for chemical analysis. (author)

  2. Non-destructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): IV hair versus soil analysis in exposure and risk assessment of organochlorine compounds

    NARCIS (Netherlands)

    Havé, D' H.; Scheirs, J.; Covaci, A.; Brink, van den N.W.; Verhagen, R.; Coen, De W.

    2007-01-01

    Few ecotoxicological studies on mammals use non-destructive methodologies, despite the growing ethical concern over the use of destructive sampling methods. In the present study we assessed exposure of hedgehogs (Erinaceus europaeus) to polychlorinated biphenyls (PCBs),

  3. Non-Destructive Quantification of Plastic Deformation in Steel: Employing X-Ray Diffraction Peak Broadening Analysis

    Science.gov (United States)

    2013-09-01

    justifier l’élaboration d’une nouvelle analyse des pics de DRX dans les installations de RDDC Atlantique. Résultats : Plusieurs auteurs se sont penchés...2 3 X-Ray Diffraction Theory ...3 X-Ray Diffraction Theory The manifestation of desirable physical and chemical material properties may be readily discerned through investigation

  4. Non-destructive analysis of ancient bimetal swords from western Asia by γ-ray radiography and X-ray fluorescence

    Science.gov (United States)

    Shizuma, Kiyoshi; Kajimoto, Tsuyoshi; Endo, Satoru; Matsugi, Kazuhiro; Arimatsu, Yui; Nojima, Hisashi

    2017-09-01

    Eight ancient bimetal swords held by Hiroshima University, Japan were analyzed non-destructively through γ-ray radiography and X-ray fluorescence (XRF). 137Cs and 60Co γ-ray irradiation sources were used to obtain transmission images of swords. A scanning radiography method using a 60Co γ-ray source was developed. XRF was used for qualitative elemental analysis of the swords. The presence of iron cores in the hilts of some swords had been observed and it was assumed that the cores were a ritual symbol or had a functional purpose. However, our work reveals that these swords were originally bronze-hilted iron swords and that the rusty blades were replaced with bronze blades to maintain the swords' commercial value as an antique. Consequently, the rest of the iron blade was left in the hilt as an iron tang. The junction of the blade and the guard was soldered and painted to match the patina color. XRF analysis clearly showed that the elemental Sn/Cu ratios of the blades and the hilts were different. These findings are useful for clarifying the later modifications of the swords and are important for interpreting Bronze Age and Iron Age history correctly.

  5. Thermodynamic analysis of chemical heat pumps

    International Nuclear Information System (INIS)

    Obermeier, Jonas; Müller, Karsten; Arlt, Wolfgang

    2015-01-01

    Thermal energy storages and heat pump units represent an important part of high efficient renewable energy systems. By using thermally driven, reversible chemical reactions a combination of thermal energy storage and heat pump can be realized. The influences of thermophysical properties of the involved components on the efficiency of a heat pump cycle is analysed and the relevance of the thermodynamic driving force is worked out. In general, the behaviour of energetic and exergetic efficiency is contrary. In a real cycle, higher enthalpies of reaction decrease the energetic efficiency but increase the exergetic efficiency. Higher enthalpies of reaction allow for lower offsets from equilibrium state for a default thermodynamic driving force of the reaction. - Highlights: • A comprehensive efficiency analysis of gas-solid heat pumps is proposed. • Link between thermodynamic driving force and equilibrium drop is shown. • Calculation of the equilibrium drop based on thermochemical properties. • Reaction equilibria of the decomposition reaction of salt hydrates. • Contrary behavior of energetic and exergetic efficiency

  6. Analysis of the single and combined non-destructive test approaches for on-site concrete strength assessment: General statements based on a real case-study

    Directory of Open Access Journals (Sweden)

    Khoudja Ali-Benyahia

    2017-06-01

    Full Text Available The evaluation of the compressive strength of concrete in existing structures by coring is expensive, technically difficult in certain cases, and even impossible in others. The use of non-destructive testing (NDT is an interesting alternative method (i.e. affordable cost, portable, fast, etc.. However, the NDT estimation of strength requires a procedure of calibration of the model between NDT and compressive strength. The robustness of this calibration is a crucial point allowing better choice of the optimal number of cores. Studies which treat the calibration of proposed models are often based on laboratory experiments or synthetic data. The present study aims at identifying and optimizing the methodology of the calibration model on site. This paper is based on a broad campaign of auscultation using NDT (Rebound and Ultrasound and coring on an existing construction with 205 triplets of data (strengths and NDT results. Statistical data analysis enables to quantify the role of: the number of cores (NC used for the calibration, the use of only one or two-combined NDT techniques and the calibration method. The conclusions are focused on the improvement of the relevance and the effectiveness of NDT techniques in such operational situations.

  7. availability analysis of chemicals for water treatment

    African Journals Online (AJOL)

    NIJOTECH

    In most countries, chemicals are generally recognized as being vital in the production of potable water and will ... industries and water utility ventures are being started in Nigeria ... are being dumped into rivers thereby polluting them the more.

  8. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI)

    Science.gov (United States)

    Amberg, Alexander; Barrett, Dave; Beale, Michael H.; Beger, Richard; Daykin, Clare A.; Fan, Teresa W.-M.; Fiehn, Oliver; Goodacre, Royston; Griffin, Julian L.; Hankemeier, Thomas; Hardy, Nigel; Harnly, James; Higashi, Richard; Kopka, Joachim; Lane, Andrew N.; Lindon, John C.; Marriott, Philip; Nicholls, Andrew W.; Reily, Michael D.; Thaden, John J.; Viant, Mark R.

    2013-01-01

    There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental replication, and enables the re-interrogation and comparison of data by others. Accordingly, the Metabolomics Standards Initiative is building a general consensus concerning the minimum reporting standards for metabolomics experiments of which the Chemical Analysis Working Group (CAWG) is a member of this community effort. This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing. These minimum standards currently focus mostly upon mass spectrometry and nuclear magnetic resonance spectroscopy due to the popularity of these techniques in metabolomics. However, additional input concerning other techniques is welcomed and can be provided via the CAWG on-line discussion forum at http://msi-workgroups.sourceforge.net/ or http://Msi-workgroups-feedback@lists.sourceforge.net. Further, community input related to this document can also be provided via this electronic forum. PMID:24039616

  9. Technical regulation of nondestructive inspection

    International Nuclear Information System (INIS)

    1995-01-01

    It starts with the explanation of definition of nondestructive inspection and qualifications for a inspection. It lists the technical regulations of nondestructive inspections which are radiographic testing, ultrasonic flaw detecting test, liquid penetrant test, magnetic particle inspection, eddy current test visual inspection and leakage test.

  10. Non-destructive nuclear forensics of radioactive samples

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, R.B. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Alexander, Q.; Bentoumi, G.; Dimayuga, F. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Flacau, R. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Li, G.; Li, L.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    It is a matter of public safety and security to be able to examine suspicious packages of unknown origin. If the package is radioactive and sealed (i.e., the radioactive materials contained in the package, including their chemical and physical forms, are unknown), there is a significant risk on how to handle the package and eventually safely dispose of its contents. Within the context of nuclear security, nuclear forensics helps address the key issue of identifying the nature and origin of radioactive and nuclear material in order to improve physical protection measures and prevent future theft or diversion of these materials. Nuclear forensics utilizes analytical techniques, destructive and non-destructive, developed for applications related to nuclear fuel cycles. This paper demonstrates the non-destructive examination techniques that can be used to inspect encapsulated radioactive samples. Results of γ spectroscopy, X-ray spectroscopy, neutron imaging, neutron diffraction, and delayed neutron analysis as applied to an examination of sealed capsules containing unknown radioactive materials are presented. The paper also highlights the value of these techniques to the overall nuclear forensic investigation to determine the origin of these unknown radioactive materials. (author)

  11. Physico-Chemical Analysis and Sensory Evaluation of Bread

    African Journals Online (AJOL)

    Shuaibu et al.

    Physico-Chemical Analysis and Sensory Evaluation of Bread Produced Using ... analysis of the bread samples revealed that the moisture content ..... 72. Jarup, L. ,2003. Hazards of heavy metal contamination. Br Med. Bull; 68, pp.167-82.

  12. Chemical analysis and base-promoted hydrolysis of locally ...

    African Journals Online (AJOL)

    Abstract. The study was on the chemical analysis and base- promoted hydrolysis of extracted shea nut fat. The local method of extraction of the shea nut oil was employed in comparison with literature report. A simple cold-process alkali hydrolysis of the shea nut oil was used in producing the soap. The chemical analysis of ...

  13. Improvement of the reliability on nondestructive inspection

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Young H.; Lee, Hyang Beom; Shin, Young Kil; Jung, Hyun Jo; Park, Ik Keun; Park, Eun Soo

    2002-03-01

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time

  14. Improvement of the reliability on nondestructive inspection

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Kim, Young H. [Sungkyunkwan Univ., Suwon (Korea, Republic of); Lee, Hyang Beom [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan National Univ., Gunsan (Korea, Republic of); Jung, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of); Park, Ik Keun; Park, Eun Soo [Seoul Nationl Univ., Seoul (Korea, Republic of)

    2002-03-15

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time.

  15. Image analysis as a non-destructive method to assess regrowth of weeds after repeated flame weeding

    DEFF Research Database (Denmark)

    Rask, Anne Merete; Kristoffersen, Palle; Andreasen, Christian

    2013-01-01

    picture of the long-term effect of repeated treatments. Image analysis was most useful for assessing the effect of repeated treatments when weed cover was relatively low (below 40%) and when plots contained relatively much withered plant material. However, when weed cover is close to 100%, dry weight......, and therefore it may influence the long-term effect of repeated treatments. Visual assessment of weed cover or image analysis do not affect the remaining parts of the weed plants after treatment, but the methods may have other disadvantages. In order to evaluate and compare three methods we measured changes...... in vegetation cover of perennial ryegrass after flaming by (1) a simple image analysis programme counting green pixels, (2) visual assessment of images and (3) by taking biomass samples. Plants were flame treated with eight different dosages (0, 20, 30, 35, 45, 60, 90 and 180 kg propane ha-1) and with various...

  16. Thermally emissive sensing materials for chemical spectroscopy analysis

    Science.gov (United States)

    Poole, Zsolt; Ohodnicki, Paul R.

    2018-05-08

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to the material.

  17. Feasibility study in the application of optical signal analysis to non-destructive testing of complex structures

    Science.gov (United States)

    Baker, B.; Brown, H.

    1974-01-01

    Advantages of the large time bandwidth product of optical processing are presented. Experiments were performed to study the feasibility of the use of optical spectral analysis for detection of flaws in structural elements excited by random noise. Photographic and electronic methods of comparison of complex spectra were developed. Limitations were explored, and suggestions for further work are offered.

  18. Nondestructive assay of fluorine in geological and other materials by instrumental photon activation analysis with a microtron

    Czech Academy of Sciences Publication Activity Database

    Krausová, I.; Mizera, Jiří; Řanda, Z.; Chvátil, D.; Krist, P.

    2015-01-01

    Roč. 342, JAN (2015), s. 82-86 ISSN 0168-583X Institutional support: RVO:67985891 Keywords : fluorine * instrumental photon activation analysis * IPAA * coal Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015

  19. Chemical and thermal analysis for characterisation of building materials

    International Nuclear Information System (INIS)

    Kumar, S.C.; Sudersanan, M.; Ravindran, P.V.; Kalekar, B.B.; Mathur, P.K.

    2000-01-01

    Cement and other construction materials are extensively used for the construction of shielding materials for nuclear and high energy radiations. The design and optimum utilisation of such materials need an accurate analysis of their chemical composition. The moisture content and presence of bound water and other volatile materials are also important. The use of thermal analysis supplements the data obtained by chemical analysis and enables a distinction of moisture and chemically bound water. It also enables an identification of the process leading to the loss on ignition. The work carried out on the analysis of sand, cement and other aggregate materials used for the preparation of concrete is described in the paper. (author)

  20. Nondestructive Testing of Advanced Concrete Structure during Lifetime

    Directory of Open Access Journals (Sweden)

    Lubos Pazdera

    2015-01-01

    Full Text Available The paper reports on measurements and analysis of the measurements during hardening and drying of specimens using selected acoustic nondestructive testing techniques. An integrated approach was created for better understanding of the relations between the lifetime cycle and the development of the mechanical properties of concrete. Acoustic emission, impact echo, and ultrasonic techniques were applied simultaneously to the same mixtures. These techniques and results are presented on alkali-activated slag mortars. The acoustic emission method detects transient elastic waves within the material, caused by the release of cumulated stress energy, which can be mechanical, thermal, or chemical. Hence, the cause is a phenomenon which releases elastic energy into the material, which then spreads in the form of an elastic wave. The impact echo method is based on physical laws of elastic stress wave propagation in solids generated by mechanical impulse. Ultrasonic testing is commonly used to find flaws in materials or to assess wave velocity spreading.

  1. Chemical Diversity, Origin, and Analysis of Phycotoxins

    DEFF Research Database (Denmark)

    Rasmussen, Silas Anselm; Andersen, Aaron John Christian; Andersen, Nikolaj Gedsted

    2016-01-01

    , yessotoxins, azaspiracids, brevetoxins, and pinnatoxins. Other toxins, such as ciguatoxins and maitotoxins, accumulate in fish, where, as is the case for the latter compounds, they can be metabolized to even more toxic metabolites. On the other hand, much less is known about the chemical nature of compounds...

  2. Nondestructive assay of fluorine in geological and other materials by instrumental photon activation analysis with a microtron

    Czech Academy of Sciences Publication Activity Database

    Krausová, Ivana; Mizera, Jiří; Řanda, Zdeněk; Chvátil, David; Krist, Pavel

    2015-01-01

    Roč. 342, JAN (2015), s. 82-86 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GA13-27885S Institutional support: RVO:61389005 Keywords : Fluorine * instrumental photon activation analysis * IPAA * coal Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015

  3. Nondestructive, energy-dispersive, x-ray fluorescence analysis of actinide stream concentrations from reprocessed nuclear fuels

    International Nuclear Information System (INIS)

    Camp, D.C.; Ruhter, W.D.

    1979-01-01

    In one plan for reprocessing LWR spent fuel, after separation from fission products and transplutonics, part of the U and all of the Pu in a nitrate solution will form a coprocessed stream which is then evaporated and sent to a hold tank for accounting. The remaining U fraction will be purified and sent to a separate storage tank. These two streams can be monitored using x-ray fluorescence analysis. This report discusses equipment, spectra, cell calibration, and dynamic concentration measurements. 7 figures

  4. Nondestructive X-Ray Computed Tomography Analysis of Sediment Cores: A Case Study from the Arctic Ocean

    Science.gov (United States)

    Oti, E.; Polyak, L. V.; Cook, A.; Dipre, G.

    2014-12-01

    Investigation of marine sediment records can help elucidate recent changes in the Arctic Ocean circulation and sea ice conditions. We examine sediment cores from the western Arctic Ocean, representing Late to Early Quaternary age (potentially up to 1 Ma). Previous studies of Arctic sediment cores indicate that interglacial/interstadial periods with relatively high sea levels and reduced ice cover are characterized by vigorous bioturbation, while glacial intervals have little to no bioturbation. Traditional methods for studying bioturbation require physical dissection of the cores, effectively destroying them. To treat this limitation, we evaluate archival sections of the cores using an X-ray Computed Tomography (XCT) scanner, which noninvasively images the sediment cores in three dimensions. The scanner produces density sensitive images suitable for quantitative analysis and for identification of bioturbation based on size, shape, and orientation. We use image processing software to isolate burrows from surrounding sediment, reconstruct them three-dimensionally, and then calculate their surface areas, volumes, and densities. Preliminary analysis of a core extending to the early Quaternary shows that bioturbation ranges from 0 to approximately 20% of the core's volume. In future research, we will quantitatively define the relationship between bioturbation activity and glacial regimes. XCT examination of bioturbation and other sedimentary features has the potential to shed light on paleoceanographic conditions such as sedimentation patterns and food flux. XCT is an alternative, underexplored investigation method that bears implications not only for illustrating paleoclimate variations but also for preserving cores for future, more advanced technologies.

  5. Non-destructive Quantitative Phase Analysis and Microstructural Characterization of Zirconium Coated U-10Mo Fuel Foils via Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, Dustin Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hollis, Kendall Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dombrowski, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffraction data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to

  6. Non-destructive Quantitative Phase Analysis and Microstructural Characterization of Zirconium Coated U-10Mo Fuel Foils via Neutron Diffraction

    International Nuclear Information System (INIS)

    Cummins, Dustin Ray; Vogel, Sven C.; Hollis, Kendall Jon; Brown, Donald William; Dombrowski, David E.

    2016-01-01

    This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffraction data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to

  7. Analysis of chemical constituents in Cistanche species.

    Science.gov (United States)

    Jiang, Yong; Tu, Peng-Fei

    2009-03-13

    Species of the genus of Cistanche (Rou Cong Rong in Chinese) are perennial parasite herbs, and are mainly distributed in arid lands and warm deserts. As a superior tonic for the treatment of kidney deficiency, impotence, female infertility, morbid leucorrhea, profuse metrorrhagia and senile constipation, Cistanche herbs earned the honor of "Ginseng of the desert". Recently, there has been increasing scientific attention on Herba Cistanche for its remarkable bioactivities including antioxidation, neuroprotection, and anti-aging. The chemical constituents of Cistanche plants mainly include volatile oils and non-volatile phenylethanoid glycosides (PhGs), iridoids, lignans, alditols, oligosaccharides and polysaccharides. Pharmacological studies show that PhGs are the main active components for curing kidney deficiency, antioxidation and neuroprotection; galactitol and oligosaccharides are the representatives for the treatment of senile constipation, while polysaccharides are responsible for improving body immunity. In this paper, the advances on the chemical constituents of Cistanche plants and their corresponding analyses are reviewed.

  8. Simple Linear Regression and Reflectance Sensitivity Analysis Used to Determine the Optimum Wavelength for Nondestructive Assessment of Chlorophyll in Fresh Leaves Using Spectral Reflectance

    Science.gov (United States)

    The accuracy of nondestructive optical methods for chlorophyll (Chl) assessment based on leaf spectral characteristics depends on the wavelengths used for Chl assessment. Using spectroscopy, the optimum wavelengths for Chl assessment (OWChl) were determined for almond, poplar, and apple trees grown ...

  9. Non-destructive inservice inspections

    International Nuclear Information System (INIS)

    Kauppinen, P.; Sarkimo, M.; Lahdenperae, K.

    1998-01-01

    In order to assess the possible damages occurring in the components and structures of operating nuclear power plants during service the main components and structures are periodically inspected by non-destructive testing techniques. The reliability of non-destructive testing techniques applied in these inservice inspections is of major importance because the decisions concerning the needs for repair of components are mainly based on the results of inspections. One of the targets of this research program has been to improve the reliability of non-destructive testing. This has been addressed in the sub-projects which are briefly summarised here. (author)

  10. Nondestructive Reactivation of Chemical Protective Garments

    National Research Council Canada - National Science Library

    Chang, Kuo

    1995-01-01

    .... Complete reactivation was achieved when the aqueous/ i-propanol/ iodine displacement method of Manes, which removed all but pure hydrocarbon oil soils from the current overgarment Type III foam...

  11. Nondestructive analysis of the natural uranium mass through the measurement of delayed neutrons using the technique of pulsed neutron source

    International Nuclear Information System (INIS)

    Coelho, Paulo Rogerio Pinto

    1979-01-01

    This work presents results of non destructive mass analysis of natural uranium by the pulsed source technique. Fissioning is produced by irradiating the test sample with pulses of 14 MeV neutrons and the uranium mass is calculated on a relative scale from the measured emission of delayed neutrons. Individual measurements were normalised against the integral counts of a scintillation detector measuring the 14 MeV neutron intensity. Delayed neutrons were measured using a specially constructed slab detector operated in anti synchronism with the fast pulsed source. The 14 MeV neutrons were produced via the T(d,n) 4 He reaction using a 400 kV Van de Graaff accelerated operated at 200 kV in the pulsed source mode. Three types of sample were analysed, namely: discs of metallic uranium, pellets of sintered uranium oxide and plates of uranium aluminium alloy sandwiched between aluminium. These plates simulated those of Material Testing Reactor fuel elements. Results of measurements were reproducible to within an overall error in the range 1.6 to 3.9%; the specific error depending on the shape, size and mass of the sample. (author)

  12. Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Sterbentz; D. L. Chichester

    2010-12-01

    This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

  13. Controlling the accuracy of chemical analysis

    International Nuclear Information System (INIS)

    Suschny, O.; Danesi, P.R.

    1991-01-01

    The involvement of the IAEA in quantitative analysis began in the early 1960's with radiochemical work connected with the environment. It than expanded to cover analysis (mostly by nuclear techniques) of samples for projects associated with human health, agriculture, hydrology and international safeguards. This article highlights the IAEA activities in the field of quality control in quantitative analysis

  14. Nondestructive measurement of environmental radioactive strontium

    Directory of Open Access Journals (Sweden)

    Saiba Shuntaro

    2014-03-01

    Full Text Available The Fukushima Daiichi nuclear power plant accident was triggered by the 2011 Great East Japan Earthquake. The main radioactivity concerns after the accident are I-131 (half-life: 8.0 days, Cs-134 (2.1 years, Cs-137 (30 years, Sr-89 (51 days, and Sr-90 (29 years. We are aiming to establish a new nondestructive measurement and detection technique that will enable us to realize a quantitative evaluation of strontium radioactivity without chemical separation processing. This technique is needed to detect radiation contained in foods, environmental water, and soil, to prevent us from undesired internal exposure to radiation.

  15. Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging.

    Science.gov (United States)

    Caporaso, Nicola; Whitworth, Martin B; Grebby, Stephen; Fisk, Ian D

    2018-04-01

    Hyperspectral imaging (HSI) is a novel technology for the food sector that enables rapid non-contact analysis of food materials. HSI was applied for the first time to whole green coffee beans, at a single seed level, for quantitative prediction of sucrose, caffeine and trigonelline content. In addition, the intra-bean distribution of coffee constituents was analysed in Arabica and Robusta coffees on a large sample set from 12 countries, using a total of 260 samples. Individual green coffee beans were scanned by reflectance HSI (980-2500nm) and then the concentration of sucrose, caffeine and trigonelline analysed with a reference method (HPLC-MS). Quantitative prediction models were subsequently built using Partial Least Squares (PLS) regression. Large variations in sucrose, caffeine and trigonelline were found between different species and origin, but also within beans from the same batch. It was shown that estimation of sucrose content is possible for screening purposes (R 2 =0.65; prediction error of ~0.7% w/w coffee, with observed range of ~6.5%), while the performance of the PLS model was better for caffeine and trigonelline prediction (R 2 =0.85 and R 2 =0.82, respectively; prediction errors of 0.2 and 0.1%, on a range of 2.3 and 1.1% w/w coffee, respectively). The prediction error is acceptable mainly for laboratory applications, with the potential application to breeding programmes and for screening purposes for the food industry. The spatial distribution of coffee constituents was also successfully visualised for single beans and this enabled mapping of the analytes across the bean structure at single pixel level. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Chemical considerations in severe accident analysis

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Kress, T.S.

    1988-01-01

    The Reactor Safety Study presented the first systematic attempt to include fission product physicochemical effects in the determination of expected consequences of hypothetical nuclear reactor power plant accidents. At the time, however, the data base was sparse, and the treatment of fission product behavior was not entirely consistent or accurate. Considerable research has since been performed to identify and understand chemical phenomena that can occur in the course of a nuclear reactor accident, and how these phenomena affect fission product behavior. In this report, the current status of our understanding of the chemistry of fission products in severe core damage accidents is summarized and contrasted with that of the Reactor Safety Study

  17. Industrial strategy for nondestructive control

    International Nuclear Information System (INIS)

    Martin, P.; Michaut, J.P.

    1994-01-01

    For Electricite de France, the nondestructive control strategy passes by a responsibility of services, a competition between companies, a clarification of the market access and a dialogue with the companies

  18. Analysis of chemical constituents in medicinal plants of selected ...

    African Journals Online (AJOL)

    Analysis of chemical constituents in medicinal plants of selected districts of Pakhtoonkhwa, Pakistan. I Hussain, R Ullah, J Khan, N Khan, M Zahoor, N Ullah, MuR Khattak, FA Khan, A Baseer, M Khurram ...

  19. Nondestructive Testing with Shearography

    International Nuclear Information System (INIS)

    Chang, Seog Weon

    2001-01-01

    Nondestructive testing(NDT) is one of the fundamental tools to improve the quality of commercial and industrial products. NDT is potentially a major application of interferometry. Interferometry(ESPI, Shearography, ect) has successfully been applied in various industrial environments such as high performance aircraft, home appliance, automotive, and laminates on engine structures, etc. Today's industry demands high performance components with toughest mechanical features and ultimate safety standards. Especially in automotive and aircraft industry the development process focuses on tailor-made design and solutions to meet customer specifications. To reconcile economy, ligh-weight construction has become a key issue. Many companies are looking for new advanced NDT techniques to archive cost efficiency over the limitations of classical methods. ESPI and shearography allow a rapid, full field and 3D-measurement without contact. In this paper recent applications of ESPI and shearography for NDT are described. Advanced features of classical techniques are specified and new applications in material and component testing are presented

  20. Uranium isotopic analysis of depleted uranium in presence of other radioactive materials by using nondestructive gamma-ray measurements in coaxial and planar Ge detectors

    International Nuclear Information System (INIS)

    Yucel, H.; Yeltepe, E.; Dikmen, H.; Turhan, Sh.; Vural, M.

    2006-01-01

    Full text: The isotopic abundance of depleted uranium samples in the presence of other radioactive materials, especially actinide isotopes such as Th 232, Np 237-Pa 233 and Am 241 can be determined from two gamma-ray spectrometric methods. One is the absolute method which employs non-destructive gamma-ray spectrometry for energies below 1001 keV using a coaxial Ge detector calibrated with a set of standards. The other is the multi-group analysis (MGA) method using the low energy region (< 300 keV) with a planar Ge detector intrinsically calibrated with gamma and X-rays of uranium without use of standards. At present absolute method, less intense but cleaner gamma peaks at 163.33 keV (5.08 percent) and 205 keV(5.01 percent) of U 235 are preferred over more intense peaks at 143.76 keV(10.76 percent), possible interference with 143.25 keV(0.44 percent) of Np 237 and 185.705 keV(57.2 percent), possible interference with 186.21 keV(3.51 percent) of Ra 226. In the high energy region the 1001.03 keV(0.837 percent) peak of Pa 234 m is used for the isotopic abundance analysis because the more intense 63.3 keV peak of Th 234 daughter of U 238 parent has a fully multiplet(62.86 keV+63.29 keV) and include the interferences of the 62.70 keV(1.5 percent) peak of Pa 234, the 63.81 keV(0.263 percent) peak of Th 232 and the 63.90 keV(0.011 percent) peak of Np 237. Although the MGA method is quicker and more practical, the more laborious absolute gamma spectrometric method can give more accurate results for the isotopic determination of depleted uranium samples. The relative uranium abundances obtained with the second method (i,e., MGA) are in general inconsistent with the declared values for the uranium samples in the presence of the above mentioned actinides. The reason for these erroneous results is proposed to be the interference of the gamma and X-rays of uranium in the 80-130 keV region used in MGA with those emissions from other radioactive materials present

  1. Chemical analysis of cyanide in cyanidation process: review of methods

    International Nuclear Information System (INIS)

    Nova-Alonso, F.; Elorza-Rodriguez, E.; Uribe-Salas, A.; Perez-Garibay, R.

    2007-01-01

    Cyanidation, the world wide method for precious metals recovery, the chemical analysis of cyanide, is a very important, but complex operation. Cyanide can be present forming different species, each of them with different stability, toxicity, analysis method and elimination technique. For cyanide analysis, there exists a wide selection of analytical methods but most of them present difficulties because of the interference of species present in the solution. This paper presents the different available methods for chemical analysis of cyanide: titration, specific electrode and distillation, giving special emphasis on the interferences problem, with the aim of helping in the interpretation of the results. (Author)

  2. Chemical composition analysis and authentication of whisky.

    Science.gov (United States)

    Wiśniewska, Paulina; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek

    2015-08-30

    Whisky (whiskey) is one of the most popular spirit-based drinks made from malted or saccharified grains, which should mature for at least 3 years in wooden barrels. High popularity of products usually causes a potential risk of adulteration. Thus authenticity assessment is one of the key elements of food product marketing. Authentication of whisky is based on comparing the composition of this alcohol with other spirit drinks. The present review summarizes all information about the comparison of whisky and other alcoholic beverages, the identification of type of whisky or the assessment of its quality and finally the authentication of whisky. The article also presents the various techniques used for analyzing whisky, such as gas and liquid chromatography with different types of detectors (FID, AED, UV-Vis), electronic nose, atomic absorption spectroscopy and mass spectrometry. In some cases the application of chemometric methods is also described, namely PCA, DFA, LDA, ANOVA, SIMCA, PNN, k-NN and CA, as well as preparation techniques such SPME or SPE. © 2014 Society of Chemical Industry.

  3. Analysis of blood spots for polyfluoroalkyl chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Kayoko; Wanigatunga, Amal A.; Needham, Larry L. [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA (United States); Calafat, Antonia M., E-mail: acalafat@cdc.gov [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA (United States)

    2009-12-10

    Polyfluoroalkyl chemicals (PFCs) have been detected in humans, in the environment, and in ecosystems around the world. The potential for developmental and reproductive toxicities of some PFCs is of concern especially to children's health. In the United States, a sample of a baby's blood, called a 'dried blood spot' (DBS), is obtained from a heel stick within 48 h of a child's birth. DBS could be useful for assessing prenatal exposure to PFCs. We developed a method based on online solid phase extraction coupled with high performance liquid chromatography-isotope dilution tandem mass spectrometry for measuring four PFCs in DBS, perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate, perfluorooctanoate (PFOA), and perfluorononanoate. The analytical limits of detection using one whole DBS ({approx}75 {mu}L of blood) were <0.5 ng mL{sup -1}. To validate the method, we analyzed 98 DBS collected in May 2007 in the United States. PFOS and PFOA were detected in all DBS at concentrations in the low ng mL{sup -1} range. These data suggest that DBS may be a suitable matrix for assessing perinatal exposure to PFCs, but additional information related to sampling and specimen storage is needed to demonstrate the utility of these measures for assessing exposure.

  4. Prompt-gamma neutron activation analysis for the non-destructive characterization of radioactive wastes; Prompt-Gamma-Neutronen-Aktivierungs-Analyse zur zerstoerungsfreien Charakterisierung radioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Kettler, John Paul Hermann

    2010-07-01

    In Germany, stringent official regulations govern the handling and final storage of radioactive waste. For this reason, the Federal Government has opted for final storage of radioactive waste with negligible heat generation in deep geological formations. At present the Konrad mine in Salzgitter will be rebuilt as a final disposal, the start of operation is scheduled for 2014. Radioactive waste with negligible heat generation originates from the operation and decommissioning of nuclear power plants, the medical sector or from research establishments. The requirements of the planning approval decision to build up the disposal Konrad, published on the 22{sup nd} of May 2002, obligate the waste producer to consider the limits for chemotoxic substances and to document the waste content. Before the radioactive waste can be stored in the final disposal, it is necessary to characterize the waste composition, relating to the concentration of water polluting substances. In particular for the wastes produced in the year before 1990, the so-called old wastes, there is a lack of documentation. The chemotoxicity of old wastes can mostly only characterized by time consuming and destructive methods. Furthermore these methods produce high costs, which depend on the arrangements to avoid contamination, to comply with the radiation protection and for the conditioning of the wastes. A prototype system, based on the Prompt-Gamma-Neutron-Activation-Analysis (PGNAA) with 14 MeV neutrons, has been developed in this work. This system allows the characterization of large samples, like 25 and 50 l drums. The signature of the element composition is in this processed by gamma-ray spectroscopy. This work was focused, in addition to the feasibility of the system, to the neutron and photon transport in large samples. Therefore the neutron and photon self-absorption in dependence of the sample composition were the main part of interest. Computer simulations (MCNP) and experiments were performed to

  5. Droplet microfluidics in (bio) chemical analysis

    Czech Academy of Sciences Publication Activity Database

    Basova, E. Y.; Foret, František

    2015-01-01

    Roč. 140, č. 1 (2015), s. 22-38 ISSN 0003-2654 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : droplet chemistry * bio analysis * microfluidics * protein Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.033, year: 2015

  6. Chemical aspects of nuclear methods of analysis

    International Nuclear Information System (INIS)

    1985-01-01

    This final report includes papers which fall into three general areas: development of practical pre-analysis separation techniques, uranium/thorium separation from other elements for analytical and processing operations, and theory and mechanism of separation techniques. A separate abstract was prepared for each of the 9 papers

  7. Chemical composition, antimicrobial activity, proximate analysis and ...

    African Journals Online (AJOL)

    Detarium senegalense JF Gmelin (Caesalpiniaceae), commonly known as tallow tree, is used traditionally for the treatment of bronchitis, pneumonia, internal complaints and skin diseases in Tropical Africa. The seed is used as a soup thickener in Eastern Nigeria. Analysis of the petroleum ether extract of the seeds with ...

  8. A Nondestructive Method to Identify POP Contamination Sources in Omnivorous Seabirds.

    Science.gov (United States)

    Michielsen, Rosanne J; Shamoun-Baranes, Judy; Parsons, John R; Kraak, Michiel H S

    2018-03-13

    Persistent organic pollutants (POPs) are present in almost all environments due to their high bioaccumulation potential. Especially species that adapted to human activities, like gulls, might be exposed to harmful concentrations of these chemicals. The nature and degree of the exposure to POPs greatly vary between individual gulls, due to their diverse foraging behavior and specialization in certain foraging tactics. Therefore, in order clarify the effect of POP-contaminated areas on gull populations, it is important to identify the sources of POP contamination in individual gulls. Conventional sampling methods applied when studying POP contamination are destructive and ethically undesired. The aim of this literature review was to evaluate the potential of using feathers as a nondestructive method to determine sources of POP contamination in individual gulls. The reviewed data showed that high concentrations of PCBs and PBDEs in feathers together with a large proportion of less bioaccumulative congeners may indicate that the contamination originates from landfills. Low PCB and PBDE concentrations in feathers and a large proportion of more bioaccumulative congeners could indicate that the contamination originates from marine prey. We propose a nondestructive approach to identify the source of contamination in individual gulls based on individual contamination levels and PCB and PBDE congener profiles in feathers. Despite some uncertainties that might be reduced by future research, we conclude that especially when integrated with other methods like GPS tracking and the analysis of stable isotopic signatures, identifying the source of POP contamination based on congener profiles in feathers could become a powerful nondestructive method.

  9. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    Science.gov (United States)

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-01-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057

  10. Chemical analysis developments for fusion materials studies

    International Nuclear Information System (INIS)

    McCown, J.J.; Baldwin, D.L.; Keough, R.F.; Van der Cook, B.P.

    1985-04-01

    Several projects at Hanford under the management of the Westinghouse Hanford Company have involved research and development (R and D) on fusion materials. They include work on the Fusion Materials Irradiation Test Facility and its associated Experimental Lithium System; testing of irradiated lithium compounds as breeding materials; and testing of Li and Li-Pb alloy reactions with various atmospheres, concrete, and other reactor materials for fusion safety studies. In the course of these projects, a number of interesting and challenging analytical chemistry problems were encountered. They include sampling and analysis of lithium while adding and removing elements of interest; sampling, assaying and compound identification efforts on filters, aerosol particles and fire residues; development of dissolution and analysis techniques for measuring tritium and helium in lithium ceramics including oxides, aluminates, silicates and zirconates. An overview of the analytical chemistry development problems plus equipment and procedures used will be presented

  11. Chemical analysis of rare earth elements

    International Nuclear Information System (INIS)

    Tsukahara, Ryoichi; Sakoh, Takefumi; Nagai, Iwao

    1994-01-01

    Recently attention has been paid to ICP-AES or ICP-MS, and the reports on the analysis of rare earth elements by utilizing these methods continue to increase. These reports have become to take about 30% of the reports on rare earth analysis, and this is because these methods are highly sensitive to rare earth elements, and also these methods have spread widely. In ICP-AES and ICP-MS, mostly solution samples are measured, therefore, solids must be made into solution. At the time of quantitatively determining the rare earth elements of low concentration, separation and concentration are necessary. Referring to the literatures reported partially in 1990 and from 1991 to 1993, the progress of ICP-AES and ICP-MS is reported. Rare earth oxides and the alloys containing rare earth elements are easily decomposed with acids, but the decomposition of rocks is difficult, and its method is discussed. The separation of the rare earth elements from others in geochemical samples, cation exchange process is frequently utilized. Also solvent extraction process has been studied. For the separation of rare earth elements mutually, chromatography is used. The spectral interference in spectral analysis was studied. The comparison of these methods with other methods is reported. (K.I)

  12. Chemical imaging techniques for the analysis of complex mixtures: New application to the characterization of ritual matters on African wooden statuettes

    International Nuclear Information System (INIS)

    Mazel, Vincent; Richardin, Pascale; Touboul, David; Brunelle, Alain; Walter, Philippe; Laprevote, Olivier

    2006-01-01

    Chemical imaging techniques, based on the combination of microscopy and spectroscopy, are well suited to study both the composition and the spatial organization of heterogeneous complex mixtures of organic and mineral matter. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), followed by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX) and Fourier transform infrared microscopy (FTIR microscopy) have been applied to non-destructive analysis of micro-samplings of ritual matters deposited on the surface of African wooden statuettes. With a very careful preparation, using ultramicrotomy on embedded samples, it was possible to perform successively all the measurements on a single fragment. Comparison and superposition of the different chemical images, obtained on a sample from a significant actual artefact, have allowed us to identify minerals (clays, quartz and calcium carbonate), proteins, starch, urate salts and lipids and to map their spatial distribution

  13. Portable X-ray fluorescence spectrometer system containing a low-level radioisotope and its application to the non-destructive analysis of inorganic colorants used for the traditional Japanese votive picture

    International Nuclear Information System (INIS)

    Shimoyama, Susumu; Noda, Yasuko

    2000-01-01

    A portable RI X-ray fluorescence spectrometer having a weight of 1800 g was constructed by using a radiation annular source ( 241 Am sealed up with ceramics, 1.85 MBq), a small Si-PIN photodiode X-ray detector mounted on a Peltier cooling device, an amplifier and a pocket-type multi-channel pulse-height analyzer. It could also be applied to a non-destructive analysis of the blue colorant in the original Japanese votive picture 'Rashoumon-zu', offered to shrine in 1682. Consequently, it was clarified that the blue colorant (X) was 'Smalt' containing Ga, Fe, Co, Ni and As as major elements. (author)

  14. Advanced chemical analysis service for elements, radionuclides and phases

    International Nuclear Information System (INIS)

    Sansoni, B.

    1986-01-01

    A review is given on the structure, organisation and performance of the chemical analysis service of the Central Department for Chemical Analysis at the Kernforschungsanlage Juelich GmbH. The research and development programs together with the infrastructure of the Centre afford to analyse almost all stable elements of the periodical table in almost any material. The corresponding chemical analysis service has been organized according to a new modular system of analytical steps. According to this, the most complicated and, therefore, most general case of an analytical scheme for element and radionuclide analysis in any type of material can be differentiated into about 14 different steps, the modules. They are more or less independent of the special problem. The laboratory is designed and organized according to these steps. (orig./PW) [de

  15. Chemical kinetic functional sensitivity analysis: Elementary sensitivities

    International Nuclear Information System (INIS)

    Demiralp, M.; Rabitz, H.

    1981-01-01

    Sensitivity analysis is considered for kinetics problems defined in the space--time domain. This extends an earlier temporal Green's function method to handle calculations of elementary functional sensitivities deltau/sub i//deltaα/sub j/ where u/sub i/ is the ith species concentration and α/sub j/ is the jth system parameter. The system parameters include rate constants, diffusion coefficients, initial conditions, boundary conditions, or any other well-defined variables in the kinetic equations. These parameters are generally considered to be functions of position and/or time. Derivation of the governing equations for the sensitivities and the Green's funciton are presented. The physical interpretation of the Green's function and sensitivities is given along with a discussion of the relation of this work to earlier research

  16. Methodological study of non-destructive analysis of ancient Pb-rich glaze of porcelain by micro-X-ray fluorescence

    International Nuclear Information System (INIS)

    Cheng Lin; Pan Qiuli; Liu Zhiguo; Li Meitian; Jin Youshi; Li Rongwu; Fan Changsheng; Wang Shanghai

    2011-01-01

    The performance of the micro-X-ray fluorescence based on the slightly focusing polycapillary optics were investigated. While the chemical compositions of a piece of Pb-rich colored porcelain fired in Qing Dynasty were analyzed by micro-X-ray fluorescence. From the results, the processes of decorative technologies can be deduced as follows. A kind of pigments with high concentrations of Mn and Pb or with high concentrations of Fe and Pb was used to draw the profiles of designed paintings on the body of porcelain. Cu and its mixture with high concentration of Pb were filled in the desired positions. It is proved that polycapillary optics can play an important role in the analysis of the chemical characters and decorative technologies of pigments of colored porcelain. (authors)

  17. Handbook of Basic Tables for Chemical Analysis. Final report

    International Nuclear Information System (INIS)

    Bruno, T.J.; Svoronos, P.D.N.

    1988-04-01

    This work began as a slim booklet prepared by one of the authors (TJB) to accompany a course on chemical instrumentation presented at the National Bureau of Standards, Boulder Laboratories. The booklet contained tables on chromatography, spectroscopy, and chemical (wet) methods, and was intended to provide the students with enough basic data to design their own analytical methods and procedures. Shortly thereafter, with the co-authorship of Prof. Paris D. N. Svoronos, it was expanded into a more-extensive compilation entitled Basic Tables for Chemical Analysis, published as National Bureau of Standards Technical Note 1096. That work has now been expanded and updated into the present body of tables. Although there have been considerable changes since the first version of these tables, the aim has remained essentially the same. The authors have tried to provide a single source of information for those practicing scientists and research students who must use various aspects of chemical analysis in their work. In this respect, it is geared less toward the researcher in analytical chemistry than to those practitioners in other chemical disciplines who must have routine use of chemical analysis

  18. Airborne chemistry: acoustic levitation in chemical analysis.

    Science.gov (United States)

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

  19. Development of chemical analysis techniques: pt. 3

    International Nuclear Information System (INIS)

    Kim, K.J.; Chi, K.Y.; Choi, G.C.

    1981-01-01

    For the purpose of determining trace rare earths a spectrofluorimetric method has been studied. Except Ce and Tb, the fluorescence intensities are not enough to allow satisfactory analysis. Complexing agents such as tungstate and hexafluoroacetylacetone should be employed to increase fluorescence intensities. As a preliminary experiment for the separation of individual rare earth element and uranium, the distribution coefficient, % S here, are obtained on the Dowex 50 W against HCl concentration by a batch method. These % S data are utilized to obtain elution curves. The % S data showed a minimum at around 4 M HCl. To understand this previously known phenomenon the adsorption of Cl - on Dowex 50 W is examined as a function of HCl concentration and found to be decreasing while % S of rare earths increasing. It is interpreted that Cl - and rare earth ions are moved into the resin phase separately and that the charge and the charge densities of these ions are responsible for the different % S curves. Dehydration appears to play an important role in the upturn of the % S curves at higher HCl concentrations

  20. Instrumental neutron activation analysis, a valuable link in chemical metrology

    International Nuclear Information System (INIS)

    Zeisler, R.; Lindstrom, R.M.; Greenberg, R.R.

    2002-01-01

    Instrumental neutron activation analysis (INAA) is sufficiently versatile to establish a direct link to the amount of substance determined. The inherent quality parameters of INAA, such as being virtually free of blank, having fully accountable effects of matrix and physical form, and operating over a huge range of amounts, allows the comparison of a mole (or its fraction) of a pure element with the amount of substance in the sample analyzed with the same direct relationship as a beam balance provides. Indeed, varieties of this approach are in common use in INAA in the comparator methods of quantitation. To eliminate possible perturbations of the traceability chain as they may occur in common INAA practice, experimental measurements have been set up that only involve the fraction of a mole of the element(s) of interest in form of the pure element, compound or certified standard and the unknown sample. This principle has been used in INAA measurements for certification value assignment of high temperature alloy SRMs. To further demonstrate the performance parameters of INAA, we selected the determination of chromium in SRM 1152a Stainless Steel by direct non-destructive comparison with the pure metal in form of crystalline chromium. The measurements were validated with weighed aliquots of SRM 3112a dried on filter paper pellets. The experimental results do not show deviations beyond the uncertainties of the SRMs (≤ 0.2 % relative), and the assessment of the uncertainty budget indicates that expanded uncertainties of ≤ 0.3 % are achievable. The measurements demonstrate that INAA can meet the CCQM definition of a primary ratio method of analysis

  1. ORACL program file for acquisition, storage and analysis of data in radiation measurement and nondestructive measurement of nuclear material, vol. 2

    International Nuclear Information System (INIS)

    Yagi, Hideyuki; Takeuchi, Norio; Gotoh, Hiroshi

    1976-09-01

    The file contains 79 programs for radiation measurement and nondestructive measurement of nuclear material written in conversational language ORACL associated with the GAMMA-III system of ORTEC Incorporated. It deals with data transfers between disk/core/MCA/magnetic tape, edition of data in disks, calculation of the peak area, calculation of mean and standard deviation, reference to gamma-ray data files, accounting, calendar, etc. It also has a support system for micro-computer development. Usages of the built-in functions of ORACL are presented. (auth.)

  2. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were

  3. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    Science.gov (United States)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  4. 49 CFR 192.243 - Nondestructive testing.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nondestructive testing. 192.243 Section 192.243... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.243 Nondestructive testing. (a) Nondestructive testing of welds must be performed by any process, other than trepanning, that...

  5. Recent improvements concerning nondestructive testing

    International Nuclear Information System (INIS)

    Asty, M.

    1984-12-01

    Rare are the techniques of which development is not already touched by microelectronics and micro-data processing. Nondestructive testing and more particularly ultrasonic and Foucault current testing follow this general rule. With some examples, this paper focuses on the potential of numerical signal processing [fr

  6. Research process of nondestructive testing pitting corrosion in metal material

    Directory of Open Access Journals (Sweden)

    Bo ZHANG

    2017-12-01

    Full Text Available Pitting corrosion directly affects the usability and service life of metal material, so the effective nondestructive testing and evaluation on pitting corrosion is of great significance for fatigue life prediction because of data supporting. The features of pitting corrosion are elaborated, and the relation between the pitting corrosion parameters and fatigue performance is pointed out. Through introducing the fundamental principles of pitting corrosion including mainly magnetic flux leakage inspection, pulsed eddy current and guided waves, the research status of nondestructive testing technology for pitting corrosion is summarized, and the key steps of nondestructive testing technologies are compared and analyzed from the theoretical model, signal processing to industrial applications. Based on the analysis of the signal processing specificity of different nondestructive testing technologies in detecting pitting corrosion, the visualization combined with image processing and signal analysis are indicated as the critical problems of accurate extraction of pitting defect information and quantitative characterization for pitting corrosion. The study on non-contact nondestructive testing technologies is important for improving the detection precision and its application in industries.

  7. Chemical analysis of steel by optical emission spectrometry

    International Nuclear Information System (INIS)

    Hayakawa, M.O.; Kajita, T.; Jeszensky, G.

    1981-01-01

    The development of the chemical analysis for special steels by optical emission spectrometry direct reading method with computer, at the Siderurgica N.S. Aparecida S.A. is presented. Results are presented for the low alloy steels and high speed steel. Also, the contribution of this method to the special steel preparation is commented. (Author) [pt

  8. Physico-chemical analysis and sensory evaluation of bread ...

    African Journals Online (AJOL)

    This study carried out the physico-chemical analysis and sensory evaluation of bread produced using different indigenous yeast isolates in order to offer an insight into the overall quality of the bread. Four (4) different yeast species were isolated from sweet orange, pineapple and palm wine. The yeasts were characterized ...

  9. Chemical and antimicrobial analysis of husk fiber aqueous extract ...

    African Journals Online (AJOL)

    Chemical and antimicrobial analysis of husk fiber aqueous extract from Cocos nucifera L. Davi Oliveira e Silva, Gabriel Rocha Martins, Antônio Jorge Ribeiro da Silva, Daniela Sales Alviano, Rodrigo Pires Nascimento, Maria Auxiliadora Coelho Kaplan, Celuta Sales Alviano ...

  10. Bark chemical analysis explains selective bark damage by rodents

    Czech Academy of Sciences Publication Activity Database

    Heroldová, Marta; Jánová, Eva; Suchomel, J.; Purchart, L.; Homolka, Miloslav

    2009-01-01

    Roč. 2, č. 2 (2009), s. 137-140 ISSN 1803-2451 R&D Projects: GA MZe QH72075 Institutional research plan: CEZ:AV0Z60930519 Keywords : bark damage * bark selection * bark chemical analysis * rowan * beech * spruce * mountain forest regeneration Subject RIV: GK - Forestry

  11. Non-destructive measurement technologies for nuclear safeguards

    International Nuclear Information System (INIS)

    Gavron, A.

    1998-04-01

    There are three aspects that need to be in place in order to maintain a valid safeguards system: (1) Physical protection; guarding the access to nuclear materials using physical protection and surveillance. (2) Accounting systems; computer based accounting systems that provide the current location of nuclear materials, quantities, and the uncertainty in the assayed values. (3) Measurement systems; detectors, data acquisition systems and data analysis methods that provide accurate assays of nuclear material quantities for the accounting system. The authors expand on this third aspect, measurement systems, by discussing nondestructive assay (NDA) techniques. NDA is defined as the quantitative or qualitative determination of the kind and/or amount of nuclear material in an item without alteration or invasion of the item. This is contrasted with destructive analysis which is the process of taking small samples from the item in question, analyzing those samples by chemical analysis, destroying the original nature of the samples in the process (hence the term destructive), and applying the results to the entire item. Over the past 30 years, numerous techniques, using the atomic and nuclear properties of the actinides, have been developed for reliable, rapid, accurate, and tamper-proof NDA of nuclear materials. The authors distinguish between two types of measurements: the first involving the detection of spontaneously emitted radiation, produced by the natural radioactive decay processes; the second involving the detection of induced radiation, produced by irradiating the sample with an external radiation source

  12. Activation analysis. Chapter 4

    International Nuclear Information System (INIS)

    1976-01-01

    The principle, sample and calibration standard preparation, activation by neutrons, charged particles and gamma radiation, sample transport after activation, activity measurement, and chemical sample processing are described for activation analysis. Possible applications are shown of nondestructive activation analysis. (J.P.)

  13. Neutron activation analysis of high-purity iron in comparison with chemical analysis

    International Nuclear Information System (INIS)

    Kinomura, Atsushi; Horino, Yuji; Takaki, Seiichi; Abiko, Kenji

    2000-01-01

    Neutron activation analysis of iron samples of three different purity levels has been performed and compared with chemical analysis for 30 metallic and metalloid impurity elements. The concentration of As, Cl, Cu, Sb and V detected by neutron activation analysis was mostly in agreement with that obtained by chemical analysis. The sensitivity limits of neutron activation analysis of three kinds of iron samples were calculated and found to be reasonable compared with measured values or detection limits of chemical analysis; however, most of them were above the detection limits of chemical analysis. Graphite-shielded irradiation to suppress fast neutron reactions was effective for Mn analysis without decreasing sensitivity to the other impurity elements. (author)

  14. Activation and chemical analysis of drinking water from shallow aquifers

    International Nuclear Information System (INIS)

    Sharma, H.K.; Mittal, V.K.; Sahota, H.S.

    1991-01-01

    In most of the Indian cities drinking water is drawn from shallow aqiufers with the help of hand pumps. These shallow aquifers get easilyl polluted. In the present work we have measured 20 trace elements using Neutron Activation Analysis (NAA) and 8 chemical parameters using standard chemical methods of drinking water drawn from Rajpura city. It was found that almost all water samples are highly polluted. We attribute this to unplaned disposal of industrial and domestic waste over a period of many decades. (author) 11 refs.; 1 fig.; 1 tab

  15. Activation analysis. A basis for chemical similarity and classification

    Energy Technology Data Exchange (ETDEWEB)

    Beeck, J OP de [Ghent Rijksuniversiteit (Belgium). Instituut voor Kernwetenschappen

    1977-01-01

    It is shown that activation analysis is especially suited to serve as a basis for determining the chemical similarity between samples defined by their trace-element concentration patterns. The general problem of classification and identification is discussed. The nature of possible classification structures and their appropriate clustering strategies is considered. A practical computer method is suggested and its application as well as the graphical representation of classification results are given. The possibility for classification using information theory is mentioned. Classification of chemical elements is discussed and practically realized after Hadamard transformation of the concentration variation patterns in a series of samples.

  16. Chemical analysis of plasma-assisted antimicrobial treatment on cotton

    International Nuclear Information System (INIS)

    Kan, C W; Lam, Y L; Yuen, C W M; Luximon, A; Lau, K W; Chen, K S

    2013-01-01

    This paper explores the use of plasma treatment as a pretreatment process to assist the application of antimicrobial process on cotton fabric with good functional effect. In this paper, antimicrobial finishing agent, Microfresh Liquid Formulation 9200-200 (MF), and a binder (polyurethane dispersion, Microban Liquid Formulation R10800-0, MB) will be used for treating the cotton fabric for improving the antimicrobial property and pre-treatment of cotton fabric by plasma under atmospheric pressure will be employed to improve loading of chemical agents. The chemical analysis of the treated cotton fabric will be conducted by Fourier transform Infrared Spectroscopy.

  17. Techniques for the non-destructive and continuous analysis of sediment cores. Application in the Iberian continental margin; Tecnicas para el analisis no destructivo y en continuo de testigos de sedimento. Aplicacion en el Margen Continental de Iberia

    Energy Technology Data Exchange (ETDEWEB)

    Frigola, J.; Canals, M.; Mata, P.

    2015-07-01

    Sediment sequences are the most valuable record of long-term environmental conditions at local, regional and/or global scales. Consequently, they are amongst the best archives of the climatic and oceanographic his- tory of the Earth. In the last few decades a strong effort has been made, both in terms of quantity and quality, to improve our knowledge regarding the evolution of our planet from marine and lake sediment records, and also from other records such as ice cores. Such an effort requires reinforcing the geographical coverage and achieving the highest possible robustness in the reconstruction of past environments. Such a target requires the optimization of the time resolution of the records and reconstructions so that fast, high frequency shifts, such as those occurring nowadays due to the on-going global warming, can be disentangled. Beyond paleoenvironmental research, other disciplines have also contributed significantly to the fast growing number of sediment cores already available worldwide. Knowing the physical state and the chemical composition of sedimentary deposits is essential for land management purposes and for many industrial applications. A number of key technological developments are now allowing the acquisition for the first time of massive amounts of multiple parameters from sediment cores in a non-destructive, fast, continuous, repetitive and high-resolution form. In this paper we provide an overview of the state-of-the-art continuous and non-destructive analytical techniques used by the geo scientific community for the study of sediment cores and we present some examples of the application of these methods in several studies carried out around the Iberian Margin. (Author)

  18. Positron annihilation spectroscopy for chemical analysis (PASCA). Chapter 9

    International Nuclear Information System (INIS)

    Cheng, K.L.; Jean, Y.C.

    1988-01-01

    This chapter gives an up to date overview of positron annihilation spectroscopy for chemical analysis (PASCA). As an in situ technique PASCA is especially suitable for studying processes occurring at surfaces. The in situ characteristics of PASCA are treated. The principes of positron annihilation life time spectroscopy (PAL) are discussed and some important analytical applications such as, in determining of total surface areas and cavity volumes in chemical reactions, in the study of chemisorption and catalytic reactions on porous surfaces, in the analysis of bulk materials, in determining molecular association constants in biological systems, in proton and neutron activation analysis, in thin layer chromatography and in tracer technology. 28 refs.; 15 figs.; 8 tabs

  19. Development of hotcell non-destructive examination techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Uhn; Yu, S. C.; Kang, B. S.; Byun, K. S. [Chungbuk National University, Chungju (Korea)

    2002-01-01

    The purpose of this project is to establish non-destructive examination techniques which needs to determine the status of spent nuclear fuel and/or bundles. Through the project, we will establish an image reconstruction tomography which is a kind of non-destructive techniques in Hotcell. The tomography technique can be used to identify the 2-dimensional density distribution of fission products in the spent fuel rods and/or bundles. And form results of the measurement and analysis of magnetic properties of neutron irradiated material in the press vessel and reactor, we will develop some techniques to test its hardness and defects. In 2001, the first year, we have established mathematical background and necessary data and informations to develop the techniques. We will try to find some experimental results that are necessary in developing the Hotcell non-destructive examination techniques in the coming year. 14 refs., 65 figs., 5 tabs. (Author)

  20. Non-destructive testing and evaluation for structural integrity

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Rao, B.P.C.

    1995-01-01

    In this paper, a brief description of the physical concepts of non-destructive evaluation (NDE) methods and the physical/derived parameters that are used for assessing defects, stresses and microstructures are given. A few case studies highlighting the importance of non-destructive testing and evaluation for structural integrity assessment are also discussed based on the investigations carried out. Emerging concepts like intelligent processing of materials, expert systems, neural networks, use of multisensors with fusion of data and exploitation of signal analysis and imaging approaches are also addressed in this paper. (author). 92 refs., 1 tab

  1. Magnetic Non-destructive Testing of Plastically Deformed Mild Steel

    Directory of Open Access Journals (Sweden)

    Jozef Pala

    2004-01-01

    Full Text Available The Barkhausen noise analysis and coercive field measurement have been used as magnetic non-destructive testing methods for plastically deformed high quality carbon steel specimens. The strain dependence of root mean square value and power spectrum of the Barkhausen noise and the coercive field are explained in terms of the dislocation density. The specimens have been subjected to different magnetizing frequencies to show the overlapping nature of the Barkhausen noise. The results are discussed in the context of usage of magnetic non-destructive testing to evaluate the plastic deformation of high quality carbon steel products.

  2. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders

    Directory of Open Access Journals (Sweden)

    Kuanglin Chao

    2017-03-01

    Full Text Available Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials.

  3. Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist's Approach to Allostery.

    Science.gov (United States)

    Boulton, Stephen; Selvaratnam, Rajeevan; Ahmed, Rashik; Melacini, Giuseppe

    2018-01-01

    Mapping allosteric sites is emerging as one of the central challenges in physiology, pathology, and pharmacology. Nuclear Magnetic Resonance (NMR) spectroscopy is ideally suited to map allosteric sites, given its ability to sense at atomic resolution the dynamics underlying allostery. Here, we focus specifically on the NMR CHEmical Shift Covariance Analysis (CHESCA), in which allosteric systems are interrogated through a targeted library of perturbations (e.g., mutations and/or analogs of the allosteric effector ligand). The atomic resolution readout for the response to such perturbation library is provided by NMR chemical shifts. These are then subject to statistical correlation and covariance analyses resulting in clusters of allosterically coupled residues that exhibit concerted responses to the common set of perturbations. This chapter provides a description of how each step in the CHESCA is implemented, starting from the selection of the perturbation library and ending with an overview of different clustering options.

  4. Nondestructive testing of concrete structures

    International Nuclear Information System (INIS)

    Rufino, Randy R.; Relunia, Estrella

    1999-01-01

    Nondestructive testing of concrete is highly inhomogeneous which makes it cumbersome to setup experimental procedures and analyze experimental data. However, recent research and development activities have discovered the different methods of NDT, like the electromagnetic method, ultrasonic pulse velocity test, pulse echo/impact echo test, infrared thermography, radar or short pulse radar techniques, neutron and gamma radiometry, radiography, carbonation test and half-cell potential method available for NDT of concrete structures. NDT of concrete is emerging as a useful tool for quality control and assurance. This papers also describes the more common NDT methods discussed during the two-week course on 'Nondestructive Testing of Concrete Structures', held at the Malaysian Institute for Nuclear Technology Research (MINT) in Malaysia, which was jointly organized by MINT and the International Atomic Energy Agency (IAEA)

  5. European conference on nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Klyuev, V V

    1985-01-01

    Information on the 3-d European conference on nondestructive testing (NT) held in October, 1984 in Florence, is presented. Plenary reports were devoted to complex use of different NT methods, tendencies to NT automation and robotics, transition from defectoscopy to quality control, determination of phisico-mechanical properties of items using different control methods, formulation of unified international programs on professional training and qualification. Section reports cover the following directions: NT use in aviation and astronautics, construction, welding engineering, studying works of art; personnel training, economics, NT functioning, automation, calibration, standardization, quality control over metallic and nonmetallic objects. Some reports concerned nondestructive testing of items during their use. Attention is paied to radiographic testing and neutron radiography as well as to image processing. NT equipment was also discussed.

  6. Basic metallurgy for nondestructive testing

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    For this chapter, reader will be served with the basic knowledge on metallurgy for nondestructive testing. One the main application of nondestructive testing is to detect discontinuity of mass defect in metal. As we already know, metal are widely used in many application such as in building as a system, component and engineering product. Steel and iron are metal that usually used in industry, especially heavy industry such as gas and petroleum industry, chemistry, electric generation, automobile, and military device. Based on this, basic knowledge on metallurgy must need by NDT practitioner. The combination between metallurgy and datas from radiography testing can make radiographer good interpretation on quality of the metal inspected and can used to make a good decision either to accept or not certain product, system or components.

  7. All-Russia conference on chemical analysis of substances and materials. Abstracts of reports

    International Nuclear Information System (INIS)

    2000-01-01

    Collection contains abstracts of reports on chemical analysis of foods, drugs, environmental materials. Methods of chemical analysis used in such regions as chemical control in agriculture, criminology, art and archaeology, biotechnology, geology, chemistry and petrochemistry, metallurgy, metrology are presented. Theoretical, methodological and applied aspects of chemical analysis are considered [ru

  8. Energy dispersive X-ray fluorescence spectroscopy/Monte Carlo simulation approach for the non-destructive analysis of corrosion patina-bearing alloys in archaeological bronzes: The case of the bowl from the Fareleira 3 site (Vidigueira, South Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Bottaini, C. [Hercules Laboratory, University of Évora, Palacio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora (Portugal); Mirão, J. [Hercules Laboratory, University of Évora, Palacio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora (Portugal); Évora Geophysics Centre, Rua Romão Ramalho 59, 7000 Évora (Portugal); Figuereido, M. [Archaeologist — Monte da Capelinha, Apartado 54, 7005, São Miguel de Machede, Évora (Portugal); Candeias, A. [Hercules Laboratory, University of Évora, Palacio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora (Portugal); Évora Chemistry Centre, Rua Romão Ramalho 59, 7000 Évora (Portugal); Brunetti, A. [Department of Political Science and Communication, University of Sassari, Via Piandanna 2, 07100 Sassari (Italy); Schiavon, N., E-mail: schiavon@uevora.pt [Hercules Laboratory, University of Évora, Palacio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora (Portugal); Évora Geophysics Centre, Rua Romão Ramalho 59, 7000 Évora (Portugal)

    2015-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a well-known technique for non-destructive and in situ analysis of archaeological artifacts both in terms of the qualitative and quantitative elemental composition because of its rapidity and non-destructiveness. In this study EDXRF and realistic Monte Carlo simulation using the X-ray Monte Carlo (XRMC) code package have been combined to characterize a Cu-based bowl from the Iron Age burial from Fareleira 3 (Southern Portugal). The artifact displays a multilayered structure made up of three distinct layers: a) alloy substrate; b) green oxidized corrosion patina; and c) brownish carbonate soil-derived crust. To assess the reliability of Monte Carlo simulation in reproducing the composition of the bulk metal of the objects without recurring to potentially damaging patina's and crust's removal, portable EDXRF analysis was performed on cleaned and patina/crust coated areas of the artifact. Patina has been characterized by micro X-ray Diffractometry (μXRD) and Back-Scattered Scanning Electron Microscopy + Energy Dispersive Spectroscopy (BSEM + EDS). Results indicate that the EDXRF/Monte Carlo protocol is well suited when a two-layered model is considered, whereas in areas where the patina + crust surface coating is too thick, X-rays from the alloy substrate are not able to exit the sample. - Highlights: • EDXRF/Monte Carlo simulation is used to characterize an archeological alloy. • EDXRF analysis was performed on cleaned and patina coated areas of the artifact. • EDXRF/Montes Carlo protocol is well suited when a two-layered model is considered. • When the patina is too thick, X-rays from substrate are unable to exit the sample.

  9. The collection and field chemical analysis of water samples

    International Nuclear Information System (INIS)

    Korte, N.E.; Ealey, D.T.; Hollenbach, M.H.

    1984-01-01

    A successful water sampling program requires a clear understanding of appropriate measurement and sampling procedures in order to obtain reliable field data and representative samples. It is imperative that the personnel involved have a thorough knowledge of the limitations of the techniques being used. Though this seems self-evident, many sampling and field-chemical-analysis programs are still not properly conducted. Recognizing these problems, the Department of Energy contracted with Bendix Field Engineering Corporation through the Technical Measurements Center to develop and select procedures for water sampling and field chemical analysis at waste sites. The fundamental causese of poor field programs are addressed in this paper, largely through discussion of specific field-measurement techniques and their limitations. Recommendations for improvement, including quality-assurance measures, are also presented

  10. Regression analysis of a chemical reaction fouling model

    International Nuclear Information System (INIS)

    Vasak, F.; Epstein, N.

    1996-01-01

    A previously reported mathematical model for the initial chemical reaction fouling of a heated tube is critically examined in the light of the experimental data for which it was developed. A regression analysis of the model with respect to that data shows that the reference point upon which the two adjustable parameters of the model were originally based was well chosen, albeit fortuitously. (author). 3 refs., 2 tabs., 2 figs

  11. Gas analysis during the chemical vapor deposition of carbon

    International Nuclear Information System (INIS)

    Lieberman, M.L.; Noles, G.T.

    1973-01-01

    Gas chromatographic analyses were performed during the chemical vapor deposition of carbon in both isothermal and thermal gradient systems. Such data offer insight into the gas phase processes which occur during deposition and the interrelations which exist between gas composition, deposition rate, and resultant structure of the deposit. The results support a carbon CVD model presented previously. The application of chromatographic analysis to research, development, and full-scale facilities is shown. (U.S.)

  12. Nondestructive evaluation of LWR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Ballard, D.W.

    1978-02-01

    An analysis of nondestructive testing (NDT) methods currently being used to evaluate the integrity of Light Water Reactor (LWR) spent fuel shipping casks is presented. An assessment of anticipated NDT needs related to breeder reactor cask requirements is included. Specific R and D approaches to probable NDT problem areas such as the evaluation of austenitic stainless steel weldments are outlined

  13. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone, E-mail: wspereira@inb.gov.br [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Protecao Radiologica. Grupo Multidisciplinar de Radioprotecao; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Biologia. Lab. de Radiobiologia e Radiometria Pedro Lopes dos Santos; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Desenvolvimento de Processos; Dores, Luis Augusto de Carvalho Bresser [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Gerencia de Descomissionamento

    2011-07-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  14. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    International Nuclear Information System (INIS)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone; Kelecom, Alphonse; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova; Dores, Luis Augusto de Carvalho Bresser

    2011-01-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  15. Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity

    DEFF Research Database (Denmark)

    Casanovas, Albert; Hannibal-Bach, Hans Kristian; Jensen, Ole Nørregaard

    2014-01-01

    Shotgun lipidomics affords comprehensive and quantitative analysis of lipid species in cells and tissues at high-throughput [1 5]. The methodology is based on direct infusion of lipid extracts by electrospray ionization (ESI) combined with tandem mass spectrometry (MS/MS) and/or high resolution F...... low ionization efficiency in ESI [7]. For this reason, chemical derivatization procedures including acetylation [8] or sulfation [9] are commonly implemented to facilitate ionization, detection and quantification of sterols for global lipidome analysis [1-3, 10]....

  16. Chemical state analysis of conversion coatings by SR-XPS and TEY-XANES

    CERN Document Server

    Noro, H; Nagoshi, M

    2002-01-01

    Chromate coatings on galvanized steel have been studied by Synchrotron Radiation (SR) based techniques that include X-ray Photoelectron Spectroscopy (XPS) and Total-Electron-Yield X-ray Absorption Near Edge Structure (TEY-XANES). Non-destructive depth profiling of the coatings by SR-XPS reveals the enhancement of Cr sup 6 sup + in the outer surface. TEY-XANES spectroscopy based on simple specimen current measurement is demonstrated as an effective technique for analyzing chemical states of conversion coatings on general bulk substrates. The sampling depth of this technique, which exceeds several tens of nanometer, is determined by the penetration length of Auger electrons excited by X-ray and the inelastic mean free path of secondary electrons excited by inelastically scattered Auger electrons. The chemical states of phosphoric acid added chromate coatings are studied using this technique. The phosphoric acid is taken into the chromate coatings as partially changed into zinc and chromium phosphates, and the r...

  17. Passive nondestructive assay of nuclear materials

    International Nuclear Information System (INIS)

    Reilly, D.; Ensslin, N.; Smith, H. Jr.; Kreiner, S.

    1991-03-01

    The term nondestructive assay (NDA) is applied to a series of measurement techniques for nuclear fuel materials. The techniques measure radiation induced or emitted spontaneously from the nuclear material; the measurements are nondestructive in that they do not alter the physical or chemical state of the nuclear material. NDA techniques are characterized as passive or active depending on whether they measure radiation from the spontaneous decay of the nuclear material or radiation induced by an external source. This book emphasizes passive NDA techniques, although certain active techniques like gamma-ray absorption densitometry and x-ray fluorescence are discussed here because of their intimate relation to passive assay techniques. The principal NDA techniques are classified as gamma-ray assay, neutron assay, and calorimetry. Gamma-ray assay techniques are treated in Chapters 1--10. Neutron assay techniques are the subject of Chapters 11--17. Chapters 11--13 cover the origin of neutrons, neutron interactions, and neutron detectors. Chapters 14--17 cover the theory and applications of total and coincidence neutron counting. Chapter 18 deals with the assay of irradiated nuclear fuel, which uses both gamma-ray and neutron assay techniques. Chapter 19 covers perimeter monitoring, which uses gamma-ray and neutron detectors of high sensitivity to check that no unauthorized nuclear material crosses a facility boundary. The subject of Chapter 20 is attribute and semiquantitative measurements. The goal of these measurements is a rapid verification of the contents of nuclear material containers to assist physical inventory verifications. Waste and holdup measurements are also treated in this chapter. Chapters 21 and 22 cover calorimetry theory and application, and Chapter 23 is a brief application guide to illustrate which techniques can be used to solve certain measurement problems

  18. Non-destructive analysis of flake properties in automotive paints with full-field optical coherence tomography and 3D segmentation.

    Science.gov (United States)

    Zhang, Jinke; Williams, Bryan M; Lawman, Samuel; Atkinson, David; Zhang, Zijian; Shen, Yaochun; Zheng, Yalin

    2017-08-07

    Automotive coating systems are designed to protect vehicle bodies from corrosion and enhance their aesthetic value. The number, size and orientation of small metallic flakes in the base coat of the paint has a significant effect on the appearance of automotive bodies. It is important for quality assurance (QA) to be able to measure the properties of these small flakes, which are approximately 10μm in radius, yet current QA techniques are limited to measuring layer thickness. We design and develop a time-domain (TD) full-field (FF) optical coherence tomography (OCT) system to scan automotive panels volumetrically, non-destructively and without contact. We develop and integrate a segmentation method to automatically distinguish flakes and allow measurement of their properties. We test our integrated system on nine sections of five panels and demonstrate that this integrated approach can characterise small flakes in automotive coating systems in 3D, calculating the number, size and orientation accurately and consistently. This has the potential to significantly impact QA testing in the automotive industry.

  19. Chemical Abundance Analysis of Moving Group W11450 (Latham 1)

    Science.gov (United States)

    O'Connell, Julia E.; Martens, Kylee; Frinchaboy, Peter M.

    2016-12-01

    We present elemental abundances for all seven stars in Moving Group W11450 (Latham 1) to determine if they may be chemically related. These stars appear to be both spatially and kinematically related, but no spectroscopic abundance analysis exists in literature. Abundances for eight elements were derived via equivalent width analyses of high-resolution (R ˜ 60,000), high-signal-to-noise ratio ( ˜ 100) spectra obtained with the Otto Struve 2.1 m telescope and the Sandiford Echelle Spectrograph at McDonald Observatory. The large star-to-star scatter in metallicity, -0.55 ≤ [Fe/H] ≤slant 0.06 dex (σ = 0.25), implies these stars were not produced from the same chemically homogeneous molecular cloud, and are therefore not part of a remnant or open cluster as previously proposed. Prior to this analysis, it was suggested that two stars in the group, W11449 and W11450, are possible wide binaries. The candidate wide binary pair show similar chemical abundance patterns with not only iron but with other elements analyzed in this study, suggesting the proposed connection between these two stars may be real.

  20. Nondestructive control of materials by ultrasonic tests

    International Nuclear Information System (INIS)

    Mercier, Noelle.

    1974-01-01

    A bibliographic study of nondestructive control methods of solids by ultrasonic tests, and of the ultrasonic emission of a transducer of finite dimension, is first presented. The principle of two of these methods is verified experimentally; they should permit the measurement of various physical parameters of solids, and the detection of local inhomogeneities. The first method calls upon the analysis of the ultrasonic signal (amplitude and phase), after it has crossed a constant thickness of a metallic specimen. This analysis reveals variations of attenuation and of ultrasonic propagation velocity within the specimen. A good spatial resolution is obtained by using 1mm-diameter probes. The second method leads, thanks to a test rig equipped with broad frequency band electrostatic transducers, to the knowledge of the attenuation law of the specimens as a function of frequency (present range: 5 to 15MHz); from this a classification of these specimens as regards their granulometry is deduced [fr

  1. Synthesis & Studies of New Non-Destructive Read-Out Materials for Optical Storage and Optical Switches

    National Research Council Canada - National Science Library

    Rentzepis, Peter M

    2005-01-01

    .... The optical, chemical and spectroscopic properties of this non-destructive write/read/erase computer memory material have been studied This organic storage system consists of two different molecular...

  2. QSAR modeling and chemical space analysis of antimalarial compounds

    Science.gov (United States)

    Sidorov, Pavel; Viira, Birgit; Davioud-Charvet, Elisabeth; Maran, Uko; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2017-05-01

    Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including 3000 molecules tested in one or several of 17 anti- Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.

  3. Method for fractional solid-waste sampling and chemical analysis

    DEFF Research Database (Denmark)

    Riber, Christian; Rodushkin, I.; Spliid, Henrik

    2007-01-01

    four subsampling methods and five digestion methods, paying attention to the heterogeneity and the material characteristics of the waste fractions, it was possible to determine 61 substances with low detection limits, reasonable variance, and high accuracy. For most of the substances of environmental...... of variance (20-85% of the overall variation). Only by increasing the sample size significantly can this variance be reduced. The accuracy and short-term reproducibility of the chemical characterization were good, as determined by the analysis of several relevant certified reference materials. Typically, six...... to eight different certified reference materials representing a range of concentrations levels and matrix characteristics were included. Based on the documentation provided, the methods introduced were considered satisfactory for characterization of the chemical composition of waste-material fractions...

  4. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Y.; Qian, S.; Littrell, K.; Parish, C.M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Plummer, L.K. [University of Oregon, Eugene, OR 97403 (United States)

    2015-05-15

    A nondestructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless-steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Our study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount (≈20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor can be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for determining absolute hydrogen concentrations.

  5. The 30 Years of the Korean Society for Nondestructive Testing

    International Nuclear Information System (INIS)

    2010-05-01

    The contents of this book are development of nondestructive testings; the origin of nondestructive testing, history of Korea on nondestructive testing and present condition of nondestructive testing in Korea, history of society, activity of society; structure and activity of society, publication of society academic project, educational work, international exchange, and the future and direction of development of the Korean society for nondestructive testing.

  6. Non-Destructive Inspection Lab (NDI)

    Data.gov (United States)

    Federal Laboratory Consortium — The NDI specializes in applied research, development and performance of nondestructive inspection procedures (flourescent penetrant, magnetic particle, ultrasonics,...

  7. Isotope techniques in non-destructive testing of dynamic systems

    International Nuclear Information System (INIS)

    Singh, Gursharan; Pant, H.J.

    1996-01-01

    A few applications of gamma scanning and radiotracer techniques for Non-destructive Testing (NDT) of dynamic systems in chemical and petrochemical industries are briefly discussed in this paper. Examples of gamma scanning inspections carried out for troubleshooting of various types of columns such as vacuum, extraction, separator and rectifier, with trays and packed beds and having diameters from 1 meter to 8.4 meters are given. Radiotracer applications for Residence Time Distribution (RTD) studies on different systems like an aniline production reactor in a chemical industry and a laboratory scale solid-liquid fluidized bed column are mentioned. (author)

  8. 1998 Annual Study Report. Standards development of chemical analysis and non destructive inspection methods for pure titanium metals; 1998 nendo seika hokokusho. Jun chitan no shiken hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This study was conducted to standardize the chemical analysis and non-destructive inspection methods for pure titanium metals of industrial grade. These methods are among those serving bases for international standardization of products. The chemical analysis is aimed at quantitative analysis of trace impurities, in particular, present in pure titanium metals of industrial grade by developing and standardizing the inductively coupled plasma atomic emission spectroscopy, known for its low detectable limit, and, at the same time, spark and glow discharged atomic emission spectrometry as the improved routine analysis methods. These methods, although being used by, e.g., steel makers, have not been standardized because the effects of titanium-peculiar matrix are not elucidated. The non-destructive testing is aimed at standardization of the techniques useful for automatic production lines. More concretely, these include optical methods aided by a laser or CCD camera for plate surface defect inspection, ultrasonic methods for plate internal defect inspection, and pressure differential methods for air-tightness of welded pipes. They have not been used yet for automatic production lines. (NEDO)

  9. Swelling of U-7Mo/Al-Si dispersion fuel plates under irradiation – Non-destructive analysis of the AFIP-1 fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Wachs, D.M., E-mail: daniel.wachs@inl.gov [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Robinson, A.B.; Rice, F.J. [Idaho National Laboratory, Characterization and Advanced PIE Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Kraft, N.C.; Taylor, S.C. [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Lillo, M. [Idaho National Laboratory, Nuclear Systems Design and Analysis Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Woolstenhulme, N.; Roth, G.A. [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-08-01

    Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008–2009. The irradiation conditions were: ∼250 W/cm{sup 2} peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm{sup 3} peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.

  10. Tissue chemical analysis with muonic X-rays

    International Nuclear Information System (INIS)

    Hutson, R.L.; Reidy, J.J.; Springer, K.; Daniel, H.; Knowles, H.B.

    1976-01-01

    The stopped muon channel at the Clinton P. Anderson Meson Physics Facility (LAMPF) was used as a source of muons for studying the elemental composition of tissue with muonic X rays. The X ray spectra from several types of tissue were used to determine the amounts of carbon, nitrogen, and oxygen present. These determinations agree with the results of more conventional chemical analysis. The results show that muonic X rays offer a non-invasive technique for determining the amounts of the more abundant elements present in selected regions of the body. (orig.) [de

  11. Analysis of the chemical equilibrium of combustion at constant volume

    Directory of Open Access Journals (Sweden)

    Marius BREBENEL

    2014-04-01

    Full Text Available Determining the composition of a mixture of combustion gases at a given temperature is based on chemical equilibrium, when the equilibrium constants are calculated on the assumption of constant pressure and temperature. In this paper, an analysis of changes occurring when combustion takes place at constant volume is presented, deriving a specific formula of the equilibrium constant. The simple reaction of carbon combustion in pure oxygen in both cases (constant pressure and constant volume is next considered as example of application, observing the changes occurring in the composition of the combustion gases depending on temperature.

  12. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    International Nuclear Information System (INIS)

    Bharti, Amardeep; Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-01-01

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  13. Treatment systems for liquid wastes generated in chemical analysis laboratories

    International Nuclear Information System (INIS)

    Linda Berrio; Oscar Beltran; Edison Agudelo; Santiago Cardona

    2012-01-01

    Nowadays, handling of liquid wastes from chemical analysis laboratories is posing problems to different public and private organizations because of its requirements of an integrated management. This article reviews various treatment technologies and its removal efficiencies in order to establish criteria for selecting the system and the appropriate variables to achieve research objectives as well as environmental sustainability. Review begins with a description of the problem and continues with the study of treatments for laboratory wastes. These technologies are segregated into physicochemical and biological treatments that comprise a variety of processes, some of which are considered in this review.

  14. Chemical analysis of dairy cattle feed from Brazil

    International Nuclear Information System (INIS)

    Luis Gustavo Cofani dos Santos; De Nadai Fernandes, E.A.; Marcio Arruda Bacchi; Lucimara Blumer; Gabriel Adrian Sarries; Fernando Barbosa Junior

    2009-01-01

    The bovine dairy cattle demand diets of high nutritional value being essential to know chemical composition of feed supplied to cows to achieve high levels of quality, safety and productivity of milk. Different roughages and concentrates from Minas Gerais and Rio Grande do Sul states, Brazil, were analyzed by instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). Concentrate and roughage samples were differentiated by mass fractions of As, Ba, Mg, P, Rb and Sr. Samples of concentrate from both origins were differentiated by mass fractions of As, Cd, Co, Cr, Cs, Ni and Rb. (author)

  15. Integrated polymer waveguides for absorbance detection in chemical analysis systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; El-Ali, Jamil; Wolff, Anders

    2003-01-01

    A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include planar....... The emphasis of this paper is on the signal-to-noise ratio of the detection and its relation to the sensitivity. Two absorbance cells with an optical path length of 100 μm and 1000 μm were characterized and compared in terms of sensitivity, limit of detection and effective path length for measurements...

  16. Imaging, structural, and chemical analysis of silicon nanowires

    International Nuclear Information System (INIS)

    Barsotti, R.J. Jr.; Fischer, J.E.; Lee, C.H.; Mahmood, J.; Adu, C.K.W.; Eklund, P.C.

    2002-01-01

    Laser ablation has been used to grow silicon nanowires with an average silicon crystal core diameter of 6.7 nm±2.9 nm surrounded by an amorphous SiO x sheath of 1-2 nm, the smallest silicon wires reported in the literature. Imaging, chemical, and structural analysis of these wires are reported. Due to the growth temperature and the presence of calcium impurities and trace oxygen, two distinct types of wires are found. They appear to grow by two different processes. One requires a metal catalyst, the other is catalyzed by oxygen. Suggestions for controlled synthesis based on these growth mechanisms are made

  17. Determination of air pollutants by nuclear chemical analysis

    International Nuclear Information System (INIS)

    Lesny, J.; Toelgyessy, J.

    1975-01-01

    Nuclear analytical methods are discussed with a view to their applicability in the determination of air pollutants. It is shown that some methods (use of radioactive kryptonates in automatic analyzers, application of activation analysis, X-ray fluorescence methods) are developed in theory and proven in practice in such an extent to be widely used in the near future in the control of the environment. Many other methods are becoming increasingly important for the solution of specific problems of environmental protection (such as the control of sudden environmental contamination in the proximity of chemical plants and industrial centers). (author)

  18. Crystal-Chemical Analysis of Soil at Rocknest, Gale Crater

    Science.gov (United States)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analysis on Martian soil [1] at Rocknest in Gale Crater. In particular, crystalline phases from scoop 5 were identified and analyzed with the Rietveld method [2]. Refined unit-cell parameters are reported in Table 1. Comparing these unit-cell parameters with those in the literature provides an estimate of the chemical composition of the crystalline phases. For instance, Fig. 1 shows the Mg-content of Fa-Fo olivine as a function of the b unit-cell parameter using literature data. Our refined b parameter is indicated by the black triangle.

  19. Physcio chemical analysis of browning inhibitors treated solanum turberosum powder

    International Nuclear Information System (INIS)

    Alizai, M.N.K.; Abid, H.

    2008-01-01

    White potatoes (Solanum turberosum) were procured from agriculture Research Institute Tarnab Farm Peshawar to use for the preparation of potato powder. The process involves sorting. Washing, peeling slicing, blanching, treating with poly phenol oxidase inhibitors, dehydration, grinding and packing. All these parameters used in process were standardized. Chemical analysis of fresh potato and potato powder were carried out. Microbiological examination, functional properties and storage life studies of the potato powder were also performed. The product prepared by drying in cabinet dryer at 55 C for 7 hours was off white colour potatoes chips which was grinded to make off white potato powder. The potato powder possessed taste and texture. (author)

  20. Fast analysis of narcotic drugs by optical chemical imaging

    International Nuclear Information System (INIS)

    Fisher, Michal; Bulatov, Vallery; Schechter, Israel

    2003-01-01

    A new technique is proposed for fast detection, identification and imaging of narcotic drugs in their solid phase. This technique, which requires only a tiny sample of a few microns, is based on microscopic chemical imaging. Minor sample preparation is required, and results are obtained within seconds. As far as we know, this is the most sensitive detection system available today for solid drugs. The technique can be applied for fast analysis of minute drug residues, and therefore is of considerable importance for forensic applications. It is shown that identification of drug traces in realistic matrixes is possible. Two main methods were applied in this study for detection of drugs and drug derivatives. The first method was based on direct detection and chemical imaging of the auto-fluorescence of the analyzed drugs. This method is applicable when the analyzed drug emits fluorescence under the experiment conditions, such as lysergic acid diethylamide (known as LSD). The second method was used for obtaining chemical imaging of drugs that do not fluoresce under the experiment conditions. In these cases fluorescent labeling dyes were applied to the examined samples (including the drug and the matrix). Both methods are simple and rapid, and require minor or no sample preparation at all. Detection limits are very low in the picogram range

  1. Standards for chemical or NDA measurements for nuclear safeguards: a review

    International Nuclear Information System (INIS)

    Bingham, C.D.

    1978-01-01

    Measurements of various materials from all parts of the fuel cycle are required to be traceable to a national measurement system, primarily through standards. The availability of the standards is discussed, for nondestructive as well as destructive chemical analysis. Needs for improved standards (reference materials) and lowered uncertainty are discussed

  2. QUALITY ASSURANCE GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    Science.gov (United States)

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following quality assurance guidelines to provide laboratories engaged in forensic analysis of chemical evidence associated with terrorism a framework to implement a quality assura...

  3. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components

    DEFF Research Database (Denmark)

    Riccardi, M.; Mele, G.; Pulvento, C.

    2014-01-01

    Leaf chlorophyll content provides valuable information about physiological status of plants; it is directly linked to photosynthetic potential and primary production. In vitro assessment by wet chemical extraction is the standard method for leaf chlorophyll determination. This measurement is expe...

  4. Some comments on misuse of terms related to chemical analysis

    International Nuclear Information System (INIS)

    Steinnes, E.

    2007-01-01

    Complet text of publication follows. I have been involved in scientific studies involving chemical analysis for more than 49 years. Over this period I have observed an increasing tendency to incorrect use of terms 'analysis' and 'determination' and the corresponding verbum forms. According to correct terminology in English, samples are analyzed, analytes (e.g., trace elements) are determined. However, too often expressions such as 'analysis of copper in blood' are seen in the literature, especially in papers written by non-chemists. The reason why I am raising this point at the present time in that I observed the problem in several recent titles of papers published over the last few years in the Journal of Radioanalytical and Nuclear Chemistry: Preconcentration and neutron activation analysis of thorium and uranium in natural waters. Use of activated carbon as pre-separation agent in NAA of selenium, cobalt and iodine. Recent developments in the analysis of transuranics (Np, Pu, Am) in sea water. Automated radiochemical analysis of total 99 Tc in aged nuclear waste processing streams. Photon activation analysis of carbon in glasses for fiber amplifiers by using the flow method for the rapid separation of 11 C. Preconcentration neutron activation analysis of lanthanides by cloudpoint extraction using PAN. Analysis of the chemical elements in leaves infected by fumagina by X-ray fluorescence technique. Rapid method for 226 Ra and 228 Ra analysis in water samples. The above list is far from exhaustive. I believe that this incorrect use of terminology should be avoided at least in the titles of scientific papers, in Journal of Radioanalytical and Nuclear Chemistry as well as in other scientific journals. In some of the above cases replacing 'of' with 'for the determination of', or just with 'for', would have solved the problem. In other cases it would be preferable to reverse the order of words in the sentence, such as e.g., 'Determination of selenium, cobalt and

  5. Comparison of descriptive sensory analysis and chemical analysis for oxidative changes in milk

    DEFF Research Database (Denmark)

    Hedegaard, R V; Kristensen, D; Nielsen, Jacob Holm

    2006-01-01

    and lipolytic changes occurring in the milk during chill storage for 4 d. Sensory analysis and chemical analysis showed high correlation between the typical descriptors for oxidation such as cardboard, metallic taste, and boiled milk and specific chemical markers for oxidation such as hexanal. Notably, primary......Oxidation in 3 types of bovine milk with different fatty acid profiles obtained through manipulation of feed was evaluated by analytical methods quantifying the content of potential antioxidants, the tendency of formation of free radicals, and the accumulation of primary and secondary oxidation...... products. The milk samples were evaluated in parallel by descriptive sensory analysis by a trained panel, and the correlation between the chemical analysis and the descriptive sensory analysis was evaluated. The fatty acid composition of the 3 types of milk was found to influence the oxidative...

  6. Comparison of descriptive sensory analysis and chemical analysis for oxidative changes in milk

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Kristensen, D.; Nielsen, J. H.

    2006-01-01

    products. The milk samples were evaluated in parallel by descriptive sensory analysis by a trained panel, and the correlation between the chemical analysis and the descriptive sensory analysis was evaluated. The fatty acid composition of the 3 types of milk was found to influence the oxidative...... and lipolytic changes occurring in the milk during chill storage for 4 d. Sensory analysis and chemical analysis showed high correlation between the typical descriptors for oxidation such as cardboard, metallic taste, and boiled milk and specific chemical markers for oxidation such as hexanal. Notably, primary...... oxidation products (i.e., lipid hydroperoxides) and even the tendency of formation of radicals as measured by electron spin resonance spectroscopy were also highly correlated to the sensory descriptors for oxidation. Electron spin resonance spectroscopy should accordingly be further explored as a routine...

  7. Review of progress in quantitative nondestructive evaluation

    CERN Document Server

    Chimenti, Dale

    1999-01-01

    This series provides a comprehensive review of the latest research results in quantitative nondestructive evaluation (NDE). Leading investigators working in government agencies, major industries, and universities present a broad spectrum of work extending from basic research to early engineering applications. An international assembly of noted authorities in NDE thoroughly cover such topics as: elastic waves, guided waves, and eddy-current detection, inversion, and modeling; radiography and computed tomography, thermal techniques, and acoustic emission; laser ultrasonics, optical methods, and microwaves; signal processing and image analysis and reconstruction, with an emphasis on interpretation for defect detection; and NDE sensors and fields, both ultrasonic and electromagnetic; engineered materials and composites, bonded joints, pipes, tubing, and biomedical materials; linear and nonlinear properties, ultrasonic backscatter and microstructure, coatings and layers, residual stress and texture, and constructi...

  8. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  9. Educational ultrasound nondestructive testing laboratory.

    Science.gov (United States)

    Genis, Vladimir; Zagorski, Michael

    2008-09-01

    The ultrasound nondestructive evaluation (NDE) of materials course was developed for applied engineering technology students at Drexel University's Goodwin College of Professional Studies. This three-credit, hands-on laboratory course consists of two parts: the first part with an emphasis on the foundations of NDE, and the second part during which ultrasound NDE techniques are utilized in the evaluation of parts and materials. NDE applications are presented and applied through real-life problems, including calibration and use of the latest ultrasonic testing instrumentation. The students learn engineering and physical principles of measurements of sound velocity in different materials, attenuation coefficients, material thickness, and location and dimensions of discontinuities in various materials, such as holes, cracks, and flaws. The work in the laboratory enhances the fundamentals taught during classroom sessions. This course will ultimately result in improvements in the educational process ["The greater expectations," national panel report, http://www.greaterexpectations.org (last viewed February, 2008); R. M. Felder and R. Brent "The intellectual development of Science and Engineering Students. Part 2: Teaching to promote growth," J. Eng. Educ. 93, 279-291 (2004)] since industry is becoming increasingly reliant on the effective application of NDE technology and the demand on NDE specialists is increasing. NDE curriculum was designed to fulfill levels I and II NDE in theory and training requirements, according to American Society for Nondestructive Testing, OH, Recommended Practice No. SNT-TC-1A (2006).

  10. ANALYSIS OF CHEMICAL COMPOUNDS DISTINGUISHER FOR AGARWOOD QUALITIES

    Directory of Open Access Journals (Sweden)

    Gunawan Trisandi Pasaribu

    2015-04-01

    Full Text Available Gaharu (Agarwood is described as a fragrant-smelling wood that is usually derived from the trunk of the genus Aquilaria and Gyrinops (both of the family Thymelaeaceae, which have been infected by a particular disease. Based on Indonesian National Standard, agarwood can be classified into various grades, i.e. gubal gaharu, kemedangan and serbuk gaharu. The grading system is based on the color, weight and odor. It seems that such a grading is too subjective for agarwood classification. Therefore, to minimize the subjectivity, more objective agarwood grading is required, which incorporates its chemical composition and resin content. This research was conducted focusing on the analysis of the particular grade of agarwood originating from West Sumatra. The different types of agarwood qualities are: kemedangan C, teri C, kacangan C and super AB. Initially, the obtained agarwood samples were grounded to powder, extracted on a Soxhlet extractor using various organic solvents (i.e. n-hexane, acetone, and methanol. The agarwood-acetone extracts were analyzed using GC-MS to determine its chemical composition. The results showed a positive, linier relationship in which the resin yield increased with the increase in agarwood quality grades. GC-MS analysis revealed that several sesquiterpene groups can be found in kemedangan C, teri C, kacangan C and super AB qualities. It is interesting that aromadendrene could be identified or found in all agarwood quality grades. Therefore, it is presumed that the aromadendrene compounds can act as an effective chemical distinguisher for agarwood, whereby the greater the aromadendrene content, the better is the agarwood grade.

  11. Nondestructive mechanical characterization of developing biological tissues using inflation testing.

    Science.gov (United States)

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S

    2017-10-01

    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Microbiological and chemical analysis of land snails commercialised in Sicily

    Directory of Open Access Journals (Sweden)

    Antonello Cicero

    2015-05-01

    Full Text Available In this study 160 samples of snails belonging to the species Helix aspersa maxima and Helix aspersa muller were examined for chemical and microbiological analysis. Samples came from Greece and Poland. Results showed mean concentration of cadmium (0.35±0.036 mg/kg and lead (0.05±0.013 mg/kg much higher than the limit of detection. Mercury levels in both species were not detected. Microbiological analysis revealed the absence of Salmonella spp. and Clostridium spp. in both examined species. E. coli and K. oxytoca were observed in Helix aspersa maxima and Helix aspersa muller. Furthermore, one case of fungi positivity in samples of Helix aspersa muller was found. The reported investigations highlight the need to create and adopt a reference legislation to protect the health of consumers.

  13. Chemical analysis for waste management in paint industries

    International Nuclear Information System (INIS)

    Nawaz, Z.; Naveed, S.; Shiekh, N.A.; Sagheer, K.

    2005-01-01

    The chemical analysis of paint industries waste has been carried out; the main emission sources are the heating of raw materials and lacquer. Also the waste from other applications and production contains high concentration of heavy metals, VOC's, COD, TDS with notable acidity and alkalinity. Based on the analysis it was observed that the major losses of production could be minimized. Further toxic effects of the waste material can be minimized. In this reference measures to minimize production losses should be adopted along with the proper management. These laboratory results also lead to the areas of emissions and waste production during manufacturing process. Solutions have been proposed for process development and integrated waste minimization. (author)

  14. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Ana Paula; Pereira, Gustavo Jose; Amaral, Angela Maria; Ferreira, Andrea Vidal, E-mail: ana_allves2008@hotmail.co [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x10{sup 11}ncm{sup -2}s{sup -1}. The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000mug.g{sup -1}. Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  15. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Alves, Ana Paula; Pereira, Gustavo Jose; Amaral, Angela Maria; Ferreira, Andrea Vidal

    2009-01-01

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x10 11 ncm -2 s -1 . The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000μg.g -1 . Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  16. Active spectral imaging nondestructive evaluation (SINDE) camera

    Energy Technology Data Exchange (ETDEWEB)

    Simova, E.; Rochefort, P.A., E-mail: eli.simova@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    A proof-of-concept video camera for active spectral imaging nondestructive evaluation has been demonstrated. An active multispectral imaging technique has been implemented in the visible and near infrared by using light emitting diodes with wavelengths spanning from 400 to 970 nm. This shows how the camera can be used in nondestructive evaluation to inspect surfaces and spectrally identify materials and corrosion. (author)

  17. Non-destructive testing at Chalk River

    International Nuclear Information System (INIS)

    Hilborn, J.W.

    1976-01-01

    In 1969 CRNL recognized the need for a strong group skilled in non-destructive test procedures. Within two years a new branch called Quality Control Branch was staffed and working. This branch engages in all aspects of non-destructive testing including development of new techniques, new applications of known technology, and special problems in support of operating reactors. (author)

  18. Destructive and nondestructive methods for controlling nuclear materials for the purpose of safeguards in the CSSR

    International Nuclear Information System (INIS)

    Krivanek, M.; Krtil, J.; Moravec, J.; Pacak, P.; Sus, F.

    1977-01-01

    Central Control Laboratory (CCL) of the Nuclear Research Institute was charged with the control of nuclear materials in CSSR within the framework of the safeguards system. The CCL has been directed by the Department of nuclear safety and safeguards of CAEC according to a long-term plan, elaborated for controlling nuclear material in CSSR. The CCL has mainly been performing independent, rapid, accurate, and reliable analyses of nuclear materials, using destructive as well as non-destructive methods; the analyses of samples taken in MBA's in CSSR are mentioned, concerning the determinations of U, Pu, and Th contents, isotopic compositions of U and Pu, and burn up. The results of the analyses have served for the material and isotopic balances of fissile materials and the control of fuel reprocessing under laboratory conditions. The methods for sampling and sample transport as well as sample treatment before the analysis are described. The experience is given, obtained at CCL during a routine application of chemical methods for highly precise determinations of U, Pu, and Th (titration-based methods), mass-spectrometric determinations of U and Pu (isotopic composition, IDA using 233 U and 242 Pu), and burn-up determinations based on radioactive fissile products (Cs, Ru, Ce) and stable Nd isotopes. Some non-destructive methods for controlling nuclear materials (passive gamma-spectrometry) are discussed

  19. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.

    Science.gov (United States)

    Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu

    2017-11-24

    The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

  20. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    International Nuclear Information System (INIS)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt

    2001-01-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis. In this respect there is a

  1. Uranium complexes with macrosyclic polyethers. Synthesis and structural chemical analysis

    International Nuclear Information System (INIS)

    Elbasyouny, A.

    1983-01-01

    This dissertation reports about studies on the chemical coordination behaviour of uranium of oxidation stages IV and VI with regard to twelve different macrocyclic ligands. For the preparation of the complexes, for every system a different method has been developed. The elementary analysis of the various complexes including the uranium had been done by X-ray fluorescence analysis, and the structural characterization proceeded via vibrational, uv-vis and emission spectroscopy as well as 1 H-NMR and 13 C-spin-lattice relaxation time studies. Conformational analysis of the polyethers used allowed the structural changes in the complexes to be observed. The structural analysis of the hydrous uranium VI crown ether complexes yielded information of characteristic features of these types of complexes. The first coordination sphere of the uranyl ion with covalently bonded anion remains unchanged. As to the water content, there is a certain range. Depending upon the solvent used, the complexes have two or four H 2 O molecules per formula unit. (orig./EF) [de

  2. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.

    Science.gov (United States)

    Hanwell, Marcus D; Curtis, Donald E; Lonie, David C; Vandermeersch, Tim; Zurek, Eva; Hutchison, Geoffrey R

    2012-08-13

    The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful

  3. Nonlinear Wave Mixing Technique for Nondestructive Assessment of Infrastructure Materials

    Science.gov (United States)

    Ju, Taeho

    To operate safely, structures and components need to be inspected or monitored either periodically or in real time for potential failure. For this purpose, ultrasonic nondestructive evaluation (NDE) techniques have been used extensively. Most of these ultrasonic NDE techniques utilize only the linear behavior of the ultrasound. These linear techniques are effective in detecting discontinuities in materials such as cracks, voids, interfaces, inclusions, etc. However, in many engineering materials, it is the accumulation of microdamage that leads to degradation and eventual failure of a component. Unfortunately, it is difficult for linear ultrasonic NDE techniques to characterize or quantify such damage. On the other hand, the acoustic nonlinearity parameter (ANLP) of a material is often positively correlated with such damage in a material. Thus, nonlinear ultrasonic NDE methods have been used in recently years to characterize cumulative damage such as fatigue in metallic materials, aging in polymeric materials, and degradation of cement-based materials due to chemical reactions. In this thesis, we focus on developing a suit of novel nonlinear ultrasonic NDE techniques based on the interactions of nonlinear ultrasonic waves, namely wave mixing. First, a noncollinear wave mixing technique is developed to detect localized damage in a homogeneous material by using a pair of noncollinear a longitudinal wave (L-wave) and a shear wave (S-wave). This pair of incident waves make it possible to conduct NDE from a single side of the component, a condition that is often encountered in practical applications. The proposed noncollinear wave mixing technique is verified experimentally by carrying out measurements on aluminum alloy (AA 6061) samples. Numerical simulations using the Finite Element Method (FEM) are also conducted to further demonstrate the potential of the proposed technique to detect localized damage in structural components. Second, the aforementioned nonlinear

  4. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  5. Methods of chemical and phase composition analysis of gallstones

    Science.gov (United States)

    Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.

    2017-11-01

    This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.

  6. Qualifying program on Non-Destructive Testing, Visual Inspection of the welding (level 2)

    International Nuclear Information System (INIS)

    Shafee, M. A.

    2011-01-01

    Nondestructive testing is a wide group of analysis technique used in science and industry to evaluate the properties of a material, component or system without causing damage. Common Non-Destructive Testing methods include ultrasonic, magnetic-particle, liquid penetrate, radiographic, visual inspection and eddy-current testing. AAEA put the new book of the Non-Destructive Testing publication series that focused on Q ualifying program on Non-Destructive Testing, visual inspection of welding-level 2 . This book was done in accordance with the Arab standard certification of Non-Destructive Testing (ARAB-NDT-CERT-002) which is agreeing with the ISO-9712 (2005) and IAEA- TEC-DOC-487. It includes twenty one chapters dealing with engineering materials used in industry, the mechanical behavior of metals, metal forming equipments, welding, metallurgy, testing of welds, introduction to Non-Destructive Testing, defects in metals, welding defects and discontinuities, introduction to visual inspection theory, properties and tools of visual testing, visual testing, quality control regulations, standards, codes and specifications, procedures of welding inspections, responsibility of welding test inspector, qualification of Non-Destructive Testing inspector and health safety during working.

  7. Chemical analysis and potential health risks of hookah charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Yehya, E-mail: yelsayed@aus.edu; Dalibalta, Sarah, E-mail: sdalibalta@aus.edu; Abu-Farha, Nedal

    2016-11-01

    Hookah (waterpipe) smoking is a very common practice that has spread globally. There is growing evidence on the hazardous consequences of smoking hookah, with studies indicating that its harmful effects are comparable to cigarette smoking if not worse. Charcoal is commonly used as a heating source for hookah smoke. Although charcoal briquettes are thought to be one of the major contributors to toxicity, their composition and impact on the smoke generated remains largely unidentified. This study aims to analyze the elemental composition of five different raw synthetic and natural charcoals by using Carbon-Hydrogen-Nitrogen (CHN) analysis, inductively coupled plasma (ICP), and scanning electron microscopy coupled with energy dispersive X-Ray spectrometry (SEM-EDS). Elemental analysis showed that the raw charcoals contain heavy metals such as zinc, iron, cadmium, vanadium, aluminum, lead, chromium, manganese and cobalt at concentrations similar, if not higher than, cigarettes. In addition, thermal desorption-gas chromatography–mass spectrometry (TD-GC–MS) was used to analyze the chemical composition of the smoke produced from burning the charcoal samples. The smoke emitted from charcoal was found to be the source of numerous compounds which could be hazardous to health. A total of seven carcinogens, 39 central nervous system depressants and 31 respiratory irritants were identified. - Highlights: • Hookah charcoals, mainly synthetic brands, contains trace/heavy metals in concentrations exceeding those in cigarettes. • The concentration of lead in synthetic charcoal briquettes may impose adverse effects on human health. • The amount of nitrogen in synthetic charcoal is comparable to that reported in cigarettes. • Chemical profiling of smoke emitted from hookah charcoal reveals many compounds associated with potential health risks.

  8. Chemical analysis and potential health risks of hookah charcoal

    International Nuclear Information System (INIS)

    Elsayed, Yehya; Dalibalta, Sarah; Abu-Farha, Nedal

    2016-01-01

    Hookah (waterpipe) smoking is a very common practice that has spread globally. There is growing evidence on the hazardous consequences of smoking hookah, with studies indicating that its harmful effects are comparable to cigarette smoking if not worse. Charcoal is commonly used as a heating source for hookah smoke. Although charcoal briquettes are thought to be one of the major contributors to toxicity, their composition and impact on the smoke generated remains largely unidentified. This study aims to analyze the elemental composition of five different raw synthetic and natural charcoals by using Carbon-Hydrogen-Nitrogen (CHN) analysis, inductively coupled plasma (ICP), and scanning electron microscopy coupled with energy dispersive X-Ray spectrometry (SEM-EDS). Elemental analysis showed that the raw charcoals contain heavy metals such as zinc, iron, cadmium, vanadium, aluminum, lead, chromium, manganese and cobalt at concentrations similar, if not higher than, cigarettes. In addition, thermal desorption-gas chromatography–mass spectrometry (TD-GC–MS) was used to analyze the chemical composition of the smoke produced from burning the charcoal samples. The smoke emitted from charcoal was found to be the source of numerous compounds which could be hazardous to health. A total of seven carcinogens, 39 central nervous system depressants and 31 respiratory irritants were identified. - Highlights: • Hookah charcoals, mainly synthetic brands, contains trace/heavy metals in concentrations exceeding those in cigarettes. • The concentration of lead in synthetic charcoal briquettes may impose adverse effects on human health. • The amount of nitrogen in synthetic charcoal is comparable to that reported in cigarettes. • Chemical profiling of smoke emitted from hookah charcoal reveals many compounds associated with potential health risks.

  9. Establishment of a comprehensive indicator to nondestructively analyze watermelon quality at different ripening stages

    Directory of Open Access Journals (Sweden)

    Shuye Qi

    2014-07-01

    Full Text Available Two nondestructive methods based on visible and near-infrared (VIS-NIR spectroscopy and X-ray image have been used for the evaluation of watermelon quality. The prediction performance based on partial least squares (PLS by diffuse transmittance measurement (500–1010 nm was evaluated for chemical quality attributes SSC (Rc = 0.903; RMSEC = 0.572% Brix; Rp = 0.862; RMSEP = 0.717% Brix; RPD = 1.83, lycopene (Rc = 0.845; RMSEC = 0.266 mg/100 gFW; Rp = 0.751; RMSEP = 0.439 mg/100 gFW; RPD = 1.13 and moisture (Rc = 0.917; RMSEC = 0.280%; Rp = 0.937; RMSEP = 0.276%; RPD = 2.79. The X-ray calibration linear equations developed by extracting the appropriate gray threshold were sufficiently precise for volume (R2 = 0.986 and weight (R2 = 0.993. In order to optimize prediction model of watermelon quality in growth period, multivariate multi-block technique factor analysis enabled integration of these traits: chemical information is related to physical information. Applying principle component analysis to extract common factors and varimax with Kaiser normalization to improve explanatory, the comprehensive indicator based on variances was established satisfactorily with Rc = 0.94, RMSEC = 0.244, Rp = 0.93, RMSEP = 0.344 and RPD = 2.00. A comparison of these models indicates that the comprehensive indicator determined only by portable VIS-NIR spectrometer appears as a suitable method for appraising watermelon quality nondestructively on the plant at different ripen stages. This method contributes to infer the picking date of watermelon with higher accuracy and bigger economic benefits than that by experience.

  10. Nondestructive methods for quality evaluation of livestock products.

    Science.gov (United States)

    Narsaiah, K; Jha, Shyam N

    2012-06-01

    The muscles derived from livestock are highly perishable. Rapid and nondestructive methods are essential for quality assurance of such products. Potential nondestructive methods, which can supplement or replace many of traditional time consuming destructive methods, include colour and computer image analysis, NIR spectroscopy, NMRI, electronic nose, ultrasound, X-ray imaging and biosensors. These methods are briefly described and the research work involving them for products derived from livestock is reviewed. These methods will be helpful in rapid screening of large number of samples, monitoring distribution networks, quick product recall and enhance traceability in the value chain of livestock products. With new developments in the areas of basic science related to these methods, colour, image processing, NIR spectroscopy, biosensors and ultrasonic analysis are expected to be widespread and cost effective for large scale meat quality evaluation in near future.

  11. Microarray technology for major chemical contaminants analysis in food: current status and prospects.

    Science.gov (United States)

    Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2012-01-01

    Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed.

  12. Chemical hazards analysis of resilient flooring for healthcare.

    Science.gov (United States)

    Lent, Tom; Silas, Julie; Vallette, Jim

    2010-01-01

    This article addresses resilient flooring, evaluating the potential health effects of vinyl flooring and the leading alternatives-synthetic rubber, polyolefin, and linoleum-currently used in the healthcare marketplace. The study inventories chemicals incorporated as components of each of the four material types or involved in their life cycle as feedstocks, intermediary chemicals, or emissions. It then characterizes those chemicals using a chemical hazard-based framework that addresses persistence and bioaccumulation, human toxicity, and human exposures.

  13. Meta-Analysis of the Chemical and Non-Chemical Stressors Affecting Childhood Obesity

    Science.gov (United States)

    Worldwide, approximately 42 million children under the age of 5 years are considered overweight or obese. While much research has focused on individual behaviors impacting obesity, little research has emphasized the complex interactions of numerous chemical and non-chemical stres...

  14. Can non-destructive inspection be reliable

    International Nuclear Information System (INIS)

    Silk, M.G.; Stoneham, A.M.; Temple, J.A.G.

    1988-01-01

    The paper on inspection is based on the book ''The reliability of non-destructive inspection: assessing the assessment of structures under stress'' by the present authors (published by Adam Hilger 1987). Emphasis is placed on the reliability of inspection and whether cracks in welds or flaws in components can be detected. The need for non-destructive testing and the historical attitudes to non-destructive testing are outlined, along with the case of failure. Factors influencing reliable inspection are discussed, and defect detection trials involving round robin tests are described. The development of reliable inspection techniques and the costs of reliability and unreliability are also examined. (U.K.)

  15. Nondestructive assay measurements applied to reprocessing plants

    International Nuclear Information System (INIS)

    Ruhter, Wayne D.; Lee, R. Stephen; Ottmar, Herbert; Guardini, Sergio

    1999-01-01

    Nondestructive assay for reprocessing plants relies on passive gamma-ray spectrometry for plutonium isotopic and plutonium mass values of medium-to-low-density samples and holdup deposits; on active x-ray fluorescence and densitometry techniques for uranium and plutonium concentrations in solutions; on calorimetry for plutonium mass in product; and passive neutron techniques for plutonium mass in spent fuel, product, and waste. This paper will describe the radiation-based nondestructive assay techniques used to perform materials accounting measurements. The paper will also discuss nondestructive assay measurements used in inspections of reprocessing plants [ru

  16. COLLABORATIVE TRIAL AND QUALITY CONTROL IN CHEMICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Narsito Narsito

    2010-06-01

    Full Text Available Abstract                                                             This paper deals with some practical problems related to the quality of analytical chemical data usually met in practice. Special attention is given to the topic of quality control in analytical chemistry, since analytical data is one of the primary information from which some important scientifically based decision are to be made. The present paper starts with brief description on some fundamental aspects associated with quality of analytical data, such as sources of variation of analytical data, criteria for quality of analytical method, quality assurance in chemical analysis. The assessment of quality parameter for analytical method like the use of standard materials as well as standard methods is given. Concerning with the quality control of analytical data, the use of several techniques, such as control samples and control charts, in monitoring analytical data in quality control program are described qualitatively.  In the final part of this paper, some important remarks for the preparation of collaborative trials, including the evaluation of accuracy and reproducibility of analytical method are also given Keywords: collaborative trials, quality control, analytical data Abstract                                                             This paper deals with some practical problems related to the quality of analytical chemical data usually met in practice. Special attention is given to the topic of quality control in analytical chemistry, since analytical data is one of the primary information from which some important scientifically based decision are to be made. The present paper starts with brief description on some fundamental aspects associated with quality of analytical data, such as sources of variation of analytical data, criteria for quality of

  17. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt [Risoe National Laboratory, Roskilde (Denmark). Systems Analysis Department

    2001-07-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis

  18. Process Equipment Failure Mode Analysis in a Chemical Industry

    Directory of Open Access Journals (Sweden)

    J. Nasl Seraji

    2008-04-01

    Full Text Available Background and aims   Prevention of potential accidents and safety promotion in chemical processes requires systematic safety management in them. The main objective of this study was analysis of important process equipment components failure modes and effects in H2S and CO2  isolation from extracted natural gas process.   Methods   This study was done in sweetening unit of an Iranian gas refinery. Failure Mode and Effect Analysis (FMEA used for identification of process equipments failures.   Results   Totally 30 failures identified and evaluated using FMEA. P-1 blower's blade breaking and sour gas pressure control valve bearing tight moving had maximum risk Priority number (RPN, P-1 body corrosion and increasing plug lower side angle of reach DEAlevel control valve  in tower - 1 were minimum calculated RPN.   Conclusion   By providing a reliable documentation system for equipment failures and  incidents recording, maintaining of basic information for later safety assessments would be  possible. Also, the probability of failures and effects could be minimized by conducting preventive maintenance.

  19. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform

    Directory of Open Access Journals (Sweden)

    Hanwell Marcus D

    2012-08-01

    Full Text Available Abstract Background The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. Results The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Conclusions Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format

  20. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  1. Flow Injection Analysis and Liquid Chromatography for Multifunctional Chemical Analysis (MCA) Systems

    Science.gov (United States)

    Mayo, Ana V.; Loegel, Thomas N.; Bretz, Stacey Lowery; Danielson, Neil D.

    2013-01-01

    The large class sizes of first-year chemistry labs makes it challenging to provide students with hands-on access to instrumentation because the number of students typically far exceeds the number of research-grade instruments available to collect data. Multifunctional chemical analysis (MCA) systems provide a viable alternative for large-scale…

  2. Tutoring system for nondestructive testing using computer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Koo; Koh, Sung Nam [Joong Ang Inspection Co.,Ltd., Seoul (Korea, Republic of); Shim, Yun Ju; Kim, Min Koo [Dept. of Computer Engineering, Aju University, Suwon (Korea, Republic of)

    1997-10-15

    This paper is written to introduce a multimedia tutoring system for nondestructive testing using personal computer. Nondestructive testing, one of the chief methods for inspecting welds and many other components, is very difficult for the NDT inspectors to understand its technical basis without a wide experience. And it is necessary for considerable repeated education and training for keeping their knowledge. The tutoring system that can simulate NDT works is suggested to solve the above problem based on reasonable condition. The tutoring system shows basic theories of nondestructive testing in a book-style with video images and hyper-links, and it offers practices, in which users can simulate the testing equipment. The book-style and simulation practices provide effective and individual environments for learning nondestructive testing.

  3. Tutoring system for nondestructive testing using computer

    International Nuclear Information System (INIS)

    Kim, Jin Koo; Koh, Sung Nam; Shim, Yun Ju; Kim, Min Koo

    1997-01-01

    This paper is written to introduce a multimedia tutoring system for nondestructive testing using personal computer. Nondestructive testing, one of the chief methods for inspecting welds and many other components, is very difficult for the NDT inspectors to understand its technical basis without a wide experience. And it is necessary for considerable repeated education and training for keeping their knowledge. The tutoring system that can simulate NDT works is suggested to solve the above problem based on reasonable condition. The tutoring system shows basic theories of nondestructive testing in a book-style with video images and hyper-links, and it offers practices, in which users can simulate the testing equipment. The book-style and simulation practices provide effective and individual environments for learning nondestructive testing.

  4. X-ray chemical analyzer for field applications

    International Nuclear Information System (INIS)

    Gamba, O.O.M.

    1977-01-01

    A self-supporting portable field multichannel x-ray chemical analyzer system is claimed. It comprises a lightweight, flexibly connected, remotely locatable, radioisotope-excited sensing probe utilizing a cryogenically-cooled solid state semi-conductor crystal detector for fast in situ non-destructive, qualitative and quantitative analysis of elements in solid, powder, liquid or slurried form, utilizing an x-ray energy dispersive spectrometry technique

  5. Research on nondestructive examination methods for CANDU fuel channel inspection

    International Nuclear Information System (INIS)

    Soare, M.; Petriu, F.; Toma, V.; Revenco, V.; Calinescu, A.; Ciocan, R.; Iordache, C.; Popescu, L.; Mihalache, M.; Murgescu, C.

    1995-01-01

    The requirements of the 1994 edition of CAN/CSA-N285.4 Periodic Inspection Standard, which address all known and postulated degradation mechanisms and introduce material surveillance demands, involve a growing need for improved nondestructive examination (NDE) methods and technologies. In order to have a proper technical support in its decisions concerning fuel channel inspections at Cernavoda NPP, the Romanian Power Authority (RENEL) initiated a Research Program regarding the nondestructive characterization of the fuel channels structural integrity. The paper presents the most significant results obtained on this Research Program: the ENDUS experimental system for Laboratory simulation of the fuel channel inspection, ultrasonic Rayleigh-Lamb waves technique for pressure tubes examination, phase analysis technique for near-surface flaws, influence of the metallurgical state of the pressure tube material on the eddy current defectoscopic signals, characterization of plastic deformation and fracture of zirconium alloys by acoustic emission. (author)

  6. Current applications of semiconductor x-ray detectors in chemical analysis

    International Nuclear Information System (INIS)

    Whitehead, N.E.

    1975-07-01

    In the last few years, semiconductor detectors have been used as X-ray detectors with great success, and the routine rapid accumulation of X-ray spectra is now possible. This review surveys the historical development of the detectors, the utilisation, and relative merits of various means of exciting the X-radiation from the elements in the sample, and compares the technique with other methods claiming to offer the capability of simultaneous multi-element analysis. It is concluded that it is of average sensitivity, but offers some advantages from its non-destructive nature, and in some cases its ability to offer information about the spatial distribution of elements in a sample. Other types of analysis may also be possible simultaneously. Sample preparation techniques are reviewed, especially techniques of manufacturing thin samples. An appendix contains details of the very wide variety of samples which have been analysed. More than 350 references are included. (auth.)

  7. Microplasmas for chemical analysis: analytical tools or research toys?

    International Nuclear Information System (INIS)

    Karanassios, Vassili

    2004-01-01

    An overview of the activities of the research groups that have been involved in fabrication, development and characterization of microplasmas for chemical analysis over the last few years is presented. Microplasmas covered include: miniature inductively coupled plasmas (ICPs); capacitively coupled plasmas (CCPs); microwave-induced plasmas (MIPs); a dielectric barrier discharge (DBD); microhollow cathode discharge (MCHD) or microstructure electrode (MSE) discharges, other microglow discharges (such as those formed between 'liquid' electrodes); microplasmas formed in micrometer-diameter capillary tubes for gas chromatography (GC) or high-performance liquid chromatography (HPLC) applications, and a stabilized capacitive plasma (SCP) for GC applications. Sample introduction into microplasmas, in particular, into a microplasma device (MPD), battery operation of a MPD and of a mini- in-torch vaporization (ITV) microsample introduction system for MPDs, and questions of microplasma portability for use on site (e.g., in the field) are also briefly addressed using examples of current research. To emphasize the significance of sample introduction into microplasmas, some previously unpublished results from the author's laboratory have also been included. And an overall assessment of the state-of-the-art of analytical microplasma research is provided

  8. Similarity Analysis of Cable Insulations by Chemical Test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seog [Central Research Institute of Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-10-15

    As result of this experiment, it was found that FT-IR test for material composition, TGA test for aging trend are applicable for similarity analysis of cable materials. OIT is recommended as option if TGA doesn't show good trend. Qualification of new insulation by EQ report of old insulation should be based on higher activation energy of new insulation than that of old one in the consideration of conservatism. In old nuclear power plant, it is easy to find black cable which has no marking of cable information such as manufacturer, material name and voltage. If a type test is required for qualification of these cables, how could I select representative cable? How could I determine the similarity of these cables? If manufacturer has qualified a cable for nuclear power plant more than a decade ago and composition of cable material is changed with similar one, is it acceptable to use the old EQ report for recently manufactured cable? It is well known to use FT-IR method to determine the similarity of cable materials. Infrared ray is easy tool to compare compositions of each material. But, it is not proper to compare aging trend of these materials. Study for similarity analysis of cable insulation by chemical test is described herein. To study a similarity evaluation method for polymer materials, FT-IR, TGA and OIT tests were performed for two cable insulation(old and new) which were supplied from same manufacturer. FT-IR shows good result to compare material compositions while TGA and OIT show good result to compare aging character of materials.

  9. Quantum chemical calculations in the structural analysis of phloretin

    Science.gov (United States)

    Gómez-Zavaglia, Andrea

    2009-07-01

    In this work, a conformational search on the molecule of phloretin [2',4',6'-Trihydroxy-3-(4-hydroxyphenyl)-propiophenone] has been performed. The molecule of phloretin has eight dihedral angles, four of them taking part in the carbon backbone and the other four, related with the orientation of the hydroxyl groups. A systematic search involving a random variation of the dihedral angles has been used to generate input structures for the quantum chemical calculations. Calculations at the DFT(B3LYP)/6-311++G(d,p) level of theory permitted the identification of 58 local minima belonging to the C 1 symmetry point group. The molecular structures of the conformers have been analyzed using hierarchical cluster analysis. This method allowed us to group conformers according to their similarities, and thus, to correlate the conformers' stability with structural parameters. The dendrogram obtained from the hierarchical cluster analysis depicted two main clusters. Cluster I included all the conformers with relative energies lower than 25 kJ mol -1 and cluster II, the remaining conformers. The possibility of forming intramolecular hydrogen bonds resulted the main factor contributing for the stability. Accordingly, all conformers depicting intramolecular H-bonds belong to cluster I. These conformations are clearly favored when the carbon backbone is as planar as possible. The values of the νC dbnd O and νOH vibrational modes were compared among all the conformers of phloretin. The redshifts associated with intramolecular H-bonds were correlated with the H-bonds distances and energies.

  10. Similarity Analysis of Cable Insulations by Chemical Test

    International Nuclear Information System (INIS)

    Kim, Jong Seog

    2013-01-01

    As result of this experiment, it was found that FT-IR test for material composition, TGA test for aging trend are applicable for similarity analysis of cable materials. OIT is recommended as option if TGA doesn't show good trend. Qualification of new insulation by EQ report of old insulation should be based on higher activation energy of new insulation than that of old one in the consideration of conservatism. In old nuclear power plant, it is easy to find black cable which has no marking of cable information such as manufacturer, material name and voltage. If a type test is required for qualification of these cables, how could I select representative cable? How could I determine the similarity of these cables? If manufacturer has qualified a cable for nuclear power plant more than a decade ago and composition of cable material is changed with similar one, is it acceptable to use the old EQ report for recently manufactured cable? It is well known to use FT-IR method to determine the similarity of cable materials. Infrared ray is easy tool to compare compositions of each material. But, it is not proper to compare aging trend of these materials. Study for similarity analysis of cable insulation by chemical test is described herein. To study a similarity evaluation method for polymer materials, FT-IR, TGA and OIT tests were performed for two cable insulation(old and new) which were supplied from same manufacturer. FT-IR shows good result to compare material compositions while TGA and OIT show good result to compare aging character of materials

  11. Infrared thermography non-destructive evaluation of lithium-ion battery

    Science.gov (United States)

    Wang, Zi-jun; Li, Zhi-qiang; Liu, Qiang

    2011-08-01

    The power lithium-ion battery with its high specific energy, high theoretical capacity and good cycle-life is a prime candidate as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Safety is especially important for large-scale lithium-ion batteries, especially the thermal analysis is essential for their development and design. Thermal modeling is an effective way to understand the thermal behavior of the lithium-ion battery during charging and discharging. With the charging and discharging, the internal heat generation of the lithium-ion battery becomes large, and the temperature rises leading to an uneven temperature distribution induces partial degradation. Infrared (IR) Non-destructive Evaluation (NDE) has been well developed for decades years in materials, structures, and aircraft. Most thermographic methods need thermal excitation to the measurement structures. In NDE of battery, the thermal excitation is the heat generated from carbon and cobalt electrodes in electrolyte. A technique named "power function" has been developed to determine the heat by chemical reactions. In this paper, the simulations of the transient response of the temperature distribution in the lithium-ion battery are developed. The key to resolving the security problem lies in the thermal controlling, including the heat generation and the internal and external heat transfer. Therefore, three-dimensional modelling for capturing geometrical thermal effects on battery thermal abuse behaviour is required. The simulation model contains the heat generation during electrolyte decomposition and electrical resistance component. Oven tests are simulated by three-dimensional model and the discharge test preformed by test system. Infrared thermography of discharge is recorded in order to analyze the security of the lithium-ion power battery. Nondestructive detection is performed for thermal abuse analysis and discharge analysis.

  12. Nonradiological chemical pathway analysis and identification of chemicals of concern for environmental monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Blanton, M.L.; Cooper, A.T.; Castleton, K.J.

    1995-11-01

    Pacific Northwest's Surface Environmental Surveillance Project (SESP) is an ongoing effort tot design, review, and conducted monitoring on and off the Hanford site. Chemicals of concern that were selected are listed. Using modeled exposure pathways, the offsite cancer incidence and hazard quotient were calculated and a retrospective pathway analysis performed to estimate what onsite concentrations would be required in the soil for each chemical of concern and other detected chemicals that would be required to obtain an estimated offsite human-health risk of 1.0E-06 cancer incidence or 1.0 hazard quotient. This analysis indicates that current nonradiological chemical contamination occurring on the site does not pose a significant offsite human-health risk; the highest cancer incidence to the offsite maximally exposed individual was from arsenic (1.76E-10); the highest hazard quotient was chromium(VI) (1.48E-04). The most sensitive pathways of exposure were surfacewater and aquatic food consumption. Combined total offsite excess cancer incidence was 2.09E-10 and estimated hazard quotient was 2.40E-04. Of the 17 identified chemicals of concern, the SESP does not currently (routinely) monitor arsenic, benzo(a)pyrene, bis(2- ethylhexyl)phthalate (BEHP), and chrysene. Only 3 of the chemicals of concern (arsenic, BEHP, chloroform) could actually occur in onsite soil at concern high enough to cause a 1.0E-06 excess cancer incidence or a 1.0 hazard index for a given offsite exposure pathway. During the retrospective analysis, 20 other chemicals were also evaluated; only vinyl chloride and thallium could reach targeted offsite risk values

  13. Probability of Detection (POD) Analysis for the Advanced Retirement for Cause (RFC)/Engine Structural Integrity Program (ENSIP) Nondestructive Evaluation (NDE) System-Volume 3: Material Correlation Study

    National Research Council Canada - National Science Library

    Berens, Alan

    2000-01-01

    .... Volume 1 presents a description of changes made to the probability of detection (POD) analysis program of Mil-STD-1823 and the statistical evaluation of modifications that were made to version 3 of the Eddy Current Inspection System (ECIS v3...

  14. Non-destructive determination of nitrogen in malting barleys by instrumental photon activation analysis and its comparison with the Dumas method

    Czech Academy of Sciences Publication Activity Database

    Krausová, Ivana; Mizera, Jiří; Dostálek, P.; Řanda, Zdeněk

    2018-01-01

    Roč. 124, č. 1 (2018), s. 4-8 ISSN 0046-9750 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : nitrogen * instrumental photon activation analysis * Dumas method * malting barley Subject RIV: GM - Food Processing OBOR OECD: Food and beverages Impact factor: 0.859, year: 2016

  15. Methodology for national risk analysis and prioritization of toxic industrial chemicals.

    Science.gov (United States)

    Taxell, Piia; Engström, Kerstin; Tuovila, Juha; Söderström, Martin; Kiljunen, Harri; Vanninen, Paula; Santonen, Tiina

    2013-01-01

    The identification of chemicals that pose the greatest threat to human health from incidental releases is a cornerstone in public health preparedness for chemical threats. The present study developed and applied a methodology for the risk analysis and prioritization of industrial chemicals to identify the most significant chemicals that pose a threat to public health in Finland. The prioritization criteria included acute and chronic health hazards, physicochemical and environmental hazards, national production and use quantities, the physicochemical properties of the substances, and the history of substance-related incidents. The presented methodology enabled a systematic review and prioritization of industrial chemicals for the purpose of national public health preparedness for chemical incidents.

  16. Nondestructive testing of nuclear reactor components integrity

    International Nuclear Information System (INIS)

    Mala, M.; Miklos, M.

    2011-01-01

    Nuclear energy must respond to current challenges in the energy market. The significant parameters are increase of the nuclear fuel price, closed fuel cycle, reduction and safe and the final disposal of high level radioactive waste. Nowadays, the discussions on suitable energy mix are taking place not only here in Czech Republic, but also in many other European countries. It is necessary to establish an appropriate ratio among the production of electricity from conventional, nuclear and renewable energy sources. Also, it is necessary to find ways how to streamline the economy, central part of the nuclear fuel cycle and thereby to increase the competitiveness of nuclear energy. This streamlining can be carried out by improving utilization of existing nuclear fuel with maintaining a high degree of nuclear facilities safety. Increasing operational reliability and safety together with increasing utilization of nuclear fuel place increasing demands on monitoring of changes during fuel burnup. The potential fuel assembly damages in light water reactors are prevented by the introduction of new procedures and programs of the fuel assembly monitoring. One of them is the Post Irradiation Inspection Program (PIIP) which is a good tool for monitoring of chemical regime impact on the fuel assembly cladding behavior. Main nondestructive techniques that are used at nuclear power plants for the fuel assembly integrity evaluation are ultrasonic measurements, eddy current measurements, radiographic testing, acoustic techniques and others. Ultrasonic system is usual tool for leak fuel rod evaluation and it is also used at Temelin NPP. Since 2009, Temelin NPP has cooperated with Research Center Rez Ltd in frame of PIIP program at both units WWER 1000. This program was established for US VVantage6 fuel assemblies and also it continues for Russian TVSA-T fuel assemblies. (author)

  17. Nondestructive Characterization of Aged Components

    Energy Technology Data Exchange (ETDEWEB)

    Panetta, Paul D.; Toloczko, Mychailo B.; Garner, Francis A.; Balachov, Iouri I.

    2003-10-21

    may be used for material properties measurements. A more appealing solution is to use nondestructive evaluation (NDE) methods.

  18. Proceedings for the nondestructive assay and nondestructive examination waste characterization conference. No. 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report contains paper presented at the 5th Nondestructive Assay and nondestructive Examination Waste Characterization conference. Topics included compliance, neutron NDA techniques, gamma NDA techniques, tomographic methods, and NDA modality and information combination techniques. Individual reports have been processed separately for the United States Department of Energy databases.

  19. Proceedings for the nondestructive assay and nondestructive examination waste characterization conference. No. 5

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains paper presented at the 5th Nondestructive Assay and nondestructive Examination Waste Characterization conference. Topics included compliance, neutron NDA techniques, gamma NDA techniques, tomographic methods, and NDA modality and information combination techniques. Individual reports have been processed separately for the United States Department of Energy databases

  20. Meta-Analysis of the Chemical and Non-Chemical Stressors Affecting Childhood Obesity?

    Science.gov (United States)

    Background: Worldwide, approximately 42 million children under the age of 5 years are considered overweight or obese. While much research has focused on individual behaviors impacting obesity, little research has emphasized the complex interactions of numerous chemical and non-ch...

  1. Sampling and chemical analysis of groundwaters from the exploratory boreholes

    International Nuclear Information System (INIS)

    Wittwer, C.

    1986-10-01

    As a part of the Nagra geological investigation programme in northern Switzerland, numerous water samples were taken in the Boettstein, Weiach, Riniken, Schafisheim, Kaisten and Leuggern boreholes to obtain information on the chemistry and residence times of deep groundwaters. This report contains a compilation of hydrochemical data, comments on the individual water sampling actions and an evaluation of sample quality with respect to admixing of drilling fluids. The samples were taken from separate test intervals in the sediments and the crystalline rock. After removal of various types of drilling fluids such as mud as well as fresh water or deionised water during a cleaning phase, the samples were taken at the surface or at depth using pressure vessels. The tracers added to the drilling fluids (uranine, m-TFMBA) as well as the tritium content were used for a quantiative estimation of the content of drilling fluid in the samples (contamination). With a view fo further geochemical modelling, the samples were assessed with reference to the effect of contamination on the results of the chemical analyses. A total of 68 water samples were taken from 53 different intervals: - 27 samples had problem-free cleaning phases and were taken with negligible contamination. - 23 samples were taken under difficult conditions. Problems with hydraulic communication around packers, uncertain origin, inaccuracy as to extent of contamination, presence of cement, possible traces of salt from drilling fluid etc. meant that the analyses could only be used with extreme caution or after additional data-processing. - The analysis results from 18 samples will be disregarded due to significant drilling fluid content or because more reliable data are available for the same test interval. (author)

  2. Analysis of selected chemical parameters in Piemontese wines.

    Science.gov (United States)

    Stępień, Agnieszka E; Stawarczyk, Kinga; Bilek, Maciej; Kędziora, Katarzyna M

    2015-01-01

    Piemontese wines are well known and valued all over the world. The most popular of them are Barolo and Barbaresco wines. However, in Poland, they are still little known and only now are being gradually introduced to a wider range of consumers. The aim of this study was to evaluate the content of inorganic anions, minerals, sugars and glycerol of Piemontese wines from micro-region Langhe, classified as DOCG ("Denominazione di Origine Controllata e Garantita", ie. controlled designation of origin guaranteed) and DOC ("Denominazione di Origine Controllata", ie. controlled designation of origin) products. Seven types of red wines and one type of white wine were tested. High Performance Ion Chromatography with conductometric detection (HPLC-CD) was used to measure the content of inorganic anions, ie. fluorides, chlorides, sulfates and phosphates. Flame atomic absorption spectrometry (F-AAS) was used to measure the content of minerals, ie. magnesium, calcium, sodium, copper, potassium, zinc and iron, while High Performance Liquid Chromatography with charged aerosol detection (HPLC-CAD) was used to measure the content of glycerol and sugars, ie. fructose, glucose and sucrose. Our studies show that although Piemontese wines are characterized by a relatively low content of minerals in comparison with the wines from other regions, they contain a lot of ingredients that have beneficial effects for human health. Moreover, we observed that the studied wines contain particularly high concentration of inorganic ions--phosphates and fluorides. Furthermore, all tested red wines show far reaching similarities in their chemical properties, which is possibly a direct consequence of using in their production locally cultivated grape varieties. Analysis of the wines from the Piemont region, classified as DOCG, DOC, confirmed that these are dry wines of a high quality.

  3. Understanding Land Use Impacts on Groundwater Quality Using Chemical Analysis

    Science.gov (United States)

    Nitka, A.; Masarik, K.; Masterpole, D.; Johnson, B.; Piette, S.

    2017-12-01

    Chippewa County, in western Wisconsin, has a unique historical set of groundwater quality data. The county conducted extensive groundwater sampling of private wells in 1985 (715 wells) and 2007 (800 wells). In 2016, they collaborated with UW-Extension and UW-Stevens Point to evaluate the current status of groundwater quality in Chippewa County by sampling of as many of the previously studied wells as possible. Nitrate was a primary focus of this groundwater quality inventory. Of the 744 samples collected, 60 were further analyzed for chemical indicators of agricultural and septic waste, two major sources of nitrate contamination. Wells for nitrate source analysis were selected from the 2016 participants based upon certain criteria. Only wells with a Wisconsin Unique Well Number were considered to ensure well construction information was available. Next, an Inverse Distance Weighting tool in ESRI ArcMap was used to assign values categorizing septic density. Two-thirds of the wells were selected in higher density areas and one-third in lower density areas. Equally prioritized was an even distribution of nitrate - N concentrations, with 28 of the wells having nitrate - N concentrations higher than the drinking water standard of 10 mg/L and 32 wells with concentrations between 2 and 10 mg/L. All wells with WUWN and nitrate - N concentrations greater than 20 mg/L were selected. The results of the nitrate source analyses will aid in determining temporal changes and spatial relationships of groundwater quality to soils, geology and land use in Chippewa County.

  4. Experimental device, corresponding forward model and processing of the experimental data using wavelet analysis for tomographic image reconstruction applied to eddy current nondestructive evaluation

    International Nuclear Information System (INIS)

    Joubert, P.Y.; Madaoui, N.

    1999-01-01

    In the context of eddy current non destructive evaluation using a tomographic image reconstruction process, the success of the reconstruction depends not only on the choice of the forward model and of the inversion algorithms, but also on the ability to extract the pertinent data from the raw signal provided by the sensor. We present in this paper, an experimental device designed for imaging purposes, the corresponding forward model, and a pre-processing of the experimental data using wavelet analysis. These three steps implemented with an inversion algorithm, will allow in the future to perform image reconstruction of 3-D flaws. (authors)

  5. Association rule mining data for census tract chemical exposure analysis

    Data.gov (United States)

    U.S. Environmental Protection Agency — Chemical concentration, exposure, and health risk data for U.S. census tracts from National Scale Air Toxics Assessment (NATA). This dataset is associated with the...

  6. Microbiological and Physico-chemical Analysis of Compost and its ...

    African Journals Online (AJOL)

    microbial counts, the physico-chemical parameters of compost and to assess the ... showed that application of municipal solid waste ... cattle manure and food wastes (leaves of avocado, .... Organic matter is decomposed and transformed to.

  7. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    Science.gov (United States)

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  8. Analysis of very thin organic fibres by means of small spots electron spectroscopy for chemical analysis

    International Nuclear Information System (INIS)

    Daiser, S.M.; Cormia, R.D.; Scharpen, L.

    1985-01-01

    ESCA analysis of very thin organic fibres as small as a few micrometer diameter is now possible using the small spot X-ray capability of the SSX100 ESCA system. The sampling method involves suspending the material in the SSX100 chamber, and illuminating it with a monochromatized X-ray beam of 150-300 μm diameter. From the small spot ESCA spectra one can determine the chemical character of the organic layer and the thickness. (Author)

  9. Process Analysis in Chemical Plant by Means of Radioactive Tracers

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, T.; Hamada, K.; Osada, K. [Showa Denko K.K., Tokyo (Japan)

    1967-06-15

    Following the movement of solids and fluids is important in chemical processes to determine mixing efficiency and residence time. Since it is necessary to follow many complex substances such as raw materials, intermediates and reactants in plant investigations, it is often necessary to ascertain whether the behaviour of the radioisotope tracer and the substance to be traced are identical. The most difficult problem is to determine the best method of labelling, a factor which is a substantial key to the success of an experiment. Usually, there are three labelling techniques: radioisotope labelling, pre-.activation of the material and post-activation of the material. This paper deals with practical examples of the double-tracer technique, a combination of conventional radioisotope labelling and post-activation methods by means of activation analysis. In process analysis by means of tracers, a practical measurement method should also be devised and developed for each experiment. Phosphorus-32 and gold (non-radioactive) were used to measure retention time in a carbon-black plant. The radioisotope was pumped into a feed-stock pipe positioned before the reactor and samples were taken from each process of the plant, including the bag filter, mixer and product tank. After sampling from each step of the process, {sup 32}P in a semi-infinite powder sample was measured in situ by beta counting, and the gold was measured by gamma counting after activating the sample in a reactor. The experiment showed that both tracers had the same residence time, which was shorter than expected. Useful data were also obtained from the dispersion pattern of the material flow for future operation controls, including the time required to change from one grade of product to another. Practical tracer techniques to measure mixing characteristics in high-speed gas flows using {sup 85}Kr have been developed. A study of the measurement method was conducted by calculating the differential values of

  10. Chemical analysis of carbonates and carbonate rocks by atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tardon, S

    1981-01-01

    Evaluates methods of determining chemical composition of rocks surrounding black coal seams. Carbonate rock samples were collected in the Ostrava-Karvina coal mines. Sampling methods are described. Determination of the following elements and compounds in carbonate rocks is discussed: calcium, magnesium, iron, manganese, barium, silicon, aluminium, titanium, sodium, potassium, sulfur trioxide, phosphorus pentoxide, water and carbon dioxide. Proportion of compounds insoluble in water in the investigated rocks is also determined. Most of the elements are determined by means of atomic absorption analysis. Phosphorus is also determined by atomic absorption analysis. Other compounds are determined gravimetrically. The described procedure permits weight of a rock sample to be reduced to 0.5 g without reducing analysis accuracy. The results of determining carbonate rock components by X-ray analysis and by chemical analysis are compared. Equipment used for atomic absorption analysis is characterized (the 503 Perkin-Elmer and the CF-4 Optica-Milano spectrophotometers). The analyzed method for determining carbonate rock permits more accurate classification of rocks surrounding coal seams and rock impurities in run-of-mine coal. (22 refs.) (In Czech)

  11. Correction for the Hematocrit Bias in Dried Blood Spot Analysis Using a Nondestructive, Single-Wavelength Reflectance-Based Hematocrit Prediction Method.

    Science.gov (United States)

    Capiau, Sara; Wilk, Leah S; De Kesel, Pieter M M; Aalders, Maurice C G; Stove, Christophe P

    2018-02-06

    The hematocrit (Hct) effect is one of the most important hurdles currently preventing more widespread implementation of quantitative dried blood spot (DBS) analysis in a routine context. Indeed, the Hct may affect both the accuracy of DBS methods as well as the interpretation of DBS-based results. We previously developed a method to determine the Hct of a DBS based on its hemoglobin content using noncontact diffuse reflectance spectroscopy. Despite the ease with which the analysis can be performed (i.e., mere scanning of the DBS) and the good results that were obtained, the method did require a complicated algorithm to derive the total hemoglobin content from the DBS's reflectance spectrum. As the total hemoglobin was calculated as the sum of oxyhemoglobin, methemoglobin, and hemichrome, the three main hemoglobin derivatives formed in DBS upon aging, the reflectance spectrum needed to be unmixed to determine the quantity of each of these derivatives. We now simplified the method by only using the reflectance at a single wavelength, located at a quasi-isosbestic point in the reflectance curve. At this wavelength, assuming 1-to-1 stoichiometry of the aging reaction, the reflectance is insensitive to the hemoglobin degradation and only scales with the total amount of hemoglobin and, hence, the Hct. This simplified method was successfully validated. At each quality control level as well as at the limits of quantitation (i.e., 0.20 and 0.67) bias, intra- and interday imprecision were within 10%. Method reproducibility was excellent based on incurred sample reanalysis and surpassed the reproducibility of the original method. Furthermore, the influence of the volume spotted, the measurement location within the spot, as well as storage time and temperature were evaluated, showing no relevant impact of these parameters. Application to 233 patient samples revealed a good correlation between the Hct determined on whole blood and the predicted Hct determined on venous DBS. The

  12. Thermoelectrically cooled semiconductor detectors for non-destructive analysis of works of art by means of energy dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Cesareo, Roberto; Ettore Gigante, Giovanni; Castellano, Alfredo

    1999-01-01

    Thermoelectrically cooled semiconductor detectors, such as Si-PIN, Si-drift, Cd 1-x Zn x Te and HgI 2 , coupled to miniaturized low-power X-ray tubes, are well suited in portable systems for energy-dispersive X-ray fluorescence (EDXRF), analysis of archaeological samples. The Si-PIN detector is characterized by a thickness of about 300 μm, an area of about 2x3 mm 2 , an energy resolution of about 200-250 eV at 5.9 keV and an entrance window of 25-75 μm. The Si-drift detector has approximately the same area and thickness, but an energy resolution of 155 eV at 5.9 keV. The efficiency of these detectors is around 100% from 4 to 10 keV, and then decreases versus energy, reaching ∼9% at 30 keV. Coupled to a miniaturized 10 kV, 0.1 mA, Ca-anode or to a miniaturized 30 kV, 0.1 mA, W-anode X-ray tubes, portable systems can be constructed, which are able to analyse K-lines of elements up to about silver, and L-lines of heavy elements. The Cd 1-x Zn x Te detector has an area of 4 mm 2 and a thickness of 3 mm. It has an energy resolution of about 300 eV at 5.9 keV, and an efficiency of 100% over the whole range of X-rays. Finally the HgI 2 detector has an efficiency of about 100% in the whole range of X-rays, and an energy resolution of about 200 eV at 5.9 keV. Coupled to a small 50-60 kV, 1 mA, W-anode X-ray tube, portable systems can be constructed, for the analysis of practically all elements. These systems were applied to analysis in the field of archaeometry and in all applications for which portable systems are needed or at least useful (for example X-ray transmission measurements, X-ray microtomography and so on). Results of in-field use of these detectors and a comparison among these room temperature detectors in relation to concrete applications are presented. More specifically, concerning EDXRF analysis, ancient gold samples were analysed in Rome, in Mexico City and in Milan, ancient bronzes in Sassari, in Bologna, in Chieti and in Naples, and sulfur (due to

  13. Thermoelectrically cooled semiconductor detectors for non-destructive analysis of works of art by means of energy dispersive X-ray fluorescence

    CERN Document Server

    Cesareo, R; Castellano, A

    1999-01-01

    Thermoelectrically cooled semiconductor detectors, such as Si-PIN, Si-drift, Cd sub 1 sub - sub x Zn sub x Te and HgI sub 2 , coupled to miniaturized low-power X-ray tubes, are well suited in portable systems for energy-dispersive X-ray fluorescence (EDXRF), analysis of archaeological samples. The Si-PIN detector is characterized by a thickness of about 300 mu m, an area of about 2x3 mm sup 2 , an energy resolution of about 200-250 eV at 5.9 keV and an entrance window of 25-75 mu m. The Si-drift detector has approximately the same area and thickness, but an energy resolution of 155 eV at 5.9 keV. The efficiency of these detectors is around 100% from 4 to 10 keV, and then decreases versus energy, reaching approx 9% at 30 keV. Coupled to a miniaturized 10 kV, 0.1 mA, Ca-anode or to a miniaturized 30 kV, 0.1 mA, W-anode X-ray tubes, portable systems can be constructed, which are able to analyse K-lines of elements up to about silver, and L-lines of heavy elements. The Cd sub 1 sub - sub x Zn sub x Te detector ha...

  14. Non-destructive Residual Stress Analysis Around The Weld-Joint of Fuel Cladding Materials of ZrNbMoGe Alloys

    Directory of Open Access Journals (Sweden)

    Parikin

    2003-08-01

    Full Text Available The residual stress measurements around weld-joint of ZrNbMoGe alloy have been carried out by using X-ray diffraction technique in PTBIN-BATAN. The research was performed to investigate the structure of a cladding material with high temperature corrosion resistance and good weldability. The equivalent composition of the specimens (in %wt. was 97.5%Zr1%Nb1%Mo½%Ge. Welding was carried out by using TIG (tungsten inert gas technique that completed butt-joint with a current 20 amperes. Three region tests were taken in specimen while diffraction scanning, While diffraction scanning, tests were performed on three regions, i.e., the weldcore, the heat-affected zone (HAZ and the base metal. The reference region was determined at the base metal to be compared with other regions of the specimen, in obtaining refinement structure parameters. Base metal, HAZ and weldcore were diffracted by X-ray, and lattice strain changes were calculated by using Rietveld analysis program. The results show that while the quantity of minor phases tend to increase in the direction from the base metal to the HAZ and to the weldcore, the quantity of the ZrGe phase in the HAZ is less than the quantity of the ZrMo2 phase due to tGe element evaporation. The residual stress behavior in the material shows that minor phases, i.e., Zr3Ge and ZrMo2, are more dominant than the Zr matrix. The Zr3Ge and ZrMo2 experienced sharp straining, while the Zr phase was weak-lined from HAZ to weldcore. The hydrostatic residual stress ( in around weld-joint of ZrNbMoGe alloy is compressive stress which has minimum value at about -2.73 GPa in weldcore region

  15. Analysis of Chemical Bioactivity through In Vitro Profiling ...

    Science.gov (United States)

    Safety assessment of drugs and environmental chemicals relies extensively on animal testing. However, the quantity of chemicals needing assessment and challenges of species extrapolation drive the development of alternative approaches. The EPA’s ToxCast and the multiagency Tox21 programs address this through use of an extensive in vitro screening program to generate data on a large library of important environmental chemicals. These in vitro assays encompass both cell-free, biochemical assays targeting proteins that may be potential molecular initiating events and cellular assays that provide coverage of critical signaling pathways and toxicity phenotypes. Effects on model organisms such as the developing zebrafish, are also part of the testing strategy. A variety of computational approaches are used to analyze the resulting complex data sets to gain insight in to inherent biological activity of chemicals and possible mechanisms of toxicity. Several case studies including identification of modulators of estrogen receptor and aromatic hydrocarbon receptor pathways with effects in primary human cell systems will be described. In addition, existing in vivo data from a subset of the chemicals was used to anchor predictive models using in vitro data for a number of adverse endpoints including reproductive and developmental toxicities. The strengths and weaknesses of this approach will be described. This work does not necessarily reflect official Agency policy. Pres

  16. Cheminformatics Analysis of EPA ToxCast Chemical Libraries ...

    Science.gov (United States)

    An important goal of toxicology research is the development of robust methods that use in vitro and chemical structure information to predict in vivo toxicity endpoints. The US EPA ToxCast program is addressing this goal using ~600 in vitro assays to create bioactivity profiles on a set of 320 compounds, mostly pesticide actives, that have well characterized in vivo toxicity. These 320 compounds (EPA-320 set evaluated in Phase I of ToxCast) are a subset of a much larger set of ~10,000 candidates that are of interest to the EPA (called here EPA-10K). Predictive models of in vivo toxicity are being constructed from the in vitro assay data on the EPA-320 chemical set. These models require validation on additional chemicals prior to wide acceptance, and this will be carried out by evaluating compounds from EPA-10K in Phase II of ToxCast. We have used cheminformatics approaches including clustering, data visualization, and QSAR to develop models for EPA-320 that could help prioritizing EPA-10K validation chemicals. Both chemical descriptors, as well as calculated physicochemical properties have been used. Compounds from EPA-10K are prioritized based on their similarity to EPA-320 using different similarity metrics, with similarity thresholds defining the domain of applicability for the predictive models built for EPA-320 set. In addition, prioritized lists of compounds of increasing dissimilarity from the EPA-320 have been produced, to test the ability of the EPA-320

  17. Modular verification of chemical reaction network encodings via serializability analysis

    Science.gov (United States)

    Lakin, Matthew R.; Stefanovic, Darko; Phillips, Andrew

    2015-01-01

    Chemical reaction networks are a powerful means of specifying the intended behaviour of synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction network, may be compiled into a lower-level encoding, which can be directly implemented in wet chemistry and may itself be expressed as a chemical reaction network. Here we present conditions under which a lower-level encoding correctly emulates the sequential dynamics of a high-level chemical reaction network. We require that encodings are transactional, such that their execution is divided by a “commit reaction” that irreversibly separates the reactant-consuming phase of the encoding from the product-generating phase. We also impose restrictions on the sharing of species between reaction encodings, based on a notion of “extra tolerance”, which defines species that may be shared between encodings without enabling unwanted reactions. Our notion of correctness is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our correctness properties then we can infer that the global dynamics of the system are correct. This allows us to infer correctness of any system constructed using verified encodings. As an example, we show how this approach may be used to verify two- and four-domain DNA strand displacement encodings of chemical reaction networks, and we generalize our result to the limit where the populations of helper species are unlimited. PMID:27325906

  18. X-ray texture analysis of paper coating pigments and the correlation with chemical composition analysis

    Science.gov (United States)

    Roine, J.; Tenho, M.; Murtomaa, M.; Lehto, V.-P.; Kansanaho, R.

    2007-10-01

    The present research experiments the applicability of x-ray texture analysis in investigating the properties of paper coatings. The preferred orientations of kaolin, talc, ground calcium carbonate, and precipitated calcium carbonate particles used in four different paper coatings were determined qualitatively based on the measured crystal orientation data. The extent of the orientation, namely, the degree of the texture of each pigment, was characterized quantitatively using a single parameter. As a result, the effect of paper calendering is clearly seen as an increase on the degree of texture of the coating pigments. The effect of calendering on the preferred orientation of kaolin was also evident in an independent energy dispersive spectrometer analysis on micrometer scale and an electron spectroscopy for chemical analysis on nanometer scale. Thus, the present work proves x-ray texture analysis to be a potential research tool for characterizing the properties of paper coating layers.

  19. Nondestructive quality evaluation technology of agricultural products

    International Nuclear Information System (INIS)

    Noh, Sang Ha

    1997-01-01

    Quality evaluation of agricultural products has been interested to many researchers for many years and as the result, several nondestructive techniques and so many papers have been reported for quality evaluation of agricultural products. These nondestructive techniques are based on the detection of mechanical, optical, electrical, electro-magnetical, dielectric and vibrational properties of agricultural products that are well correlated with certain quality factors of the products such as color, shape, firmness, sugar content, external or internal defects, moisture content, etc. The sophistication of nondestructive methods has evolved rapidly with modem technologies. In this paper an emphasis was put on reviewing some of those papers and techniques which could be led to on-line measurement for practical use.

  20. Application of positron annihilation techniques in non-destructive testing

    International Nuclear Information System (INIS)

    Zeng Hui; Chen Zhiqiang; Jiang Jing; Xue Xudong; Wu Yichu; Liang Jianping; Liu Xiangbing; Wang Rongshan

    2014-01-01

    Background: The investigation of the material damage state is very important for industrial application. Most mechanical damage starts with a change in the microstructure of the material. Positron annihilation techniques are very sensitive probes for detecting defects and damage on an atomic scale in materials, which are of great concern in the engineering applications. Additionally they are apparatus of non-destruction, high-sensitivity and easy-use. Purpose: Our goal is to develop a system to exploit new non-destructive testing (NDT) methods using positron annihilation spectroscopy, a powerful tool to detect vacancy-type defects and their chemical environment. Methods: A positron NDT system was designed and constructed by modifying the 'sandwich structure' of sample-source-sample in conventional Doppler broadening and positron lifetime spectrometers. Doppler broadening and positron lifetime spectra of a single sample can be measured and analyzed by subtracting the contribution of a reference sample. Results: The feasibility and reliability of positron NDT system have been tested by analyzing nondestructively deformation and damage caused by mechanical treatment or by irradiation of metal alloys. This system can be used for detecting defects and damage in thick or large-size samples, as well as for measuring the two-dimension distribution of defects in portable, sensitive, fast way. Conclusion: Positron NDT measurement shows changes in real atomic-scale defects prior to changes in the mechanical properties, which are detectable by other methods of NDT, such as ultrasonic testing and eddy current testing. This system can be developed for use in both the laboratory and field in the future. (authors)

  1. Analysis of forward and inverse problems in chemical dynamics and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rabitz, H. [Princeton Univ., NJ (United States)

    1993-12-01

    The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.

  2. International Research Project on the Effects of Chemical Ageing of Polymers on Performance Properties: Chemical and Thermal Analysis

    Science.gov (United States)

    Bulluck, J. W.; Rushing, R. A.

    1996-01-01

    Work during the past six months has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted small changes in the molecular weight distribution. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Ultra- Violet Scanning Analysis, GC/Mass Spectrometry, Differential Scanning Calorimetry and Thermomechanical Analysis. In the ultra-violet analysis we noted the presence of an absorption band indicative of triene formation. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We also cast films at SWT and subjected these films to a refluxing methanol 1% ethylene diamine solution. An updated literature search was conducted using Dialog and DROLLS to identify any new papers that may have been published in the open literature since the start of this project. The updated literature search and abstracts are contained in the Appendix section of this report.

  3. Non-destructive testing. V. 2

    International Nuclear Information System (INIS)

    Farley, J.M.; Nichols, R.W.

    1988-01-01

    The book entitled 'Non-destructive Testing' Volume 2, contains the proceedings of the fourth European Conference, organized by the British Institute of Non-Destructive Testing and held in London, September 1987. The volume contains seven chapters which examine the reliability of NDT, the economics of NDT and the use of NDT in:- civil engineering; oil, gas, coal and petrochemical industries; iron and steel industries; aerospace industry; and the nuclear and electricity supply industries. The seven chapters contain 78 papers, of which 19 are selected for INIS and indexed separately. (U.K.)

  4. Non-destructive testing of electronic parts

    International Nuclear Information System (INIS)

    Widenhorn, G.

    1980-01-01

    The requirements on quality, safety, faultlessness and reliability of electric components increase because of the high complexity of the appliances in which they are used. By means of examples a survey is given on the common non-destructive testing methods, testing operation and evaluation of test results on electric components which must meet in their application high requirements on quality and reliability. Defective components, especially those with hidden failures are sorted out by non-destructive testing and the failure frequency of the appliances and plants in testing and operation is greatly reduced. (orig.) [de

  5. Non-Destructive Testing for Concrete Structure

    International Nuclear Information System (INIS)

    Tengku Sarah Tengku Amran; Noor Azreen Masenwat; Mohamad Pauzi Ismail

    2015-01-01

    Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. It is essential in the inspection of alteration, repair and new construction in the building industry. There are a number of non-destructive testing techniques that can be applied to determine the integrity of concrete in a completed structure. Each has its own advantages and limitations. For concrete, these problems relate to strength, cracking, dimensions, delamination, and inhomogeneities. NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development. This paper discussed the concrete inspection using combined methods of NDT. (author)

  6. Chemical analysis and biological potential of Valerian root as used ...

    African Journals Online (AJOL)

    The herb prepared from this plant was studied to determine the chemical composition of its essential oil, carried out phytochemical screening and biological activities on ... rat paw oedema model comparable to aspirin, indicating anti-inflammatory activity; but lacked analgesic activity on the acetic acid-induced writhing test.

  7. HBCUs and Chemical Engineering: Analysis of Baccalaureate Programs

    Science.gov (United States)

    Reeves, Sheena; Thompson, Audie

    2018-01-01

    Historically Black Colleges and Universities (HBCUs) provide significant STEM degrees to African Americans. Initiatives toward increasing diversity in STEM fields have been implemented by government and industry leaders. HBCUs annually award over 20% of all African American baccalaureate chemical engineering degrees. This speaks volume to the…

  8. Chemical analysis of the Assale (Ethiopia) rock salt deposit | Binega ...

    African Journals Online (AJOL)

    contaminants) elements found in the Assale (Ethiopia) rock salt. The results showed that the rock salt is found to be the best natural common salt. This was proved by comparison with the chemical requirement and trace elements in common ...

  9. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...

  10. Fatty acid composition and its association with chemical and sensory analysis of boar taint.

    Science.gov (United States)

    Liu, Xiaoye; Trautmann, Johanna; Wigger, Ruth; Zhou, Guanghong; Mörlein, Daniel

    2017-09-15

    A certain level of disagreement between the chemical analysis of androstenone and skatole and the human perception of boar taint has been found in many studies. Here we analyze whether the fatty acid composition can explain such inconsistency between sensory evaluation and chemical analysis of boar taint compounds. Therefore, back fat samples (n=143) were selected according to their sensory evaluation by a 10-person sensory panel, and the chemical analysis (stable isotope dilution analysis with headspace solid-phase microextraction and gas chromatography-mass spectrometry) of androstenone and skatole. Subsequently a quantification of fatty acids using gas chromatography-flame ionization detection was conducted. The correlation analyses revealed that several fatty acids are significantly correlated with androstenone, skatole, and the sensory rating. However, multivariate analyses (principal component analysis) revealed no explanation of the fatty acid composition with respect to the (dis-)agreement between sensory and chemical analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. CHEMICAL ANALYSIS OF DENSE-GAS EXTRACTS FROM LIME FLOWERS

    Directory of Open Access Journals (Sweden)

    Demyanenko DV

    2015-04-01

    Full Text Available The purpose of this work was to make qualitative and quantitative analysis of phenolic biologically active substances (BAS in the extracts produced from lime flowers with condensed gases, using method of high-performance liquid chromatography (HPLC. Materials and methods: materials for this study were the extracts obtained by consequent processing of the herbal drug and marcs thereof with various condensed gases: difluorochloromethane (Freon R22, difluoromethane (Freon R32, azeotropic mixture of difluoromethane with pentafluoroethane (Freon 410A and freon-ammonium mixture. Extracts obtained with the latter were subjected to further fractionation by liquidliquid separation into hexane, chloroform, ethyl acetate and aqueous-alcohol phases. Besides, the supercritical СО2 extract, obtained from the herbal drug under rather strong conditions (at temperature 60°С and pressure 400 bar, was studied in our previous research. Presence of phenolic BAS and their quantity in the researched samples were determined by method of HPLC with UVspectrometric detection. Results and discussion: It has been found that Freon R22 extracted trace amounts of rutin from lime flowers – its content was only 0.08% of the total extract weight. On the other hand, Freons R32 and R410А showed good selectivity to moderately polar BAS of lime flowers (derivatives of flavonoids and hydroxycinnamic acids: in particular, the extract obtained with freon R32 contained about 1.3% of the total phenolic substances, and it was the only one of the investigated condensed gases used by us which took the basic flavonoid of lime flowers tiliroside – its content was 0.42% of extract weight. Also Freons R32 and R410А were able to withdraw another compound dominating among phenolic substances in the yielded extracts. Its quantity was rather noticeable – up to 0.87% of extract weight. This substance was not identified by existing database, but its UV-spectrum was similar to those of

  12. Combining data in non-destructive testing

    International Nuclear Information System (INIS)

    Lavayssiere, B.

    1994-03-01

    Non-destructive testing of some components requires quite often the use of several methods such as X-ray, ultrasonics, Eddy Currents. But the efficiency of a NDT method is highly dependent on the fact that the detectability of flaws in a specimen relies on the choice of the best method. Moreover a lot of inspection issues could benefit from the use of more than one test method, as each NDT method has its own physical properties and technological limits. Some questions still remain: how to combine data, at what level and for what functionality. Simple monomethod processes are well-known now. They include techniques like reconstruction which belongs to the so-called ill-posed problems in the field of mathematics. For NDT data processing, it has the ability to estimate real data from distorted ones coming from a probe. But, up to now there has been very few approaches for computer aided combination of results from different advanced techniques. This report presents the various mathematical fields involved towards that goal (statistical decision theory which allows the use of multiple hypothesis, non-linear decision theory for its capability to classify and to discriminate, graph theory to find the optimal path in an hypothesis graph and also fuzzy logic, multiple resolution analysis, artificial intelligence,...) and which combinations of methods are useful. Some images will illustrate this topic in which EDF is involved, and will explain what are the major goals of this work. Combining is not only an improvement of 3D visualisation which would allow to display simultaneously CAD or NDT data for example, but it consists in exploiting multisensor data collected via a variety of sophisticated techniques and presenting this information to the operator without overloading the operator/system capacities in order to reduce the uncertainty and to resolve the ambiguity inherent to mono method inspection. (author). 7 figs., 35 refs

  13. Nondestructive Examination Guidance for Dry Storage Casks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suffield, Sarah R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suter, Jonathan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lareau, John P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qiao, Hong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moran, Traci L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-30

    In this report, an assessment of NDE methods is performed for components of NUHOMS 80 and 102 dry storage system components in an effort to assist NRC staff with review of license renewal applications. The report considers concrete components associated with the horizontal storage modules (HSMs) as well as metal components in the HSMs. In addition, the report considers the dry shielded canister (DSC). Scope is limited to NDE methods that are considered most likely to be proposed by licensees. The document, ACI 349.3R, Evaluation of Existing Nuclear Safety-Related Concrete Structures, is used as the basis for the majority of the NDE methods summarized for inspecting HSM concrete components. Two other documents, ACI 228.2R, Nondestructive Test Methods for Evaluation of Concrete in Structures, and ORNL/TM-2007/191, Inspection of Nuclear Power Plant Structure--Overview of Methods and Related Application, supplement the list with additional technologies that are considered applicable. For the canister, the ASME B&PV Code is used as the basis for NDE methods considered, along with currently funded efforts through industry (Electric Power Research Institute [EPRI]) and the U.S. Department of Energy (DOE) to develop inspection technologies for canisters. The report provides a description of HSM and DSC components with a focus on those aspects of design considered relevant to inspection. This is followed by a brief description of other concrete structural components such as bridge decks, dams, and reactor containment structures in an effort to facilitate comparison between these structures and HSM concrete components and infer which NDE methods may work best for certain HSM concrete components based on experience with these other structures. Brief overviews of the NDE methods are provided with a focus on issues and influencing factors that may impact implementation or performance. An analysis is performed to determine which NDE methods are most applicable to specific

  14. Silica sol as grouting material: a physio-chemical analysis.

    Science.gov (United States)

    Sögaard, Christian; Funehag, Johan; Abbas, Zareen

    2018-01-01

    At present there is a pressing need to find an environmentally friendly grouting material for the construction of tunnels. Silica nanoparticles hold great potential of replacing the organic molecule based grouting materials currently used for this purpose. Chemically, silica nanoparticles are similar to natural silicates which are essential components of rocks and soil. Moreover, suspensions of silica nanoparticles of different sizes and desired reactivity are commercially available. However, the use of silica nanoparticles as grouting material is at an early stage of its technological development. There are some critical parameters such as long term stability and functionality of grouted silica that need to be investigated in detail before silica nanoparticles can be considered as a reliable grouting material. In this review article we present the state of the art regarding the chemical properties of silica nanoparticles commercially available, as well as experience gained from the use of silica as grouting material. We give a detailed description of the mechanisms underlying the gelling of silica by different salt solutions such as NaCl and KCl and how factors such as particle size, pH, and temperature affect the gelling and gel strength development. Our focus in this review is on linking the chemical properties of silica nanoparticles to the mechanical properties to better understand their functionality and stability as grouting material. Along the way we point out areas which need further research.

  15. Miniaturised wireless smart tag for optical chemical analysis applications.

    Science.gov (United States)

    Steinberg, Matthew D; Kassal, Petar; Tkalčec, Biserka; Murković Steinberg, Ivana

    2014-01-01

    A novel miniaturised photometer has been developed as an ultra-portable and mobile analytical chemical instrument. The low-cost photometer presents a paradigm shift in mobile chemical sensor instrumentation because it is built around a contactless smart card format. The photometer tag is based on the radio-frequency identification (RFID) smart card system, which provides short-range wireless data and power transfer between the photometer and a proximal reader, and which allows the reader to also energise the photometer by near field electromagnetic induction. RFID is set to become a key enabling technology of the Internet-of-Things (IoT), hence devices such as the photometer described here will enable numerous mobile, wearable and vanguard chemical sensing applications in the emerging connected world. In the work presented here, we demonstrate the characterisation of a low-power RFID wireless sensor tag with an LED/photodiode-based photometric input. The performance of the wireless photometer has been tested through two different model analytical applications. The first is photometry in solution, where colour intensity as a function of dye concentration was measured. The second is an ion-selective optode system in which potassium ion concentrations were determined by using previously well characterised bulk optode membranes. The analytical performance of the wireless photometer smart tag is clearly demonstrated by these optical absorption-based analytical experiments, with excellent data agreement to a reference laboratory instrument. © 2013 Elsevier B.V. All rights reserved.

  16. Nondestructive assay of plutonium residue in horizontal storage tanks

    International Nuclear Information System (INIS)

    Marsh, S.F.

    1985-01-01

    Aqueous plutonium recovery and purification processes often involve the temporary storage of plutonium solutions in holding tanks. Because plutonium is known to precipitate from aqueous solutions under certain conditions, there is a continuing need to assay emptied tanks for plutonium residue. A portable gamma spectrometer system, specifically designed for this purpose, provides rapid assay of such plutonium residues in horizontal storage tanks. A means is thus available for the nondestructive analysis of these tanks on a regular schedule to ensure that significant deposits of plutonium are not allowed to accumulate. 5 figs

  17. Comparison of destructive and nondestructive assay of heterogeneous salt residues

    International Nuclear Information System (INIS)

    Fleissner, J.G.; Hume, M.W.

    1986-01-01

    To study problems associated with nondestructive assay (NDA) measurements of molten salt residues, a joint study was conducted by the Rocky Flats Plant, Golden, CO and Mound Laboratories, Miamisburg, OH. Extensive NDA measurements were made on nine containers of molten salt residues by both Rocky Flats and Mound followed by dissolution and solution quantification at Rocky Flats. Results of this study verify that plutonium and americium can be measured in such salt residues by a new gamma-ray spectral analysis technique coupled with calorimetry. Biases with respect to the segmented gamma-scan technique were noted

  18. 49 CFR 195.234 - Welds: Nondestructive testing.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welds: Nondestructive testing. 195.234 Section 195... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.234 Welds: Nondestructive testing. (a) A weld may be... weld. (b) Any nondestructive testing of welds must be performed— (1) In accordance with a written set...

  19. 46 CFR 151.03-38 - Nondestructive testing.

    Science.gov (United States)

    2010-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing. Nondestructive testing includes ultrasonic examination, liquid penetrant examination, magnetic particle... 46 Shipping 5 2010-10-01 2010-10-01 false Nondestructive testing. 151.03-38 Section 151.03-38...

  20. 49 CFR 193.2321 - Nondestructive tests.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... of storage tanks with internal design pressure above 15 psig must be nondestructively examined in... Vessel Code (Section VIII Division 1) (incorporated by reference, see § 193.2013). (b) For storage tanks...

  1. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  2. The real defect and its nondestructive characterization

    International Nuclear Information System (INIS)

    Licht, H.

    1982-01-01

    Nondestructive test techniques to evaluate defect severity and component degradation are typically based on transmission of energy into the material to be inspected. The capabilities of such techniques are controlled by physical phenomena which generally do not coincide with inspection requirements. This paper reviews several recent developments (mainly in ultrasonic and eddy current testing) which highlight the state of the art

  3. Nondestructive examination development and demonstration plan

    International Nuclear Information System (INIS)

    Weber, J.R.

    1991-01-01

    Nondestructive examination (NDE) of waste matrices using penetrating radiation is by nature very subjective. Two candidate systems of examination have been identified for use in WRAP 1. This test plan describes a method for a comparative evaluation of different x-ray examination systems and techniques

  4. New tasks for non-destructive testing

    International Nuclear Information System (INIS)

    1990-01-01

    The proceedings contain 29 lectures and 43 posters which were presented in Trier at the annual meeting of the DGZfP in May 1990. The contributions report on further development of non-destructive testing methods towards more reliability, both of inspections and with regard to interpretation of the results. (MM) [de

  5. Nondestructive assay of boxed radioactive waste

    International Nuclear Information System (INIS)

    Gilles, W.P.; Roberts, R.J.; Jasen, W.G.

    1992-12-01

    This paper describes the problems related to the nondestructive assay (NDA) of boxed radioactive waste at the Hanford Site and how Westinghouse Hanford company (WHC) is solving the problems. The waste form and radionuclide content are described. The characteristics of the combined neutron and gamma-based measurement system are described

  6. Non-destructive examination of a time capsule recovered from the Gore Park excavations, Hamilton, Ontario

    International Nuclear Information System (INIS)

    MacDonald, B.L.; Vanderstelt, J.

    2015-01-01

    Non-destructive analytical techniques are becoming increasingly important for the study of objects of cultural heritage interest. We present a study that applied two techniques: x-ray fluorescence (XRF) and neutron radiography, for the investigation of a time capsule recovered from an urban construction site in Gore Park, Hamilton. XRF analysis revealed the composition of the artifact, while n-radiography showed that its contents remained intact after being interred for 91 years. Results of this study demonstrate the value of non-destructive techniques for the analysis and preservation of cultural heritage. (author)

  7. Edward's sword? - A non-destructive study of a medieval king's sword

    Science.gov (United States)

    Segebade, Chr.

    2013-04-01

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  8. Attributes identification of nuclear material by non-destructive radiation measurement methods

    International Nuclear Information System (INIS)

    Gan Lin

    2002-01-01

    Full text: The nuclear materials should be controlled under the regulation of National Safeguard System. The non-destructive analysis method, which is simple and quick, provide a effective process in determining the nuclear materials, nuclear scraps and wastes. The method play a very important role in the fields of nuclear material control and physical protection against the illegal removal and smuggling of nuclear material. The application of non-destructive analysis in attributes identification of nuclear material is briefly described in this paper. The attributes determined by radioactive detection technique are useful tolls to identify the characterization of special nuclear material (isotopic composition, enrichment etc.). (author)

  9. Forecasting global developments in the basic chemical industry for environmental policy analysis

    NARCIS (Netherlands)

    Broeren, M.L.M.|info:eu-repo/dai/nl/371687438; Saygin, D.; Patel, M.K.

    The chemical sector is the largest industrial energy user, but detailed analysis of its energy use developments lags behind other energy-intensive sectors. A cost-driven forecasting model for basic chemicals production is developed, accounting for regional production costs, demand growth and stock

  10. Chemical Analysis of the Moon at the Surveyor VII Landing Site: Preliminary Results.

    Science.gov (United States)

    Turkevich, A L; Franzgrote, E J; Patterson, J H

    1968-10-04

    The alpha-scattering experiment aboard Surveyor VII has provided a chemical analysis of the moon in the area of the crater Tycho. The preliminary results indicate a chemical composition similar to that already found at two mare sites, but with a lower concentration of elements of the iron group (titanium through copper).

  11. Exploring the Potential for Using Inexpensive Natural Reagents Extracted from Plants to Teach Chemical Analysis

    Science.gov (United States)

    Hartwell, Supaporn Kradtap

    2012-01-01

    A number of scientific articles report on the use of natural extracts from plants as chemical reagents, where the main objective is to present the scientific applications of those natural plant extracts. The author suggests that natural reagents extracted from plants can be used as alternative low cost tools in teaching chemical analysis,…

  12. Sample preparation for combined chemical analysis and bioassay application in water quality assessment

    NARCIS (Netherlands)

    Kolkman, A.; Schriks, M.; Brand, W; Bäuerlein, P.S.; van der Kooi, M.M.E.; van Doorn, R.H.; Emke, E.; Reus, A.; van der Linden, S.; de Voogt, P.; Heringa, M.B.

    2013-01-01

    The combination of in vitro bioassays and chemical screening can provide a powerful toolbox to determine biologically relevant compounds in water extracts. In this study, a sample preparation method is evaluated for the suitability for both chemical analysis and in vitro bioassays. A set of 39

  13. Neutron activation analysis for chemical characterization of Brazilian oxo-biodegradable plastics

    International Nuclear Information System (INIS)

    Mateus Eugenio Boscaro; De Nadai Fernandes, E.A.; Marcio Arruda Bacchi; Luis Gustavo Cofani dos Santos; Cofani dos Santos, S.N.S.; Sandra Mara Martins-Franchetti

    2015-01-01

    The chemical characterization of oxo-biodegradable plastic bags was performed by neutron activation analysis. The presence of several chemical elements (As, Br, Ca, Co, Cr, Fe, Hf, K, La, Na, Sb, Sc, Ta and Zn) with large variability of mass fractions amongst samples indicates that these plastics receive additives and may have been contaminated during manufacturing process thereby becoming potential environmental pollutants. (author)

  14. Comprehensive Mass Analysis for Chemical Processes, a Case Study on L-Dopa Manufacture

    Science.gov (United States)

    To evaluate the “greenness” of chemical processes in route selection and process development, we propose a comprehensive mass analysis to inform the stakeholders from different fields. This is carried out by characterizing the mass intensity for each contributing chemical or wast...

  15. Development of international standards for surface analysis by ISO technical committee 201 on surface chemical analysis

    International Nuclear Information System (INIS)

    Powell, C.J.

    1999-01-01

    Full text: The International Organization for Standardization (ISO) established Technical Committee 201 on Surface Chemical Analysis in 1991 to develop documentary standards for surface analysis. ISO/TC 201 met first in 1992 and has met annually since. This committee now has eight subcommittees (Terminology, General Procedures, Data Management and Treatment, Depth Profiling, AES, SIMS, XPS, and Glow Discharge Spectroscopy (GDS)) and one working group (Total X-Ray Fluorescence Spectroscopy). Each subcommittee has one or more working groups to develop standards on particular topics. Australia has observer-member status on ISO/TC 201 and on all ISO/TC 201 subcommittees except GDS where it has participator-member status. I will outline the organization of ISO/TC 201 and summarize the standards that have been or are being developed. Copyright (1999) Australian X-ray Analytical Association Inc

  16. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    Science.gov (United States)

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension.

  17. Statistical analysis of DNT detection using chemically functionalized microcantilever arrays

    DEFF Research Database (Denmark)

    Bosco, Filippo; Bache, M.; Hwu, E.-T.

    2012-01-01

    The need for miniaturized and sensitive sensors for explosives detection is increasing in areas such as security and demining. Micrometer sized cantilevers are often used for label-free detection, and have previously been reported to be able to detect explosives. However, only a few measurements...... on the chemically treated surfaces results in significant bending of the cantilevers and in a decrease of their resonant frequencies. We present averaged measurements obtained from up to 72 cantilevers being simultaneously exposed to the same sample. Compared to integrated reference cantilevers with non...

  18. Integrated Process Design, Control and Analysis of Intensified Chemical Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil

    chemical processes; for example, intensified processes such as reactive distillation. Most importantly, it identifies and eliminates potentially promising design alternatives that may have controllability problems later. To date, a number of methodologies have been proposed and applied on various problems......, that the same principles that apply to a binary non-reactive compound system are valid also for a binary-element or a multi-element system. Therefore, it is advantageous to employ the element based method for multicomponent reaction-separation systems. It is shown that the same design-control principles...

  19. On the tracks of sandarac, review and chemical analysis.

    Science.gov (United States)

    Azémard, Clara; Ménager, Matthieu; Vieillescazes, Cathy

    2017-12-01

    The sandarac resin (Tetraclinis articulata) has been long used for its properties, mostly as a varnish component. Called juniper resin until the nineteenth century, the real botanical origin of sandarac is still unclear. The first approach to this issue is the review of the evolution of the etymology, terminology, and botanical description of sandarac through time. It seems that sandarac was mainly coming from T. articulata but the use of some juniper resins before the twentieth century is not to be excluded. The second approach is a chemical one; we used gas chromatography coupled to mass spectrometry to characterise the resin. As sandarac was the main component of the famous Italian varnish Vernice liquida, its characterisation is important for old paintings studies. However, although we could hope to differentiate sandarac, Juniperus communis and Juniperus oxycedrus resins by looking at their chemical composition, it appears that these resins are very similar. Besides, we notice a lack of old varnishes containing sandarac which complicates our work.

  20. Crystal-Chemical Analysis Martian Minerals in Gale Crater

    Science.gov (United States)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2015-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analyses on scooped soil at Rocknest and on drilled rock fines at Yellowknife Bay (John Klein and Cumberland samples), The Kimberley (Windjana sample), and Pahrump (Confidence Hills sample) in Gale crater, Mars. Samples were analyzed with the Rietveld method to determine the unit-cell parameters and abundance of each observed crystalline phase. Unit-cell parameters were used to estimate compositions of the major crystalline phases using crystal-chemical techniques. These phases include olivine, plagioclase and clinopyroxene minerals. Comparison of the CheMin sample unit-cell parameters with those in the literature provides an estimate of the chemical compositions of the major crystalline phases. Preliminary unit-cell parameters, abundances and compositions of crystalline phases found in Rocknest and Yellowknife Bay samples were reported in. Further instrument calibration, development of 2D-to- 1D pattern conversion corrections, and refinement of corrected data allows presentation of improved compositions for the above samples.

  1. A kinetic and equilibrium analysis of silicon carbide chemical vapor deposition on monofilaments

    Science.gov (United States)

    Gokoglu, S. A.; Kuczmarski, M. A.

    1993-01-01

    Chemical kinetics of atmospheric pressure silicon carbide (SiC) chemical vapor deposition (CVD) from dilute silane and propane source gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofilaments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolution of major gas phase species are considered in the analysis.

  2. Laser Applications to Chemical, Security, and Environmental Analysis: introduction to the feature issue

    International Nuclear Information System (INIS)

    Dreizler, Andreas; Fried, Alan; Gord, James R.

    2007-01-01

    This Applied Optics feature issue on Laser Applications to Chemical, Security,and Environmental Analysis (LACSEA) highlights papers presented at theLACSEA 2006 Tenth Topical Meeting sponsored by the Optical Society ofAmerica

  3. Laser applications to chemical, security, and environmental analysis: introduction to the feature issue.

    Science.gov (United States)

    Seeger, Thomas; Dreier, Thomas; Chen, Weidong; Kearny, Sean; Kulatilaka, Waruna

    2017-04-10

    This Applied Optics feature issue on laser applications to chemical, security, and environmental analysis (LACSEA) highlights papers presented at the LACSEA 2016 Fifteenth Topical Meeting sponsored by the Optical Society of America.

  4. DRES Database of Methods for the Analysis of Chemical Warfare Agents

    National Research Council Canada - National Science Library

    D'Agostino, Paul

    1997-01-01

    .... Update of the database continues as an ongoing effort and the DRES Database of Methods for the Analysis of Chemical Warfare Agents is available panel in hardcopy form or as a softcopy Procite or Wordperfect file...

  5. Chemical risk evaluation, importance of the risk analysis framework uses: Latin America development restrictions

    International Nuclear Information System (INIS)

    Carrillo, M.

    2013-01-01

    The power point presentation is about reach and results of the risk analysis in Venezuela, chemical dangers in food, human damage, injuries , technologies news in fodd development, toxicity, microbiological risk, technical recommendations

  6. Nondestructive nuclear measurement in the fuel cycle. Part 1

    International Nuclear Information System (INIS)

    Lyoussi, A.

    2005-01-01

    Nondestructive measurement techniques are today widely used in practically all steps of the fuel cycle. This article is devoted to the presentation of the control and characterization needs and to the main passive nondestructive nuclear methods used: 1 - nondestructive nuclear measurement, needs and motivation: nuclear fuel cycle, nondestructive nuclear measurements (passive and active methods), comments; 2 - main passive nondestructive nuclear measurement methods: gamma spectroscopy (principle, detectors, electronic systems, data acquisition and signal processing, domains of application, main limitations), passive neutronic measurements (needs and motivations, neutron detectors, total neutronic counting, neutronic coincidences counting, neutronic multiplicities counting, comments). (J.S.)

  7. Non-destructive study of iron gall inks in manuscripts

    Science.gov (United States)

    Duh, Jelena; Krstić, Dragica; Desnica, Vladan; Fazinić, Stjepko

    2018-02-01

    The aim of this research is to establish an effective procedure of iron gall ink characterization using complementary non-destructive methods. By this, it is possible to better understand correlation of chemical composition of the inks and the state of preservation of iron gall ink manuscripts, as well as the effects of conservation treatment performed upon them. This study was undertaken on a bound 16th century manuscript comprised of different types of paper and ink from the National and University Library in Zagreb. Analytical methods used included Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF). Paper fibers were identified by optical microscopy and the degradation state, as well as ink differentiation, transit metal migrations and detection of stains, with ultraviolet (UV) and infrared (IR) photography. The techniques applied on original writing materials gave important information about paper and ink composition, its preservation state and efficiency of conservation treatment performed upon them.

  8. Environmental Impact Assessment for Socio-Economic Analysis of Chemicals

    DEFF Research Database (Denmark)

    Calow, Peter; Biddinger, G; Hennes, C

    This report describes the requirements for, and illustrates the application of, a methodology for a socio-economic analysis (SEA) especially as it might be adopted in the framework of REACH.......This report describes the requirements for, and illustrates the application of, a methodology for a socio-economic analysis (SEA) especially as it might be adopted in the framework of REACH....

  9. Engineering and Functional Analysis of Mitotic Kinases Through Chemical Genetics.

    Science.gov (United States)

    Jones, Mathew J K; Jallepalli, Prasad V

    2016-01-01

    During mitosis, multiple protein kinases transform the cytoskeleton and chromosomes into new and highly dynamic structures that mediate the faithful transmission of genetic information and cell division. However, the large number and strong conservation of mammalian kinases in general pose significant obstacles to interrogating them with small molecules, due to the difficulty in identifying and validating those which are truly selective. To overcome this problem, a steric complementation strategy has been developed, in which a bulky "gatekeeper" residue within the active site of the kinase of interest is replaced with a smaller amino acid, such as glycine or alanine. The enlarged catalytic pocket can then be targeted in an allele-specific manner with bulky purine analogs. This strategy provides a general framework for dissecting kinase function with high selectivity, rapid kinetics, and reversibility. In this chapter we discuss the principles and techniques needed to implement this chemical genetic approach in mammalian cells.

  10. Chemical effects in materials studies using Auger analysis

    International Nuclear Information System (INIS)

    Rye, R.R.

    1985-01-01

    Core-valence-valence Auger spectra (AES) afford a unique local view of valence electron structure. The direct involvement in the Auger process of both core and valence states means that the transition matrix element will have a large value only for that portion of the valence electron density which covers the same spatial extent as the core wave function. Thus, the information content of AES is local to the atomic site containing the initial core hole. Our approach in understanding the local information content of AES has been mainly experimental through the intercomparison of model systems, both molecular and solid. The use of molecules in this regard is particularly useful since the vast array of molecular species of known geometric and electronic structures allows one to both vary these properties in a systematic fashion to observe trends and to choose a molecule to probe a specific chemical question

  11. CFD analysis of hypersonic, chemically reacting flow fields

    Science.gov (United States)

    Edwards, T. A.

    1993-01-01

    Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, computational fluid dynamics (CFD) is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are being solved with new, robust numerical algorithms. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but solution adaptive grids, convergence acceleration, and parallel processing may make run times manageable.

  12. Chemical Fingerprint Analysis and Quantitative Analysis of Rosa rugosa by UPLC-DAD

    Directory of Open Access Journals (Sweden)

    Sanawar Mansur

    2016-12-01

    Full Text Available A method based on ultra performance liquid chromatography with a diode array detector (UPLC-DAD was developed for quantitative analysis of five active compounds and chemical fingerprint analysis of Rosa rugosa. Ten batches of R. rugosa collected from different plantations in the Xinjiang region of China were used to establish the fingerprint. The feasibility and advantages of the used UPLC fingerprint were verified for its similarity evaluation by systematically comparing chromatograms with professional analytical software recommended by State Food and Drug Administration (SFDA of China. In quantitative analysis, the five compounds showed good regression (R2 = 0.9995 within the test ranges, and the recovery of the method was in the range of 94.2%–103.8%. The similarities of liquid chromatography fingerprints of 10 batches of R. rugosa were more than 0.981. The developed UPLC fingerprint method is simple, reliable, and validated for the quality control and identification of R. rugosa. Additionally, simultaneous quantification of five major bioactive ingredients in the R. rugosa samples was conducted to interpret the consistency of the quality test. The results indicated that the UPLC fingerprint, as a characteristic distinguishing method combining similarity evaluation and quantification analysis, can be successfully used to assess the quality and to identify the authenticity of R. rugosa.

  13. Application of INAA for chemical quality control analysis of C-C composite and high purity graphite by determining trace elemental concentrations

    International Nuclear Information System (INIS)

    Shinde, Amol D.; Reddy, A.V.R.; Acharya, R.; Venugopalan, Ramani

    2015-01-01

    Carbon based materials like graphite and C-C composites are used for various scientific and technological applications. Owing to its low neutron capture cross section and good moderating properties, graphite is used as a moderator or reflector in nuclear reactors. For high temperature reactors like CHTR, graphite and C-C composites are proposed as structural materials. Studies are in progress to use C-C composites as prospective candidate instead of graphite due to their excellent mechanical and thermal properties. The advantage of carbon-carbon composite is that the microstructure and the properties can be tailor made. Impurities like rare earth elements and neutron poisons which have high neutron absorption cross section and elements whose activation products of have longer half-lives like 60 Co (5.27 y), 65 Zn (244.3 d) and 59 Fe (44.5 d) are not desired in structural materials. For chemical quality control (CQC) it is necessary to evaluate accurately the impurity concentrations using a suitable non-destructive analytical technique. In the present work, two carbon/carbon composite samples and two high purity graphite samples were analyzed by Instrumental Neutron Activation Analysis (INAA) using high-flux reactor neutrons. Samples, sealed in Al foil, were irradiated in tray-rod position of Dhruva reactor, BARC at a neutron flux of ∼ 5 x 10 13 cm -2 s -1 . Radioactive assay was carried out using high resolution gamma ray spectrometry using 40% HPGe detector

  14. ANALYSIS AND IDENTIFICATION SPIKING CHEMICAL COMPOUNDS RELATED TO CHEMICAL WEAPON CONVENTION IN UNKNOWN WATER SAMPLES USING GAS CHROMATOGRAPHY AND GAS CHROMATOGRAPHY ELECTRON IONIZATION MASS SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Harry Budiman

    2010-06-01

    Full Text Available The identification and analysis of chemical warfare agents and their degradation products is one of important component for the implementation of the convention. Nowadays, the analytical method for determination chemical warfare agent and their degradation products has been developing and improving. In order to get the sufficient analytical data as recommended by OPCW especially in Proficiency Testing, the spiking chemical compounds related to Chemical Weapon Convention in unknown water sample were determined using two different techniques such as gas chromatography and gas chromatography electron-impact ionization mass spectrometry. Neutral organic extraction, pH 11 organic extraction, cation exchanged-methylation, triethylamine/methanol-silylation were performed to extract the chemical warfare agents from the sample, before analyzing with gas chromatography. The identification of chemical warfare agents was carried out by comparing the mass spectrum of chemicals with mass spectrum reference from the OPCW Central Analytical Database (OCAD library while the retention indices calculation obtained from gas chromatography analysis was used to get the confirmation and supported data of  the chemical warfare agents. Diisopropyl methylphosphonate, 2,2-diphenyl-2-hydroacetic acid and 3-quinuclidinol were found in unknown water sample. Those chemicals were classified in schedule 2 as precursor or reactant of chemical weapons compound in schedule list of Chemical Weapon Convention.   Keywords: gas chromatography, mass spectrometry, retention indices, OCAD library, chemical warfare agents

  15. Quantum chemical analysis of potential anti-Parkinson agents

    Indian Academy of Sciences (India)

    Intermolecular binding energy components could not be analyzed by docking and due to this .... Cluster analysis was performed on the docked results with regard to RMS ... gard, docking simulation is a key tool in structural mo- lecular biology ...

  16. Non-destructive testing of proteins in single seeds using the 14N(d,p)15N and 14N(d,∝)12C reactions

    International Nuclear Information System (INIS)

    Moreno B, E.

    1986-01-01

    A non-destructive nuclear technique aimed for the analysis of proteins in single seeds using the 14 N(d,p) 15 N and 14 N(d,∝) 12 C reactions is implemented. This work was performed at the ININ's Tandem Van der Graaff facility, using a 6 MeV deuteron beam and a surface barrier solid state detector with its associated electronics for the pulse height analysis of the charged particles backscattered from the samples. Well defined populations of five varieties of wheat, and four of corn were used as samples in order to optimize the experimental conditions for the analysis, these results were compared with those obtained using an analytical chemical method (Kjeldahl). The linear regression coefficient (''r'') obtained from the results of these two methods was: r = 0.9 in the case of wheat, and r = 0.7 in the case of corn, which we consider adequate figures for using the non-destructive nuclear technique as an aid or support in agricultural seed protein improvement programs. In adequate geometrical conditions the analysis per seed can take a few seconds, and the exposure to the germ can be as low as ≅1 Rad. (author)

  17. Chemical analysis of useful trace elements in sea water

    International Nuclear Information System (INIS)

    Katoh, Shunsaku; Fujii, Ayako; Miyai, Yoshitaka; Sakane, Kohji; Ogata, Noboru.

    1983-01-01

    The methods for the analysis of useful trace elements in sea water which have been tried so far are reviewed, and these methods are described briefly from the standpoint of studying the collection of resources. Ag and Au can be determined by concentrating sea water by ion-exchange method, solvent extraction method and electrodeposition method, then the elements are measured quantitatively by activation analysis and atomic absorption spectrochemical analysis. Sr, B and Li, which exist in relatively high concentration in sea water, are determined easily by atomic absorption spectrochemical analysis and absorption spectrometry. U, Mo and V are measured suitably by concentrating the elements by coprecipitation or solvent extraction method, and measuring by fluorescence analysis and arsenazo-3 method for U and through graphite-atomic absorption analysis for Mo and V. It has been revealed that the concentration of Ag and Au in sea water is extremely low, accordingly the recovery study is not conducted recently. On the other hand, the adsorption method using hydrated titanium oxide and amidoxim adsorbents for U, Mo and V, the adsorption method using aluminum adsorbent for Li, and the adsorption method using magnesium oxide and zirconium hydroxide and the solvent extraction method for B are hopeful to recover these elements. (Yoshitake, I.)

  18. Recent Applications of Chemical Imaging to Pharmaceutical Process Monitoring and Quality Control

    OpenAIRE

    Gowen, A. A.; O'Donnell, Colm; Cullen, Patrick; Bell, S.

    2008-01-01

    Chemical Imaging (CI) is an emerging platform technology that integrates conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Vibrational spectroscopic methods, such as Near Infrared (NIR) and Raman spectroscopy, combined with imaging are particularly useful for analysis of biological/pharmaceutical forms. The rapid, non-destructive and non-invasive features of CI mark its potential suitability as a process analytical tool for the pharmaceutica...

  19. Development of a Nondestructive Evaluation Technique for Degraded Thermal Barrier Coatings Using Microwave

    Science.gov (United States)

    Sayar, M.; Ogawa, K.; Shoji, T.

    2008-02-01

    Thermal barrier coatings have been widely used in gas turbine engines in order to protect substrate metal alloy against high temperature and to enhance turbine efficiency. Currently, there are no reliable nondestructive techniques available to monitor TBC integrity over lifetime of the coating. Hence, to detect top coating (TC) and TGO thicknesses, a microwave nondestructive technique that utilizes a rectangular waveguide was developed. The phase of the reflection coefficient at the interface of TC and waveguide varies for different TGO and TC thicknesses. Therefore, measuring the phase of the reflection coefficient enables us to accurately calculate these thicknesses. Finally, a theoretical analysis was used to evaluate the reliability of the experimental results.

  20. Nondestructive Induced Residual Stress Assessment in Superalloy Turbine Engine Components Using Induced Positron Annihilation (IPA)

    International Nuclear Information System (INIS)

    Rideout, C. A.; Ritchie, S. J.; Denison, A.

    2007-01-01

    Induced Positron Analysis (IPA) has demonstrated the ability to nondestructively quantify shot peening/surface treatments and relaxation effects in single crystal superalloys, steels, titanium and aluminum with a single measurement as part of a National Science Foundation SBIR program and in projects with commercial companies. IPA measurement of surface treatment effects provides a demonstrated ability to quantitatively measure initial treatment effectiveness along with the effect of operationally induced changes over the life of the treated component. Use of IPA to nondestructively quantify surface and subsurface residual stresses in turbine engine materials and components will lead to improvements in current engineering designs and maintenance procedures