WorldWideScience

Sample records for noncontrast helical computed

  1. Non-contrast thin-section helical CT of urinary tract calculi in children

    International Nuclear Information System (INIS)

    Strouse, Peter J.; Bates, Gregory D.; Bloom, David A.; Goodsitt, Mitchell M.

    2002-01-01

    Background: Non-contrast thin-section helical CT has gained acceptance for the diagnosis of urinary tract calculi in adults, but experience with the technique in children is limited. Purpose: To evaluate the utility of non-contrast thin section helical CT for the diagnosis of urinary tract calculi in children. Materials and methods: Radiology databases at three pediatric institutions were searched to identify all pediatric patients evaluated by ''renal stone'' protocol CT scans (no oral or intravenous contrast, scans covering the entire urinary tract obtained in helical mode with narrow collimation (< 5 mm)). CT scans were reviewed for the primary finding of urinary tract calculi, for secondary signs of acute urinary tract obstruction and for evidence of alternative diagnoses. Medical records were reviewed to determine clinical presentation and to confirm the eventual diagnosis. Results: One hundred thirty-seven scans of 113 children (mean age: 11.2 years) were studied. Thirty-eight of 94 examinations (40%) performed on 82 children for acute pain and/or hematuria showed ureteral calculi. Alternative diagnoses were suggested by CT on 16 scans (17%). Twenty-eight scans were performed on 10 asymptomatic children with known calculus disease confirming renal stone burden on 21 scans (75%) and persistent ureteral calculi on 6 scans (21%). Upper tract calculi were demonstrated on 10 of 15 scans (67%) performed to evaluate for calculi in patients with known non-calculus genitourinary tract abnormalities. Conclusions: Non-contrast thin section helical CT is a useful method to diagnose urinary tract calculi in children. Radiation dose in this retrospective study may exceed the lowest possible radiation dose for diagnostic accuracy. Further research is needed to optimize CT imaging parameters, while maintaining diagnostic accuracy and minimizing radiation dose. (orig.)

  2. Noncontrast computed tomographic Hounsfield unit evaluation of cerebral venous thrombosis: a quantitative evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Besachio, David A. [University of Utah, Department of Radiology, Salt Lake City (United States); United States Navy, Bethesda, MD (United States); Quigley, Edward P.; Shah, Lubdha M.; Salzman, Karen L. [University of Utah, Department of Radiology, Salt Lake City (United States)

    2013-08-15

    Our objective is to determine the utility of noncontrast Hounsfield unit values, Hounsfield unit values corrected for the patient's hematocrit, and venoarterial Hounsfield unit difference measurements in the identification of intracranial venous thrombosis on noncontrast head computed tomography. We retrospectively reviewed noncontrast head computed tomography exams performed in both normal patients and those with cerebral venous thrombosis, acquiring Hounsfield unit values in normal and thrombosed cerebral venous structures. Also, we acquired Hounsfield unit values in the internal carotid artery for comparison to thrombosed and nonthrombosed venous structures and compared the venous Hounsfield unit values to the patient's hematocrit. A significant difference is identified between Hounsfield unit values in thrombosed and nonthrombosed venous structures. Applying Hounsfield unit threshold values of greater than 65, a Hounsfield unit to hematocrit ratio of greater than 1.7, and venoarterial difference values greater than 15 alone and in combination, the majority of cases of venous thrombosis are identifiable on noncontrast head computed tomography. Absolute Hounsfield unit values, Hounsfield unit to hematocrit ratios, and venoarterial Hounsfield unit value differences are a useful adjunct in noncontrast head computed tomographic evaluation of cerebral venous thrombosis. (orig.)

  3. Noncontrast computed tomographic Hounsfield unit evaluation of cerebral venous thrombosis: a quantitative evaluation

    International Nuclear Information System (INIS)

    Besachio, David A.; Quigley, Edward P.; Shah, Lubdha M.; Salzman, Karen L.

    2013-01-01

    Our objective is to determine the utility of noncontrast Hounsfield unit values, Hounsfield unit values corrected for the patient's hematocrit, and venoarterial Hounsfield unit difference measurements in the identification of intracranial venous thrombosis on noncontrast head computed tomography. We retrospectively reviewed noncontrast head computed tomography exams performed in both normal patients and those with cerebral venous thrombosis, acquiring Hounsfield unit values in normal and thrombosed cerebral venous structures. Also, we acquired Hounsfield unit values in the internal carotid artery for comparison to thrombosed and nonthrombosed venous structures and compared the venous Hounsfield unit values to the patient's hematocrit. A significant difference is identified between Hounsfield unit values in thrombosed and nonthrombosed venous structures. Applying Hounsfield unit threshold values of greater than 65, a Hounsfield unit to hematocrit ratio of greater than 1.7, and venoarterial difference values greater than 15 alone and in combination, the majority of cases of venous thrombosis are identifiable on noncontrast head computed tomography. Absolute Hounsfield unit values, Hounsfield unit to hematocrit ratios, and venoarterial Hounsfield unit value differences are a useful adjunct in noncontrast head computed tomographic evaluation of cerebral venous thrombosis. (orig.)

  4. Aortic endograft surveillance: use of fast-switch kVp dual-energy computed tomography with virtual noncontrast imaging.

    Science.gov (United States)

    Maturen, Katherine E; Kleaveland, Patricia A; Kaza, Ravi K; Liu, Peter S; Quint, Leslie E; Khalatbari, Shokoufeh H; Platt, Joel F

    2011-01-01

    To assess endoleak detection and patients' radiation exposure using fast-switch peak kilovoltage (kVp) dual-energy computed tomography (DECT) with virtual noncontrast (VNC) imaging. Institutional review board approved retrospective review of triphasic CTs for endograft follow-up: single-energy true noncontrast (TNC) and dual-energy arterial- and venous-phase postcontrast scans on GE HD-750 64-detector scanners. Iodine-subtracted VNC images generated from dual-energy data. Two radiologists (VNC readers) independently performed 2 reading sessions without TNC images: (1) arterial and VNC and (2) venous and VNC. Interrater agreement, leak detection sensitivity, and dose estimates were calculated. Original dictations described 24 endoleaks in 78 scans. Virtual noncontrast reader agreement was high (κ = 0.78-0.79). Virtual noncontrast reader ranges for sensitivity and negative predictive value for leak detection were 87.5% to 95.8% and 94.0% to 98.0% in venous phase. Dose reduction estimate was 40% by eliminating one phase and 64% by eliminating 2 phases of imaging. Virtual noncontrast images from fast-switch peak kilovoltage DECT data can substitute for TNC imaging in the postendograft aorta, conferring substantial dose reduction. Eliminating 1 of 2 postcontrast phases further reduces dose, with greater negative predictive value for leak detection in the venous versus the arterial phase. Thus, the use of a monophasic venous-phase DECT with VNC images is suggested for long-term endograft surveillance in stable patients.

  5. Prediction of Clinical Outcome After Acute Ischemic Stroke: The Value of Repeated Noncontrast Computed Tomography, Computed Tomographic Angiography, and Computed Tomographic Perfusion.

    Science.gov (United States)

    Dankbaar, Jan W; Horsch, Alexander D; van den Hoven, Andor F; Kappelle, L Jaap; van der Schaaf, Irene C; van Seeters, Tom; Velthuis, Birgitta K

    2017-09-01

    Early prediction of outcome in acute ischemic stroke is important for clinical management. This study aimed to compare the relationship between early follow-up multimodality computed tomographic (CT) imaging and clinical outcome at 90 days in a large multicenter stroke study. From the DUST study (Dutch Acute Stroke Study), patients were selected with (1) anterior circulation occlusion on CT angiography (CTA) and ischemic deficit on CT perfusion (CTP) on admission, and (2) day 3 follow-up noncontrast CT, CTP, and CTA. Follow-up infarct volume on noncontrast CT, poor recanalization on CTA, and poor reperfusion on CTP (mean transit time index ≤75%) were related to unfavorable outcome after 90 days defined as modified Rankin Scale 3 to 6. Four multivariable models were constructed: (1) only baseline variables (model 1), (2) model 1 with addition of infarct volume, (3) model 1 with addition of recanalization, and (4) model 1 with addition of reperfusion. Area under the curves of the receiver operating characteristic curves of the models were compared using the DeLong test. A total of 242 patients were included. Poor recanalization was found in 21%, poor reperfusion in 37%, and unfavorable outcome in 44%. The area under the curve of the receiver operating characteristic curve without follow-up imaging was 0.81, with follow-up noncontrast CT 0.85 ( P =0.02), CTA 0.86 ( P =0.01), and CTP 0.86 ( P =0.01). All 3 follow-up imaging modalities improved outcome prediction compared with no imaging. There was no difference between the imaging models. Follow-up imaging after 3 days improves outcome prediction compared with prediction based on baseline variables alone. CTA recanalization and CTP reperfusion do not outperform noncontrast CT at this time point. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00880113. © 2017 American Heart Association, Inc.

  6. Comparison between ultrasound and noncontrast helical computed tomography for identification of acute ureterolithiasis in a teaching hospital setting

    Directory of Open Access Journals (Sweden)

    Luís Ronan Marquez Ferreira de Souza

    2007-03-01

    Full Text Available CONTEXT AND OBJECTIVE: Recent studies have shown noncontrast computed tomography (NCT to be more effective than ultrasound (US for imaging acute ureterolithiasis. However, to our knowledge, there are few studies directly comparing these techniques in an emergency teaching hospital setting. The objectives of this study were to compare the diagnostic accuracy of US and NCT performed by senior radiology residents for diagnosing acute ureterolithiasis; and to assess interobserver agreement on tomography interpretations by residents and experienced abdominal radiologists. DESIGN AND SETTING: Prospective study of 52 consecutive patients, who underwent both US and NCT within an interval of eight hours, at Hospital São Paulo. METHODS: US scans were performed by senior residents and read by experienced radiologists. NCT scan images were read by senior residents, and subsequently by three abdominal radiologists. The interobserver variability was assessed using the kappa statistic. RESULTS: Ureteral calculi were found in 40 out of 52 patients (77%. US presented sensitivity of 22% and specificity of 100%. When collecting system dilatation was associated, US demonstrated 73% sensitivity, 82% specificity. The interobserver agreement in NCT analysis was very high with regard to identification of calculi, collecting system dilatation and stranding of perinephric fat. CONCLUSIONS: US has limited value for identifying ureteral calculi in comparison with NCT, even when collecting system dilatation is present. Residents and abdominal radiologists demonstrated excellent agreement rates for ureteral calculi, identification of collecting system dilatation and stranding of perinephric fat on NCT.

  7. Dual-Energy Computed Tomography in Stroke Imaging: Technical and Clinical Considerations of Virtual Noncontrast Images for Detection of the Hyperdense Artery Sign.

    Science.gov (United States)

    Winklhofer, Sebastian; Vittoria De Martini, Ilaria; Nern, Chrisitian; Blume, Iris; Wegener, Susanne; Pangalu, Athina; Valavanis, Antonios; Alkadhi, Hatem; Guggenberger, Roman

    The technical feasibility of virtual noncontrast (VNC) images from dual-energy computed tomography (DECT) for the detection of the hyperdense artery sign (HAS) in ischemic stroke patients was investigated. True noncontrast (TNC) scans of 60 patients either with or without HAS (n = 30 each) were investigated. Clot presence and characteristics were assessed on VNC images from DECT angiography and compared with TNC images. Clot characterization included the level of confidence for diagnosing HAS, a qualitative clot burden score, and quantitative attenuation (Hounsfield unit [HU]) measurements. Sensitivity, specificity, and accuracy of VNC for diagnosing HAS were 97%, 90%, and 93%, respectively. No significant differences were found regarding the diagnostic confidence (P = 0.18) and clot burden score (P = 0.071). No significant HU differences were found among vessels with HAS in VNC (56 ± 7HU) and TNC (57 ± 8HU) (P = 0.691) images. Virtual noncontrast images derived from DECT enable an accurate detection and characterization of HAS.

  8. Clinical role of non-contrast magnetic resonance angiography for evaluation of renal artery stenosis

    International Nuclear Information System (INIS)

    Utsunomiya, Daisuke; Nomitsu, Yohei; Komeda, Yosuke; Okigawa, Takashi; Urata, Joji; Miyazaki, Mitsue; Yamashita, Yasuyuki

    2008-01-01

    The association between a gadolinium-based contrast material and nephrogenic systemic fibrosis has been discussed. The purpose of our study was to evaluate whether non-contrast enhanced magnetic resonance angiography (MRA) might provide sufficient information of renal artery stenosis. The non-contrast MRA of 26 patients with hypertension was retrospectively reviewed in the present study. The significant renal artery stenosis was visually evaluated by comparing non-contrast MRA with computed tomography or conventional angiographic finding. Difference of the intensities between the proximal and distal aorta was quantitatively evaluated. The sensitivity, specificity, positive predictive value and negative predictive value of non-contrast MRA in the evaluation of the renal artery stenosis was 78%, 91%, 64% and 96%, respectively. The distal abdominal aorta showed less signal intensity than the proximal aorta by 16.9±12.2%. Non-contrast MRA is a non-invasive and effective method that allows evaluation of the renal artery stenosis. (author)

  9. Virtual non-contrast computer tomography (CT) with spectral CT as an alternative to conventional unenhanced CT in the assessment of gastric cancer.

    Science.gov (United States)

    Tian, Shi-Feng; Liu, Ai-Lian; Wang, He-Qing; Liu, Jing-Hong; Sun, Mei-Yu; Liu, Yi-Jun

    2015-01-01

    The purpose of this study was to evaluate computed tomography (CT) virtual non-contrast (VNC) spectral imaging for gastric carcinoma. Fifty-two patients with histologically proven gastric carcinomas underwent gemstone spectral imaging (GSI) including non-contrast and contrast-enhanced hepatic arterial, portal venous, and equilibrium phase acquisitions prior to surgery. VNC arterial phase (VNCa), VNC venous phase (VNCv), and VNC equilibrium phase (VNCe) images were obtained by subtracting iodine from iodine/water images. Images were analyzed with respect to image quality, gastric carcinoma-intragastric water contrast-to-noise ratio (CNR), gastric carcinoma-perigastric fat CNR, serosal invasion, and enlarged lymph nodes around the lesions. Carcinoma-water CNR values were significantly higher in VNCa, VNCv, and VNCe images than in normal CT images (2.72, 2.60, 2.61, respectively, vs 2.35, p≤0.008). Carcinoma- perigastric fat CNR values were significantly lower in VNCa, VNCv, and VNCe images than in normal CT images (7.63, 7.49, 7.32, respectively, vs 8.48, pVNC arterial phase images may be a surrogate for conventional non-contrast CT images in gastric carcinoma evaluation.

  10. A Novel Imaging Technique (X-Map) to Identify Acute Ischemic Lesions Using Noncontrast Dual-Energy Computed Tomography.

    Science.gov (United States)

    Noguchi, Kyo; Itoh, Toshihide; Naruto, Norihito; Takashima, Shutaro; Tanaka, Kortaro; Kuroda, Satoshi

    2017-01-01

    We evaluated whether X-map, a novel imaging technique, can visualize ischemic lesions within 20 hours after the onset in patients with acute ischemic stroke, using noncontrast dual-energy computed tomography (DECT). Six patients with acute ischemic stroke were included in this study. Noncontrast head DECT scans were acquired with 2 X-ray tubes operated at 80 kV and Sn150 kV between 32 minutes and 20 hours after the onset. Using these DECT scans, the X-map was reconstructed based on 3-material decomposition and compared with a simulated standard (120 kV) computed tomography (CT) and diffusion-weighted imaging (DWI). The X-map showed more sensitivity to identify the lesions as an area of lower attenuation value than a simulated standard CT in all 6 patients. The lesions on the X-map correlated well with those on DWI. In 3 of 6 patients, the X-map detected a transient decrease in the attenuation value in the peri-infarct area within 1 day after the onset. The X-map is a powerful tool to supplement a simulated standard CT and characterize acute ischemic lesions. However, the X-map cannot replace a simulated standard CT to diagnose acute cerebral infarction. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Pulmonary artery aneurysm in Bechcet's disease: helical computed tomography study

    International Nuclear Information System (INIS)

    Munoz, J.; Caballero, P.; Olivera, M. J.; Cajal, M. L.; Caniego, J. L.

    2000-01-01

    Behcet's disease is a vasculitis of unknown etiology that affects arteries and veins of different sizes and can be associated with pulmonary artery aneurysms. We report the case of a patient with Behcet's disease and a pulmonary artery aneurysm who was studied by means of plain chest X ray, helical computed tomography and pulmonary arteriography. Helical computed tomography is a reliable technique for the diagnosis and follow-up of these patients. (Author) 9 refs

  12. Noncontrast chest computed tomography immediately after transarterial chemoembolization in patients with hepatocellular carcinoma: Clinical benefits and effect of radiation reduction on image quality in low-dose scanning

    International Nuclear Information System (INIS)

    Choi, Joon-Il; Kim, Hyun Beom; Kim, Min Ju; Lee, Jong Seok; Koh, Young Whan; An, Sang Bu; Ko, Heung-kyu; Park, Joong-Won

    2011-01-01

    Purpose: To evaluate the clinical benefits of noncontrast chest computed tomography (CT) immediately after transarterial chemoembolization in patients with hepatocellular carcinoma and to assess the effect of radiation reduction on image quality in low-dose scanning. Materials and methods: From June to October 2010, we performed standard-dose, noncontrast chest CTs immediately after transarterial chemoembolization in 160 patients and low-dose CTs in 88 patients. We reviewed the entire noncontrast chest CTs and follow-up CTs to reveal the clinical benefits of CT evaluation immediately after transarterial chemoembolization. Using two independent readers, we also retrospectively evaluated the radiation dose and image quality in terms of the image noise, contrast between the liver parenchyma and iodized oil and diagnostic acceptability for the evaluation of treatment response after transarterial chemoembolization. Results: In 5.2% of the patients, additional treatment was performed immediately after the interpretation of the noncontrast chest CT, and additional pulmonary lesions were found in 8.5% of the patients. The measured mean dose-length product for the low-dose scanning was 18.4% of that of the standard-dose scanning. The image noise was significantly higher with the low-dose scanning (p < 0.001). However, all of the low-dose CT scans were diagnostically acceptable, and the mean scores for the subjective assessments of the contrast and diagnostic acceptability showed no significant differences for either reader. Conclusion: A noncontrast chest CT immediately after transarterial chemoembolization has some clinical benefits for immediate decision making and detecting pulmonary lesions. Low-dose, noncontrast chest CTs immediately after transarterial chemoembolization consistently provide diagnostically acceptable images and information on treatment response in patients who have undergone transarterial chemoembolization.

  13. Imaging patients with renal colic: a comparative analysis of the impact of non-contrast helical computed tomography versus intravenous pyelography on the speed of patient processing in the Emergency Department.

    LENUS (Irish Health Repository)

    Quirke, M

    2012-02-01

    INTRODUCTION: Non-contrast helical CT (NHCT) became the procedure of choice for investigating Emergency Department (ED) patients presenting with suspected renal colic at Beaumont Hospital, Dublin, in 2008. The impact of NHCT on waiting times and patient management was compared with intravenous pyelography (IVP). METHODS: A retrospective, comparative cohort analysis of 95 patients who had IVP and 109 patients who had NHCT was performed. Length of ED stay from time of scan ordering to referral or discharge was analysed relative to time of day and scan result. RESULTS: Patients having NHCT who attended between 00:00-08:00 h, had a twofold longer length of stay than those who had IVP between the same hours (median 7.07 h vs 3.03 h, p=0.0294). The length of ED stay for patients attending between 08:00 and 24:00 h was similar in both groups. The presence of urolithiasis did not impact on length of stay. A significant alternate\\/incidental diagnosis was reported in 28 patients having NHCT, of which 12 were cancerous growths. CONCLUSION: NHCT allows for the detection of incidental\\/alternate diagnoses that may not be otherwise detected in patients with renal colic. Compared to IVP, NHCT has not impacted positively on the speed of patient processing in the ED under study. For patients presenting after midnight, it is associated with over a twofold longer length of stay from the time of scan ordering to referral or discharge. This leads to prolonged patient stays in the ED, and as such contributes to overcrowding.

  14. Prediction of differential creatinine clearance in chronically obstructed kidneys by non-contrast helical computerized tomography

    International Nuclear Information System (INIS)

    Ng, Cheuk Fan; Chan, L.W.; Cheng, C.W.; Yu, S.C.H.; Wong, W.S.; Wong, K.T.

    2004-01-01

    Purpose: We investigate the use of non-contrast helical computerized tomography (NCHCT) in the measurement of differential renal parenchymal volume as a surrogate for differential creatinine clearance (Cr Cl) for unilateral chronically obstructed kidney. Materials And Methods: Patients with unilateral chronically obstructed kidneys with normal contralateral kidneys were enrolled. Ultrasonography (USG) of the kidneys was first done with the cortical thickness of the site with the most renal substance in the upper pole, mid-kidney, and lower pole of both kidneys were measured, and the mean cortical thickness of each kidney was calculated. NCHCT was subsequently performed for each patient. The CT images were individually reviewed with the area of renal parenchyma measured for each kidney. Then the volume of the slices was summated to give the renal parenchymal volume of both the obstructed and normal kidneys. Finally, a percutaneous nephrostomy (PCN) was inserted to the obstructed kidney, and Cr Cl of both the obstructed kidney (PCN urine) and the normal side (voided urine) were measured two 2 after the relief of obstruction. Results: From March 1999 to February 2001, thirty patients were enrolled into the study. Ninety percent of them had ureteral calculi. The differential Cr Cl of the obstructed kidney (%CrCl) was defined as the percentage of Cr Cl of the obstructed kidney as of the total Cr Cl, measured 2 weeks after relief of obstruction. The differential renal parenchymal volume of the obstructed kidney (%CTvol) was the percentage of renal parenchymal volume as of the total parenchymal volume. The differential USG cortical thickness of the obstructed kidney (%USGcort) was the percentage of mean cortical thickness as of the total mean cortical thickness. The Pearson's correlation coefficient (r) between %CTvol and %CrCl and that between %USGcort and %CrCl were 0.756 and 0.543 respectively. The regression line was %CrCl = (1.00) x %CTvol - 14.27. The %CTvol

  15. Prediction of differential creatinine clearance in chronically obstructed kidneys by non-contrast helical computerized tomography

    Directory of Open Access Journals (Sweden)

    Ng C.F.

    2004-01-01

    Full Text Available PURPOSE: We investigate the use of non-contrast helical computerized tomography (NCHCT in the measurement of differential renal parenchymal volume as a surrogate for differential creatinine clearance (CrCl for unilateral chronically obstructed kidney. MATERIALS AND METHODS: Patients with unilateral chronically obstructed kidneys with normal contralateral kidneys were enrolled. Ultrasonography (USG of the kidneys was first done with the cortical thickness of the site with the most renal substance in the upper pole, mid-kidney, and lower pole of both kidneys were measured, and the mean cortical thickness of each kidney was calculated. NCHCT was subsequently performed for each patient. The CT images were individually reviewed with the area of renal parenchyma measured for each kidney. Then the volume of the slices was summated to give the renal parenchymal volume of both the obstructed and normal kidneys. Finally, a percutaneous nephrostomy (PCN was inserted to the obstructed kidney, and CrCl of both the obstructed kidney (PCN urine and the normal side (voided urine were measured two 2 after the relief of obstruction. RESULTS: From March 1999 to February 2001, thirty patients were enrolled into the study. Ninety percent of them had ureteral calculi. The differential CrCl of the obstructed kidney (%CrCl was defined as the percentage of CrCl of the obstructed kidney as of the total CrCl, measured 2 weeks after relief of obstruction. The differential renal parenchymal volume of the obstructed kidney (%CTvol was the percentage of renal parenchymal volume as of the total parenchymal volume. The differential USG cortical thickness of the obstructed kidney (%USGcort was the percentage of mean cortical thickness as of the total mean cortical thickness. The Pearson's correlation coefficient (r between %CTvol and %CrCl and that between %USGcort and %CrCl were 0.756 and 0.543 respectively. The regression line was %CrCl = (1.00 x %CTvol - 14.27. The %CTvol

  16. Application of computed tomography virtual noncontrast spectral imaging in evaluation of hepatic metastases: a preliminary study.

    Science.gov (United States)

    Tian, Shi-Feng; Liu, Ai-Lian; Liu, Jing-Hong; Sun, Mei-Yu; Wang, He-Qing; Liu, Yi-Jun

    2015-03-05

    The objective was to qualitatively and quantitatively evaluate hepatic metastases using computed tomography (CT) virtual noncontrast (VNC) spectral imaging in a retrospective analysis. Forty hepatic metastases patients underwent CT scans including the conventional true noncontrast (TNC) and the tri-phasic contrast-enhanced dual energy spectral scans in the hepatic arterial, portal venous, and equilibrium phases. The tri-phasic spectral CT images were used to obtain three groups of VNC images including in the arterial (VNCa), venous (VNCv), and equilibrium (VNCe) phase by the material decomposition process using water and iodine as a base material pair. The image quality and the contrast-to-noise ratio (CNR) of metastasis of the four groups were compared with ANOVA analysis. The metastasis detection rates with the four nonenhanced image groups were calculated and compared using the Chi-square test. There were no significant differences in image quality among TNC, VNCa and VNCv images (P > 0.05). The quality of VNCe images was significantly worse than that of other three groups (P 0.05). The metastasis detection rate of the four nonenhanced groups with no statistically significant difference (P > 0.05). The quality of VNCa and VNCv images is identical to that of TNC images, and the metastasis detection rate in VNC images is similar to that in TNC images. VNC images obtained from arterial phase show metastases more clearly. Thus, VNCa imaging may be a surrogate to TNC imaging in hepatic metastasis diagnosis.

  17. Application of Computed Tomography Virtual Noncontrast Spectral Imaging in Evaluation of Hepatic Metastases: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Shi-Feng Tian

    2015-01-01

    Full Text Available Objective: The objective was to qualitatively and quantitatively evaluate hepatic metastases using computed tomography (CT virtual noncontrast (VNC spectral imaging in a retrospective analysis. Methods: Forty hepatic metastases patients underwent CT scans including the conventional true noncontrast (TNC and the tri-phasic contrast-enhanced dual energy spectral scans in the hepatic arterial, portal venous, and equilibrium phases. The tri-phasic spectral CT images were used to obtain three groups of VNC images including in the arterial (VNCa, venous (VNCv, and equilibrium (VNCe phase by the material decomposition process using water and iodine as a base material pair. The image quality and the contrast-to-noise ratio (CNR of metastasis of the four groups were compared with ANOVA analysis. The metastasis detection rates with the four nonenhanced image groups were calculated and compared using the Chi-square test. Results: There were no significant differences in image quality among TNC, VNCa and VNCv images (P > 0.05. The quality of VNCe images was significantly worse than that of other three groups (P 0.05. The metastasis detection rate of the four nonenhanced groups with no statistically significant difference (P > 0.05. Conclusions: The quality of VNCa and VNCv images is identical to that of TNC images, and the metastasis detection rate in VNC images is similar to that in TNC images. VNC images obtained from arterial phase show metastases more clearly. Thus, VNCa imaging may be a surrogate to TNC imaging in hepatic metastasis diagnosis.

  18. Imaging patients with renal colic: a comparative analysis of the impact of non-contrast helical computed tomography versus intravenous pyelography on the speed of patient processing in the Emergency Department.

    LENUS (Irish Health Repository)

    Quirke, M

    2011-03-01

    Introduction Non-contrast helical CT (NHCT) became the procedure of choice for investigating Emergency Department (ED) patients presenting with suspected renal colic at Beaumont Hospital, Dublin, in 2008. The impact of NHCT on waiting times and patient management was compared with intravenous pyelography (IVP). Methods A retrospective, comparative cohort analysis of 95 patients who had IVP and 109 patients who had NHCT was performed. Length of ED stay from time of scan ordering to referral or discharge was analysed relative to time of day and scan result. Results Patients having NHCT who attended between 00:00-08:00 h, had a twofold longer length of stay than those who had IVP between the same hours (median 7.07 h vs 3.03 h, p=0.0294). The length of ED stay for patients attending between 08:00 and 24:00 h was similar in both groups. The presence of urolithiasis did not impact on length of stay. A significant alternate\\/incidental diagnosis was reported in 28 patients having NHCT, of which 12 were cancerous growths. Conclusion NHCT allows for the detection of incidental\\/alternate diagnoses that may not be otherwise detected in patients with renal colic. Compared to IVP, NHCT has not impacted positively on the speed of patient processing in the ED under study. For patients presenting after midnight, it is associated with over a twofold longer length of stay from the time of scan ordering to referral or discharge. This leads to prolonged patient stays in the ED, and as such contributes to overcrowding.

  19. Noncontrast Magnetic Resonance Lymphography.

    Science.gov (United States)

    Arrivé, Lionel; Derhy, Sarah; El Mouhadi, Sanaâ; Monnier-Cholley, Laurence; Menu, Yves; Becker, Corinne

    2016-01-01

    Different imaging techniques have been used for the investigation of the lymphatic channels and lymph glands. Noncontrast magnetic resonance (MR) lymphography has significant advantages in comparison with other imaging modalities. Noncontrast MR lymphography uses very heavily T2-weighted fast spin echo sequences which obtain a nearly complete signal loss in tissue background and specific display of lymphatic vessels with a long T2 relaxation time. The raw data can be processed with different algorithms such as maximum intensity projection algorithm to obtain an anatomic representation. Standard T2-weighted MR images easily demonstrate the location of edema. It appears as subcutaneous infiltration of soft tissue with a classical honeycomb pattern. True collection around the muscular area may be demonstrated in case of severe lymphedema. Lymph nodes may be normal in size, number, and signal intensity; in other cases, lymph nodes may be smaller in size or number of lymph nodes may be restricted. MR lymphography allows a classification of lymphedema in aplasia (no collecting vessels demonstrated); hypoplasia (a small number of lymphatic vessels), and numerical hyperplasia or hyperplasia (with an increased number of lymphatic vessels of greater and abnormal diameter). Noncontrast MR lymphography is a unique noninvasive imaging modality for the diagnosis of lymphedema. It can be used for positive diagnosis, differential diagnosis, and specific evaluation of lymphedema severity. It may also be used for follow-up evaluation after treatment. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Helical CT in evaluation of the bronchial tree

    International Nuclear Information System (INIS)

    Perhomaa, M.; Laehde, S.; Rossi, O.; Suramo, I.

    1997-01-01

    Purpose: To establish a protocol for and to assess the value of helical CT in the imaging of the bronchial tree. Material and Methods: Noncontrast helical CT was performed in 30 patients undergoing fiberoptic bronchoscopy for different reasons. Different protocols were compared; they included overlapping 10 mm, 5 mm, or 3 mm slices and non-tilted, cephalad or caudal tilted images. Ordinary cross-sectional and multiplanar 2D reformats were applied for visualization of the bronchial branches. The effect of increasing the helical pitch was tested in one patient. Results: A total of 92.1-100% of the segmental bronchi present in the helical acquisitions were identified by the different protocols. The collimation had no significant impact on the identification of the bronchial branches, but utilization of 3-mm overlapping slices made it easier to distinguish the nearby branches and provided better longitudinal visualization of the bronchi in 2D reformats. The tilted scans illustrated the disadvantage of not covering all segmental bronchi in one breath-hold. An increase of the pitch from 1 to 1.5 did not cause noticeable blurring of the images. CT and bronchoscopic findings correlated well in the area accessible to bronchoscopy, but CT detected 5 additional pathological lesions (including 2 cancers) in the peripheral lung. Conclusion: Helical CT supplemented with bronchography-like 2D reformats provides an effective method complementary to bronchoscopy in the examination of the bronchial tree. (orig.)

  1. Dual-energy CT in the assessment of mediastinal lymph nodes: Comparative study of virtual non-contrast and true non-contrast images

    International Nuclear Information System (INIS)

    Yoo, Seon Young; Kim, Yoo Kyung; Cho, Hyun Hae; Choi, Mi Joo; Shim, Sung Shine; Lee, Jeong Kyong; Baek, Seung Yon

    2013-01-01

    To evaluate the reliability of virtual non-contrast (VNC) images reconstructed from contrast-enhanced, dual-energy scans compared with true non-contrast (TNC) images in the assessment of high CT attenuation or calcification of mediastinal lymph nodes. A total of 112 mediastinal nodes from 45 patients who underwent non-contrast and dual-energy contrast-enhanced scans were analyzed. Node attenuation in TNC and VNC images was compared both objectively, using computed tomography (CT) attenuation, and subjectively, via visual scoring (0, attenuation ≤ the aorta; 1, > the aorta; 2, calcification). The relationship among attenuation difference between TNC and VNC images, CT attenuation in TNC images, and net contrast enhancement (NCE) was analyzed. CT attenuation in TNC and VNC images showed moderate agreement (intraclass correlation coefficient, 0.612). The mean absolute difference was 7.8 ± 7.6 Hounsfield unit (HU) (range, 0-36 HU), and the absolute difference was equal to or less than 10 HU in 65.2% of cases (73/112). Visual scores in TNC and VNC images showed fair agreement (κ value, 0.335). Five of 16 nodes (31.3%) which showed score 1 (n = 15) or 2 (n = 1) in TNC images demonstrated score 1 in VNC images. The TNC-VNC attenuation difference showed a moderate positive correlation with CT attenuation in TNC images (partial correlation coefficient [PCC] adjusted by NCE: 0.455) and a weak negative correlation with NCE (PCC adjusted by CT attenuation in TNC: -0.245). VNC images may be useful in the evaluation of mediastinal lymph nodes by providing additional information of high CT attenuation of nodes, although it is underestimated compared with TNC images.

  2. Dual-energy CT in the assessment of mediastinal lymph nodes: Comparative study of virtual non-contrast and true non-contrast images

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seon Young; Kim, Yoo Kyung; Cho, Hyun Hae; Choi, Mi Joo; Shim, Sung Shine; Lee, Jeong Kyong; Baek, Seung Yon [School of Medicine, Ewha Womans University, Seou (Korea, Republic of)

    2013-06-15

    To evaluate the reliability of virtual non-contrast (VNC) images reconstructed from contrast-enhanced, dual-energy scans compared with true non-contrast (TNC) images in the assessment of high CT attenuation or calcification of mediastinal lymph nodes. A total of 112 mediastinal nodes from 45 patients who underwent non-contrast and dual-energy contrast-enhanced scans were analyzed. Node attenuation in TNC and VNC images was compared both objectively, using computed tomography (CT) attenuation, and subjectively, via visual scoring (0, attenuation ≤ the aorta; 1, > the aorta; 2, calcification). The relationship among attenuation difference between TNC and VNC images, CT attenuation in TNC images, and net contrast enhancement (NCE) was analyzed. CT attenuation in TNC and VNC images showed moderate agreement (intraclass correlation coefficient, 0.612). The mean absolute difference was 7.8 ± 7.6 Hounsfield unit (HU) (range, 0-36 HU), and the absolute difference was equal to or less than 10 HU in 65.2% of cases (73/112). Visual scores in TNC and VNC images showed fair agreement (κ value, 0.335). Five of 16 nodes (31.3%) which showed score 1 (n = 15) or 2 (n = 1) in TNC images demonstrated score 1 in VNC images. The TNC-VNC attenuation difference showed a moderate positive correlation with CT attenuation in TNC images (partial correlation coefficient [PCC] adjusted by NCE: 0.455) and a weak negative correlation with NCE (PCC adjusted by CT attenuation in TNC: -0.245). VNC images may be useful in the evaluation of mediastinal lymph nodes by providing additional information of high CT attenuation of nodes, although it is underestimated compared with TNC images.

  3. Dual-energy CT in the assessment of mediastinal lymph nodes: comparative study of virtual non-contrast and true non-contrast images.

    Science.gov (United States)

    Yoo, Seon Young; Kim, Yookyung; Cho, Hyun Hae; Choi, Mi Joo; Shim, Sung Shine; Lee, Jeong Kyong; Baek, Seung Yon

    2013-01-01

    To evaluate the reliability of virtual non-contrast (VNC) images reconstructed from contrast-enhanced, dual-energy scans compared with true non-contrast (TNC) images in the assessment of high CT attenuation or calcification of mediastinal lymph nodes. A total of 112 mediastinal nodes from 45 patients who underwent non-contrast and dual-energy contrast-enhanced scans were analyzed. Node attenuation in TNC and VNC images was compared both objectively, using computed tomography (CT) attenuation, and subjectively, via visual scoring (0, attenuation ≤ the aorta; 1, > the aorta; 2, calcification). The relationship among attenuation difference between TNC and VNC images, CT attenuation in TNC images, and net contrast enhancement (NCE) was analyzed. CT attenuation in TNC and VNC images showed moderate agreement (intraclass correlation coefficient, 0.612). The mean absolute difference was 7.8 ± 7.6 Hounsfield unit (HU) (range, 0-36 HU), and the absolute difference was equal to or less than 10 HU in 65.2% of cases (73/112). Visual scores in TNC and VNC images showed fair agreement (κ value, 0.335). Five of 16 nodes (31.3%) which showed score 1 (n = 15) or 2 (n = 1) in TNC images demonstrated score 1 in VNC images. The TNC-VNC attenuation difference showed a moderate positive correlation with CT attenuation in TNC images (partial correlation coefficient [PCC] adjusted by NCE: 0.455) and a weak negative correlation with NCE (PCC adjusted by CT attenuation in TNC: -0.245). VNC images may be useful in the evaluation of mediastinal lymph nodes by providing additional information of high CT attenuation of nodes, although it is underestimated compared with TNC images.

  4. Single-energy non-contrast hepatic steatosis criteria applied to virtual non-contrast images: is it still highly specific and positively predictive?

    Science.gov (United States)

    Haji-Momenian, S; Parkinson, W; Khati, N; Brindle, K; Earls, J; Zeman, R K

    2018-06-01

    To determine the sensitivity, specificity, and predictive values of single-energy non-contrast hepatic steatosis criteria on dual-energy virtual non-contrast (VNC) images. Forty-eight computed tomography (CT) examinations, which included single-energy non-contrast (TNC) and contrast-enhanced dual-energy CT angiography (CTA) of the abdomen, were enrolled. VNC images were reconstructed from the CTA. Region of interest (ROI) attenuations were measured in the right and left hepatic lobes, spleen, and aorta on TNC and VNC images. The right and left hepatic lobes were treated as separate samples. Steatosis was diagnosed based on TNC liver attenuation of ≤40 HU or liver attenuation index (LAI) of ≤-10 HU, which are extremely specific and predictive for moderate to severe steatosis. The sensitivity, specificity, and predictive values of VNC images for steatosis were calculated. VNC-TNC deviations were correlated with aortic enhancement and patient water equivalent diameter (PWED). Thirty-two liver ROIs met steatosis criteria based on TNC attenuation; VNC attenuation had sensitivity, specificity, and a positive predictive value of 66.7%, 100%, and 100%, respectively. Twenty-one liver ROIs met steatosis criteria based on TNC LAI. VNC LAI had sensitivity, specificity, and positive predictive values of 61.9%, 90.7%, and 65%, respectively. Hepatic and splenic VNC-TNC deviations did not correlate with one another (R 2 =0.08), aortic enhancement (R 2 predictive for moderate to severe steatosis on VNC reconstructions from the arterial phase. Hepatic attenuation performs better than LAI criteria. VNC deviations are independent of aortic enhancement and PWED. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  5. Impact of polychromatic x-ray sources on helical, cone-beam computed tomography and dual-energy methods

    International Nuclear Information System (INIS)

    Sidky, Emil Y; Zou Yu; Pan Xiaochuan

    2004-01-01

    Recently, there has been much work devoted to developing accurate and efficient algorithms for image reconstruction in helical, cone-beam computed tomography (CT). Little attention, however, has been directed to the effect of physical factors on helical, cone-beam CT image reconstruction. This work investigates the effect of polychromatic x-rays on image reconstruction in helical, cone-beam computed tomography. A pre-reconstruction dual-energy technique is developed to reduce beam-hardening artefacts and enhance contrast in soft tissue

  6. Sensitivity of Non-Contrast Computed Tomography for Small Renal Calculi with Endoscopy as the Gold Standard.

    Science.gov (United States)

    Bhojani, Naeem; Paonessa, Jessica E; El Tayeb, Marawan M; Williams, James C; Hameed, Tariq A; Lingeman, James E

    2018-04-03

    To compare the sensitivity of non-contrast CT to endoscopy for detection of renal calculi. Imaging modalities for detection of nephrolithiasis have centered on abdominal x-ray (KUB), ultrasound (US), and non-contrast computed tomography (CT). Sensitivities of 58-62% (KUB), 45% (US), and 95-100% (CT) have been previously reported. However, these results have never been correlated with endoscopic findings. Idiopathic calcium oxalate stone formers with symptomatic calculi requiring ureteroscopy (URS) were studied. At the time of surgery, the number and location of all calculi within the kidney were recorded followed by basket retrieval. Each calculus was measured and sent for micro CT and infrared spectrophotometry. All CT scans were reviewed by the same genitourinary radiologist who was blinded to the endoscopic findings. The radiologist reported on the number, location, and size of each calculus. 18 renal units were studied in 11 patients. Average time from CT scan to URS was 28.6 days. The mean number of calculi identified per kidney was 9.2±6.1 for endoscopy and 5.9±4.1 for CT (p<0.004). The mean size of total renal calculi (sum of longest stone diameters) per kidney was 22.4±17.1 mm and 18.2±13.2 mm for endoscopy and CT, respectively (p=0.06). CT scan underreports the number of renal calculi, probably missing some small stones and unable to distinguish those lying in close proximity to one another. However, the total stone burden seen by CT is, on average, accurate when compared to that found on endoscopic examination. Copyright © 2018. Published by Elsevier Inc.

  7. Measurement of left atrial volume by 2D and 3D non-contrast computed tomography compared with cardiac magnetic resonance imaging

    DEFF Research Database (Denmark)

    Fredgart, Maise Høigaard; Carter-Storch, Rasmus; Møller, Jacob Eifer

    2018-01-01

    Background: Cardiac magnetic resonance imaging (MRI) is considered the gold standard for assessment of left atrial (LA) volume. We assessed the feasibility of evaluating LA volume using 3D non-contrast computed tomography (NCCT). Furthermore, since manual tracing of LA volume is time consuming, we...... evaluated the accuracy of the LA area using 2D NCCT imaging for LA volume assessment. Methods: MRI and NCCT imaging were performed in 69 patients before and one year after aortic valve replacement. In 3D MRI and 3D NCCT, each slice was manually traced, excluding the pulmonary veins and atrial appendage...

  8. Rapid non-contrast magnetic resonance imaging for post appendectomy intra-abdominal abscess in children

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Megan H. [Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Eutsler, Eric P.; Khanna, Geetika [Washington University School of Medicine in St. Louis, Pediatric Radiology, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Sheybani, Elizabeth F. [Mercy Hospital St. Louis, Department of Radiology, St. Louis, MO (United States)

    2017-07-15

    Acute appendicitis, especially if perforated at presentation, is often complicated by postoperative abscess formation. The detection of a postoperative abscess relies primarily on imaging. This has traditionally been done with contrast-enhanced computed tomography. Non-contrast magnetic resonance imaging (MRI) has the potential to accurately detect intra-abdominal abscesses, especially with the use of diffusion-weighted imaging (DWI). To evaluate our single-center experience with a rapid non-contrast MRI protocol evaluating post-appendectomy abscesses in children with persistent postsurgical symptoms. In this retrospective, institutional review board-approved study, all patients underwent a clinically indicated non-contrast 1.5- or 3-Tesla abdomen/pelvis MRI consisting of single-shot fast spin echo, inversion recovery and DWI sequences. All MRI studies were reviewed by two blinded pediatric radiologists to identify the presence of a drainable fluid collection. Each fluid collection was further characterized as accessible or not accessible for percutaneous or transrectal drainage. Imaging findings were compared to clinical outcome. Seven of the 15 patients had a clinically significant fluid collection, and 5 of these patients were treated with percutaneous drain placement or exploratory laparotomy. The other patients had a phlegmon or a clinically insignificant fluid collection and were discharged home within 48 h. Rapid non-contrast MRI utilizing fluid-sensitive and DWI sequences can be used to identify drainable fluid collections in post-appendectomy patients. This protocol can be used to triage patients between conservative management vs. abscess drainage without oral/intravenous contrast or exposure to ionizing radiation. (orig.)

  9. Rapid non-contrast magnetic resonance imaging for post appendectomy intra-abdominal abscess in children

    International Nuclear Information System (INIS)

    Lee, Megan H.; Eutsler, Eric P.; Khanna, Geetika; Sheybani, Elizabeth F.

    2017-01-01

    Acute appendicitis, especially if perforated at presentation, is often complicated by postoperative abscess formation. The detection of a postoperative abscess relies primarily on imaging. This has traditionally been done with contrast-enhanced computed tomography. Non-contrast magnetic resonance imaging (MRI) has the potential to accurately detect intra-abdominal abscesses, especially with the use of diffusion-weighted imaging (DWI). To evaluate our single-center experience with a rapid non-contrast MRI protocol evaluating post-appendectomy abscesses in children with persistent postsurgical symptoms. In this retrospective, institutional review board-approved study, all patients underwent a clinically indicated non-contrast 1.5- or 3-Tesla abdomen/pelvis MRI consisting of single-shot fast spin echo, inversion recovery and DWI sequences. All MRI studies were reviewed by two blinded pediatric radiologists to identify the presence of a drainable fluid collection. Each fluid collection was further characterized as accessible or not accessible for percutaneous or transrectal drainage. Imaging findings were compared to clinical outcome. Seven of the 15 patients had a clinically significant fluid collection, and 5 of these patients were treated with percutaneous drain placement or exploratory laparotomy. The other patients had a phlegmon or a clinically insignificant fluid collection and were discharged home within 48 h. Rapid non-contrast MRI utilizing fluid-sensitive and DWI sequences can be used to identify drainable fluid collections in post-appendectomy patients. This protocol can be used to triage patients between conservative management vs. abscess drainage without oral/intravenous contrast or exposure to ionizing radiation. (orig.)

  10. ALOHA: Automatic libraries of helicity amplitudes for Feynman diagram computations

    Science.gov (United States)

    de Aquino, Priscila; Link, William; Maltoni, Fabio; Mattelaer, Olivier; Stelzer, Tim

    2012-10-01

    We present an application that automatically writes the HELAS (HELicity Amplitude Subroutines) library corresponding to the Feynman rules of any quantum field theory Lagrangian. The code is written in Python and takes the Universal FeynRules Output (UFO) as an input. From this input it produces the complete set of routines, wave-functions and amplitudes, that are needed for the computation of Feynman diagrams at leading as well as at higher orders. The representation is language independent and currently it can output routines in Fortran, C++, and Python. A few sample applications implemented in the MADGRAPH 5 framework are presented. Program summary Program title: ALOHA Catalogue identifier: AEMS_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: http://www.opensource.org/licenses/UoI-NCSA.php No. of lines in distributed program, including test data, etc.: 6094320 No. of bytes in distributed program, including test data, etc.: 7479819 Distribution format: tar.gz Programming language: Python2.6 Computer: 32/64 bit Operating system: Linux/Mac/Windows RAM: 512 Mbytes Classification: 4.4, 11.6 Nature of problem: An effcient numerical evaluation of a squared matrix element can be done with the help of the helicity routines implemented in the HELAS library [1]. This static library contains a limited number of helicity functions and is therefore not always able to provide the needed routine in the presence of an arbitrary interaction. This program provides a way to automatically create the corresponding routines for any given model. Solution method: ALOHA takes the Feynman rules associated to the vertex obtained from the model information (in the UFO format [2]), and multiplies it by the different wavefunctions or propagators. As a result the analytical expression of the helicity routines is obtained. Subsequently, this expression is

  11. Incidental Findings in Abdominal Dual-Energy Computed Tomography: Correlation Between True Noncontrast and Virtual Noncontrast Images Considering Renal and Liver Cysts and Adrenal Masses.

    Science.gov (United States)

    Slebocki, Karin; Kraus, Bastian; Chang, De-Hua; Hellmich, Martin; Maintz, David; Bangard, Christopher

    To assess correlation between attenuation measurements of incidental findings in abdominal second generation dual-energy computed tomography (CT) on true noncontrast (TNC) and virtual noncontrast (VNC) images. Sixty-three patients underwent arterial dual-energy CT (Somatom Definition Flash, Siemens; pitch factor, 0.75-1.0; gantry rotation time, 0.28 seconds) after endovascular aneurysm repair, consisting of a TNC single energy CT scan (collimation, 128 × 0.6 mm; 120 kVp) and a dual-energy arterial phase scan (collimation, 32 × 0.6 mm, 140 and 100 kVp; blended, 120 kVp data set). Attenuation measurements in Hounsfield units (HU) of liver parenchyma and incidental findings like renal and hepatic cysts and adrenal masses on TNC and VNC images were done by drawing regions of interest. Statistical analysis was performed by paired t test and Pearson correlation. Incidental findings were detected in 56 (89%) patients. There was excellent correlation for both renal (n = 40) and hepatic cysts (n = 12) as well as adrenal masses (n = 6) with a Pearson correlation of 0.896, 0.800, and 0.945, respectively, and mean attenuation values on TNC and VNC images of 10.6 HU ± 12.8 versus 5.1 HU ± 17.5 (attenuation value range from -8.8 to 59.1 HU vs -11.8 to 73.4 HU), 6.4 HU ± 5.8 versus 6.3 HU ± 4.6 (attenuation value range from 2.0 to 16.2 HU vs -3.0 to 15.9 HU), and 12.8 HU ± 11.2 versus 12.4 HU ± 10.2 (attenuation value range from -2.3 to 27.5 HU vs -2.2 to 23.6 HU), respectively. As proof of principle, liver parenchyma measurements also showed excellent correlation between TNC and VNC (n = 40) images with a Pearson correlation of 0.839 and mean attenuation values on TNC and VNC images of 47.2 HU ± 10.5 versus 43.8 HU ± 8.7 (attenuation value range from 21.9 to 60.2 HU vs 4.5 to 65.3 HU). In conclusion, attenuation measurements of incidental findings like renal cysts or adrenal masses on TNC and VNC images derived from second generation dual-energy CT scans show excellent

  12. Intravenous digital subtraction angiography and helical computed tomography in evaluation of living renal donors

    International Nuclear Information System (INIS)

    Watarai, Yoshihiko; Usuki, Tomoaki; Takeuchi, Ichiro; Nonomura, Katsuya; Koyanagi, Tomohiko; Kubo, Kozo; Hirano, Tetsuo; Togashi, Masaki; Ohashi, Nobuo

    2001-01-01

    The present study was carried out to evaluate the accuracy of helical computed tomography (CT) and intravenous digital subtraction angiography (IV-DSA) on anatomical assessment of renal vasculature for living renal donors. Forty-two healthy potential renal donors were prospectively evaluated and 35 subsequently underwent donor nephrectomy after helical CT and IV-DSA evaluation. The vascular and non-vascular findings were compared between the findings on helical CT, IV-DSA and surgery. Ten prehilar branches and five accessory renal arteries were found at nephrectomy. Overall, operative findings agreed with the findings by IV-DSA in 89% and by helical CT in 83%. In delineating accessory arteries, IV-DSA had a sensitivity of 60% and specificity of 97%, whereas helical CT had a sensitivity of 40% and specificity of 100%. In delineating prehilar branches, IV-DSA had a sensitivity of 90% and specificity of 100%, whereas helical CT had a sensitivity of 70% and specificity of 100%. Accessory arteries and prehilar branches that were not detected by helical CT or IV-DSA, were less than 2 mm in diameter and did not require vascular reconstruction. Renal veins were delineated in 63% by IV-DSA, whereas they were clearly imaged by helical CT in all cases, including a case with a circumaortic renal vein. Non-vascular findings were obtained in 64% by helical CT, including two renal tumors. None of these findings were obtained by IV-DSA. Helical CT and IV-DSA provide comparably sufficient information on renal artery vasculature. However, helical CT provides significantly more information on venous and non-vascular findings as a single-imaging modality. (author)

  13. Helical computed tomography and the workstation: introduction to a symbiosis

    International Nuclear Information System (INIS)

    Garcia-Santos, J.M.

    1997-01-01

    We do a brief introduction to the possibilities of an helical computed tomography system when it is associated with a powerful workstation. The fast and volumetric way of acquisition constitutes, basically, the main advantage of this sort of computed tomography. The anatomical and radio pathological study, in a workstation, of the acquired information (thanks to multiplanar and 3D reconstruction), increases significantly our capacity of analysis in each patient. Only the clinical and radiological experience will tell us which is the right place that this symbiosis occupies within our diagnosis tools. (Author) 11 refs

  14. Automated detection of acute haemorrhagic stroke in non-contrasted CT images

    International Nuclear Information System (INIS)

    Meetz, K.; Buelow, T.

    2007-01-01

    An efficient treatment of stroke patients implies a profound differential diagnosis that includes the detection of acute haematoma. The proposed approach provides an automated detection of acute haematoma, assisting the non-stroke expert in interpreting non-contrasted CT images. It consists of two steps: First, haematoma candidates are detected applying multilevel region growing approach based on a typical grey value characteristic. Second, true haematomas are differentiated from partial volume artefacts, relying on spatial features derived from distance-based histograms. This approach achieves a specificity of 77% and a sensitivity of 89.7% in detecting acute haematoma in non-contrasted CT images when applied to a set of 25 non-contrasted CT images. (orig.)

  15. Non-contrast MRI perfusion angiosome in diabetic feet

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jie [Cardiovascular Imaging Lab, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Hastings, Mary K.; Mueller, Michael J. [Washington University School of Medicine, The Program in Physical Therapy, St. Louis, MO (United States); Muccigross, David; Hildebolt, Charles F. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Fan, Zhaoyang [Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA (United States); Gao, Fabao [West China Hospital, Sichuan University, Department of Radiology, Chengdu (China); Curci, John [Washington University School of Medicine, The Department of Surgery, St. Louis, MO (United States)

    2015-01-15

    The purpose of this study is to develop a non-contrast magnetic resonance imaging (MRI) approach to evaluate skeletal muscle perfusion in the diabetic foot based on the concept of angiosomes of the foot. Five healthy volunteers and five participants with diabetes (HbA1c = 7.2 ± 1.8 %) without a history of peripheral artery disease were examined. The non-contrast perfusion measurements were performed during a toe flexion challenge. Absolute perfusion maps were created and two regions (medial and lateral) on the maps were segmented based on angiosomes. Regional difference in the perfusion of foot muscle was readily visualized in the MRI perfusion angiosomes during the challenge. In the participants with diabetes, the perfusion during toe flexion challenge was significantly lower than in healthy volunteers (P < 0.01). The average perfusion for the medial plantar region of the right foot was lower in subjects with diabetes (38 ± 9 ml/min/100 g) than in healthy subjects (93 ± 33 ml/min/100 g). Non-contrast MRI perfusion angiosome maps demonstrate the feasibility of determining regional perfusion in foot muscles during toe challenge and may facilitate evaluation of muscle perfusion in diabetic feet. (orig.)

  16. Non-contrast MRI perfusion angiosome in diabetic feet

    International Nuclear Information System (INIS)

    Zheng, Jie; Hastings, Mary K.; Mueller, Michael J.; Muccigross, David; Hildebolt, Charles F.; Fan, Zhaoyang; Gao, Fabao; Curci, John

    2015-01-01

    The purpose of this study is to develop a non-contrast magnetic resonance imaging (MRI) approach to evaluate skeletal muscle perfusion in the diabetic foot based on the concept of angiosomes of the foot. Five healthy volunteers and five participants with diabetes (HbA1c = 7.2 ± 1.8 %) without a history of peripheral artery disease were examined. The non-contrast perfusion measurements were performed during a toe flexion challenge. Absolute perfusion maps were created and two regions (medial and lateral) on the maps were segmented based on angiosomes. Regional difference in the perfusion of foot muscle was readily visualized in the MRI perfusion angiosomes during the challenge. In the participants with diabetes, the perfusion during toe flexion challenge was significantly lower than in healthy volunteers (P < 0.01). The average perfusion for the medial plantar region of the right foot was lower in subjects with diabetes (38 ± 9 ml/min/100 g) than in healthy subjects (93 ± 33 ml/min/100 g). Non-contrast MRI perfusion angiosome maps demonstrate the feasibility of determining regional perfusion in foot muscles during toe challenge and may facilitate evaluation of muscle perfusion in diabetic feet. (orig.)

  17. Toward the automatic detection of coronary artery calcification in non-contrast computed tomography data.

    Science.gov (United States)

    Brunner, Gerd; Chittajallu, Deepak R; Kurkure, Uday; Kakadiaris, Ioannis A

    2010-10-01

    Measurements related to coronary artery calcification (CAC) offer significant predictive value for coronary artery disease (CAD). In current medical practice CAC scoring is a labor-intensive task. The objective of this paper is the development and evaluation of a family of coronary artery region (CAR) models applied to the detection of CACs in coronary artery zones and sections. Thirty patients underwent non-contrast electron-beam computed tomography scanning. Coronary artery trajectory points as presented in the University of Houston heart-centered coordinate system were utilized to construct the CAR models which automatically detect coronary artery zones and sections. On a per-patient and per-zone basis the proposed CAR models detected CACs with a sensitivity, specificity and accuracy of 85.56 (± 15.80)%, 93.54 (± 1.98)%, and 85.27 (± 14.67)%, respectively while the corresponding values in the zones and segments based case were 77.94 (± 7.78)%, 96.57 (± 4.90)%, and 73.58 (± 8.96)%, respectively. The results of this study suggest that the family of CAR models provide an effective method to detect different regions of the coronaries. Further, the CAR classifiers are able to detect CACs with a mean sensitivity and specificity of 86.33 and 93.78%, respectively.

  18. Attenuation values of renal parenchyma in virtual noncontrast images acquired from multiphase renal dual-energy CT: Comparison with standard noncontrast CT.

    Science.gov (United States)

    Lin, Yuan-Mao; Chiou, Yi-You; Wu, Mei-Han; Huang, Shan-Su; Shen, Shu-Huei

    2018-04-01

    To compare the renal parenchyma attenuation of virtual noncontrast (VNC) images derived from multiphase renal dual-energy computed tomography (DECT) with standard noncontrast (SNC) images, and to determine the optimum phase for VNC images. Twenty-nine men and 16 women (mean age, 61 ± 13 years; range, 37-89 years) underwent dynamic renal DECT (100/Sn140 kVp) were included in this institutional review board-approved retrospective study. There were four phases of the scan, which included noncontrast, corticomedullary (CMP), nephrographic (NP), and excretory phases (EP). The VNC images was generated from CMP, NP and EP. CT numbers of SNC images and VNC images of each phases were measured in the renal cortex and medulla. Mean standard deviation of subcutaneous fat was measured as image noise on SNC and VNC images. Radiation dose was recorded and potential radiation dose reduction was estimated. Results were tested for statistical significance using the unpaired t-test and agreement using Bland-Altman plot analysis. The difference in mean attenuation between SNC and each phase of VNC images were ≤4 HU. The mean attenuation of renal cortex and medulla was 33.2 ± 4.4 HU, and 34.2 ± 4.8 HU in SNC, 33.6 ± 7.6 HU and 31.1 ± 8.3 HU in VNC of CMP, 34.8 ± 8.6 HU and 35.6 ± 8.5 HU in VNC of NP, 31.5 ± 7.6 HU and 32.4 ± 7.5 HU in VNC of EP. In VNC of CMP, the attenuation of the cortex was higher than the medulla (p VNC of NP, the attenuation of renal cortex was higher than SNC (p VNC of EP, the attenuation of cortex and medulla were lower than SNC (p VNC images from multiphase renal DECT were similar to SNC images. Using the nephrographic phase can gives more comparable VNC images to SNC images in renal parenchyma than other phases. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The bases for the use of interpolation in helical computed tomography: an explanation for radiologists

    International Nuclear Information System (INIS)

    Garcia-Santos, J. M.; Cejudo, J.

    2002-01-01

    In contrast to conventional computed tomography (CT), helical CT requires the application of interpolators to achieve image reconstruction. This is because the projections processed by the computer are not situated in the same plane. Since the introduction of helical CT. a number of interpolators have been designed in the attempt to maintain the thickness of the reconstructed section as close as possible to the thickness of the X-ray beam. The purpose of this article is to discuss the function of these interpolators, stressing the advantages and considering the possible inconveniences of high-grade curved interpolators with respect to standard linear interpolators. (Author) 7 refs

  20. Rotator cuff tears noncontrast MRI compared to MR arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hyun; Yoon, Young Cheol [Sungkyunkwan University, School of Medicine, Department of Radiology, Samsung Medical Center, Gangnam-gu, Seoul (Korea, Republic of); Jung, Jee Young [Chungang University School of Medicine, Department of Radiology, Chungang University Hospital, Seoul (Korea, Republic of); Yoo, Jae Chul [Sungkyunkwan University, School of Medicine, Department of Orthopedic Surgery, Samsung Medical Center, Seoul (Korea, Republic of)

    2015-12-15

    To compare the accuracy of indirect magnetic resonance arthrography and noncontrast magnetic resonance imaging for diagnosing rotator cuff tears. In total, 333 patients who underwent noncontrast magnetic resonance imaging or indirect magnetic resonance arthrography were included retrospectively. Two musculoskeletal radiologists evaluated the images for the presence of supraspinatus-infraspinatus and subscapularis tendon tears. The overall diagnostic performance was calculated using the arthroscopic findings as the reference standard. Statistical differences between the diagnostic performances of the two methods were analyzed. Ninety-six and 237 patients who underwent noncontrast magnetic resonance imaging and indirect magnetic resonance arthrography were assigned into groups A and B, respectively. Sensitivity for diagnosing articular-surface partial-thickness supraspinatus-infraspinatus tendon tear was slightly higher in group B than in group A. Statistical significance was confirmed by multivariate analysis using the generalized estimating equation (p = 0.046). The specificity for diagnosing subscapularis tendon tear (85 % vs. 68 %, p = 0.012) and grading accuracy (57 % vs. 40 %, p = 0.005) was higher in group B than in group A; the differences were statistically significant for one out of two readers. Univariate analysis using the generalized estimating equation showed that the accuracy for diagnosing subscapularis tendon tear in group B was higher than in group A (p = 0.042). There were no statistically significant differences between the diagnostic performances of both methods for any other parameters. Indirect magnetic resonance arthrography may facilitate more accurate diagnosis and grading of subscapularis tendon tears compared with noncontrast magnetic resonance imaging. (orig.)

  1. Rotator cuff tears noncontrast MRI compared to MR arthrography

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Yoon, Young Cheol; Jung, Jee Young; Yoo, Jae Chul

    2015-01-01

    To compare the accuracy of indirect magnetic resonance arthrography and noncontrast magnetic resonance imaging for diagnosing rotator cuff tears. In total, 333 patients who underwent noncontrast magnetic resonance imaging or indirect magnetic resonance arthrography were included retrospectively. Two musculoskeletal radiologists evaluated the images for the presence of supraspinatus-infraspinatus and subscapularis tendon tears. The overall diagnostic performance was calculated using the arthroscopic findings as the reference standard. Statistical differences between the diagnostic performances of the two methods were analyzed. Ninety-six and 237 patients who underwent noncontrast magnetic resonance imaging and indirect magnetic resonance arthrography were assigned into groups A and B, respectively. Sensitivity for diagnosing articular-surface partial-thickness supraspinatus-infraspinatus tendon tear was slightly higher in group B than in group A. Statistical significance was confirmed by multivariate analysis using the generalized estimating equation (p = 0.046). The specificity for diagnosing subscapularis tendon tear (85 % vs. 68 %, p = 0.012) and grading accuracy (57 % vs. 40 %, p = 0.005) was higher in group B than in group A; the differences were statistically significant for one out of two readers. Univariate analysis using the generalized estimating equation showed that the accuracy for diagnosing subscapularis tendon tear in group B was higher than in group A (p = 0.042). There were no statistically significant differences between the diagnostic performances of both methods for any other parameters. Indirect magnetic resonance arthrography may facilitate more accurate diagnosis and grading of subscapularis tendon tears compared with noncontrast magnetic resonance imaging. (orig.)

  2. Comparison of helical computed tomography and ultrasonography in diagnosis of acute appendicitis

    International Nuclear Information System (INIS)

    Nafees, M.; Abbas, G.; Sarwar, S.

    2010-01-01

    The objective of study is to compare the diagnostic accuracy of helical computed tomography and ultrasonography in acute appendicitis using histopathology as gold standard. Thirty cases of clinically suspected acute appendicitis were included in the study selected on non probability convenience sampling technique. Computed tomography and graded compression ultrasonography of right lower quadrant of abdomen were conducted and results compared with histopathological findings. Amongst 30 patients who underwent computed tomography and graded compression ultrasonography examinations of right lower quadrant for diagnosis of acute appendicitis, on computed tomography 19 were diagnosed with acute appendicitis, 10 were diagnosed as not having the disease and 01 patient diagnosed as not having appendicitis on computed tomography did not improve clinically, was operated upon and histopathology proved it as acute appendicitis. While on graded compression ultrasonography 15 were diagnosed with acute appendicitis, 11 were diagnosed as not having the disease and 04 patients diagnosed as not having appendicitis on ultrasonography, did not improve clinically, were operated upon and histopathology proved it as acute appendicitis. This showed that CT scan has sensitivity of 95%, specificity 100%, positive predictive value 100%, negative predictive value 90.91% and overall accuracy of 96.67% while ultrasonography has sensitivity of 78.9%, specificity 100%, positive predictive value 100%, negative predictive value 73.33% and overall accuracy of 86.67%. We concluded that Helical computed tomography is highly accurate in diagnosing acute appendicitis as compared to ultrasonography and it helps to reduce negative appendectomy rate. (author)

  3. Virtual Non-Contrast CT Using Dual-Energy Spectral CT: Feasibility of Coronary Artery Calcium Scoring

    OpenAIRE

    Song, Inyoung; Yi, Jeong Geun; Park, Jeong Hee; Kim, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin

    2016-01-01

    Objective To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. Materials and Methods This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated V...

  4. Apneic oxygenation for elimination of respiratory motion artefact in an intubated patient undergoing helical chest computed tomography angiography.

    Directory of Open Access Journals (Sweden)

    Ioannis Pneumatikos

    2008-10-01

    Full Text Available Respiratory motion artifact in intubated and mechanically ventilated patients often reduces the quality of helical computed tomography pulmonary angiography (CTPA. Apneic oxygenation is a well established intra-operative technique that allows adequate oxygenation for short periods (up to 10 min in sedated and paralyzed patients. We describe the use of the apneic oxygenation for elimination of respiratory motion artefact in an intubated patient undergoing helical chest computed tomography angiography.

  5. Fourier-based approach to interpolation in single-slice helical computed tomography

    International Nuclear Information System (INIS)

    La Riviere, Patrick J.; Pan Xiaochuan

    2001-01-01

    It has recently been shown that longitudinal aliasing can be a significant and detrimental presence in reconstructed single-slice helical computed tomography (CT) volumes. This aliasing arises because the directly measured data in helical CT are generally undersampled by a factor of at least 2 in the longitudinal direction and because the exploitation of the redundancy of fanbeam data acquired over 360 degree sign to generate additional longitudinal samples does not automatically eliminate the aliasing. In this paper we demonstrate that for pitches near 1 or lower, the redundant fanbeam data, when used properly, can provide sufficient information to satisfy a generalized sampling theorem and thus to eliminate aliasing. We develop and evaluate a Fourier-based algorithm, called 180FT, that accomplishes this. As background we present a second Fourier-based approach, called 360FT, that makes use only of the directly measured data. Both Fourier-based approaches exploit the fast Fourier transform and the Fourier shift theorem to generate from the helical projection data a set of fanbeam sinograms corresponding to equispaced transverse slices. Slice-by-slice reconstruction is then performed by use of two-dimensional fanbeam algorithms. The proposed approaches are compared to their counterparts based on the use of linear interpolation - the 360LI and 180LI approaches. The aliasing suppression property of the 180FT approach is a clear advantage of the approach and represents a step toward the desirable goal of achieving uniform longitudinal resolution properties in reconstructed helical CT volumes

  6. Automatic coronary calcium scoring using noncontrast and contrast CT images

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guanyu, E-mail: yang.list@seu.edu.cn; Chen, Yang; Shu, Huazhong [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Ning, Xiufang; Sun, Qiaoyu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Coatrieux, Jean-Louis [INSERM-U1099, Rennes F-35000 (France); Labotatoire Traitement du Signal et de l’Image (LTSI), Université de Rennes 1, Campus de Beaulieu, Bat. 22, Rennes 35042 Cedex (France); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China)

    2016-05-15

    Purpose: Calcium scoring is widely used to assess the risk of coronary heart disease (CHD). Accurate coronary artery calcification detection in noncontrast CT image is a prerequisite step for coronary calcium scoring. Currently, calcified lesions in the coronary arteries are manually identified by radiologists in clinical practice. Thus, in this paper, a fully automatic calcium scoring method was developed to alleviate the work load of the radiologists or cardiologists. Methods: The challenge of automatic coronary calcification detection is to discriminate the calcification in the coronary arteries from the calcification in the other tissues. Since the anatomy of coronary arteries is difficult to be observed in the noncontrast CT images, the contrast CT image of the same patient is used to extract the regions of the aorta, heart, and coronary arteries. Then, a patient-specific region-of-interest (ROI) is generated in the noncontrast CT image according to the segmentation results in the contrast CT image. This patient-specific ROI focuses on the regions in the neighborhood of coronary arteries for calcification detection, which can eliminate the calcifications in the surrounding tissues. A support vector machine classifier is applied finally to refine the results by removing possible image noise. Furthermore, the calcified lesions in the noncontrast images belonging to the different main coronary arteries are identified automatically using the labeling results of the extracted coronary arteries. Results: Forty datasets from four different CT machine vendors were used to evaluate their algorithm, which were provided by the MICCAI 2014 Coronary Calcium Scoring (orCaScore) Challenge. The sensitivity and positive predictive value for the volume of detected calcifications are 0.989 and 0.948. Only one patient out of 40 patients had been assigned to the wrong risk category defined according to Agatston scores (0, 1–100, 101–300, >300) by comparing with the ground

  7. Computer-aided diagnosis workstation and database system for chest diagnosis based on multi-helical CT images

    Science.gov (United States)

    Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru; Sasagawa, Michizou

    2006-03-01

    Multi-helical CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system. The results of this study indicate that our computer-aided diagnosis workstation and network system can increase diagnostic speed, diagnostic accuracy and safety of medical information.

  8. Computational Prediction of Atomic Structures of Helical Membrane Proteins Aided by EM Maps

    Science.gov (United States)

    Kovacs, Julio A.; Yeager, Mark; Abagyan, Ruben

    2007-01-01

    Integral membrane proteins pose a major challenge for protein-structure prediction because only ≈100 high-resolution structures are available currently, thereby impeding the development of rules or empirical potentials to predict the packing of transmembrane α-helices. However, when an intermediate-resolution electron microscopy (EM) map is available, it can be used to provide restraints which, in combination with a suitable computational protocol, make structure prediction feasible. In this work we present such a protocol, which proceeds in three stages: 1), generation of an ensemble of α-helices by flexible fitting into each of the density rods in the low-resolution EM map, spanning a range of rotational angles around the main helical axes and translational shifts along the density rods; 2), fast optimization of side chains and scoring of the resulting conformations; and 3), refinement of the lowest-scoring conformations with internal coordinate mechanics, by optimizing the van der Waals, electrostatics, hydrogen bonding, torsional, and solvation energy contributions. In addition, our method implements a penalty term through a so-called tethering map, derived from the EM map, which restrains the positions of the α-helices. The protocol was validated on three test cases: GpA, KcsA, and MscL. PMID:17496035

  9. Value of noncontrast spiral CT for suspected acute appendicitis

    International Nuclear Information System (INIS)

    Choi, Pil Yeob; Lee, Sang Wook; Kwon, Jae Soo; Sung, Young Soon; Rho, Myoung Ho; Chang, Jeong A.

    1998-01-01

    To assess the diagnostic accuracy and clinical efficacy of noncontrast spiral CT in patients with suspected acute appendicitis. Over a six-month period, 100 patients with suspected acute appendicitis were prospectively evaluated with noncontrast spiral CT. All scans were obtained from the lower body of L3 to the symphysis pubis, with 5mm or 10mm collimation and pitch of 1 or 1.5, and without intravenous or oral contrast material. Diagnosis was established by means of surgical or clinical follow-up. Prospective diagnosis based on CT findings was compared with surgical results and clinical follow-up. Acute appendicitis was confirmed in 47 of 100 patients. On the basis of the Ct findings, SI patients were prospectively interpreted as positive for appendicitis, but in six the diagnosis was false-positive. Two of the 47 with acute appendicitis were prospectively interpreted as normal. The preoperative diagnosis of acute appendicitis was, thus, 45 true-positive, 47 true-negative, six false-positive and two false-negative yielding a sensitivity of 96%, a specificity of 89%, an accuracy of 92%, a positive predictive value of 88%, and a negative predictive value of 96%. Using CT, an alternative diagnosis was established in 14 patients. Noncontrast spiral CT is a useful technique for diagnosing acute appendicitis. =20

  10. Absolute Hounsfield unit measurement on noncontrast computed tomography cannot accurately predict struvite stone composition.

    Science.gov (United States)

    Marchini, Giovanni Scala; Gebreselassie, Surafel; Liu, Xiaobo; Pynadath, Cindy; Snyder, Grace; Monga, Manoj

    2013-02-01

    The purpose of our study was to determine, in vivo, whether single-energy noncontrast computed tomography (NCCT) can accurately predict the presence/percentage of struvite stone composition. We retrospectively searched for all patients with struvite components on stone composition analysis between January 2008 and March 2012. Inclusion criteria were NCCT prior to stone analysis and stone size ≥4 mm. A single urologist, blinded to stone composition, reviewed all NCCT to acquire stone location, dimensions, and Hounsfield unit (HU). HU density (HUD) was calculated by dividing mean HU by the stone's largest transverse diameter. Stone analysis was performed via Fourier transform infrared spectrometry. Independent sample Student's t-test and analysis of variance (ANOVA) were used to compare HU/HUD among groups. Spearman's correlation test was used to determine the correlation between HU and stone size and also HU/HUD to % of each component within the stone. Significance was considered if pR=0.017; p=0.912) and negative with HUD (R=-0.20; p=0.898). Overall, 3 (6.8%) had stones (n=5) with other miscellaneous stones (n=39), no difference was found for HU (p=0.09) but HUD was significantly lower for pure stones (27.9±23.6 v 72.5±55.9, respectively; p=0.006). Again, significant overlaps were seen. Pure struvite stones have significantly lower HUD than mixed struvite stones, but overlap exists. A low HUD may increase the suspicion for a pure struvite calculus.

  11. Imaging Features of Helical Computed Tomography Suggesting Advanced Urothelial Carcinoma Arising from the Pelvocalyceal System

    International Nuclear Information System (INIS)

    Kwak, Kyung Won; Park, Byung Kwan; Kim, Chan Kyo; Lee, Hyun Moo; Choi, Han Y ong

    2008-01-01

    Background: Urothelial carcinoma is the most common malignant tumor arising from the pelvocalyceal system. Helical computed tomography (CT) is probably the best preoperative-stage modality for the determination of treatment plan and prognosis. Purpose: To obtain helical CT imaging features suggesting advanced pelvocalyceal urothelial carcinoma. Material and Methods: Preoperative CT images in 44 patients with pelvocalyceal urothelial carcinoma were retrospectively reviewed and correlated with the pathological examination to determine imaging features suggesting stage III or IV of the disease. Results: Pathological stages revealed stage I in 16, stage II in three, stage III in 17, and stage IV in eight patients. Seven patients had metastatic lymph nodes. CT imaging showed that renal parenchymal invasion, sinus fat invasion, and lymph node metastasis were highly suggestive of advanced urothelial cell carcinoma (P<0.05). Helical CT sensitivity, specificity, and accuracy for advanced pelvocalyceal urothelial carcinoma were 76% (19/25), 84% (16/19), and 80% (35/44), respectively. Conclusion: Preoperative helical CT may suggest imaging features of advanced urothelial carcinoma, influencing treatment plan and patient prognosis, even though its accuracy is not so high

  12. Virtual non-contrast in second-generation, dual-energy computed tomography: Reliability of attenuation values

    International Nuclear Information System (INIS)

    Toepker, Michael; Moritz, Thomas; Krauss, Bernhard; Weber, Michael; Euller, Gordon; Mang, Thomas; Wolf, Florian; Herold, Christian J.; Ringl, Helmut

    2012-01-01

    Purpose: To evaluate the reliability of attenuation values in virtual non-contrast images (VNC) reconstructed from contrast-enhanced, dual-energy scans performed on a second-generation dual-energy CT scanner, compared to single-energy, non-contrast images (TNC). Materials and methods: Sixteen phantoms containing a mixture of contrast agent and water at different attenuations (0–1400 HU) were investigated on a Definition Flash-CT scanner using a single-energy scan at 120 kV and a DE-CT protocol (100 kV/SN140 kV). For clinical assessment, 86 patients who received a dual-phase CT, containing an unenhanced single-energy scan at 120 kV and a contrast enhanced (110 ml Iomeron 400 mg/ml; 4 ml/s) DE-CT (100 kV/SN140 kV) in an arterial (n = 43) or a venous phase, were retrospectively analyzed. Mean attenuation was measured within regions of interest of the phantoms and in different tissue types of the patients within the corresponding VNC and TNC images. Paired t-tests and Pearson correlation were used for statistical analysis. Results: For all phantoms, mean attenuation in VNC was 5.3 ± 18.4 HU, with respect to water. In 86 patients overall, 2637 regions were measured in TNC and VNC images, with a mean difference between TNC and VNC of −3.6 ± 8.3 HU. In 91.5% (n = 2412) of all cases, absolute differences between TNC and VNC were under 15 HU, and, in 75.3% (n = 1986), differences were under 10 HU. Conclusions: Second-generation dual-energy CT based VNC images provide attenuation values close to those of TNC. To avoid possible outliers multiple measurements are recommended especially for measurements in the spleen, the mesenteric fat, and the aorta.

  13. Virtual non-contrast in second-generation, dual-energy computed tomography: reliability of attenuation values.

    Science.gov (United States)

    Toepker, Michael; Moritz, Thomas; Krauss, Bernhard; Weber, Michael; Euller, Gordon; Mang, Thomas; Wolf, Florian; Herold, Christian J; Ringl, Helmut

    2012-03-01

    To evaluate the reliability of attenuation values in virtual non-contrast images (VNC) reconstructed from contrast-enhanced, dual-energy scans performed on a second-generation dual-energy CT scanner, compared to single-energy, non-contrast images (TNC). Sixteen phantoms containing a mixture of contrast agent and water at different attenuations (0-1400 HU) were investigated on a Definition Flash-CT scanner using a single-energy scan at 120 kV and a DE-CT protocol (100 kV/SN140 kV). For clinical assessment, 86 patients who received a dual-phase CT, containing an unenhanced single-energy scan at 120 kV and a contrast enhanced (110 ml Iomeron 400 mg/ml; 4 ml/s) DE-CT (100 kV/SN140 kV) in an arterial (n=43) or a venous phase, were retrospectively analyzed. Mean attenuation was measured within regions of interest of the phantoms and in different tissue types of the patients within the corresponding VNC and TNC images. Paired t-tests and Pearson correlation were used for statistical analysis. For all phantoms, mean attenuation in VNC was 5.3±18.4 HU, with respect to water. In 86 patients overall, 2637 regions were measured in TNC and VNC images, with a mean difference between TNC and VNC of -3.6±8.3 HU. In 91.5% (n=2412) of all cases, absolute differences between TNC and VNC were under 15HU, and, in 75.3% (n=1986), differences were under 10 HU. Second-generation dual-energy CT based VNC images provide attenuation values close to those of TNC. To avoid possible outliers multiple measurements are recommended especially for measurements in the spleen, the mesenteric fat, and the aorta. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Primary lower limb lymphoedema. Classification with non-contrast MR lymphography

    Energy Technology Data Exchange (ETDEWEB)

    Arrive, Lionel; Derhy, S.; El Mouhadi, S.; Monnier-Cholley, L.; Menu, Y. [Saint-Antoine Hospital, Assistance Publique-Hopitaux de Paris, Department of Radiology, Paris (France); Sorbonne Universites, UPMC Universite Paris 06, Faculte de Medecine Pierre et Marie Curie, Paris (France); Dahan, B. [Cochin Hospital, Department of Emergency Medicine, Paris (France); Becker, C. [HEGP, Department of Thoracic Surgery, Paris (France)

    2018-01-15

    The purpose of the present study was to analyse the performance of non-contrast MR lymphography for the classification of primary lower limb lymphoedema in 121 consecutive patients with 187 primary lower limb lymphoedemas. 121 consecutive patients with clinically diagnosed primary lower limb lymphoedema underwent non-contrast MR lymphography with a free-breathing 3D fast spin-echo sequence with a very long TR/TE (4000/884 ms). MR examinations were retrospectively reviewed for severity of lymphoedema (absent, mild, moderate, severe) and characteristics of inguinal lymph nodes and iliac and inguinal lymphatic trunks graded as aplasic (no lymph nodes or lymphatic trunks), hypoplasic (less lymph nodes or lymphatic trunks), normal and hyperplasic (more lymph nodes or more and/or dilated trunks). There was an excellent correlation between clinical stage and severity of lymphoedema (Cramer's V of 0,73 (p < 0.001)). Differentiation was feasible between inguinal lymphatic vessel aplasia (21%), hypoplasia (15%), normal pattern (53%) and hyperplasia (11%). Severe lymphoedema was observed in 46% of aplasic patterns and in 37% of hyperplasic patterns, but in only 15% of hypoplasic patterns and never observed in normal patterns (p < 0.001). Non-contrast MR lymphography is able to classify primary lower limb lymphoedemas into hyperplasic, aplasic, hypoplasic and normal patterns. (orig.)

  15. Lung scintigraphy and helical computed tomography for the diagnosis of pulmonary embolism : A meta-analysis

    NARCIS (Netherlands)

    van Beek, EJR; Brouwers, Elise M J; Song, B; Bongaerts, AHH; Oudkerk, M

    To assess the diagnostic value of lung scintigraphy and helical computed tomography (hCT) in patients with suspected pulmonary embolism (PE), all English-language articles that described lung scintigraphy and hCT in patients with suspected PE were retrieved. Articles were assessed for strength of

  16. The cause of the artifact in 4-slice helical computed tomography

    International Nuclear Information System (INIS)

    Taguchi, Katsuyuki; Aradate, Hiroshi; Saito, Yasuo; Zmora, Ilan; Han, Kyung S.; Silver, Michael D.

    2004-01-01

    The causes of the image artifacts in a 4-slice helical computed tomography have been discussed as follows: (1) changeover in pairs of data used in z interpolation, (2) sampling interval in z, and (3) the cone angle. This study analyzes the first two causes of the artifact and describes how the current algorithm [K. Taguchi and H. Aradate, Radiology 205P, 390 (1997); 205P, 618 (1997); Med. Phys. 25, 550-561 (1998); H. Hu, ibid. 26, 5-18 (1999); S. Schaller et al., IEEE Trans. Med. Imaging 19, 822-834 (2000); K. Taguchi, Ph.D. thesis, University of Tsukuba, 2002] solves the problem. An interpolated sinogram for a slice at the edge of a ball phantom shows discontinuity caused by the changeover. If we extend the streak artifact in the reconstructed image, it crosses the focus orbit at the corresponding projection angle. Applying z filtering can reduce such causes by its feathering effect and mixing data obtained by different cone angles; the best results are provided when z filtering is applied to densely sampled helical data

  17. Does quantifying epicardial and intrathoracic fat with noncontrast computed tomography improve risk stratification beyond calcium scoring alone?

    Science.gov (United States)

    Forouzandeh, Farshad; Chang, Su Min; Muhyieddeen, Kamil; Zaid, Rashid R; Trevino, Alejandro R; Xu, Jiaqiong; Nabi, Faisal; Mahmarian, John J

    2013-01-01

    Noncontrast cardiac computed tomography allows calculation of coronary artery calcium score (CACS) and measurement of epicardial adipose tissue (EATv) and intrathoracic fat (ITFv) volumes. It is unclear whether fat volume information contributes to risk stratification. Cardiac computed tomography was performed in 760 consecutive patients with acute chest pain admitted thorough the emergency department. None had prior coronary artery disease. CACS was calculated using the Agatston method. EATv and ITFv were semiautomatically calculated. Median patient follow-up was 3.3 years. Mean patient age was 54.4±13.7 years and Framingham risk score 8.2±8.2. The 45 patients (5.9%) with major acute cardiac events (MACE) were older (64.8±13.9 versus 53.7±13.4 years), more frequently male (60% versus 40%), and had a higher median Framingham risk score (16 versus 4) and CACS (268 versus 0) versus those without events (all PEATv (154 versus 116 mL) and ITFv (330 versus 223 mL), and a higher prevalence of EATv >125 mL (67% versus 44%) and ITFv >250 mL (64% versus 42%) (all PEATv, and ITFv were all independently associated with MACE. CACS was associated with MACE after adjustment for fat volumes (PEATv and ITFv improved the risk model only in patients with CACS >400. CACS and fat volumes are independently associated with MACE in acute chest pain patients and beyond that provided by clinical information alone. Although fat volumes may add prognostic value in patients with CACS >400, CACS is most strongly correlated with outcome.

  18. Association between aortic valve calcification measured on non-contrast computed tomography and aortic valve stenosis in the general population

    DEFF Research Database (Denmark)

    Paulsen, Niels Herluf; Bønløkke Carlsen, Bjarke; Dahl, Jordi Sanchez

    2016-01-01

    BACKGROUND: Aortic valve calcification (AVC) measured on non-contrast computed tomography (CT) has shown correlation to severity of aortic valve stenosis (AS) and mortality in patients with known AS. The aim of this study was to determine the association of CT verified AVC and subclinical...... AS in a general population undergoing CT. METHODS: CT scans from 566 randomly selected male participants (age 65-74) in the Danish cardiovascular screening study (DANCAVAS) were analyzed for AVC. All participants with a moderately or severely increased AVC score (≥300 arbitrary units (AU)) and a matched control...... ICD leads 16 individuals were excluded from the AVC scoring. Moderate or severe increased AVC was observed in 10.7% (95% CI: 8.4-13.7). Echocardiography was performed in 101 individuals; 32.7% (95% CI: 21.8 to 46.0) with moderate or high AVC score had moderate or severe AS, while none with no or low...

  19. Spin versus helicity in processes involving transversity

    CERN Document Server

    Mekhfi, Mustapha

    2011-01-01

    We construct the spin formalism in order to deal in a direct and natural way with processes involving transversity which are now of increasing popularity. The helicity formalism which is more appropriate for collision processes of definite helicity has been so far used also to manage processes with transversity, but at the price of computing numerous helicity amplitudes generally involving unnecessary kinematical variables.In a second step we work out the correspondence between both formalisms and retrieve in another way all results of the helicity formalism but in simpler forms.We then compute certain processes for comparison.A special process:the quark dipole magnetic moment is shown to be exclusively treated within the spin formalism as it is directly related to the transverse spin of the quark inside the baryon.

  20. Pancreatic cancer screening employing noncontrast magnetic resonance imaging combined with ultrasonography

    International Nuclear Information System (INIS)

    Kuroki-Suzuki, Seiko; Nagashima, Chieko; Machida, Minoru; Muramatsu, Yukio; Moriyama, Noriyuki; Kuroki, Yoshifumi; Nasu, Katsuhiro

    2011-01-01

    We have conducted an initial evaluation on the potential of combining noncontrast magnetic resonance imaging (MRI) and ultrasonography (US) to screen for pancreatic cancer. An independent ethics committee approved this study. A total of 2511 patients who underwent US were enrolled. Among them, noncontrast MRI was performed in patients in whom the entire pancreas was difficult to depict or in those with US-suspected pancreatic lesions. In total, using 1.5-T MRI, T1- and T2-weighted imaging, magnetic resonance cholangiopancreatography, and diffusion-weighted imaging, we acquired a variety of images. The efficacy of US and MRI in screening for pancreatic lesions, including pancreatic cancer, was evaluated. Of 2511 patients, 184 underwent MRI, and the pancreas was demonstrated in all of them. Among the 2511, five pancreatic cancers were detected by MRI combined with US (detection rate 0.20%). Of the five pancreatic cancers, three were detected by US (detection rate 0.12%) and two by MRI. Four of the five pancreatic cancers were resectable. By combining noncontrast MRI with US, pancreatic cancer can be detected with high accuracy. Other pancreatic lesions that require follow-up, including intraductal papillary mucinous neoplasms, can also be detected. Thus, pancreatic cancer screening with a combination of US and MRI is suggested. (author)

  1. Non-contrast 3D black blood MRI for abdominal aortic aneurysm surveillance: comparison with CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chengcheng; Leach, Joseph R.; Hope, Michael D. [University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Tian, Bing; Liu, Qi; Lu, Jianping; Chen, Luguang [Changhai Hospital, Department of Radiology, Shanghai (China); Saloner, David [University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Radiology Service, VA Medical Center, San Francisco, CA (United States)

    2017-05-15

    Management of abdominal aortic aneurysms (AAAs) is based on diameter. CT angiography (CTA) is commonly used, but requires radiation and iodinated contrast. Non-contrast MRI is an appealing alternative that may allow better characterization of intraluminal thrombus (ILT). This study aims to 1) validate non-contrast MRI for measuring AAA diameter, and 2) to assess ILT with CTA and MRI. 28 patients with AAAs (diameter 50.7 ± 12.3 mm) underwent CTA and non-contrast MRI. MRI was acquired at 3 T using 1) a conventional 3D gradient echo (GRE) sequence and 2) a 3D T{sub 1}-weighted black blood fast-spin-echo sequence. Two radiologists independently measured the AAA diameter. The ratio of signal of ILT and adjacent psoas muscle (ILT{sub r} = signal{sub ILT}/signal{sub Muscle}) was quantified. Strong agreement between CTA and non-contrast MRI was shown for AAA diameter (intra-class coefficient > 0.99). Both approaches had excellent inter-observer reproducibility (ICC > 0.99). ILT appeared homogenous on CTA, whereas MRI revealed compositional variations. Patients with AAAs ≥5.5 cm and <5.5 cm had a variety of distributions of old/fresh ILT types. Non-contrast 3D black blood MRI provides accurate and reproducible AAA diameter measurements as validated by CTA. It also provides unique information about ILT composition, which may be linked with elevated risk for disease progression. (orig.)

  2. Non-contrast 3D black blood MRI for abdominal aortic aneurysm surveillance: comparison with CT angiography

    International Nuclear Information System (INIS)

    Zhu, Chengcheng; Leach, Joseph R.; Hope, Michael D.; Tian, Bing; Liu, Qi; Lu, Jianping; Chen, Luguang; Saloner, David

    2017-01-01

    Management of abdominal aortic aneurysms (AAAs) is based on diameter. CT angiography (CTA) is commonly used, but requires radiation and iodinated contrast. Non-contrast MRI is an appealing alternative that may allow better characterization of intraluminal thrombus (ILT). This study aims to 1) validate non-contrast MRI for measuring AAA diameter, and 2) to assess ILT with CTA and MRI. 28 patients with AAAs (diameter 50.7 ± 12.3 mm) underwent CTA and non-contrast MRI. MRI was acquired at 3 T using 1) a conventional 3D gradient echo (GRE) sequence and 2) a 3D T_1-weighted black blood fast-spin-echo sequence. Two radiologists independently measured the AAA diameter. The ratio of signal of ILT and adjacent psoas muscle (ILT_r = signal_I_L_T/signal_M_u_s_c_l_e) was quantified. Strong agreement between CTA and non-contrast MRI was shown for AAA diameter (intra-class coefficient > 0.99). Both approaches had excellent inter-observer reproducibility (ICC > 0.99). ILT appeared homogenous on CTA, whereas MRI revealed compositional variations. Patients with AAAs ≥5.5 cm and <5.5 cm had a variety of distributions of old/fresh ILT types. Non-contrast 3D black blood MRI provides accurate and reproducible AAA diameter measurements as validated by CTA. It also provides unique information about ILT composition, which may be linked with elevated risk for disease progression. (orig.)

  3. Comparison between helical computed tomography angiography and intraoperative findings

    Directory of Open Access Journals (Sweden)

    Abijit Shetty

    2014-01-01

    Conclusions: Helical CT is important in delineating the arterial, venous, and ureteral anatomy and can show the important incidental findings. Left renal donors and males have more variations in their renal anatomy. Technically challenging laparoscopic nephrectomy on the multiple-vessel-side donor is possible with the aid of helical CT. The importance of the CT in evaluating donor renal anatomy for a technically challenging laparoscopic donor nephrectomy is commendable.

  4. IMAGING DIAGNOSIS-ECTOPIC SPLEEN MIMICKING HEPATIC TUMOR WITH INTRA-ABDOMINAL METASTASES INVESTIGATED VIA TRIPLE-PHASE HELICAL COMPUTED TOMOGRAPHY IN A DOG.

    Science.gov (United States)

    Kutara, Kenji; Konno, Toshiaki; Kondo, Hirotaka; Aoki, Kotoyo; Yamazoe, Hinako; Matsunaga, Satoru

    2017-05-01

    A 10-year-old castrated male miniature dachshund was presented with an abdominal mass. The dog had a history of splenectomy. Triple-phase helical computed tomography was utilized, revealing a hepatic mass and multiple intra-abdominal solid masses. In triple-phase helical computed tomography the images, hepatic mass and two of four intra-abdominal masses were heterogenous in all phases. Therefore, we diagnosed a malignant hepatic tumor and presumed intra-abdominal metastases. The masses were surgically removed and were histologically composed of normal spleen tissues, findings which were consistent with ectopic spleen. © 2016 American College of Veterinary Radiology.

  5. Carotid artery dissection on non-contrast CT: Does color improve the diagnostic confidence?

    Energy Technology Data Exchange (ETDEWEB)

    Saba, Luca, E-mail: lucasaba@tiscali.it [Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari – Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045 (Italy); Argiolas, Giovanni Maria [Department of Radiology, Azienda Ospedaliero Brotzu (A.O.B.), di Cagliari, Cagliari 09100 (Italy); Raz, Eytan [Department of Radiology, New York University School of Medicine, New York (United States); Department of Neurology and Psychiatry, Sapienza University of Rome (Italy); Sannia, Stefano [Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari – Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045 (Italy); Suri, Jasjit S. [Diagnostic and Monitoring Division, AtheroPointTM LLC, Roseville, CA (United States); Electrical Engineering Department (Aff.), Idaho State University, ID (United States); Siotto, Paolo [Department of Radiology, Azienda Ospedaliero Brotzu (A.O.B.), di Cagliari, Cagliari 09100 (Italy); Sanfilippo, Roberto; Montisci, Roberto [Department of Vascular Surgery, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari – Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045 (Italy); Piga, Mario [Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari – Polo di Monserrato, s.s. 554 Monserrato, Cagliari 09045 (Italy); Wintermark, Max [Department of Radiology, Neuroradiology Division, University of Virginia, Box 800170, Charlottesville, VA, 22908 (United States)

    2014-12-15

    Highlights: • The use of a color scale to display the non-contrast CT images in lieu of the classic grayscale improves the diagnostic confidence of the readers. • Radiologists should consider the use of a color scale, rather than the conventional grayscale, to assess non-contrast CT studies for possible carotid artery dissection. - Abstract: Purpose: The purpose of this work was to evaluate if the use of color maps, instead of conventional grayscale images, would improve the observer's diagnostic confidence in the non-contrast CT evaluation of internal carotid artery dissection (ICAD). Materials and methods: One hundred patients (61 men, 39 women; mean age, 51 years; range, 25–78 years), 40 with and 60 without ICAD, underwent non-contrast CT and were included in this the retrospective study. In this study, three groups of patients were considered: patients with MR confirmation of ICAD, n = 40; patients with MR confirmation of ICAD absence, n = 20; patients who underwent CT of the carotid arteries because of atherosclerotic disease, n = 40. Four blinded observers with different levels of expertise (expert, intermediate A, intermediate B and trainee) analyzed the non-contrast CT datasets using a cross model (one case grayscale and the following case using the color scale). The presence of ICAD was scored on a 5-point scale in order to assess the observer's diagnostic confidence. After 3 months the four observers evaluated the same datasets by using the same cross-model for the alternate readings (one case color scale and the following case using the grayscale). Statistical analysis included receiver operating characteristics (ROC) curve analysis, the Cohen weighted test and sensitivity, specificity, PPV, NPV, accuracy, LR+ and LR−. Results: The ROC curve analysis showed that, for all observers, the use of color scale resulted in an improved diagnostic confidence with AUC values increasing from 0.896 to 0.936, 0.823 to 0.849, 0.84 to 0.909 and 0

  6. Magnetic Helicities and Dynamo Action in Magneto-rotational Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, G.; Rossi, P. [INAF/Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Cattaneo, F. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 S. Ellis Avenue, Chicago IL 60637 (United States); Mignone, A., E-mail: bodo@oato.inaf.it [Dipartimento di Fisica, Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino (Italy)

    2017-07-10

    We examine the relationship between magnetic flux generation, taken as an indicator of large-scale dynamo action, and magnetic helicity, computed as an integral over the dynamo volume, in a simple dynamo. We consider dynamo action driven by magneto-rotational turbulence (MRT) within the shearing-box approximation. We consider magnetically open boundary conditions that allow a flux of helicity in or out of the computational domain. We circumvent the problem of the lack of gauge invariance in open domains by choosing a particular gauge—the winding gauge—that provides a natural interpretation in terms of the average winding number of pairwise field lines. We use this gauge precisely to define and measure the helicity and the helicity flux for several realizations of dynamo action. We find in these cases that the system as a whole does not break reflectional symmetry and that the total helicity remains small even in cases when substantial magnetic flux is generated. We find no particular connection between the generation of magnetic flux and the helicity or the helicity flux through the boundaries. We suggest that this result may be due to the essentially nonlinear nature of the dynamo processes in MRT.

  7. A 970 Hounsfield units (HU) threshold of kidney stone density on non-contrast computed tomography (NCCT) improves patients' selection for extracorporeal shockwave lithotripsy (ESWL): evidence from a prospective study.

    Science.gov (United States)

    Ouzaid, Idir; Al-qahtani, Said; Dominique, Sébastien; Hupertan, Vincent; Fernandez, Pédro; Hermieu, Jean-François; Delmas, Vincent; Ravery, Vincent

    2012-12-01

    What's known on the subject? and What does the study add? Stone density on non-contrast computed tomography (NCCT) is reported to be a prognosis factor for extracorporeal shockwave lithotripsy (ESWL). In this prospective study, we determined that a 970 HU threshold of stone density is a very specific and sensitive threshold beyond which the likelihood to be rendered stone free is poor. Thus, NCCT evaluation of stone density before ESWL may useful to identify which patients should be offered alternative treatment to optimise their outcome. • To evaluate the usefulness of measuring urinary calculi attenuation values by non-contrast computed tomography (NCCT) for predicting the outcome of treatment by extracorporeal shockwave lithotripsy (ESWL). • We prospectively evaluated 50 patients with urinary calculi of 5-22 mm undergoing ESWL. • All patients had NCCT at 120 kV and 100 mA on a spiral CT scanner. Patient age, sex, body mass index, stone laterality, stone size, stone attenuation values (Hounsfield units [HU]), stone location, and presence of JJ stent were studied as potential predictors. • The outcome was evaluated 4 weeks after the ESWL session by NCCT. • ESWL success was defined as patients being stone-free (SF) or with remaining stone fragments of ESWL treatment. • Stones of patients who became SF or had CIRF had a lower density compared with stones in patients with residual fragments [mean (sd) 715 (260) vs 1196 (171) HU, P ESWL was identified. • The use of NCCT to determine the attenuation values of urinary calculi before ESWL helps to predict treatment outcome, and, consequently, could be helpful in planning alternative treatment for patients with a likelihood of a poor outcome from ESWL. © 2012 THE AUTHORS. BJU INTERNATIONAL © 2012 BJU INTERNATIONAL.

  8. Non-Contrast Computed Tomography Scan Based Parameters of Ureteric Stones Affecting the Outcome of Extracorporeal Shock Wave Lithotripsy

    Science.gov (United States)

    Ayaz Khan, Mohammad; Waqas Iqbal, Muhammad; Akbar, Mian Khalid; Saqib, Imad-ud-din; Akhter, Saeed

    2017-01-01

    Objective  To compare the non-contrast computed tomography (NCCT) scan-based parameters of ureteric stones affecting the outcome of extracorporeal shock wave lithotripsy (ESWL). Materials and methods We retrospectively evaluated the pre-procedure NCCT of 74 patients who had ESWL for solitary ureteric calculi of 5-20 mm in diameter. We assessed the age, sex, basal metabolic index (BMI), laterality, location, presence of double 'J' (DJ) stent, skin to stone distance (SSD), stone maximum diameter, Hounsfield unit (HU), Hounsfield density (HD), area, and volume. All those who had no stone on follow-up imaging within 30 days were declared successful while those who had residual stone were declared failures. Results The overall success rate was 78% (58/74). Sixty (81.1%) patients were male. The success of ESWL was correlated with lower SSD, Hounsfield units (HU) and Hounsfield density (HD). However, in multivariate analysis, SSD, Hounsfield unit, and stone area showed correlation with success of procedure but Hounsfield density failed to show correlation. The success rate in patients with stone HU 1000 were 93.9%, 69%, and 58.3%, respectively. Patients with lower BMI (30 kg/m2) and higher HD (>76 HU/mm). Conclusion BMI, SSD, stone Hounsfield units and Hounsfield unit density were strong predictors of outcome of ESWL for ureteric stone. PMID:28589076

  9. A theoretically exact reconstruction algorithm for helical cone-beam differential phase-contrast computed tomography

    International Nuclear Information System (INIS)

    Li Jing; Sun Yi; Zhu Peiping

    2013-01-01

    Differential phase-contrast computed tomography (DPC-CT) reconstruction problems are usually solved by using parallel-, fan- or cone-beam algorithms. For rod-shaped objects, the x-ray beams cannot recover all the slices of the sample at the same time. Thus, if a rod-shaped sample is required to be reconstructed by the above algorithms, one should alternately perform translation and rotation on this sample, which leads to lower efficiency. The helical cone-beam CT may significantly improve scanning efficiency for rod-shaped objects over other algorithms. In this paper, we propose a theoretically exact filter-backprojection algorithm for helical cone-beam DPC-CT, which can be applied to reconstruct the refractive index decrement distribution of the samples directly from two-dimensional differential phase-contrast images. Numerical simulations are conducted to verify the proposed algorithm. Our work provides a potential solution for inspecting the rod-shaped samples using DPC-CT, which may be applicable with the evolution of DPC-CT equipments. (paper)

  10. Magnetic helicity and active filament configuration

    Science.gov (United States)

    Romano, P.; Zuccarello, F.; Poedts, S.; Soenen, A.; Zuccarello, F. P.

    2009-11-01

    Context: The role of magnetic helicity in active filament formation and destabilization is still under debate. Aims: Although active filaments usually show a sigmoid shape and a twisted configuration before and during their eruption, it is unclear which mechanism leads to these topologies. In order to provide an observational contribution to clarify these issues, we describe a filament evolution whose characteristics seem to be directly linked to the magnetic helicity transport in corona. Methods: We applied different methods to determine the helicity sign and the chirality of the filament magnetic field. We also computed the magnetic helicity transport rate at the filament footpoints. Results: All the observational signatures provided information on the positive helicity and sinistral chirality of the flux rope containing the filament material: its forward S shape, the orientation of its barbs, the bright and dark threads at 195 Å. Moreover, the magnetic helicity transport rate at the filament footpoints showed a clear accumulation of positive helicity. Conclusions: The study of this event showed a correspondence between several signatures of the sinistral chirality of the filament and several evidences of the positive magnetic helicity of the filament magnetic field. We also found that the magnetic helicity transported along the filament footpoints showed an increase just before the change of the filament shape observed in Hα images. We argued that the photospheric regions where the filament was rooted might be the preferential ways where the magnetic helicity was injected along the filament itself and where the conditions to trigger the eruption were yielded.

  11. Helicity conservation under quantum reconnection of vortex rings.

    Science.gov (United States)

    Zuccher, Simone; Ricca, Renzo L

    2015-12-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.

  12. Virtual non-contrast of liver from dual energy CT: a clinical application

    International Nuclear Information System (INIS)

    Qian Yu'e; Hu Hongjie; Zhang Qiaowei; Hu Peng; Shen Guohui

    2011-01-01

    Objective: To assess the virtual non-contrast liver CT from dual-energy CT for the clinical application. Methods: In total, 51 patients were included in the study, and all patients underwent multi-phase liver CT on a dual-source CT. The True non-contrast liver CT (TNCT) was performed in a single-energy acquisition mode, but the arterial and portovenous liver CT (VNCT) were performed in a dual- energy mode of 110 kV and 140 kV respectively. The virtual non-contrast CT images were derived from the arterial data using liver virtual non-contrast software. Between the true non-contrast CT and the virtual non- contrast CT, the image quality, mean CT HU values in the liver and muscle, signal to noise (SNR), the radiation dose of volume CT dose index (CTDIvol) and dose length product (DLP) in a single phase and total examination were compared with t test. Results: There was no significant difference in the detection of' liver lesions between TNCT and VNCT. The CT Hu values of muscle on both TNCT and VNCT images were almost equal. The CT HU values of liver on VNCT images were higher than that on TNCT images and the difference was significant [61.32±6.04 vs. (56.85±4.80) HU, t=-3.927, P<0.01]. There was also significant difference of SNR between TNCT (11.28±2.78) and VNCT (8.65±1.56) images (t=-5.590, P<0.01). The CTDIvol and DLP of single phase were (7.07±0.85) mGy and (155.11± 22.52) mGy · cm respectively in TNCT, and (7.05±0.87) mGy and (154.48±23.12) mGy · cm in VNCT. The total CTDIvol and DLP in VNCT were (14.35±1.66) mGy and (313.91±45.08) mGy · cm respectively, but in TNCT the total CTDIvol and DLP reached (21.43±2.46) mGy and (469.02± 66.22) mGy · cm. The difference of CTDIvol and DLP in single phase between TNCT and VNCT showed no significance, but the total CTDIvol and DLP were significantly different (t=16.168 and 13.132, P< 0.01). Conclusion: With the consequent reduction in radiation dose, the VNCT can replace TNCT as an imaging protocol in multi

  13. Association between aortic valve calcification measured on non-contrast computed tomography and aortic valve stenosis in the general population.

    Science.gov (United States)

    Paulsen, Niels Herluf; Carlsen, Bjarke Bønløkke; Dahl, Jordi Sanchez; Carter-Storch, Rasmus; Christensen, Nicolaj Lyhne; Khurrami, Lida; Møller, Jacob Eifer; Lindholt, Jes Sandal; Diederichsen, Axel Cosmus Pyndt

    2016-01-01

    Aortic valve calcification (AVC) measured on non-contrast computed tomography (CT) has shown correlation to severity of aortic valve stenosis (AS) and mortality in patients with known AS. The aim of this study was to determine the association of CT verified AVC and subclinical AS in a general population undergoing CT. CT scans from 566 randomly selected male participants (age 65-74) in the Danish cardiovascular screening study (DANCAVAS) were analyzed for AVC. All participants with a moderately or severely increased AVC score (≥300 arbitrary units (AU)) and a matched control group were invited for a supplementary echocardiography. AS was graded by indexed aortic valve area (AVAi) on echocardiography as moderate 0.6-0.85 cm(2)/m(2) and severe AVC scoring. Moderate or severe increased AVC was observed in 10.7% (95% CI: 8.4-13.7). Echocardiography was performed in 101 individuals; 32.7% (95% CI: 21.8 to 46.0) with moderate or high AVC score had moderate or severe AS, while none with no or low AVC. A ROC analysis defined an AVC score ≥588 AU to be suggestive of moderate or severe AS (AUC 0.89 ± 0.04, sensitivity 83% and specificity 87%). In the univariate analyses, AVC was the only variable significantly associated with AS. This study indicates an association between CT verified AVC and subclinical AS. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  14. Geometry Dynamics of α-Helices in Different Class I Major Histocompatibility Complexes

    Directory of Open Access Journals (Sweden)

    Reiner Ribarics

    2015-01-01

    Full Text Available MHC α-helices form the antigen-binding cleft and are of particular interest for immunological reactions. To monitor these helices in molecular dynamics simulations, we applied a parsimonious fragment-fitting method to trace the axes of the α-helices. Each resulting axis was fitted by polynomials in a least-squares sense and the curvature integral was computed. To find the appropriate polynomial degree, the method was tested on two artificially modelled helices, one performing a bending movement and another a hinge movement. We found that second-order polynomials retrieve predefined parameters of helical motion with minimal relative error. From MD simulations we selected those parts of α-helices that were stable and also close to the TCR/MHC interface. We monitored the curvature integral, generated a ruled surface between the two MHC α-helices, and computed interhelical area and surface torsion, as they changed over time. We found that MHC α-helices undergo rapid but small changes in conformation. The curvature integral of helices proved to be a sensitive measure, which was closely related to changes in shape over time as confirmed by RMSD analysis. We speculate that small changes in the conformation of individual MHC α-helices are part of the intrinsic dynamics induced by engagement with the TCR.

  15. Physics properties of non-helical scan using 320-row multi detector computed tomography

    International Nuclear Information System (INIS)

    Urikura, Atsushi; Nakaya, Yoshihiro; Kawatani, Keisuke; Kawashima, Ippei; Goto, Hironori; Ichikawa, Katsuhiro

    2012-01-01

    Recently, clinical applications utilizing 320-row multi detector computed tomography (320MDCT) have increased, and the physical image properties of 320MDCT have been more concerned. We evaluated the spatial resolution in scan plane and z-direction, image noise and low-contrast sensitivity of non-helical mode (320NH), 640 slices mode by a double slice reconstruction technology (640DS), and 64-row helical mode (64HE) by using a 320MDCT. The spatial resolution in z-direction was evaluated by the section sensitivity profile (SSP) measurement with the micro coin phantom and the contrast transfer ratio (CTR) with the 0.5-mm comb phantom. The in-plane spatial resolution of 320NH was uniform over all the slice positions. The spatial resolution in z-direction decreased from the cathode side toward the anode side. The image noise of the anode side was higher than that of the cathode side. The contrast to noise ratio as index of the low contrast sensitivity was uniform over all the slice position. The CTR of 320NH fluctuated in the z-position, and the fluctuation was improved by 640DS except for the center of rotation. (author)

  16. The success of extracorporeal shock-wave lithotripsy based on the stone-attenuation value from non-contrast computed tomography

    Science.gov (United States)

    Massoud, Amr M.; Abdelbary, Ahmed M.; Al-Dessoukey, Ahmad A.; Moussa, Ayman S.; Zayed, Ahmed S.; Mahmmoud, Osama

    2014-01-01

    Objective To determine the utility of the urinary stone-attenuation value (SAV, in Hounsfield units, HU) from non-contrast computed tomography (NCCT) for predicting the success of extracorporeal shock-wave lithotripsy (ESWL). Patients and methods The study included 305 patients with renal calculi of ⩽30 mm and upper ureteric calculi of ⩽20 mm. The SAV was measured using NCCT. Numerical variables were compared using a one-way analysis of variance with posthoc multiple two-group comparisons. Univariate and multivariate regression analysis models were used to test the preferential effect of the independent variable(s) on the success of ESWL. Results Patients were grouped according to the SAV as group 1 (⩽500 HU, 81 patients), group 2 (501–1000 HU, 141 patients) and group 3 (>1000 HU, 83 patients). ESWL was successful in 253 patients (83%). The rate of stone clearance was 100% in group 1, 95.7% (135/141) in group 2 and 44.6% (37/83) in group 3 (P = 0.001). Conclusions The SAV value is an independent predictor of the success of ESWL and a useful tool for planning stone treatment. Patients with a SAV ⩾956 HU are not ideal candidates for ESWL. The inclusion criteria for ESWL of stones with a SAV 30 kg/m2 and a lower calyceal location make them less ideal for ESWL. PMID:26019941

  17. Pulmonary artery aneurysm in Bechcet's disease: helical computed tomography study; Aneurisma de la arteria pulmonar en la enfermedad de Behcet. Estudio con tomografia computarizada helicoidal

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, J.; Caballero, P.; Olivera, M. J.; Cajal, M. L.; Caniego, J. L. [Hospital de la Princesa. Iniversidad Autonoma. Madrid (Spain)

    2000-07-01

    Behcet's disease is a vasculitis of unknown etiology that affects arteries and veins of different sizes and can be associated with pulmonary artery aneurysms. We report the case of a patient with Behcet's disease and a pulmonary artery aneurysm who was studied by means of plain chest X ray, helical computed tomography and pulmonary arteriography. Helical computed tomography is a reliable technique for the diagnosis and follow-up of these patients. (Author) 9 refs.

  18. Optimization of helical acquisition parameters to preserve uniformity of mouse whole body using multipinhole collimator in single-photon emission computed tomography

    Directory of Open Access Journals (Sweden)

    Naoyuki Ukon

    Full Text Available Focusing on whole-body uniformity in small-animal single-photon emission computed tomography (SPECT, we examined the optimal helical acquisition parameters using five-pinhole collimators for mouse imaging. SPECT images of an 80-mm-long cylindrical phantom with 99mTc solution were acquired using an Inveon multimodality imaging platform. The bed travels used in this study were 0, 30, 60, 90 and 120 mm, and the numbers of revolutions traversed during the SPECT scan were 1.0, 2.0, 3.0, 4.0, 5.0 and 7.0, respectively. Artifacts that degrade uniformity in reconstructed images were conspicuous when the bed travel was smaller than the object length. Regarding the distal-to-center ratio (DCR of SPECT values in the object’s axial direction, the DCR nearest to the ideal ratio of 1.00 was 1.02 in the optimal uniformity with 4.0 revolutions and a bed travel of 120 mm. Moreover, the helical acquisition using these parameters suppressed the formation of artifacts. We proposed the optimal parameters in whole-body helical SPECT; the bed travel was sufficiently larger than the object length; the 4.0 or more revolutions were required for a pitch of approximately 30 mm/revolution. The optimal acquisition parameters in SPECT to preserve uniformity would contribute to the accurate quantification of whole-body biodistribution. Keywords: Helical acquisition, Multipinhole collimator, Computed tomography, SPECT

  19. Favorable noise uniformity properties of Fourier-based interpolation and reconstruction approaches in single-slice helical computed tomography

    International Nuclear Information System (INIS)

    La Riviere, Patrick J.; Pan Xiaochuan

    2002-01-01

    Volumes reconstructed by standard methods from single-slice helical computed tomography (CT) data have been shown to have noise levels that are highly nonuniform relative to those in conventional CT. These noise nonuniformities can affect low-contrast object detectability and have also been identified as the cause of the zebra artifacts that plague maximum intensity projection (MIP) images of such volumes. While these spatially variant noise levels have their root in the peculiarities of the helical scan geometry, there is also a strong dependence on the interpolation and reconstruction algorithms employed. In this paper, we seek to develop image reconstruction strategies that eliminate or reduce, at its source, the nonuniformity of noise levels in helical CT relative to that in conventional CT. We pursue two approaches, independently and in concert. We argue, and verify, that Fourier-based longitudinal interpolation approaches lead to more uniform noise ratios than do the standard 360LI and 180LI approaches. We also demonstrate that a Fourier-based fan-to-parallel rebinning algorithm, used as an alternative to fanbeam filtered backprojection for slice reconstruction, also leads to more uniform noise ratios, even when making use of the 180LI and 360LI interpolation approaches

  20. Uncovering the real outcomes of active renal stone treatment by utilizing non-contrast computer tomography: a systematic review of the current literature.

    Science.gov (United States)

    Tokas, Theodoros; Habicher, Martin; Junker, Daniel; Herrmann, Thomas; Jessen, Jan Peter; Knoll, Thomas; Nagele, Udo

    2017-06-01

    To evaluate the stone-free rates (SFRs) and stone clearance rates (SCRs) of extracorporeal shock-wave lithotripsy (SWL), retrograde intrarenal surgery (RIRS), and percutaneous nephrolitholapaxy (PCNL) according to non-contrast computer tomography (NCCT) findings. Original articles were identified from PubMed. After exclusion of ineligible papers, twenty-three studies with 2494 cases were included in the review. Six SWL, five RIRS and eight PCNL studies were selected. Additionally, four comparative articles were identified. SWL presents SFRs ranging 35-61.3 % and SCRs for residuals <4 mm being 43.2-92.9 %. RIRS studies report SFRs of 34.8-59.7 % and SCRs for residuals <4 mm ranging 48-96.7 %. Finally, PCNL presents SFRs of 20.8-100 % and SCRs for residuals <4 mm being 41.5-91.4 %. According to the comparative studies, SFRs are 17-61.3 % for SWL, 50 % for RIRS, and 95-100 % for PCNL. According to NCCT findings, it seems that PCNL provides better SFRs than ESWL and RIRS. However, further research with comparable and complete preoperative parameters and outcomes could reduce the heterogeneity of current data.

  1. Effect of CT contrast on volumetric arc therapy planning (RapidArc and helical tomotherapy) for head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Alan J.; Vora, Nayana [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA (United States); Suh, Steve [Department of Radiation Physics, City of Hope National Medical Center, Duarte, CA (United States); Liu, An, E-mail: aliu@coh.org [Department of Radiation Physics, City of Hope National Medical Center, Duarte, CA (United States); Schultheiss, Timothy E. [Department of Radiation Physics, City of Hope National Medical Center, Duarte, CA (United States); Wong, Jeffrey Y.C. [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA (United States)

    2015-04-01

    The objectives of the study were to evaluate the effect of intravenous contrast in the dosimetry of helical tomotherapy and RapidArc treatment for head and neck cancer and determine if it is acceptable during the computed tomography (CT) simulation to acquire only CT with contrast for treatment planning of head and neck cancer. Overall, 5 patients with head and neck cancer (4 men and 1 woman) treated on helical tomotherapy were analyzed retrospectively. For each patient, 2 consecutive CT scans were performed. The first CT set was scanned before the contrast injection and secondary study set was scanned 45 seconds after contrast. The 2 CTs were autoregistered using the same Digital Imaging and Communications in Medicine coordinates. Tomotherapy and RapidArc plans were generated on 1 CT data set and subsequently copied to the second CT set. Dose calculation was performed, and dose difference was analyzed to evaluate the influence of intravenous contrast media. The dose matrix used for comparison included mean, minimum and maximum doses of planning target volume (PTV), PTV dose coverage, and V{sub 45} {sub Gy}, V{sub 30} {sub Gy}, and V{sub 20} {sub Gy} organ doses. Treatment planning on contrasted images generally showed a lower dose to both organs and target than plans on noncontrasted images. The doses for the points of interest placed in the organs and target rarely changed more than 2% in any patient. In conclusion, treatment planning using a contrasted image had insignificant effect on the dose to the organs and targets. In our opinion, only CT with contrast needs to be acquired during the CT simulation for head and neck cancer. Dose calculations performed on contrasted images can potentially underestimate the delivery dose slightly. However, the errors of planning on a contrasted image should not affect the result in clinically significant way.

  2. Helicity content and tokamak applications of helicity

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities

  3. Dual-energy computed tomography to assess tumor response to hepatic radiofrequency ablation: potential diagnostic value of virtual noncontrast images and iodine maps.

    Science.gov (United States)

    Lee, Su Hyun; Lee, Jeong Min; Kim, Kyung Won; Klotz, Ernst; Kim, Se Hyung; Lee, Jae Young; Han, Joon Koo; Choi, Byung Ihn

    2011-02-01

    to determine the value of dual-energy (DE) scanning with virtual noncontrast (VNC) images and iodine maps in the evaluation of therapeutic response to radiofrequency ablation (RFA) for hepatic tumors. a total of 75 patients with hepatic tumors and who underwent DE computed tomography (CT) after RFA, were enrolled in this study. Our DE CT protocol included precontrast, arterial, and portal phase scans. VNC images and iodine maps were created from 80 to 140 kVp images during the arterial and portal phases. VNC images were then compared with true, noncontrast (TNC) images, and iodine maps were compared with linearly blended images, both qualitatively and quantitatively. For the former comparison, image quality and acceptability of the VNC images as a replacement for TNC images were both rated. The CT numbers of the hepatic parenchyma, ablation zone, and image noise were measured. For the latter comparison, lesion conspicuity of the ablation zone and the additional benefit of integrating the iodine map into the routine protocol, were assessed. Contrast-to-noise ratios (CNR) of the ablation zone-to-liver and aorta-to-liver as well as the CT number differences between the center and the periphery of the ablation zone were calculated. The image quality of the VNC images was rated as good (mean grading score, 1.88) and the level of acceptance was 90% (68/75). The mean CT numbers of the hepatic parenchyma and ablation zone did not differ significantly between the TNC and the VNC images (P > 0.05). The lesion conspicuity of the ablation zone was rated as excellent or good in 97% of the iodine map (73/75), and the additional benefits of the iodine maps were positively rated as better to the same (mean 1.5). The CNR of the aorta-to-liver parenchyma was significantly higher on the iodine map (P = 0.002), and the CT number differences between the center and the periphery of the ablation zone were significantly lower on the iodine map (P VNC images can be an alternative to TNC

  4. Fully automatic algorithm for segmenting full human diaphragm in non-contrast CT Images

    Science.gov (United States)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2015-03-01

    The diaphragm is a sheet of muscle which separates the thorax from the abdomen and it acts as the most important muscle of the respiratory system. As such, an accurate segmentation of the diaphragm, not only provides key information for functional analysis of the respiratory system, but also can be used for locating other abdominal organs such as the liver. However, diaphragm segmentation is extremely challenging in non-contrast CT images due to the diaphragm's similar appearance to other abdominal organs. In this paper, we present a fully automatic algorithm for diaphragm segmentation in non-contrast CT images. The method is mainly based on a priori knowledge about the human diaphragm anatomy. The diaphragm domes are in contact with the lungs and the heart while its circumference runs along the lumbar vertebrae of the spine as well as the inferior border of the ribs and sternum. As such, the diaphragm can be delineated by segmentation of these organs followed by connecting relevant parts of their outline properly. More specifically, the bottom surface of the lungs and heart, the spine borders and the ribs are delineated, leading to a set of scattered points which represent the diaphragm's geometry. Next, a B-spline filter is used to find the smoothest surface which pass through these points. This algorithm was tested on a noncontrast CT image of a lung cancer patient. The results indicate that there is an average Hausdorff distance of 2.96 mm between the automatic and manually segmented diaphragms which implies a favourable accuracy.

  5. Hydrogen bonds and heat diffusion in α-helices: a computational study.

    Science.gov (United States)

    Miño, German; Barriga, Raul; Gutierrez, Gonzalo

    2014-08-28

    Recent evidence has shown a correlation between the heat diffusion pathways and the known allosteric communication pathways in proteins. Allosteric communication in proteins is a central, yet unsolved, problem in biochemistry, and the study and characterization of the structural determinants that mediate energy transfer among different parts of proteins is of major importance. In this work, we characterized the role of hydrogen bonds in diffusivity of thermal energy for two sets of α-helices with different abilities to form hydrogen bonds. These hydrogen bonds can be a constitutive part of the α-helices or can arise from the lateral chains. In our in vacuo simulations, it was observed that α-helices with a higher possibility of forming hydrogen bonds also had higher rates of thermalization. Our simulations also revealed that heat readily flowed through atoms involved in hydrogen bonds. As a general conclusion, according to our simulations, hydrogen bonds fulfilled an important role in heat diffusion in structural patters of proteins.

  6. Finite element analysis of helical flows in human aortic arch: A novel index

    OpenAIRE

    Lee, Cheng-Hung; Liu, Kuo-Sheng; Jhong, Guan-Heng; Liu, Shih-Jung; Hsu, Ming-Yi; Wang, Chao-Jan; Hung, Kuo-Chun

    2014-01-01

    This study investigates the helical secondary flows in the aortic arch using finite element analysis. The relationship between helical flow and the configuration of the aorta in patients of whose three-dimensional images constructed from computed tomography scans was examined. A finite element model of the pressurized root, arch, and supra-aortic vessels was developed to simulate the pattern of helical secondary flows. Calculations indicate that most of the helical secondary flow was formed i...

  7. Non-contrast enhanced magnetic resonance angiography techniques in candidates for kidney transplantation: A comparative study

    International Nuclear Information System (INIS)

    Blankholm, Anne Dorte; Ginnerup-Pedersen, Bodil; Stausbøl-Grøn, Brian; Haislund, Margit; Laustsen, Sussie; Ringgaard, Steffen

    2013-01-01

    Aim: Detailed knowledge of vessel status in potential candidates for kidney transplantation is essential for the surgeon. Contrast enhanced magnetic resonance angiography has previously been used intensively for assessing this, but the discovery that use of gadolinium based contrast agents in magnetic resonance imaging can cause Nephrogenic Systemic Fibrosis in patients suffering from severe kidney disease has lead to renewed interest in non-contrast enhanced magnetic resonance angiography. The aim of this study was to find a non-contrast enhanced magnetic resonance angiography method for preoperative evaluation of the pelvic vessels prior to kidney transplantation, providing a sufficient image quality. Method: In a prospective study we consecutively included 54 patients undergoing examinations prior to kidney transplantation. The patients were examined with the following magnetic resonance angiography sequences: A 2D Time of flight (n = 54), 3D Time of flight (n = 52) patients, 3D Phase Contrast (n = 54), 3D Balanced Steady State Free Precession (n = 52) and a 2D TRiggered Angiography Non-Contrast Enhanced (TRANCE) (a Spin Echo sequence with subtraction) (n = 48). The sequences were evaluated with respect to contrast, diagnostic performance and artefact burden. Results: Evaluating contrast, 3D Phase Contrast was significantly better than 2D Time of flight (p 0.2). The 2D Time of flight was significantly better than the other sequences (p < 0.001) in all cases. The artefact score was lowest for the Phase Contrast images and significantly superior to the 2D Time of flight (p < 0.005). The 2D Time of flight was significantly better than the three other sequences (p < 0.001) in all cases. Conclusion: Non-contrast enhanced magnetic resonance angiography offers a safe preoperative examination for assessment of vessel status before kidney transplantation. A combination of 2D Time of flight and 3D Phase Contrast acquisitions is recommended and can be performed within a

  8. Reduced bispectrum seeded by helical primordial magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Hortúa, Héctor Javier [Universidad Nacional de Colombia-Bogotá, Facultad de Ciencias, Departamento de Física, Carrera 30 Calle 45-03, C.P. 111321 Bogotá (Colombia); Castañeda, Leonardo, E-mail: hjhortuao@unal.edu.co, E-mail: lcastanedac@unal.edu.co [Grupo de Gravitación y Cosmología, Observatorio Astronómico Nacional, Universidad Nacional de Colombia, cra 45 No 26-85, Edificio Uriel Gutierréz, Bogotá, D.C. (Colombia)

    2017-06-01

    In this paper, we investigate the effects of helical primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) reduced bispectrum. We derive the full three-point statistics of helical magnetic fields and numerically calculate the even contribution in the collinear configuration. We then numerically compute the CMB reduced bispectrum induced by passive and compensated PMF modes on large angular scales. There is a negative signal on the bispectrum due to the helical terms of the fields and we also observe that the biggest contribution to the bispectrum comes from the non-zero IR cut-off for causal fields, unlike the two-point correlation case. For negative spectral indices, the reduced bispectrum is enhanced by the passive modes. This gives a lower value of the upper limit for the mean amplitude of the magnetic field on a given characteristic scale. However, high values of IR cut-off in the bispectrum, and the helical terms of the magnetic field relaxes this bound. This demonstrates the importance of the IR cut-off and helicity in the study of the nature of PMFs from CMB observations.

  9. Godbillon Vey Helicity and Magnetic Helicity in Magnetohydrodynamics

    Science.gov (United States)

    Webb, G. M.; Hu, Q.; Anco, S.; Zank, G. P.

    2017-12-01

    The Godbillon-Vey invariant arises in homology theory, and algebraic topology, where conditions for a layered family of 2D surfaces forms a 3D manifold were elucidated. The magnetic Godbillon-Vey helicity invariant in magnetohydrodynamics (MHD) is a helicity invariant that occurs for flows, in which the magnetic helicity density hm= A\\cdotB=0 where A is the magnetic vector potential and B is the magnetic induction. Our purpose is to elucidate the evolution of the magnetic Godbillon-Vey field η =A×B/|A|2 and the Godbillon-Vey helicity hgv}= η \\cdot∇ × η in general MHD flows in which the magnetic helicity hm≠q 0. It is shown that hm acts as a source term in the Godbillon-Vey helicity transport equation, in which hm is coupled to hgv via the shear tensor of the background flow. The transport equation for hgv depends on the electric field potential ψ , which is related to the gauge for A, which takes its simplest form for the advected A gauge in which ψ =A\\cdot u where u is the fluid velocity.

  10. COMPUTED TOMOGRAPHY DOSE INDEX MEASUREMENT FOR Hi-ART MEGAVOLTAGE HELICAL CT.

    Science.gov (United States)

    Liu, Minglu; Wang, Yunlai; Liao, Xiongfei

    2016-11-01

    On-line megavoltage computed tomography (MVCT) images are used to verify patient daily set-up in Hi-ART helical TomoTherapy unit. To evaluate the patient dose from MVCT scanning in image guidance, weighted computed tomography (CT) dose index (CTDI w ) was measured with PTW TM30009 CT pencil chamber in head and body phantoms for slice thicknesses of 2, 4 and 6 mm with different scan lengths. Dose length products (DLPs) were subsequently calculated. The CTDI w and DLP were compared with XVI kV CBCT and Brilliance simulator CT for routine clinical protocols. It was shown that CTDI and DLP had close relationship with the slice thickness and the scan length. The dose distribution in the transversal plane was very inhomogeneous due to the attenuation of the couch. Patient dose from MVCT was lower than XVI CBCT for the head scan, while larger for body scan. CTDI w , which is measured easily and reproducibly, can be used to assess the patient dose in MVCT. Regular measurement should be performed in QA & QC programmes. Appropriate slice thickness and scan range should be chosen to reduce the patient dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Association of achondroplasia with Down syndrome: difficulty in prenatal diagnosis by sonographic and 3-D helical computed tomographic analyses.

    Science.gov (United States)

    Kaga, Akimune; Murotsuki, Jun; Kamimura, Miki; Kimura, Masato; Saito-Hakoda, Akiko; Kanno, Junko; Hoshi, Kazuhiko; Kure, Shigeo; Fujiwara, Ikuma

    2015-05-01

    Achondroplasia and Down syndrome are relatively common conditions individually. But co-occurrence of both conditions in the same patient is rare and there have been no reports of fetal analysis of this condition by prenatal sonographic and three-dimensional (3-D) helical computed tomography (CT). Prenatal sonographic findings seen in persons with Down syndrome, such as a thickened nuchal fold, cardiac defects, and echogenic bowel were not found in the patient. A prenatal 3-D helical CT revealed a large head with frontal bossing, metaphyseal flaring of the long bones, and small iliac wings, which suggested achondroplasia. In a case with combination of achondroplasia and Down syndrome, it may be difficult to diagnose the co-occurrence prenatally without typical markers of Down syndrome. © 2014 Japanese Teratology Society.

  12. Noncontrast computed tomography can predict the outcome of shockwave lithotripsy via accurate stone measurement and abdominal fat distribution determination

    Directory of Open Access Journals (Sweden)

    Jiun-Hung Geng

    2015-01-01

    Full Text Available Urolithiasis is a common disease of the urinary system. Extracorporeal shockwave lithotripsy (SWL has become one of the standard treatments for renal and ureteral stones; however, the success rates range widely and failure of stone disintegration may cause additional outlay, alternative procedures, and even complications. We used the data available from noncontrast abdominal computed tomography (NCCT to evaluate the impact of stone parameters and abdominal fat distribution on calculus-free rates following SWL. We retrospectively reviewed 328 patients who had urinary stones and had undergone SWL from August 2012 to August 2013. All of them received pre-SWL NCCT; 1 month after SWL, radiography was arranged to evaluate the condition of the fragments. These patients were classified into stone-free group and residual stone group. Unenhanced computed tomography variables, including stone attenuation, abdominal fat area, and skin-to-stone distance (SSD were analyzed. In all, 197 (60% were classified as stone-free and 132 (40% as having residual stone. The mean ages were 49.35 ± 13.22 years and 55.32 ± 13.52 years, respectively. On univariate analysis, age, stone size, stone surface area, stone attenuation, SSD, total fat area (TFA, abdominal circumference, serum creatinine, and the severity of hydronephrosis revealed statistical significance between these two groups. From multivariate logistic regression analysis, the independent parameters impacting SWL outcomes were stone size, stone attenuation, TFA, and serum creatinine. [Adjusted odds ratios and (95% confidence intervals: 9.49 (3.72–24.20, 2.25 (1.22–4.14, 2.20 (1.10–4.40, and 2.89 (1.35–6.21 respectively, all p < 0.05]. In the present study, stone size, stone attenuation, TFA and serum creatinine were four independent predictors for stone-free rates after SWL. These findings suggest that pretreatment NCCT may predict the outcomes after SWL. Consequently, we can use these

  13. Noncontrast computed tomography can predict the outcome of shockwave lithotripsy via accurate stone measurement and abdominal fat distribution determination.

    Science.gov (United States)

    Geng, Jiun-Hung; Tu, Hung-Pin; Shih, Paul Ming-Chen; Shen, Jung-Tsung; Jang, Mei-Yu; Wu, Wen-Jen; Li, Ching-Chia; Chou, Yii-Her; Juan, Yung-Shun

    2015-01-01

    Urolithiasis is a common disease of the urinary system. Extracorporeal shockwave lithotripsy (SWL) has become one of the standard treatments for renal and ureteral stones; however, the success rates range widely and failure of stone disintegration may cause additional outlay, alternative procedures, and even complications. We used the data available from noncontrast abdominal computed tomography (NCCT) to evaluate the impact of stone parameters and abdominal fat distribution on calculus-free rates following SWL. We retrospectively reviewed 328 patients who had urinary stones and had undergone SWL from August 2012 to August 2013. All of them received pre-SWL NCCT; 1 month after SWL, radiography was arranged to evaluate the condition of the fragments. These patients were classified into stone-free group and residual stone group. Unenhanced computed tomography variables, including stone attenuation, abdominal fat area, and skin-to-stone distance (SSD) were analyzed. In all, 197 (60%) were classified as stone-free and 132 (40%) as having residual stone. The mean ages were 49.35 ± 13.22 years and 55.32 ± 13.52 years, respectively. On univariate analysis, age, stone size, stone surface area, stone attenuation, SSD, total fat area (TFA), abdominal circumference, serum creatinine, and the severity of hydronephrosis revealed statistical significance between these two groups. From multivariate logistic regression analysis, the independent parameters impacting SWL outcomes were stone size, stone attenuation, TFA, and serum creatinine. [Adjusted odds ratios and (95% confidence intervals): 9.49 (3.72-24.20), 2.25 (1.22-4.14), 2.20 (1.10-4.40), and 2.89 (1.35-6.21) respectively, all p < 0.05]. In the present study, stone size, stone attenuation, TFA and serum creatinine were four independent predictors for stone-free rates after SWL. These findings suggest that pretreatment NCCT may predict the outcomes after SWL. Consequently, we can use these predictors for selecting

  14. The utility of noncontrast computed tomography in the prompt diagnosis of postoperative complications after percutaneous nephrolithotomy.

    Science.gov (United States)

    Gnessin, Ehud; Mandeville, Jessica A; Handa, Shelly E; Lingeman, James E

    2012-04-01

    Noncontrast computed tomography (CT) is commonly utilized after percutaneous nephrolithotomy (PNL) to assess stone-free (SF) status. In addition to assessing SF status, CT is useful in the recognition of complications after PNL. We characterized complications demonstrated by postoperative CT scan and compared hospital re-admission rates based on whether or not CT was performed. We retrospectively reviewed records of 1032 consecutive patients from April 1999 to June 2010. Patients were divided into two cohorts based on whether they had a CT within 24 hours of PNL. Demographic data, CT findings, and need for re-admission for complication management were assessed. Nine hundred fifty-seven patients (92.7%) underwent post-PNL CT. CT-diagnosed complications were perinephric hematoma in 41 (4.3%; 2 requiring embolization and 9 necessitating transfusion), pleural effusion in 25 (2.6%; 10 requiring intervention), colon perforation in 2 (0.2%), and splenic injury in 2 (0.2%). Of patients with postoperative complications, 33% required intervention. Among patients with a CT, 6 (0.6%) were readmitted despite negative postoperative CT (four perinephric hematomas, one calyceal-pleural fistula, and one pseudoaneurysm). The sensitivity of CT for diagnosing complications was 92.7%. Seventy-five patients (7.3%) did not undergo CT post-PNL. Of these, four (5.33%) were readmitted: three for perinephric hematomas and one for ureteral clot obstruction. Patients undergoing post-PNL CT were less likely to be readmitted because of missed complications (p=0.02). Serious post-PNL complications are uncommon, but their prompt diagnosis and treatment is imperative. In addition to identifying residual stones, CT is useful in diagnosing postoperative complications. Postoperative CT could potentially be considered for all patients undergoing PNL, particularly in complex cases such as patients with anatomical abnormalities (renal anatomic abnormality or retrorenal colon), patients requiring upper

  15. Diagnostic accuracy of virtual non-contrast enhanced dual-energy CT for diagnosis of adrenal adenoma: A systematic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Michael J.; McInnes, Matthew D.F.; Schieda, Nicola [University of Ottawa Department of Radiology, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON (United States); El-Khodary, Mohamed [McMaster University Department of Radiology, Hamilton, ON (Canada); McGrath, Trevor A. [University of Ottawa, Faculty of Medicine, Ottawa, Ontario (Canada)

    2017-10-15

    To compare the diagnostic accuracy of dual-energy (DE) virtual non-contrast computed tomography (vNCT) to non-contrast CT (NCT) for the diagnosis of adrenal adenomas. Search of multiple databases and grey literature was performed. Two reviewers independently applied inclusion criteria and extracted data. Risk of bias was assessed using QUADAS-2. Summary estimates of diagnostic accuracy were generated and sources of heterogeneity were assessed. Five studies (170 patients; 192 adrenal masses) were included for diagnostic accuracy assessment; all used dual-source dual-energy CT. Pooled sensitivity for adrenal adenoma on vNCT was 54% (95% CI: 47-62%). Pooled sensitivity for NCT was 57% (95% CI: 45-69%). Pooling of specificity was not performed since no false positives were reported. There was a trend for overestimation of HU density on vNCT as compared to NCT which appeared related to contrast timing. Potential sources of bias were seen regarding the index test and reference standard for the included studies. Potential sources of heterogeneity between studies were seen in adenoma prevalence and intravenous contrast timing. vNCT images generated from dual-energy CT demonstrated comparable sensitivity to NCT for the diagnosis of adenomas; however the included studies are heterogeneous and at high risk for some types of bias. (orig.)

  16. Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Man [Seoul Nat' l Univ., Seoul (Korea, Republic of); Zhong, Yiming; Nam, Jin Hyun [Daegu Univ., Daegu (Korea, Republic of); Chung, Jae Dong [Sejong Univ., Seoul (Korea, Republic of); Hong, Hiki [Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    In a solar domestic hot water (Shadow) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (Test) as hot water. In this study, a computational fluid dynamics (CAD) model was developed to predict the solar thermal energy storage in a hybrid type Test equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a Test, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the Test. The developed model was validated by the good agreement between the CAD results and the experimental results performed with the hybrid-type Test in Shadow settings.

  17. Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater

    International Nuclear Information System (INIS)

    Baek, Seung Man; Zhong, Yiming; Nam, Jin Hyun; Chung, Jae Dong; Hong, Hiki

    2013-01-01

    In a solar domestic hot water (Shadow) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (Test) as hot water. In this study, a computational fluid dynamics (CAD) model was developed to predict the solar thermal energy storage in a hybrid type Test equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a Test, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the Test. The developed model was validated by the good agreement between the CAD results and the experimental results performed with the hybrid-type Test in Shadow settings

  18. Dynamic helical CT mammography of breast cancer

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Fukushima, Hitoshi; Okamura, Ryuji; Nakamura, Yoshiaki; Morimoto, Taisuke; Urata, Yoji; Mukaihara, Sumio; Hayakawa, Katsumi

    2006-01-01

    The purpose of this study was to determine whether dynamic helical computed tomography (CT)-mammography could assist in selecting the most appropriate surgical method in women with breast cancer. Preoperative contrast-enhanced helical CT scanning of the breast was performed on 133 female patients with suspicion of breast cancer at the same time as clinical, mammographic, and/or ultrasonographic examinations. The patients were scanned in the prone position with a specially designed CT-compatible device. A helical scan was made with rapid intravenous bolus injection (3 ml/s) of 100 ml of iodine contrast material. Three-dimensional maximum intensity projection (MIP) images were reconstructed, and CT findings were correlated with surgical and histopathological findings. Histopathological analysis revealed 84 malignant lesions and seven benign lesions. The sensitivity, specificity, and accuracy levels of the CT scanning were 94.6%, 58.6%, and 78.9%. Helical scanning alone revealed additional contralateral carcinomas in three of four patients and additional ipsilateral carcinomas in three of five patients. However, the technique gave false-positive readings in 24 patients. The preoperative CT-mammogram altered the surgical method in six patients. Dynamic helical CT-mammography in the prone position may be one of the choices of adjunct imaging in patients with suspected breast cancer scheduled for surgery. (author)

  19. Virtual Non-Contrast CT Using Dual-Energy Spectral CT: Feasibility of Coronary Artery Calcium Scoring.

    Science.gov (United States)

    Song, Inyoung; Yi, Jeong Geun; Park, Jeong Hee; Kim, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin

    2016-01-01

    To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated VNC images were reconstructed using two kinds of 2-material decomposition algorithms (material density iodine-water pair [MDW], material density iodine-calcium pair [MDC]) and a material suppressed algorithm (material suppressed iodine [MSI]). Two readers independently quantified calcium on VNC and TNC images. The Spearman correlation coefficient test and Bland-Altman method were used for statistical analyses. Coronary artery calcium scores from all three VNC images showed excellent correlation with those from the TNC images (Spearman's correlation coefficient [ρ] = 0.94, 0.88, and 0.89 for MDW, MDC, and MSI, respectively; p VNC images also correlated well with those from TNC images (ρ = 0.92, 0.87, and 0.91 for MDW, MDC, and MSI, respectively; p VNC images, coronary calcium from MDW correlated best with that from TNC. The coronary artery calcium scores and volumes were significantly lower from the VNC images than from the TNC images (p VNC images from contrast-enhanced CT using dual-energy material decomposition/suppression is feasible for coronary calcium scoring. The absolute value from VNC tends to be smaller than that from TNC.

  20. Assessment of temporal resolution of multi-detector row computed tomography in helical acquisition mode using the impulse method.

    Science.gov (United States)

    Ichikawa, Katsuhiro; Hara, Takanori; Urikura, Atsushi; Takata, Tadanori; Ohashi, Kazuya

    2015-06-01

    The purpose of this study was to propose a method for assessing the temporal resolution (TR) of multi-detector row computed tomography (CT) (MDCT) in the helical acquisition mode using temporal impulse signals generated by a metal ball passing through the acquisition plane. An 11-mm diameter metal ball was shot along the central axis at approximately 5 m/s during a helical acquisition, and the temporal sensitivity profile (TSP) was measured from the streak image intensities in the reconstructed helical CT images. To assess the validity, we compared the measured and theoretical TSPs for the 4-channel modes of two MDCT systems. A 64-channel MDCT system was used to compare TSPs and image quality of a motion phantom for the pitch factors P of 0.6, 0.8, 1.0 and 1.2 with a rotation time R of 0.5 s, and for two R/P combinations of 0.5/1.2 and 0.33/0.8. Moreover, the temporal transfer functions (TFs) were calculated from the obtained TSPs. The measured and theoretical TSPs showed perfect agreement. The TSP narrowed with an increase in the pitch factor. The image sharpness of the 0.33/0.8 combination was inferior to that of the 0.5/1.2 combination, despite their almost identical full width at tenth maximum values. The temporal TFs quantitatively confirmed these differences. The TSP results demonstrated that the TR in the helical acquisition mode significantly depended on the pitch factor as well as the rotation time, and the pitch factor and reconstruction algorithm affected the TSP shape. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Avaliação da concordância interobservador na análise da tomografia computadorizada sem contraste no diagnóstico da urolitíase em pacientes com cólica renal aguda Interobserver agreement on non-contrast computed tomography interpretation for diagnosis of urolithiasis in patients with acute flank pain

    Directory of Open Access Journals (Sweden)

    Luís Ronan Marquez Ferreira de Souza

    2006-10-01

    Full Text Available OBJETIVO: Avaliar a reprodutibilidade da tomografia computadorizada sem contraste na avaliação da litíase ureteral e os sinais secundários de obstrução do sistema coletor em pacientes com cólica renal aguda. MATERIAIS E MÉTODOS: Estudo prospectivo de 52 pacientes com diagnóstico clínico de cólica renal aguda submetidos a exame de tomografia computadorizada de abdome sem contraste. Os exames foram realizados com técnica helicoidal e posteriormente analisados por três observadores independentes, com a concordância interobservador avaliada pelo método estatístico kappa (kapa. Foram analisados os parâmetros: a presença, localização e mensuração dos cálculos ureterais; b dilatação do sistema coletor intra-renal; c heterogeneidade da gordura perirrenal; d dilatação ureteral; e edema da parede ureteral (sinal do halo. RESULTADOS: Foram encontrados 40 cálculos ureterais na tomografia computadorizada (77%. A concordância interobservador para a identificação do cálculo ureteral e da dilatação ureteral foi quase perfeita (kapa = 0,89 e kapa = 0,87, respectivamente, substancial para dilatação do sistema coletor intra-renal (kapa = 0,77 e moderada para heterogeneidade da gordura perirrenal e para edema da parede ureteral (kapa = 0,55 e kapa = 0,56, respectivamente. CONCLUSÃO: A tomografia computadorizada de abdome sem contraste apresenta elevada reprodutibilidade na avaliação da litíase ureteral e dos sinais secundários de obstrução do sistema coletor.OBJECTIVE: To evaluate the interobserver agreement on non-contrast computed tomography interpretation by a group of experienced abdominal radiologists, for the study of urolithiasis in patients presenting acute flank pain. MATERIALS AND METHODS: Prospective study of 52 patients submitted to non-contrast enhanced helical computed tomography. The images were subsequently analyzed by three independent observers, with the interobserver agreement assessed by means of the

  2. Helicity amplitudes and electromagnetic decays of hyperon resonances

    International Nuclear Information System (INIS)

    Cauteren, T. van; Ryckebusch, J.; Metsch, B.; Petry, H.R.

    2005-01-01

    We present results for the helicity amplitudes of the lowest-lying hyperon resonances Y * , computed within the framework of the Bonn Constituent-Quark model, which is based on the Bethe-Salpeter approach. The seven parameters entering the model were fitted to the best-known baryon masses. Accordingly, the results for the helicity amplitudes are genuine predictions. Some hyperon resonances are seen to couple more strongly to a virtual photon with finite Q 2 than to a real photon. Other Y * 's, such as the S 01 (1670) Λ-resonance or the S 11 (1620) Σ-resonance, couple very strongly to real photons. We present a qualitative argument for predicting the behaviour of the helicity asymmetries of baryon resonances at high Q 2 . (orig.)

  3. A convolutional neural network for intracranial hemorrhage detection in non-contrast CT

    Science.gov (United States)

    Patel, Ajay; Manniesing, Rashindra

    2018-02-01

    The assessment of the presence of intracranial hemorrhage is a crucial step in the work-up of patients requiring emergency care. Fast and accurate detection of intracranial hemorrhage can aid treating physicians by not only expediting and guiding diagnosis, but also supporting choices for secondary imaging, treatment and intervention. However, the automatic detection of intracranial hemorrhage is complicated by the variation in appearance on non-contrast CT images as a result of differences in etiology and location. We propose a method using a convolutional neural network (CNN) for the automatic detection of intracranial hemorrhage. The method is trained on a dataset comprised of cerebral CT studies for which the presence of hemorrhage has been labeled for each axial slice. A separate test dataset of 20 images is used for quantitative evaluation and shows a sensitivity of 0.87, specificity of 0.97 and accuracy of 0.95. The average processing time for a single three-dimensional (3D) CT volume was 2.7 seconds. The proposed method is capable of fast and automated detection of intracranial hemorrhages in non-contrast CT without being limited to a specific subtype of pathology.

  4. Risk Stratification of Thyroid Incidentalomas Found on PET/CT: The Value of Iodine Content on Noncontrast Computed Tomography.

    Science.gov (United States)

    Kim, Dongwoo; Hwang, Sang Hyun; Cha, Jongtae; Jo, Kwanhyeong; Lee, Narae; Yun, Mijin

    2015-11-01

    The Hounsfield unit (HU) ratio of thyroid nodules was assessed compared to the contralateral thyroid lobe on noncontrast computed tomography (CT) to stratify further the risk of malignancy in thyroid incidentalomas found on 18F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography/CT (PET/CT). This retrospective analysis included 82 patients who had thyroid incidentalomas on PET/CT in 2011. On PET/CT, the maximal standardized uptake value ratios of the thyroid nodule compared to liver (T/BSUV) and the HU ratios of the thyroid nodule compared to contralateral thyroid lobe (T/BHU) were calculated. Diagnostic performances of the T/BSUV and T/BHU were compared. The area under the curve of T/BHU was higher than that of T/BSUV (0.941 vs. 0.689, p risk of malignancy was much higher (71.1%) in nodules with a T/BHU cutoff value ≤0.68, whereas it was 0% in nodules with a T/BHU of >0.68. In this study, there were 18 nodules with nondiagnostic (n = 7) or atypia of undetermined significance or follicular lesion of undetermined significance cytologies (n = 11) after fine-needle aspiration biopsy (FNAB). When the T/BHU cutoff value was applied, three (60%) of the five nodules with a T/BHU of ≤0.68 were found to be papillary carcinomas. The remaining 13 nodules with a T/BHU of >0.68 were all benign with a risk of malignancy of 0%. T/BHU is a simple and effective parameter to stratify the risk of malignancy in thyroid incidentalomas found on PET/CT. This may be of clinical relevance in those nodules with nondiagnostic or undetermined significance cytologies upon FNAB in the scheme of current clinical practice.

  5. A Prospective Evaluation of Helical Tomotherapy

    International Nuclear Information System (INIS)

    Bauman, Glenn; Yartsev, Slav; Rodrigues, George; Lewis, Craig; Venkatesan, Varagur M.; Yu, Edward; Hammond, Alex; Perera, Francisco; Ash, Robert; Dar, A. Rashid; Lock, Michael; Baily, Laura; Coad, Terry C; Trenka, Kris C.; Warr, Barbara; Kron, Tomas; Battista, Jerry; Van Dyk, Jake

    2007-01-01

    Purpose: To report results from two clinical trials evaluating helical tomotherapy (HT). Methods and Materials: Patients were enrolled in one of two prospective trials of HT (one for palliative and one for radical treatment). Both an HT plan and a companion three-dimensional conformal radiotherapy (3D-CRT) plan were generated. Pretreatment megavoltage computed tomography was used for daily image guidance. Results: From September 2004 to January 2006, a total of 61 sites in 60 patients were treated. In all but one case, a clinically acceptable tomotherapy plan for treatment was generated. Helical tomotherapy plans were subjectively equivalent or superior to 3D-CRT in 95% of plans. Helical tomotherapy was deemed equivalent or superior in two thirds of dose-volume point comparisons. In cases of inferiority, differences were either clinically insignificant and/or reflected deliberate tradeoffs to optimize the HT plan. Overall imaging and treatment time (median) was 27 min (range, 16-91 min). According to a patient questionnaire, 78% of patients were satisfied to very satisfied with the treatment process. Conclusions: Helical tomotherapy demonstrated clear advantages over conventional 3D-CRT in this diverse patient group. The prospective trials were helpful in deploying this technology in a busy clinical setting

  6. Energy and helicity of magnetic torus knots and braids

    Science.gov (United States)

    Oberti, Chiara; Ricca, Renzo L.

    2018-02-01

    By considering steady magnetic fields in the shape of torus knots and unknots in ideal magnetohydrodynamics, we compute some fundamental geometric and physical properties to provide estimates for magnetic energy and helicity. By making use of an appropriate parametrization, we show that knots with dominant toroidal coils that are a good model for solar coronal loops have negligible total torsion contribution to magnetic helicity while writhing number provides a good proxy. Hence, by the algebraic definition of writhe based on crossing numbers, we show that the estimated values of writhe based on image analysis provide reliable information for the exact values of helicity. We also show that magnetic energy is linearly related to helicity, and the effect of the confinement of magnetic field can be expressed in terms of geometric information. These results can find useful application in solar and plasma physics, where braided structures are often present.

  7. Respiratory-Gated Helical Computed Tomography of Lung: Reproducibility of Small Volumes in an Ex Vivo Model

    International Nuclear Information System (INIS)

    Biederer, Juergen; Dinkel, Julien; Bolte, Hendrik; Welzel, Thomas; Hoffmann, Beata M.Sc.; Thierfelder, Carsten; Mende, Ulrich; Debus, Juergen; Heller, Martin; Kauczor, Hans-Ulrich

    2007-01-01

    Purpose: Motion-adapted radiotherapy with gated irradiation or tracking of tumor positions requires dedicated imaging techniques such as four-dimensional (4D) helical computed tomography (CT) for patient selection and treatment planning. The objective was to evaluate the reproducibility of spatial information for small objects on respiratory-gated 4D helical CT using computer-assisted volumetry of lung nodules in a ventilated ex vivo system. Methods and Materials: Five porcine lungs were inflated inside a chest phantom and prepared with 55 artificial nodules (mean diameter, 8.4 mm ± 1.8). The lungs were respirated by a flexible diaphragm and scanned with 40-row detector CT (collimation, 24 x 1.2 mm; pitch, 0.1; rotation time, 1 s; slice thickness, 1.5 mm; increment, 0.8 mm). The 4D-CT scans acquired during respiration (eight per minute) and reconstructed at 0-100% inspiration and equivalent static scans were scored for motion-related artifacts (0 or absent to 3 or relevant). The reproducibility of nodule volumetry (three readers) was assessed using the variation coefficient (VC). Results: The mean volumes from the static and dynamic inspiratory scans were equal (364.9 and 360.8 mm 3 , respectively, p = 0.24). The static and dynamic end-expiratory volumes were slightly greater (371.9 and 369.7 mm 3 , respectively, p = 0.019). The VC for volumetry (static) was 3.1%, with no significant difference between 20 apical and 20 caudal nodules (2.6% and 3.5%, p = 0.25). In dynamic scans, the VC was greater (3.9%, p = 0.004; apical and caudal, 2.6% and 4.9%; p = 0.004), with a significant difference between static and dynamic in the 20 caudal nodules (3.5% and 4.9%, p = 0.015). This was consistent with greater motion-related artifacts and image noise at the diaphragm (p <0.05). The VC for interobserver variability was 0.6%. Conclusion: Residual motion-related artifacts had only minimal influence on volumetry of small solid lesions. This indicates a high reproducibility of

  8. Conversion from mutual helicity to self-helicity observed with IRIS

    Science.gov (United States)

    Li, L. P.; Peter, H.; Chen, F.; Zhang, J.

    2014-10-01

    Context. In the upper atmosphere of the Sun observations show convincing evidence for crossing and twisted structures, which are interpreted as mutual helicity and self-helicity. Aims: We use observations with the new Interface Region Imaging Spectrograph (IRIS) to show the conversion of mutual helicity into self-helicity in coronal structures on the Sun. Methods: Using far UV spectra and slit-jaw images from IRIS and coronal images and magnetograms from SDO, we investigated the evolution of two crossing loops in an active region, in particular, the properties of the Si IV line profile in cool loops. Results: In the early stage two cool loops cross each other and accordingly have mutual helicity. The Doppler shifts in the loops indicate that they wind around each other. As a consequence, near the crossing point of the loops (interchange) reconnection sets in, which heats the plasma. This is consistent with the observed increase of the line width and of the appearance of the loops at higher temperatures. After this interaction, the two new loops run in parallel, and in one of them shows a clear spectral tilt of the Si IV line profile. This is indicative of a helical (twisting) motion, which is the same as to say that the loop has self-helicity. Conclusions: The high spatial and spectral resolution of IRIS allowed us to see the conversion of mutual helicity to self-helicity in the (interchange) reconnection of two loops. This is observational evidence for earlier theoretical speculations. Movie associated with Fig. 1 and Appendix A are available in electronic form at http://www.aanda.org

  9. Unenhanced helical computed tomography in the evaluation of acute flank pain

    International Nuclear Information System (INIS)

    Ahmad, N.A.; Ather, M.H.; Rees, J.

    2003-01-01

    The purpose of this study was to determine the value of unenhanced helical computed tomography (UHCT) in the diagnosis of acute flank pain at our institution. Two hundred and thirty-three consecutive UHCT examinations, performed for suspected renal/ureteral colic between July 2000 and August 2001 were reviewed, along with pertinent medical records. Ureteral calculi were identified in 148 (64%) examinations, evidence of recent passage of calculi was found in 10 (4%) and no calculi were found in 75 (32%). Thirty-two of the conservatively managed patients were excluded for inadequate follow-up. In the remaining 201 patients, sensitivity of UHCT in diagnosing calculi was 99% and specificity was 98%, while the positive predictive value was 99% and negative positive predictive value was 98%. Overall, an alternative or additional diagnosis was established in 28 (12%) patients. Upon diagnosis of ureterolithiasis on UHCT, none of the patients required additional imaging studies for confirmation. UHCT is a highly sensitive imaging modality for the detection of urinary tract calculi and obstruction. (author)

  10. A comparison of non-contrast and contrast-enhanced MRI in the initial stage of Legg-Calve-Perthes disease

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Harry K.W. [Texas Scottish Rite Hospital for Children, Center of Excellence in Hip Disorders, Dallas, TX (United States); University of Texas Southwestern, Department of Orthopedic Surgery, Dallas, TX (United States); Kaste, Sue [St. Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States); St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States); University of Tennessee School of Health Sciences, Department of Radiology, Memphis, TN (United States); Dempsey, Molly; Wilkes, David [Texas Scottish Rite Hospital for Children, Department of Radiology, Dallas, TX (United States)

    2013-09-15

    A prognostic indicator of outcome for Legg-Calve-Perthes disease (LCP) is needed to guide treatment decisions during the initial stage of the disease (stage 1), before deformity occurs. Radiographic prognosticators are applicable only after fragmentation (stage II). We investigated pre- and postcontrast MRI in depicting stage I femoral head involvement. Thirty children with stage I LCP underwent non-contrast coronal T1 fast spin-echo (FSE) and corresponding postcontrast fat-suppressed T1-weighted fast spin-echo (FSE) sequences to quantify the extent of femoral head involvement. Three pediatric radiologists and one pediatric orthopedic surgeon independently measured central head involvement. Interobserver reliability of percent head involvement using non-contrasted MR images had intraclass correlation coefficient (ICC) of 0.72. Postcontrast MRI improved interobserver reliability (ICC 0.82). Qualitatively, the area of involvement was more clearly visible on contrast-enhanced MRI. A comparison of results obtained by each observer using the two MRI techniques showed no correlation. ICC ranged from -0.08 to 0.03 for each observer. Generally, greater head involvement was depicted by contrast compared with non-contrast MRI (Pearson r = -0.37, P = 0.04). Pre- and postcontrast MRI assess two different components of stage I LCP. However, contrast-enhanced MRI more clearly depicts the area of involvement. (orig.)

  11. Pitch dependence of longitudinal sampling and aliasing effects in multi-slice helical computed tomography (CT)

    International Nuclear Information System (INIS)

    La Riviere, Patrick J.; Pan Xiaochuan

    2002-01-01

    In this work, we investigate longitudinal sampling and aliasing effects in multi-slice helical CT. We demonstrate that longitudinal aliasing can be a significant, complicated, and potentially detrimental effect in multi-slice helical CT reconstructions. Multi-slice helical CT scans are generally undersampled longitudinally for all pitches of clinical interest, and the resulting aliasing effects are spatially variant. As in the single-slice case, aliasing is shown to be negligible at the isocentre for circularly symmetric objects due to a fortuitous aliasing cancellation phenomenon. However, away from the isocentre, aliasing effects can be significant, spatially variant, and highly pitch dependent. This implies that measures more sophisticated than isocentre slice sensitivity profiles are needed to characterize longitudinal properties of multi-slice helical CT systems. Such measures are particularly important in assessing the question of whether there are preferred pitches in helical CT. Previous analyses have generally focused only on isocentre sampling patterns, and our more global analysis leads to somewhat different conclusions than have been reached before, suggesting that pitches 3, 4, 5, and 6 are favourable, and that half-integer pitches are somewhat suboptimal. (author)

  12. Helicity, Reconnection, and Dynamo Effects

    International Nuclear Information System (INIS)

    Ji, Hantao

    1998-01-01

    The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation

  13. Comparison of Accuracy of Contrast Enhanced Computed Tomography with Accuracy of Non-Contrast Magnetic Resonance Imaging in Evaluation of Local Extension of Base of Tongue Malignancies

    Directory of Open Access Journals (Sweden)

    Ketan Rathod

    2018-01-01

    Full Text Available Diagnosis of base of tongue malignancy can be obtained through clinical examination and biopsy. Magnetic Resonance Imaging (MRI and Computed Tomography (CT are used to detect its local extension, nodal spread and distant metastases. The main aim of study was to compare the accuracy of MRI and contrast enhanced CT in determining the local extent of base of tongue malignancy. Twenty five patients, biopsy proven cases of squamous cell carcinoma of base of tongue were taken. 1.5 Tesla Magnetic Resonance Unit with T2 weighted axial, coronal image; T1 weighted axial, coronal image; and STIR (Short tau inversion recovery axial and coronal images were used. 16 slice Computed Tomography unit with non-contrast and contrast enhanced images were used. Accuracy of CT to detect midline crossing: 50%; accuracy of MRI to detect midline crossing: 100%; accuracy of CT to detect anterior extension: 92%; accuracy of MRI to detect anterior extension: 100%; accuracy of CT to detect tonsillar fossa invasion: 83%; accuracy of MRI to detect tonsillar fossa invasion: 100%; accuracy of CT to detect oro pharyngeal spread: 83%; accuracy of MRI to detect oro pharyngeal spread: 100%; accuracy of CT to detect bone involvement: 20%; accuracy of MRI to detect bone involvement: 100%. MRI proved to be a better investigation than CT, in terms of evaluation of depth of invasion, presence of bony involvement, extension to opposite side, anterior half of tongue, tonsillar fossa, floor of mouth or oropharynx.

  14. A fundamental study of non-contrast enhanced MR angiography using ECG gated-3D fast spin echo at 3.0 T

    International Nuclear Information System (INIS)

    Nakato, Kengo; Hiai, Yasuhiro; Tomiguchi, Seiji

    2010-01-01

    Contrast-enhanced magnetic resonance angiography (CE-MRA) is frequently performed in body and extremity studies because of its superior ability to detect the vascular stenosis. However, nephrotoxicity of the contrast medium has been emphasized in recent years. Non-contrast MRA using the three-dimensional electrocardiogram-synchronized fast spin echo method (fresh blood imaging (FBI), non-contrast MRA of arteries and veins (NATIVE) and triggered acquisition non contrast enhancement MRA (TRANCE)) is recommended as a substitute for CE-MRA. There are a few reports in the literature that evaluate the detectability of vascular stenosis using non-contrast MRA on 3.0 T MRI. The purpose of this study was to evaluate the detectability of vascular stenosis using non-contrast MRA at 3.0 T with an original vascular phantom. The vascular phantom consisted of silicon tubes. 30% and 70% stenosis of luminal diameter were made. Each silicon tube connected a pump producing a pulsatile flow. A flowing material to was used in this study to show the similarity of the intensity to blood on MRI. MRA without a contrast medium (NATIVE sequence) were performed in the vascular phantom by changing the image matrix, static magnetic field strength and flow velocity. In addition, the NATIVE sequence was used with or without flow compensation. Vascular stenosis was quantitatively estimated by measurement of the signal intensities in non-contrast MRA images. MRA with NATIVE sequence demonstrated an accurate estimation of 30% vascular stenosis at slow flow velocity. However, 30% stenosis was overestimated in cases of high flow velocity. Estimation was improved by using a flow compensation sequence. 70% stenosis was overestimated on MRA with NATIVE sequence. Estimation of 70% stenosis was improved by using a flow compensation sequence. Accurate estimation of vascular stenosis in MRA with a NATIVE sequence is improved by using the flow compensation technique. MRA with NATIVE sequence is considered to

  15. The diagnostic performance of non-contrast 3-Tesla magnetic resonance imaging (3-T MRI) versus 1.5-Tesla magnetic resonance arthrography (1.5-T MRA) in femoro-acetabular impingement

    Energy Technology Data Exchange (ETDEWEB)

    Crespo-Rodríguez, Ana M., E-mail: anacresporodriguez@gmail.com [Department of Radiology, Hospital Universitario Puerta de Hierro Majadahonda, c/ Joaquín Rodrigo 2, Majadahonda 28222, Madrid (Spain); De Lucas-Villarrubia, Jose C., E-mail: jclucasv@hotmail.com [Department of Orthopaedics and Traumatology at the Hospital Universitario Puerta de Hierro Majadahonda, c/ Joaquín Rodrigo 2, Majadahonda 28222, Madrid (Spain); Pastrana-Ledesma, Miguel, E-mail: m.pastrana@telefonica.net [Department of Radiology, Hospital Universitario Puerta de Hierro Majadahonda, c/ Joaquín Rodrigo 2, Majadahonda 28222, Madrid (Spain); Hualde-Juvera, Ana, E-mail: ana.hualdej@salud.madrid.org [Department of Radiology, Hospital Universitario Puerta de Hierro Majadahonda, c/ Joaquín Rodrigo 2, Majadahonda 28222, Madrid (Spain); Méndez-Alonso, Santiago, E-mail: smendez.sma@gmail.com [Department of Radiology, Hospital Universitario Puerta de Hierro Majadahonda, c/ Joaquín Rodrigo 2, Majadahonda 28222, Madrid (Spain); Padron, Mario, E-mail: mario.padron@clinicacemtro.com [Department of Radiology, Clínica Cemtro, Avda Ventisquero de la Condesa 42 Madrid 28035, Madrid (Spain)

    2017-03-15

    Highlights: • High resolution sequences at 3-T MRI extend accuracy in hip assessment without any need for intra-articular injection of contrast media. • As compared to 1.5-T MRA, 3-T non-contrast MRI of the hip improves the patient experience and avoids the potential risks of an invasive procedure and contrast media. • Avoiding the need for arthrographic procedures in the Radiology Department improves patient throughput and reduces costs. - Abstract: Objective: The aim of this study was to evaluate the diagnostic accuracy of 3-T non-contrast MRI versus 1.5-T MRA for assessing labrum and articular cartilage lesions in patients with clinical suspicion of femoro-acetabular impingement (FAI). Subjects and methods: Fifty patients (thirty men and twenty women, mean age 42.5 years) underwent 1.5-T MRA, 3-T MRI and arthroscopy on the same hip. An optimized high-resolution proton density spin echo pulse sequence was included in the 3-T non-contrast MRI protocol. Results: The 3-T non-contrast MRI identified forty-two of the forty-three arthroscopically proven tears at the labral-chondral transitional zone (sensitivity, 97.7%; specificity, 100%; positive predictive value (PPV), 100%; negative predictive value (NPV), 87.5%; accuracy 98%). With 1.5-T MRA, forty-four tears were diagnosed. However, there was one false positive (sensitivity, 100%; specificity, 85.7%; PPV, 97.7%; NPV, 100%; accuracy 98%). Agreement between arthroscopy and MRI, whether 3-T non-contrast MRI or 1.5-T MRA, as to the degree of chondral lesion in the acetabulum was reached in half of the patients and in the femur in 76% of patients. Conclusion: Non-invasive assessment of the hip is possible with 3-T MR magnet. 3-T non-contrast MRI could replace MRA as the workhorse technique for assessing hip internal damage. MRA would then be reserved for young adults with a strong clinical suspicion of FAI but normal findings on 3-T non-contrast MRI. When compared with 1.5-T MRA, optimized sequences with 3-T non-contrast

  16. The diagnostic performance of non-contrast 3-Tesla magnetic resonance imaging (3-T MRI) versus 1.5-Tesla magnetic resonance arthrography (1.5-T MRA) in femoro-acetabular impingement

    International Nuclear Information System (INIS)

    Crespo-Rodríguez, Ana M.; De Lucas-Villarrubia, Jose C.; Pastrana-Ledesma, Miguel; Hualde-Juvera, Ana; Méndez-Alonso, Santiago; Padron, Mario

    2017-01-01

    Highlights: • High resolution sequences at 3-T MRI extend accuracy in hip assessment without any need for intra-articular injection of contrast media. • As compared to 1.5-T MRA, 3-T non-contrast MRI of the hip improves the patient experience and avoids the potential risks of an invasive procedure and contrast media. • Avoiding the need for arthrographic procedures in the Radiology Department improves patient throughput and reduces costs. - Abstract: Objective: The aim of this study was to evaluate the diagnostic accuracy of 3-T non-contrast MRI versus 1.5-T MRA for assessing labrum and articular cartilage lesions in patients with clinical suspicion of femoro-acetabular impingement (FAI). Subjects and methods: Fifty patients (thirty men and twenty women, mean age 42.5 years) underwent 1.5-T MRA, 3-T MRI and arthroscopy on the same hip. An optimized high-resolution proton density spin echo pulse sequence was included in the 3-T non-contrast MRI protocol. Results: The 3-T non-contrast MRI identified forty-two of the forty-three arthroscopically proven tears at the labral-chondral transitional zone (sensitivity, 97.7%; specificity, 100%; positive predictive value (PPV), 100%; negative predictive value (NPV), 87.5%; accuracy 98%). With 1.5-T MRA, forty-four tears were diagnosed. However, there was one false positive (sensitivity, 100%; specificity, 85.7%; PPV, 97.7%; NPV, 100%; accuracy 98%). Agreement between arthroscopy and MRI, whether 3-T non-contrast MRI or 1.5-T MRA, as to the degree of chondral lesion in the acetabulum was reached in half of the patients and in the femur in 76% of patients. Conclusion: Non-invasive assessment of the hip is possible with 3-T MR magnet. 3-T non-contrast MRI could replace MRA as the workhorse technique for assessing hip internal damage. MRA would then be reserved for young adults with a strong clinical suspicion of FAI but normal findings on 3-T non-contrast MRI. When compared with 1.5-T MRA, optimized sequences with 3-T non-contrast

  17. Optimization of a stellarator design including modulation of the helical winding geometry

    International Nuclear Information System (INIS)

    Sharp, L.E.; Petersen, L.F.; Blamey, J.W.

    1979-06-01

    The optimization of the helical winding geometry of the next generation of high performance stellarators is of critical importance as the current in the helical conductors must be kept to a minimum to reduce the very large electromechanical forces on the conductors. Using a modified version of the Culham computer code MAGBAT, steps towards optimization are described

  18. A rigid motion correction method for helical computed tomography (CT)

    International Nuclear Information System (INIS)

    Kim, J-H; Kyme, A; Fulton, R; Nuyts, J; Kuncic, Z

    2015-01-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data. (paper)

  19. Comparison of excretory phase, helical computed tomography with intravenous urography in patients with painless haematuria

    International Nuclear Information System (INIS)

    O'Malley, M.E.; Hahn, P.F.; Yoder, I.C.; Gazelle, G.S.; McGovern, F.J.; Mueller, P.R.

    2003-01-01

    AIM: To compare excretory phase, helical computed tomography (CT) with intravenous (IV) urography for evaluation of the urinary tract in patients with painless haematuria. MATERIALS AND METHODS: Ninety-one out-patients had IV urography followed by helical CT limited to the urinary tract. Both IV urograms and CT images were evaluated for abnormalities of the urinary tract in a blinded, prospective manner. The clinical significance of abnormalities was scored subjectively and receiver operator characteristic curve analysis was performed. RESULTS: In 69 of 91 patients (76%), no cause of haematuria was identified. In 22 of 91 patients (24%), the cause of haematuria was identified as follows: transitional cell cancer of the bladder (n=15), urinary tract stones (n=3), cystitis (n=2), haemorrhagic pyelitis (n=1) and benign ureteral stricture (n=1). With IV urography, there were 15 true-positive, seven false-negative and three false-positive interpretations. With CT, there were 18 true-positive, four false-negative and two false-positive interpretations. There was no significant difference between IV and CT urography for the significance of the positive interpretations (n=0.47). CONCLUSION: Excretory phase CT urography was comparable with IV urography for evaluation of the urinary tract in patients with painless haematuria. However, the study population did not include any upper tract cancers. O'Malley M. E. et al. (2003). Clinical Radiology 58, 294-300

  20. Virtual non-contrast CT using dual energy spectral CT: Feasibility of coronary artery calcium scoring

    International Nuclear Information System (INIS)

    Song, In Young; Yi, Jeong Geun; Park, Jeong Hee; Lee, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin

    2016-01-01

    To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated VNC images were reconstructed using two kinds of 2-material decomposition algorithms (material density iodine-water pair [MDW], material density iodine-calcium pair [MDC]) and a material suppressed algorithm (material suppressed iodine [MSI]). Two readers independently quantified calcium on VNC and TNC images. The Spearman correlation coefficient test and Bland-Altman method were used for statistical analyses. Coronary artery calcium scores from all three VNC images showed excellent correlation with those from the TNC images (Spearman's correlation coefficient [ρ] = 0.94, 0.88, and 0.89 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Measured coronary calcium volumes from VNC images also correlated well with those from TNC images (ρ = 0.92, 0.87, and 0.91 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Among the three VNC images, coronary calcium from MDW correlated best with that from TNC. The coronary artery calcium scores and volumes were significantly lower from the VNC images than from the TNC images (p < 0.001 for all pairs). The use of VNC images from contrast-enhanced CT using dual-energy material decomposition/suppression is feasible for coronary calcium scoring. The absolute value from VNC tends to be smaller than that from TNC

  1. Virtual non-contrast CT using dual energy spectral CT: Feasibility of coronary artery calcium scoring

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Young; Yi, Jeong Geun; Park, Jeong Hee [Dept. of Radiology, Konkuk University School of Medicine, Seoul (Korea, Republic of); Lee, Sung Mok; Lee, Kyung Soo; Chung, Myung Jin [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    To evaluate the feasibility of coronary artery calcium scoring based on three virtual noncontrast-enhanced (VNC) images derived from single-source spectral dual-energy CT (DECT) as compared with true noncontrast-enhanced (TNC) images. This prospective study was conducted with the approval of our Institutional Review Board. Ninety-seven patients underwent noncontrast CT followed by contrast-enhanced chest CT using single-source spectral DECT. Iodine eliminated VNC images were reconstructed using two kinds of 2-material decomposition algorithms (material density iodine-water pair [MDW], material density iodine-calcium pair [MDC]) and a material suppressed algorithm (material suppressed iodine [MSI]). Two readers independently quantified calcium on VNC and TNC images. The Spearman correlation coefficient test and Bland-Altman method were used for statistical analyses. Coronary artery calcium scores from all three VNC images showed excellent correlation with those from the TNC images (Spearman's correlation coefficient [ρ] = 0.94, 0.88, and 0.89 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Measured coronary calcium volumes from VNC images also correlated well with those from TNC images (ρ = 0.92, 0.87, and 0.91 for MDW, MDC, and MSI, respectively; p < 0.001 for all pairs). Among the three VNC images, coronary calcium from MDW correlated best with that from TNC. The coronary artery calcium scores and volumes were significantly lower from the VNC images than from the TNC images (p < 0.001 for all pairs). The use of VNC images from contrast-enhanced CT using dual-energy material decomposition/suppression is feasible for coronary calcium scoring. The absolute value from VNC tends to be smaller than that from TNC.

  2. Helical type vacuum container

    International Nuclear Information System (INIS)

    Owada, Kimio.

    1989-01-01

    Helical type vacuum containers in the prior art lack in considerations for thermal expansion stresses to helical coils, and there is a possibility of coil ruptures. The object of the present invention is to avoid the rupture of helical coils wound around the outer surface of a vacuum container against heat expansion if any. That is, bellows or heat expansion absorbing means are disposed to a cross section of a helical type vacuum container. With such a constitution, thermal expansion of helical coils per se due to temperature elevation of the coils during electric supply can be absorbed by expansion of the bellows or absorption of the heat expansion absorbing means. Further, this can be attained by arranging shear pins in the direction perpendicular to the bellows axis so that the bellows are not distorted when the helical coils are wound around the helical type vacuum container. (I.S.)

  3. Topology of modified helical gears and Tooth Contact Analysis (TCA) program

    Science.gov (United States)

    Litvin, Faydor L.; Zhang, Jiao

    1989-01-01

    The contents of this report covers: (1) development of optimal geometries for crowned helical gears; (2) a method for their generation; (3) tooth contact analysis (TCA) computer programs for the analysis of meshing and bearing contact of the crowned helical gears; and (4) modelling and simulation of gear shaft deflection. The developed method for synthesis was used to determine the optimal geometry for a crowned helical pinion surface and was directed to localize the bearing contact and guarantee favorable shape and a low level of transmission errors. Two new methods for generation of the crowned helical pinion surface are proposed. One is based on the application of a tool with a surface of revolution that slightly deviates from a regular cone surface. The tool can be used as a grinding wheel or as a shaver. The other is based on a crowning pinion tooth surface with predesigned transmission errors. The pinion tooth surface can be generated by a computer-controlled automatic grinding machine. The TCA program simulates the meshing and bearing contact of the misaligned gears. The transmission errors are also determined. The gear shaft deformation was modelled and investigated. It was found that the deflection of gear shafts has the same effect as gear misalignment.

  4. Multidetector-row helical computed tomography in the evaluation of cervical spine disorders; Tomografia computadorizada multislice no diagnostico das afeccoes da coluna cervical

    Energy Technology Data Exchange (ETDEWEB)

    Rosemberg, Laercio Alberto; Almeida, Milena Oliveira; Rios, Adriana Martins; Garbaccio, Viviane Ladeira; Kim, Nelson Ji Tae; Daniel, Mauro Miguel; Funari, Marcelo Buarque de Gusmao [Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil). Dept. de Imagem]. E-mail: laercio@einstein.br

    2003-07-01

    Multidetector-row computed tomography (MRCT) has advantages in comparison to conventional helical computed tomography, such as reduction of study time, lower radiation doses, fewer metallic artifacts and high quality multiplanar reformatting and three dimensional reconstructions. We reviewed 150 cervical spine examinations and selected the most illustrative cases including congenital anomalies, degenerative lesions, spinal infections, neoplasms, traumatic injuries and postoperative abnormalities. The quality of multiplanar reformatting and volume reconstructions of the MRCT made the detection and evaluation of most of cases with complex anatomy easier and more precise. (author)

  5. Low radiation dose non-contrast cardiac CT: is it of value in the evaluation of mechanical aortic valve

    International Nuclear Information System (INIS)

    Bazeed, Mohamed Fayez; Moselhy, Mohamed Saleh; Rezk, Ahmad Ibrahim; Al-Murayeh, Mushabab Ayedh

    2012-01-01

    Background: Prosthetic bileaflet mechanical valve function has been traditionally evaluated using echocardiography and fluoroscopy. Multidetector computed tomography (MDCT) is a novel technique for cardiac evaluation. Purpose: To evaluate bileaflet mechanical aortic valves using a low-milliampere (mA), non-contrast MDCT protocol with a limited scan range. Material and Methods: Forty patients with a bileaflet mechanical aortic valve were evaluated using a non-contrast, low-mA, ECG-gated 64 MDCT protocol with a limited scan range. MDCT findings of opening and closing valve angles were correlated to fluoroscopy and echocardiography. Also, the valve visibility was evaluated on MDCT and fluoroscopy according to a 3-point grading scale. Results: The visualization score with the MDCT was significantly superior to the fluoroscopy (3 vs. 2.7). A strong correlation was noted between the opening (r = 0.82) and closing (r = 0.96) valve angles with MDCT and fluoroscopy without a statistically significant difference (P = 0.31 and 0.16, respectively). The mean effective radiation dose of the suggested protocol was 4 ± 0.5 mSv. Five valves were evaluated using transesophageal echocardiography because the valves were difficult to evaluate with transthoracic echocardiography, and all of these valves were evaluated optimally with MDCT. A high-pressure gradient was noted in nine valves, and the MDCT showed that seven of these valves inadequately opened, and two valves opened well, which resulted in patient valve mismatch. Incomplete valve closure was noted in five valves, and the echocardiography showed significant transvalvular regurgitation in all five valves. Conclusion: MDCT can provide a precise measurement of valve function and can potentially evaluate high-pressure gradients and transvalvular regurgitation

  6. Low radiation dose non-contrast cardiac CT: is it of value in the evaluation of mechanical aortic valve

    Energy Technology Data Exchange (ETDEWEB)

    Bazeed, Mohamed Fayez (Dept. of Diagnostic Radiology, Faculty of Medicine, Mansoura Univ. (Egypt)), email: m_bazeed@yahoo.com; Moselhy, Mohamed Saleh (Cardiology Dept. Faculty of Medicine, Suez Canal Univ. (Egypt)); Rezk, Ahmad Ibrahim (Dept. of Cardiac Surgery, Faculty of Medicine, Aim Shams Univ. (Egypt)); Al-Murayeh, Mushabab Ayedh (Dept. of Cardiac Services, Armed Forces Hospitals Southern Region (Saudi Arabia))

    2012-05-15

    Background: Prosthetic bileaflet mechanical valve function has been traditionally evaluated using echocardiography and fluoroscopy. Multidetector computed tomography (MDCT) is a novel technique for cardiac evaluation. Purpose: To evaluate bileaflet mechanical aortic valves using a low-milliampere (mA), non-contrast MDCT protocol with a limited scan range. Material and Methods: Forty patients with a bileaflet mechanical aortic valve were evaluated using a non-contrast, low-mA, ECG-gated 64 MDCT protocol with a limited scan range. MDCT findings of opening and closing valve angles were correlated to fluoroscopy and echocardiography. Also, the valve visibility was evaluated on MDCT and fluoroscopy according to a 3-point grading scale. Results: The visualization score with the MDCT was significantly superior to the fluoroscopy (3 vs. 2.7). A strong correlation was noted between the opening (r = 0.82) and closing (r = 0.96) valve angles with MDCT and fluoroscopy without a statistically significant difference (P = 0.31 and 0.16, respectively). The mean effective radiation dose of the suggested protocol was 4 +- 0.5 mSv. Five valves were evaluated using transesophageal echocardiography because the valves were difficult to evaluate with transthoracic echocardiography, and all of these valves were evaluated optimally with MDCT. A high-pressure gradient was noted in nine valves, and the MDCT showed that seven of these valves inadequately opened, and two valves opened well, which resulted in patient valve mismatch. Incomplete valve closure was noted in five valves, and the echocardiography showed significant transvalvular regurgitation in all five valves. Conclusion: MDCT can provide a precise measurement of valve function and can potentially evaluate high-pressure gradients and transvalvular regurgitation

  7. Helicity formalism and spin effects

    International Nuclear Information System (INIS)

    Anselmino, M.; Caruso, F.; Piovano, U.

    1990-01-01

    The helicity formalism and the technique to compute amplitudes for interaction processes involving leptons, quarks, photons and gluons are reviewed. Explicit calculations and examples of exploitation of symmetry properties are shown. The formalism is then applied to the discussion of several hadronic processes and spin effects: the experimental data, when related to the properties of the elementary constituent interactions, show many not understood features. Also the nucleon spin problem is briefly reviewed. (author)

  8. Temporal resolution measurement of 128-slice dual source and 320-row area detector computed tomography scanners in helical acquisition mode using the impulse method.

    Science.gov (United States)

    Hara, Takanori; Urikura, Atsushi; Ichikawa, Katsuhiro; Hoshino, Takashi; Nishimaru, Eiji; Niwa, Shinji

    2016-04-01

    To analyse the temporal resolution (TR) of modern computed tomography (CT) scanners using the impulse method, and assess the actual maximum TR at respective helical acquisition modes. To assess the actual TR of helical acquisition modes of a 128-slice dual source CT (DSCT) scanner and a 320-row area detector CT (ADCT) scanner, we assessed the TRs of various acquisition combinations of a pitch factor (P) and gantry rotation time (R). The TR of the helical acquisition modes for the 128-slice DSCT scanner continuously improved with a shorter gantry rotation time and greater pitch factor. However, for the 320-row ADCT scanner, the TR with a pitch factor of pitch factor of >1.0, it was approximately one half of the gantry rotation time. The maximum TR values of single- and dual-source helical acquisition modes for the 128-slice DSCT scanner were 0.138 (R/P=0.285/1.5) and 0.074s (R/P=0.285/3.2), and the maximum TR values of the 64×0.5- and 160×0.5-mm detector configurations of the helical acquisition modes for the 320-row ADCT scanner were 0.120 (R/P=0.275/1.375) and 0.195s (R/P=0.3/0.6), respectively. Because the TR of a CT scanner is not accurately depicted in the specifications of the individual scanner, appropriate acquisition conditions should be determined based on the actual TR measurement. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Tin-filter enhanced dual-energy-CT: image quality and accuracy of CT numbers in virtual noncontrast imaging.

    Science.gov (United States)

    Kaufmann, Sascha; Sauter, Alexander; Spira, Daniel; Gatidis, Sergios; Ketelsen, Dominik; Heuschmid, Martin; Claussen, Claus D; Thomas, Christoph

    2013-05-01

    To measure and compare the objective image quality of true noncontrast (TNC) images with virtual noncontrast (VNC) images acquired by tin-filter-enhanced, dual-source, dual-energy computed tomography (DECT) of upper abdomen. Sixty-three patients received unenhanced abdominal CT and enhanced abdominal DECT (100/140 kV with tin filter) in portal-venous phase. VNC images were calculated from the DECT datasets using commercially available software. The mean attenuation of relevant tissues and image quality were compared between the TNC and VNC images. Image quality was rated objectively by measuring image noise and the sharpness of object edges using custom-designed software. Measurements were compared using Student two-tailed t-test. Correlation coefficients for tissue attenuation measurements between TNC and VNC were calculated and the relative deviations were illustrated using Bland-Altman plots. Mean attenuation differences between TNC and VNC (HUTNC - HUVNC) image sets were as follows: right liver lobe -4.94 Hounsfield units (HU), left liver lobe -3.29 HU, vena cava -2.19 HU, spleen -7.46 HU, pancreas 1.29 HU, fat -11.14 HU, aorta 1.29 HU, bone marrow 36.83 HU (all P VNC and TNC series were observed for liver, vena portae, kidneys, pancreas, muscle and bone marrow (Pearson's correlation coefficient ≥0.75). Mean image noise was significantly higher in TNC images (P VNC and TNC images (P = .19). The Hounsfield units in VNC images closely resemble TNC images in the majority of the organs of the upper abdomen (kidneys, liver, pancreas). In spleen and fat, Hounsfield numbers in VNC images are tend to be higher than in TNC images. VNC images show a low image noise and satisfactory edge sharpness. Other criteria of image quality and the depiction of certain lesions need to be evaluated additionally. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  10. Partial volume and aliasing artefacts in helical cone-beam CT

    International Nuclear Information System (INIS)

    Zou Yu; Sidky, Emil Y; Pan, Xiaochuan

    2004-01-01

    A generalization of the quasi-exact algorithms of Kudo et al (2000 IEEE Trans. Med. Imaging 19 902-21) is developed that allows for data acquisition in a 'practical' frame for clinical diagnostic helical, cone-beam computed tomography (CT). The algorithm is investigated using data that model nonlinear partial volume averaging. This investigation leads to an understanding of aliasing artefacts in helical, cone-beam CT image reconstruction. An ad hoc scheme is proposed to mitigate artefacts due to the nonlinear partial volume and aliasing artefacts

  11. Three-dimensional helical CT for treatment planning of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Hideko; Enomoto, Kohji; Ikeda, Tadashi [Keio Univ., Tokyo (Japan). School of Medicine] [and others

    1999-01-01

    The role of three-dimensional (3D) helical CT in the treatment planning of breast cancer was evaluated. Of 36 patients examined, 30 had invasive ductal carcinoma, three had invasive lobular carcinoma, one had DCIS, one had DCIS with minimal invasion, and 1 had Paget`s disease. Patients were examined in the supine position. The whole breast was scanned under about 25 seconds of breath-holding using helical CT (Proceed, Yokogawa Medical Systems, or High-speed Advantage, GE Medical Systems). 3D imaging was obtained with computer assistance (Advantage Windows, GE Medical Systems). Linear and/or spotty enhancement on helical CT was considered to suggest DCIS or intraductal spread in the area surrounding the invasive cancer. Of 36 patients, 24 showed linear and/or spotty enhancement on helical CT, and 22 of those 24 patients had DCIS or intraductal spread. In contrast, 12 of 36 patients were considered to have little or no intraductal spread on helical CT, and eight of the 12 patients had little or no intraductal spread on pathological examination. The sensitivity, specificity, and accuracy rates for detecting intraductal spread on MRI were 85%, 80%, and 83%, respectively. 3D helical CT was considered useful in detecting intraductal spread and planning surgery, however, a larger study using a precise correlation with pathology is necessary. (author)

  12. Magnetic Helicity Estimations in Models and Observations of the Solar Magnetic Field. III. Twist Number Method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210023 (China); Pariat, E.; Moraitis, K. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, F-92190 Meudon (France); Valori, G. [University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Anfinogentov, S. [Institute of Solar-Terrestrial Physics SB RAS 664033, Irkutsk, P.O. box 291, Lermontov Street, 126a (Russian Federation); Chen, F. [Max-Plank-Institut für Sonnensystemforschung, D-37077 Göttingen (Germany); Georgoulis, M. K. [Research Center for Astronomy and Applied Mathematics of the Academy of Athens, 4 Soranou Efesiou Street, 11527 Athens (Greece); Liu, Y. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Thalmann, J. K. [Institute of Physics, Univeristy of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria); Yang, S., E-mail: guoyang@nju.edu.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-05-01

    We study the writhe, twist, and magnetic helicity of different magnetic flux ropes, based on models of the solar coronal magnetic field structure. These include an analytical force-free Titov–Démoulin equilibrium solution, non-force-free magnetohydrodynamic simulations, and nonlinear force-free magnetic field models. The geometrical boundary of the magnetic flux rope is determined by the quasi-separatrix layer and the bottom surface, and the axis curve of the flux rope is determined by its overall orientation. The twist is computed by the Berger–Prior formula, which is suitable for arbitrary geometry and both force-free and non-force-free models. The magnetic helicity is estimated by the twist multiplied by the square of the axial magnetic flux. We compare the obtained values with those derived by a finite volume helicity estimation method. We find that the magnetic helicity obtained with the twist method agrees with the helicity carried by the purely current-carrying part of the field within uncertainties for most test cases. It is also found that the current-carrying part of the model field is relatively significant at the very location of the magnetic flux rope. This qualitatively explains the agreement between the magnetic helicity computed by the twist method and the helicity contributed purely by the current-carrying magnetic field.

  13. Biot-Savart helicity versus physical helicity: A topological description of ideal flows

    Science.gov (United States)

    Sahihi, Taliya; Eshraghi, Homayoon

    2014-08-01

    For an isentropic (thus compressible) flow, fluid trajectories are considered as orbits of a family of one parameter, smooth, orientation-preserving, and nonsingular diffeomorphisms on a compact and smooth-boundary domain in the Euclidian 3-space which necessarily preserve a finite measure, later interpreted as the fluid mass. Under such diffeomorphisms the Biot-Savart helicity of the pushforward of a divergence-free and tangent to the boundary vector field is proved to be conserved and since these circumstances present an isentropic flow, the conservation of the "Biot-Savart helicity" is established for such flows. On the other hand, the well known helicity conservation in ideal flows which here we call it "physical helicity" is found to be an independent constant with respect to the Biot-Savart helicity. The difference between these two helicities reflects some topological features of the domain as well as the velocity and vorticity fields which is discussed and is shown for simply connected domains the two helicities coincide. The energy variation of the vorticity field is shown to be formally the same as for the incompressible flow obtained before. For fluid domains consisting of several disjoint solid tori, at each time, the harmonic knot subspace of smooth vector fields on the fluid domain is found to have two independent base sets with a special type of orthogonality between these two bases by which a topological description of the vortex and velocity fields depending on the helicity difference is achieved since this difference is shown to depend only on the harmonic knot parts of velocity, vorticity, and its Biot-Savart vector field. For an ideal magnetohydrodynamics (MHD) flow three independent constant helicities are reviewed while the helicity of magnetic potential is generalized for non-simply connected domains by inserting a special harmonic knot field in the dynamics of the magnetic potential. It is proved that the harmonic knot part of the vorticity

  14. Performance characterization of megavoltage computed tomography imaging on a helical tomotherapy unit

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Harmon, Joseph F. Jr.; Langen, Katja M.; Willoughby, Twyla R.; Wagner, Thomas H.; Kupelian, Patrick A.

    2005-01-01

    Helical tomotherapy is an innovative means of delivering IGRT and IMRT using a device that combines features of a linear accelerator and a helical computed tomography (CT) scanner. The HI-ART II can generate CT images from the same megavoltage x-ray beam it uses for treatment. These megavoltage CT (MVCT) images offer verification of the patient position prior to and potentially during radiation therapy. Since the unit uses the actual treatment beam as the x-ray source for image acquisition, no surrogate telemetry systems are required to register image space to treatment space. The disadvantage to using the treatment beam for imaging, however, is that the physics of radiation interactions in the megavoltage energy range may force compromises between the dose delivered and the image quality in comparison to diagnostic CT scanners. The performance of the system is therefore characterized in terms of objective measures of noise, uniformity, contrast, and spatial resolution as a function of the dose delivered by the MVCT beam. The uniformity and spatial resolutions of MVCT images generated by the HI-ART II are comparable to that of diagnostic CT images. Furthermore, the MVCT scan contrast is linear with respect to the electron density of material imaged. MVCT images do not have the same performance characteristics as state-of-the art diagnostic CT scanners when one objectively examines noise and low-contrast resolution. These inferior results may be explained, at least partially, by the low doses delivered by our unit; the dose is 1.1 cGy in a 20 cm diameter cylindrical phantom. In spite of the poorer low-contrast resolution, these relatively low-dose MVCT scans provide sufficient contrast to delineate many soft-tissue structures. Hence, these images are useful not only for verifying the patient's position at the time of therapy, but they are also sufficient for delineating many anatomic structures. In conjunction with the ability to recalculate radiotherapy doses on

  15. Predicting the stone composition of children preoperatively by Hounsfield unit detection on non-contrast computed tomography.

    Science.gov (United States)

    Altan, Mesut; Çitamak, Burak; Bozaci, Ali Cansu; Güneş, Altan; Doğan, Hasan Serkan; Haliloğlu, Mithat; Tekgül, Serdar

    2017-10-01

    Many studies have been performed on adult patients to reveal the relationship between Hounsfield unit (HU) value and composition of stone, but none have focused on childhood. We aimed to predict stone composition by HU properties in pre-intervention non-contrast computed tomography (NCCT) in children. This could help to orient patients towards more successful interventions. Data of 94 children, whose pre-intervention NCCT and post-interventional stone analysis were available were included. Stones were grouped into three groups: calcium oxalate (CaOx), cystine, and struvite. Besides spot urine PH value, core HU, periphery HU, and Hounsfield density (HUD) values were measured and groups were compared statistically. The mean age of patients was 7 ± 4 (2-17) years and the female/male ratio was 51/43. The mean stone size was 11.7 ± 5 (4-24) mm. There were 50, 38, and 6 patients in the CaOx, cystine, and struvite groups, respectively. The median values for core HU, periphery HU, and mean HU in the CaOx group were significantly higher than the corresponding median values in the cystine and struvite groups. Significant median HUD difference was seen only between the CaOx and cystine groups. No difference was seen between the cystine and struvite groups in terms of HU parameters. To distinguish these groups, mean spot urine PH values were compared and were found to be higher in the struvite group than the cystine group (Table). The retrospective nature and small number of patients in some groups are limitations of this study, which also does not include all stone compositions. Our cystine stone rate was higher than childhood stone composition distribution in the literature. This is because our center is a reference center in a region with high recurrence rates of cystine stones. In fact, high numbers of cystine stones helped us to compare them with calcium stones more accurately and became an advantage for this study. NCCT at diagnosis can provide some information for

  16. Deceleration of arginine kinase refolding by induced helical structures.

    Science.gov (United States)

    Li, Hai-Long; Zhou, Sheng-Mei; Park, Daeui; Jeong, Hyoung Oh; Chung, Hae Young; Yang, Jun-Mo; Meng, Fan-Guo; Hu, Wei-Jiang

    2012-04-01

    Arginine kinase (AK) is a key metabolic enzyme for keeping energy balance in invertebrates. Therefore, regulation of the enzymatic activity and the folding studies of AK from the various invertebrates have been the focus of investigation. We studied the effects of helical structures by using hexafluoroisopropanol (HFIP) on AK folding. Folding kinetic studies showed that the folding rates of the urea-denatured AKs were significantly decelerated after being induced in various concentrations of HFIP. AK lost its activity completely at concentrations greater than 60%. The results indicated that the HFIP-induced helical structures in the denatured state play a negative role in protein folding, and the helical structures induced in 5% (v/v) HFIP act as the most effective barrier against AK taking its native structure. The computational docking simulations (binding energies for -2.19 kcal/mol for AutoDock4.2 and -20.47 kcal/mol for Dock6.3) suggested that HFIP interacts with the several important residues that are predicted by both programs. The excessively pre-organized helical structures not only hampered the folding process, but also ultimately brought about changes in the three-dimensional conformation and biological function of AK.

  17. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid

    Science.gov (United States)

    Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav

    2018-04-01

    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.

  18. Bearing capacity of helical pile foundation in peat soil from different, diameter and spacing of helical plates

    Science.gov (United States)

    Fatnanta, F.; Satibi, S.; Muhardi

    2018-03-01

    In an area dominated by thick peat soil layers, driven piles foundation is often used. These piles are generally skin friction piles where the pile tips do not reach hard stratum. Since the bearing capacity of the piles rely on the resistance of their smooth skin, the bearing capacity of the piles are generally low. One way to increase the bearing capacity of the piles is by installing helical plates around the pile tips. Many research has been performed on helical pile foundation. However, literature on the use of helical pile foundation on peat soil is still hardly found. This research focus on the study of axial bearing capacity of helical pile foundation in peat soil, especially in Riau Province. These full-scale tests on helical pile foundation were performed in a rectangular box partially embedded into the ground. The box is filled with peat soil, which was taken from Rimbo Panjang area in the district of Kampar, Riau Province. Several helical piles with different number, diameter and spacing of the helical plates have been tested and analysed. The tests result show that helical pile with three helical plates of uniform diameter has better bearing capacity compared to other helical piles with varying diameter and different number of helical plates. The bearing capacity of helical pile foundation is affected by the spacing between helical plates. It is found that the effective helical plates spacing for helical pile foundation with diameter of 15cm to 35cm is between 20cm to 30cm. This behaviour may be considered to apply to other type of helical pile foundations in peat soil.

  19. Imaging of Composites by Helical X-Ray Computed Tomography

    DEFF Research Database (Denmark)

    Wang, Ying; Pyka, Grzegorz; Jespersen, Kristine Munk

    Understanding the fatigue damage mechanisms of composite materials used in wind turbine rotor blades could potentially enhance the reliability and energy efficiency of wind turbines by improving the structure design. In this paper, the fatigue damage propagating mechanisms of unidirectional glass...... fibre composites was characterised by helical X-ray CT. The staining approach was used and it was effective to enhance the visibility of thin matrix cracks and partly closed fibre breaks instead of widely opened cracks. Fibre breaks in the centre UD bundle were found to occur locally, instead of being...

  20. Helical CT defecography

    International Nuclear Information System (INIS)

    Ferrando, R.; Fiorini, G.; Beghello, A.; Cicio, G.R.; Derchi, L.E.; Consigliere, M.; Resasco, M.; Tornago, S.

    1999-01-01

    The purpose of this work is to investigate the possible role of Helical CT defecography in pelvic floor disorders by comparing the results of the investigations with those of conventional defecography. The series analyzed consisted of 90 patients, namely 62 women and 28 men, ranging in age 24-82 years. They were all submitted to conventional defecography, and 18 questionable cases were also studied with Helical CT defecography. The conventional examination was performed during the 4 standard phases of resting, squeezing, Valsalva and straining; it is used a remote-control unit. The parameters for Helical CT defecography were: 5 mm beam collimation, pitch 2, 120 KV, 250 m As and 18-20 degrees gantry inclination to acquire coronal images of the pelvic floor. The rectal ampulla was distended with a bolus of 300 mL nonionic iodinated contrast agent (dilution: 3g/cc). The patient wore a napkin and was seated on the table, except for those who could not hold the position and were thus examined supine. Twenty-second helical scans were performed at rest and during evacuation; multiplanar reconstructions were obtained especially on the sagittal plane for comparison with conventional defecographic images. Coronal Helical CT defecography images permitted to map the perineal floor muscles, while sagittal reconstructions provided information on the ampulla and the levator ani. To conclude, Helical CT defecography performed well in study of pelvic floor disorders and can follow conventional defecography especially in questionable cases [it

  1. One-loop QCD and Higgs bosons to partons processes using six-dimensional helicity and generalized unitarity

    International Nuclear Information System (INIS)

    Davies, Scott

    2011-01-01

    We combine the six-dimensional helicity formalism of Cheung and O'Connell with D-dimensional generalized unitarity to obtain a new formalism for computing one-loop amplitudes in dimensionally regularized QCD. With this procedure, we simultaneously obtain the pieces that are constructible from four-dimensional unitarity cuts and the rational pieces that are missed by them, while retaining a helicity formalism. We illustrate the procedure using four- and five-point one-loop amplitudes in QCD, including examples with external fermions. We also demonstrate the technique's effectiveness in next-to-leading order QCD corrections to Higgs processes by computing the next-to-leading order correction to the Higgs plus three positive-helicity gluons amplitude in the large top-quark mass limit.

  2. Demonstration of a helical armature for a superconducting generator

    International Nuclear Information System (INIS)

    Conley, P.L.; Kirtley, J.L. Jr.; Hagman, W.H.; Ula, A.H.M.S.

    1979-01-01

    This is a report on the design, construction and testing of an experimental helical armature for a superconducting geneator. Rated at 60 kVA, this armature was built to be operated in conjunction with the rotor of the first experimental superconducting machine built at MIT. It incorporates, in addition to the helical winding form, a high density edge-brazed end turn geometry, molded bar groups, and silicone fluid coolant and insulation impregnant. Tests showed that the thermal performance of the armature was within reasonable limits, magnetic analyses leading to the computation of reactance and voltage geneation were approximately correct. No abnormal cheating was observed. 9 refs

  3. Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles

    CERN Document Server

    Dittmaier, Stefan

    1999-01-01

    The Weyl-van-der-Waerden spinor technique for calculating helicity amplitudes of massive and massless particles is presented in a form that is particularly well suited to a direct implementation in computer algebra. Moreover, we explain how to exploit discrete symmetries and how to avoid unphysical poles in amplitudes in practice. The efficiency of the formalism is demonstrated by giving explicit compact results for the helicity amplitudes of the processes gamma gamma -> f fbar, f fbar -> gamma gamma gamma, mu^- mu^+ -> f fbar gamma.

  4. Concept and development of measurement method of time sensitivity profile (TSP) in X-ray CT. Comparison of non-helical, single-slice helical, and multi-slice helical scans

    International Nuclear Information System (INIS)

    Tsujioka, Katsumi; Ida, Yoshihiro; Ohtsubo, Hironori; Takahashi, Yasukata; Niwa, Masayoshi

    2000-01-01

    We focused on the time element contained in a single CT image, and devised the concept of a time-sensitivity profile (TSP) describing how the time element is translated into an image. We calculated the data collection time range when the helical pitch is changed in non helical scans, single slice helical scans, and multi slice helical scans. We then calculated the time sensitivity profile (TSP) from the weighting applied when the data collection time range is translated into an image. TSP was also measured for each scanning method using our self-made moving phantom. TSPs obtained from the calculation and the experiments were very close. TSP showed interesting characteristics with each scanning method, especially in the case of multi slice helical scanning, in which TSP became shorter as helical pitch increased. We referred to the TSP's FWHM as the effective scanning time. When we conducted multi slice helical scanning at helical pitch 3, the effective scanning time increased to about 24% longer than that of a non helical scan. When we conducted multi slice helical scanning at helical pitch 5 or 6, the effective scanning time was about half that of a non helical scan. The time sensitivity profile (TSP) is a totally new concept that we consider an important element in discussing the time resolution of a CT scanner. The results of this review will provide significant data in determining the scanning parameters when scanning a moving object. (author)

  5. Pulling Helices inside Bacteria: Imperfect Helices and Rings

    Science.gov (United States)

    Allard, Jun F.; Rutenberg, Andrew D.

    2009-04-01

    We study steady-state configurations of intrinsically-straight elastic filaments constrained within rod-shaped bacteria that have applied forces distributed along their length. Perfect steady-state helices result from axial or azimuthal forces applied at filament ends, however azimuthal forces are required for the small pitches observed for MreB filaments within bacteria. Helix-like configurations can result from distributed forces, including coexistence between rings and imperfect helices. Levels of expression and/or bundling of the polymeric protein could mediate this coexistence.

  6. Weaving Knotted Vector Fields with Tunable Helicity.

    Science.gov (United States)

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M

    2016-12-30

    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  7. New generation methods for spur, helical, and spiral-bevel gears

    Science.gov (United States)

    Litvin, F. L.; Tsung, W.-J.; Coy, J. J.; Handschuh, R. F.; Tsay, C.-B. P.

    1987-01-01

    New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact.

  8. Robust integer and fractional helical modes in the quantum Hall effect

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Banitt, Daniel; Heiblum, Moty; Umansky, Vladimir

    2018-04-01

    Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers.

  9. TU-G-204-06: Correlation Between Texture Analysis-Based Model Observer and Human Observer in Diagnosis of Ischemic Infarct in Non-Contrast Head CT of Adults

    International Nuclear Information System (INIS)

    Li, B; Fujita, A; Buch, K; Sakai, O

    2015-01-01

    Purpose: To investigate the correlation between texture analysis-based model observer and human observer in the task of diagnosis of ischemic infarct in non-contrast head CT of adults. Methods: Non-contrast head CTs of five patients (2 M, 3 F; 58–83 y) with ischemic infarcts were retro-reconstructed using FBP and Adaptive Statistical Iterative Reconstruction (ASIR) of various levels (10–100%). Six neuro -radiologists reviewed each image and scored image quality for diagnosing acute infarcts by a 9-point Likert scale in a blinded test. These scores were averaged across the observers to produce the average human observer responses. The chief neuro-radiologist placed multiple ROIs over the infarcts. These ROIs were entered into a texture analysis software package. Forty-two features per image, including 11 GLRL, 5 GLCM, 4 GLGM, 9 Laws, and 13 2-D features, were computed and averaged over the images per dataset. The Fisher-coefficient (ratio of between-class variance to in-class variance) was calculated for each feature to identify the most discriminating features from each matrix that separate the different confidence scores most efficiently. The 15 features with the highest Fisher -coefficient were entered into linear multivariate regression for iterative modeling. Results: Multivariate regression analysis resulted in the best prediction model of the confidence scores after three iterations (df=11, F=11.7, p-value<0.0001). The model predicted scores and human observers were highly correlated (R=0.88, R-sq=0.77). The root-mean-square and maximal residual were 0.21 and 0.44, respectively. The residual scatter plot appeared random, symmetric, and unbiased. Conclusion: For diagnosis of ischemic infarct in non-contrast head CT in adults, the predicted image quality scores from texture analysis-based model observer was highly correlated with that of human observers for various noise levels. Texture-based model observer can characterize image quality of low contrast

  10. TU-G-204-06: Correlation Between Texture Analysis-Based Model Observer and Human Observer in Diagnosis of Ischemic Infarct in Non-Contrast Head CT of Adults

    Energy Technology Data Exchange (ETDEWEB)

    Li, B; Fujita, A; Buch, K; Sakai, O [Boston University Medical Center, Boston, MA (United States)

    2015-06-15

    Purpose: To investigate the correlation between texture analysis-based model observer and human observer in the task of diagnosis of ischemic infarct in non-contrast head CT of adults. Methods: Non-contrast head CTs of five patients (2 M, 3 F; 58–83 y) with ischemic infarcts were retro-reconstructed using FBP and Adaptive Statistical Iterative Reconstruction (ASIR) of various levels (10–100%). Six neuro -radiologists reviewed each image and scored image quality for diagnosing acute infarcts by a 9-point Likert scale in a blinded test. These scores were averaged across the observers to produce the average human observer responses. The chief neuro-radiologist placed multiple ROIs over the infarcts. These ROIs were entered into a texture analysis software package. Forty-two features per image, including 11 GLRL, 5 GLCM, 4 GLGM, 9 Laws, and 13 2-D features, were computed and averaged over the images per dataset. The Fisher-coefficient (ratio of between-class variance to in-class variance) was calculated for each feature to identify the most discriminating features from each matrix that separate the different confidence scores most efficiently. The 15 features with the highest Fisher -coefficient were entered into linear multivariate regression for iterative modeling. Results: Multivariate regression analysis resulted in the best prediction model of the confidence scores after three iterations (df=11, F=11.7, p-value<0.0001). The model predicted scores and human observers were highly correlated (R=0.88, R-sq=0.77). The root-mean-square and maximal residual were 0.21 and 0.44, respectively. The residual scatter plot appeared random, symmetric, and unbiased. Conclusion: For diagnosis of ischemic infarct in non-contrast head CT in adults, the predicted image quality scores from texture analysis-based model observer was highly correlated with that of human observers for various noise levels. Texture-based model observer can characterize image quality of low contrast

  11. Helical system. History and current state of helical research

    International Nuclear Information System (INIS)

    Yokoyama, Masayuki

    2017-01-01

    This paper described the following: (1) history of nuclear fusion research of Japan's original heliotron method, (2) worldwide development of nuclear fusion research based on helical system such as stellarator, and (3) worldwide meaning of large helical device (LHD) aiming to demonstrate the steady-state performance of heliotron type in the parameter area extrapolable to the core plasma, and research results of LHD. LHD demonstrated that the helical system is excellent in steady operation performance at the world's most advanced level. In an experiment using deuterium gas in 2017, LHD achieved to reach 120 million degrees of ion temperature, which is one index of nuclear fusion condition, demonstrated the realization of high-performance plasma capable of extrapolating to future nuclear fusion reactors, and established the foundation for full-scale research toward the realization of nuclear fusion reactor. Besides experimental research, this paper also described the helical-type stationary nuclear fusion prototype reactor, FFHR-d1, which was based on progress of large-scale simulation at the world's most advanced level. A large-scale superconducting stellarator experimental device, W7-X, with the same scale as LHD, started experiment in December 2015, whose current state is also touched on here. (A.O.)

  12. Dual-source virtual non-contrast CT of the head: a preliminary study

    International Nuclear Information System (INIS)

    Huang Wei; Xu Yiming; Shao Jin

    2011-01-01

    Objective: To investigate image quality and clinical value of dual-source dual energy virtual non-contrast (VNC) CT of the head. Methods: Sixty-two patients suspected of cerebrovascular diseases underwent conventional non-contrast (CNC) CT and dual energy CTA examination of the head with dual-source CT. Virtual non-contrast images were reconstructed using dual energy software. The CT values of gray matter, white matter, cerebrospinal fluid, hyperdense hemorrhagic lesion and hypodense ischemic lesion were compared between CNC and VNC images. A four-score scale was used to assess image quality subjectively. Image noise, radiation dosage and detection rate were compared between CNC and VNC images. Paired t test, Wilcoxon signed ranks test and Chi-square test (McNemar test and Kappa test) were used. Results: The CT value on CNC and VNC images, were (43.3±1.5) and (33.2±1.3) HU for gray matter (t=46.98, P 0.05, Kappa = 1.000) at per-patient level. Twenty-two patients with hypodense ischemic lesions were found on VNC images with one false positive case and two false negative cases. The sensitivity, specificity, positive predictive value and negative predictive value were 91.3% (21/23), 97.4% (38/39), 95.5% (21/22) and 95.0% (38/40) respectively. No statistical difference was found in detecting hypodense lesions between VNC and CNC images (χ 2 = 0.00, P>0.05, Kappa = 0.895). In per-lesion analysis, 53 hemorrhage lesions were found on VNC images with false negative results of four lesions and no false positive result. The sensitivity, specificity, positive predictive value and negative predictive value were 93.0% (53/57). 100.0% (38/38), 100.0% (53/.53) and 90.5% (38/42) respectively. There was no significant difference in detection rate of hyperdense lesion between VNC and CNC images (χ 2 = 2.25, P>0.05, Kappa = 0.914). Thirty-eight hypodense lesions were found on VNC images with 2 false positive lesions and 13 false negative lesions. The sensitivity, specificity

  13. Review of the helicity formalism

    International Nuclear Information System (INIS)

    Barreiro, F.; Cerrada, M.; Fernandez, E.

    1972-01-01

    Our purpose in these notes has been to present a brief and general review of the helicity formalism. We begin by discussing Lorentz invariance, spin and helicity ideas, in section 1 . In section 2 we deal with the construction of relativistic states and scattering amplitudes in the helicity basis and we study their transformation properties under discrete symmetries. Finally we present some more sophisticated topics like kinematical singularities of helicity amplitudes, kinematical constraints and crossing relations 3, 4, 5 respectively. (Author) 8 refs

  14. A note on helicity

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.; Newmann, E.T.; Porter, J.; Winicour, J.; Lukacs, B.; Perjes, Z.; Sebestyen, A.

    1981-03-01

    The authors give a formal definition of the helicity operator for integral spin fields, which does not involve their momentum-space decomposition. The discussion is based upon a representation of the Pauli-Lubanski operator in terms of the action on tensor fields by the Killing vectors associated with the generators of the Poincare group. This leads to an identification of the helicity operator with the duality operator defined by the space-time alternating tensor. Helicity eigenstates then correspond to self-dual or anti-self-dual fields, in agreement with usage implicit in the literature. In addiition, the relationship between helicity eigenstates which are intrinsically non-classical, and states of right or left circular polarization in classical electrodynamics are discussed. (author)

  15. Usefulness of helical computed tomography in the acute diverticulitis

    International Nuclear Information System (INIS)

    Rossini, S.A.; Gonzalez Villaveiran, R.F.; Merola, S.

    2009-01-01

    Objective: The evaluation of the usefulness of helical computed tomography (HCT) in the diagnosis and therapeutic management of the acute diverticulitis. Materials and methods: Six months retrospective cohort study of 100 patient population clinically suspected of diverticulitis was carried out. The exams were made with oral and intravenous contrast unless the patient presented contraindications. A correlation of these studies with the therapeutic response and clinical follow up was done with surgery and histopathology. Results: From a total of 100 patients studied, 62 presented tomographic diagnosis of diverticulitis, 41 were classified as simple diverticulitis and 21 were complicated cases (abscess, phlegmon, plastron, free perforation, vesicocolonic fistula and intestinal obstruction). In 24 patients an alternative diagnosis was made (appendicitis, appendagitis, urethral litiasis, colitis, salpingitis, pancreatitis, uraco cyst complication, colonic mechanical obstruction, colonic perforation with foreign body): 14 patients did not present tomographic findings to support the clinical symptoms, two of them were false-negative by the clinic and by the response to treatment. These data represented a sensibility of 96,87%, specificity of 100%, PPV of 100% and NPV of 94,7% and a certainty of 98 for the tomography diagnosis of acute diverticulitis. Of the 41 patients with tomographic diagnostic of not complicated diverticulitis, 37 received medical outpatient treatment and only 4 medical treatment with placement; of the 21 patients diagnosed with complicated diverticulitis, 18 were hospitalised with medical treatment and the other 3 patients needed surgery; of the 14 patients without tomographic findings of diverticulitis, in 12 outpatients an expectant conduct was followed and the other 2 received medical outpatient treatment. Conclusion: HCT is very useful and effective in diagnosis, evaluation and management of patients with clinical suspicion of diverticulitis

  16. Validation of a computational method for assessing the impact of intra-fraction motion on helical tomotherapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Meeks, Sanford L; Kupelian, Patrick A; Langen, Katja M [Department of Radiation Oncology, M D Anderson Cancer Center Orlando, 1400 South Orange Avenue, Orlando, FL 32806 (United States); Schnarr, Eric [TomoTherapy, Inc., 1240 Deming Way, Madison, WI 53717 (United States)], E-mail: wilfred.ngwa@orlandohealth.com

    2009-11-07

    In this work, a method for direct incorporation of patient motion into tomotherapy dose calculations is developed and validated. This computational method accounts for all treatment dynamics and can incorporate random as well as cyclical motion data. Hence, interplay effects between treatment dynamics and patient motion are taken into account during dose calculation. This allows for a realistic assessment of intra-fraction motion on the dose distribution. The specific approach entails modifying the position and velocity events in the tomotherapy delivery plan to accommodate any known motion. The computational method is verified through phantom and film measurements. Here, measured prostate motion and simulated respiratory motion tracks were incorporated in the dose calculation. The calculated motion-encoded dose profiles showed excellent agreement with the measurements. Gamma analysis using 3 mm and 3% tolerance criteria showed over 97% and 96% average of points passing for the prostate and breathing motion tracks, respectively. The profile and gamma analysis results validate the accuracy of this method for incorporating intra-fraction motion into the dose calculation engine for assessment of dosimetric effects on helical tomotherapy dose deliveries.

  17. Generalized helicity and its time derivative

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Marklin, G.J.

    1985-01-01

    Spheromaks can be sustained against resistive decay by helicity injection because they tend to obey the minimum energy principle. This principle states that a plasma-laden magnetic configuration will relax to a state of minimum energy subject to the constraint that the magnetic helicity is conserved. Use of helicity as a constraint on the minimization of energy was first proposed by Woltjer in connection with astrophysical phenomena. Helicity does decay on the resistive diffusion time. However, if helicity is created and made to flow continuoiusly into a confinement geometry, these additional linked fluxes can relax and sustain the configuration indefinitely against the resistive decay. In this paper we will present an extension of the definition of helicity to include systems where B vector can penetrate the boundary and the penetration can be varying in time. We then discuss the sustainment of RFPs and spheromaks in terms of helicity injection

  18. Standard and Nonstandard Craniospinal Radiotherapy Using Helical TomoTherapy

    International Nuclear Information System (INIS)

    Parker, William; Brodeur, Marylene; Roberge, David; Freeman, Carolyn

    2010-01-01

    Purpose: To show the advantages of planning and delivering craniospinal radiotherapy with helical TomoTherapy (TomoTherapy Inc., Madison, WI) by presenting 4 cases treated at our institution. Methods and Materials: We first present a standard case of craniospinal irradiation in a patient with recurrent myxopapillary ependymoma (MPE) and follow this with 2 cases requiring differential dosing to multiple target volumes. One of these, a patient with recurrent medulloblastoma, required a lower dose to be delivered to the posterior fossa because the patient had been previously irradiated to the full dose, and the other required concurrent boosts to leptomeningeal metastases as part of his treatment for newly diagnosed MPE. The final case presented is a patient with pronounced scoliosis who required spinal irradiation for recurrent MPE. Results: The four cases presented were planned and treated successfully with Helical Tomotherapy. Conclusions: Helical TomoTherapy delivers continuous arc-based intensity-modulated radiotherapy that gives high conformality and excellent dose homogeneity for the target volumes. Increased healthy tissue sparing is achieved at higher doses albeit at the expense of larger volumes of tissue receiving lower doses. Helical TomoTherapy allows for differential dosing of multiple targets, resulting in very elegant dose distributions. Daily megavoltage computed tomography imaging allows for precision of patient positioning, permitting a reduction in planning margins and increased healthy tissue sparing in comparison with standard techniques.

  19. Total scalp irradiation using helical tomotherapy

    International Nuclear Information System (INIS)

    Orton, Nigel; Jaradat, Hazim; Welsh, James; Tome, Wolfgang

    2005-01-01

    Homogeneous irradiation of the scalp poses technical and dosimetric challenges due to the extensive, superficial, curved treatment volume. Conventional treatments on a linear accelerator use multiple matched electron fields or a combination of electron and photon fields. Problems with these techniques include dose heterogeneity in the target due to varying source-to-skin distance (SSD) and angle of beam incidence, significant dose to the brain, and the potential for overdose or underdose at match lines between the fields. Linac-based intensity-modulated radiation therapy (IMRT) plans have similar problems. This work presents treatment plans for total scalp irradiation on a helical tomotherapy machine. Helical tomotherapy is well-suited for scalp irradiation because it has the ability to deliver beamlets that are tangential to the scalp at all points. Helical tomotherapy also avoids problems associated with field matching and use of more than one modality. Tomotherapy treatment plans were generated and are compared to plans for treatment of the same patient on a linac. The resulting tomotherapy plans show more homogeneous target dose and improved critical structure dose when compared to state-of-the-art linac techniques. Target equivalent uniform dose (EUD) for the best tomotherapy plan was slightly higher than for the linac plan, while the volume of brain tissue receiving over 30 Gy was reduced by two thirds. Furthermore, the tomotherapy plan can be more reliably delivered than linac treatments, because the patient is aligned prior to each treatment based on megavoltage computed tomography (MVCT)

  20. The value of three-dimensional helical computed tomography for the retrograde flexible ureteronephroscopy in the treatment of lower pole calyx stones

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2016-03-01

    Full Text Available Objective: The aim of our study was to determine if there is any advantage of three-dimensional helical computed tomography (3D-HCT over intravenous urogram (IVU for the retrograde flexible ureteronephroscopy in the treatment of lower pole calyx stones. Methods: From June 2012 to January 2014, a total of 52 cases of lower pole renal stones underwent retrograde intrarenal surgery (RIRS in our center. All patients underwent a preoperative IVU and three-dimensional helical computed tomography urography (3D-CTU program to define the collecting system anatomy, manly concerning the following lower pole features; infundibu-lopelvic angle (IPA, infundibular length (IL, and infundibular width (IW. The examinations were performed in the same center of reference with a standardized method and with 3D-HCT Siemens Somaton Plus equipment. The measurements were performed by the same researcher, using a ruler and a square. Results: Based on clinical threshold difference of the anatomic factors on an IVU image to compare the difference between an IVU image and a 3D-CT image of 52 patients, the IPA was <30° when measured on intravenous pyelography (IVP for 21 patients. We found that with the IPA of <30° measured with IVP only 19% (4/21 were correctly classified in the same size category using 3D-HCT, whereas 81% (17/21 were upgraded to 40–50° on 3D-CT. This difference was significant between IVP and 3D-HCT. Conclusions: 3D-HCT has advantages over IVU when analyzing the morphometric and the morphological features of kidney lower pole spatial anatomy for the retrograde flexible ureteronephroscopy in the treatment of lower pole calyx stones. Keywords: Intravenous urogram, Computed tomography urography, Flexible ureterorenoscopy, Lower pole, Renal stones

  1. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing

    Directory of Open Access Journals (Sweden)

    Liao Chun-Chih

    2011-08-01

    Full Text Available Abstract Background In recent years, magnetic resonance imaging (MRI has become important in brain tumor diagnosis. Using this modality, physicians can locate specific pathologies by analyzing differences in tissue character presented in different types of MR images. This paper uses an algorithm integrating fuzzy-c-mean (FCM and region growing techniques for automated tumor image segmentation from patients with menigioma. Only non-contrasted T1 and T2 -weighted MR images are included in the analysis. The study's aims are to correctly locate tumors in the images, and to detect those situated in the midline position of the brain. Methods The study used non-contrasted T1- and T2-weighted MR images from 29 patients with menigioma. After FCM clustering, 32 groups of images from each patient group were put through the region-growing procedure for pixels aggregation. Later, using knowledge-based information, the system selected tumor-containing images from these groups and merged them into one tumor image. An alternative semi-supervised method was added at this stage for comparison with the automatic method. Finally, the tumor image was optimized by a morphology operator. Results from automatic segmentation were compared to the "ground truth" (GT on a pixel level. Overall data were then evaluated using a quantified system. Results The quantified parameters, including the "percent match" (PM and "correlation ratio" (CR, suggested a high match between GT and the present study's system, as well as a fair level of correspondence. The results were compatible with those from other related studies. The system successfully detected all of the tumors situated at the midline of brain. Six cases failed in the automatic group. One also failed in the semi-supervised alternative. The remaining five cases presented noticeable edema inside the brain. In the 23 successful cases, the PM and CR values in the two groups were highly related. Conclusions Results indicated

  2. Helical CT of traumatic injuries of the thoracic aorta

    International Nuclear Information System (INIS)

    Mengozzi, E.; Burzi, M.; Miceli, M.; Lipparini, M.; Sartoni Galloni, S.

    2000-01-01

    Acute thoracic aortic injuries account for up to 10-20% of fatalities in high-speed deceleration road accidents and have an estimated immediate fatality rate of 80-90%. Untreated survivors to acute trauma (10-20%) have a dismal prognosis: 30% of them die within 6 hours, 40-50% die within 24 hours, and 90% within 4 months. It was investigated the diagnostic accuracy of Helical Computed Tomography (Helical CT) in acute traumatic injuries of the thoracic aorta, and the role of this technique in the diagnostic management of trauma patients with a strong suspicion of aortic rupture. It was compared retrospectively the chest Helical CT findings of 256 trauma patients examined June 1995 through August 1999. Chest Helical CT examinations were performed according to trauma score, to associated traumatic lesions and to plain chest radiographic findings. All the examinations were performed with no intravenous contrast agent administration and the pitch 2 technique. After a previous baseline study, contrast-enhanced scans were acquired with pitch 1 in 87 patients. Helical CT showed aortic lesions in 9 of 256 patients examined. In all the 9 cases it was found a mediastinal hematoma and all of them had positive plain chest radiographic findings of mediastinal enlargement. Moreover, in 6 cases aortic knob blurring was also evident on plain chest film and in 5 cases depressed left mainstem bronchus and trachea deviation rightwards were observed. All aortic lesions were identified on axial scans and located at the isthmus of level. Aortic rupture was always depicted as pseudo diverticulum of the proximal descending tract and intimal flap. It was also found that periaortic hematoma in 6 cases and intramural hematoma in 1 case. There were non false positive results in the series: 7 patients with Helical CT diagnosis of aortic rupture were submitted to conventional aortography that confirmed both type and extension of the lesions as detected by Helical CT, and all findings were

  3. Simulation of multi-pulse coaxial helicity injection in the Sustained Spheromak Physics Experiment

    Science.gov (United States)

    O'Bryan, J. B.; Romero-Talamás, C. A.; Woodruff, S.

    2018-03-01

    Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization during multi-pulse coaxial helicity injection in the Sustained Spheromak Physics eXperiment. We describe multiple distinct phases of spheromak evolution, starting from vacuum magnetic fields and the formation of the initial magnetic flux bubble through multiple refluxing pulses and the eventual onset of the column mode instability. Experimental and computational magnetic diagnostics agree on the onset of the column mode instability, which first occurs during the second refluxing pulse of the simulated discharge. Our computations also reproduce the injector voltage traces, despite only specifying the injector current and not explicitly modeling the external capacitor bank circuit. The computations demonstrate that global magnetic evolution is fairly robust to different transport models and, therefore, that a single fluid-temperature model is sufficient for a broader, qualitative assessment of spheromak performance. Although discharges with similar traces of normalized injector current produce similar global spheromak evolution, details of the current distribution during the column mode instability impact the relative degree of poloidal flux amplification and magnetic helicity content.

  4. Diagnosis of superior labral lesions: comparison of noncontrast MRI with indirect MR arthrography in unexercised shoulders

    International Nuclear Information System (INIS)

    Dinauer, Philip A.; Flemming, Donald J.; Murphy, Kevin P.; Doukas, William C.

    2007-01-01

    To prospectively compare the accuracy of noncontrast magnetic resonance imaging (MRI) with indirect MR arthrography (I-MRa) of unexercised shoulders for diagnosis of superior glenoid labral lesions. Institutional Review Board approval and patient informed consent were obtained for this prospective study. Superior labral findings on shoulder MRI and unexercised I-MRa studies of 104 patients were correlated with findings at arthroscopic shoulder surgery. Two musculoskeletal radiologists independently reviewed the two sets of MR images while blinded to arthroscopic results. For each radiologist, the McNemar test was used to detect statistically significant differences between techniques. The superior labrum was intact in 24 and abnormal in 80 subjects. For detection of superior labral lesions by each radiologist, I-MRa was more sensitive (84-91%) than MRI (66-85%), with statistically significant improvement in sensitivity for one reader (p = 0.003). However, I-MRa was less specific (58-71%) than MRI (75-83%). Overall, accuracy was slightly improved on I-MRa (78-86%) compared with MRI (70-83%), but this difference was not statistically significant for either reader. Compared with noncontrast MRI, I-MRa was more sensitive for diagnosis of superior glenoid labral lesions. However, the diagnostic value of I-MRa in shoulders remaining at rest is potentially limited by decreased specificity of the technique. (orig.)

  5. Computed tomography scan based prediction of the vulnerable carotid plaque

    DEFF Research Database (Denmark)

    Diab, Hadi Mahmoud Haider; Rasmussen, Lars Melholt; Duvnjak, Stevo

    2017-01-01

    BACKGROUND: Primary to validate a commercial semi-automated computed tomography angiography (CTA) -software for vulnerable plaque detection compared to histology of carotid endarterectomy (CEA) specimens and secondary validating calcifications scores by in vivo CTA with ex vivo non......-contrast enhanced computed tomography (NCCT). METHODS: From January 2014 to October 2016 53 patients were included retrospectively, using a cross-sectional design. All patients underwent both CTA and CEA. Sixteen patients had their CEA specimen NCCT scanned. The semi-automated CTA software analyzed carotid stenosis...

  6. Handling data redundancy in helical cone beam reconstruction with a cone-angle-based window function and its asymptotic approximation

    International Nuclear Information System (INIS)

    Tang Xiangyang; Hsieh Jiang

    2007-01-01

    A cone-angle-based window function is defined in this manuscript for image reconstruction using helical cone beam filtered backprojection (CB-FBP) algorithms. Rather than defining the window boundaries in a two-dimensional detector acquiring projection data for computed tomographic imaging, the cone-angle-based window function deals with data redundancy by selecting rays with the smallest cone angle relative to the reconstruction plane. To be computationally efficient, an asymptotic approximation of the cone-angle-based window function is also given and analyzed in this paper. The benefit of using such an asymptotic approximation also includes the avoidance of functional discontinuities that cause artifacts in reconstructed tomographic images. The cone-angle-based window function and its asymptotic approximation provide a way, equivalent to the Tam-Danielsson-window, for helical CB-FBP reconstruction algorithms to deal with data redundancy, regardless of where the helical pitch is constant or dynamically variable during a scan. By taking the cone-parallel geometry as an example, a computer simulation study is conducted to evaluate the proposed window function and its asymptotic approximation for helical CB-FBP reconstruction algorithm to handle data redundancy. The computer simulated Forbild head and thorax phantoms are utilized in the performance evaluation, showing that the proposed cone-angle-based window function and its asymptotic approximation can deal with data redundancy very well in cone beam image reconstruction from projection data acquired along helical source trajectories. Moreover, a numerical study carried out in this paper reveals that the proposed cone-angle-based window function is actually equivalent to the Tam-Danielsson-window, and rigorous mathematical proofs are being investigated

  7. EVOLUTION OF SPINNING AND BRAIDING HELICITY FLUXES IN SOLAR ACTIVE REGION NOAA 10930

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra, B. [Indian Institute of Astrophysics, Koramangala, Bangalore 560 034 (India); Yoshimura, Keiji [Department of Physics, Montana State University Bozeman, MT 59717 (United States); Dasso, Sergio, E-mail: ravindra@iiap.res.in, E-mail: yosimura@solar.physics.montana.edu, E-mail: dasso@df.uba.ar [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), 1428 Buenos Aires (Argentina)

    2011-12-10

    The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8 Degree-Sign hr{sup -1} on the third day of the observations. On the fourth and fifth days it remained at 4 Degree-Sign hr{sup -1} with small undulations in its magnitude. The sunspot rotated about 260 Degree-Sign in the last three days. The S-polarity sunspot did not complete more than 20 Degree-Sign in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 Multiplication-Sign 10{sup 43} Mx{sup 2} over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6

  8. Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadband Chiroptical Activity.

    Science.gov (United States)

    Hirai, Kenji; Yeom, Bongjun; Sada, Kazuki

    2017-06-27

    Fabrication of chiroptical materials with broadband response in the visible light region is vital to fully realize their potential applications. One way to achieve broadband chiroptical activity is to fabricate chiral nanostructures from materials that exhibit broadband absorption in the visible light region. However, the compounds used for chiroptical materials have predominantly been limited to materials with narrowband spectral response. Here, we synthesize Ag 2 S-based nanohelices derived from helical coordination polymers. The right- and left-handed coordination helices used as precursors are prepared from l- and d-glutathione with Ag + and a small amount of Cu 2+ . The pyrolysis of the coordination helices yields right- and left-handed helices of Cu 0.12 Ag 1.94 S/C, which exhibit chiroptical activity spanning the entire visible light region. Finite element method simulations substantiate that the broadband chiroptical activity is attributed to synergistic broadband light absorption and light scattering. Furthermore, another series of Cu 0.10 Ag 1.90 S/C nanohelices are synthesized by choosing the l- or d-Glu-Cys as starting materials. The pitch length of nanohelicies is controlled by changing the peptides, which alters their chiroptical properties. The pyrolysis of coordination helices enables one to fabricate helical Ag 2 S-based materials that enable broadband chiroptical activity but have not been explored owing to the lack of synthetic routes.

  9. Employing helicity amplitudes for resummation

    International Nuclear Information System (INIS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Amsterdam Univ.

    2015-08-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for pp → H+0,1,2 jets, pp → W/Z/γ+0,1,2 jets, and pp → 2,3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e + e - and e - p collisions.

  10. Magnetic Energy and Helicity in Two Emerging Active Regions in the Sun

    Science.gov (United States)

    Liu, Y.; Schuck, P. W.

    2012-01-01

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158,are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term,(2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and(4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course.We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  11. Volumetric analysis of maxillary sinuses of Zulu and European crania by helical, multislice computed tomography.

    Science.gov (United States)

    Fernandes, C L

    2004-11-01

    The volumes of the maxillary sinuses are of interest to surgeons operating endoscopically as variation in maxillary sinus volume may mean variation in anatomical landmarks. Other surgical disciplines, such as dentistry, maxillo-facial surgery and plastic surgery, may benefit from this information. To compare the maxillary sinus volumes of dried crania from cadavers of European and Zulu descent, with respect to ethnic group and gender. Helical, multislice computed tomography (CT) was performed using 1-mm coronal slices. The area for each slice was obtained by tracing the outline of each slice. The CT machine calculated a volume by totalling the slices for each sinus. Ethnic and gender variations were found in the different groups. It was found that European crania had significantly larger antral volumes than Zulu crania and men had larger volumes than women. Race and gender interaction was also assessed, as was maxillary sinus side. A variation in maxillary sinus volume between different ethnic groups and genders exists, and surgeons operating in this region should be aware of this.

  12. Three-dimensional quantification of vorticity and helicity from 3D cine PC-MRI using finite-element interpolations.

    Science.gov (United States)

    Sotelo, Julio; Urbina, Jesús; Valverde, Israel; Mura, Joaquín; Tejos, Cristián; Irarrazaval, Pablo; Andia, Marcelo E; Hurtado, Daniel E; Uribe, Sergio

    2018-01-01

    We propose a 3D finite-element method for the quantification of vorticity and helicity density from 3D cine phase-contrast (PC) MRI. By using a 3D finite-element method, we seamlessly estimate velocity gradients in 3D. The robustness and convergence were analyzed using a combined Poiseuille and Lamb-Ossen equation. A computational fluid dynamics simulation was used to compared our method with others available in the literature. Additionally, we computed 3D maps for different 3D cine PC-MRI data sets: phantom without and with coarctation (18 healthy volunteers and 3 patients). We found a good agreement between our method and both the analytical solution of the combined Poiseuille and Lamb-Ossen. The computational fluid dynamics results showed that our method outperforms current approaches to estimate vorticity and helicity values. In the in silico model, we observed that for a tetrahedral element of 2 mm of characteristic length, we underestimated the vorticity in less than 5% with respect to the analytical solution. In patients, we found higher values of helicity density in comparison to healthy volunteers, associated with vortices in the lumen of the vessels. We proposed a novel method that provides entire 3D vorticity and helicity density maps, avoiding the used of reformatted 2D planes from 3D cine PC-MRI. Magn Reson Med 79:541-553, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. 3D CT versus axial helical CT versus conventional tomography in the classification of acetabular fractures: A ROC analysis

    International Nuclear Information System (INIS)

    Kickuth, Ralph; Laufer, Ulf; Hartung, Guido; Gruening, Christian; Stueckle, Christoph; Kirchner, Johannes

    2002-01-01

    AIM: To assess the diagnostic power of three-dimensional computed tomography (3D CT), axial helical computed tomography (CT) and conventional tomography in the classification of acetabular fractures by interdisciplinary review. MATERIALS AND METHODS: Receiver operating characteristics (ROCs) were assessed for two radiologists and two surgeons blinded to the presence of acetabular fractures in an animal model (a total of 62 porcine hips, 40 of them with artificial acetabular fractures). Main target parameter was the diagnostic accuracy in the classification of the artificial fractures following Judet et al. RESULTS: ROC analysis for radiologists showed A z values of 0·83 for 3D CT, 0·81 for axial helical CT, and 0·78 for conventional tomography; differences between the three techniques were not significant (P = 0·46-0·73). A z values for the surgeons were 0·87 for 3D CT, 0·68 for axial helical CT, and 0·60 for conventional tomography; 3D CT was significantly better than axial helical CT (P = 0·01) and conventional tomography (P = 0·001). The differences between axial helical CT and conventional tomography were not significant (P = 0·37). CONCLUSION: Acetabular fractures are best classified by 3D CT, followed by axial helical CT and conventional tomography when assessed by surgeons. 3D CT did not provide any additional significant benefit in the classification performed by radiologists. Kickuth, R. et al. (2002)

  14. Magnetic helicity balance in the Sustained Spheromak Plasma Experiment

    International Nuclear Information System (INIS)

    Stallard, B.W.; Hooper, E.B.; Woodruff, S.; Bulmer, R.H.; Hill, D.N.; McLean, H.S.; Wood, R.D.

    2003-01-01

    The magnetic helicity balance between the helicity input injected by a magnetized coaxial gun, the rate-of-change in plasma helicity content, and helicity dissipation in electrode sheaths and Ohmic losses have been examined in the Sustained Spheromak Plasma Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)]. Helicity is treated as a flux function in the mean-field approximation, allowing separation of helicity drive and losses between closed and open field volumes. For nearly sustained spheromak plasmas with low fluctuations, helicity balance analysis implies a decreasing transport of helicity from the gun input into the spheromak core at higher spheromak electron temperature. Long pulse discharges with continuously increasing helicity and larger fluctuations show higher helicity coupling from the edge to the spheromak core. The magnitude of the sheath voltage drop, inferred from cathode heating and a current threshold dependence of the gun voltage, shows that sheath losses are important and reduce the helicity injection efficiency in SSPX

  15. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping.

    Science.gov (United States)

    Sado, Daniel M; White, Steven K; Piechnik, Stefan K; Banypersad, Sanjay M; Treibel, Thomas; Captur, Gabriella; Fontana, Marianna; Maestrini, Viviana; Flett, Andrew S; Robson, Matthew D; Lachmann, Robin H; Murphy, Elaine; Mehta, Atul; Hughes, Derralynn; Neubauer, Stefan; Elliott, Perry M; Moon, James C

    2013-05-01

    Anderson-Fabry disease (AFD) is a rare but underdiagnosed intracellular lipid disorder that can cause left ventricular hypertrophy (LVH). Lipid is known to shorten the magnetic resonance imaging parameter T1. We hypothesized that noncontrast T1 mapping by cardiovascular magnetic resonance would provide a novel and useful measure in this disease with potential to detect early cardiac involvement and distinguish AFD LVH from other causes. Two hundred twenty-seven subjects were studied: patients with AFD (n=44; 55% with LVH), healthy volunteers (n=67; 0% with LVH), patients with hypertension (n=41; 24% with LVH), patients with hypertrophic cardiomyopathy (n=34; 100% with LVH), those with severe aortic stenosis (n=21; 81% with LVH), and patients with definite amyloid light-chain (AL) cardiac amyloidosis (n=20; 100% with LVH). T1 mapping was performed using the shortened modified Look-Locker inversion sequence on a 1.5-T magnet before gadolinium administration with primary results derived from the basal and midseptum. Compared with health volunteers, septal T1 was lower in AFD and higher in other diseases (AFD versus healthy volunteers versus other patients, 882±47, 968±32, 1018±74 milliseconds; Pgadolinium enhancement (1001±82 versus 891±38 milliseconds; P<0.0001). Noncontrast T1 mapping shows potential as a unique and powerful measurement in the imaging assessment of LVH and AFD.

  16. Diffusion in a tokamak with helical magnetic cells

    International Nuclear Information System (INIS)

    Wakatani, Masahiro

    1975-05-01

    In a tokamak with helical magnetic cells produced by a resonant helical magnetic field, diffusion in the collisional regime is studied. The diffusion coefficient is greatly enhanced near the resonant surface even for a weak helical magnetic field. A theoretical model for disruptive instabilities based on the enhanced transport due to helical magnetic cells is discussed. This may explain experiments of the tokamak with resonant helical fields qualitatively. (author)

  17. Organ and effective doses in newborn patients during helical multislice computed tomography examination

    Science.gov (United States)

    Staton, Robert J.; Lee, Choonik; Lee, Choonsik; Williams, Matt D.; Hintenlang, David E.; Arreola, Manuel M.; Williams, Jonathon L.; Bolch, Wesley E.

    2006-10-01

    In this study, two computational phantoms of the newborn patient were used to assess individual organ doses and effective doses delivered during head, chest, abdomen, pelvis, and torso examinations using the Siemens SOMATOM Sensation 16 helical multi-slice computed tomography (MSCT) scanner. The stylized phantom used to model the patient anatomy was the revised ORNL newborn phantom by Han et al (2006 Health Phys.90 337). The tomographic phantom used in the study was that developed by Nipper et al (2002 Phys. Med. Biol. 47 3143) as recently revised by Staton et al (2006 Med. Phys. 33 3283). The stylized model was implemented within the MCNP5 radiation transport code, while the tomographic phantom was incorporated within the EGSnrc code. In both codes, the x-ray source was modelled as a fan beam originating from the focal spot at a fan angle of 52° and a focal-spot-to-axis distance of 57 cm. The helical path of the source was explicitly modelled based on variations in collimator setting (12 mm or 24 mm), detector pitch and scan length. Tube potentials of 80, 100 and 120 kVp were considered in this study. Beam profile data were acquired using radiological film measurements on a 16 cm PMMA phantom, which yielded effective beam widths of 14.7 mm and 26.8 mm for collimator settings of 12 mm and 24 mm, respectively. Values of absolute organ absorbed dose were determined via the use of normalization factors defined as the ratio of the CTDI100 measured in-phantom and that determined by Monte Carlo simulation of the PMMA phantom and ion chamber. Across various technique factors, effective dose differences between the stylized and tomographic phantoms ranged from +2% to +9% for head exams, -4% to -2% for chest exams, +8% to +24% for abdominal exams, -16% to -12% for pelvic exams and -7% to 0% for chest-abdomen-pelvis (CAP) exams. In many cases, however, relatively close agreement in effective dose was accomplished at the expense of compensating errors in individual organ

  18. Organ and effective doses in newborn patients during helical multislice computed tomography examination

    International Nuclear Information System (INIS)

    Staton, Robert J; Lee, Choonik; Lee, Choonsik; Williams, Matt D; Hintenlang, David E; Arreola, Manuel M; Williams, Jonathon L; Bolch, Wesley E

    2006-01-01

    In this study, two computational phantoms of the newborn patient were used to assess individual organ doses and effective doses delivered during head, chest, abdomen, pelvis, and torso examinations using the Siemens SOMATOM Sensation 16 helical multi-slice computed tomography (MSCT) scanner. The stylized phantom used to model the patient anatomy was the revised ORNL newborn phantom by Han et al (2006 Health Phys.90 337). The tomographic phantom used in the study was that developed by Nipper et al (2002 Phys. Med. Biol. 47 3143) as recently revised by Staton et al (2006 Med. Phys. 33 3283). The stylized model was implemented within the MCNP5 radiation transport code, while the tomographic phantom was incorporated within the EGSnrc code. In both codes, the x-ray source was modelled as a fan beam originating from the focal spot at a fan angle of 52 0 and a focal-spot-to-axis distance of 57 cm. The helical path of the source was explicitly modelled based on variations in collimator setting (12 mm or 24 mm), detector pitch and scan length. Tube potentials of 80, 100 and 120 kVp were considered in this study. Beam profile data were acquired using radiological film measurements on a 16 cm PMMA phantom, which yielded effective beam widths of 14.7 mm and 26.8 mm for collimator settings of 12 mm and 24 mm, respectively. Values of absolute organ absorbed dose were determined via the use of normalization factors defined as the ratio of the CTDI 100 measured in-phantom and that determined by Monte Carlo simulation of the PMMA phantom and ion chamber. Across various technique factors, effective dose differences between the stylized and tomographic phantoms ranged from +2% to +9% for head exams, -4% to -2% for chest exams, +8% to +24% for abdominal exams, -16% to -12% for pelvic exams and -7% to 0% for chest-abdomen-pelvis (CAP) exams. In many cases, however, relatively close agreement in effective dose was accomplished at the expense of compensating errors in individual organ

  19. Helical tomotherapy as a new treatment technique for whole abdominal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rochet, N.; Sterzing, F.; Jensen, A.; Herfarth, K.; Schubert, K.; Debus, J.; Harms, W. [Heidelberg Univ. (Germany). Dept. of Radiation Oncology; Dinkel, J. [German Cancer Research Center (dkfz), Heidelberg (Germany). Dept. of Radiology; Eichbaum, M.; Schneeweiss, A.; Sohn, C. [Heidelberg Univ. (Germany). Dept. of Gynecology and Obstetrics

    2008-03-15

    Purpose: To describe a new intensity-modulated radiotherapy (IMRT) technique using helical tomotherapy for whole abdominal irradiation (WAI) in patients with advanced ovarian cancer. Material and Methods: A patient with radically operated ovarian cancer FIGO stage IIIc was treated in a prospective clinical trial with WAI to a total dose of 30 Gy in 1.5-Gy fractions as an additional therapy after adjuvant platinum-based chemotherapy. The planning target volume (PTV) included the entire peritoneal cavity. PTV was adapted according to breathing motion as detected in a four-dimensional respiratory-triggered computed tomography (4D-CT). Inverse treatment planning was done with the Hi-Art tomotherapy planning station. Organs at risk (OARs) were kidneys, liver, bone marrow, spinal cord, thoracic and lumbosacral vertebral bodies, and pelvic bones. Daily control of positioning accuracy was performed with megavoltage computed tomography (MV-CT). Results: Helical tomotherapy enabled a very homogeneous dose distribution with excellent sparing of OARs and coverage of the PTV (V90 of 93.1%, V95 of 86.9%, V105 of 1.9%, and V110 of 0.01%). Mean liver dose was 21.57 Gy and mean kidney doses were 9.75 Gy and 9.14 Gy, respectively. Treatment could be performed in 18.1 min daily and no severe side effects occurred. Conclusion: Helical tomotherapy is feasible and fast for WAI. Tomotherapy enabled excellent coverage of the PTV and effective sparing of liver, kidneys and bone marrow. (orig.)

  20. Helical tomotherapy as a new treatment technique for whole abdominal irradiation

    International Nuclear Information System (INIS)

    Rochet, N.; Sterzing, F.; Jensen, A.; Herfarth, K.; Schubert, K.; Debus, J.; Harms, W.; Dinkel, J.; Eichbaum, M.; Schneeweiss, A.; Sohn, C.

    2008-01-01

    Purpose: To describe a new intensity-modulated radiotherapy (IMRT) technique using helical tomotherapy for whole abdominal irradiation (WAI) in patients with advanced ovarian cancer. Material and Methods: A patient with radically operated ovarian cancer FIGO stage IIIc was treated in a prospective clinical trial with WAI to a total dose of 30 Gy in 1.5-Gy fractions as an additional therapy after adjuvant platinum-based chemotherapy. The planning target volume (PTV) included the entire peritoneal cavity. PTV was adapted according to breathing motion as detected in a four-dimensional respiratory-triggered computed tomography (4D-CT). Inverse treatment planning was done with the Hi-Art tomotherapy planning station. Organs at risk (OARs) were kidneys, liver, bone marrow, spinal cord, thoracic and lumbosacral vertebral bodies, and pelvic bones. Daily control of positioning accuracy was performed with megavoltage computed tomography (MV-CT). Results: Helical tomotherapy enabled a very homogeneous dose distribution with excellent sparing of OARs and coverage of the PTV (V90 of 93.1%, V95 of 86.9%, V105 of 1.9%, and V110 of 0.01%). Mean liver dose was 21.57 Gy and mean kidney doses were 9.75 Gy and 9.14 Gy, respectively. Treatment could be performed in 18.1 min daily and no severe side effects occurred. Conclusion: Helical tomotherapy is feasible and fast for WAI. Tomotherapy enabled excellent coverage of the PTV and effective sparing of liver, kidneys and bone marrow. (orig.)

  1. Dynamics of zonal flows in helical systems.

    Science.gov (United States)

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  2. Parameterization and measurements of helical magnetic fields

    International Nuclear Information System (INIS)

    Fischer, W.; Okamura, M.

    1997-01-01

    Magnetic fields with helical symmetry can be parameterized using multipole coefficients (a n , b n ). We present a parameterization that gives the familiar multipole coefficients (a n , b n ) for straight magnets when the helical wavelength tends to infinity. To measure helical fields all methods used for straight magnets can be employed. We show how to convert the results of those measurements to obtain the desired helical multipole coefficients (a n , b n )

  3. Pumping Characteristics of a Helical Screw Agitator with a Draught Tube

    Science.gov (United States)

    Hwang, Jung-Hoon; Kim, Youn-Jea

    In the use of helical type agitator, the mixing process is usually restricted to the laminar flow regime. Common examples of laminar mixing are found where the fluid has a very high viscosity, i.e., pseudoplastic fluids. It can be indicated that a helical type agitator is sufficiently suited to the creeping flow mixing. The pumping characteristic of a Helical Screw Agitator with a draught tube (HSA) is required to evaluate its capacity for the optimal configuration of the mixing chamber. It could be executed by changing some parameters such as the number of helix, the angular velocity and the rotating direction and so on. In this study, the numerical simulation was carried out with the Eulerian multiphase mixture model and the moving mesh approximation. Some of the optimum design parameters have been developed with the aid of numerical data from the Computational Fluid Dynamics (CFD) analysis. Using the commercial code, Fluent, the pumping characteristics in the HSA are investigated from the rheological properties, and the results are graphically depicted.

  4. Follow-up after stent insertion in the tracheobronchial tree: role of helical computed tomography in comparison with fiberoptic bronchoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, G.R.; Kocier, M.; Calaque, O.; Coulomb, M. [Service Central de Radiologie et Imagerie Medicale, INSERM EMI 9924, CHU, BP 217, 38043, Grenoble Cedex 9 (France); Arbib, F.; Pison, C. [Departement de Medecine Aigue Specialisee (DMAS), CHU Grenoble, CHU, BP 217, 38043, Grenoble Cedex 9 (France); Righini, C. [Service d' Oto Rhino Laryngologie, CHU Grenoble, BP 217, 38043, Grenoble Cedex 9 (France)

    2003-05-01

    The aim of this study was to compare helical CT with fiberoptic bronchoscopy findings to appraise the medium-term results of proximal-airways stenting. Twenty-five patients with 28 endobronchial metallic stents inserted for local advanced malignancy (n=13) or benign diseases (n=12) underwent follow-up CT from 3 days to 50 months (mean 8 months). All studies were obtained using helical CT with subsequent multiplanar reformation and three-dimensional reconstruction including virtual bronchoscopy. The location, shape, and patency of stents and adjacent airway were assessed. The results of CT were compared with the results of fiberoptic bronchoscopy obtained with a mean delay of 2.5 days (SD 9 days) after CT scan. Twelve stents (43%) remained in their original position, patent and without deformity. Sixteen stents were associated with local complications: migration (n=6); external compression with persistent stenosis (n=4); local recurrence of malignancy (n=4); fracture (n=1); and non-congruence between the airway and the stent (n=1). The CT demonstrated all the significant abnormalities demonstrated at fiberoptic bronchoscopy except two moderate stenoses (20%) related to granulomata at the origin of the stent. Ten of 14 stents inserted for benign conditions were without complications as compared with 2 of 14 in malignant conditions (p=0.008). Computed tomography is an accurate noninvasive method for evaluating endobronchial stents. The CT is a useful technique for follow-up of patients who have undergone endobronchial stenting. (orig.)

  5. Follow-up after stent insertion in the tracheobronchial tree: role of helical computed tomography in comparison with fiberoptic bronchoscopy

    International Nuclear Information System (INIS)

    Ferretti, G.R.; Kocier, M.; Calaque, O.; Coulomb, M.; Arbib, F.; Pison, C.; Righini, C.

    2003-01-01

    The aim of this study was to compare helical CT with fiberoptic bronchoscopy findings to appraise the medium-term results of proximal-airways stenting. Twenty-five patients with 28 endobronchial metallic stents inserted for local advanced malignancy (n=13) or benign diseases (n=12) underwent follow-up CT from 3 days to 50 months (mean 8 months). All studies were obtained using helical CT with subsequent multiplanar reformation and three-dimensional reconstruction including virtual bronchoscopy. The location, shape, and patency of stents and adjacent airway were assessed. The results of CT were compared with the results of fiberoptic bronchoscopy obtained with a mean delay of 2.5 days (SD 9 days) after CT scan. Twelve stents (43%) remained in their original position, patent and without deformity. Sixteen stents were associated with local complications: migration (n=6); external compression with persistent stenosis (n=4); local recurrence of malignancy (n=4); fracture (n=1); and non-congruence between the airway and the stent (n=1). The CT demonstrated all the significant abnormalities demonstrated at fiberoptic bronchoscopy except two moderate stenoses (20%) related to granulomata at the origin of the stent. Ten of 14 stents inserted for benign conditions were without complications as compared with 2 of 14 in malignant conditions (p=0.008). Computed tomography is an accurate noninvasive method for evaluating endobronchial stents. The CT is a useful technique for follow-up of patients who have undergone endobronchial stenting. (orig.)

  6. Dynamics and deformability of α-, 310- and π-helices

    Directory of Open Access Journals (Sweden)

    Narwani Tarun Jairaj

    2018-01-01

    Full Text Available Protein structures are often represented as seen in crystals as (i rigid macromolecules (ii with helices, sheets and coils. However, both definitions are partial because (i proteins are highly dynamic macromolecules and (ii the description of protein structures could be more precise. With regard to these two points, we analyzed and quantified the stability of helices by considering α-helices as well as 310- and π-helices. Molecular dynamic (MD simulations were performed on a large set of 169 representative protein domains. The local protein conformations were followed during each simulation and analyzed. The classical flexibility index (B-factor was confronted with the MD root mean square flexibility (RMSF index. Helical regions were classified according to their level of helicity from high to none. For the first time, a precise quantification showed the percentage of rigid and flexible helices that underlie unexpected behaviors. Only 76.4% of the residues associated with α-helices retain the conformation, while this tendency drops to 40.5% for 310-helices and is never observed for π-helices. α-helix residues that do not remain as an α-helix have a higher tendency to assume β-turn conformations than 310- or π-helices. The 310-helices that switch to the α-helix conformation have a higher B-factor and RMSF values than the average 310-helix but are associated with a lower accessibility. Rare π-helices assume a β-turn, bend and coil conformations, but not α- or 310-helices. The view on π-helices drastically changes with the new DSSP (Dictionary of Secondary Structure of Proteins assignment approach, leading to behavior similar to 310-helices, thus underlining the importance of secondary structure assignment methods.

  7. Helical Confinement Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C; Brakel, R; Burhenn, R; Dinklage, A; Erckmann, V; Feng, Y; Geiger, J; Hartmann, D; Hirsch, M; Jaenicke, R; Koenig, R; Laqua, H P; Maassberg, H; Wagner, F; Weller, A; Wobig, H [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany)

    2012-09-15

    Stellarators, conceived 1951 by Lyman Spitzer in Princeton, are toroidal devices that confine a plasma in a magnetic field which originates from currents in coils outside the plasma. A plasma current driven by external means, for example by an ohmic transformer, is not required for confinement. Supplying the desired poloidal field component by external coils leads to a helically structured plasma topology. Thus stellarators - or helical confinement devices - are fully three-dimensional in contrast to the toroidal (rotational) symmetry of tokamaks. As stellarators can be free of an inductive current, whose radial distribution depends on the plasma parameters, their equilibrium must not be established via the evolving plasma itself, but to a first order already given by the vacuum magnetic field. They do not need an active control (like positional feedback) and therefore cannot suffer from its failure. The outstanding conceptual advantage of stellarators is the potential of steady state plasma operation without current drive. As there is no need for current drive, the recirculating power is expected to be smaller than in equivalent tokamaks. The lack of a net current avoids current driven instabilities; specifically, no disruptions, no resistive wall modes and no conventional or neoclassical tearing modes appear. Second order pressure-driven currents (Pfirsch-Schlueter, bootstrap) exist but they can be modified and even minimized by the magnetic design. The magnetic configuration of helical devices naturally possesses a separatrix, which allows the implementation of a helically structured divertor for exhaust and impurity control. (author)

  8. A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT-helical scanning

    International Nuclear Information System (INIS)

    Tang Xiangyang; Hsieh Jiang; Nilsen, Roy A; Dutta, Sandeep; Samsonov, Dmitry; Hagiwara, Akira

    2006-01-01

    Based on the structure of the original helical FDK algorithm, a three-dimensional (3D)-weighted cone beam filtered backprojection (CB-FBP) algorithm is proposed for image reconstruction in volumetric CT under helical source trajectory. In addition to its dependence on view and fan angles, the 3D weighting utilizes the cone angle dependency of a ray to improve reconstruction accuracy. The 3D weighting is ray-dependent and the underlying mechanism is to give a favourable weight to the ray with the smaller cone angle out of a pair of conjugate rays but an unfavourable weight to the ray with the larger cone angle out of the conjugate ray pair. The proposed 3D-weighted helical CB-FBP reconstruction algorithm is implemented in the cone-parallel geometry that can improve noise uniformity and image generation speed significantly. Under the cone-parallel geometry, the filtering is naturally carried out along the tangential direction of the helical source trajectory. By exploring the 3D weighting's dependence on cone angle, the proposed helical 3D-weighted CB-FBP reconstruction algorithm can provide significantly improved reconstruction accuracy at moderate cone angle and high helical pitches. The 3D-weighted CB-FBP algorithm is experimentally evaluated by computer-simulated phantoms and phantoms scanned by a diagnostic volumetric CT system with a detector dimension of 64 x 0.625 mm over various helical pitches. The computer simulation study shows that the 3D weighting enables the proposed algorithm to reach reconstruction accuracy comparable to that of exact CB reconstruction algorithms, such as the Katsevich algorithm, under a moderate cone angle (4 deg.) and various helical pitches. Meanwhile, the experimental evaluation using the phantoms scanned by a volumetric CT system shows that the spatial resolution along the z-direction and noise characteristics of the proposed 3D-weighted helical CB-FBP reconstruction algorithm are maintained very well in comparison to the FDK

  9. General architecture of the alpha-helical globule.

    Science.gov (United States)

    Murzin, A G; Finkelstein, A V

    1988-12-05

    A model is presented for the arrangement of alpha-helices in globular proteins. In the model, helices are placed on certain ribs of "quasi-spherical" polyhedra. The polyhedra are chosen so as to allow the close packing of helices around a hydrophobic core and to stress the collective interactions of the individual helices. The model predicts a small set of stable architectures for alpha-helices in globular proteins and describes the geometries of the helix packings. Some of the predicted helix arrangements have already been observed in known protein structures; others are new. An analysis of the three-dimensional structures of all proteins for which co-ordinates are available shows that the model closely approximates the arrangements and packing of helices actually observed. The average deviations of the real helix axes from those in the model polyhedra is +/- 20 degrees in orientation and +/- 2 A in position (1 A = 0.1 nm). We also show that for proteins that are not homologous, but whose helix arrangements are described by the same polyhedron, the root-mean-square difference in the position of the C alpha atoms in the helices is 1.6 to 3.0 A.

  10. Evidence for Mixed Helicity in Erupting Filaments

    Science.gov (United States)

    Muglach, K.; Wang, Y.-M.; Kliem, B.

    2009-09-01

    Erupting filaments are sometimes observed to undergo a rotation about the vertical direction as they rise. This rotation of the filament axis is generally interpreted as a conversion of twist into writhe in a kink-unstable magnetic flux rope. Consistent with this interpretation, the rotation is usually found to be clockwise (as viewed from above) if the post-eruption arcade has right-handed helicity, but counterclockwise if it has left-handed helicity. Here, we describe two non-active-region filament events recorded with the Extreme-Ultraviolet Imaging Telescope on the Solar and Heliospheric Observatory in which the sense of rotation appears to be opposite to that expected from the helicity of the post-event arcade. Based on these observations, we suggest that the rotation of the filament axis is, in general, determined by the net helicity of the erupting system, and that the axially aligned core of the filament can have the opposite helicity sign to the surrounding field. In most cases, the surrounding field provides the main contribution to the net helicity. In the events reported here, however, the helicity associated with the filament "barbs" is opposite in sign to and dominates that of the overlying arcade.

  11. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  12. Electronic Band Structure of Helical Polyisocyanides.

    Science.gov (United States)

    Champagne, Benoît; Liégeois, Vincent; Fripiat, Joseph G; Harris, Frank E

    2017-10-19

    Restricted Hartree-Fock computations are reported for a methyl isocyanide polymer (repeating unit -C═N-CH 3 ), whose most stable conformation is expected to be a helical chain. The computations used a standard contracted Gaussian orbital set at the computational levels STO-3G, 3-21G, 6-31G, and 6-31G**, and studies were made for two line-group configurations motivated by earlier work and by studies of space-filling molecular models: (1) A structure of line-group symmetry L9 5 , containing a 9-fold screw axis with atoms displaced in the axial direction by 5/9 times the lattice constant, and (2) a structure of symmetry L4 1 that had been proposed, containing a 4-fold screw axis with translation by 1/4 of the lattice constant. Full use of the line-group symmetry was employed to cause most of the computational complexity to depend only on the size of the asymmetric repeating unit. Data reported include computed bond properties, atomic charge distribution, longitudinal polarizability, band structure, and the convoluted density of states. Most features of the description were found to be insensitive to the level of computational approximation. The work also illustrates the importance of exploiting line-group symmetry to extend the range of polymer structural problems that can be treated computationally.

  13. Theoretical aspects of magnetic helicity

    International Nuclear Information System (INIS)

    Hammer, J.H.

    1985-01-01

    The magnetic helicity, usually defined as K=integralA.Bdv, where A is the vector potential and B the magnetic field, measures the topological linkage of magnetic fluxes. Helicity manifests itself in the twistedness and knottedness of flux tubes. Its significance is that it is an ideal MHD invariant. While the helicity formalism has proven very useful in understanding reversed field pinch and spheromak behavior, some problems exist in applying the method consistently for complex (e.g., toroidal) conductor geometries or in situations where magnetic flux penetrates conducting walls. Recent work has attempted to generalize K to allow for all possible geometries

  14. MH2c: Characterization of major histocompatibility α-helices - an information criterion approach.

    Science.gov (United States)

    Hischenhuber, B; Frommlet, F; Schreiner, W; Knapp, B

    2012-07-01

    Major histocompatibility proteins share a common overall structure or peptide binding groove. Two binding groove domains, on the same chain for major histocompatibility class I or on two different chains for major histocompatibility class II, contribute to that structure that consists of two α -helices ("wall") and a sheet of eight anti-parallel beta strands ("floor"). Apart from the peptide presented in the groove, the major histocompatibility α -helices play a central role for the interaction with the T cell receptor. This study presents a generalized mathematical approach for the characterization of these helices. We employed polynomials of degree 1 to 7 and splines with 1 to 2 nodes based on polynomials of degree 1 to 7 on the α -helices projected on their principal components. We evaluated all models with a corrected Akaike Information Criterion to determine which model represents the α -helices in the best way without overfitting the data. This method is applicable for both the stationary and the dynamic characterization of α -helices. By deriving differential geometric parameters from these models one obtains a reliable method to characterize and compare α -helices for a broad range of applications. Program title: MH 2 c (MH helix curves) Catalogue identifier: AELX_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AELX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 327 565 No. of bytes in distributed program, including test data, etc.: 17 433 656 Distribution format: tar.gz Programming language: Matlab Computer: Personal computer architectures Operating system: Windows, Linux, Mac (all systems on which Matlab can be installed) RAM: Depends on the trajectory size, min. 1 GB (Matlab) Classification: 2.1, 4.9, 4.14 External routines: Curve

  15. Effects of Magnetic and Kinetic Helicities on the Growth of Magnetic Fields in Laminar and Turbulent Flows by Helical Fourier Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Linkmann, Moritz; Sahoo, Ganapati; Biferale, Luca [Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); McKay, Mairi; Berera, Arjun [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD, Edinburgh (United Kingdom)

    2017-02-10

    We present a numerical and analytical study of incompressible homogeneous conducting fluids using a helical Fourier representation. We analytically study both small- and large-scale dynamo properties, as well as the inverse cascade of magnetic helicity, in the most general minimal subset of interacting velocity and magnetic fields on a closed Fourier triad. We mainly focus on the dependency of magnetic field growth as a function of the distribution of kinetic and magnetic helicities among the three interacting wavenumbers. By combining direct numerical simulations of the full magnetohydrodynamics equations with the helical Fourier decomposition, we numerically confirm that in the kinematic dynamo regime the system develops a large-scale magnetic helicity with opposite sign compared to the small-scale kinetic helicity, a sort of triad-by-triad α -effect in Fourier space. Concerning the small-scale perturbations, we predict theoretically and confirm numerically that the largest instability is achived for the magnetic component with the same helicity of the flow, in agreement with the Stretch–Twist–Fold mechanism. Vice versa, in the presence of Lorentz feedback on the velocity, we find that the inverse cascade of magnetic helicity is mostly local if magnetic and kinetic helicities have opposite signs, while it is more nonlocal and more intense if they have the same sign, as predicted by the analytical approach. Our analytical and numerical results further demonstrate the potential of the helical Fourier decomposition to elucidate the entangled dynamics of magnetic and kinetic helicities both in fully developed turbulence and in laminar flows.

  16. Introduction of helical computed tomography affects patient selection for V/Q lung scan

    International Nuclear Information System (INIS)

    Zettinig, G.; Baudrexel, S.; Leitha, Th.

    2002-01-01

    Aim: Retrospective analysis for determination of the effect of helical computed tomography (HCT) on utilization of V/Q lung scanning to diagnose pulmonary embolism (PE) in a large general hospital. Methods: A total number of 2676 V/Q scans of in- and out-patients referred to our department between March 1992 and December 1998 and between April 1997 and December 1998 were analyzed by an identical group of nuclear physicians. Results: Neither the total number of annually performed V/Q scans (446 ± 135) nor the mean age of patients (56 years ± 17) changed significantly since the introduction of HCT. However, the referral pattern was different. The percentage of patients with high and intermediate probability for PE decreased significantly from 15.2% to 9.4% (p <0.01) and from 10.2% to 7.3% (p <0.05), respectively. Low probability scans significantly increased from 37.8% to 42.7% (p <0.05). The percentage of normal scans did not change significantly, however, there was a highly significant increase summarizing patients with normal and low probability scans (74.6% to 83.3%; p <0.01). Conclusion: The introduction of HCT affected the selection of patients referred for V/Q lung scanning since V/Q scanning was primarily used to exclude rather to confirm PE. (orig.)

  17. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sourav, E-mail: sourav.kunduphy@gmail.com; Karmakar, S.N.

    2016-07-15

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  18. High-n helicity-induced shear Alfven eigenmodes

    International Nuclear Information System (INIS)

    Nakajima, N.; Cheng, C.Z.; Okamoto, M.

    1992-05-01

    The high-n Helicity-induced shear Alfven Eigenmodes (HAE) are considered both analytically and numerically for the straight helical magnetic system, where n is the toroidal mode number. The eigenmode equation for the high-n HAE modes is derived along the field line and with the aid of the averaging method is shown to reduce to the Mathieu equation asymptotically. The discrete HAE modes are shown to exist inside the continuum spectrum gaps. The continuous spectrum gaps appear around ω 2 = ω A 2 [N(lι-m)/2] 2 for N = 1,2,.., where ω A is the toroidal Alfven transit frequency, and l, m, and ι are the polarity of helical coils, the toroidal pitch number of helical coils, and the rotational transform, respectively. For the same ω A and ι, the frequency of the helical continuum gap is larger than that of the continuum gap in tokamak plasmas by |l-ι -1 m|. The polarity of helical coils l plays a crucial role in determining the spectrum gaps and the properties of the high-n HAE modes. The spectrum gaps near the magnetic axis are created by the helical ripple with circular flux surfaces for l = 1, and ≥ 3 helicals. For l = 2 helical systems, the spectrum gaps are created by the ellipticity of the flux surfaces. These analytical results for the continuum gaps and the existence of the high-n HAE modes in the continuum gaps are confirmed numerically for the l = 2 case, and we find that the HAE modes exist for mode structures with the even and the odd parities. (author)

  19. Employing Helicity Amplitudes for Resummation

    NARCIS (Netherlands)

    Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.

    2015-01-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are

  20. Self-assembly of a double-helical complex of sodium.

    Science.gov (United States)

    Bell, T W; Jousselin, H

    1994-02-03

    Spontaneous self-organization of helical and multiple-helical molecular structures occurs on several levels in living organisms. Key examples are alpha-helical polypeptides, double-helical nucleic acids and helical protein structures, including F-actin, microtubules and the protein sheath of the tobacco mosaic virus. Although the self-assembly of double-helical transition-metal complexes bears some resemblance to the molecular organization of double-stranded DNA, selection between monohelical, double-helical and triple-helical structures is determined largely by the size and geometrical preference of the tightly bound metal. Here we present an example of double-helical assembly induced by the weaker and non-directional interactions of an alkali-metal ion with an organic ligand that is pre-organized into a coil. We have characterized the resulting complex by two-dimensional NMR and fast-atom-bombardment mass spectrometry. These results provide a step toward the creation of molecular tubes or ion channels consisting of intertwined coils.

  1. Helicity multiplexed broadband metasurface holograms.

    Science.gov (United States)

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Pun, Edwin Yue Bun; Zhang, Shuang; Chen, Xianzhong

    2015-09-10

    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.

  2. Beta-helical polymers from isocyanopeptides

    NARCIS (Netherlands)

    Cornelissen, J.J.L.M.; Donners, J.J.J.M.; Gelder, de R.; Graswinckel, W.S.; Metselaar, G.A.; Rowan, A.E.; Sommerdijk, N.A.J.M.; Nolte, R.J.M.

    2001-01-01

    Polymerization of isocyanopeptides results in the formation of high molecular mass polymers that fold in a proteinlike fashion to give helical strands in which the peptide chains are arranged in ß-sheets. The ß-helical polymers retain their structure in water and unfold in a cooperative process at

  3. A morphological study of the mandibular molar region using reconstructed helical computed tomographic images

    International Nuclear Information System (INIS)

    Tsuno, Hiroaki; Noguchi, Makoto; Noguchi, Akira; Yoshida, Keiko; Tachinami, Yasuharu

    2010-01-01

    This study investigated the morphological variance in the mandibular molar region using reconstructed helical computed tomographic (CT) images. In addition, we discuss the necessity of CT scanning as part of the preoperative assessment process for dental implantation, by comparing the results with the findings of panoramic radiography. Sixty patients examined using CT as part of the preoperative assessment for dental implantation were analyzed. Reconstructed CT images were used to evaluate the bone quality and cross-sectional bone morphology of the mandibular molar region. The mandibular cortical index (MCI) and X-ray density ratio of this region were assessed using panoramic radiography in order to analyze the correlation between the findings of the CT images and panoramic radiography. CT images showed that there was a decrease in bone quality in cases with high MCI. Cross-sectional CT images revealed that the undercuts on the lingual side in the highly radiolucent areas in the basal portion were more frequent than those in the alveolar portion. This study showed that three-dimensional reconstructed CT images can help to detect variances in mandibular morphology that might be missed by panoramic radiography. In conclusion, it is suggested that CT should be included as an important examination tool before dental implantation. (author)

  4. Single-superfield helical-phase inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ketov, Sergei V., E-mail: ketov@tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, Minami-ohsawa 1-1, Hachioji-shi, Tokyo 192-0397 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Chiba 277-8568 (Japan); Institute of Physics and Technology, Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050 (Russian Federation); Terada, Takahiro, E-mail: takahiro@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany)

    2016-01-10

    Large-field inflation in supergravity requires the approximate global symmetry needed to protect flatness of the scalar potential. In helical-phase inflation, the U(1) symmetry of the Kähler potential is assumed, the phase part of the complex scalar of a chiral superfield plays the role of inflaton, and the radial part is strongly stabilized. The original model of helical phase inflation, proposed by Li, Li and Nanopoulos (LLN), employs an extra (stabilizer) superfield. We propose a more economical new class of the helical phase inflationary models without a stabilizer superfield. As the specific examples, the quadratic, the natural, and the Starobinsky-type inflationary models are studied in our approach.

  5. An experimental study for qualitatively diagnosing stapes lesions by helical 3-dimensional CT

    International Nuclear Information System (INIS)

    Kawaue, Akifumi; Kuki, Kiyonori; Yamanaka, Noboru; Nishimura, Michihiko

    2001-01-01

    To evaluate qualitative diagnosis of stapes lesions by 3-dimensional computed tomography (3D-CT) combined with superselective image processing (3D-SS) of stapes, we studied helical 3D-CT on a phantom model of the temporal bone. Two stapes models were used-1 made from the bone filler, Celatite, consistent in bone density but changing in cross sectional area, and the other made from an apacerum rod used in quantitative computed tomography (QCT), consistent in cross sectional area but changing in bone density. These stapes models were put into a skull phantom and analyzed by helical 3D-CT. The influence of the tympanic cavity conditions on CT images of stapes was evaluated by filling the phantom model with Vaseline following 3D selective reconstruction. In all stapes models, lowering the lower CT window width threshold resulted in an enlarged cross-sectional area of the model. The higher the bone density, the lower the increase in cross-sectional area in the image. The stapes model with lower density had greater influence on the imaging by tympanic cavity conditions and was likely to be misdiagnosed as showing higher bone density. Based on the experimental study, 3D-SS by helical 3D-CT appears to be a useful measure for qualitatively diagnosing stapes lesions. (author)

  6. A real-scale helical coil winding trial of the Large Helical Device

    International Nuclear Information System (INIS)

    Senba, T.; Yamamoto, T.; Tamaki, T.; Asano, K.; Suzuki, S.; Yamauchi, T.; Uchida, K.; Nakanishi, K.; Yamagiwa, T.; Suzuki, S.; Miyoshi, R.; Sasa, H.; Watanabe, S.; Tatemura, M.; Hatada, N.; Yamaguchi, S.; Imagawa, S.; Yanagi, N.; Satow, T.; Yamamoto, J.; Motojima, O.

    1995-01-01

    A real-scale helical coil winding trial of the Large Helical Device (LHD) has been conducted for a study of coil winding configuration and winding methods and for exhibiting the state of the art. It includes construction and test run of a specifically designed winding machine and development of various manufacturing methods for accurate coil winding. It has been carried out in Hitachi Works before in situ winding, and has provided much needed engineering data for construction of the LHD. (orig.)

  7. On the helicity of open magnetic fields

    International Nuclear Information System (INIS)

    Prior, C.; Yeates, A. R.

    2014-01-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  8. Acute pulmonary embolism in helical computed tomography

    International Nuclear Information System (INIS)

    Paslawski, M.

    2005-01-01

    Pulmonary embolism is a common condition in which diagnostic and therapeutic delays contribute to substantial morbidity and mortality. Clinical diagnosis is difficult because the signs and symptoms re unspecific, and a differential diagnosis is extensive, including pneumonia or bronchitis, asthma, myocardial infraction, pulmonary edema, anxiety, dissection of the aorta, pericardial tamponade, lung cancer, primary pulmonary hypertension, rib fracture, and pneumothorax. The purpose of the study was to present the use of CT in diagnosing acute pulmonary embolism. A group of 23 patients with clinically suspected pulmonary embolism underwent CT examination with a helical CT scanner (Somatom Emotion, Siemens) before and after administration of 150 ml of Ultravist. Pulmonary embolism was found in the CT examinations of 13 patients. In two of these it was a central filling defect. Amputation of the artery was found in one. Parietal filling defect in three patients formed an acute angle with the vessel walls. Saddle emboli appearing as filling defects in the contrast column that hung over vessel bifurcations was found in two patients. In five patients,emboli were found in small segmental arteries. CT provides information not only on the pulmonary arteries, but also on the lung parenchyma, hila, mediastinum, and the heart. Alternative findings may be identified by CT chest examination, stablishing alternative diagnoses, including pulmonary disorders (such as pneumonia or fibrosis), pleural abnormalities, and cardiovascular disease (such as aortic dissection or pericardial tamponade). Another advantage of the CT is its widespread availability.(author)

  9. Helicity-flip in particle production on nuclei

    International Nuclear Information System (INIS)

    Faeldt, G.

    1977-01-01

    Coherent nuclear production processes are generally analyzed assuming helicity conserving production amplitudes. In view of the uncertainties of the actual helicity structure this could be a dangerous assumption. It is shown that helicity-flip contributions might be part of the explanation of the small effective (pππ)-nucleon cross sections observed in coherent production. (Auth.)

  10. Cryo-EM Structure Determination Using Segmented Helical Image Reconstruction.

    Science.gov (United States)

    Fromm, S A; Sachse, C

    2016-01-01

    Treating helices as single-particle-like segments followed by helical image reconstruction has become the method of choice for high-resolution structure determination of well-ordered helical viruses as well as flexible filaments. In this review, we will illustrate how the combination of latest hardware developments with optimized image processing routines have led to a series of near-atomic resolution structures of helical assemblies. Originally, the treatment of helices as a sequence of segments followed by Fourier-Bessel reconstruction revealed the potential to determine near-atomic resolution structures from helical specimens. In the meantime, real-space image processing of helices in a stack of single particles was developed and enabled the structure determination of specimens that resisted classical Fourier helical reconstruction and also facilitated high-resolution structure determination. Despite the progress in real-space analysis, the combination of Fourier and real-space processing is still commonly used to better estimate the symmetry parameters as the imposition of the correct helical symmetry is essential for high-resolution structure determination. Recent hardware advancement by the introduction of direct electron detectors has significantly enhanced the image quality and together with improved image processing procedures has made segmented helical reconstruction a very productive cryo-EM structure determination method. © 2016 Elsevier Inc. All rights reserved.

  11. HEMISPHERIC HELICITY TREND FOR SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Hao Juan; Zhang Mei

    2011-01-01

    Using vector magnetograms obtained with the Spectro-polarimeter (SP) on board Hinode satellite, we studied two helicity parameters (local twist and current helicity) of 64 active regions that occurred in the descending phase of solar cycle 23 and the ascending phase of solar cycle 24. Our analysis gives the following results. (1) The 34 active regions of the solar cycle 24 follow the so-called hemispheric helicity rule, whereas the 30 active regions of the solar cycle 23 do not. (2) When combining all 64 active regions as one sample, they follow the hemispheric helicity sign rule as in most other observations. (3) Despite the so-far most accurate measurement of vector magnetic field given by SP/Hinode, the rule is still weak with large scatters. (4) The data show evidence of different helicity signs between strong and weak fields, confirming previous result from a large sample of ground-based observations. (5) With two example sunspots we show that the helicity parameters change sign from the inner umbra to the outer penumbra, where the sign of penumbra agrees with the sign of the active region as a whole. From these results, we speculate that both the Σ-effect (turbulent convection) and the dynamo have contributed in the generation of helicity, whereas in both cases turbulence in the convection zone has played a significant role.

  12. Ion temperature gradient modes in toroidal helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  13. Ion temperature gradient modes in toroidal helical systems

    International Nuclear Information System (INIS)

    Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of ∇B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  14. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.; Murakami, M.; England, A.C.; Wilgen, J.B.; Jaeger, E.F.; Wang, C.; Batchelor, D.B.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7-AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  15. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  16. Generalized helicity and Beltrami fields

    International Nuclear Information System (INIS)

    Buniy, Roman V.; Kephart, Thomas W.

    2014-01-01

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫ Ω trF μν F μν d 4 x subject to the local constraint ε μναβ trF μν F αβ =0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity

  17. Helical-D pinch

    International Nuclear Information System (INIS)

    Schaffer, M.J.

    1997-08-01

    A stabilized pinch configuration is described, consisting of a D-shaped plasma cross section wrapped tightly around a guiding axis. The open-quotes helical-Dclose quotes geometry produces a very large axial (toroidal) transform of magnetic line direction that reverses the pitch of the magnetic lines without the need of azimuthal (poloidal) plasma current. Thus, there is no need of a open-quotes dynamoclose quotes process and its associated fluctuations. The resulting configuration has the high magnetic shear and pitch reversal of the reversed field pinch (RFP). (Pitch = P = qR, where R = major radius). A helical-D pinch might demonstrate good confinement at q << 1

  18. Development of Integrated Simulation System for Helical Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y.; Yokoyama, M.; Nakajima, N.; Fukuyama, A.; Watanabe, K. Y.; Funaba, H.; Suzuki, Y.; Murakami, S.; Ida, K.; Sakakibara, S.; Yamada, H.

    2005-07-01

    Recent progress of computers (parallel/vector-parallel computers, PC clusters, for example) and numerical codes for helical plasmas like three-dimensional MHD equilibrium codes, combined with the development of the plasma diagnostics technique, enable us to do the detailed theoretical analyses of the individual experimental observations. Now, it is pointed out that the experimental data analysis from the viewpoints of integrated physics is an important issue to understand the confinement physics globally. In addition to that, there are international movements towards the integrated numerical simulation study. One is several proposals of integrated modeling of burning tokamak plasmas, motivated by the ITER activity. The integrated numerical simulation will be a good help to draw up new experimental plans especially for burning plasma experiments. Another movement is international collaborations on the confinement database and neoclassical transport in helical plasmas/stellarators. These backgrounds motivate us to start the development of the integrated simulation system which has a modular structure and user-friendly interfaces. The integrated simulation system, which is based on the hierarchical and multi-scale (time and space) modeling, will also be a platform for theoreticians to test their own model such as turbulent transport model. In this paper, we will show the strategy of developing the integrated simulation system and present status of the development. Especially, we discuss the modeling of the time evolution of the plasma net current profile, which is equivalent to the time evolution of the rotational transform profile, in the resistive time scale. (Author)

  19. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance.

    LENUS (Irish Health Repository)

    McLaughlin, P D

    2014-04-01

    The aim was to assess the performance of low-dose non-contrast CT of the urinary tract (LD-CT) acquired at radiation exposures close to that of abdominal radiography using adaptive statistical iterative reconstruction (ASiR).

  20. Employing helicity amplitudes for resummation in SCET

    International Nuclear Information System (INIS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Nikhef, Amsterdam

    2016-05-01

    Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.

  1. MHD stability analysis of helical system plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji

    2000-01-01

    Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)

  2. Theoretical and experimental study on the magnetomechanical behavior of superconducting helical coils for a fusion reactor

    International Nuclear Information System (INIS)

    Takaghi, T.; Miya, K.; Yamada, H.; Takagi, T.

    1984-01-01

    The magnetomechanical behavior of superconducting helical coils for a magnetic fusion reactor was investigated experimentally and theoretically. Deformations of straight and torus type helical coils were caused due to static electromagnetic forces in the liquid helium cryostat and were analysed with the finite element computer code made here. Despite of a large scatter of experimental data due to a non-uniform friction force between the helical coil and the torus of stainless steel, the numerical results are very close to the mean value of the data. Numerical analysis of the force distribution acting on the helical coils was also performed for a Heliotron's coil system to characterize its nature. The force could be categorized conveniently as an extensional force, a tangential force and a toroidal force which correspond respectively to the kind of forces acting on toroidal field coils. Additionally, the effect of mechanical constraint on the magnetomechanical behavior is discussed and shows that the location of the constraint significantly affects the stress distributions in the coils. (orig.)

  3. Generalized helicity and Beltrami fields

    Energy Technology Data Exchange (ETDEWEB)

    Buniy, Roman V., E-mail: roman.buniy@gmail.com [Schmid College of Science, Chapman University, Orange, CA 92866 (United States); Isaac Newton Institute, University of Cambridge, Cambridge, CB3 0EH (United Kingdom); Kephart, Thomas W., E-mail: tom.kephart@gmail.com [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Isaac Newton Institute, University of Cambridge, Cambridge, CB3 0EH (United Kingdom)

    2014-05-15

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫{sub Ω}trF{sub μν}F{sup μν}d{sup 4}x subject to the local constraint ε{sup μναβ}trF{sub μν}F{sub αβ}=0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity.

  4. NUMERICAL INVESTIGATION OF CURVATURE AND TORSION EFFECTS ON WATER FLOW FIELD IN HELICAL RECTANGULAR CHANNELS

    Directory of Open Access Journals (Sweden)

    A. H. ELBATRAN

    2015-07-01

    Full Text Available Helical channels have a wide range of applications in petroleum engineering, nuclear, heat exchanger, chemical, mineral and polymer industries. They are used in the separation processes for fluids of different densities. The centrifugal force, free surface and geometrical effects of the helical channel make the flow pattern more complicated; hence it is very difficult to perform physical experiment to predict channel performance. Computational Fluid Dynamics (CFD can be suitable alternative for studying the flow pattern characteristics in helical channels. The different ranges of dimensional parameters, such as curvature and torsion, often cause various flow regimes in the helical channels. In this study, the effects of physical parameters such as curvature, torsion, Reynolds number, Froude number and Dean Number on the characteristics of the turbulent flow in helical rectangular channels have been investigated numerically, using a finite volume RANSE code Fluent of Ansys workbench 10.1 UTM licensed. The physical parameters were reported for range of curvature (δ of 0.16 to 0.51 and torsion (λ of 0.032 to 0.1 .The numerical results of this study showed that the decrease in the channel curvature and the increase in the channel torsion numbers led to the increase of the flow velocity inside the channel and the change in the shape of water free surface at given Dean, Reynolds and Froude numbers.

  5. Multiphasic helical Computed Tomography of hepatocellular carcinoma. Evaluation after various percutaneous ablation procedures

    International Nuclear Information System (INIS)

    Catalano, O.; Esposito, M.; Lobianco, R.; Cusati, B.; Altei, F.; Siani, A.

    1999-01-01

    The purpose of this paper is to report the personal experience with helical CT evaluation of hepatocellular carcinoma treated with various percutaneous interventional procedures. From December 1996 to September 1998 it were examined with helical CT 41 patients (73 nodules in all) with hepatocellular carcinoma treated with percutaneous ablation therapies: conventional ethanol injection in 18 subjects (31 nodules), one-shot ethanol injection 3 (8 nodules), radiofrequency thermal ablation in 16 (25 nodules), and combined chemo embolization and ethanol injection in 4 (9 nodules). CT performed was 4-27 days after the last session, acquiring biphasic volumetric images in 14 patients and triphasic volumetric images in 27. A second treatment with subsequent CT study was performed for 28 lesions; 15 underwent 3 serial studies and 6 underwent 4 studies. Compared with pretreatment findings, the diameter was unchanged in 62% of the nodules and increased in 38%. Morphology was unchanged in 63% of the lesions while in 37% a mild deformation toward the needle path or a more regular and round shape was evident. Borders were unchanged in 37% of the cases and modified in 63%, appearing well-defined in 73% and ill-defined in 27%. The necrotic portion had a low attenuation with a nodule-to-parenchyma gradient more evident on delayed than on venous and finally arterial acquisitions; 8% of the lesions were not recognizable on unenhanced scans. During the arterial phase the residual tumor appeared hyperdense in 97% of the nodules and isodense in 3%, while during the portal phase it was hyperdense in 22%, isodense in 28% and hypodense in 50%, and during the delayed phase hypodense in 100%. Residual viable tissue was identified in 44% of the nodules and quantified as 100% in 1% of all lesions, > 75% in 3%, > 50% in 4%, > 25% in 23%. In conclusion, multiple-phase helical CT allows optimal depiction of primitive liver nodules treated with percutaneous interventional procedures and has a

  6. CURRENT AND KINETIC HELICITY OF LONG-LIVED ACTIVITY COMPLEXES

    International Nuclear Information System (INIS)

    Komm, Rudolf; Gosain, Sanjay

    2015-01-01

    We study long-lived activity complexes and their current helicity at the solar surface and their kinetic helicity below the surface. The current helicity has been determined from synoptic vector magnetograms from the NSO/SOLIS facility, and the kinetic helicity of subsurface flows has been determined with ring-diagram analysis applied to full-disk Dopplergrams from NSO/GONG and SDO/HMI. Current and kinetic helicity of activity complexes follow the hemispheric helicity rule with mainly positive values (78%; 78%, respectively, with a 95% confidence level of 31%) in the southern hemisphere and negative ones (80%; 93%, respectively, with a 95% confidence level of 22% and 14%, respectively) in the northern hemisphere. The locations with the dominant sign of kinetic helicity derived from Global Oscillation Network Group (GONG) and SDO/HMI data are more organized than those of the secondary sign even if they are not part of an activity complex, while locations with the secondary sign are more fragmented. This is the case for both hemispheres even for the northern one where it is not as obvious visually due to the large amount of magnetic activity present as compared to the southern hemisphere. The current helicity shows a similar behavior. The dominant sign of current helicity is the same as that of kinetic helicity for the majority of the activity complexes (83% with a 95% confidence level of 15%). During the 24 Carrington rotations analyzed here, there is at least one longitude in each hemisphere where activity complexes occur repeatedly throughout the epoch. These ''active'' longitudes are identifiable as locations of strong current and kinetic helicity of the same sign

  7. Spatial variation of the section sensitivity profile in helical CT

    International Nuclear Information System (INIS)

    Katsuta, Shoichi; Hanai, Kouzou; Kunii, Takeo; Kimura, Haruki; Imabayashi, Wataru; Muramatsu, Yoshihisa

    1999-01-01

    The section sensitivity profile (SSP) is adequate to express the properties of helical CT images. Although SSP measurement has been performed only at the center of the imaging field, we applied it to off-center positions using a metal bead and controlled tracking technique. The experimental results indicated that SSP curves vary in the imaging field according to the relative position of the x-ray focus. The results were in agreement with computer simulations. (author)

  8. Modelling simple helically delivered dose distributions

    International Nuclear Information System (INIS)

    Fenwick, John D; Tome, Wolfgang A; Kissick, Michael W; Mackie, T Rock

    2005-01-01

    In a previous paper, we described quality assurance procedures for Hi-Art helical tomotherapy machines. Here, we develop further some ideas discussed briefly in that paper. Simple helically generated dose distributions are modelled, and relationships between these dose distributions and underlying characteristics of Hi-Art treatment systems are elucidated. In particular, we describe the dependence of dose levels along the central axis of a cylinder aligned coaxially with a Hi-Art machine on fan beam width, couch velocity and helical delivery lengths. The impact on these dose levels of angular variations in gantry speed or output per linear accelerator pulse is also explored

  9. Helical modes generate antimagnetic rotational spectra in nuclei

    Science.gov (United States)

    Malik, Sham S.

    2018-03-01

    A systematic analysis of the antimagnetic rotation band using r -helicity formalism is carried out for the first time. The observed octupole correlation in a nucleus is likely to play a role in establishing the antimagnetic spectrum. Such octupole correlations are explained within the helical orbits. In a rotating field, two identical fermions (generally protons) with paired spins generate these helical orbits in such a way that its positive (i.e., up) spin along the axis of quantization refers to one helicity (right-handedness) while negative (down) spin along the same quantization-axis decides another helicity (left-handedness). Since the helicity remains invariant under rotation, therefore, the quantum state of a fermion is represented by definite angular momentum and helicity. These helicity represented states support a pear-shaped structure of a rotating system having z axis as the symmetry axis. A combined operation of parity, time-reversal, and signature symmetries ensures an absence of one of the signature partner band from the observed antimagnetic spectrum. This formalism has also been tested for the recently observed negative parity Δ I =2 antimagnetic spectrum in odd-A 101Pd nucleus and explains nicely its energy spectrum as well as the B (E 2 ) values. Further, this formalism is found to be fully consistent with twin-shears mechanism popularly known for such type of rotational bands. It also provides significant clue for extending these experiments in various mass regions spread over the nuclear chart.

  10. On the validity of the use of a localized approximation for helical beams. I. Formal aspects

    Science.gov (United States)

    Gouesbet, Gérard; André Ambrosio, Leonardo

    2018-03-01

    The description of an electromagnetic beam for use in light scattering theories may be carried out by using an expansion over vector spherical wave functions with expansion coefficients expressed in terms of Beam Shape Coefficients (BSCs). A celebrated method to evaluate these BSCs has been the use of localized approximations (with several existing variants). We recently established that the use of any existing localized approximation is of limited validity in the case of Bessel and Mathieu beams. In the present paper, we address a warning against the use of any existing localized approximation in the case of helical beams. More specifically, we demonstrate that a procedure used to validate any existing localized approximation fails in the case of helical beams. Numerical computations in a companion paper will confirm that existing localized approximations are of limited validity in the case of helical beams.

  11. INTERPRETING ERUPTIVE BEHAVIOR IN NOAA AR 11158 VIA THE REGION'S MAGNETIC ENERGY AND RELATIVE-HELICITY BUDGETS

    International Nuclear Information System (INIS)

    Tziotziou, Kostas; Georgoulis, Manolis K.; Liu Yang

    2013-01-01

    In previous works, we introduced a nonlinear force-free method that self-consistently calculates the instantaneous budgets of free magnetic energy and relative magnetic helicity in solar active regions (ARs). Calculation is expedient and practical, using only a single vector magnetogram per computation. We apply this method to a time series of 600 high-cadence vector magnetograms of the eruptive NOAA AR 11158 acquired by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory over a five-day observing interval. Besides testing our method extensively, we use it to interpret the dynamical evolution in the AR, including eruptions. We find that the AR builds large budgets of both free magnetic energy and relative magnetic helicity, sufficient to power many more eruptions than the ones it gave within the interval of interest. For each of these major eruptions, we find eruption-related decreases and subsequent free-energy and helicity budgets that are consistent with the observed eruption (flare and coronal mass ejection (CME)) sizes. In addition, we find that (1) evolution in the AR is consistent with the recently proposed (free) energy-(relative) helicity diagram of solar ARs, (2) eruption-related decreases occur before the flare and the projected CME-launch times, suggesting that CME progenitors precede flares, and (3) self terms of free energy and relative helicity most likely originate from respective mutual terms, following a progressive mutual-to-self conversion pattern that most likely stems from magnetic reconnection. This results in the non-ideal formation of increasingly helical pre-eruption structures and instigates further research on the triggering of solar eruptions with magnetic helicity firmly placed in the eruption cadre

  12. MAGNETIC HELICITY FLUX IN THE PRESENCE OF SHEAR

    International Nuclear Information System (INIS)

    Hubbard, Alexander; Brandenburg, Axel

    2011-01-01

    Magnetic helicity has risen to be a major player in dynamo theory, with the helicity of the small-scale field being linked to the dynamo saturation process for the large-scale field. It is a nearly conserved quantity, which allows its evolution equation to be written in terms of production and flux terms. The flux term can be decomposed in a variety of fashions. One particular contribution that has been expected to play a significant role in dynamos in the presence of mean shear was isolated by Vishniac and Cho. Magnetic helicity fluxes are explicitly gauge dependent however, and the correlations that have come to be called the Vishniac-Cho flux were determined in the Coulomb gauge, which turns out to be fraught with complications in shearing systems. While the fluxes of small-scale helicity are explicitly gauge dependent, their divergences can be gauge independent. We use this property to investigate magnetic helicity fluxes of the small-scale field through direct numerical simulations in a shearing-box system and find that in a numerically usable gauge the divergence of the small-scale helicity flux vanishes, while the divergence of the Vishniac-Cho flux remains finite. We attribute this seeming contradiction to the existence of horizontal fluxes of small-scale magnetic helicity with finite divergences.

  13. Magnetic Helicity Flux in the Presence of Shear

    Science.gov (United States)

    Hubbard, Alexander; Brandenburg, Axel

    2011-01-01

    Magnetic helicity has risen to be a major player in dynamo theory, with the helicity of the small-scale field being linked to the dynamo saturation process for the large-scale field. It is a nearly conserved quantity, which allows its evolution equation to be written in terms of production and flux terms. The flux term can be decomposed in a variety of fashions. One particular contribution that has been expected to play a significant role in dynamos in the presence of mean shear was isolated by Vishniac & Cho. Magnetic helicity fluxes are explicitly gauge dependent however, and the correlations that have come to be called the Vishniac-Cho flux were determined in the Coulomb gauge, which turns out to be fraught with complications in shearing systems. While the fluxes of small-scale helicity are explicitly gauge dependent, their divergences can be gauge independent. We use this property to investigate magnetic helicity fluxes of the small-scale field through direct numerical simulations in a shearing-box system and find that in a numerically usable gauge the divergence of the small-scale helicity flux vanishes, while the divergence of the Vishniac-Cho flux remains finite. We attribute this seeming contradiction to the existence of horizontal fluxes of small-scale magnetic helicity with finite divergences.

  14. Transport barrier in Helical system

    International Nuclear Information System (INIS)

    Ida, Katsumi

    1998-01-01

    Experiments on the transport barrier in Helical plasmas are reviewed. There are two mechanisms of transport improvement, that results in the formation of the transport barrier. One is the improvement of neoclassical transport by reducing the ripple loss with radial electric field, which exist only in helical plasma. The other is the improvement of anomalous transport due to the suppression of fluctuations associated with a radial electric field shear both in tokamak and helical plasma. The formation of the transport barrier can be triggered by the radial electric field shear associated with the transition of the radial electric field (L/H transition or ion-electron root transition) or the peaked density or the optimization of magnetic field shear. The mechanisms of transport barrier formation are also discussed. (author). 60 refs

  15. Toroidal helical quartz forming machine

    International Nuclear Information System (INIS)

    Hanks, K.W.; Cole, T.R.

    1977-01-01

    The Scyllac fusion experimental machine used 10 cm diameter smooth bore discharge tubes formed into a simple toroidal shape prior to 1974. At about that time, it was discovered that a discharge tube was required to follow the convoluted shape of the load coil. A machine was designed and built to form a fused quartz tube with a toroidal shape. The machine will accommodate quartz tubes from 5 cm to 20 cm diameter forming it into a 4 m toroidal radius with a 1 to 5 cm helical displacement. The machine will also generate a helical shape on a linear tube. Two sets of tubes with different helical radii and wavelengths have been successfully fabricated. The problems encountered with the design and fabrication of this machine are discussed

  16. Stimuli-Directed Helical Chirality Inversion and Bio-Applications

    Directory of Open Access Journals (Sweden)

    Ziyu Lv

    2016-08-01

    Full Text Available Helical structure is a sophisticated ubiquitous motif found in nature, in artificial polymers, and in supramolecular assemblies from microscopic to macroscopic points of view. Significant progress has been made in the synthesis and structural elucidation of helical polymers, nevertheless, a new direction for helical polymeric materials, is how to design smart systems with controllable helical chirality, and further use them to develop chiral functional materials and promote their applications in biology, biochemistry, medicine, and nanotechnology fields. This review summarizes the recent progress in the development of high-performance systems with tunable helical chirality on receiving external stimuli and discusses advances in their applications as drug delivery vesicles, sensors, molecular switches, and liquid crystals. Challenges and opportunities in this emerging area are also presented in the conclusion.

  17. Simulation Study of the Helical Superconducting Undulator Installation at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Sajaev, V.; Borland, M.; Sun, Y.; Xiao, A.

    2017-06-25

    A helical superconducting undulator is planned for installation at the APS. Such an installation would be first of its kind – helical devices were never installed in synchrotron light sources before. Due to its reduced horizontal aperture, a lattice modification is required to accommodate for large horizontal oscillations during injection. We describe the lattice change details and show the new lattice experimental test results. To understand the effect of the undulator on single-particle dynamics, first, its kick maps were computed using different methods. We have found that often-used Elleaume formula* for kick maps gives wrong results for this undulator. We then used the kick maps obtained by other methods to simulate the effect of the undulator on injection and lifetime.

  18. A methodology for direct quantification of over-ranging length in helical computed tomography with real-time dosimetry.

    Science.gov (United States)

    Tien, Christopher J; Winslow, James F; Hintenlang, David E

    2011-01-31

    In helical computed tomography (CT), reconstruction information from volumes adjacent to the clinical volume of interest (VOI) is required for proper reconstruction. Previous studies have relied upon either operator console readings or indirect extrapolation of measurements in order to determine the over-ranging length of a scan. This paper presents a methodology for the direct quantification of over-ranging dose contributions using real-time dosimetry. A Siemens SOMATOM Sensation 16 multislice helical CT scanner is used with a novel real-time "point" fiber-optic dosimeter system with 10 ms temporal resolution to measure over-ranging length, which is also expressed in dose-length-product (DLP). Film was used to benchmark the exact length of over-ranging. Over-ranging length varied from 4.38 cm at pitch of 0.5 to 6.72 cm at a pitch of 1.5, which corresponds to DLP of 131 to 202 mGy-cm. The dose-extrapolation method of Van der Molen et al. yielded results within 3%, while the console reading method of Tzedakis et al. yielded consistently larger over-ranging lengths. From film measurements, it was determined that Tzedakis et al. overestimated over-ranging lengths by one-half of beam collimation width. Over-ranging length measured as a function of reconstruction slice thicknesses produced two linear regions similar to previous publications. Over-ranging is quantified with both absolute length and DLP, which contributes about 60 mGy-cm or about 10% of DLP for a routine abdominal scan. This paper presents a direct physical measurement of over-ranging length within 10% of previous methodologies. Current uncertainties are less than 1%, in comparison with 5% in other methodologies. Clinical implantation can be increased by using only one dosimeter if codependence with console readings is acceptable, with an uncertainty of 1.1% This methodology will be applied to different vendors, models, and postprocessing methods--which have been shown to produce over-ranging lengths

  19. System assessment of helical reactors in comparison with tokamaks

    International Nuclear Information System (INIS)

    Yamazaki, K.; Imagawa, S.; Muroga, T.; Sagara, A.; Okamura, S.

    2002-10-01

    A comparative assessment of tokamak and helical reactors has been performed using equivalent physics/engineering model and common costing model. Higher-temperature plasma operation is required in tokamak reactors to increase bootstrap current fraction and to reduce current-drive (CD) power. In helical systems, lower-temperature operation is feasible and desirable to reduce helical ripple transport. The capital cost of helical reactor is rather high, however, the cost of electricity (COE) is almost same as that of tokamak reactor because of smaller re-circulation power (no CD power) and less-frequent blanket replacement (lower neutron wall loading). The standard LHD-type helical reactor with 5% beta value is economically equivalent to the standard tokamak with 3% beta. The COE of lower-aspect ratio helical reactor is on the same level of high-β N tokamak reactors. (author)

  20. THE EFFECTS OF SPATIAL SMOOTHING ON SOLAR MAGNETIC HELICITY PARAMETERS AND THE HEMISPHERIC HELICITY SIGN RULE

    Energy Technology Data Exchange (ETDEWEB)

    Ocker, Stella Koch [Department of Physics, Oberlin College, Oberlin, OH 44074 (United States); Petrie, Gordon, E-mail: socker@oberlin.edu, E-mail: gpetrie@nso.edu [National Solar Observatory, Boulder, CO 80303 (United States)

    2016-12-01

    The hemispheric preference for negative/positive helicity to occur in the northern/southern solar hemisphere provides clues to the causes of twisted, flaring magnetic fields. Previous studies on the hemisphere rule may have been affected by seeing from atmospheric turbulence. Using Hinode /SOT-SP data spanning 2006–2013, we studied the effects of two spatial smoothing tests that imitate atmospheric seeing: noise reduction by ignoring pixel values weaker than the estimated noise threshold, and Gaussian spatial smoothing. We studied in detail the effects of atmospheric seeing on the helicity distributions across various field strengths for active regions (ARs) NOAA 11158 and NOAA 11243, in addition to studying the average helicities of 179 ARs with and without smoothing. We found that, rather than changing trends in the helicity distributions, spatial smoothing modified existing trends by reducing random noise and by regressing outliers toward the mean, or removing them altogether. Furthermore, the average helicity parameter values of the 179 ARs did not conform to the hemisphere rule: independent of smoothing, the weak-vertical-field values tended to be negative in both hemispheres, and the strong-vertical-field values tended to be positive, especially in the south. We conclude that spatial smoothing does not significantly affect the overall statistics for space-based data, and thus seeing from atmospheric turbulence seems not to have significantly affected previous studies’ ground-based results on the hemisphere rule.

  1. Prostate contouring uncertainty in megavoltage computed tomography images acquired with a helical tomotherapy unit during image-guided radiation therapy

    International Nuclear Information System (INIS)

    Song, William Y.; Chiu, Bernard; Bauman, Glenn S.; Lock, Michael; Rodrigues, George; Ash, Robert; Lewis, Craig; Fenster, Aaron; Battista, Jerry J.; Van Dyk, Jake

    2006-01-01

    Purpose: To evaluate the image-guidance capabilities of megavoltage computed tomography (MVCT), this article compares the interobserver and intraobserver contouring uncertainty in kilovoltage computed tomography (KVCT) used for radiotherapy planning with MVCT acquired with helical tomotherapy. Methods and Materials: Five prostate-cancer patients were evaluated. Each patient underwent a KVCT and an MVCT study, a total of 10 CT studies. For interobserver variability analysis, four radiation oncologists, one physicist, and two radiation therapists (seven observers in total) contoured the prostate and seminal vesicles (SV) in the 10 studies. The intraobserver variability was assessed by asking all observers to repeat the contouring of 1 patient's KVCT and MVCT studies. Quantitative analysis of contour variations was performed by use of volumes and radial distances. Results: The interobserver and intraobserver contouring uncertainty was larger in MVCT compared with KVCT. Observers consistently segmented larger volumes on MVCT where the ratio of average prostate and SV volumes was 1.1 and 1.2, respectively. On average (interobserver and intraobserver), the local delineation variability, in terms of standard deviations [Δσ = √(σ 2 MVCT - σ 2 KVCT )], increased by 0.32 cm from KVCT to MVCT. Conclusions: Although MVCT was inferior to KVCT for prostate delineation, the application of MVCT in prostate radiotherapy remains useful

  2. Computed Tomography--Verified Leukoaraiosis Is a Risk Factor for Post-thrombolytic Hemorrhage

    DEFF Research Database (Denmark)

    Willer, Lasse; Havsteen, Inger; Ovesen, Christian

    2015-01-01

    PA)-treated patients within 4.5 hours from symptom onset. Standard work-up included baseline noncontrast CT and CT angiography and next day follow-up noncontrast CT. Baseline noncontrast CT LA was graded using Fazekas' score and dichotomized as the absence (Fazekas, 0) or the presence (Fazekas, 1-3). Hemorrhagic...... transformation was rated using European Cooperative Acute Stroke Study (ECASS) criteria. Symptomatic intracerebral hemorrhage was defined as hemorrhage and deterioration of National Institutes of Health Stroke Scale (NIHSS) of 4 or greater within 36 hours from symptom onset. Endovascularly treated patients were...

  3. New formulae for magnetic relative helicity and field line helicity

    Science.gov (United States)

    Aly, Jean-Jacques

    2018-01-01

    We consider a magnetic field {B} occupying the simply connected domain D and having all its field lines tied to the boundary S of D. We assume here that {B} has a simple topology, i.e., the mapping {M} from positive to negative polarity areas of S associating to each other the two footpoints of any magnetic line, is continuous. We first present new formulae for the helicity H of {B} relative to a reference field {{B}}r having the same normal component {B}n on S, and for its field line helicity h relative to a reference vector potential {{C}}r of {{B}}r. These formulae make immediately apparent the well known invariance of these quantities under all the ideal MHD deformations that preserve the positions of the footpoints on S. They express indeed h and H either in terms of {M} and {B}n, or in terms of the values on S of a pair of Euler potentials of {B}. We next show that, for a specific choice of {{C}}r, the field line helicity h of {B} fully characterizes the magnetic mapping {M} and then the topology of the lines. Finally, we give a formula that describes the rate of change of h in a situation where the plasma moves on the perfectly conducting boundary S without changing {B}n and/or non-ideal processes, described by an unspecified term {N} in Ohm’s law, are at work in some parts of D.

  4. Age-related change in renal corticomedullary differentiation: evaluation with noncontrast-enhanced steady-state free precession (SSFP) MRI with spatially selective inversion pulse using variable inversion time.

    Science.gov (United States)

    Noda, Yasufumi; Kanki, Akihiko; Yamamoto, Akira; Higashi, Hiroki; Tanimoto, Daigo; Sato, Tomohiro; Higaki, Atsushi; Tamada, Tsutomu; Ito, Katsuyoshi

    2014-07-01

    To evaluate age-related change in renal corticomedullary differentiation and renal cortical thickness by means of noncontrast-enhanced steady-state free precession (SSFP) magnetic resonance imaging (MRI) with spatially selective inversion recovery (IR) pulse. The Institutional Review Board of our hospital approved this retrospective study and patient informed consent was waived. This study included 48 patients without renal diseases who underwent noncontrast-enhanced SSFP MRI with spatially selective IR pulse using variable inversion times (TIs) (700-1500 msec). The signal intensity of renal cortex and medulla were measured to calculate renal corticomedullary contrast ratio. Additionally, renal cortical thickness was measured. The renal corticomedullary junction was clearly depicted in all patients. The mean cortical thickness was 3.9 ± 0.83 mm. The mean corticomedullary contrast ratio was 4.7 ± 1.4. There was a negative correlation between optimal TI for the best visualization of renal corticomedullary differentiation and age (r = -0.378; P = 0.001). However, there was no significant correlation between renal corticomedullary contrast ratio and age (r = 0.187; P = 0.20). Similarly, no significant correlation was observed between renal cortical thickness and age (r = 0.054; P = 0.712). In the normal kidney, noncontrast-enhanced SSFP MRI with spatially selective IR pulse can be used to assess renal corticomedullary differentiation and cortical thickness without the influence of aging, although optimal TI values for the best visualization of renal corticomedullary junction were shortened with aging. © 2013 Wiley Periodicals, Inc.

  5. ADDITIVE SELF-HELICITY AS A KINK MODE THRESHOLD

    International Nuclear Information System (INIS)

    Malanushenko, A.; Longcope, D. W.; Fan, Y.; Gibson, S. E.

    2009-01-01

    In this paper, we propose that additive self-helicity, introduced by Longcope and Malanushenko, plays a role in the kink instability for complex equilibria, similar to twist helicity for thin flux tubes. We support this hypothesis by a calculation of additive self-helicity of a twisted flux tube from the simulation of Fan and Gibson. As more twist gets introduced, the additive self-helicity increases, and the kink instability of the tube coincides with the drop of additive self-helicity, after the latter reaches the value of H A /Φ 2 ∼ 1.5 (where Φ is the flux of the tube and H A is the additive self-helicity). We compare the additive self-helicity to twist for a thin subportion of the tube to illustrate that H A /Φ 2 is equal to the twist number, studied by Berger and Field, when the thin flux tube approximation is applicable. We suggest that the quantity H A /Φ 2 could be treated as a generalization of a twist number, when the thin flux tube approximation is not applicable. A threshold on a generalized twist number might prove extremely useful studying complex equilibria, just as the twist number itself has proven useful studying idealized thin flux tubes. We explicitly describe a numerical method for calculating additive self-helicity, which includes an algorithm for identifying a domain occupied by a flux bundle and a method of calculating potential magnetic field confined to this domain. We also describe a numerical method to calculate twist of a thin flux tube, using a frame parallelly transported along the axis of the tube.

  6. Clinical application of helical CT colonography

    International Nuclear Information System (INIS)

    Zeng Huiliang; Zhu Xinjin; Liang Rujian; Liang Jianhao; Ou Weiqian; Wen Haomao

    2009-01-01

    Objective: To investigate the clinical value of 16-slice helical CT colonography in the diagnosis of colon tumor and polypus. Methods: 16-slice helical CT volumetric scanning was performed in 18 patients with colonic disease, including colonic tumor (n=16) and colonic polypus (n=2). 3D images, virtual endoscopy and multiplanar reformation were obtained in the AW4.1 workstation. CT appearances were compared with operation and fiberoptic colonoscopy. Results: Satisfied results were achieved from 18 patients, no difference found in results between CT colonography and operation in 16 patients with colonic tumor. Conclusion: 16-slice helical CT colonography is of great value in preoperative staging of colonic tumor and have a high value in clinical application. (authors)

  7. Neutrino's helicity in a gravitational field

    International Nuclear Information System (INIS)

    Pansart, J.P.

    1996-01-01

    By using approximated solutions of Dirac's equation, we show that there is no helicity reversal for light neutrinos in the Schwarzschild metric nor in an expanding universe. The actual coupling between a particle spin and the angular momentum of a heavy rotating body induces a possible helicity reversal but with an unobservable probability proportional to m 2 p / E 2 , where m p is the particle mass and E its energy. In these calculations, the helicity is defined through the spin orientation with respect to the current and not with respect to the linear momentum. This definition gives simple expressions and is equal to the usual definition in the case of a flat space. (N.T.)

  8. Introduction to the m = 1 helicity source

    International Nuclear Information System (INIS)

    Platts, D.A.; Jarboe, T.R.; Wright, B.L.

    1985-01-01

    The m = 1 Helicity Source, formerly called the Kinked Z-pinch, was developed as part of the Electrode Studies program at Los Alamos. The Electrode Studies program was initiated to study the control of electrode erosion in long discharge duration spheromak sources. Erosion control is necessary to reduce plasma impurities and to obtain adequate electrode lifetimes. The first task of the Electrode Studies program is to determine, from among a variety of configurations including the coaxial one, a helicity source geometry with good prospects for erosion control. The more efficient the helicity source the easier it will be to control erosion, but the source most also be easy to diagnose and modify if it is to be a useful test bed. The various erosion control techniques which have been proposed will require extensive experimentation to evaluate and optimize. Proposed techniques include, using refractory metals, profiling of the electrodes and magnetic fields, and various gas injection schemes including porous electrodes. It is considered necessary to do these experiments on an optimized helicity source so that the electrode geometries and plasma properties will be relevant. Therefore the present Electrode Studies program is aimed at developing an improved helicity source design

  9. Helicity amplitudes for matter-coupled gravity

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Novaes, S.F.; Spehler, D.

    1992-07-01

    The Weyl-van der Waerden spinor formalism is applied to the evaluation of helicity invariant amplitudes in the framework of linearized gravitation. The graviton couplings to spin-0, 1 - 2 , 1, and 3 - 2 particles are given, and, to exhibit the reach of this method, the helicity amplitudes for the process electron + positron → photon + graviton are obtained. (author)

  10. Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger

    Science.gov (United States)

    Babita; Sharma, S. K.; Mital Gupta, Shipra; Kumar, Arinjay

    2017-12-01

    Helical coils are extensively used in several industrial processes such as refrigeration systems, chemical reactors, recovery processes etc to accommodate a large heat transfer area within a smaller space. Nanofluids are getting great attention due to their enhanced heat transfer capability. In heat transfer equipments, pressure drop is one of the major factors of consideration for pumping power calculations. So, the present work is aimed to study hydrodynamics of CNT nanofluids in helical coils. In this study, pressure drop characteristics of CNT nanofluid flowing inside horizontal helical coils are investigated experimentally. The helical coil to tube diameter was varied from 11.71 to 27.34 keeping pitch of the helical coil constant. Double distilled water was used as basefluid. SDBS and GA surfactants were added to stablilize CNT nanofluids. The volumetric fraction of CNT nanofluid was varied from 0.003 vol% to 0.051 vol%. From the experimental data, it was analyzed that the friction factor in helical coils is greater than that of straight tubes. Concentration of CNT in nanofluids also has a significant influence on the pressure drop/friction factor of helical coils. At a constant concentration of CNT, decreasing helical coil to tube diameter from 27.24 to 11.71, fanning friction factor of helical coil; f c increases for a constant value of p/d t. This increase in the value of fanning friction factor can be attributed to the secondary flow of CNT nanofluid in helical coils.

  11. Progressive and resonant wave helices application to electron paramagnetic resonance; Helices a ondes progressives et resonnantes application a la resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author) [French] Il est montre que les helices peuvent etre utilisees comme systeme resonnant. Leurs proprietes sont discutees theoriquement et experimentalement. Des helices resonnantes en bande X pour la resonance paramagnetique electronique sont decrites et leur sensibilite est comparee a celle des cavites resonnantes. Pour des echantillons cylindriques de moins de 3 mm de diametre, l'helice est plus sensible et peut produire des champs magnetiques hyper fins plus intenses. (auteur)

  12. Design windows and cost analysis on helical reactors

    International Nuclear Information System (INIS)

    Kozaki, Y.; Imagawa, S.; Sagara, A.

    2007-01-01

    The LHD type helical reactors are characterized by a large major radius but slender helical coil, which give us different approaches for power plants from tokamak reactors. For searching design windows of helical reactors and discussing their potential as power plants, we have developed a mass-cost estimating model linked with system design code (HeliCos), thorough studying the relationships between major plasma parameters and reactor parameters, and weight of major components. In regard to cost data we have much experience through preparing ITER construction. To compare the weight and cost of magnet systems between tokamak and helical reactors, we broke down magnet systems and cost factors, such as weights of super conducting strands, conduits, support structures, and winding unit costs, through estimating ITER cost data basis. Based on FFHR2m1 deign we considered a typical 3 GWth helical plant (LHD type) with the same magnet size, coil major radius Rc 14 m, magnetic energy 120 GJ, but increasing plasma densities. We evaluated the weight and cost of magnet systems of 3 GWth helical plant, the total magnet weights of 16,000ton and costs of 210 BYen, which are similar values of tokamak reactors (10,200 ton, 110 BYen in ITER 2002 report, and 21,900 ton, 275 BYen in ITER FDR1999). The costs of strands and winding occupy 70% of total magnet costs, and influence entire power plants economics. The design windows analysis and comparative economics studies to optimize the main reactor parameters have been carried out. Economics studies show that it is misunderstanding to consider helical coils are too large and too expensive to achieve power plants. But we should notice that the helical reactor design windows and economics are very sensitive to allowable blanket space (depend on ergodic layer conditions) and diverter configuration for decreasing heat loads. (orig.)

  13. Stabilized helical peptides: overview of the technologies and its impact on drug discovery.

    Science.gov (United States)

    Klein, Mark

    2017-11-01

    Protein-protein interactions are predominant in the workings of all cells. Until now, there have been a few successes in targeting protein-protein interactions with small molecules. Peptides may overcome some of the challenges of small molecules in disrupting protein-protein interactions. However, peptides present a new set of challenges in drug discovery. Thus, the study of the stabilization of helical peptides has been extensive. Areas covered: Several technological approaches to helical peptide stabilization have been studied. In this review, stapled peptides, foldamers, and hydrogen bond surrogates are discussed. Issues regarding design principles are also discussed. Furthermore, this review introduces select computational techniques used to aid peptide design and discusses clinical trials of peptides in a more advanced stage of development. Expert opinion: Stabilized helical peptides hold great promise in a wide array of diseases. However, the field is still relatively new and new design principles are emerging. The possibilities of peptide modification are quite extensive and expanding, so the design of stabilized peptides requires great attention to detail in order to avoid a large number of failed lead peptides. The start of clinical trials with stapled peptides is a promising sign for the future.

  14. Particle orbit analysis for LHD helical axis configurations

    International Nuclear Information System (INIS)

    Guasp, J.; Yamazaki, K.; Motojima, O.

    1993-04-01

    Fast ion orbits for helical magnetic axis configurations in LHD (Large Helical Device) are analyzed and compared with the standard circular axis case. Boundaries between passing and helically trapped particle regions show clear differences: in the non-planar axis case the helically trapped region spreads, near the magnetic axis, over a much wider band across the 90deg pitch angle value and shows a very marked asymmetry. The locally trapped particle region is also wider than in the standard case. The differences in the loss cone boundaries of the two cases are rather small, however, the effects of re-entering criteria are very important in both cases. On the contrary, effects of finite coil size are not significant. (author)

  15. Helically linked mirror arrangement

    International Nuclear Information System (INIS)

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average β and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned

  16. Helicity and evanescent waves. [Energy transport velocity, helicity, Lorentz transformation

    Energy Technology Data Exchange (ETDEWEB)

    Agudin, J L; Platzeck, A M [La Plata Univ. Nacional (Argentina); Albano, J R [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina

    1978-02-20

    It is shown that the projection of the angular momentum of a circularly polarized electromagnetic evanescent wave along the mean velocity of energy transport (=helicity) can be reverted by a Lorentz transformation, in spite of the fact that this velocity is c.

  17. Magnetic islands created by resonant helical windings

    International Nuclear Information System (INIS)

    Fernandes, A.S.; Heller, M.V.; Caldas, I.L.

    1986-01-01

    The triggering of disruptive instabilities by resonant helical windings in large aspect-ratio tokamaks is associated to destruction of magnetic surfaces. The Chirikov condition is applied to estimate analytically the helical winding current thresholds for ergodization of the magnetic field lines. (Autor) [pt

  18. Progressive and resonant wave helices application to electron paramagnetic resonance; Helices a ondes progressives et resonnantes application a la resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    We show that helices can be used as resonant systems. Their properties are theoretically and experimentally studied. We describe resonant helices for electron paramagnetic resonance in X-band and develop a comparison between their sensitivity and the sensitivity of a normal resonant cavity. For cylindrical samples less than 3 mm diameter, the helix is more sensitive and can produce more intense microwave magnetic fields. (author) [French] Il est montre que les helices peuvent etre utilisees comme systeme resonnant. Leurs proprietes sont discutees theoriquement et experimentalement. Des helices resonnantes en bande X pour la resonance paramagnetique electronique sont decrites et leur sensibilite est comparee a celle des cavites resonnantes. Pour des echantillons cylindriques de moins de 3 mm de diametre, l'helice est plus sensible et peut produire des champs magnetiques hyper fins plus intenses. (auteur)

  19. Superposition of helical beams by using a Michelson interferometer.

    Science.gov (United States)

    Gao, Chunqing; Qi, Xiaoqing; Liu, Yidong; Weber, Horst

    2010-01-04

    Orbital angular momentum (OAM) of a helical beam is of great interests in the high density optical communication due to its infinite number of eigen-states. In this paper, an experimental setup is realized to the information encoding and decoding on the OAM eigen-states. A hologram designed by the iterative method is used to generate the helical beams, and a Michelson interferometer with two Porro prisms is used for the superposition of two helical beams. The experimental results of the collinear superposition of helical beams and their OAM eigen-states detection are presented.

  20. Turbulent Helicity in the Atmospheric Boundary Layer

    Science.gov (United States)

    Chkhetiani, Otto G.; Kurgansky, Michael V.; Vazaeva, Natalia V.

    2018-05-01

    We consider the assumption postulated by Deusebio and Lindborg (J Fluid Mech 755:654-671, 2014) that the helicity injected into the Ekman boundary layer undergoes a cascade, with preservation of its sign (right- or alternatively left-handedness), which is a signature of the system rotation, from large to small scales, down to the Kolmogorov microscale of turbulence. At the same time, recent direct field measurements of turbulent helicity in the steppe region of southern Russia near Tsimlyansk Reservoir show the opposite sign of helicity from that expected. A possible explanation for this phenomenon may be the joint action of different scales of atmospheric flows within the boundary layer, including the sea-breeze circulation over the test site. In this regard, we consider a superposition of the classic Ekman spiral solution and Prandtl's jet-like slope-wind profile to describe the planetary boundary-layer wind structure. The latter solution mimics a hydrostatic shallow breeze circulation over a non-uniformly heated surface. A 180°-wide sector on the hodograph plane exists, within which the relative orientation of the Ekman and Prandtl velocity profiles favours the left rotation with height of the resulting wind velocity vector in the lowermost part of the boundary layer. This explains the negative (left-handed) helicity cascade toward small-scale turbulent motions, which agrees with the direct field measurements of turbulent helicity in Tsimlyansk. A simple turbulent relaxation model is proposed that explains the measured positive values of the relatively minor contribution to turbulent helicity from the vertical components of velocity and vorticity.

  1. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaqiong; Wu, Haifan; Teng, Peng; Bai, Ge; Lin, Xiaoyang; Zuo, Xiaobing; Cao, Chuanhai; Cai, Jianfeng

    2015-06-11

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, are more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.

  2. Stiffness versus architecture of single helical polyisocyanopeptides

    NARCIS (Netherlands)

    Buul, van A.M.; Schwartz, E.; Brocorens, P.; Koepf, M.; Beljonne, D.; Maan, J.C.; Christianen, P.C.M.; Kouwer, P.H.J.; Nolte, R.J.M.; Engelkamp, H.; Blank, K.; Rowan, A.E.

    2013-01-01

    Helical structures play a vital role in nature, offering mechanical rigidity, chirality and structural definition to biological systems. Little is known about the influence of the helical architecture on the intrinsic properties of polymers. Here, we offer an insight into the nano architecture of

  3. Polymorphic transformation of helical flagella of bacteria

    Science.gov (United States)

    Lim, Sookkyung; Howard Berg Collaboration; William Ko Collaboration; Yongsam Kim Collaboration; Wanho Lee Collaboration; Charles Peskin Collaboration

    2016-11-01

    Bacteria such as E. coli swim in an aqueous environment by utilizing the rotation of flagellar motors and alternate two modes of motility, runs and tumbles. Runs are steady forward swimming driven by bundles of flagellar filaments whose motors are turning CCW; tumbles involve a reorientation of the direction of swimming triggered by motor reversals. During tumbling, the helical flagellum undergoes polymorphic transformations, which is a local change in helical pitch, helical radius, and handedness. In this work, we investigate the underlying mechanism of structural conformation and how this polymorphic transition plays a role in bacterial swimming. National Science Foundation.

  4. Three-dimensional printing of freeform helical microstructures: a review.

    Science.gov (United States)

    Farahani, R D; Chizari, K; Therriault, D

    2014-09-21

    Three-dimensional (3D) printing is a fabrication method that enables creation of structures from digital models. Among the different structures fabricated by 3D printing methods, helical microstructures attracted the attention of the researchers due to their potential in different fields such as MEMS, lab-on-a-chip systems, microelectronics and telecommunications. Here we review different types of 3D printing methods capable of fabricating 3D freeform helical microstructures. The techniques including two more common microfabrication methods (i.e., focused ion beam chemical vapour deposition and microstereolithography) and also five methods based on computer-controlled robotic direct deposition of ink filament (i.e., fused deposition modeling, meniscus-confined electrodeposition, conformal printing on a rotating mandrel, UV-assisted and solvent-cast 3D printings) and their advantages and disadvantages regarding their utilization for the fabrication of helical microstructures are discussed. Focused ion beam chemical vapour deposition and microstereolithography techniques enable the fabrication of very precise shapes with a resolution down to ∼100 nm. However, these techniques may have material constraints (e.g., low viscosity) and/or may need special process conditions (e.g., vacuum chamber) and expensive equipment. The five other techniques based on robotic extrusion of materials through a nozzle are relatively cost-effective, however show lower resolution and less precise features. The popular fused deposition modeling method offers a wide variety of printable materials but the helical microstructures manufactured featured a less precise geometry compared to the other printing methods discussed in this review. The UV-assisted and the solvent-cast 3D printing methods both demonstrated high performance for the printing of 3D freeform structures such as the helix shape. However, the compatible materials used in these methods were limited to UV-curable polymers and

  5. Quality assurance of a helical tomotherapy machine

    International Nuclear Information System (INIS)

    Fenwick, J D; Tome, W A; Jaradat, H A; Hui, S K; James, J A; Balog, J P; DeSouza, C N; Lucas, D B; Olivera, G H; Mackie, T R; Paliwal, B R

    2004-01-01

    Helical tomotherapy has been developed at the University of Wisconsin, and 'Hi-Art II' clinical machines are now commercially manufactured. At the core of each machine lies a ring-gantry-mounted short linear accelerator which generates x-rays that are collimated into a fan beam of intensity-modulated radiation by a binary multileaf, the modulation being variable with gantry angle. Patients are treated lying on a couch which is translated continuously through the bore of the machine as the gantry rotates. Highly conformal dose-distributions can be delivered using this technique, which is the therapy equivalent of spiral computed tomography. The approach requires synchrony of gantry rotation, couch translation, accelerator pulsing and the opening and closing of the leaves of the binary multileaf collimator used to modulate the radiation beam. In the course of clinically implementing helical tomotherapy, we have developed a quality assurance (QA) system for our machine. The system is analogous to that recommended for conventional clinical linear accelerator QA by AAPM Task Group 40 but contains some novel components, reflecting differences between the Hi-Art devices and conventional clinical accelerators. Here the design and dosimetric characteristics of Hi-Art machines are summarized and the QA system is set out along with experimental details of its implementation. Connections between this machine-based QA work, pre-treatment patient-specific delivery QA and fraction-by-fraction dose verification are discussed

  6. A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT

    International Nuclear Information System (INIS)

    Qian Jianguo; Bradley, Eric L.; Majewski, Stan; Popov, Vladimir; Saha, Margaret S.; Smith, Mark F.; Weisenberger, Andrew G.; Welsh, Robert E.

    2008-01-01

    We have designed and built a small-animal single-photon emission computed tomography (SPECT) imaging system equipped with parallel-hole and multipinhole collimators and capable of circular or helical SPECT. Copper-beryllium parallel-hole collimators suitable for imaging the ∼35 keV photons from the decay of 125 I have been built and installed to achieve useful spatial resolution over a range of object-detector distances and to reduce imaging time on our dual-detector array. To address the resolution limitations in the parallel-hole SPECT and the sensitivity and limited field of view of single-pinhole SPECT, we have incorporated multipinhole circular and helical SPECT in addition to expanding the parallel-hole SPECT capabilities. The pinhole SPECT system is based on a 110 mm diameter circular detector equipped with a pixellated NaI(Tl) scintillator array (1x1x5 mm 3 /pixel). The helical trajectory is accomplished by two stepping motors controlling the rotation of the detector-support gantry and displacement of the animal bed along the axis of rotation of the gantry. Results obtained in SPECT studies of various phantoms show an enlarged field of view, very good resolution and improved sensitivity using multipinhole circular or helical SPECT. Collimators with one, three and five, 1-mm-diameter pinholes have been implemented and compared in these tests. Our objective is to develop a system on which one may readily select a suitable mode of either parallel-hole SPECT or pinhole circular or helical SPECT for a variety of small animal imaging applications

  7. Resonant helical fields in tokamaks

    International Nuclear Information System (INIS)

    Okano, V.

    1990-01-01

    Poincare maps of magnetic field lines of a toroidal helical system were made. The magnetic field is a linear superposition of the magnetic fields produced by a toroidal plasma in equilibrium and by external helical currents. Analytical expression for the Poincare maps was no obtained since the magnetic field do not have symmetry. In order to obtain the maps, the equation minus derivative of l vector times B vector = 0 was numerically integrated. In the Poincare maps, the principal and the secondary magnetic island were observed. (author)

  8. Helicity and Filament Channels? The Straight Twist!

    Science.gov (United States)

    Antiochos, Spiro K.

    2010-01-01

    One of the most important and most puzzling features of the coronal magnetic field is that it appears to have smooth magnetic structure with little evidence for non-potentiality except at special locations, photospheric polarity inversions lines where the non-potentiality is observed as a filament channel. This characteristic feature of the closed-field corona is highly unexpected given that photospheric motions continuously tangle its magnetic field. Although reconnection can eliminate some of the injected structure, it cannot destroy the helicity, which should build up to produce observable complexity. We propose that an inverse cascade process transports the injected helicity from the interior of closed flux regions to their boundaries, polarity inversion lines, creating filament channels. We describe how the helicity is injected and transported and calculate the relevant rates. We argue that one process, helicity transport, can explain both the observed lack and presence of structure in the coronal magnetic field.

  9. Helical magnetized wiggler for synchrotron radiation laser

    International Nuclear Information System (INIS)

    Wang Mei; Park, S.Y.; Hirshfield, J.L.

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude

  10. Using helical compressors for coke gas condensation

    Energy Technology Data Exchange (ETDEWEB)

    Privalov, V E; Rezunenko, Yu I; Lelyanov, N V; Zarnitzkii, G Eh; Gordienko, A A; Derebenko, I F; Venzhega, A G; Leonov, N P; Gorokhov, N N

    1982-08-01

    Coke oven gas compression is discussed. Presently used multilevel piston compressors are criticized. The paper recommends using helical machines which combine advantages of using volume condensing compressors and compact high-efficiency centrifugal machines. Two kinds of helical compressors are evaluated: dry and oil-filled; their productivities and coke oven gas chemical composition are analyzed. Experiments using helical compressors were undertaken at the Yasinovskii plant. Flowsheet of the installation is shown. Performance results are given in a table. For all operating conditions content of insolubles in oil compounds is found to be lower than the acceptable value (0.08%). Compressor productivity measurements with variable manifold pressure are evaluated. Figures obtained show that efficient condensation of raw coke oven gas is possible. Increasing oil-filled compressor productivity is recommended by decreasing amount of oil injected and simultaneously increasing rotation speed. The dry helical compressor with water seal is found to be most promising for raw coke oven gas condensation. (10 refs.)

  11. Helical magnetized wiggler for synchrotron radiation laser

    CERN Document Server

    Wang Mei; Hirshfield, J L

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude.

  12. Care-bolus tracking systems in multislice-helical computed tomography - a new method in the screening of cardiovascular failure?

    International Nuclear Information System (INIS)

    Stueckle, C.A.; Kickuth, R.; Kirchner, E.M.; Liermann, D.; Kirchner, J.

    2002-01-01

    Purpose. Recently bolus tracking systems were developed to improve the timing of intravenous contrast media application in helical computed tomography. We investigated the benefit of this new method as a parameter of the cardiac function.Material and methods. Retrospective analysis of 64 patients which incidentally underwent bolus triggered contrast enhanced helical CT and invasive investigation of the heart within one week. All examinations were performed on the CT scanner Somatom Plus 4 Volume Zoom (Siemens Corp., Forchheim, Germany) using the C.A.R.E. trademark Bolus software. This performs repetitive low- dose test scans (e.g. for the abdomen: 140 kV, 20 mA, TI 0,5 s) and measures the Hounsfield attenuation (increase over the baseline) in a preselected region of interest. The displayed increase of vascular density over the time after peripheral contrast media injection (75 ml Iopromid (300 mg/ml), 2 ml/s) was categorised to three types: (a) rapid increase, (b) deceleration before a 100 HE threshold was reached and (c) one or more peaks. The findings of the invasive investigation of the heart were correlated to the findings of the bolus-tracking measurements.Results. The examinations were categorized as follows: 19 type A, 34 type B, 11 type C. We found a high significant correlation between the type of the Hounsfield attenuation and systolic pressure in the left ventricle. There was no correlation between the type of the Hounsfield attenuation and the diastolic pressure in the left ventricle, the pressures related to the right ventricle or the ejection fraction. The bolus- tacking system showed a sensitivity of 53, a specificity of 82, an accuracy of 70%, a positive predictive value of 70% and a negative predictive value of 70% in detection of left heart failure.Conclusion. The bolus tracking system C.A.R.E.-bolus copyright often shows atypical Hounsfield attenuation in cases of cardiac failure but is not suitable as a screening method of the cardiopulmonary

  13. Detection of common bile duct stones: comparison between endoscopic ultrasonography, magnetic resonance cholangiography, and helical-computed-tomographic cholangiography

    International Nuclear Information System (INIS)

    Kondo, Shintaro; Isayama, Hiroyuki; Akahane, Masaaki; Toda, Nobuo; Sasahira, Naoki; Nakai, Yosuke; Yamamoto, Natsuyo; Hirano, Kenji; Komatsu, Yutaka; Tada, Minoru; Yoshida, Haruhiko; Kawabe, Takao; Ohtomo, Kuni; Omata, Masao

    2005-01-01

    Objectives: New modalities, namely, endoscopic ultrasonography (EUS), magnetic resonance cholangiopancreatography (MRCP), and helical computed-tomographic cholangiography (HCT-C), have been introduced recently for the detection of common bile duct (CBD) stones and shown improved detectability compared to conventional ultrasound or computed tomography. We conducted this study to compare the diagnostic ability of EUS, MRCP, and HCT-C in patients with suspected choledocholithiasis. Methods: Twenty-eight patients clinically suspected of having CBD stones were enrolled, excluding those with cholangitis or a definite history of choledocholithiasis. Each patient underwent EUS, MRCP, and HCT-C prior to endoscopic retrograde cholangio-pancreatography (ERCP), the result of which served as the diagnostic gold standard. Results: CBD stones were detected in 24 (86%) of 28 patients by ERCP/IDUS. The sensitivity of EUS, MRCP, and HCT-C was 100%, 88%, and 88%, respectively. False negative cases for MRCP and HCT-C had a CBD stone smaller than 5 mm in diameter. No serious complications occurred while one patient complained of itching in the eyelids after the infusion of contrast agent on HCT-C. Conclusions: When examination can be scheduled, MRCP or HCT-C will be the first choice because they were less invasive than EUS. MRCP and HCT-C had similar detectability but the former may be preferable considering the possibility of allergic reaction in the latter. When MRCP is negative, EUS is recommended to check for small CBD stones

  14. Relativistic helicity and link in Minkowski space-time

    International Nuclear Information System (INIS)

    Yoshida, Z.; Kawazura, Y.; Yokoyama, T.

    2014-01-01

    A relativistic helicity has been formulated in the four-dimensional Minkowski space-time. Whereas the relativistic distortion of space-time violates the conservation of the conventional helicity, the newly defined relativistic helicity conserves in a barotropic fluid or plasma, dictating a fundamental topological constraint. The relation between the helicity and the vortex-line topology has been delineated by analyzing the linking number of vortex filaments which are singular differential forms representing the pure states of Banach algebra. While the dimension of space-time is four, vortex filaments link, because vorticities are primarily 2-forms and the corresponding 2-chains link in four dimension; the relativistic helicity measures the linking number of vortex filaments that are proper-time cross-sections of the vorticity 2-chains. A thermodynamic force yields an additional term in the vorticity, by which the vortex filaments on a reference-time plane are no longer pure states. However, the vortex filaments on a proper-time plane remain to be pure states, if the thermodynamic force is exact (barotropic), thus, the linking number of vortex filaments conserves

  15. Non-contrast MRA using an inflow-enhanced, inversion recovery SSFP technique in pediatric abdominal imaging

    International Nuclear Information System (INIS)

    Serai, Suraj; Towbin, Alexander J.; Podberesky, Daniel J.

    2012-01-01

    Abdominal contrast-enhanced MR angiography (CE-MRA) is routinely performed in children. CE-MRA is challenging in children because of patient motion, difficulty in obtaining intravenous access, and the inability of young patients to perform a breath-hold during imaging. The combination of pediatric-specific difficulties in imaging and the safety concerns regarding the risk of gadolinium-based contrast agents in patients with impaired renal function has renewed interest in the use of non-contrast (NC) MRA techniques. At our institution, we have optimized 3-D NC-MRA techniques for abdominal imaging. The purpose of this work is to demonstrate the utility of an inflow-enhanced, inversion recovery balanced steady-state free precession-based (b-SSFP) NC-MRA technique. (orig.)

  16. Helicity antenna showers for hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nadine; Skands, Peter [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); Lifson, Andrew [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); ETH Zuerich, Zurich (Switzerland)

    2017-10-15

    We present a complete set of helicity-dependent 2 → 3 antenna functions for QCD initial- and final-state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2 → 2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226. (orig.)

  17. Helicity antenna showers for hadron colliders

    Science.gov (United States)

    Fischer, Nadine; Lifson, Andrew; Skands, Peter

    2017-10-01

    We present a complete set of helicity-dependent 2→ 3 antenna functions for QCD initial- and final-state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2→ 2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226.

  18. Influence of gantry angle in helical computed tomography. Usefullness of 1-dimension sharpness filter

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Hirofumi; Suzuki, Toru; Matsuura, Shigeru; Kai, Tsuyoshi; Shimizu, Toshiyuki [Hyuga Hospital of Saiseikai Foundation, Kadogawa, Miyazaki (Japan)

    2001-05-01

    When we let gantry tilt and do scan in helical CT, vertical sharpness deteriorates. We were able to revise it with 1-dimensional sharpness filter which the square sum of difference of MTF was compared, and was designed this time. And the unsharpness was in proportion to sin of gantry angle. As a result, we led several sets of frequency emphasis degree. There is a model to built 1-dimension sharpness filter in a scan plan. It is useful for clinical diagnoses. (author)

  19. Influence of gantry angle in helical computed tomography. Usefullness of 1-dimension sharpness filter

    International Nuclear Information System (INIS)

    Kawano, Hirofumi; Suzuki, Toru; Matsuura, Shigeru; Kai, Tsuyoshi; Shimizu, Toshiyuki

    2001-01-01

    When we let gantry tilt and do scan in helical CT, vertical sharpness deteriorates. We were able to revise it with 1-dimensional sharpness filter which the square sum of difference of MTF was compared, and was designed this time. And the unsharpness was in proportion to sin of gantry angle. As a result, we led several sets of frequency emphasis degree. There is a model to built 1-dimension sharpness filter in a scan plan. It is useful for clinical diagnoses. (author)

  20. The helical tomotherapy thread effect

    International Nuclear Information System (INIS)

    Kissick, M.W.; Fenwick, J.; James, J.A.; Jeraj, R.; Kapatoes, J.M.; Keller, H.; Mackie, T.R.; Olivera, G.; Soisson, E.T.

    2005-01-01

    Inherent to helical tomotherapy is a dose variation pattern that manifests as a 'ripple' (peak-to-trough relative to the average). This ripple is the result of helical beam junctioning, completely unique to helical tomotherapy. Pitch is defined as in helical CT, the couch travel distance for a complete gantry rotation relative to the axial beam width at the axis of rotation. Without scattering or beam divergence, an analytical posing of the problem as a simple integral predicts minima near a pitch of 1/n where n is an integer. A convolution-superposition dose calculator (TomoTherapy, Inc.) included all the physics needed to explore the ripple magnitude versus pitch and beam width. The results of the dose calculator and some benchmark measurements demonstrate that the ripple has sharp minima near p=0.86(1/n). The 0.86 factor is empirical and caused by a beam junctioning of the off-axis dose profiles which differ from the axial profiles as well as a long scatter tail of the profiles at depth. For very strong intensity modulation, the 0.86 factor may vary. The authors propose choosing particular minima pitches or using a second delivery that starts 180 deg off-phase from the first to reduce these ripples: 'Double threading'. For current typical pitches and beam widths, however, this effect is small and not clinically important for most situations. Certain extremely large field or high pitch cases, however, may benefit from mitigation of this effect

  1. The generic geometry of helices and their close-packed structures

    DEFF Research Database (Denmark)

    Olsen, Kasper; Bohr, Jakob

    2010-01-01

    The formation of helices is an ubiquitous phenomenon for molecular structures whether they are biological, organic, or inorganic, in nature. Helical structures have geometrical constraints analogous to close packing of three-dimensional crystal structures. For helical packing the geometrical cons...

  2. Computational study of the fibril organization of polyglutamine repeats reveals a common motif identified in beta-helices.

    Science.gov (United States)

    Zanuy, David; Gunasekaran, Kannan; Lesk, Arthur M; Nussinov, Ruth

    2006-04-21

    The formation of fibril aggregates by long polyglutamine sequences is assumed to play a major role in neurodegenerative diseases such as Huntington. Here, we model peptides rich in glutamine, through a series of molecular dynamics simulations. Starting from a rigid nanotube-like conformation, we have obtained a new conformational template that shares structural features of a tubular helix and of a beta-helix conformational organization. Our new model can be described as a super-helical arrangement of flat beta-sheet segments linked by planar turns or bends. Interestingly, our comprehensive analysis of the Protein Data Bank reveals that this is a common motif in beta-helices (termed beta-bend), although it has not been identified so far. The motif is based on the alternation of beta-sheet and helical conformation as the protein sequence is followed from the N to the C termini (beta-alpha(R)-beta-polyPro-beta). We further identify this motif in the ssNMR structure of the protofibril of the amyloidogenic peptide Abeta(1-40). The recurrence of the beta-bend suggests a general mode of connecting long parallel beta-sheet segments that would allow the growth of partially ordered fibril structures. The design allows the peptide backbone to change direction with a minimal loss of main chain hydrogen bonds. The identification of a coherent organization beyond that of the beta-sheet segments in different folds rich in parallel beta-sheets suggests a higher degree of ordered structure in protein fibrils, in agreement with their low solubility and dense molecular packing.

  3. Coulomb double helical structure

    Science.gov (United States)

    Kamimura, Tetsuo; Ishihara, Osamu

    2012-01-01

    Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.

  4. Stable single helical C- and I-chains inside single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Yao Z; Li Y; Jing X D; Meng F S; Zhao X; Li J H; Qiu Z Y; Yuan Q; Wang W X; Bi L; Liu H; Zhang Y P; Liu C J; Zheng S P; Liu B B

    2016-01-01

    The helicity of stable single helical carbon chains and iodine chains inside single-walled carbon nanotubes (SWCNTs) is studied by calculating the systematic van der Waals interaction energy. The results show that the optimal helical radius increases linearly with increasing tube radius, which produces a constant separation between the chain structure and the tube wall. The helical angle exhibits a ladder-like decrease with increasing tube radius, indicating that a large tube can produce a small helicity in the helical structures. (paper)

  5. Motion-induced dose artifacts in helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bryan; Chen, Jeff; Battista, Jerry [London Regional Cancer Program, London Health Sciences Centre, London, ON (Canada); Kron, Tomas [Peter MacCallum Cancer Center, Melbourne (Australia)], E-mail: bryan.kim@lhsc.on.ca

    2009-10-07

    Tumor motion is a particular concern for a complex treatment modality such as helical tomotherapy, where couch position, gantry rotation and MLC leaf opening all change with time. In the present study, we have investigated the impact of tumor motion for helical tomotherapy, which could result in three distinct motion-induced dose artifacts, namely (1) dose rounding, (2) dose rippling and (3) IMRT leaf opening asynchronization effect. Dose rounding and dose rippling effects have been previously described, while the IMRT leaf opening asynchronization effect is a newly discovered motion-induced dose artifact. Dose rounding is the penumbral widening of a delivered dose distribution near the edges of a target volume along the direction of tumor motion. Dose rippling is a series of periodic dose peaks and valleys observed within the target region along the direction of couch motion, due to an asynchronous interplay between the couch motion and the longitudinal component of tumor motion. The IMRT leaf opening asynchronization effect is caused by an asynchronous interplay between the temporal patterns of leaf openings and tumor motion. The characteristics of each dose artifact were investigated individually as functions of target motion amplitude and period for both non-IMRT and IMRT helical tomotherapy cases, through computer simulation modeling and experimental verification. The longitudinal dose profiles generated by the simulation program agreed with the experimental data within {+-}0.5% and {+-}1.5% inside the PTV region for the non-IMRT and IMRT cases, respectively. The dose rounding effect produced a penumbral increase up to 20.5 mm for peak-to-peak target motion amplitudes ranging from 1.0 cm to 5.0 cm. Maximum dose rippling magnitude of 25% was calculated, when the target motion period approached an unusually high value of 10 s. The IMRT leaf opening asynchronization effect produced dose differences ranging from -29% to 7% inside the PTV region. This information

  6. Calculating the number of shock waves, expulsion time, and optimum stone parameters based on noncontrast computerized tomography characteristics.

    Science.gov (United States)

    Foda, Khaled; Abdeldaeim, Hussein; Youssif, Mohamed; Assem, Akram

    2013-11-01

    To define the parameters that accompanied a successful extracorporeal shock wave lithotripsy (ESWL), namely the number of shock waves (SWs), expulsion time (ET), mean stone density (MSD), and the skin-to-stone distance (SSD). A total of 368 patients diagnosed with renal calculi using noncontrast computerized tomography had their MSD, diameter, and SSD recorded. All patients were treated using a Siemens lithotripter. ESWL success meant a stone-free status or presence of residual fragments 934 HUs and SSD >99 mm. The required number of SWs and the expected ET can be anticipated. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. High performance operational limits of tokamak and helical systems

    International Nuclear Information System (INIS)

    Yamazaki, Kozo; Kikuchi, Mitsuru

    2003-01-01

    The plasma operational boundaries of tokamak and helical systems are surveyed and compared with each other. Global confinement scaling laws are similar and gyro-Bohm like, however, local transport process is different due to sawtooth oscillations in tokamaks and ripple transport loss in helical systems. As for stability limits, achievable tokamak beta is explained by ideal or resistive MHD theories. On the other hand, beta values obtained so far in helical system are beyond ideal Mercier mode limits. Density limits in tokamak are often related to the coupling between radiation collapse and disruptive MHD instabilities, but the slow radiation collapse is dominant in the helical system. The pulse length of both tokamak and helical systems is on the order of hours in small machines, and the longer-pulsed good-confinement plasma operations compatible with radiative divertors are anticipated in both systems in the future. (author)

  8. An adaptive approach to metal artifact reduction in helical computed tomography for radiation therapy treatment planning: Experimental and clinical studies

    International Nuclear Information System (INIS)

    Yazdia, Mehran; Gingras, Luc; Beaulieu, Luc

    2005-01-01

    Purpose: In this article, an approach to metal artifact reduction is proposed that is practical for clinical use in radiation therapy. It is based on a new interpolation scheme of the projections associated with metal implants in helical computed tomography (CT) scanners. Methods and Materials: A three-step approach was developed consisting of an automatic algorithm for metal implant detection, a correction algorithm for helical projections, and a new, efficient algorithm for projection interpolation. The modified raw projection data are transferred back to the CT scanner device where CT slices are regenerated using the built-in reconstruction operator. The algorithm was tested on a CT calibration phantom in which the density of inserted objects are known and on clinical prostate cases with two hip prostheses. The results are evaluated using the CT number and shape of the objects. Results: The validations on a CT calibration phantom with various inserts of known densities show that the algorithm improved the overall image quality by restoring the shape and the representative CT number of the objects in the image. For the clinical hip replacement cases, a large fraction of the bladder, rectum, and prostate that were not visible on the original CT slices were recovered using the algorithm. Precise contouring of the target volume was thus feasible. Without this enhancement, physicians would have drawn bigger margins to be sure to include the target and, at the same time, could have prescribed a lower dose to keep the same level of normal tissue toxicity. Conclusions: In both phantom experiment and patient studies, the algorithm resulted in significant artifact reduction with increases in the reliability of planning procedure for the case of metallic hip prostheses. This algorithm is now clinically used as a preprocessing before treatment planning for metal artifact reduction

  9. Review of the helicity formalism; Revision del formalismo de helicidad

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, F; Cerrada, M; Fernandez, E

    1972-07-01

    Our purpose in these notes has been to present a brief and general review of the helicity formalism. We begin by discussing Lorentz invariance, spin and helicity ideas, in section 1 . In section 2 we deal with the construction of relativistic states and scattering amplitudes in the helicity basis and we study their transformation properties under discrete symmetries. Finally we present some more sophisticated topics like kinematical singularities of helicity amplitudes, kinematical constraints and crossing relations 3, 4, 5 respectively. (Author) 8 refs.

  10. Multiple helical modes of vortex breakdown

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I. V.; Okulov, Valery

    2011-01-01

    Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvi......’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets....

  11. Maximum-intensity-projection CT angiography for evaluating head and neck tumors. Usefulness of helical CT and auto bone masking method

    International Nuclear Information System (INIS)

    Sakai, Osamu; Nakashima, Noriko; Ogawa, Chiaki; Shen, Yun; Takata, Yasunori; Azemoto, Shougo.

    1994-01-01

    Angiographic images of 10 adult patients with head and neck tumors were obtained by helical computed tomography (CT) using maximum intensity projection (MIP). In all cases, the vasculature of the head and neck region was directly demonstrated. In the head and neck, bone masking is a more important problem than in other regions. We developed an effective automatic bone masking method (ABM) using 2D/3D connectivity. Helical CT angiography with MIP and ABM provided accurate anatomic depiction, and was considered to be helpful in preoperative evaluation of head and neck tumors. (author)

  12. Experimental Evidence of Helical Flow in Porous Media

    DEFF Research Database (Denmark)

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.

    2015-01-01

    Helical flow leads to deformation of solute plumes and enhances transverse mixing in porous media. We present experiments in which macroscopic helical flow is created by arranging different materials to obtain an anisotropic macroscopic permeability tensor with spatially variable orientation....... The resulting helical flow entails twisting streamlines which cause a significant increase in lateral mass exchange and thus a large enhancement of plume dilution (up to 235%) compared to transport in homogenous media. The setup may be used to effectively mix solutes in parallel streams similarly to static...... mixers, but in porous media....

  13. Radiation Field of a Square, Helical Beam Antenna

    DEFF Research Database (Denmark)

    Knudsen, Hans Lottrup

    1952-01-01

    square helices are used. Further, in connection with corresponding rigorous formulas for the field from a circular, helical antenna with a uniformly progressing current wave of constant amplitude the present formulas may be used for an investigation of the magnitude of the error introduced in Kraus......' approximate calculation of the field from a circular, helical antenna by replacing this antenna with an ``equivalent'' square helix. This investigation is carried out by means of a numerical example. The investigation shows that Kraus' approximate method of calculation yields results in fair agreement...

  14. Geometric analysis of alloreactive HLA α-helices.

    Science.gov (United States)

    Ribarics, Reiner; Karch, Rudolf; Ilieva, Nevena; Schreiner, Wolfgang

    2014-01-01

    Molecular dynamics (MD) is a valuable tool for the investigation of functional elements in biomolecules, providing information on dynamic properties and processes. Previous work by our group has characterized static geometric properties of the two MHC α-helices comprising the peptide binding region recognized by T cells. We build upon this work and used several spline models to approximate the overall shape of MHC α-helices. We applied this technique to a series of MD simulations of alloreactive MHC molecules that allowed us to capture the dynamics of MHC α-helices' steric configurations. Here, we discuss the variability of spline models underlying the geometric analysis with varying polynomial degrees of the splines.

  15. Elbow helical axes of motion are not the same in physiologic and kinetic joint simulators.

    Science.gov (United States)

    Muriuki, Muturi G; Mohagheh-Motlagh, Amin; Smolinski, Patrick J; Miller, Mark Carl

    2012-08-31

    Physiologic and kinetic joint simulators have been widely used for investigations of joint mechanics. The two types of simulator differ in the way joint motion is achieved; through prescribed motions and/or forces in kinetic joint simulators and by tendon loads in physiologic joint simulators. These two testing modalities have produced important insights, as in elucidating the importance of soft tissue structures to joint stability. However, the equivalence of the modalities has not been tested. This study sequentially tested five cadaveric elbows using both a physiologic simulator and a robot/6DOF system. Using position data from markers on the humerus and ulna, we calculated and compared the helical axes of motion of the specimens as the elbows were flexed from full extension. Six step size increments were used in the helical axis calculation. Marker position data at each test's full extension and full flexion point were also used to calculate a datum (overall) helical axis. The angles between the datum axis and step-wise movements were computed and stored. Increasing step size monotonically decreased the variability and the average conical angle encompassing the helical axes; a repeated measures ANOVA using test type (robot or physiologic simulator) and step size found that both type and step caused statistically significant differences (p<0.001). The large changes in helical axis angle observed for small changes in elbow flexion angle, especially in the robot tests, are a caveat for investigators using similar control algorithms. Controllers may need to include increased joint compliance and/or C(1) continuity to reduce variability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Helicity conservation and twisted Seifert surfaces for superfluid vortices.

    Science.gov (United States)

    Salman, Hayder

    2017-04-01

    Starting from the continuum definition of helicity, we derive from first principles its different contributions for superfluid vortices. Our analysis shows that an internal twist contribution emerges naturally from the mathematical derivation. This reveals that the spanwise vector that is used to characterize the twist contribution must point in the direction of a surface of constant velocity potential. An immediate consequence of the Seifert framing is that the continuum definition of helicity for a superfluid is trivially zero at all times. It follows that the Gauss-linking number is a more appropriate definition of helicity for superfluids. Despite this, we explain how a quasi-classical limit can arise in a superfluid in which the continuum definition for helicity can be used. This provides a clear connection between a microscopic and a macroscopic description of a superfluid as provided by the Hall-Vinen-Bekarevich-Khalatnikov equations. This leads to consistency with the definition of helicity used for classical vortices.

  17. On Helical Projection and Its Application in Screw Modeling

    Directory of Open Access Journals (Sweden)

    Riliang Liu

    2014-04-01

    Full Text Available As helical surfaces, in their many and varied forms, are finding more and more applications in engineering, new approaches to their efficient design and manufacture are desired. To that end, the helical projection method that uses curvilinear projection lines to map a space object to a plane is examined in this paper, focusing on its mathematical model and characteristics in terms of graphical representation of helical objects. A number of interesting projective properties are identified in regard to straight lines, curves, and planes, and then the method is further investigated with respect to screws. The result shows that the helical projection of a cylindrical screw turns out to be a Jordan curve, which is determined by the screw's axial profile and number of flights. Based on the projection theory, a practical approach to the modeling of screws and helical surfaces is proposed and illustrated with examples, and its possible application in screw manufacturing is discussed.

  18. Scale Dependence of Magnetic Helicity in the Solar Wind

    Science.gov (United States)

    Brandenburg, Axel; Subramanian, Kandaswamy; Balogh, Andre; Goldstein, Melvyn L.

    2011-01-01

    We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study. The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor, while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a sign change of magnetic helicity at wavenumber k approximately equal to 2AU(sup -1) (or frequency nu approximately equal to 2 microHz) at distances below 2.8AU and at k approximately equal to 30AU(sup -1) (or nu approximately equal to 25 microHz) at larger distances. At small scales the magnetic helicity is positive at northern heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface. Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated separately over one hemisphere amounts to about 10(sup 45) Mx(sup 2) cycle(sup -1) at large scales and to a three times lower value at smaller scales.

  19. Helical axis stellarator equilibrium model

    International Nuclear Information System (INIS)

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift

  20. PRODUCTIVITY OF SOLAR FLARES AND MAGNETIC HELICITY INJECTION IN ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Park, Sung-hong; Wang Haimin; Chae, Jongchul

    2010-01-01

    The main objective of this study is to better understand how magnetic helicity injection in an active region (AR) is related to the occurrence and intensity of solar flares. We therefore investigate the magnetic helicity injection rate and unsigned magnetic flux, as a reference. In total, 378 ARs are analyzed using SOHO/MDI magnetograms. The 24 hr averaged helicity injection rate and unsigned magnetic flux are compared with the flare index and the flare-productive probability in the next 24 hr following a measurement. In addition, we study the variation of helicity over a span of several days around the times of the 19 flares above M5.0 which occurred in selected strong flare-productive ARs. The major findings of this study are as follows: (1) for a sub-sample of 91 large ARs with unsigned magnetic fluxes in the range from (3-5) x 10 22 Mx, there is a difference in the magnetic helicity injection rate between flaring ARs and non-flaring ARs by a factor of 2; (2) the GOES C-flare-productive probability as a function of helicity injection displays a sharp boundary between flare-productive ARs and flare-quiet ones; (3) the history of helicity injection before all the 19 major flares displayed a common characteristic: a significant helicity accumulation of (3-45) x 10 42 Mx 2 during a phase of monotonically increasing helicity over 0.5-2 days. Our results support the notion that helicity injection is important in flares, but it is not effective to use it alone for the purpose of flare forecast. It is necessary to find a way to better characterize the time history of helicity injection as well as its spatial distribution inside ARs.

  1. Metallic and 3D-printed dielectric helical terahertz waveguides.

    Science.gov (United States)

    Vogt, Dominik Walter; Anthony, Jessienta; Leonhardt, Rainer

    2015-12-28

    We investigate guidance of Terahertz (THz) radiation in metallic and 3D-printed dielectric helical waveguides in the frequency range from 0.2 to 1 THz. Our experimental results obtained from THz time-domain spectroscopy (THz-TDS) measurements are in very good agreement with finite-difference time-domain (FDTD) simulations. We observe single-mode, low loss and low dispersive propagation of THz radiation in metallic helical waveguides over a broad bandwidth. The 3D-printed dielectric helical waveguides have substantially extended the bandwidth of a low loss dielectric tube waveguide as observed from the experimental and simulation results. The high flexibility of the helical design allows an easy incorporation into bench top THz devices.

  2. Detection of Early Ischemic Changes in Noncontrast CT Head Improved with "Stroke Windows".

    Science.gov (United States)

    Mainali, Shraddha; Wahba, Mervat; Elijovich, Lucas

    2014-01-01

    Introduction. Noncontrast head CT (NCCT) is the standard radiologic test for patients presenting with acute stroke. Early ischemic changes (EIC) are often overlooked on initial NCCT. We determine the sensitivity and specificity of improved EIC detection by a standardized method of image evaluation (Stroke Windows). Methods. We performed a retrospective chart review to identify patients with acute ischemic stroke who had NCCT at presentation. EIC was defined by the presence of hyperdense MCA/basilar artery sign; sulcal effacement; basal ganglia/subcortical hypodensity; and loss of cortical gray-white differentiation. NCCT was reviewed with standard window settings and with specialized Stroke Windows. Results. Fifty patients (42% females, 58% males) with a mean NIHSS of 13.4 were identified. EIC was detected in 9 patients with standard windows, while EIC was detected using Stroke Windows in 35 patients (18% versus 70%; P Windows (14% and 36%; P Windows (6% and 46%; P Windows significantly improved detection of EIC.

  3. Alteration of helical vortex core without change in flow topology

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver

    2011-01-01

    topology. The helical symmetry as such is preserved, although the characteristic parameters of helical symmetry of the vortex core transfer from a smooth linear variation to a different trend under the influence of a non-uniform pressure gradient, causing an increase in helical pitch without changing its......The abrupt expansion of the slender vortex core with changes in flow topology is commonly known as vortex breakdown. We present new experimental observations of an alteration of the helical vortex core in wall bounded turbulent flow with abrupt growth in core size, but without change in flow...

  4. Automated Agatston score computation in non-ECG gated CT scans using deep learning

    Science.gov (United States)

    Cano-Espinosa, Carlos; González, Germán.; Washko, George R.; Cazorla, Miguel; San José Estépar, Raúl

    2018-03-01

    Introduction: The Agatston score is a well-established metric of cardiovascular disease related to clinical outcomes. It is computed from CT scans by a) measuring the volume and intensity of the atherosclerotic plaques and b) aggregating such information in an index. Objective: To generate a convolutional neural network that inputs a non-contrast chest CT scan and outputs the Agatston score associated with it directly, without a prior segmentation of Coronary Artery Calcifications (CAC). Materials and methods: We use a database of 5973 non-contrast non-ECG gated chest CT scans where the Agatston score has been manually computed. The heart of each scan is cropped automatically using an object detector. The database is split in 4973 cases for training and 1000 for testing. We train a 3D deep convolutional neural network to regress the Agatston score directly from the extracted hearts. Results: The proposed method yields a Pearson correlation coefficient of r = 0.93; p <= 0.0001 against manual reference standard in the 1000 test cases. It further stratifies correctly 72.6% of the cases with respect to standard risk groups. This compares to more complex state-of-the-art methods based on prior segmentations of the CACs, which achieve r = 0.94 in ECG-gated pulmonary CT. Conclusions: A convolutional neural network can regress the Agatston score from the image of the heart directly, without a prior segmentation of the CACs. This is a new and simpler paradigm in the Agatston score computation that yields similar results to the state-of-the-art literature.

  5. Automatic quantification of mammary glands on non-contrast x-ray CT by using a novel segmentation approach

    Science.gov (United States)

    Zhou, Xiangrong; Kano, Takuya; Cai, Yunliang; Li, Shuo; Zhou, Xinxin; Hara, Takeshi; Yokoyama, Ryujiro; Fujita, Hiroshi

    2016-03-01

    This paper describes a brand new automatic segmentation method for quantifying volume and density of mammary gland regions on non-contrast CT images. The proposed method uses two processing steps: (1) breast region localization, and (2) breast region decomposition to accomplish a robust mammary gland segmentation task on CT images. The first step detects two minimum bounding boxes of left and right breast regions, respectively, based on a machine-learning approach that adapts to a large variance of the breast appearances on different age levels. The second step divides the whole breast region in each side into mammary gland, fat tissue, and other regions by using spectral clustering technique that focuses on intra-region similarities of each patient and aims to overcome the image variance caused by different scan-parameters. The whole approach is designed as a simple structure with very minimum number of parameters to gain a superior robustness and computational efficiency for real clinical setting. We applied this approach to a dataset of 300 CT scans, which are sampled with the equal number from 30 to 50 years-old-women. Comparing to human annotations, the proposed approach can measure volume and quantify distributions of the CT numbers of mammary gland regions successfully. The experimental results demonstrated that the proposed approach achieves results consistent with manual annotations. Through our proposed framework, an efficient and effective low cost clinical screening scheme may be easily implemented to predict breast cancer risk, especially on those already acquired scans.

  6. Patient Dose From Megavoltage Computed Tomography Imaging

    International Nuclear Information System (INIS)

    Shah, Amish P.; Langen, Katja M.; Ruchala, Kenneth J.; Cox, Andrea; Kupelian, Patrick A.; Meeks, Sanford L.

    2008-01-01

    Purpose: Megavoltage computed tomography (MVCT) can be used daily for imaging with a helical tomotherapy unit for patient alignment before treatment delivery. The purpose of this investigation was to show that the MVCT dose can be computed in phantoms, and further, that the dose can be reported for actual patients from MVCT on a helical tomotherapy unit. Methods and Materials: An MVCT beam model was commissioned and verified through a series of absorbed dose measurements in phantoms. This model was then used to retrospectively calculate the imaging doses to the patients. The MVCT dose was computed for five clinical cases: prostate, breast, head/neck, lung, and craniospinal axis. Results: Validation measurements in phantoms verified that the computed dose can be reported to within 5% of the measured dose delivered at the helical tomotherapy unit. The imaging dose scaled inversely with changes to the CT pitch. Relative to a normal pitch of 2.0, the organ dose can be scaled by 0.67 and 2.0 for scans done with a pitch of 3.0 and 1.0, respectively. Typical doses were in the range of 1.0-2.0 cGy, if imaged with a normal pitch. The maximal organ dose calculated was 3.6 cGy in the neck region of the craniospinal patient, if imaged with a pitch of 1.0. Conclusion: Calculation of the MVCT dose has shown that the typical imaging dose is approximately 1.5 cGy per image. The uniform MVCT dose delivered using helical tomotherapy is greatest when the anatomic thickness is the smallest and the pitch is set to the lowest value

  7. Helical Polyacetylenes Induced via Noncovalent Chiral Interactions and Their Applications as Chiral Materials.

    Science.gov (United States)

    Maeda, Katsuhiro; Yashima, Eiji

    2017-08-01

    Construction of predominantly one-handed helical polyacetylenes with a desired helix sense utilizing noncovalent chiral interactions with nonracemic chiral guest compounds based on a supramolecular approach is described. As with the conventional dynamic helical polymers possessing optically active pendant groups covalently bonded to the polymer chains, this noncovalent helicity induction system can show significant chiral amplification phenomena, in which the chiral information of the nonracemic guests can transfer with high cooperativity through noncovalent bonding interactions to induce an almost single-handed helical conformation in the polymer backbone. An intriguing "memory effect" of the induced macromolecular helicity is observed for some polyacetylenes, which means that the helical conformations induced in dynamic helical polyacetylene can be transformed into metastable static ones by tuning their helix-inversion barriers. Potential applications of helical polyacetylenes with controlled helix sense constructed by the "noncovalent helicity induction and/or memory effect" as chiral materials are also described.

  8. Variation in the helical structure of native collagen.

    Directory of Open Access Journals (Sweden)

    Joseph P R O Orgel

    Full Text Available The structure of collagen has been a matter of curiosity, investigation, and debate for the better part of a century. There has been a particularly productive period recently, during which much progress has been made in better describing all aspects of collagen structure. However, there remain some questions regarding its helical symmetry and its persistence within the triple-helix. Previous considerations of this symmetry have sometimes confused the picture by not fully recognizing that collagen structure is a highly complex and large hierarchical entity, and this affects and is effected by the super-coiled molecules that make it. Nevertheless, the symmetry question is not trite, but of some significance as it relates to extracellular matrix organization and cellular integration. The correlation between helical structure in the context of the molecular packing arrangement determines which parts of the amino acid sequence of the collagen fibril are buried or accessible to the extracellular matrix or the cell. In this study, we concentrate primarily on the triple-helical structure of fibrillar collagens I and II, the two most predominant types. By comparing X-ray diffraction data collected from type I and type II containing tissues, we point to evidence for a range of triple-helical symmetries being extant in the molecules native environment. The possible significance of helical instability, local helix dissociation and molecular packing of the triple-helices is discussed in the context of collagen's supramolecular organization, all of which must affect the symmetry of the collagen triple-helix.

  9. EVOLUTION OF MAGNETIC HELICITY AND ENERGY SPECTRA OF SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2016-01-01

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30–60 Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field

  10. EVOLUTION OF MAGNETIC HELICITY AND ENERGY SPECTRA OF SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongqi [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Brandenburg, Axel [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Sokoloff, D. D., E-mail: hzhang@bao.ac.cn [Department of Physics, Moscow University, 119992 Moscow (Russian Federation)

    2016-03-10

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30–60 Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field.

  11. Low-energy properties of fractional helical Luttinger liquids

    NARCIS (Netherlands)

    Meng, T.; Fritz, L.|info:eu-repo/dai/nl/371569559; Schuricht, D.|info:eu-repo/dai/nl/369284690; Loss, D.

    2014-01-01

    We investigate the low-energy properties of (quasi) helical and fractional helical Luttinger liquids. In particular, we calculate the Drude peak of the optical conductivity, the density of states, as well as charge transport properties of the interacting system with and without attached Fermi liquid

  12. Helical filaments

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Nicholas; Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin [Townes Laser Institute, CREOL—The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Hosseinimakarem, Zahra; Johnson, Eric [Micro-Photonics Laboratory – Center for Optical Material Science, Clemson, Anderson, South Carolina 29634 (United States)

    2014-06-30

    The shaping of laser-induced filamenting plasma channels into helical structures by guiding the process with a non-diffracting beam is demonstrated. This was achieved using a Bessel beam superposition to control the phase of an ultrafast laser beam possessing intensities sufficient to induce Kerr effect driven non-linear self-focusing. Several experimental methods were used to characterize the resulting beams and confirm the observed structures are laser air filaments.

  13. Heat transfer characteristics of a helical heat exchanger

    International Nuclear Information System (INIS)

    San, Jung-Yang; Hsu, Chih-Hsiang; Chen, Shih-Hao

    2012-01-01

    Heat transfer performance of a helical heat exchanger was investigated. The heat exchanger is composed of a helical tube with rectangular cross section and two cover plates. The ε–Ntu relation of the heat exchanger was obtained using a numerical method. In the analysis, the flow in the tube (helical flow) was considered to be mixed and the flow outside the tube (radial flow) was unmixed. In the experiment, the Darcy friction factor (f) and convective heat transfer coefficient (h) of the radial flow were measured. The radial flow was air and the helical flow was water. Four different channel spacing (0.5, 0.8, 1.2 and 1.6 mm) were individually considered. The Reynolds numbers were in the range 307–2547. Two correlations, one for the Darcy friction factor and the other for the Nusselt number, were proposed. - Highlights: ► We analyze the heat transfer characteristics of a helical heat exchanger and examine the effectiveness–Ntu relation. ► Increasing number of turns of the heat exchanger would slightly increase the effectiveness. ► There is an optimum Ntu value corresponding to a maximum effectiveness. ► We measure the Darcy friction factor and Nusselt number of the radial flow and examine the correlations.

  14. SU-E-I-93: Improved Imaging Quality for Multislice Helical CT Via Sparsity Regularized Iterative Image Reconstruction Method Based On Tensor Framelet

    International Nuclear Information System (INIS)

    Nam, H; Guo, M; Lee, K; Li, R; Xing, L; Gao, H

    2014-01-01

    Purpose: Inspired by compressive sensing, sparsity regularized iterative reconstruction method has been extensively studied. However, its utility pertinent to multislice helical 4D CT for radiotherapy with respect to imaging quality, dose, and time has not been thoroughly addressed. As the beginning of such an investigation, this work carries out the initial comparison of reconstructed imaging quality between sparsity regularized iterative method and analytic method through static phantom studies using a state-of-art 128-channel multi-slice Siemens helical CT scanner. Methods: In our iterative method, tensor framelet (TF) is chosen as the regularization method for its superior performance from total variation regularization in terms of reduced piecewise-constant artifacts and improved imaging quality that has been demonstrated in our prior work. On the other hand, X-ray transforms and its adjoints are computed on-the-fly through GPU implementation using our previous developed fast parallel algorithms with O(1) complexity per computing thread. For comparison, both FDK (approximate analytic method) and Katsevich algorithm (exact analytic method) are used for multislice helical CT image reconstruction. Results: The phantom experimental data with different imaging doses were acquired using a state-of-art 128-channel multi-slice Siemens helical CT scanner. The reconstructed image quality was compared between TF-based iterative method, FDK and Katsevich algorithm with the quantitative analysis for characterizing signal-to-noise ratio, image contrast, and spatial resolution of high-contrast and low-contrast objects. Conclusion: The experimental results suggest that our tensor framelet regularized iterative reconstruction algorithm improves the helical CT imaging quality from FDK and Katsevich algorithm for static experimental phantom studies that have been performed

  15. Fluid-elastic Instability of Helical Tubes Subjected to Single-Phase External Flow and Two-Phase Internal Flow

    International Nuclear Information System (INIS)

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2004-01-01

    This study investigates the fluid-elastic instability characteristics of steam generator helical type tubes in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Investigated are the effects of the helix angle, the number of supports and the status of the inner fluid on the modal, and fluid-elastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, corresponding mode shape, and stability ratio. (authors)

  16. A non-contrast self-navigated 3-dimensional MR technique for aortic root and vascular access route assessment in the context of transcatheter aortic valve replacement: proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Renker, Matthias [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); University Hospital Giessen and Marburg, Department of Medicine I, Giessen (Germany); Varga-Szemes, Akos; Rier, Jeremy D.; Steinberg, Daniel H. [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); Schoepf, U.J. [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Baumann, Stefan [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); University of Heidelberg, 1st Department of Medicine, Faculty of Medicine Mannheim, University Medical Centre Mannheim (UMM), Mannheim (Germany); Piccini, Davide [Siemens Healthcare IM BM PI, Advanced Clinical Imaging Technology, Lausanne (Switzerland); University Hospital (CHUV) and University of Lausanne (UNIL), Department of Radiology, Lausanne (Switzerland); Zenge, Michael O.; Mueller, Edgar [Siemens AG Healthcare Sector, Erlangen (Germany); Rehwald, Wolfgang G. [Duke University Medical Center, Cardiovascular MR Center, Durham, NC (United States); Moellmann, Helge [Kerckhoff Heart and Thorax Center, Bad Nauheim (Germany); Hamm, Christian W. [University Hospital Giessen and Marburg, Department of Medicine I, Giessen (Germany); De Cecco, Carlo N. [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); University of Rome ' ' Sapienza' ' -Polo Pontino, Department of Radiological Sciences, Oncology and Pathology, Latina (Italy)

    2016-04-15

    Due to the high prevalence of renal failure in transcatheter aortic valve replacement (TAVR) candidates, a non-contrast MR technique is desirable for pre-procedural planning. We sought to evaluate the feasibility of a novel, non-contrast, free-breathing, self-navigated three-dimensional (SN3D) MR sequence for imaging the aorta from its root to the iliofemoral run-off in comparison to non-contrast two-dimensional-balanced steady-state free-precession (2D-bSSFP) imaging. SN3D [field of view (FOV), 220-370 mm{sup 3}; slice thickness, 1.15 mm; repetition/echo time (TR/TE), 3.1/1.5 ms; and flip angle, 115 ] and 2D-bSSFP acquisitions (FOV, 340 mm; slice thickness, 6 mm; TR/TE, 2.3/1.1 ms; flip angle, 77 ) were performed in 10 healthy subjects (all male; mean age, 30.3 ± 4.3 yrs) using a 1.5-T MRI system. Aortic root measurements and qualitative image ratings (four-point Likert-scale) were compared. The mean effective aortic annulus diameter was similar for 2D-bSSFP and SN3D (26.7 ± 0.7 vs. 26.1 ± 0.9 mm, p = 0.23). The mean image quality of 2D-bSSFP (4; IQR 3-4) was rated slightly higher (p = 0.03) than SN3D (3; IQR 2-4). The mean total acquisition time for SN3D imaging was 12.8 ± 2.4 min. Our results suggest that a novel SN3D sequence allows rapid, free-breathing assessment of the aortic root and the aortoiliofemoral system without administration of contrast medium. (orig.)

  17. A non-contrast self-navigated 3-dimensional MR technique for aortic root and vascular access route assessment in the context of transcatheter aortic valve replacement: proof of concept

    International Nuclear Information System (INIS)

    Renker, Matthias; Varga-Szemes, Akos; Rier, Jeremy D.; Steinberg, Daniel H.; Schoepf, U.J.; Baumann, Stefan; Piccini, Davide; Zenge, Michael O.; Mueller, Edgar; Rehwald, Wolfgang G.; Moellmann, Helge; Hamm, Christian W.; De Cecco, Carlo N.

    2016-01-01

    Due to the high prevalence of renal failure in transcatheter aortic valve replacement (TAVR) candidates, a non-contrast MR technique is desirable for pre-procedural planning. We sought to evaluate the feasibility of a novel, non-contrast, free-breathing, self-navigated three-dimensional (SN3D) MR sequence for imaging the aorta from its root to the iliofemoral run-off in comparison to non-contrast two-dimensional-balanced steady-state free-precession (2D-bSSFP) imaging. SN3D [field of view (FOV), 220-370 mm 3 ; slice thickness, 1.15 mm; repetition/echo time (TR/TE), 3.1/1.5 ms; and flip angle, 115 ] and 2D-bSSFP acquisitions (FOV, 340 mm; slice thickness, 6 mm; TR/TE, 2.3/1.1 ms; flip angle, 77 ) were performed in 10 healthy subjects (all male; mean age, 30.3 ± 4.3 yrs) using a 1.5-T MRI system. Aortic root measurements and qualitative image ratings (four-point Likert-scale) were compared. The mean effective aortic annulus diameter was similar for 2D-bSSFP and SN3D (26.7 ± 0.7 vs. 26.1 ± 0.9 mm, p = 0.23). The mean image quality of 2D-bSSFP (4; IQR 3-4) was rated slightly higher (p = 0.03) than SN3D (3; IQR 2-4). The mean total acquisition time for SN3D imaging was 12.8 ± 2.4 min. Our results suggest that a novel SN3D sequence allows rapid, free-breathing assessment of the aortic root and the aortoiliofemoral system without administration of contrast medium. (orig.)

  18. Manipulation of wavefront using helical metamaterials.

    Science.gov (United States)

    Yang, Zhenyu; Wang, Zhaokun; Tao, Huan; Zhao, Ming

    2016-08-08

    Helical metamaterials, a kind of 3-dimensional structure, has relatively strong coupling effect among the helical nano-wires. Therefore, it is expected to be a good candidate for generating phase shift and controlling wavefront with high efficiency. In this paper, using the finite-difference time-domain (FDTD) method, we studied the phase shift properties in the helical metamaterials. It is found that the phase shift occurs for both transmitted and reflected light waves. And the maximum of reflection coefficients can reach over 60%. In addition, the phase shift (φ) is dispersionless in the range of 600 nm to 860 nm, that is, it is only dominated by the initial angle (θ) of the helix. The relationship between them is φ = ± 2θ. Using Jones calculus we give a further explanation for these properties. Finally, by arranging the helixes in an array with a constant phase gradient, the phenomenon of anomalous refraction was also observed in a broad wavelength range.

  19. Numerical simulation of thermal-dynamic characteristics through a helical coiled tube with annular cross section for laminar flow

    International Nuclear Information System (INIS)

    Wu Shuangying; Chen Sujun; Li Yourong; Li Longjian

    2009-01-01

    A numerical method for simulating three-dimensional laminar forced convective heat transfer in a helical coiled passage with annular cross section under uniform wall temperature condition is presented. The helical coiled passage is fabricated by bending a 0.03 m inner diameter and 0.05 m outer diameter straight tube into a helical-coil of two turns. The results presented in this paper cover a Reynolds number range of 200 ∼ 1000, a pitch range of 0.1 ∼ 0.2 and a curvature ratio range of 0.1 ∼ 0.3. The numerical computations reveal the development and distribution of heat transfer and flow fields in the helical coiled passage when the inner annular wall is heated and the outer annular wall is insulated. In addition, the effects of Reynolds number, curvature ratio, and coil pitch on the average friction factor, average Nusselt number at different axial cross-section have been discussed. The results show that the secondary flow is weak and can be neglected at the entrance region, but the effect of the secondary flow is enhanced, the maximum velocity perpendicular to axial cross section shifts toward the outer side of helical coiled passage. Furthermore, the average Nusselt number and friction factor at every different axial location present different characteristics when the Reynolds number, curvature ratio and pitch change. Compared with the curvature ratio, the pitch has relatively little influence on the heat transfer and flow performance. (authors)

  20. Drift mode calculations for the Large Helical Device

    International Nuclear Information System (INIS)

    Rewoldt, G.; Ku, L.-P.; Tang, W.M.; Sugama, H.; Nakajima, N.; Watanabe, K.Y.; Murakami, S.; Yamada, H.; Cooper, W.A.

    2000-01-01

    A fully kinetic assessment of the stability properties of toroidal drift modes has been obtained for a case for the Large Helical Device (LHD) [A.Iiyoshi, et al., Plasma Physics and Controlled Nuclear Fusion Research, 1998, Nucl.Fusion 39, 1245 (1999)]. This calculation retains the important effects in the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities in the electrostatic limit. Results for toroidal drift waves destabilized by trapped particle dynamics and ion temperature gradients are presented, using three-dimensional magnetohydrodynamics equilibria reconstructed from experimental measurements. The effects of helically-trapped particles and helical curvature are investigated

  1. Theoretical modeling of transport barriers in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.; Ohyabu, N.

    2008-10-01

    A unified transport modelling to explain electron Internal Transport Barriers (e-ITB) in helical plasmas and Internal Diffusion Barriers (IDB) observed in Large Helical Device (LHD) is proposed. The e-ITB can be predicted with the effect of zonal flows to obtain the e-ITB in the low collisional regime when the radial variation of the particle anomalous diffusivity is included. Transport analysis in this article can newly show that the particle fuelling induces the IDB formation when this unified transport modelling is used in the high collisional regime. The density limit for the IDB in helical plasmas is also examined including the effect of the radiation loss. (author)

  2. TIME EVOLUTION OF CORONAL MAGNETIC HELICITY IN THE FLARING ACTIVE REGION NOAA 10930

    International Nuclear Information System (INIS)

    Park, Sung-Hong; Jing, Ju; Wang Haimin; Chae, Jongchul; Tan, Changyi

    2010-01-01

    To study the three-dimensional (3D) magnetic field topology and its long-term evolution associated with the X3.4 flare of 2006 December 13, we investigate the coronal relative magnetic helicity in the flaring active region (AR) NOAA 10930 during the time period of December 8-14. The coronal helicity is calculated based on the 3D nonlinear force-free magnetic fields reconstructed by the weighted optimization method of Wiegelmann, and is compared with the amount of helicity injected through the photospheric surface of the AR. The helicity injection is determined from the magnetic helicity flux density proposed by Pariat et al. using Solar and Heliospheric Observatory/Michelson Doppler Imager magnetograms. The major findings of this study are the following. (1) The time profile of the coronal helicity shows a good correlation with that of the helicity accumulation by injection through the surface. (2) The coronal helicity of the AR is estimated to be -4.3 x 10 43 Mx 2 just before the X3.4 flare. (3) This flare is preceded not only by a large increase of negative helicity, -3.2 x 10 43 Mx 2 , in the corona over ∼1.5 days but also by noticeable injections of positive helicity through the photospheric surface around the flaring magnetic polarity inversion line during the time period of the channel structure development. We conjecture that the occurrence of the X3.4 flare is involved with the positive helicity injection into an existing system of negative helicity.

  3. Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Famin Qiu

    2015-03-01

    Full Text Available Magnetic helical micro- and nanorobots can perform 3D navigation in various liquids with a sub-micrometer precision under low-strength rotating magnetic fields (<10 mT. Since magnetic fields with low strengths are harmless to cells and tissues, magnetic helical micro/nanorobots are promising tools for biomedical applications, such as minimally invasive surgery, cell manipulation and analysis, and targeted therapy. This review provides general information on magnetic helical micro/nanorobots, including their fabrication, motion control, and further functionalization for biomedical applications.

  4. Utility of three-dimensional helical CT in the diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Maeda, Yoshiaki; Hata, Yoshinobu; Matsuoka, Shinnichi; Nakajima, Nobuhisa; Ito, Toichi; Osada, Tadahiro; Sano, Fumio

    2004-01-01

    Although utility of three-dimensional (3D) helical CT for preoperative examination of breast cancer has been discussed, the accuracy of the helical CT in diagnosing breast cancer has not been fully evaluated. In this study 56 malignant and 28 benign breast tumors were evaluated preoperatively with 3D-helical CT, and their imaging results were compared with pathological findings of surgical specimens. Helical CT identified the presence of malignancy in 54 out of the 56 cancer cases tested and the sensitivity and specificity in distinguishing between malignant and benign tumors were 82% and 57%, respectively. The sensitivity and specificity in diagnosing the presence of metastatic axillary lymph nodes using helical CT were 70% and 80%, respectively. The sensitivity and specificity in diagnosing the presence of extensive intraductal component (EIC) using helical CT were 71% and 86%, respectively. Helical CT visualized all of the tumors in multifocal breast cancer cases. In conclusion, 3D-helical CT is a useful modality for preoperative examination of breast cancer, especially for assessing axillary lymph node status, and EIC, and will be helpful for conducting sentinel lymph node biopsy (SNLB) and breast-conserving surgery. (author)

  5. Preliminary study on helical CT algorithms for patient motion estimation and compensation

    International Nuclear Information System (INIS)

    Wang, G.; Vannier, M.W.

    1995-01-01

    Helical computed tomography (helical/spiral CT) has replaced conventional CT in many clinical applications. In current helical CT, a patient is assumed to be rigid and motionless during scanning and planar projection sets are produced from raw data via longitudinal interpolation. However, rigid patient motion is a problem in some cases (such as in the skull base and temporal bone imaging). Motion artifacts thus generated in reconstructed images can prevent accurate diagnosis. Modeling a uniform translational movement, the authors address how patient motion is ascertained and how it may be compensated. First, mismatch between adjacent fan-beam projections of the same orientation is determined via classical correlation, which is approximately proportional to the patient displacement projected onto an axis orthogonal to the central ray of the involved fan-beam. Then, the patient motion vector (the patient displacement per gantry rotation) is estimated from its projections using a least-square-root method. To suppress motion artifacts, adaptive interpolation algorithms are developed that synthesize full-scan and half-scan planar projection data sets, respectively. In the adaptive scheme, the interpolation is performed along inclined paths dependent upon the patient motion vector. The simulation results show that the patient motion vector can be accurately and reliably estimated using their correlation and least-square-root algorithm, patient motion artifacts can be effectively suppressed via adaptive interpolation, and adaptive half-scan interpolation is advantageous compared with its full-scale counterpart in terms of high contrast image resolution

  6. Radiation characteristics of helical tomotherapy

    International Nuclear Information System (INIS)

    Jeraj, Robert; Mackie, Thomas R.; Balog, John; Olivera, Gustavo; Pearson, Dave; Kapatoes, Jeff; Ruchala, Ken; Reckwerdt, Paul

    2004-01-01

    Helical tomotherapy is a dedicated intensity modulated radiation therapy (IMRT) system with on-board imaging capability (MVCT) and therefore differs from conventional treatment units. Different design goals resulted in some distinctive radiation field characteristics. The most significant differences in the design are the lack of flattening filter, increased shielding of the collimators, treatment and imaging operation modes and narrow fan beam delivery. Radiation characteristics of the helical tomotherapy system, sensitivity studies of various incident electron beam parameters and radiation safety analyses are presented here. It was determined that the photon beam energy spectrum of helical tomotherapy is similar to that of more conventional radiation treatment units. The two operational modes of the system result in different nominal energies of the incident electron beam with approximately 6 MeV and 3.5 MeV in the treatment and imaging modes, respectively. The off-axis mean energy dependence is much lower than in conventional radiotherapy units with less than 5% variation across the field, which is the consequence of the absent flattening filter. For the same reason the transverse profile exhibits the characteristic conical shape resulting in a 2-fold increase of the beam intensity in the center. The radiation leakage outside the field was found to be negligible at less than 0.05% because of the increased shielding of the collimators. At this level the in-field scattering is a dominant source of the radiation outside the field and thus a narrow field treatment does not result in the increased leakage. The sensitivity studies showed increased sensitivity on the incident electron position because of the narrow fan beam delivery and high sensitivity on the incident electron energy, as common to other treatment systems. All in all, it was determined that helical tomotherapy is a system with some unique radiation characteristics, which have been to a large extent

  7. Prenatal diagnosis of sirenomelia in the late second trimester with three-dimensional helical computed tomography.

    Science.gov (United States)

    Ono, Tetsuo; Katsura, Daisuke; Tsuji, Shunichiro; Yomo, Hiroko; Ishiko, Akiko; Inoue, Takashi; Kita, Nobuyuki; Takahashi, Kentaro; Murakami, Takashi

    2011-10-01

    Sirenomelia is a rare congenital syndrome that is characterized by the anomalous development of the caudal region of the body. The anomalies include bilateral renal agenesis or dysgenesis and the absence of the sacrum and other vertebral defects. Sirenomelia is also known as "mermaid syndrome," because of the one lower extremity. It is usually associated with severe oligohydramnios, and its prognosis is very poor due to pulmonary hypoplasia that is caused by severe oligohydramnios. The patient referred to our hospital at the gestational age of 27 weeks with fetal growth restriction and oligohydramnios. The estimated fetal body weight was 970 g (-4.9 S.D.). We could identify only one-side extremities, and could not identify kidneys by ultrasound examination. Because a single lower extremity and severe oligohydramnios are characteristics of the sirenomelia, we suspected sirenomelia. However, it could not be confirmed by ultrasound examination because of oligohydramnios. Therefore, we performed three-dimensional helical computed tomography (3D-CT), which is more accurate than ultrasound examinations for prenatal diagnosis of skeletal abnormalities. 3D-CT revealed an only one lower extremity. At 36 weeks and 5 days of gestation, the woman went into spontaneous labor and delivered an infant weighing 870 g. The infant has a single upper extremity and a single lower extremity. We provided supportive care for the neonate, who however died 1 hour 36 minutes after birth from severe respiratory distress. In summary, we report the correct diagnosis of sirenomelia with 3D-CT in the late second trimester.

  8. Advanced imaging in acute stroke management-Part I: Computed tomographic.

    Science.gov (United States)

    Saini, Monica; Butcher, Ken

    2009-01-01

    Neuroimaging is fundamental to stroke diagnosis and management. Non-contrast computed tomography (NCCT) has been the primary imaging modality utilized for this purpose for almost four decades. Although NCCT does permit identification of intracranial hemorrhage and parenchymal ischemic changes, insights into blood vessel patency and cerebral perfusion are limited. Advances in reperfusion strategies have made identification of potentially salvageable brain tissue a more practical concern. Advances in CT technology now permit identification of acute and chronic arterial lesions, as well as cerebral blood flow deficits. This review outlines principles of advanced CT image acquisition and its utility in acute stroke management.

  9. Comparison of contrast and noncontrast magnetic resonance angiography for quantitative analysis of thoracic arteries in young patients with congenital heart defects

    Directory of Open Access Journals (Sweden)

    Pasqua Alessia

    2011-01-01

    Full Text Available Background : Contrast MRA (C-MRA is the standard for quantitative analysis of thoracic vessels. We evaluated a noncontrast MRA (NC-MRA sequence (3-D EKG and navigator-gated SSFP for quantitative evaluation of the thoracic aorta and branch pulmonary arteries in young patients with congenital heart disease. Objective : To compare contrast and noncontrast magnetic resonance angiography for quantitative analysis of thoracic arteries in young patients with congenital heart defects. Methods : Measurements of thoracic aorta and branch pulmonary arteries were obtained from C-MRA and NC-MRA images in 51 patients, ages 2-35 years. Vessel diameters were compared using correlation and Bland-Altman analysis. Interobserver variability was assessed using percent variation. Results : C-MRA and NC-MRA measurements were highly correlated (r = 0.91-0.98 except for the right pulmonary artery (r = 0.74, 0.78. Agreement of measurements was excellent (mean difference -0.07 to -0.53 mm; mean % difference -1.8 to -4.9% except for the right pulmonary artery which was less good (mean difference 0.73, -1.38 mm; -3, -10%. Interobserver variability ranged from 5% to 8% for aortic and from 10% to 16% for pulmonary artery measures. The worse agreement and greater variability of the pulmonary artery measures appears due to difficulty standardizing the measurements in patients with abnormal and irregular vessels. Conclusion : These data indicate that C-MRA and NC-MRA measures are comparable and could be used interchangeably, avoiding administration of contrast in selected patients.

  10. Controllable helical deformations on printed anisotropic composite soft actuators

    Science.gov (United States)

    Wang, Dong; Li, Ling; Serjouei, Ahmad; Dong, Longteng; Weeger, Oliver; Gu, Guoying; Ge, Qi

    2018-04-01

    Helical shapes are ubiquitous in both nature and engineering. However, the development of soft actuators and robots that mimic helical motions has been hindered primarily due to the lack of efficient modeling approaches that take into account the material anisotropy and the directional change of the external loading point. In this work, we present a theoretical framework for modeling controllable helical deformations of cable-driven, anisotropic, soft composite actuators. The framework is based on the minimum potential energy method, and its model predictions are validated by experiments, where the microarchitectures of the soft composite actuators can be precisely defined by 3D printing. We use the developed framework to investigate the effects of material and geometric parameters on helical deformations. The results show that material stiffness, volume fraction, layer thickness, and fiber orientation can be used to control the helical deformation of a soft actuator. In particular, we found that a critical fiber orientation angle exists at which the twist of the actuator changes the direction. Thus, this work can be of great importance for the design and fabrication of soft actuators with tailored deformation behavior.

  11. Numerical analysis of fluid flow and heat transfer in a helical ...

    African Journals Online (AJOL)

    Helical channels are widely applied in different application areas. In a converging diverging nozzle, helical channels are mainly used for cooling of its wall. The characteristics of fluid flow and heat transfer inside helical duct for a converging diverging nozzle is not commonly dealt in present literatures. In this paper CFD ...

  12. New reconstruction algorithm in helical-volume CT

    International Nuclear Information System (INIS)

    Toki, Y.; Rifu, T.; Aradate, H.; Hirao, Y.; Ohyama, N.

    1990-01-01

    This paper reports on helical scanning that is an application of continuous scanning CT to acquire volume data in a short time for three-dimensional study. In a helical scan, the patient couch sustains movement during continuous-rotation scanning and then the acquired data is processed to synthesize a projection data set of vertical section by interpolation. But the synthesized section is not thin enough; also, the image may have artifacts caused by couch movement. A new reconstruction algorithm that helps resolve such problems has been developed and compared with the ordinary algorithm. The authors constructed a helical scan system based on TCT-900S, which can perform 1-second rotation continuously for 30 seconds. The authors measured section thickness using both algorithms on an AAPM phantom, and we also compared degree of artifacts on clinical data

  13. Resonant helical fields in the TBR tokamak

    International Nuclear Information System (INIS)

    Bender, O.W.

    1986-01-01

    The influence of external resonant helical fields (RHF) in the tokamak TBR plasma discharges was investigated. These fields were created by helical windings wounded on the TBR vessel with the same helicity of rational magnetic surfaces, producing resonant efects on these surfaces. The characteristics of the MHZ activity (amplitude, frequency and poloidal and toroidal wave numbers, m=2,3,4 and n=1, respectively) during the plasma discharges were modified by eletrical winding currents of the order of 2% of the plasma current. These characterisitics were measured for diferent discharges safety factors at the limiter (q) between 3 and 4, with and without the RHF, with the atenuation of the oscillation amplitudes and the increasing of their frequencies. The existente of expontaneous and induced magnetic islands were investigated. The data were compared with results obtained in other tokamaks. (author) [pt

  14. Recent Results of Helical Nonneutral Plasmas on Compact Helical System (CHS)

    International Nuclear Information System (INIS)

    Himura, H.; Yamamoto, Y.; Sanpei, A.; Masamune, S.; Wakabayashi, H.; Isobe, M.

    2006-01-01

    First of all, non-constant space potential φs and electron density ne on magnetic surfaces of helical nonneutral plasmas are verified experimentally. The difference in φs enlarges significantly at the outer region inside the closed magnetic surfaces, and the corresponding equipotential surfaces are inferred to shift upward vertically with respect to magnetic surfaces. Meanwhile, larger value of ne is clearly observed in the downward region (z < 0) of magnetic surfaces, which seems to be consistent with the φs measurement. These results are the first evidence which strongly suggests the equilibrium proposed for nonneutral plasmas confined in closed magnetic surfaces. Secondly, in order to investigate the mechanism of the multiple disruption of helical nonneutral plasmas observed in experiments, space and time evolutions of electron flux are measured carefully inside the magnetic surfaces, when the plasma disruption occurs. Surprisingly, a set of data show that the observed disruption is at first happened at ρ ∼ 0.8, where ρ is the normalized minor radius, and then, it seems to propagate inside magnetic surfaces

  15. Diagnostic sensitivity of ultrasound, radiography and computed tomography for gender determination in four species of lizards.

    Science.gov (United States)

    Di Ianni, Francesco; Volta, Antonella; Pelizzone, Igor; Manfredi, Sabrina; Gnudi, Giacomo; Parmigiani, Enrico

    2015-01-01

    Gender determination is frequently requested by reptile breeders, especially for species with poor or absent sexual dimorphism. The aims of the current study were to describe techniques and diagnostic sensitivities of ultrasound, radiography, and computed tomography for gender determination (identification of hemipenes) in four species of lizards. Nineteen lizards of known sex, belonging to four different species (Pogona vitticeps, Uromastyx aegyptia, Tiliqua scincoides, Gerrhosaurus major) were prospectively enrolled. With informed owner consent, ultrasound, noncontrast CT, contrast radiography, and contrast CT (with contrast medium administered into the cloaca) were performed in conscious animals. Imaging studies were reviewed by three different operators, each unaware of the gender of the animals and of the results of the other techniques. The lizard was classified as a male when hemipenes were identified. Nineteen lizards were included in the study, 10 females and nine males. The hemipenes were seen on ultrasound in only two male lizards, and appeared as oval hypoechoic structures. Radiographically, hemipenes filled with contrast medium appeared as spindle-shaped opacities. Noncontrast CT identified hemipenes in only two lizards, and these appeared as spindle-shaped kinked structures with hyperattenuating content consistent with smegma. Hemipenes were correctly identified in all nine males using contrast CT (accuracy of 100%). Accuracy of contrast radiography was excellent (94.7%). Accuracy of ultrasound and of noncontrast CT was poor (64.3% and 63.1%, respectively). Findings from the current study supported the use of contrast CT or contrast radiography for gender determination in lizards. © 2014 American College of Veterinary Radiology.

  16. Online Kidney Position Verification Using Non-Contrast Radiographs on a Linear Accelerator with on Board KV X-Ray Imaging Capability

    International Nuclear Information System (INIS)

    Willis, David J.; Kron, Tomas; Hubbard, Patricia; Haworth, Annette; Wheeler, Greg; Duchesne, Gillian M.

    2009-01-01

    The kidneys are dose-limiting organs in abdominal radiotherapy. Kilovoltage (kV) radiographs can be acquired using on-board imager (OBI)-equipped linear accelerators with better soft tissue contrast and lower radiation doses than conventional portal imaging. A feasibility study was conducted to test the suitability of anterior-posterior (AP) non-contrast kV radiographs acquired at treatment time for online kidney position verification. Anthropomorphic phantoms were used to evaluate image quality and radiation dose. Institutional Review Board approval was given for a pilot study that enrolled 5 adults and 5 children. Customized digitally reconstructed radiographs (DRRs) were generated to provide a priori information on kidney shape and position. Radiotherapy treatment staff performed online evaluation of kidney visibility on OBI radiographs. Kidney dose measured in a pediatric anthropomorphic phantom was 0.1 cGy for kV imaging and 1.7 cGy for MV imaging. Kidneys were rated as well visualized in 60% of patients (90% confidence interval, 34-81%). The likelihood of visualization appears to be influenced by the relative AP separation of the abdomen and kidneys, the axial profile of the kidneys, and their relative contrast with surrounding structures. Online verification of kidney position using AP non-contrast kV radiographs on an OBI-equipped linear accelerator appears feasible for patients with suitable abdominal anatomy. Kidney position information provided is limited to 2-dimensional 'snapshots,' but this is adequate in some clinical situations and potentially advantageous in respiratory-correlated treatments. Successful clinical implementation requires customized partial DRRs, appropriate imaging parameters, and credentialing of treatment staff.

  17. Space vehicle electromechanical system and helical antenna winding fixture

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Guenther, David; Enemark, Donald; Seitz, Daniel; Martinez, John; Storms, Steven

    2017-12-26

    A space vehicle electromechanical system may employ an architecture that enables convenient and practical testing, reset, and retesting of solar panel and antenna deployment on the ground. A helical antenna winding fixture may facilitate winding and binding of the helical antenna.

  18. Theory of dynamics in long pulse helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Sanuki, H.; Toda, S.; Yokoyama, M.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.

    2001-01-01

    Self-organized dynamics of toroidal helical plasma, which is induced by the nonlinear transport property, is discussed. Neoclassical ripple diffusion is a dominant mechanism that drives the radial electric field. The bifurcation nature of the electric field generation gives rise to the electric field domain interface, across which the electric field changes strongly. This domain interface is an origin of internal transport barrier in helical systems. This nonlinearity gives rise to the self-organized oscillations; the electric field pulsation is one of the examples. Based on the model of density limit, in which the competition between the transport loss and radiation loss is analyzed, dynamics near the density limit of helical systems is also discussed. (author)

  19. Numerical Analysis of Helical Pile-Soil Interaction under Compressive Loads

    Science.gov (United States)

    Polishchuk, A. I.; Maksimov, F. A.

    2017-11-01

    The results of the field tests of full-scale steel helical piles in clay soils intended for prefabricated temporary buildings foundations are presented in this article. The finite element modeling was used for the evaluation of stress distribution of the clay soil around helical piles. An approach of modeling of the screw-pile geometry has been proposed through the Finite Element Analysis. Steel helical piles with a length of 2.0 m, shaft diameter of 0.108 m and a blade diameter of 0.3 m were used in the experiments. The experiments have shown the efficiency of double-bladed helical piles in the clay soils compared to single-bladed piles. It has been experimentally established that the introduction of the second blade into the pile shaft provides an increase of the bearing capacity in clay soil up to 30% compared to a single-bladed helical pile with similar geometrical dimensions. The numerical results are compared with the measurements obtained by a large scale test and the bearing capacity has been estimated. It has been found that the model results fit the field results. For a double-bladed helical pile it was revealed that shear stresses upon pile loading are formed along the lateral surface forming a cylindrical failure surface.

  20. Self-assembly of hard helices: a rich and unconventional polymorphism.

    Science.gov (United States)

    Kolli, Hima Bindu; Frezza, Elisa; Cinacchi, Giorgio; Ferrarini, Alberta; Giacometti, Achille; Hudson, Toby S; De Michele, Cristiano; Sciortino, Francesco

    2014-11-07

    Hard helices can be regarded as a paradigmatic elementary model for a number of natural and synthetic soft matter systems, all featuring the helix as their basic structural unit, from natural polynucleotides and polypeptides to synthetic helical polymers, and from bacterial flagella to colloidal helices. Here we present an extensive investigation of the phase diagram of hard helices using a variety of methods. Isobaric Monte Carlo numerical simulations are used to trace the phase diagram; on going from the low-density isotropic to the high-density compact phases a rich polymorphism is observed, exhibiting a special chiral screw-like nematic phase and a number of chiral and/or polar smectic phases. We present full characterization of the latter, showing that they have unconventional features, ascribable to the helical shape of the constituent particles. Equal area construction is used to locate the isotropic-to-nematic phase transition, and the results are compared with those stemming from an Onsager-like theory. Density functional theory is also used to study the nematic-to-screw-nematic phase transition; within the simplifying assumption of perfectly parallel helices, we compare different levels of approximation, that is second- and third-virial expansions and a Parsons-Lee correction.

  1. Energy fluxes in helical magnetohydrodynamics and dynamo action

    Indian Academy of Sciences (India)

    ... large-scale magnetic field arising due to non-helical interactions and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a primitive model for galactic dynamo has been constructed. Our calculations yield dynamo time-scale for a typical galaxy to be of the order of 108 years.

  2. Roles of effective helical ripple rates in nonlinear stability of externally induced magnetic islands

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp [Kobe City College of Technology, Kobe, Hyogo 651-2194 (Japan)

    2015-02-15

    Magnetic islands are externally produced by resonant magnetic perturbations (RMPs) in toroidal plasmas. Spontaneous annihilation of RMP-induced magnetic islands called self-healing has been observed in helical systems. A possible mechanism of the self-healing is shielding of RMP penetration by helical ripple-induced neoclassical flows, which give rise to neoclassical viscous torques. In this study, effective helical ripple rates in multi-helicity helical systems are revisited, and a multi-helicity effect on the self-healing is investigated, based on a theoretical model of rotating magnetic islands. It is confirmed that effective helical ripple rates are sensitive to magnetic axis positions. It is newly found that self-healing thresholds also strongly depend on magnetic axis positions, which is due to dependence of neoclassical viscous torques on effective helical ripple rates.

  3. Analytic, High-beta Solutions of the Helical Grad-Shafranov Equation

    International Nuclear Information System (INIS)

    Smith, D.R.; Reiman, A.H.

    2004-01-01

    We present analytic, high-beta (β ∼ O(1)), helical equilibrium solutions for a class of helical axis configurations having large helical aspect ratio, with the helix assumed to be tightly wound. The solutions develop a narrow boundary layer of strongly compressed flux, similar to that previously found in high beta tokamak equilibrium solutions. The boundary layer is associated with a strong localized current which prevents the equilibrium from having zero net current

  4. Characteristic features of edge transport barrier formed in helical divertor configuration of the Large Helical Device

    International Nuclear Information System (INIS)

    Toi, K.; Ohdachi, S.; Watanabe, F.

    2006-10-01

    In a helical divertor configuration of the Large Helical Device (LHD), transport barrier was formed through low to high confinement (L-H) transition in the plasma edge region including ergodic field layer of which region is in the magnetic hill. The plasma stored energy or the averaged bulk plasma beta dia > (derived from diamagnetic measurement) starts to increase just after the transition. In the case that both dia > and line-averaged electron density e > at the transition are relatively high as dia >≥1.5% and e >≥2x10 19 m -3 , the increase is hampered by rapid growth of edge MHD modes and/or small ELM like activities just after the transition. On the other hand, the transition at lower e > (≤1.5x10 19 m -3 ) and dia > (<2%) leads to a continuous increase in the stored energy with a time scale longer than the global energy confinement time, without suffering from these MHD activities near the edge. The ETB typically formed in electron density profile extends into ergodic field layer defined in the vacuum field. The width of ETB is almost independent of the toroidal field strength from 0.5T to 1.5T and is much larger than the poloidal ion gyro-radius. When resonant helical field perturbations are applied to expand a magnetic island size at the rational surface of the rotational transform ι/2π=1 near the edge, the L-H transition is triggered at lower electron density compared with the case without the field perturbations. The application of large helical field perturbations also suppresses edge MHD modes and ELM like activities. (author)

  5. Gynecological applications of helical CT using SmartPrep

    Energy Technology Data Exchange (ETDEWEB)

    Sakurada, Akira; Kakizaki, Dai; Abe, Kimihiko [Tokyo Medical Coll. (Japan)

    1999-11-01

    SmartPrep is software program for scanning a given region of interest (ROI) at optimal contrast density. An operator can arbitrarily define ROI and preset the CT value at which scanning should be started. After the injection of a contrast medium, system conducts continuous monitoring of the ROI and the operator starts helical scanning of the planned region when the present CT value has been reached. In comparison with conventional helical CT that requires a period of time from the beginning of contrast medium injection to the beginning of scanning, SmartPrep minimizes personal error and better depicts the artery-predominant phase under optimal conditions. In this study we examine the usefulness of contrast-enhanced helical CT using SmartPrep in the evaluation of gynecological disease. When the contrast medium was injected into the dorsal vein of the hand at a rate of 3 ml/sec, strong staining of pelvic arteries was observed in the CT images started at 17 to 23 sec after injection. The early-phase helical CT obtained under these conditions provided good depiction of lesions in cases of placenta accreta and invasive mole, as well as clear demonstration of tumor angiogenesis and evaluation of laterality in cases of cervical cancer. Comparison of the early and delayed phase also facilitated easier evaluation of lymph nodes than conventional comparison of simple and contrast-enhanced CT. The results thus suggest the usefulness of contrast-enhanced helical CT using SmartPrep in gynecology. (author)

  6. Conformal avoidance helical tomotherapy for dogs with nasopharyngeal tumors

    International Nuclear Information System (INIS)

    Welsh, J.S.; Turek, M.; Mackie, T.R.; Miller, P.; Mehta, M.P.; Forrest, L.J.

    2003-01-01

    Helical tomotherapy provides a unique means of delivering intensity-modulated radiation therapy (IMRT) using a novel treatment unit, which merges features of a linear accelerator with a helical CT scanner. Thanks to the CT imaging capacity, targeted regions can be visualized prior to, during, or immediately after each treatment. Such image-guidance through megavoltage CT will allow the realization and refinement of the concept of adaptive radiotherapy - the reconstruction of the actually delivered daily dose (as opposed to planned dose) accompanied by prescription adjustments when appropriate. In addition to this unique feature, helical tomotherapy promises further improvements in the specific avoidance of critical normal structures, i.e. conformal avoidance, the counterpart of conformal therapy. The first definitive treatment protocol using helical tomotherapy is presently underway for dogs with nasopharyngeal tumors. In general, such tumors can be treated with conventional external beam radiation therapy but at the cost of severe ocular toxicity due to the anatomy of the canine head. These are readily measurable toxicities and are almost universal in incidence; therefore, the canine nasopharyngeal tumor presents an ideal model to assess the ability to conformally avoid critical structures. It is hoped that conformal avoidance helical tomotherapy will improve tumor control via dose-escalation while reducing ocular toxicity in these veterinary patients. A total of 10 fractions are scheduled for these patients; the first 3 dogs have all received at least 7 fractions delivered via helical tomotherapy. Although preliminary, the first 3 dogs treated have not shown any evidence of ocular toxicity in this ongoing study

  7. Dynamics of helicity transport and Taylor relaxation

    International Nuclear Information System (INIS)

    Diamond, P.H.; Malkov, M.

    2003-01-01

    A simple model of the dynamics of Taylor relaxation is derived using symmetry principles alone. No statistical closure approximations are invoked or detailed plasma model properties assumed. Notably, the model predicts several classes of nondiffusive helicity transport phenomena, including traveling nonlinear waves and superdiffusive turbulent pulses. A universal expression for the scaling of the effective magnetic Reynolds number of a system undergoing Taylor relaxation is derived. Some basic properties of intermittency in helicity transport are examined

  8. Equilibrium calculations for helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.

    1984-04-01

    An average method based on a vacuum flux coordinate system is presented. This average method permits the study of helical axis stellarators with toroidally dominated shifts. An ordering is introduced, and to lowest order the toroidally averaged equilibrium equations are reduced to a Grad-Shafranov equation. Also, to lowest order, a Poisson-type equation is obtained for the toroidally varying corrections to the equilibium. By including these corrections, systems that are toroidally dominated, but with significant helical distortion to the equilibrium, may be studied. Numerical solutions of the average method equations are shown to agree well with three-dimensional calculations

  9. The helical structure of DNA facilitates binding

    International Nuclear Information System (INIS)

    Berg, Otto G; Mahmutovic, Anel; Marklund, Emil; Elf, Johan

    2016-01-01

    The helical structure of DNA imposes constraints on the rate of diffusion-limited protein binding. Here we solve the reaction–diffusion equations for DNA-like geometries and extend with simulations when necessary. We find that the helical structure can make binding to the DNA more than twice as fast compared to a case where DNA would be reactive only along one side. We also find that this rate advantage remains when the contributions from steric constraints and rotational diffusion of the DNA-binding protein are included. Furthermore, we find that the association rate is insensitive to changes in the steric constraints on the DNA in the helix geometry, while it is much more dependent on the steric constraints on the DNA-binding protein. We conclude that the helical structure of DNA facilitates the nonspecific binding of transcription factors and structural DNA-binding proteins in general. (paper)

  10. A helical naphthopyran dopant for photoresponsive cholesteric liquid crystals

    OpenAIRE

    Kim, Yuna; Frigoli, Michel; Vanthuyne, Nicolas; Tamaoki, Nobuyuki

    2017-01-01

    The first photoresponsive cholesteric liquid crystal comprising a photoisomerizable helical naphthopyran derivative dopant and a nematic liquid crystal is reported. An unprecedented helical twisting power switching ratio of over 90% allowed us to demonstrate multi-cycle rotational motion of micro-objects by UV light irradiation.

  11. Helical CT of ureteral disease

    International Nuclear Information System (INIS)

    Cikman, Pablo; Bengio, Ruben; Bulacio, Javier; Zirulnik, Esteban; Garimaldi, Jorge

    2000-01-01

    Among the new applications of helical CT is the study of the ureteral pathology. The objective of this paper was to evaluate patients with suspected pathology of this organ and the repercussion in the therapeutic plans. We studied 23 patients with a helical CT protocol, without IV contrast injection and performed multiplanar reconstruction (MPR). We called this procedure Pielo CT. Thirteen ureteral stones were detected, 6 calculi, 2 urinary tract tumors, dilatation of the system in a patient with neo-bladder. In 2 patients, in whom ureteral pathology was ruled out, we found other alterations that explained the symptoms, (gallbladder stones, disk protrusion). The Pielo CT let decide a therapeutical approach in 20 or 21 patients with ureteral pathology. (author)

  12. Improved particle confinement in transition from multiple-helicity to quasi-single-helicity regimes of a reversed-field pinch.

    Science.gov (United States)

    Frassinetti, L; Predebon, I; Koguchi, H; Yagi, Y; Hirano, Y; Sakakita, H; Spizzo, G; White, R B

    2006-10-27

    The quasi-single-helicity (QSH) state of a reversed-field pinch (RFP) plasma is a regime in which the RFP configuration can be sustained by a dynamo produced mainly by a single tearing mode and in which a helical structure with well-defined magnetic flux surfaces arises. In this Letter, we show that spontaneous transitions to the QSH regime enhance the particle confinement. This improvement is originated by the simultaneous and cooperative action of the increase of the magnetic island and the reduction of the magnetic stochasticity.

  13. Acute ureterolithiasis: Incidence of secondary signs on unenhanced helical CT and influence on patient management

    Energy Technology Data Exchange (ETDEWEB)

    Ege, G. E-mail: gurkanege@yahoo.com; Akman, H.; Kuzucu, K.; Yildiz, S

    2003-12-01

    AIM: The purpose of this study was to determine the incidence of secondary signs associated with ureteral stones on unenhanced helical computed tomography (CT) of patients with acute renal colic, and to correlate these with patient management and outcome. MATERIALS AND METHODS: One hundred and ten patients with ureterolithiasis were evaluated prospectively for the secondary signs of obstruction on unenhanced helical CT. Our attention was focused primarily on the presence or absence of seven secondary signs on unenhanced helical CT, including hydronephrosis, unilateral renal enlargement, perinephric oedema, unilateral absence of the white pyramid, hydroureter, periureteral oedema and lateroconal fascial thickening. RESULTS: Of the 110 patients, 91 (82.7%) had hydroureter, 88 (80%) had hydronephrosis, 65 (59%) had periureteric oedema and 63 (57.2%) had unilateral renal enlargement. Ninety stones passed spontaneously and 21 required intervention. CONCLUSION: Secondary signs of urinary tract obstruction are useful and supportive findings in interpretation of the CT examination. In our experience, the most reliable signs indicating ureteral obstruction are hydroureter, hydronephrosis, periureteral oedema and unilateral renal enlargement, respectively. In addition, stones larger than 6 mm, located within the proximal two thirds of the ureter, and seen associated with five or more the secondary signs of obstruction, are more likely to require endoscopic removal and/or lithotripsy.

  14. l=1 helical axis heliotron device in Kyoto university

    International Nuclear Information System (INIS)

    Nagasaki, K.; Sano, F.; Mizuuchi, T.; Hanatani, K.; Okada, H.; Obiki, T.

    1999-01-01

    Helical systems are an attractive candidate for magnetic fusion reactor. Recently, there has been great progress in theoretical research of three dimensional magnetic field structures, resulting in several kinds of confinement optimization being proposed for toroidal magnetic confinement system. For example, some sophisticated ideas have appeared on stage such as quasi-helical symmetry and quasi-isodynamic system. To find experimentally which way is the best Optimisation, a new helical axis heliotron device, so called 'Heliotron J', is under construction in the Institute of Advanced Energy, Kyoto University, Japan. In this conference, the basic concept and the present status will be presented. In the conventional plane axis helical system, it was difficult to have both good particle confinement and good MHD stability simultaneously. The goal of Heliotron J project is to clarify their compatibility in the spatial axis toroidal device. The best way for Optimising the helical magnetic field configuration will be explored by investigating the plasma response to the change in the field components. The main subjects for plasma experiment are: demonstration of the existence of good magnetic flux surfaces, reduction of neoclassical transport in collisionless regime, MHD Stabilisation in high β plasma, controllability of bootstrap current, good confinement of high energy particles

  15. Tokamak startup using point-source dc helicity injection.

    Science.gov (United States)

    Battaglia, D J; Bongard, M W; Fonck, R J; Redd, A J; Sontag, A C

    2009-06-05

    Startup of a 0.1 MA tokamak plasma is demonstrated on the ultralow aspect ratio Pegasus Toroidal Experiment using three localized, high-current density sources mounted near the outboard midplane. The injected open field current relaxes via helicity-conserving magnetic turbulence into a tokamaklike magnetic topology where the maximum sustained plasma current is determined by helicity balance and the requirements for magnetic relaxation.

  16. Results of auricular helical rim reconstruction with post-auricular tube flap.

    Science.gov (United States)

    Iljin, Aleksandra; Lewandowicz, Edward; Antoszewski, Bogusław; Zieliński, Tomasz

    2016-01-01

    The aim of the study was to present our experience with post-auricular tube flap (ptf) and clinical evaluation of the results following auricular helical rim reconstruction with this technique in patients after trauma. We analyzed the results in 12 patients who underwent three-staged auricular helical rim reconstruction with ptf following trauma in the Department of Plastic, Reconstructive and Aesthetic Surgery between 2005-2014. The patients were followed-up for at least 1 year. We evaluated early and long-term results after surgery including plastic surgeon's and patient's opinion. Postoperative results were satisfactory (very good) in 10 cases, both in the opinion of the plastic surgeon and patients. Transient venous congestion of the helix occurred in two cases (16.6%). This complication did not have any influence on estimation of the results after surgery. Delayed wound healing in the poles of the reconstructed helical edge, as well as non-aesthetic helical scars with imperfections of helical rim, were seen in another two patients (16.6%). 1. Post-auricular tube flap reconstructions after helical rim trauma allowed for complete restoration of contour, size and orientation of the helix and the whole operated ear, which confirms the efficiency of the applied technique. 2. Reconstructive surgery with post-auricular tube flap in patients with auricular helical rim defects contributed to postoperative satisfaction in both patients and doctors' estimations.

  17. Double Helical Gear Performance Results in High Speed Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  18. A Lennard-Jones-like perspective on first order transitions in biological helices

    DEFF Research Database (Denmark)

    Oskolkov, Nikolay N.; Bohr, Jakob

    2013-01-01

    Helical structures with Lennard-Jones self-interactions are studied for optimal conformations. For this purpose, their self-energy is analyzed for extrema with respect to the geometric parameters of the helices. It is found that Lennard-Jones helices exhibit a first order phase transition from...

  19. Experimental investigation of solar powered diaphragm and helical pumps

    Science.gov (United States)

    For several years, many types of solar powered water pumping systems were evaluated, and in this paper, diaphragm and helical solar photovoltaic (PV) powered water pumping systems are discussed. Data were collected on diaphragm and helical pumps which were powered by different solar PV arrays at mul...

  20. A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory

    International Nuclear Information System (INIS)

    Badger, Simon; Mogull, Gustav; Ochirov, Alexander; O’Connell, Donal

    2015-01-01

    We compute the integrand of the full-colour, two-loop, five-gluon scattering amplitude in pure Yang-Mills theory with all helicities positive, using generalized unitarity cuts. Tree-level BCJ relations, satisfied by amplitudes appearing in the cuts, allow us to deduce all the necessary non-planar information for the full-colour amplitude from known planar data. We present our result in terms of irreducible numerators, with colour factors derived from the multi-peripheral colour decomposition. Finally, the leading soft divergences are checked to reproduce the expected infrared behaviour.

  1. A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Simon; Mogull, Gustav; Ochirov, Alexander [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); O’Connell, Donal [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 (United States)

    2015-10-09

    We compute the integrand of the full-colour, two-loop, five-gluon scattering amplitude in pure Yang-Mills theory with all helicities positive, using generalized unitarity cuts. Tree-level BCJ relations, satisfied by amplitudes appearing in the cuts, allow us to deduce all the necessary non-planar information for the full-colour amplitude from known planar data. We present our result in terms of irreducible numerators, with colour factors derived from the multi-peripheral colour decomposition. Finally, the leading soft divergences are checked to reproduce the expected infrared behaviour.

  2. MHD simulations of DC helicity injection for current drive in tokamaks

    International Nuclear Information System (INIS)

    Sovinec, C.R.; Prager, S.C.

    1994-12-01

    MHD computations of DC helicity injection in tokamak-like configurations show current drive with no ''loop voltage'' in a resistive, pressureless plasma. The self-consistently generated current profiles are unstable to resistive modes that partially relax the profile through the MHD dynamo mechanism. The current driven by the fluctuations leads to closed contours of average poloidal flux. However, the 1% fluctuation level is large enough to produce a region of stochastic magnetic field. A limited Lundquist number (S) scan from 2.5 x 10 3 to 4 x 10 4 indicates that both the fluctuation level and relaxation increase with S

  3. Study of electric field pulsation in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S; Itoh, K

    2011-01-01

    A model for the experimental results of the periodic oscillation of the electric field, so-called the electric field pulsation, observed in the Compact Helical Device (Fujisawa et al 1998 Phys. Rev. Lett. 81 2256) and the Large Helical Device (Shimizu et al 2010 Plasma Fusion Res. 5 S1015) is presented. A self-generated oscillation of the radial electric field is shown as the simulation result in helical plasmas. The reduction of the anomalous transport diffusivity in the core region is observed due to the strong shear of the radial electric field when the positive electric field is shown in the core region in the periodic oscillation of E r . Two different time scales are found in the self-generated oscillation, which are the transport time scale and the fast time scale at the transition of the radial electric field. This oscillation because of the hysteresis characteristic is attributed to the electric field pulsation observed in helical plasmas. The parameter region of the condition for the self-generated oscillation is derived. It is shown that the multiple solutions of the radial electric field for the ambipolar condition are necessary but not sufficient for obtaining the self-generated oscillation.

  4. Analysis of the Residual Stresses in Helical Cylindrical Springs at High Temperature

    Directory of Open Access Journals (Sweden)

    H. Sun

    2015-01-01

    Full Text Available Creep is one of the basic properties of materials, its speed significantly depends on the temperature. Helical cylindrical springs are widely used in the elements of heating systems. This results in necessity of taking into account the effect of temperature on the stress-strain state of the spring. The object of research is a helical cylindrical spring used at high temperatures. Under this condition the spring state stability should be ensured.The paper studies relaxation of stress state and generation of residual stresses. Calculations are carried out in ABAQUS environment. The purpose of this work is to discuss the law of relaxation and residual stress in the spring.This paper describes the basic creep theories of helical cylindrical spring material. The calculation formulas of shear stress relaxation for a fixed compression ratio are obtained. Distribution and character of stress contour lines in the cross section of spring are presented. The stress relaxation – time relationships are discussed. The approximate formula for calculating relaxation shear stresses in the cross section of helical springs is obtained.The paper investigates creep ratio and law of residual stress variation in the cross-section of spring at 650℃. Computer simulation in ABAQUS environment was used. Research presents a finite element model of the spring creep in the cross-section.The paper conducts analysis of the stress changes for the creep under constant load. Under constant load stresses are quickly decreased in the around area of cross-section and are increased in the centre, i.e. the maximum and minimum stresses come close with time. Research work shows the possibility for using the approximate formula to calculate the relaxation shear stress in the cross section of spring and can provide a theoretical basis for predicting the service life of spring at high temperatures.In research relaxation processes of stress state are studied. Finite element model is cre

  5. Alpha-Effect, Current and Kinetic Helicities for Magnetically Driven ...

    Indian Academy of Sciences (India)

    tribpo

    Key words. Sun—dynamo, helicity, turbulent convection. Extended abstract. Recent numerical simulations lead to the result that turbulence is much more mag- netically driven than believed. ... positive (and negative in the northern hemisphere), this being just opposite to what occurs for the current helicity which is negative ...

  6. Experimental investigation on enhanced heat transfer of vertical condensers with trisection helical baffles

    International Nuclear Information System (INIS)

    Wu, Jiafeng; Zhou, Jiahao; Chen, Yaping; Wang, Mingchao; Dong, Cong; Guo, Ya

    2016-01-01

    Highlights: • Trisection helical baffles are introduced for vertical condenser enhancement. • Condensation in short-section and intermediate drainage is applied in new schemes. • Helical baffles with liquid dam and drainage gaps can promote condenser performance. • Dual-thread baffle scheme is superior to that of single-thread one by about 19%. • Condensation enhancement ratio of helical schemes is 1.5–2.5 over segment one. - Abstract: The vertical condensers have advantages of small occupation area, convenient in assemble or dismantle tube bundle and simple structure etc. However, the low heat transfer performance limits their applications. To enhance the heat transfer, a novel type of vertical condensers was designed by introducing trisection helical baffles with liquid dams and gaps for facilitating condensate drainage. Four configurations of vertical condensers with trisection helical baffle are experimentally studied and compared to a traditional segment baffle condenser. The enhancement ratio of trisection helical baffle schemes is about 1.5–2.5 and the heat transfer coefficient of the dual-thread trisection helical baffle scheme is superior to that of the single-thread one by about 19%. Assistant by the theoretical study, the experimental data is simulated and the condensation enhancement mechanisms by applying trisection helical baffle in vertical condenser are summarized as condensate drainage, short tube construct and reduce steam dead zone functions of the helical baffles.

  7. Field of a helical Siberian Snake

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    To preserve the spin polarization of a beam of high energy protons in a circular accelerator, magnets with periodic magnetic field, called Siberian Snakes are being used. Recently, it was proposed to build Siberian Snakes with superconducting helical dipoles. In a helical, or twisted dipole, the magnetic field is perpendicular to the axis of the helix and rotates around it as one proceeds along the magnet. In an engineering study of a 4 Tesla helical snake, the coil geometry is derived, by twisting, from the geometry of a cosine superconducting dipole. While waiting for magnetic measurement data on such a prototype, an analytical expression for the field of the helice is important, to calculate the particle trajectories and the spin precession in the helix. This model will also allow to determine the optical characteristics of the snake, as an insertion in the lattice of the accelerator. In particular, one can calculate the integrated multipoles through the magnet and the equivalent transfer matrix. An expression for the field in the helix body, i.e., excluding the fringe field was given in a classical paper. An alternate expression can be found by elaborating on the treatment of the field of a transverse wiggler obtained under the rather general conditions that the variables are separable. This expression exactly satisfies Maxwell`s div and curl equations for a stationary field, {del} {center_dot} B = 0, {del} x B = 0. This approach is useful in that it will allow one to use much of the work already done on the problem of inserting wigglers and undulators in the lattice of a circular accelerator.

  8. Helical Tomotherapy-Based STAT RT: Dosimetric Evaluation for Clinical Implementation of a Rapid Radiation Palliation Program

    International Nuclear Information System (INIS)

    McIntosh, Alyson; Dunlap, Neal; Sheng, Ke; Geezey, Constance; Turner, Benton; Blackhall, Leslie; Weiss, Geoffrey; Lappinen, Eric; Larner, James M.; Read, Paul W.

    2010-01-01

    Helical tomotherapy-based STAT radiation therapy (RT) uses an efficient software algorithm for rapid intensity-modulated treatment planning, enabling conformal radiation treatment plans to be generated on megavoltage computed tomography (MVCT) scans for CT simulation, treatment planning, and treatment delivery in one session. We compared helical tomotherapy-based STAT RT dosimetry with standard linac-based 3D conformal plans and standard helical tomotherapy-based intensity-modulated radiation therapy (IMRT) dosimetry for palliative treatments of whole brain, a central obstructive lung mass, multilevel spine disease, and a hip metastasis. Specifically, we compared the conformality, homogeneity, and dose with regional organs at risk (OARs) for each plan as an initial step in the clinical implementation of a STAT RT rapid radiation palliation program. Hypothetical planning target volumes (PTVs) were contoured on an anthropomorphic phantom in the lung, spine, brain, and hip. Treatment plans were created using three planning techniques: 3D conformal on Pinnacle 3 , helical tomotherapy, and helical tomotherapy-based STAT RT. Plan homogeneity, conformality, and dose to OARs were analyzed and compared. STAT RT and tomotherapy improved conformality indices for spine and lung plans (CI spine = 1.21, 1.17; CI lung = 1.20, 1.07, respectively) in comparison with standard palliative anteroposterior/posteroanterior (AP/PA) treatment plans (CI spine = 7.01, CI lung = 7.30), with better sparing of heart, esophagus, and spinal cord. For palliative whole-brain radiotherapy, STAT RT and tomotherapy reduced maximum and mean doses to the orbits and lens (maximum/mean lens dose: STAT RT = 2.94/2.65 Gy, tomotherapy = 3.13/2.80 Gy, Lateral opposed fields = 7.02/3.65 Gy), with an increased dose to the scalp (mean scalp dose: STAT RT = 16.19 Gy, tomotherapy = 15.61 Gy, lateral opposed fields = 14.01 Gy). For bony metastatic hip lesions, conformality with both tomotherapy techniques (CI = 1

  9. Helical bifurcation and tearing mode in a plasma—a description based on Casimir foliation

    International Nuclear Information System (INIS)

    Yoshida, Z; Dewar, R L

    2012-01-01

    The relation between the helical bifurcation of a Taylor relaxed state (a Beltrami equilibrium) and a tearing mode is analyzed in a Hamiltonian framework. Invoking an Eulerian representation of the Hamiltonian, the symplectic operator (defining a Poisson bracket) becomes non-canonical, i.e. the symplectic operator has a nontrivial cokernel (dual to its nullspace), foliating the phase space into level sets of Casimir invariants. A Taylor relaxed state is an equilibrium point on a Casimir (helicity) leaf. Changing the helicity, equilibrium points may bifurcate to produce helical relaxed states; a necessary and sufficient condition for bifurcation is derived. Tearing yields a helical perturbation on an unstable equilibrium, producing a helical structure approximately similar to a helical relaxed state. A slight discrepancy found between the helically bifurcated relaxed state and the linear tearing mode viewed as a perturbed, singular equilibrium state is attributed to a Casimir element (named ‘helical flux’) pertinent to a ‘resonance singularity’ of the non-canonical symplectic operator. While the helical bifurcation can occur at discrete eigenvalues of the Beltrami parameter, the tearing mode, being a singular eigenfunction, exists for an arbitrary Beltrami parameter. Bifurcated Beltrami equilibria appearing on the same helicity leaf are isolated by the helical-flux Casimir foliation. The obstacle preventing the tearing mode to develop in the ideal limit turns out to be the shielding current sheet on the resonant surface, preventing the release of the ‘potential energy’. When this current is dissipated by resistivity, reconnection is allowed and tearing instability occurs. The Δ′ criterion for linear tearing instability of Beltrami equilibria is shown to be directly related to the spectrum of the curl operator. (paper)

  10. Nonideal, helical, vortical magnetohydrodynamic steady states

    International Nuclear Information System (INIS)

    Agim, Y.Z.; Montgomery, D.

    1991-01-01

    The helically-deformed profiles of driven, dissipative magnetohydrodynamic equilibria are constructed through second order in helical amplitude. The resultant plasma configurations are presented in terms of contour plots of magnetic flux function, pressure, current flux function and the mass flux function, along with the stability boundary at which they are expected to appear. For the Wisconsin Phaedrus-T Tokamak, plasma profiles with significant m = 3, n = 1 perturbation seem feasible; for these, the plasma pressure peaks off-axis. For the smaller aspect ratio case, the configuration with m 1,n =1 is thought to be relevant to the density perturbation observed in JET after a pellet injection. (author)

  11. Equilibrium studies of helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.; Garcia, L.; Harris, J.H.; Rome, J.A.; Cantrell, J.L.; Lynch, V.E.

    1984-01-01

    The equilibrium properties of helical axis stellarators are studied with a 3-D equilibrium code and with an average method (2-D). The helical axis ATF is shown to have a toroidally dominated equilibrium shift and good equilibria up to at least 10% peak beta. Low aspect ratio heliacs, with relatively large toroidal shifts, are shown to have low equilibrium beta limits (approx. 5%). Increasing the aspect ratio and number of field periods proportionally is found to improve the equilibrium beta limit. Alternatively, increasing the number of field periods at fixed aspect ratio which raises and lowers the toroidal shift improves the equilibrium beta limit

  12. Kinetic theory of rf current drive and helicity injection

    International Nuclear Information System (INIS)

    Mett, R.R.

    1992-01-01

    Current drive and helicity injection by plasma waves are examined with the use of kinetic theory. The Vlasov equation yields a general current drive formula that contains resonant and nonresonant (ponderomotivelike) contributions. Standard quasilinear current drive is described by the former, while helicity current drive may be contained in the latter. Since direct analytical comparison of the sizes of the two terms is, in general, difficult, a new approach is taken. Solution of the drift-kinetic equation shows that the standard Landau damping/transit time magnetic pumping quasilinear diffusion coefficient is the only contribution to steady-state current drive to leading order in ε=ρ L /l, where ρ L is the Larmor radius and l is the inhomogeneity scale length. All nonresonant contributions, including the helicity, appear at higher order, after averages are taken over a flux surface, over azimuth, and over time. Consequently, at wave frequencies well below the electron cyclotron frequency, a wave helicity flux perpendicular to the magnetic field does not influence the parallel motion of electrons to leading order and therefore will not drive a significant current. Any current associated with a wave helicity flux is then either ion current (and thus inefficient) or electron current stemming from effects not included in the drift-kinetic treatment, such as cyclotron, collisional, or nonlinear (i.e., not quasilinear)

  13. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT

    International Nuclear Information System (INIS)

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.; Pan Xiaochuan

    2010-01-01

    Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.

  14. Evaluation of CFD Methods for Simulation of Two-Phase Boiling Flow Phenomena in a Helical Coil Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shaver, Dillon [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Yang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vegendla, Prasad [Argonne National Lab. (ANL), Argonne, IL (United States); Tentner, Adrian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluid dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.

  15. Helical-tokamak hybridization concepts for compact configuration exploration and MHD stabilization

    International Nuclear Information System (INIS)

    Oishi, T.; Yamazaki, K.; Arimoto, H.; Baba, K.; Hasegawa, M.; Ozeki, H.; Shoji, T.; Mikhailov, M.I.

    2010-11-01

    To search for low-aspect-ratio torus systems, a lot of exotic confinement concepts are proposed so far historically. One of the authors previously proposed the tokamak-helical hybrid called TOKASTAR (Tokamak-Stellarator Hybrid) to improve the magnetic local shear near the bad curvature region. This is characterized by simple and compact coil systems with enough divertor space relevant to reactor designs. Based on this TOKASTAR concept, a toroidal mode number N=2 C (compact) -TOKASTAR machine (R - 35 mm) was constructed. The rotational transform of this compact helical configuration is rather small to confine hot ions, but can be utilized as a compact electron plasma machine for multi-purposes. The C-TOKASTAR has a pair of spherically winding helical coils and a pair of poloidal coils. Existence of magnetic surface and electron confinement property in C-TOKASTAR device were investigated by an electron-emission impedance method. Calculation of the particle orbit also supports that closed magnetic surface is formed in the cases that the ratio between poloidal and helical coil current is appropriate. Another aspect of the research using TOKASTAR configuration includes the evaluation of the effect of the outboard helical field application to tokamak plasmas. It is considered that outboard helical field has roles to assist the initiation of plasma current, to improve MHD stability, and so on. To check these roles, we made TOKASTAR-2 machine (R - 0.12 m, B - 1 kG) with ohmic heating central coil, eight toroidal field coils, a pair of vertical field coils and two outboard helical field coil segments. The electron cyclotron heating plasma start-up and plasma current disruption control experiments might be expected in this machine. Calculation of magnetic field line tracing has revealed that magnetic surface can be formed using additional outer helical coils. (author)

  16. Use of computed tomography scout film and Hounsfield unit of computed tomography scan in predicting the radio-opacity of urinary calculi in plain kidney, ureter and bladder radiographs.

    Science.gov (United States)

    Chua, Michael E; Gomez, Odina R; Sapno, Lorelei D; Lim, Steve L; Morales, Marcelino L

    2014-07-01

    The objective of this study is to determine the diagnostic utility of computed tomography (CT)- scout film with an optimal non-contrast helical CT scan Hounsfield unit (HU) in predicting the appearance of urinary calculus in the plain kidneys, ureter, urinary bladder (KUB)-radiograph. A prospective cross-sectional study was executed and data were collected from June 2007 to June 2012 at a tertiary hospital. The included subjects were diagnosed to have value, CT-scout film and KUB radiograph appearance were recorded independently by two observers. Univariate logistic analysis with receiver operating characteristic curve was generated to determine the best cut-off HU value of urolithiases not identified in CT-scout film, but determined radio-opaque in KUB X-ray. Subsequently, its sensitivity, specificity, predictive values and likelihood ratios were calculated. Statistical significance was set at P value of 0.05 or less. Two hundred and three valid cases were included. 73 out of 75 CT-scout film detected urolithiasis were identified on plain radiograph and determined as radio-opaque. The determined best cut off value of HU utilized for prediction of radiographic characteristics was 630HU at which urinary calculi were not seen at CT-scout film and were KUB X-ray radio-opaque. The set HU cut-off was established of ideal accuracy with an overall sensitivity of 82.2%, specificity of 96.9% and a positive predictive value of 96.5% and negative predictive value of 83.5%. Urolithiases identified on the CT-scout film were also seen as radiopaque on the KUB radiograph while those stones not visible on the CT-scout film, but above the optimal HU cut-off value of 630 are also likely to be radiopaque.

  17. Design study of a normal conducting helical snake for AGS

    CERN Document Server

    Takano, Junpei; Okamura, Masahiro; Roser, Thomas; MacKay, William W; Luccio, Alfredo U; Takano, Koji

    2004-01-01

    A new normal conducting snake magnet is being fabricated for the Alternate Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). In the Relativistic Heavy Ion Collider (RHIC) project, a superconducting type helical dipole magnets had been developed and it performed successfully in high-energy polarized proton acceleration. The new AGS helical snake has the same basic magnetic structure but is more complicated. To achieve no beam shift and no beam deflection in one magnetic device, helical pitches and rotating angles were carefully calculated. Compared to a superconducting magnet, a normal warm magnet must have a large cross- sectional area of conductors which make it difficult to design a magnet with large helical pitch. We developed a modified window frame structure to accommodate the large number of conductors. Its three dimensional magnetic field was simulated by using OPERA3D/TOSCA. 3 Refs.

  18. Spiral (Helical) computed tomographic imaging for the diagnosis of bile duct cancer. Vascular and pancreatic invasions

    International Nuclear Information System (INIS)

    Kon, Masanori

    1997-01-01

    The development of several imaging techniques for diagnosing bile duct cancer have improved, however, its diagnosis at the early stage is still difficult. We discuss the significance of the spiral (helical) computed tomography (SCT) imaging for the diagnosis of bile duct cancer at an early stage. We performed, as a preoperative examination, SCT under intravenous angiography (IV-SCT) for all cases, which included 233 cases of benign bile duct diseases, 42 cases of gallbladder cancer and 22 cases of bile duct cancer. The accuracy rate of diagnosis ability of 42 cases of gallbladder cancer by IV-SCT was 91%, and that of portal vein invasion was 91%. In the cases of bile duct cancer, IV-SCT showed destructive images of the bile duct wall and the tumor images invaded into the pancreatic parenchyma, in the cases of invasion at the splenic vein and confluence site of the portal vein, IV-SCT gave clearer 3D images than conventional angiography. The accuracy rate of diagnosing pancreatic invasion in bile duct cancer by IV-SCT was 80%. However, it is still difficult to determine completely the layer structures of the bile duct and the invasion into the walls along the long axis. As the future development of SCT for the diagnosis of bile duct cancer, we expect further progression of diagnosis ability of bile duct cancer and the invasion level by the applying high resolution thin-section CT images or endoscopical images of the luminal organs in examining the bile duct. (K.H.)

  19. Hexagonally Ordered Arrays of α-Helical Bundles Formed from Peptide-Dendron Hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Barkley, Deborah A. [Department; Rokhlenko, Yekaterina [Department; Marine, Jeannette E. [Department; David, Rachelle [Department; Sahoo, Dipankar [Department; Watson, Matthew D. [Department; Koga, Tadanori [Department; Department; Osuji, Chinedum O. [Department; Rudick, Jonathan G. [Department

    2017-10-24

    Combining monodisperse building blocks that have distinct folding properties serves as a modular strategy for controlling structural complexity in hierarchically organized materials. We combine an α-helical bundle-forming peptide with self-assembling dendrons to better control the arrangement of functional groups within cylindrical nanostructures. Site-specific grafting of dendrons to amino acid residues on the exterior of the α-helical bundle yields monodisperse macromolecules with programmable folding and self-assembly properties. The resulting hybrid biomaterials form thermotropic columnar hexagonal mesophases in which the peptides adopt an α-helical conformation. Bundling of the α-helical peptides accompanies self-assembly of the peptide-dendron hybrids into cylindrical nanostructures. The bundle stoichiometry in the mesophase agrees well with the size found in solution for α-helical bundles of peptides with a similar amino acid sequence.

  20. Ruby-Helix: an implementation of helical image processing based on object-oriented scripting language.

    Science.gov (United States)

    Metlagel, Zoltan; Kikkawa, Yayoi S; Kikkawa, Masahide

    2007-01-01

    Helical image analysis in combination with electron microscopy has been used to study three-dimensional structures of various biological filaments or tubes, such as microtubules, actin filaments, and bacterial flagella. A number of packages have been developed to carry out helical image analysis. Some biological specimens, however, have a symmetry break (seam) in their three-dimensional structure, even though their subunits are mostly arranged in a helical manner. We refer to these objects as "asymmetric helices". All the existing packages are designed for helically symmetric specimens, and do not allow analysis of asymmetric helical objects, such as microtubules with seams. Here, we describe Ruby-Helix, a new set of programs for the analysis of "helical" objects with or without a seam. Ruby-Helix is built on top of the Ruby programming language and is the first implementation of asymmetric helical reconstruction for practical image analysis. It also allows easier and semi-automated analysis, performing iterative unbending and accurate determination of the repeat length. As a result, Ruby-Helix enables us to analyze motor-microtubule complexes with higher throughput to higher resolution.

  1. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    International Nuclear Information System (INIS)

    Yadav, Poonam; Yan, Yue; Ignatowski, Tasha; Olson, Anna

    2017-01-01

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to the helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V 5 Gy , p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.

  2. Computational design and elaboration of a de novo heterotetrameric alpha-helical protein that selectively binds an emissive abiological (porphinato)zinc chromophore.

    Science.gov (United States)

    Fry, H Christopher; Lehmann, Andreas; Saven, Jeffery G; DeGrado, William F; Therien, Michael J

    2010-03-24

    The first example of a computationally de novo designed protein that binds an emissive abiological chromophore is presented, in which a sophisticated level of cofactor discrimination is pre-engineered. This heterotetrameric, C(2)-symmetric bundle, A(His):B(Thr), uniquely binds (5,15-di[(4-carboxymethyleneoxy)phenyl]porphinato)zinc [(DPP)Zn] via histidine coordination and complementary noncovalent interactions. The A(2)B(2) heterotetrameric protein reflects ligand-directed elements of both positive and negative design, including hydrogen bonds to second-shell ligands. Experimental support for the appropriate formulation of [(DPP)Zn:A(His):B(Thr)](2) is provided by UV/visible and circular dichroism spectroscopies, size exclusion chromatography, and analytical ultracentrifugation. Time-resolved transient absorption and fluorescence spectroscopic data reveal classic excited-state singlet and triplet PZn photophysics for the A(His):B(Thr):(DPP)Zn protein (k(fluorescence) = 4 x 10(8) s(-1); tau(triplet) = 5 ms). The A(2)B(2) apoprotein has immeasurably low binding affinities for related [porphinato]metal chromophores that include a (DPP)Fe(III) cofactor and the zinc metal ion hemin derivative [(PPIX)Zn], underscoring the exquisite active-site binding discrimination realized in this computationally designed protein. Importantly, elements of design in the A(His):B(Thr) protein ensure that interactions within the tetra-alpha-helical bundle are such that only the heterotetramer is stable in solution; corresponding homomeric bundles present unfavorable ligand-binding environments and thus preclude protein structural rearrangements that could lead to binding of (porphinato)iron cofactors.

  3. Examining the Conservation of Kinks in Alpha Helices.

    Directory of Open Access Journals (Sweden)

    Eleanor C Law

    Full Text Available Kinks are a structural feature of alpha-helices and many are known to have functional roles. Kinks have previously tended to be defined in a binary fashion. In this paper we have deliberately moved towards defining them on a continuum, which given the unimodal distribution of kink angles is a better description. From this perspective, we examine the conservation of kinks in proteins. We find that kink angles are not generally a conserved property of homologs, pointing either to their not being functionally critical or to their function being related to conformational flexibility. In the latter case, the different structures of homologs are providing snapshots of different conformations. Sequence identity between homologous helices is informative in terms of kink conservation, but almost equally so is the sequence identity of residues in spatial proximity to the kink. In the specific case of proline, which is known to be prevalent in kinked helices, loss of a proline from a kinked helix often also results in the loss of a kink or reduction in its kink angle. We carried out a study of the seven transmembrane helices in the GPCR family and found that changes in kinks could be related both to subfamilies of GPCRs and also, in a particular subfamily, to the binding of agonists or antagonists. These results suggest conformational change upon receptor activation within the GPCR family. We also found correlation between kink angles in different helices, and the possibility of concerted motion could be investigated further by applying our method to molecular dynamics simulations. These observations reinforce the belief that helix kinks are key, functional, flexible points in structures.

  4. Helical Phase Inflation and Monodromy in Supergravity Theory

    Directory of Open Access Journals (Sweden)

    Tianjun Li

    2015-01-01

    Full Text Available We study helical phase inflation which realizes “monodromy inflation” in supergravity theory. In the model, inflation is driven by the phase component of a complex field whose potential possesses helicoid structure. We construct phase monodromy based on explicitly breaking global U(1 symmetry in the superpotential. By integrating out heavy fields, the phase monodromy from single complex scalar field is realized and the model fulfills natural inflation. The phase-axion alignment is achieved from explicitly symmetry breaking and gives super-Planckian phase decay constant. The F-term scalar potential provides strong field stabilization for all the scalars except inflaton, which is protected by the approximate global U(1 symmetry. Besides, we show that helical phase inflation can be naturally realized in no-scale supergravity with SU(2,1/SU(2×U(1 symmetry since the supergravity setup needed for phase monodromy is automatically provided in the no-scale Kähler potential. We also demonstrate that helical phase inflation can be reduced to another well-known supergravity inflation model with shift symmetry. Helical phase inflation is free from the UV-sensitivity problem although there is super-Planckian field excursion, and it suggests that inflation can be effectively studied based on supersymmetric field theory while a UV-completed framework is not prerequisite.

  5. Exact solutions for helical magnetohydrodynamic equilibria. II. Nonstatic and nonbarotropic solutions

    International Nuclear Information System (INIS)

    Villata, M.; Ferrari, A.

    1994-01-01

    In the framework of the analytical study of magnetohydrodynamic (MHD) equilibria with flow and nonuniform density, a general family of well-behaved exact solutions of the generalized Grad--Shafranov equation and of the whole set of time-independent MHD equations completed by the nonbarotropic ideal gas equation of state is obtained, both in helical and axial symmetry. The helical equilibrium solutions are suggested to be relevant to describe the helical morphology of some astrophysical jets

  6. Neutronics investigation of advanced self-cooled liquid blanket systems in helical reactor

    International Nuclear Information System (INIS)

    Tanaka, T.; Sagara, A.; Muroga, T.; Youssef, M.Z.

    2006-10-01

    Neutronics performances of advanced self-cooled liquid blanket systems have been investigated in design activity of the helical-type reactor FFHR2. In the present study, a new three-dimensional (3-D) neutronics calculation system has been developed for the helical-type reactor to enhance quick feedback between neutronics evaluation and design modification. Using this new calculation system, advanced Flibe-cooled and Li-cooled liquid blanket systems proposed for FFHR2 have been evaluated to make clear design issues to enhance neutronics performance. Based on calculated results, modification of the blanket dimensions and configuration have been attempted to achieve the adequate tritium breeding ability and neutron shielding performance in the helical reactor. The total tritium breeding ratios (TBRs) obtained after modifying the blanket dimensions indicated that all the advanced blanket systems proposed for FFHR2 would achieve adequate tritium self-sufficiency by dimension adjustment and optimization of structures in the breeder layers. Issues in neutron shielding performance have been investigated quantitatively using 3-D geometry of the helical blanket system, support structures, poloidal coils etc. Shielding performance of the helical coils against direct neutrons from core plasma would achieve design target by further optimization of shielding materials. However, suppression of the neutron streaming and reflection through the divertor pumping areas in the original design is important issue to protect the poloidal coils and helical coils, respectively. Investigation of the neutron wall loading indicated that the peaking factor of the neutron wall load distribution would be moderated by the toroidal and helical effect of the plasma distribution in the helical reactor. (author)

  7. The evolution of helical cosmic magnetic fields as predicted by MHD closure theory

    Energy Technology Data Exchange (ETDEWEB)

    Saveliev, Andrey; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Jedamzik, Kartsen [Univ. Montpellier-2. (France). Laboratoire Univers et Particules de Montpellier

    2013-04-15

    We extend our recent derivation of the time evolution equations for the energy content of magnetic fields and turbulent motions for incompressible, homogeneous, and isotropic turbulence to include the case of non-vanishing helicity. These equations are subsequently numerically integrated in order to predict the present day primordial magnetic field strength and correlation length, depending on its initial helicity and magnetic energy density. We find that all prior analytic predictions for helical magnetic fields, such as the epoch when they become maximally helical and their subsequent growth of correlation length L {proportional_to} a{sup 1/3} and decrease of magnetic field strength B {proportional_to} a{sup -1/3} with scale factor a are well confirmed by the simulations. An initially fully helical primordial magnetic field is a factor 4 x 10{sup 4} stronger at the present epoch then its non-helical counterpart when generated during the electroweak epoch.

  8. Swimming Characteristics of Bioinspired Helical Microswimmers Based on Soft Lotus-Root Fibers

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-11-01

    Full Text Available Various kinds of helical swimmers inspired by E. coli bacteria have been developed continually in many types of researches, but most of them are proposed by the rigid bodies. For the targeted drug delivery, the rigid body may hurt soft tissues of the working region with organs. Due to this problem, the biomedical applications of helical swimmers may be restricted. However, the helical microswimmers with the soft and deformable body are appropriate and highly adaptive in a confined environment. Thus, this paper presents a lotus-root-based helical microswimmer, which is fabricated by the fibers of lotus-root coated with magnetic nanoparticles to active under the magnetic fields. The helical microstructures are derived from the intrinsic biological structures of the fibers of the lotus-root. This paper aims to study the swimming characteristic of lotus-root-based microswimmers with deformable helical bodies. In the initial step under the uniform magnetic actuation, the helical microswimmers are bent lightly due to the heterogeneous distribution of the internal stress, and then they undergo a swimming motion which is a spindle-like rotation locomotion. Our experiments report that the microswimmers with soft bodies can locomote faster than those with rigid bodies. Moreover, we also find that the curvature of the shape decreases as a function of actuating field frequency which is related to the deformability of lotus-root fibers.

  9. Non-inductive current drive via helicity injection by Alfven waves in low aspects ratio Tokamak

    International Nuclear Information System (INIS)

    Cuperman, S.; Bruma, C.; Komoshvili, K.

    1996-01-01

    A theoretical investigation of radio frequency (RF) current drive via helicity injection in low aspect ratio tokamaks was carried out. A current-carrying cylindrical plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell was considered. Toroidal features of low aspect ratio tokamaks were simulated by incorporation of the following effects: (i) arbitrarily small aspect ratio, R o /a ≡ 1/ε (ii) strongly sheared equilibrium magnetic field; and (iii) relatively large poloidal component of the equilibrium magnetic field. The study concentrates on the Alfven continuum, i.e. the case in which the wave frequency satisfies the condition {ω Alf (r)} min ≤ω≥{ω Alf (r)} max , where ω Alf (r)≡ω[n(r),B o (o)] is an eigenfrequency of the shear Alfven wave (SAW). Thus, using low-p, ideal magneto-hydrodynamics, the wave equation with correct boundary (matching) conditions was solved, the RF field components were found and subsequently, current drive , power deposition and efficiency were computed. The results of our investigation clearly demonstrate the possibility of generation of RF-driven currents via helicity injection by Alfven waves in low aspect ratio tokamaks, in the SAW mode. A special algorithm was developed which enables the selection of the antenna parameters providing optimal current drive efficiency. (authors)

  10. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Poonam [Department of Human Oncology, University of Wisconsin-Madison, Madison, WI (United States); Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States); Yan, Yue, E-mail: yyan5@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Ignatowski, Tasha [Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States); Olson, Anna [Department of Human Oncology, University of Wisconsin-Madison, Madison, WI (United States); Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI (United States)

    2017-04-01

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to the helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V{sub 5} {sub Gy}, p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.

  11. Helical waves in easy-plane antiferromagnets

    Science.gov (United States)

    Semenov, Yuriy G.; Li, Xi-Lai; Xu, Xinyi; Kim, Ki Wook

    2017-12-01

    Effective spin torques can generate the Néel vector oscillations in antiferromagnets (AFMs). Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can excite a helical type of spin wave in the strip whose properties are drastically different from characteristic spin waves. An analysis based on both a Néel vector dynamical equation and the micromagnetic simulation identifies the direction of magnetic anisotropy and the damping factor as the two key parameters determining the dynamics. Helical wave propagation requires the hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping limits its spatial extent. If the damping is neglected, the calculation leads to a uniform periodic domain wall structure. On the other hand, finite damping decelerates the helical wave rotation around the hard axis, ultimately causing stoppage of its propagation along the strip. With the group velocity staying close to spin-wave velocity at the wave front, the wavelength becomes correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state oscillation can be established whose frequency is controlled by the waveguide length as well as the excitation energy or torque.

  12. Helical muon beam cooling channel engineering design

    International Nuclear Information System (INIS)

    Johnson, Rolland

    2015-01-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb 3 Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb 3 Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb 3 Sn solenoid as originally planned. Instead, a complementary project was approved by the

  13. Helical muon beam cooling channel engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary

  14. Designing self-standing silicon-copper composite helices as anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Polat, B.D.; Keles, O.

    2016-01-01

    In this study, we have fabricated helical thin films to be used as an anode material in lithium ion batteries (LIB). The thin films having various Cu−Si atomic ratios (30–70%, 20–80%, and 10–90%) are prepared by using ion-assisted glancing angle co-deposition. Cu plays a crucial role in holding the electrode together, minimizing overall capacity loss and enabling faster electron transfer thus, improving the electrochemical performances of the electrodes. Increasing the Cu/Si atomic ratio affects the structure of the helices and their alignment. Implementing ion assisted deposition at the beginning of the film deposition helps to improve film adhesion. The Si-20 at.% Cu anode delivers 1885 mAh g"−"1 initially with 98% coulombic efficiency and retains 77% of the capacity after 100 cycles at 100 mA g"−"1. - Highlights: • Highly adherent SiCu helices are deposited by ion assisted glancing angle deposition. • Cu content in the SiCu helices affects the helice' morphology and structure. • SiCu helices with different Cu contents have been used as anodes for LIB. • Helices being like microsprings, improve the mechanical resistance of the anode.

  15. Numerical simulation of helical-vortex effects in Rayleigh-Bénard convection

    Directory of Open Access Journals (Sweden)

    G. V. Levina

    2006-01-01

    Full Text Available A numerical approach is substantiated for searching for the large-scale alpha-like instability in thermoconvective turbulence. The main idea of the search strategy is the application of a forcing function which can have a physical interpretation. The forcing simulates the influence of small-scale helical turbulence generated in a rotating fluid with internal heat sources and is applied to naturally induced fully developed convective flows. The strategy is tested using the Rayleigh-Bénard convection in an extended horizontal layer of incompressible fluid heated from below. The most important finding is an enlargement of the typical horizontal scale of the forming helical convective structures accompanied by a cells merging, an essential increase in the kinetic energy of flows and intensification of heat transfer. The results of modeling allow explaining how the helical feedback can work providing the non-zero mean helicity generation and the mutual intensification of horizontal and vertical circulation, and demonstrate how the energy of the additional helical source can be effectively converted into the energy of intensive large-scale vortex flow.

  16. Monte-Carlo calculation of perpendicular neutral-beam injection in helical systems

    International Nuclear Information System (INIS)

    Hanatani, K.; Wakatani, M.; Uo, K.

    1981-01-01

    The effect of a helical field ripple on the slowing-down process of the fast ions created by neutral injection is investigated numerically. For this purpose, the guiding-centre orbits are followed in a model magnetic field without plasma current, on the assumption that the slowing-down process is to be classical. Optimum injection angles in two types of helical magnetic traps are compared. One is the Heliotron-E configuration with a large rotational transform and deep helical ripple; the other one is the conventional stellarator field with a small rotational transform and shallow helical ripple. In contrast to the stellarator, the heating efficiency as calculated for Heliotron-E does not decrease monotonically when the injection angle is perpendicular to the toroidal direction; a heating efficiency of above 70% was obtained for perpendicular injection into a high-density plasma with negligible charge-exchange loss. The difference in heating efficiency versus injection angle between heliotron and conventional stellarator fields is explained by a difference in drift motion of the helically trapped fast ions. (author)

  17. Structural analysis of compression helical spring used in suspension system

    Science.gov (United States)

    Jain, Akshat; Misra, Sheelam; Jindal, Arun; Lakhian, Prateek

    2017-07-01

    The main aim of this work has to develop a helical spring for shock absorber used in suspension system which is designed to reduce shock impulse and liberate kinetic energy. In a vehicle, it increases comfort by decreasing amplitude of disturbances and it improves ride quality by absorbing and dissipating energy. When a vehicle is in motion on a road and strikes a bump, spring comes into action quickly. After compression, spring will attempt to come to its equilibrium state which is on level road. Helical springs can be made lighter with more strength by reducing number of coils and increasing the area. In this research work, a helical spring is modeled and analyzed to substitute the existing steel spring which is used in suspension. By using different materials, stress and deflection of helical spring can be varied. Comparability between existing spring and newly replaced spring is used to verify the results. For finding detailed stress distribution, finite element analysis is used to find stresses and deflection in both the helical springs. Finite element analysis is a method which is used to find proximate solutions of a physical problem defined in a finite domain. In this research work, modeling of spring is accomplished using Solid Works and analysis on Ansys.

  18. Chirality of Intermediate Filaments and Magnetic Helicity of Active Regions

    Science.gov (United States)

    Lim, Eun-Kyung; Chae, J.

    2009-05-01

    Filaments that form either between or around active regions (ARs) are called intermediate filaments. Even though there have been many theoretical studies, the origin of the chirality of filaments is still unknown. We investigated how intermediate filaments are related to their associated ARs, especially from the point of view of magnetic helicity and the orientation of polarity inversion lines (PILs). The chirality of filaments has been determined based on the orientations of barbs observed in the full-disk Hα images taken at Big Bear Solar Observatory during the rising phase of solar cycle 23. The sign of magnetic helicity of ARs has been determined using S/inverse-S shaped sigmoids from Yohkoh SXT images. As a result, we have found a good correlation between the chirality of filaments and the magnetic helicity sign of ARs. Among 45 filaments, 42 filaments have shown the same sign as helicity sign of nearby ARs. It has been also confirmed that the role of both the orientation and the relative direction of PILs to ARs in determining the chirality of filaments is not significant, against a theoretical prediction. These results suggest that the chirality of intermediate filaments may originate from magnetic helicity of their associated ARs.

  19. Assessment of intraocular foreign bodies by helical-CT multiplanar imaging

    International Nuclear Information System (INIS)

    Papadopoulos, A.; Fotinos, A.; Maniatis, V.; Kavadias, S.; Michaelides, A.; Avouri, M.; Kalamara, C.; Stringaris, K.

    2001-01-01

    The aim of this study was to examine the effectiveness of helical CT in the assessment of intraocular foreign bodies, evaluating two protocols with different collimation. We performed helical-CT studies in 30 patients. Fifteen patients were examined with 1.5-mm collimation and the other 15 patients with 3.0-mm collimation. All other imaging parameters were identical in both protocols. Multiplanar images were reconstructed. The examinations were reviewed for presence, localization and size of intraocular foreign bodies. We compare our results with the surgical data. We estimate the required examination time. In the first group (collimation 1.5 mm) an intraorbital foreign body was detected in 8 of 15 patients. In 3 of 8 patients an intraocular foreign body (all were metallic) was detected. In the second group (collimation 3.0 mm) an intraorbital foreign body was detected in 9 of 15 patients. In 8 of 9 patients an intraocular foreign body (all were metallic) was detected. Our results were confirmed by surgery in all cases. Examination time was 36 s in the first group and 18 s in the second group. Computed tomography should be considered the imaging modality of choice in the assessment of metallic intraocular foreign bodies and 3.0-mm collimation is optional, because of reduced examination time and radiation exposure. (orig.)

  20. Detection of parathyroid adenomas using a monophasic dual-energy computed tomography acquisition: diagnostic performance and potential radiation dose reduction

    International Nuclear Information System (INIS)

    Leiva-Salinas, Carlos; Flors, Lucia; Durst, Christopher R.; Hou, Qinghua; Mukherjee, Sugoto; Patrie, James T.; Wintermark, Max

    2016-01-01

    The aims of the study were to compare the diagnostic performance of a combination of virtual non-contrast (VNC) images and arterial images obtained from a single-phase dual-energy CT (DECT) acquisition and standard non-contrast and arterial images from a biphasic protocol and to study the potential radiation dose reduction of the former approach. All DECT examinations performed for evaluation of parathyroid adenomas during a 13-month period were retrospectively reviewed. An initial single-energy unenhanced acquisition was followed by a dual-energy arterial phase acquisition. ''Virtual non-contrast images'' were generated from the dual-energy acquisition. Two independent and blinded radiologists evaluated three different sets of images during three reading sessions: single arterial phase, single-phase DECT (virtual non-contrast and arterial phase), and standard biphasic protocol (true non-contrast and arterial phase). The accuracy of interpretation in lateralizing an adenoma to the side of the neck and localizing it to a quadrant in the neck was evaluated. Sixty patients (mean age, 65.5 years; age range, 38-87 years) were included in the study. The lateralization and localization accuracy, sensitivity, and positive predicted value (PPV) and negative predicted value (NPV) of the different image datasets were comparable. The combination of VNC and arterial images was more specific than arterial images alone to lateralize a parathyroid lesion (OR = 1.93, p = 0.043). The use of the single-phase protocol resulted in a calculated radiation exposure reduction of 52.8 %. Virtual non-contrast and arterial images from a single DECT acquisition showed similar diagnostic accuracy than a biphasic protocol, providing a significant dose reduction. (orig.)

  1. Detection of parathyroid adenomas using a monophasic dual-energy computed tomography acquisition: diagnostic performance and potential radiation dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Leiva-Salinas, Carlos; Flors, Lucia; Durst, Christopher R.; Hou, Qinghua; Mukherjee, Sugoto [University of Virginia, Department of Radiology, Division of Neuroradiology, Charlottesville, VA (United States); Patrie, James T. [University of Virginia, Department of Public Health Sciences, Charlottesville, VA (United States); Wintermark, Max [Stanford University, Department of Radiology, Palo Alto, CA (United States)

    2016-11-15

    The aims of the study were to compare the diagnostic performance of a combination of virtual non-contrast (VNC) images and arterial images obtained from a single-phase dual-energy CT (DECT) acquisition and standard non-contrast and arterial images from a biphasic protocol and to study the potential radiation dose reduction of the former approach. All DECT examinations performed for evaluation of parathyroid adenomas during a 13-month period were retrospectively reviewed. An initial single-energy unenhanced acquisition was followed by a dual-energy arterial phase acquisition. ''Virtual non-contrast images'' were generated from the dual-energy acquisition. Two independent and blinded radiologists evaluated three different sets of images during three reading sessions: single arterial phase, single-phase DECT (virtual non-contrast and arterial phase), and standard biphasic protocol (true non-contrast and arterial phase). The accuracy of interpretation in lateralizing an adenoma to the side of the neck and localizing it to a quadrant in the neck was evaluated. Sixty patients (mean age, 65.5 years; age range, 38-87 years) were included in the study. The lateralization and localization accuracy, sensitivity, and positive predicted value (PPV) and negative predicted value (NPV) of the different image datasets were comparable. The combination of VNC and arterial images was more specific than arterial images alone to lateralize a parathyroid lesion (OR = 1.93, p = 0.043). The use of the single-phase protocol resulted in a calculated radiation exposure reduction of 52.8 %. Virtual non-contrast and arterial images from a single DECT acquisition showed similar diagnostic accuracy than a biphasic protocol, providing a significant dose reduction. (orig.)

  2. Helical wire stress analysis of unbonded flexible riser under irregular response

    Science.gov (United States)

    Wang, Kunpeng; Ji, Chunyan

    2017-06-01

    A helical wire is a critical component of an unbonded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment-curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.

  3. Plasma transport simulation modeling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1991-08-01

    New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called 'H-mode' of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author)

  4. Overview of results from the Large Helical Device

    International Nuclear Information System (INIS)

    Yamada, H.

    2010-11-01

    The physical understanding of net-current free helical plasmas has progressed in the Large Helical Device (LHD) since the last Fusion Energy Conference in Geneva, 2008. The experimental results from LHD have promoted detailed physical documentation of features specific to net-current-free 3-D helical plasmas as well as complementary to the tokamak approach. The primary heating source is NBI with a heating power of 23 MW, and ECH with 3.7 MW plays an important role in local heating and power modulation in transport studies. The maximum central density has reached 1.2 x 10 21 m -3 due to the formation of an Internal Diffusion Barrier (IDB) at the magnetic field of 2.5 T. The IDB has been maintained for 3 s by refueling with repetitive pellet injection. The plasma with a central ion temperature reaching 5.6 keV exhibits the formation of an Internal Transport Barrier (ITB). The ion thermal diffusivity decreases to the level predicted by neoclassical transport. This ITB is accompanied by spontaneous toroidal rotation and an Impurity Hole which generates an impurity-free core. Impurity Hole is due to a large outward convection of impurities in spite of the negative radial electric field. The magnitude of the Impurity Hole is enhanced in the magnetic configuration with larger helical ripple and for higher Z impurities. Another mechanism to suppress impurity contamination has been identified at the plasma edge with a stochastic magnetic field. A helical system shares common physics issues with tokamaks such as 3-D equilibria, transport in a stochastic magnetic field, plasma response to a Resonant Magnetic Perturbation (RMP), divertor physics, and the role of radial electric field and meso-scale structure. (author)

  5. Nonlinear behavior of multiple-helicity resistive interchange modes near marginally stable states

    International Nuclear Information System (INIS)

    Sugama, Hideo; Nakajima, Noriyoshi; Wakatani, Masahiro.

    1991-05-01

    Nonlinear behavior of resistive interchange modes near marginally stable states is theoretically studied under the multiple-helicity condition. Reduced fluid equations in the sheared slab configuration are used in order to treat a local transport problem. With the use of the invariance property of local reduced fluid model equations under a transformation between the modes with different rational surfaces, weakly nonlinear theories for single-helicity modes by Hamaguchi and Nakajima are extended to the multiple-helicity case and applied to the resistive interchange modes. We derive the nonlinear amplitude equations of the multiple-helicity modes, from which the convective transport in the saturated state is obtained. It is shown how the convective transport is enhanced by nonlinear interaction between modes with different rational surfaces compared with the single-helicity case. We confirm that theoretical results are in good agreement with direct numerical simulations. (author)

  6. Investigation into the heat transfer performance of helically ribbed surfaces

    International Nuclear Information System (INIS)

    Firth, R.J.

    1981-12-01

    The first part of an investigation into flow and heat transfer in annular channels and seven pin clusters is described. One of the main aims of the project is to improve cluster heat transfer prediction codes for helically ribbed surfaces. A study is made of the heat transfer and flow characteristics of a helically ribbed pin in an annular channel. It is shown that the swirling flow, which is induced by the helical ribs, gives rise to substantially enhanced diffusivity levels. This phenomenon had not been taken into account by previous analysis techniques. The methods for analysing heat transfer and pressure drop data from annular channels which were originally developed for non-swirling flow are generalised to accommodate swirling flow. The new methods are shown to be consistent with empirical data. Roughness parameter data is presented for helically ribbed surfaces with an axial rib pitch into height ratio of about 7. (author)

  7. Automated aortic calcium scoring on low-dose chest computed tomography

    International Nuclear Information System (INIS)

    Isgum, Ivana; Rutten, Annemarieke; Prokop, Mathias; Staring, Marius; Klein, Stefan; Pluim, Josien P. W.; Viergever, Max A.; Ginneken, Bram van

    2010-01-01

    Purpose: Thoracic computed tomography (CT) scans provide information about cardiovascular risk status. These scans are non-ECG synchronized, thus precise quantification of coronary calcifications is difficult. Aortic calcium scoring is less sensitive to cardiac motion, so it is an alternative to coronary calcium scoring as an indicator of cardiovascular risk. The authors developed and evaluated a computer-aided system for automatic detection and quantification of aortic calcifications in low-dose noncontrast-enhanced chest CT. Methods: The system was trained and tested on scans from participants of a lung cancer screening trial. A total of 433 low-dose, non-ECG-synchronized, noncontrast-enhanced 16 detector row examinations of the chest was randomly divided into 340 training and 93 test data sets. A first observer manually identified aortic calcifications on training and test scans. A second observer did the same on the test scans only. First, a multiatlas-based segmentation method was developed to delineate the aorta. Segmented volume was thresholded and potential calcifications (candidate objects) were extracted by three-dimensional connected component labeling. Due to image resolution and noise, in rare cases extracted candidate objects were connected to the spine. They were separated into a part outside and parts inside the aorta, and only the latter was further analyzed. All candidate objects were represented by 63 features describing their size, position, and texture. Subsequently, a two-stage classification with a selection of features and k-nearest neighbor classifiers was performed. Based on the detected aortic calcifications, total calcium volume score was determined for each subject. Results: The computer system correctly detected, on the average, 945 mm 3 out of 965 mm 3 (97.9%) calcified plaque volume in the aorta with an average of 64 mm 3 of false positive volume per scan. Spearman rank correlation coefficient was ρ=0.960 between the system and the

  8. Modeling of Heat Transfer in the Helical-Coil Heat Exchanger for the Reactor Facility "UNITERM"

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available Circuit heat sink plays an important role in the reactor system. Therefore it imposes high requirements for quality of determining thermal-hydraulic parameters. This article is aimed at modeling of heat exchange process of the helical-coil heat exchanger, which is part of the heat sink circuit of the reactor facility "UNITERM."The simulation was performed using hydro-gas-dynamic software package ANSYS CFX. Computational fluid dynamics of this package allows us to perform calculations in a threedimensional setting, giving an idea of the fluid flow nature. The purpose of the simulation was to determine the parameters of the helical-coil heat exchanger (temperature, velocity at the outlet of the pipe and inter-tubular space, pressure drop, and the nature of the fluid flow of primary and intermediate coolants. Geometric parameters of the model were determined using the preliminary calculations performed by the criterion equations. In calculations Turbulence models k-ε RNG, Shear Stress Transport (SST are used. The article describes selected turbulence models, and considers relationship with wall function.The calculation results allow us to give the values obtained for thermal-hydraulic parameters, to compare selected turbulence models, as well as to show distribution patterns of the coolant temperature, pressure, and velocity at the outlet of the intermediate cooler.Calculations have shown that:- maximum values of primary coolant temperature at the outlet of the heat exchanger surface are encountered in the space between the helical-coil tubes;- higher temperatures of intermediate coolant at the outlet of the coils (in space of helicalcoil tubes are observed for the peripheral row;- primary coolant movement in the inter-tubular space of helical-coil surface is formed as a spiral flow, rather than as a in-line tube bank cross flow.

  9. Signs of helicity in solar prominences and related features

    Science.gov (United States)

    Martin, S.

    This review illustrates several ways to identify the chirality (handedness) of solar prominences (filaments) from their structure and the structure of their surrounding magnetic fields in the chromosphere and corona. For prominences, these structural elements include the axial magnetic field direction, orientation of barbs, and direction of the prominence fine structure. The surrounding structures include the pattern of fibrils beneath the prominences and the pattern of coronal loops above the prominences. These ways of identifying chirality are then interpreted in terms of the formal definitions of helicity to yield a consistent set of one-to-one helicity relationships for all features. The helicity of some prominences can also be independently determined during their eruption by their fine structure, apparent crossings in the line-of-sight of different parts of the same prominence, and by large- scale twist of the prominence structure. Unlike observations of prominences (filaments) observed prior to eruption, in some cases evidence of both signs of helicity are found within the same erupting prominence. This indicates the continued application of forces on the prominences during the eruption process or the possible introduction of force(s) not present during earlier stages of their evolution.

  10. Recent helicity source and power supply improvements in CTX

    International Nuclear Information System (INIS)

    Henins, I.; Knox, S.O.; Jarboe, T.R.; Barnes, C.W.

    1985-01-01

    Since the last CT Symposium, two major changes in CTX have been the introduction of pulse forming networks (PFNs) to drive the coaxial electrode helicity source, and the very recent installation of a larger source with electrode diameters about twice of the previous ones. The power supplies used for CTX have ranged from the simple connection of the capacitor bank across the electrode collector plates (slow mode) to the more sophisticated PFNs, described here, which optimize the energy transfer from the capacitor bank to the magnetic fields of the spheromak. Using the PFNs, the formation and sustainment phase to peak toroidal plasma current lasts longer (approx. =0.7 ms) than in the slow mode (approx. =0.05 ms), thus lowering the peak current that must flow through the electrode surfaces. Also, by supplying the source electrodes with both a square pulse current waveform and a quasi-steady source flux, phi/sub g/, one can generate helicity at a constant source lambda/sub g/ parameter. The use of a larger diameter helicity source will improve the energy efficiency of helicity injection and allow higher source current for the same surface current density because of the larger electrode surface area

  11. On the inverse transfer of (non-)helical magnetic energy in a decaying magnetohydrodynamic turbulence

    Science.gov (United States)

    Park, Kiwan

    2017-12-01

    In our conventional understanding, large-scale magnetic fields are thought to originate from an inverse cascade in the presence of magnetic helicity, differential rotation or a magneto-rotational instability. However, as recent simulations have given strong indications that an inverse cascade (transfer) may occur even in the absence of magnetic helicity, the physical origin of this inverse cascade is still not fully understood. We here present two simulations of freely decaying helical and non-helical magnetohydrodynamic (MHD) turbulence. We verified the inverse transfer of helical and non-helical magnetic fields in both cases, but we found the underlying physical principles to be fundamentally different. In the former case, the helical magnetic component leads to an inverse cascade of magnetic energy. We derived a semi-analytic formula for the evolution of large-scale magnetic field using α coefficient and compared it with the simulation data. But in the latter case, the α effect, including other conventional dynamo theories, is not suitable to describe the inverse transfer of non-helical magnetic energy. To obtain a better understanding of the physics at work here, we introduced a 'field structure model' based on the magnetic induction equation in the presence of inhomogeneities. This model illustrates how the curl of the electromotive force leads to the build up of a large-scale magnetic field without the requirement of magnetic helicity. And we applied a quasi-normal approximation to the inverse transfer of magnetic energy.

  12. New Modular Heliotron system compatible with closed helical divertor and good plasma confinement

    International Nuclear Information System (INIS)

    Yamazaki, K.; Watanabe, K.Y.

    1994-04-01

    A new helical system ('Modular Heliotron') with improved modular coils compatible with efficient closed helical divertor and good plasma confinement property is proposed based on a Heliotron system with continuous helical coils and one pair of poloidal coils. The physics optimization of this system as a function of the gap angle between adjacent modular coils has been carried out by means of vacuum magnetic surface calculations and finite-beta plasma analyses, and a new improved coil system is invented by combining sectored helical field coils with sectored returning poloidal field coils. The Modular Heliotron with standard coil winding law (reference Modular Heliotron) was previously proposed, but it is found that this is not appropriate to keep clean helical divertor and high beta configuration when the coil gap becomes large. By modulating the modular coil winding with outside-plus and inside-minus pitch modulation, almost the same good magnetic configuration as that of a conventional Heliotron can be produced. The optimal gap angle is determined as a function of the modulation parameter. This improved Modular Heliotron permits larger gap angle between adjacent modules and produces more clean helical divertor configuration than the reference Modular Heliotron. All these helical system are created by only modular coils without poloidal coils. (author)

  13. Linear local stability of electrostatic drift modes in helical systems

    International Nuclear Information System (INIS)

    Yamagishi, O.; Nakajima, N.; Sugama, H.; Nakamura, Y.

    2003-01-01

    We investigate the stability of the drift wave in helical systems. For this purpose, we solve the linear local gyrokinetic-Poisson equation, in the electrostatic regime. As a model of helical plasmas, Large helical Device (LHD) is considered. The equation we apply is rather exact in the framework of linear gyrokinetic theory, where only the approximation is the ballooning representation. In this paper, we consider only collisionless cases. All the frequency regime can be naturally reated without any assumptions, and in such cases, ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron temperature gradient modes (ETG) are expected to become unstable linearly independently. (orig.)

  14. Neutronics Design of Helical Type DEMO Reactor FFHR-d1

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Sagara, A.; Goto, T.; Yanagi, N.; Masuzaki, S.; Tamura, H.; Miyazawa, J.; Muroga, T., E-mail: teru@nifs.ac.jp [National Institute for Fusion Science, Toki (Japan)

    2012-09-15

    Full text: Neutronics design study has been performed in a newly started conceptual design activity for a helical type DEMO reactor FFHR-d1. Features of the FFHR-d1 design are enlargement of the basic configurations of reactor components and extrapolation of plasma parameters from those of the helical type plasma experimental machine Large Helical Device (LHD) to achieve the highest feasibility. From the neutronics point of view, a blanket space of FFHR-d1 is severely limited at the inboard of the torus. This is due to the core plasma position shifting to the inboard side under the confinement condition extrapolated from LHD. The first step of the neutronics investigation using the MCNP code has been performed with a simple torus model simulating thin inboard blanket space. A Flibe+Be/Ferritic steel breeding blanket showed preferable performances for both tritium breeding and shielding, and has been adapted as a reference blanket system for FFHR-d1. The investigations indicate that a combination of a 15 cm thick breeding blanket, 55 cm thick WC+B4C shield, i.e., the blanket space of 70 cm, could suppress the fast neutron flux and nuclear heating in the helical coils to the design targets for the neutron wall loading of 1.5 MW/m{sup 2}. Since the outboard side can provide a large space for a 60 cm thick breeding blanket, a fully-covered tritium breeding ratio (TBR) of 1.31 has been obtained in the simple torus model. The neutronics design study has proceeded to the second step using a 3-D helical reactor model. The most important issue in the 3-D neutronics design is a compatibility with the helical divertor design. To achieve a higher TBR and shielding performance, the core plasma has to be covered by the breeding blanket layers as possible. However, the dimensions of the blanket layers are limited by magnetic field lines connecting an edge of the core plasma and divertor pumping ports. After repeating modification of the blanket configuration, the global TBR of 1

  15. Modification of Spalart-Allmaras model with consideration of turbulence energy backscatter using velocity helicity

    International Nuclear Information System (INIS)

    Liu, Yangwei; Lu, Lipeng; Fang, Le; Gao, Feng

    2011-01-01

    The correlation between the velocity helicity and the energy backscatter is proved in a DNS case of 256 3 -grid homogeneous isotropic decaying turbulence. The helicity is then proposed to be employed to improve turbulence models and SGS models. Then Spalart-Allmaras turbulence model (SA) is modified with the helicity to take account of the energy backscatter, which is significant in the region of corner separation in compressors. By comparing the numerical results with experiments, it can be concluded that the modification for SA model with helicity can appropriately represent the energy backscatter, and greatly improves the predictive accuracy for simulating the corner separation flow in compressors. -- Highlights: → We study the relativity between the velocity helicity and the energy backscatter. → Spalart-Allmaras turbulence model is modified with the velocity helicity. → The modified model is employed to simulate corner separation in compressor cascade. → The modification can greatly improve the accuracy for predicting corner separation. → The helicity can represent the energy backscatter in turbulence and SGS models.

  16. Divertors for Helical Devices: Concepts, Plans, Results, and Problems

    International Nuclear Information System (INIS)

    Koenig, R.; Grigull, P.; McCormick, K.

    2004-01-01

    With Large Helical Device (LHD) and Wendelstein 7-X (W7-X), the development of helical devices is now taking a large step forward on the path to a steady-state fusion reactor. Important issues that need to be settled in these machines are particle flux and heat control and the impact of divertors on plasma performance in future continuously burning fusion plasmas. The divertor concepts that will initially be explored in these large machines were prepared in smaller-scale devices like Heliotron E, Compact Helical System (CHS), and Wendelstein 7-AS (W7-AS). While advanced divertor scenarios relevant for W7-X were already studied in W7-AS, other smaller-scale experiments like Heliotron-J, CHS, and National Compact Stellarator Experiment will be used for the further development of divertor concepts. The two divertor configurations that are being investigated are the helical and the island divertor, as well as the local island divertor, which was successfully demonstrated on CHS and just went into operation on LHD. At present, on its route to a fully closed helical divertor, LHD operates in an open helical divertor configuration. W7-X will be equipped right from the start with an actively cooled discrete island divertor that will allow quasi-continuous operation. The divertor design is very similar to the one explored on W7-AS. For sufficiently large island sizes and not too long field line connection lengths, this divertor gives access to a partially detached quasi-steady-state operating scenario in a newly found high-density H-mode operating regime, which benefits from high energy and low impurity confinement times, with edge radiation levels of up to 90% and sufficient neutral compression in the subdivertor region (>10) for active pumping. The basic physics of the different divertor concepts and associated implementation problems, like asymmetries due to drifts, accessibility of essential operating scenarios, toroidal asymmetries due to symmetry breaking error fields

  17. Imploding to equilibrium of helically symmetric theta pinches

    International Nuclear Information System (INIS)

    Sharky, N.N.

    1978-01-01

    The time-dependent, single-fluid, dissipative magnetohydrodynamic equations are solved in helical coordinates (r,phi), where phi = THETA-kz, k = 2π/L and L is the periodicity length in the z-direction. The two-dimensional numerical calculations simulate theta pinches which have an l = 1 helical field added to them. Given the applied magnetic fields and the initial state of the plasma, we study the time evolution of the system. The plasma is found to experience two kinds of oscillations, occurring on different time scales. These are the radial compression oscillations, and the slower helical oscillations of the plasma column. The plasma motion is followed until these oscillations disappear and an equilibrium is nearly reached. Hence given the amplitude and the rise time of the applied magnetic fields, the calculations allow one to relate the initial state of a cold, homogeneous plasma to its final equilibrium state where it is heated and compressed

  18. Clinical applications for multiplanar- and three-dimensional-reconstructions by helical-CT for the diagnosis of acetabular fractures

    International Nuclear Information System (INIS)

    Stroszczynski, C.; Schedel, H.; Stoeckle, U.; Wellmann, A.; Beier, J.; Wicht, L.; Hoffmann, R.; Felix, R.

    1996-01-01

    This review describes recent visualizations of computed tomography for the diagnosis of acetabular fractures. The techniques of conventional and helical-CT for the imaging of the acetabulum are compared. Furthermore, the different methods of multiplaner and three-dimensional reconstructions e.g. shaded surface display, maximum intensity projection, and volume rendering are presented. Figures of multiplanar and three-dimensional imaging for fractures of the pelvis is discussed. (orig.) [de

  19. Use of helicity methods in evaluating loop integrals: a QCD example

    International Nuclear Information System (INIS)

    Koerner, J.G.; Sieben, P.

    1991-01-01

    We discuss the use of helicity methods in evaluating loop diagrams by analyzing a specific example: the one-loop concentration to e + e - → qanti qg in massless QCD. By using covariant helicity representations for the spinor and vector wave functins we obtain the helicity amplitudes directly from the Feynman loop diagrams by covariant contraction. The necessary loop integrations are considerably simplified since one encounters only scalar loop integrals after contraction. We discuss crossing relations that allow one to obtain the corresponding one-loop helicity amplitudes for the crossed processes as e.g. qanti q → (W, Z, γ * ) + g including the real photon cases. As we treat the spin degrees of freedom in four dimensions and only continue momenta to n dimensions (dimensional reduction scheme) we explicate how our results are related to the usual dimensional regularization results. (orig.)

  20. Meso-Helical Ag(I) Coordination Polymer Based on a Pyridylimidazole Ligand

    International Nuclear Information System (INIS)

    Kang, Youngjin; Kim, Jinho; Lee, Eunji; Park, Ki-Min; Moon, Suk-Hee

    2016-01-01

    In the fields of material science and metallosupramolecular chemistry, coordination polymers with various helical types have been extensively explored because of their charming structures, and their potential applications in material chemistry. Among them, meso-helical coordination polymers consisting of achiral 1D strands, which are generally constructed by a crystallographic inversion symmetry, are relatively rare. The coordination polymer 1 exhibits a rare one-dimensional meso-helical chain topology constructed by its internal inversion symmetry. The skeleton of this meso-helical chain is preserved up to 300°C. The complexation of silver(I) ion to the free pyim ligand give rise to the enhanced photoluminescence intensity and slightly blue-shifted emission maximum, originated from intraligand (IL) π[BOND]π* transition and rigidochromic effect. Further exploration of complexation of this ligand with other transition metal ions is currently in progress

  1. Magnetic helices as metastable states of finite XY ferromagnetic chains: An analytical study

    Science.gov (United States)

    Popov, Alexander P.; Pini, Maria Gloria

    2018-04-01

    We investigated a simple but non trivial model, consisting of a chain of N classical XY spins with nearest neighbor ferromagnetic interaction, where each of the two end-point spins is assumed to be exchange-coupled to a fully-pinned fictitious spin. In the mean field approximation, the system might be representative of a soft ferromagnetic film sandwiched between two magnetically hard layers. We show that, while the ground state is ferromagnetic and collinear, the system can attain non-collinear metastable states in the form of magnetic helices. The helical solutions and their stability were studied analytically in the absence of an external magnetic field. There are four possible classes of solutions. Only one class is metastable, and its helical states contain an integer number of turns. Among the remaining unstable classes, there is a class of helices which contain an integer number of turns. Therefore, an integer number of turns in a helical configuration is a necessary, but not a sufficient, condition for metastability. These results may be useful to devise future applications of metastable magnetic helices as energy-storing elements.

  2. Superconducting Helical Snake Magnet for the AGS

    CERN Document Server

    Willen, Erich; Escallier, John; Ganetis, George; Ghosh, Arup; Gupta, Ramesh C; Harrison, Michael; Jain, Animesh K; Luccio, Alfredo U; MacKay, William W; Marone, Andrew; Muratore, Joseph F; Okamura, Masahiro; Plate, Stephen R; Roser, Thomas; Tsoupas, Nicholaos; Wanderer, Peter

    2005-01-01

    A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This "partial Snake" magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that t...

  3. Helical CT in acute lower gastrointestinal bleeding

    International Nuclear Information System (INIS)

    Ernst, Olivier; Leroy, Christophe; Sergent, Geraldine; Bulois, Philippe; Saint-Drenant, Sophie; Paris, Jean-Claude

    2003-01-01

    The purpose of this study was to assess the usefulness of helical CT in depicting the location of acute lower gastrointestinal bleeding. A three-phase helical CT of the abdomen was performed in 24 patients referred for acute lower gastrointestinal bleeding. The diagnosis of the bleeding site was established by CT when there was at least one of the following criteria: spontaneous hyperdensity of the peribowel fat; contrast enhancement of the bowel wall; vascular extravasation of the contrast medium; thickening of the bowel wall; polyp or tumor; or vascular dilation. Diverticula alone were not enough to locate the bleeding site. The results of CT were compared with the diagnosis obtained by colonoscopy, enteroscopy, or surgery. A definite diagnosis was made in 19 patients. The bleeding site was located in the small bowel in 5 patients and the colon in 14 patients. The CT correctly located 4 small bowel hemorrhages and 11 colonic hemorrhages. Diagnosis of the primary lesion responsible for the bleeding was made in 10 patients. Our results suggest that helical CT could be a good diagnostic tool in acute lower gastrointestinal bleeding to help the physician to diagnose the bleeding site. (orig.)

  4. Chirality and helicity of poly-benzyl-L-glutamate in liquid crystals and a wave structure that mimics collagen helicity in crimp

    Directory of Open Access Journals (Sweden)

    Vidal Benedicto de Campos

    2001-01-01

    Full Text Available Ideal biocompatible polymers must show a mimetic superstructure with biological supra-organization. Collagen-rich structures like tendons and ligaments are materials with various levels of order, from molecules to bundles of fibers, which affect their biomechanical properties and cellular interactions. Poly-benzyl-L-glutamate (PBLG displaying helicity was used here to test the development of wave-like structures as those occurring in collagen fibers. Birefringence of PBLG under various crystallization conditions was studied with a lambda/4 compensator according to Sénarmont. Qualitative observations were plainly sufficient to conclude that the PBLG fibrils were supra-organized helically as a chiral object. During crystallization stretched PBLG formed a helical superstructure with characteristic striation resembling waves (crimp. Supported by optical anisotropy findings, a twisted grain boundary liquid crystal type is proposed as a transition phase in the formation of the PBLG chiral object. A similarity with the wavy organization (crimp of collagen bundles is proposed.

  5. Origins of the helical wrapping of phenyleneethynylene polymers about single-walled carbon nanotubes.

    Science.gov (United States)

    Von Bargen, Christopher D; MacDermaid, Christopher M; Lee, One-Sun; Deria, Pravas; Therien, Michael J; Saven, Jeffery G

    2013-10-24

    The highly charged, conjugated polymer poly[p-{2,5-bis(3-propoxysulfonicacidsodiumsalt)}phenylene]ethynylene (PPES) has been shown to wrap single-wall carbon nanotubes (SWNTs), adopting a robust helical superstructure. Surprisingly, PPES adopts a helical rather than a linear conformation when adhered to SWNTs. The complexes formed by PPES and related polymers upon helical wrapping of a SWNT are investigated using atomistic molecular dynamics (MD) simulations in the presence and absence of aqueous solvent. In simulations of the PPES/SWNT system in an aqueous environment, PPES spontaneously takes on a helical conformation. A potential of mean force, ΔA(ξ), is calculated as a function of ξ, the component of the end-to-end vector of the polymer chain projected on the SWNT axis; ξ is a monotonic function of the polymer's helical pitch. ΔA(ξ) provides a means to quantify the relative free energies of helical conformations of the polymer when wrapped about the SWNT. The aqueous system possesses a global minimum in ΔA(ξ) at the experimentally observed value of the helical pitch. The presence of this minimum is associated with preferred side chain conformations, where the side chains adopt conformations that provide van der Waals contact between the tubes and the aliphatic components of the side chains, while exposing the anionic sulfonates for aqueous solvation. The simulations provide a free energy estimate of a 0.2 kcal/mol/monomer preference for the helical over the linear conformation of the PPES/SWNT system in an aqueous environment.

  6. A numerical study of the stabilitiy of helical vortices using vortex methods

    International Nuclear Information System (INIS)

    Walther, J H; Guenot, M; Machefaux, E; Rasmussen, J T; Chatelain, P; Okulov, V L; Soerensen, J N; Bergdorf, M; Koumoutsakos, P

    2007-01-01

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity

  7. A numerical study of the stabilitiy of helical vortices using vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Walther, J H [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Guenot, M [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Machefaux, E [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Rasmussen, J T [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Chatelain, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Okulov, V L [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Soerensen, J N [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Bergdorf, M [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Koumoutsakos, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland)

    2007-07-15

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity.

  8. Flow-induced vibration of steam generator helical tubes subjected to external liquid cross flow and internal two-phase flow

    International Nuclear Information System (INIS)

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2005-01-01

    Full text of publication follows: This paper addresses the potential flow-induced vibration problems in a helically-coiled tube steam generator of integral-type nuclear reactor, of which the tubes are subjected to liquid cross flow externally and multi-phase flow externally. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted using a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency and corresponding mode shape of the helical type tubes with various conditions, a finite element analysis code is used. Based on the results of both helical coiled tube steam generator thermal-hydraulic and coiled tube modal analyses, turbulence-induced vibration and fluid-elastic instability analyses are performed. And then the potential for damages on the tubes due to either turbulence-induced vibration or fluid-elastic instability is assessed. In the assessment, special emphases are put on the detailed investigation for the effects of support conditions, coil diameter, and helix pitch on the modal, vibration amplitude and instability characteristics of tubes, from which a technical information and basis needed for designers and regulatory reviewers can be derived. (authors)

  9. The diagnostic value of dual energy virtual non-contrast images of dual-source CT in the diagnosis of com-mon benign liver diseases%双源CT双能量虚拟平扫对肝脏常见良性病变的诊断价值

    Institute of Scientific and Technical Information of China (English)

    刘盼; 王凤; 李邦国; 罗显丽; 王梦; 王荣品

    2017-01-01

    Objective To investigate the diagnostic value and limitations of dual-energy virtual non-con-trast images of dual-source CT in common benign liver diseases. Methods Dual-source CT was performed on 226 upper abdomen pathogenesis patients. The conventional non-contrast (CNC) scan was performed with single-energy mode, the arterial phase and portal phase scans were performed with dual-energy mode. The virtual non-contrast (VNC) images were derived from the portal data using liver virtual non-contrast software. 117 patients with common benign liver diseases were retrospectively analyzed in CNC and VNC. The lesion detectability, effective radiation doses for single-energy mode and dual-energy mode were compared. Results Among 117 patients, there were 28 (73.6%) hemangiomas, 58 (85.3%) calcifications or stones in VNC, but the hemangiomas, calcifications or stones in CNC were 37 (97.3%) and 68 (100%), respectively. The hemangiomas, calcifications or stones in VNC and CNC were significantly different (P 0.05). The CTDIvol, DLP and ED of dual-energy mode were obviously lower than those of single-energy mode (P 0.05);双能模式下CTDI、DLP及ED均低于单能模式,差异有统计学意义(P<0.05).结论:虚拟平扫对血管瘤、钙化或结石的检出低于常规平扫,对囊肿及脂肪肝的检出无差异.VNC技术可减低CT检查的辐射剂量,具有潜在的临床应用价值.

  10. A helical scintillating fiber hodoscope

    CERN Document Server

    Altmeier, M; Bisplinghoff, J; Bissel, T; Bollmann, R; Busch, M; Büsser, K; Colberg, T; Demiroers, L; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jeske, M; Jonas, E; Krause, H; Lahr, U; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuck, T; Meinerzhagen, A; Naehle, O; Pfuff, M; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Sanz, B; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Thomas, S; Trelle, H J; Weise, E; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    1999-01-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. <= THETA<=72 deg. and 0 deg. <=phi (cursive,open) Greek<=360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  11. Helical post stellarator. Part 1: Vacuum configuration

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-08-01

    Results on a novel type of stellarator configuration, the Helical Post Stellarator (HPS), are presented. This configuration is different significantly from all previously known stellarators due to its unique geometrical characteristics and unique physical properties. Among those are: the magnetic field has only one toroidal period (M = 1), the plasma has an extremely low aspect ratio, A ∼ 1, and the variation of the magnetic field, B, along field lines features a helical ripple on the inside of the torus. Among the main advantages of a HPS for a fusion program are extremely compact, modular, and simple design compatible with significant rotational transform, large plasma volume, and improved particle transport characteristics

  12. Generation of helical gears with new surfaces topology by application of CNC machines

    Science.gov (United States)

    Litvin, F. L.; Chen, N. X.; Hsiao, C. L.; Handschuh, Robert F.

    1993-01-01

    Analysis of helical involute gears by tooth contact analysis shows that such gears are very sensitive to angular misalignment that leads to edge contact and the potential for high vibration. A new topology of tooth surfaces of helical gears that enables a favorable bearing contact and a reduced level of vibration is described. Methods for grinding of the helical gears with the new topology are proposed. A TCA (tooth contact analysis) program for simulation of meshing and contact of helical gears with the new topology has been developed. Numerical examples that illustrate the proposed ideas are discussed.

  13. Two exciton states in discrete and continuum alpha-helical proteins

    International Nuclear Information System (INIS)

    Latha, M.M.; Merlin, G.

    2012-01-01

    The dynamics of alpha-helical proteins is described by proposing a model Hamiltonian representing two exciton bound states. The dynamics is studied by constructing the equations of motion using a two exciton eigen-function in the discrete level. A numerical analysis shows the existence of two excitons in alpha-helical proteins and its propagation as solitons along the hydrogen bonding spines. The lattice model is also treated in the continuum limit which is a valid approximation in the low temperature, long wavelength limit. The resulting equation is studied using the multiple scale perturbation analysis which also shows the transfer of two exciton energy through alpha-helical proteins in the form of solitons with no change in velocity and amplitude. -- Highlights: ► The dynamics of alpha-helical proteins with two exciton states is studied. ► The dynamics is studied both in the discrete and continuum levels. ► The resulting equations are solved numerically and analytically. ► The solution supports the propagation of the energy in the form of solitons.

  14. New modular heliotron system compatible with closed helical divertor and good plasma confinement

    International Nuclear Information System (INIS)

    Yamazaki, K.; Watanabe, K.Y.

    1995-01-01

    A new helical system ('modular heliotron') with improved modular coils compatible with an efficient closed helical divertor and a good plasma confinement property is proposed, based on a heliotron system with continuous helical coils and one pair of poloidal coils. The physics optimization of this system as a function of the gap angle between adjacent modular coils has been carried out by means of vacuum magnetic surface calculations and finite-beta plasma analyses, and a new improved coil system is invented by combining sectored helical field coils with sectored returning poloidal field coils. A modular heliotron with standard coil winding law (the reference modular heliotron) was previously proposed, but it is found that this was not appropriate to keep a clean helical divertor and high beta configuration when the coil gap becomes large. By modulating the modular coil winding with outside-plus and inside-minus pitch modulation, almost the same good magnetic configuration as that of a conventional heliotron can be produced. The optimal gap angle is determined as a function of the modulation parameter. This improved modular heliotron permits a larger gap angle between adjacent modules and produces a cleaner helical divertor configuration than the reference modular heliotron. All these helical systems are created by only modular coils without poloidal coils. (author). Letter-to-the-editor. 11 refs, 7 figs

  15. Numerical investigation of heat transfer in a laminar flow in a helical pipe filled with a fluid saturated porous medium: the sensitivity to parameter variations

    International Nuclear Information System (INIS)

    Cheng, L.; Kuznetsov, A.V.

    2005-01-01

    This paper presents the first attempt to investigate numerically heat transfer in a helical pipe filled with a fluid saturated porous medium; the analysis is based on the full momentum equation for porous media that accounts for the Brinkman and Forchheimer extensions of the Darcy law as well as for the flow inertia. Numerical computations are performed in an orthogonal helical coordinate system. The effects of the Darcy number, the Forchheimer coefficient as well as the Dean and Germano numbers on the axial flow velocity, secondary flow, temperature distribution, and the Nusselt number are investigated. (authors)

  16. Numerical investigation of heat transfer in a laminar flow in a helical pipe filled with a fluid saturated porous medium: the sensitivity to parameter variations

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, L.; Kuznetsov, A.V. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering

    2005-07-01

    This paper presents the first attempt to investigate numerically heat transfer in a helical pipe filled with a fluid saturated porous medium; the analysis is based on the full momentum equation for porous media that accounts for the Brinkman and Forchheimer extensions of the Darcy law as well as for the flow inertia. Numerical computations are performed in an orthogonal helical coordinate system. The effects of the Darcy number, the Forchheimer coefficient as well as the Dean and Germano numbers on the axial flow velocity, secondary flow, temperature distribution, and the Nusselt number are investigated. (authors)

  17. Advances in the implementation of helical tomotherapy-based total marrow irradiation with a novel field junction technique

    Energy Technology Data Exchange (ETDEWEB)

    Zeverino, Michele, E-mail: michele.zeverino@istge.it [Medical Physics Department, IRCCS, Istituto Nazionale per la Ricerca sul cancro, Genoa (Italy); Agostinelli, Stefano; Taccini, Gianni; Cavagnetto, Francesca; Garelli, Stefania; Gusinu, Marco [Medical Physics Department, IRCCS, Istituto Nazionale per la Ricerca sul cancro, Genoa (Italy); Vagge, Stefano; Barra, Salvina; Corvo, Renzo [Radiation Oncology Department, IRCCS, Istituto Nazionale per la Ricerca sul cancro, Genoa (Italy)

    2012-10-01

    Given the limitations in the travel ability of the helical tomotherapy (HT) couch, total marrow irradiation (TMI) has to be split in 2 segments, with the lower limbs treated with feet first orientation. The aim of this work is to present a planning technique useful to reduce the dose inhomogeneity resulting from the matching of the 2 helical dose distributions. Three HT plans were generated for each of the 18 patients enrolled. Upper TMI (UTMI) and lower TMI (LTMI) were planned onto the whole-body computed tomography (CT) and on the lower-limb CT, respectively. A twin lower TMI plan (tLTMI) was designed on the whole-body CT. Agreement between LTMI and tLTMI plans was assessed by computing for each dose-volume histogram (DVH) structure the {gamma} index scored with 1% of dose and volume difference thresholds. UTMI and tLTMI plans were summed together on the whole-body CT, enabling the evaluation of dose inhomogeneity. Moreover, a couple of transition volumes were used to improve the dose uniformity in the abutment region. For every DVH, a number of points >99% passed the {gamma} analysis, validating the method used to generate the twin plan. The planned dose inhomogeneity at the junction level resulted within {+-}10% of the prescribed dose. Median dose reduction to organs at risk ranged from 30-80% of the prescribed dose. Mean conformity index was 1.41 (range 1.36-1.44) for the whole-body target. The technique provided a 'full helical' dose distribution for TMI treatments, which can be considered effective only if the dose agreement between LTMI and tLTMI plans is met. The planning of TMI with HT for the whole body with adequate dose homogeneity and conformity was shown to be feasible.

  18. What Helicity Can Tell Us about Solar Magnetic Fields Alexei A ...

    Indian Academy of Sciences (India)

    Concept of magnetic/current helicity was introduced to solar physics about 15 ... represented by a thin flux tube model with flux , one can show that magnetic helicity,. Hm = (2π). −1 2 ... For example, spiral pattern of filaments forming sunspot ...

  19. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates.

    Science.gov (United States)

    Stawikowski, Maciej J; Stawikowska, Roma; Fields, Gregg B

    2015-05-19

    Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.

  20. Non-inductive current drive via helicity injection by Alfven waves in low-aspect-ratio tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cuperman, S.; Bruma, C.; Komoshvili, K. [Tel Aviv Univ. (Israel). Sackler Faculty of Exact Sciences

    1996-08-01

    A theoretical investigation of radio-frequency (RF) current drive via helicity injection in low aspect ratio tokamaks is carried out. A current-carrying cylindrical plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is considered. Toroidal features of low-aspect-ratio tokamaks are simulated by incorporating the following effects: (i) arbitrarily small aspect ratio, R{sub O}/a ``identical to`` 1/{epsilon}; (ii) strongly sheared equilibrium magnetic field; and (iii) relatively large poloidal component of the equilibrium magnetic field. This study concentrates on the Alfven continuum, i.e. the case in which the wave frequency satisfies the condition {l_brace}{omega}{sub Alf}({tau}){r_brace}{sub min}{r_brace} {<=} {omega} {<=} {l_brace}{omega}{sub Alf}({tau}){r_brace}{sub max}, where {omega}{sub Alf}({tau}) ``identical to`` {omega}{sub Alf}[n({tau}), B{sub O}({tau})] is an eigenfrequency of the shear Alfven wave (SAW). Thus, using low-{beta} magnetohydrodynamics, the wave equation with correct boundary (matching) conditions is solved, the RF field components are found, and subsequently current drive, power deposition and efficiency are computed. The results of our investigation clearly demonstrate the possibility of generation of RF-driven currents via helicity injection by Alfven waves in low-aspect-ratio tokamaks, in the SAW mode. A special algorithm is developed that enables one to select the antenna parameters providing optimal current drive efficiency. (Author).

  1. Institute for Fusion Research and Large Helical Device program

    International Nuclear Information System (INIS)

    Iiyoshi, Atsuo

    1989-01-01

    In the research on nuclear fusion, the final objective is to materialize nuclear fusion reactors, and for the purpose, it is necessary to cause nuclear combustion by making the plasma of higher than 100 million deg and confine it for a certain time. So far in various universities, the researches on diversified fusion processes have been advanced, but in February, 1986, the Science Council issued the report 'Nuclear fusion research in universities hereafter'. As the next large scale device, an external conductor system helical device was decided, and it is desirable to found the organization for joint utilization by national universities to promote the project. The researches on the other processes are continued by utilizing the existing facilitie. The reason of selecting a helical device is the data base of the researches carried out so far can be utilized sufficiently, it is sufficiently novel even after 10 years from now, and many researchers can be collected. The place of the research is Toki City, Gifu Prefecture, where the Institute of Plasma Physics, Nagoya University, is to be moved. The basic concept of the superconducting helical device project, the trend of nuclear fusion development in the world, the physical research using a helical system and so on are reported. (Kako, I.)

  2. The management of helical rim keloids with excision, split thickness skin graft and intralesional triamcinolone acetonide

    Directory of Open Access Journals (Sweden)

    Ibrahim Abdul Rasheed

    2014-01-01

    Full Text Available Keloids of the helical rim are disfiguring. A cosmetically acceptable reconstruction is difficult especially in moderate to large sized lesions because the helical rim is a 3-dimensional structure with curved and thin cartilage. We report our experience in the management of moderate (4-10 cm and large (>10 cm helical rim keloids in five patients. Six helical rim keloids were reconstructed. There were four moderate (4-10 cm and two large (>10 cm helical rim keloids. Four were on the right helix and two on the left helix. One patient had bilateral helical rim keloids. The follow-up period ranged from 6 months to 4 years. No secondary surgical revision was required to improve the contour of the reconstructed helical rim. The aesthetic results were satisfactory in all the patients.

  3. Point contacts and localization in generic helical liquids

    Science.gov (United States)

    Orth, Christoph P.; Strübi, Grégory; Schmidt, Thomas L.

    2013-10-01

    We consider two helical liquids on opposite edges of a two-dimensional topological insulator, which are connected by one or several local tunnel junctions. In the presence of spatially inhomogeneous Rashba spin-orbit coupling, the spin of the helical edge states is momentum dependent, and this spin texture can be different on opposite edges. We demonstrate that this has a strong impact on the electron transport between the edges. In particular, in the case of many random tunnel contacts, the localization length depends strongly on the spin textures of the edge states.

  4. Circularly-polarized, semitransparent and double-sided holograms based on helical photonic structures.

    Science.gov (United States)

    Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-11-28

    Recent advances in nanofabrication techniques are opening new frontiers in holographic devices, with the capability to integrate various optical functions in a single device. However, while most efficient holograms are achieved in reflection-mode configurations, they are in general opaque because of the reflective substrate that must be used, and therefore, have limited applicability. Here, we present a semi-transparent, reflective computer-generated hologram that is circularly-polarization dependent, and reconstructs different wavefronts when viewed from different sides. The integrated functionality is realized using a single thin-film of liquid crystal with a self-organized helical structure that Bragg reflects circularly-polarized light over a certain band of wavelengths. Asymmetry depending on the viewing side is achieved by exploiting the limited penetration depth of light in the helical structure as well as the nature of liquid crystals to conform to different orientational patterns imprinted on the two substrates sandwiching the material. Also, because the operation wavelength is determined by the reflection band position, pseudo-color holograms can be made by simply stacking layers with different designs. The unique characteristics of this hologram may find applications in polarization-encoded security holograms and see-through holographic signage where different information need to be displayed depending on the viewing direction.

  5. Investigation of Accelerated Partial Breast Patient Alignment and Treatment With Helical Tomotherapy Unit

    International Nuclear Information System (INIS)

    Langen, Katja M.; Buchholz, Daniel J.; Burch, Doug R. C.; Burkavage, Rob C.; Limaye, Arti U.; Meeks, Sanford L.; Kupelian, Patrick A.; Ruchala, Kenneth J.; Haimerl, Jason; Henderson, Doug; Olivera, Gustavo H.

    2008-01-01

    Purpose: To determine the precision of megavoltage computed tomography (MVCT)-based alignment of the seroma cavity for patients undergoing partial breast irradiation; and to determine whether accelerated partial breast irradiation (APBI) plans can be generated for TomoTherapy deliveries that meet the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-39/Radiation Therapy Oncology Group (RTOG) 0413 protocol guidelines for target coverage and normal tissue dose limitations. Methods and Materials: We obtained 50 MVCT images from 10 patients. An interuser study was designed to assess the alignment precision. Using a standard helical and a fixed beam prototype ('topotherapy') optimizer, two APBI plans for each patient were developed. Results: The precision of the MVCT-based seroma cavity alignment was better than 2 mm if averaged over the patient population. Both treatment techniques could be used to generate acceptable APBI plans for patients that fulfilled the recommended NSABP B-39/RTOG-0413 selection criteria. For plans of comparable treatment time, the conformation of the prescription dose to the target was greater for helical deliveries, while the ipsilateral lung dose was significantly reduced for the topotherapy plans. Conclusions: The inherent volumetric imaging capabilities of a TomoTherapy Hi-Art unit allow for alignment of patients undergoing partial breast irradiation that is determined from the visibility of the seroma cavity on the MVCT image. The precision of the MVCT-based alignment was better than 2 mm (± standard deviation) when averaged over the patient population. Using the NSABP B-39/RTOG-0413 guidelines, acceptable APBI treatment plans can be generated using helical- or topotherapy-based delivery techniques

  6. Design of central control system for large helical device (LHD)

    International Nuclear Information System (INIS)

    Yamazaki, K.; Kaneko, H.; Yamaguchi, S.; Watanabe, K.Y.; Taniguchi, Y.; Motojima, O.

    1993-11-01

    The world largest superconducting fusion machine LHD (Large Helical Device) is under construction in Japan, aiming at steady state operations. Its basic control system consists of UNIX computers, FDDI/Ethernet LANs, VME multiprocessors and VxWorks real-time OS. For flexible and reliable operations of the LHD machine a cooperative distributed system with more than 30 experimental equipments is controlled by the central computer and the main timing system, and is supervised by the main protective interlock system. Intelligent control systems, such as applications of fuzzy logic and neural networks, are planed to be adopted for flexible feedback controls of plasma configurations besides the classical PID control scheme. Design studies of its control system and related R and D programs with coil-plasma simulation systems are now being performed. The construction of the LHD Control Building in a new site will begin in 1995 after finishing the construction of the LHD Experimental Building, and the hardware construction of the LHD central control equipments will be started in 1996. A first plasma production by means of this control system is expected in 1997. (author)

  7. Helicity and potential vorticity in the surface boundary layer turbulence

    Science.gov (United States)

    Chkhetiani, Otto; Kurgansky, Michael; Koprov, Boris; Koprov, Victor

    2016-04-01

    An experimental measurement of all three components of the velocity and vorticity vectors, as well as the temperature and its gradient, and potential vorticity, has been developed using four acoustic anemometers. Anemometers were placed at vertices of a tetrahedron, the horizontal base of which was a rectangular triangle with equal legs, and the upper point was exactly above the top of the right angle. The distance from the surface to the tetrahedron its base was 5.5 m, and the lengths of legs and a vertical edge were 5 m. The measurements were carried out of total duration near 100 hours both in stable and unstable stratification conditions (at the Tsimlyansk Scientific Station in a uniform area of virgin steppe 700 x 650 m, August 2012). A covariance-correlation matrix for turbulent variations in all measured values has been calculated. In the daytime horizontal and vertical components of the helicity are of the order of -0.03 and +0.01 m s-2, respectively. The nighttime signs remain unchanged, but the absolute values are several times smaller. It is confirmed also by statistics of a relative helicity. The cospectra and spectral correlation coefficients have been calculated for all helicity components. The time variations in the components of "instantaneous" relative helicity and potential vorticity are considered. Connections of helicity with Monin-Obukhov length and the wind vertical profile structure are discussed. This work was supported by the Russian Science Foundation (Project No 14-27-00134).

  8. Structure determination of helical filaments by solid-state NMR spectroscopy

    Science.gov (United States)

    Ahmed, Mumdooh; Spehr, Johannes; König, Renate; Lünsdorf, Heinrich; Rand, Ulfert; Lührs, Thorsten; Ritter, Christiane

    2016-01-01

    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVSCARD filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers. PMID:26733681

  9. Plasma transport simulation modelling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1992-01-01

    New empirical and theoretical transport models for helical confinement systems are developed on the basis of the neoclassical transport theory, including the effect of the radial electric field and of multi-helicity magnetic components as well as the drift wave turbulence transport for electrostatic and electromagnetic modes or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with experimental data from the Compact Helical System which indicate that the central transport coefficient of a plasma with electron cyclotron heating agrees with neoclassical axisymmetric value and the transport outside the half-radius is anomalous. On the other hand, the transport of plasmas with neutral beam injection heating is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these discharges with flat density profiles. For a detailed prediction of the plasma parameters in the Large Helical Device (LHD), 3-D equilibrium/1-D transport simulations including empirical or drift wave turbulence models are performed which suggest that the global confinement time of the LHD is determined mainly by the electron anomalous transport in the plasma edge region rather than by the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase in global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to half of the value used in the present scaling, as is the case in the H-mode of tokamak discharges, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius improves the plasma confinement and increases the fusion product by more than 50% by reducing the neoclassical asymmetric ion transport loss and increasing the plasma radius (10%). (author). 32 refs, 7 figs

  10. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance

    OpenAIRE

    McLaughlin, P. D.; Murphy, K. P.; Hayes, S. A.; Carey, K.; Sammon, J.; Crush, L.; O’Neill, F.; Normoyle, B.; McGarrigle, A. M.; Barry, J. E.; Maher, M. M.

    2014-01-01

    Objectives The aim was to assess the performance of low-dose non-contrast CT of the urinary tract (LD-CT) acquired at radiation exposures close to that of abdominal radiography using adaptive statistical iterative reconstruction (ASiR). Methods Thirty-three patients with clinically suspected renal colic were prospectively included. Conventional dose (CD-CT) and LD-CT data sets were contemporaneously acquired. LD-CT images were reconstructed with 40 %, 70 % and 90 % ASiR. Image quality was sub...

  11. Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics I: Lie dragging approach

    International Nuclear Information System (INIS)

    Webb, G M; Dasgupta, B; McKenzie, J F; Hu, Q; Zank, G P

    2014-01-01

    In this paper advected invariants and conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics are obtained using Lie dragging techniques. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. The gauge condition for the magnetic helicity to be advected with the flow is determined. Different variants of the helicity in ideal fluid dynamics and MHD including: fluid helicity, cross helicity and magnetic helicity are investigated. The fluid helicity conservation law and the cross-helicity conservation law in MHD are derived for the case of a barotropic gas. If the magnetic field lies in the constant entropy surface, then the gas pressure can depend on both the entropy and the density. In these cases the conservation laws are local conservation laws. For non-barotropic gases, we obtain nonlocal conservation laws for fluid helicity and cross helicity by using Clebsch variables. These nonlocal conservation laws are the main new results of the paper. Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon–Vey invariant for special flows for which the magnetic helicity is zero are also discussed. (paper)

  12. A semi-analytical study on helical springs made of shape memory polymer

    International Nuclear Information System (INIS)

    Baghani, M; Naghdabadi, R; Arghavani, J

    2012-01-01

    In this paper, the responses of shape memory polymer (SMP) helical springs under axial force are studied both analytically and numerically. In the analytical solution, we first derive the response of a cylindrical tube under torsional loadings. This solution can be used for helical springs in which both the curvature and pitch effects are negligible. This is the case for helical springs with large ratios of the mean coil radius to the cross sectional radius (spring index) and also small pitch angles. Making use of this solution simplifies the analysis of the helical springs to that of the torsion of a straight bar with circular cross section. The 3D phenomenological constitutive model recently proposed for SMPs is also reduced to the 1D shear case. Thus, an analytical solution for the torsional response of SMP tubes in a full cycle of stress-free strain recovery is derived. In addition, the curvature effect is added to the formulation and the SMP helical spring is analyzed using the exact solution presented for torsion of curved SMP tubes. In this modified solution, the effect of the direct shear force is also considered. In the numerical analysis, the 3D constitutive equations are implemented in a finite element program and a full cycle of stress-free strain recovery of an SMP (extension or compression) helical spring is simulated. Analytical and numerical results are compared and it is shown that the analytical solution gives accurate stress distributions in the cross section of the helical SMP spring besides the global load–deflection response. Some case studies are presented to show the validity of the presented analytical method. (paper)

  13. LARGE-SCALE MAGNETIC HELICITY FLUXES ESTIMATED FROM MDI MAGNETIC SYNOPTIC CHARTS OVER THE SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Yang Shangbin; Zhang Hongqi, E-mail: yangshb@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing (China)

    2012-10-10

    To investigate the characteristics of large-scale and long-term evolution of magnetic helicity with solar cycles, we use the method of Local Correlation Tracking to estimate the magnetic helicity evolution over solar cycle 23 from 1996 to 2009 using 795 MDI magnetic synoptic charts. The main results are as follows: the hemispheric helicity rule still holds in general, i.e., the large-scale negative (positive) magnetic helicity dominates the northern (southern) hemisphere. However, the large-scale magnetic helicity fluxes show the same sign in both hemispheres around 2001 and 2005. The global, large-scale magnetic helicity flux over the solar disk changes from a negative value at the beginning of solar cycle 23 to a positive value at the end of the cycle, while the net accumulated magnetic helicity is negative in the period between 1996 and 2009.

  14. LARGE-SCALE MAGNETIC HELICITY FLUXES ESTIMATED FROM MDI MAGNETIC SYNOPTIC CHARTS OVER THE SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Yang Shangbin; Zhang Hongqi

    2012-01-01

    To investigate the characteristics of large-scale and long-term evolution of magnetic helicity with solar cycles, we use the method of Local Correlation Tracking to estimate the magnetic helicity evolution over solar cycle 23 from 1996 to 2009 using 795 MDI magnetic synoptic charts. The main results are as follows: the hemispheric helicity rule still holds in general, i.e., the large-scale negative (positive) magnetic helicity dominates the northern (southern) hemisphere. However, the large-scale magnetic helicity fluxes show the same sign in both hemispheres around 2001 and 2005. The global, large-scale magnetic helicity flux over the solar disk changes from a negative value at the beginning of solar cycle 23 to a positive value at the end of the cycle, while the net accumulated magnetic helicity is negative in the period between 1996 and 2009.

  15. Extracting 3D parametric curves from 2D images of helical objects.

    OpenAIRE

    Willcocks, Chris; Jackson, Philip T.G.; Nelson, Carl J.; Obara, Boguslaw

    2016-01-01

    Helical objects occur in medicine, biology, cosmetics, nanotechnology, and engineering. Extracting a 3D parametric curve from a 2D image of a helical object has many practical applications, in particular being able to extract metrics such as tortuosity, frequency, and pitch. We present a method that is able to straighten the image object and derive a robust 3D helical curve from peaks in the object boundary. The algorithm has a small number of stable parameters that require little tuning, and...

  16. SU-E-T-197: Helical Cranial-Spinal Treatments with a Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J; Bernard, D; Liao, Y; Templeton, A; Turian, J; Chu, J [Rush University Medical Center, Chicago, IL (United States)

    2014-06-01

    Purpose: Craniospinal irradiation (CSI) of systemic disease requires a high level of beam intensity modulation to reduce dose to bone marrow and other critical structures. Current helical delivery machines can take 30 minutes or more of beam-on time to complete these treatments. This pilot study aims to test the feasibility of performing helical treatments with a conventional linear accelerator using longitudinal couch travel during multiple gantry revolutions. Methods: The VMAT optimization package of the Eclipse 10.0 treatment planning system was used to optimize pseudo-helical CSI plans of 5 clinical patient scans. Each gantry revolution was divided into three 120° arcs with each isocenter shifted longitudinally. Treatments requiring more than the maximum 10 arcs used multiple plans with each plan after the first being optimized including the dose of the others (Figure 1). The beam pitch was varied between 0.2 and 0.9 (couch speed 5- 20cm/revolution and field width of 22cm) and dose-volume histograms of critical organs were compared to tomotherapy plans. Results: Viable pseudo-helical plans were achieved using Eclipse. Decreasing the pitch from 0.9 to 0.2 lowered the maximum lens dose by 40%, the mean bone marrow dose by 2.1% and the maximum esophagus dose by 17.5%. (Figure 2). Linac-based helical plans showed dose results comparable to tomotherapy delivery for both target coverage and critical organ sparing, with the D50 of bone marrow and esophagus respectively 12% and 31% lower in the helical linear accelerator plan (Figure 3). Total mean beam-on time for the linear accelerator plan was 8.3 minutes, 54% faster than the tomotherapy average for the same plans. Conclusions: This pilot study has demonstrated the feasibility of planning pseudo-helical treatments for CSI targets using a conventional linac and dynamic couch movement, and supports the ongoing development of true helical optimization and delivery.

  17. Value of non-contrast sequences in magnetic resonance angiography of hepatic arterial vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Vivek B., E-mail: vivek.kalra@yale.edu [Department of Diagnostic Radiology, Yale School of Medicine, Box 208042, Tompkins East 2, 333 Cedar Street, New Haven, CT 06520-8042, United States of America (United States); Gilbert, John W., E-mail: jwgilbert@partners.org [Department of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Francis Street, Boston, MA 02115, United States of America (United States); Krishnamoorthy, Saravanan, E-mail: sk3552@columbia.edu [Department of Radiology, Columbia University Medical Center, Milstein 3rd Fl, New York NY 10032 United States (United States); Cornfeld, Daniel, E-mail: daniel.cornfeld@yale.edu [Department of Diagnostic Radiology, Yale School of Medicine, Box 208042, Tompkins East 2, 333 Cedar St, New Haven, CT 06520-8042, United States of America (United States)

    2014-06-15

    Objective: To evaluate value of adding non-contrast MR angiographic sequence (In-Flow Inversion Recovery [IFIR]) to standard fat-suppressed T1-weighted postcontrast sequence (3D spoiled gradient echo [3D-GRE]) for evaluating hepatic arterial anatomy. Methods: Retrospective evaluation of 30 consecutive patients undergoing multiphase liver MRI. Individual vessels for IFIR/3D-GRE sequences were evaluated by two blinded readers using a four-point scale. Statistical analysis was performed using the Wilcoxon signed-rank test for vessel conspicuity between IFIR/3D-GRE sequences. Results: IFIR alone diagnostically imaged 8.1% of vessels, 3D-GRE alone 25.8%, 55.8% by both 3D-GRE/IFIR, and 10.3% of vessels by neither. Two patients with variant vascular anatomy were visualized with both sequences. Addition of IFIR to 3D-GRE resulted in statistically significant increase in arterial visualization (p < 0.001), 10% relative increase in identified vessels, and 3–5 mi increase in acquisition time for total scan time of 30–35 min. Conclusions: IFIR may be a useful adjunct to 3D-GRE in hepatic angiography without adding considerably to scan time. 10% more hepatic arteries were seen when combining information from IFIR/3D-GRE vs. 3D-GRE alone.

  18. Heat transfer from two-side heated helical channels

    International Nuclear Information System (INIS)

    Shimonis, V.; Ragaishis, V.; Poshkas, P.

    1995-01-01

    Experimental results are presented on the heat transfer from two-side heated helical channels to gas (air) flows. The study covered six configurations and wide ranges of geometrical (D/h=5.5 to 84.2) and performance (Re=10 3 to 2*10 5 ) parameters. Under the influence of Re and of the channel curvature, the heat transfer from both the convex and the concave surfaces for two-side heating (q w1 ≅ q w2 ) is augmented by 20-30% over one-side heating. Improved relations to predict the critical values of Reynolds Re cr1 and Re cr2 are suggested. They enable more exact predictions of the heat transfer from convex surface in transient flows for one-side heating. The relation for annular channels is suggested for the turbulent heat transfer from the convex and concave surfaces of two-side heated helical channels. It can be adapted by introducing earlier expresions for one-side heated helical channels. (author). 6 refs., 2 tabs., 3 figs

  19. Helix-sense-selective co-precipitation for preparing optically active helical polymer nanoparticles/graphene oxide hybrid nanocomposites.

    Science.gov (United States)

    Huang, Huajun; Li, Weifei; Shi, Yan; Deng, Jianping

    2017-05-25

    Constructing optically active helical polymer based nanomaterials without using expensive and limited chirally helical polymers has become an extremely attractive research topic in both chemical and materials science. In this study, we prepared a series of optically active helical polymer nanoparticles/graphene oxide (OAHPNs/GO) hybrid nanocomposites through an unprecedented strategy-the co-precipitation of optically inactive helical polymers and chirally modified GO. This approach is named helix-sense-selective co-precipitation (HSSCP), in which the chirally modified GO acted as a chiral source for inducing and further stabilizing the predominantly one-handed helicity in the optically inactive helical polymers. SEM and TEM images show quite similar morphologies of all the obtained OAHPNs/GO nanocomposites; specifically, the chirally modified GO sheets were uniformly decorated with spherical polymer nanoparticles. Circular dichroism (CD) and UV-vis absorption spectra confirmed the preferentially induced helicity in the helical polymers and the optical activity of the nanocomposites. The established HSSCP strategy is thus proven to be widely applicable and is expected to produce numerous functional OAHPNs/GO nanocomposites and even the analogues.

  20. Observation of an optical vortex beam from a helical undulator in the XUV region.

    Science.gov (United States)

    Kaneyasu, Tatsuo; Hikosaka, Yasumasa; Fujimoto, Masaki; Iwayama, Hiroshi; Hosaka, Masahito; Shigemasa, Eiji; Katoh, Masahiro

    2017-09-01

    The observation of an optical vortex beam at 60 nm wavelength, produced as the second-harmonic radiation from a helical undulator, is reported. The helical wavefront of the optical vortex beam was verified by measuring the interference pattern between the vortex beam from a helical undulator and a normal beam from another undulator. Although the interference patterns were slightly blurred owing to the relatively large electron beam emittance, it was possible to observe the interference features thanks to the helical wavefront of the vortex beam. The experimental results were well reproduced by simulation.

  1. Effect of loss cone on confinement in toroidal helical device

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.; Fukuyama, A.; Hanatani, K.

    1988-12-01

    Analytical estimation is given on the loss cone in the toroidal helical devices in the presence of the radial electric field and the modulation of the helical ripple. The minimum energy of particles entering the loss cone is calculated. The modulation is not always effective in reducing the loss in the presence of the radial electric field. The plasma loss due to the loss cone is estimated in the collisionless limit. The radial electric field is estimated in the presence of the loss cone. It is found that the transition to the solution with positive radial electric field, which is necessary to achieve the high-ion-temperature mode, becomes difficult. This difficulty is large for the systems with the small helical ripple. (author)

  2. The using of megavoltage computed tomography in image-guided brachytherapy for cervical cancer: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Tharavichitkul, Ekkasit; Janla-or, Suwapim; Wanwilairat, Somsak; Chakrabandhu, Somvilai; Klunklin, Pitchayaponne; Onchan, Wimrak; Supawongwattana, Bongkot; Chitapanarux, Imjai [Division of Therapeutic Radiology and Oncology, Dept. of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai (Thailand); Galalae, Razvan M. [Faculty of Medicine, Christian-Albrecht University (Campus Kiel), Kiel (Germany)

    2015-06-15

    We present a case of cervical cancer treated by concurrent chemoradiation. In radiation therapy part, the combination of the whole pelvic helical tomotherapy plus image-guided brachytherapy with megavoltage computed tomography of helical tomotherapy was performed. We propose this therapeutic approach could be considered in a curative setting in some problematic situation as our institution.

  3. Body composition measurement using computed tomography: Does the phase of the scan matter?

    Science.gov (United States)

    Rollins, Katie E; Javanmard-Emamghissi, Hannah; Awwad, Amir; Macdonald, Ian A; Fearon, Kenneth C H; Lobo, Dileep N

    2017-09-01

    The aim of this study was to determine, from the methodologic standpoint, the effect of the presence or absence of intravenous contrast on body composition variables obtained by analysis of computed tomography (CT) images. Triphasic abdominal (noncontrast, arterial phase, and portovenous phase contrast) CT scans from 111 patients were analyzed by two independent assessors at the third lumbar vertebral level using SliceOmatic software (version 5.0, TomoVision, Montreal, Canada). Variables included skeletal muscle index (SMI), fat and fat-free mass (FM and FFM, respectively), and mean skeletal muscle Hounsfield units (SMHU). Mean SMHU was lowest in the noncontrast phase (29.4, standard deviation [SD] 8.9 HU), followed by arterial (32.4, SD 9.3 HU) then portovenous phases (34.9, SD 9.4 HU). The mean skeletal muscle attenuation was significantly different depending on the phase of the scan in which the images were obtained. Calculated FM was significantly lower in both arterial (28.6, SD 8.8 kg, P definition of myosteatosis should include a standardized phase of CT for analysis and this should be incorporated within its definition. However, as the magnitudes of the differences were relatively small, the effect of the phase of the scan on predicting outcome needs to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Helical Birods: An Elastic Model of Helically Wound Double-Stranded Rods

    KAUST Repository

    Prior, Christopher

    2014-03-11

    © 2014, Springer Science+Business Media Dordrecht. We consider a geometrically accurate model for a helically wound rope constructed from two intertwined elastic rods. The line of contact has an arbitrary smooth shape which is obtained under the action of an arbitrary set of applied forces and moments. We discuss the general form the theory should take along with an insight into the necessary geometric or constitutive laws which must be detailed in order for the system to be complete. This includes a number of contact laws for the interaction of the two rods, in order to fit various relevant physical scenarios. This discussion also extends to the boundary and how this composite system can be acted upon by a single moment and force pair. A second strand of inquiry concerns the linear response of an initially helical rope to an arbitrary set of forces and moments. In particular we show that if the rope has the dimensions assumed of a rod in the Kirchhoff rod theory then it can be accurately treated as an isotropic inextensible elastic rod. An important consideration in this demonstration is the possible effect of varying the geometric boundary constraints; it is shown the effect of this choice becomes negligible in this limit in which the rope has dimensions similar to those of a Kirchhoff rod. Finally we derive the bending and twisting coefficients of this effective rod.

  5. Helical coil alignment in the advanced toroidal facility

    International Nuclear Information System (INIS)

    Taylor, D.J.; Cole, M.J.; Johnson, R.L.; Nelson, B.E.; Warwick, J.E.; Whitson, J.C.

    1985-01-01

    This paper presents a brief overview of the helical coil design concept, detailed descriptions of the method for installation and alignment, and discussions of segment installation and alignment equipment. Alignment is accomplished by optical methods using electronic theodolites connected to a microcomputer to form a coordinate measurement system. The coordinate measurement system is described in detail, along with target selection and fixturing for manipulation of the helical coil segments during installation. In addition, software is described including vendor-supplied software used in the coordinate measurement system and in-house-developed software used to calibrate segment and positioning fixture motion. 2 refs., 8 figs

  6. Coronary Plaque Volume and Composition Assessed by Computed Tomography Angiography in Patients With Late-Onset Major Depression

    DEFF Research Database (Denmark)

    Devantier, Torben Albert; Nørgaard, Bjarne Linde; Ovrehus, Kristian Altern

    2013-01-01

    Background: Depression is a stronger predictor for the onset of or death from clinical coronary artery disease than traditional cardiovascular risk factors. The association between depression and coronary artery disease has previously been investigated in non-contrast enhanced computed tomography...... studies with conflicting results. The aim of this study was to further elucidate the depression-coronary artery disease relation by use of coronary computed tomography angiography. Methods: The calcified and noncalcified coronary plaque volumes were determined by semiautomatic volumetric quantification...... with controls (14% vs. 7%, p = 0.044). Correspondingly, having depression was associated with an increased calcified plaque proportion of 11.3 [95% confidence interval: 2.63-20.1; p = 0.012] percentage points after adjustment for demographics and cardiovascular risk factors. Conclusion: The proportion...

  7. Extracting 3D Parametric Curves from 2D Images of Helical Objects.

    Science.gov (United States)

    Willcocks, Chris G; Jackson, Philip T G; Nelson, Carl J; Obara, Boguslaw

    2017-09-01

    Helical objects occur in medicine, biology, cosmetics, nanotechnology, and engineering. Extracting a 3D parametric curve from a 2D image of a helical object has many practical applications, in particular being able to extract metrics such as tortuosity, frequency, and pitch. We present a method that is able to straighten the image object and derive a robust 3D helical curve from peaks in the object boundary. The algorithm has a small number of stable parameters that require little tuning, and the curve is validated against both synthetic and real-world data. The results show that the extracted 3D curve comes within close Hausdorff distance to the ground truth, and has near identical tortuosity for helical objects with a circular profile. Parameter insensitivity and robustness against high levels of image noise are demonstrated thoroughly and quantitatively.

  8. Impact of helical boundary conditions on nonlinear 3D magnetohydrodynamic simulations of reversed-field pinch

    International Nuclear Information System (INIS)

    Veranda, M; Bonfiglio, D; Cappello, S; Chacón, L; Escande, D F

    2013-01-01

    Helical self-organized reversed-field pinch (RFP) regimes emerge both numerically—in 3D visco-resistive magnetohydrodynamic (MHD) simulations—and experimentally, as in the RFX-mod device at high current (I P above 1 MA). These states, called quasi-single helicity (QSH) states, are characterized by the action of a MHD mode that impresses a quasi-helical symmetry to the system, thus allowing a high degree of magnetic chaos healing. This is in contrast with the multiple helicity (MH) states, where magnetic fluctuations create a chaotic magnetic field degrading the confinement properties of the RFP. This paper reports an extensive numerical study performed in the frame of 3D visco-resistive MHD which considers the effect of helical magnetic boundary conditions, i.e. of a finite value of the radial magnetic field at the edge (magnetic perturbation, MP). We show that the system can be driven to a selected QSH state starting from both spontaneous QSH and MH regimes. In particular, a high enough MP can force a QSH helical self-organization with a helicity different from the spontaneous one. Moreover, MH states can be turned into QSH states with a selected helicity. A threshold in the amplitude of MP is observed above which is able to influence the system. Analysis of the magnetic topology of these simulations indicates that the dominant helical mode is able to temporarily sustain conserved magnetic structures in the core of the plasma. The region occupied by conserved magnetic surfaces increases reducing secondary modes' amplitude to experimental-like values. (paper)

  9. Metastatic tumor of the pancreas: helical CT findings

    International Nuclear Information System (INIS)

    Lee, Soon Jin; Lee, Won Jae; Lim, Hyo Keun; Kim, Seung Hoon; Kim, Kyeong Ah; Choi, Sang Hee; Jang, Hyun Jung; Lee, Ji Yeon

    2000-01-01

    To analyze the helical computed tomographic (CT) findings of distant metastatic tumors to the pancreas and to determine the differential points between these and primary pamcreatic carcinomas. We sruveyed 22 patients with metastatic tumor of the pancreas, proven on the basis of clinical and pathological findings. Seventeen patients were men, and five were women, and their ages ranged between 36 and 83 years. Their primary conditions were lung cancer (n=3D15), rectal cancer (n=3D2), melanoma of the foot, chondrosarcoma of the sacrum, cervical cancer, leiomyosarcoma of the uterus, and extragonadal choriocarcinoma of the mediastinum. We retrospectively reviewed the abdominal helical CT findings, analysing the number, location, size and attenuation of masses, as well as secondary change, which included dilatation of the pancreatic and biliary ducts and invasion of peripancreatic tissue or vessels. We also evaluated the differential findings of primary pancreatic cancer. Sixteen patients had a solitary focal mass, while in five, two masses were present. Among the 22 patients, low-density nodular masses were present in 21; in the other, in whom multiple metastasis from chondrosarcoma had occurred, there was dense calcification. The size of metastatic masses varied, ranging from 0.6 to 6 cm in diameter. The pancreatic duct proximal to the mass was dilated in ten cases, while the bile duct was dilated in six. The metastatic masses masses demonstrated no peripancreatic or vascular invasion, though they showed a discrete margin and contour bulging. Single metastasis to the pancreas was most common, and metastatic masses had a discrete margin, with contour bulging. There was no peripancreatic or vascular invasion. If the metastasis involved a single low-attenuated mass, however, with pancreatic or biliary dilatation, it was difficult to differentiate this from primary pancreatic cancer. (author)

  10. Comparison of radiation dose estimates, image noise, and scan duration in pediatric body imaging for volumetric and helical modes on 320-detector CT and helical mode on 64-detector CT

    International Nuclear Information System (INIS)

    Johnston, Jennifer H.; Podberesky, Daniel J.; Larson, David B.; Alsip, Christopher; Yoshizumi, Terry T.; Angel, Erin; Barelli, Alessandra; Toncheva, Greta; Egelhoff, John C.; Anderson-Evans, Colin; Nguyen, Giao B.; Frush, Donald P.; Salisbury, Shelia R.

    2013-01-01

    Advanced multidetector CT systems facilitate volumetric image acquisition, which offers theoretic dose savings over helical acquisition with shorter scan times. Compare effective dose (ED), scan duration and image noise using 320- and 64-detector CT scanners in various acquisition modes for clinical chest, abdomen and pelvis protocols. ED and scan durations were determined for 64-detector helical, 160-detector helical and volume modes under chest, abdomen and pelvis protocols on 320-detector CT with adaptive collimation and 64-detector helical mode on 64-detector CT without adaptive collimation in a phantom representing a 5-year-old child. Noise was measured as standard deviation of Hounsfield units. Compared to 64-detector helical CT, all acquisition modes on 320-detector CT resulted in lower ED and scan durations. Dose savings were greater for chest (27-46%) than abdomen/pelvis (18-28%) and chest/abdomen/pelvis imaging (8-14%). Noise was similar across scanning modes, although some protocols on 320-detector CT produced slightly higher noise. Dose savings can be achieved for chest, abdomen/pelvis and chest/abdomen/pelvis examinations on 320-detector CT compared to helical acquisition on 64-detector CT, with shorter scan durations. Although noise differences between some modes reached statistical significance, this is of doubtful diagnostic significance and will be studied further in a clinical setting. (orig.)

  11. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  12. Experimental measurement of fluid force coefficients for helical tube arrays in air cross flow

    International Nuclear Information System (INIS)

    Shen Shifang; Liu Reilan

    1993-01-01

    A helical coil steam generator is extensively used in the High Temperature Gas Cooled Reactor (HTGCR) and Sodium Cooled Reactor (SCR) nuclear power stations because of its compact structure, good heat-exchange, and small volume. The experimental model is established by the structure parameter of 200MW HTGCR. The fluid elastic instability of helical tube arrays in air cross flow is studied in this experiment, and the fluid force coefficients of helical tube arrays having the same notational direction of two adjacent layers in air cross flow are obtained. As compared to the fluid force coefficients of cylinder tube arrays, the fluid force coefficients of helical tube arrays are smaller in the low velocity area, and greater in the high velocity area. The experimental results help the study of the dynamic characteristics of helical tube arrays in air cross flow

  13. Computer-aided detection of bladder wall thickening in CT urography (CTU)

    Science.gov (United States)

    Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon Z.; Gordon, Marshall N.; Samala, Ravi K.

    2018-02-01

    We are developing a computer-aided detection system for bladder cancer in CT urography (CTU). Bladder wall thickening is a manifestation of bladder cancer and its detection is more challenging than the detection of bladder masses. We first segmented the inner and outer bladder walls using our method that combined deep-learning convolutional neural network with level sets. The non-contrast-enhanced region was separated from the contrast-enhanced region with a maximum-intensity-projection-based method. The non-contrast region was smoothed and gray level threshold was applied to the contrast and non-contrast regions separately to extract the bladder wall and potential lesions. The bladder wall was transformed into a straightened thickness profile, which was analyzed to identify regions of wall thickening candidates. Volume-based features of the wall thickening candidates were analyzed with linear discriminant analysis (LDA) to differentiate bladder wall thickenings from false positives. A data set of 112 patients, 87 with wall thickening and 25 with normal bladders, was collected retrospectively with IRB approval, and split into independent training and test sets. Of the 57 training cases, 44 had bladder wall thickening and 13 were normal. Of the 55 test cases, 43 had wall thickening and 12 were normal. The LDA classifier was trained with the training set and evaluated with the test set. FROC analysis showed that the system achieved sensitivities of 93.2% and 88.4% for the training and test sets, respectively, at 0.5 FPs/case.

  14. Seismic analysis of a helical coil type heat exchanger

    International Nuclear Information System (INIS)

    Nishiguchi, I.; Baba, O.; Yatabe, H.

    1984-01-01

    The intermediate heat exchanger (IHX) which forms the reactor coolant pressure boundary is one of the most important components of the Multi-purpose Experimental Very High Temperature Gas-cooled Reactor (ex. VHTR) under development at Japan Atomic Energy Research Institute. This paper presents the results of the finite element modeling, eigenvalue analysis and dynamic response analysis of the IHX. For the modeling, the structure of the IHX was separated into a helical tube bundle, inner and outer vessels, and a center pipe. The eigenvalue analysis was made for each structure with a detailed three-dimensional finite element model. Then the simplified model of the whole structure of the IHX was constructed using the result of the eigenvalue analysis. A dynamic response analysis was made for the simplified model with and without stoppers of the helical tube bundle supports and the center pipe. The effect of stoppers on the behavior of the center pipe, the helical tube, and the connecting tube is discussed. (author)

  15. Geometric scalings for the electrostatically driven helical plasma state

    Science.gov (United States)

    Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.

    2017-12-01

    A new plasma state has been investigated [Akcay et al., Phys. Plasmas 24, 052503 (2017)], with a uniform applied axial magnetic field in a periodic cylinder of length L = 2 π R , driven by helical electrodes. The drive is single helicity, depending on m θ + k z = m θ - n ζ , where ζ = z / R and k = - n / R . For strong ( m , n ) = ( 1 , 1 ) drive, the state was found to have a strong axial mean current density, with a mean-field safety factor q 0 ( r ) just above the pitch of the electrodes m / n = 1 in the interior. This state has possible applications to DC electrical transformers and tailoring of the current profile in tokamaks. We study two geometric issues of interest for these applications: (i) scaling of properties with the plasma length or aspect ratio and (ii) behavior for different helicities, specifically ( m , n ) = ( 1 , n ) for n > 1 and ( m , n ) = ( 2 , 1 ) .

  16. Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, G., E-mail: gilgueng.hwang@lpn.cnrs.fr; Decanini, D.; Leroy, L.; Haghiri-Gosnet, A. M. [Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, Marcoussis 91460 (France)

    2016-03-15

    Microswimmers integrated into microfluidic devices that are capable of self-illumination through fluorescence could revolutionize many aspects of technology, especially for biological applications. Few illumination and propulsion techniques of helical microswimmers inside microfluidic channels have been demonstrated. This paper presents the fabrication, detachment, and magnetic propulsions of multifunctional fluorescent-magnetic helical microswimmers integrated inside microfluidics. The fabrication process is based on two-photon laser lithography to pattern 3-D nanostructures from fluorescent photoresist coupled with conventional microfabrication techniques for magnetic thin film deposition by shadowing. After direct integration inside a microfluidic device, injected gas bubble allows gentle detachment of the integrated helical microswimmers whose magnetic propulsion can then be directly applied inside the microfluidic channel using external electromagnetic coil setup. With their small scale, fluorescence, excellent resistance to liquid/gas surface tension, and robust propulsion capability inside the microfluidic channel, the microswimmers can be used as high-resolution and large-range mobile micromanipulators inside microfluidic channels.

  17. Finite-temperature effects in helical quantum turbulence

    Science.gov (United States)

    Clark Di Leoni, Patricio; Mininni, Pablo D.; Brachet, Marc E.

    2018-04-01

    We perform a study of the evolution of helical quantum turbulence at different temperatures by solving numerically the Gross-Pitaevskii and the stochastic Ginzburg-Landau equations, using up to 40963 grid points with a pseudospectral method. We show that for temperatures close to the critical one, the fluid described by these equations can act as a classical viscous flow, with the decay of the incompressible kinetic energy and the helicity becoming exponential. The transition from this behavior to the one observed at zero temperature is smooth as a function of temperature. Moreover, the presence of strong thermal effects can inhibit the development of a proper turbulent cascade. We provide Ansätze for the effective viscosity and friction as a function of the temperature.

  18. HippDB: a database of readily targeted helical protein-protein interactions.

    Science.gov (United States)

    Bergey, Christina M; Watkins, Andrew M; Arora, Paramjit S

    2013-11-01

    HippDB catalogs every protein-protein interaction whose structure is available in the Protein Data Bank and which exhibits one or more helices at the interface. The Web site accepts queries on variables such as helix length and sequence, and it provides computational alanine scanning and change in solvent-accessible surface area values for every interfacial residue. HippDB is intended to serve as a starting point for structure-based small molecule and peptidomimetic drug development. HippDB is freely available on the web at http://www.nyu.edu/projects/arora/hippdb. The Web site is implemented in PHP, MySQL and Apache. Source code freely available for download at http://code.google.com/p/helidb, implemented in Perl and supported on Linux. arora@nyu.edu.

  19. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Pla...

  20. Adenocarcinoma of the pancreatic head: preoperative helical CT. Criteria of resectability

    International Nuclear Information System (INIS)

    Kozima, Shigeru; Szelagowski, Carlos; Tisserand, Guy L.; Ocampo, Carlos; Zandalazini, Hugo; Silva, Walter; Oria, Alejandro; Vidovic, Gustavo; Varas, Pablo

    2001-01-01

    Objective: The purpose of this study is to determine the accuracy of biphasic helical CT scanning in predicting resectability of adenocarcinoma of the head of the pancreas by staying tumor involvement of the portal and superior mesenteric veins. Material and methods: 46 patients with proven adenocarcinoma of the head of the pancreas who underwent curative or palliative surgery were studied with preoperative biphasic helical CT scanning. Tumor involvement of the portal and mesenteric veins was graduated on a 1-3 scale based on circumferential contiguity of the tumor vessel. Grade 1: without contact; grade 2: tumor involvement of less than 50% of the vessel; grade 3: tumor involvement of more than 50%. Results: The total number of vessels evaluated was 92. In our series the preoperative biphasic helical CT was accurate in 77% for resectability and unresectability. Conclusion: Our experience of staging in 3 grades with biphasic helical CT, vessel involvement the portal and superior mesenteric veins of adenocarcinoma of the head of the pancreas is highly specific for unresectable tumor in patients who were graded 2 and 3. (author)

  1. Helical polyurethane-attapulgite nanocomposite: Preparation, characterization and study of optical activity

    International Nuclear Information System (INIS)

    Wang Zhiqiang; Zhou Yuming; Sun Yanqing; Fan Kai; Guo Xingxing; Jiang Xiaolei

    2009-01-01

    Helical polyurethane-attapulgite (BM-ATT) based on R-1,1'-binaphthyl-2',2-diol (R-BINOL) composite was prepared after the surface modification of attapulgite (ATT). BM-ATT was characterized by Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HTEM) and vibrational circular dichroism (VCD) spectroscopy. FT-IR and XRD analyses indicate that the helical polyurethane has been successfully grafted onto the surfaces of the modified ATT without destroying the original crystalline structure of ATT. BM-ATT exhibits the rod-like structure by SEM, TEM, and HTEM photographs. BM-ATT displays obvious Cotton effect for some absorbance in VCD spectrum, and its optical activity results from the singlehanded conformation of helical polyurethane. - Graphical Abstract: Helical polyurethane-attapulgite (BM-ATT) based on R-1,1'-binaphthyl-2',2-diol (R-BINOL) nanocomposite was prepared after surface modification of attapulgite (ATT). This rod-like composite is coated by the optically active polyurethane shell on the surfaces.

  2. Synthesis, model and stability of helically coiled carbon nanotubes

    DEFF Research Database (Denmark)

    Fejes, Dora; Raffai, Manuella; Hernadi, Klara

    2013-01-01

    . Our experiments focused on the production and development of catalysts for the synthesis of helically coiled CNTs (carbon nanotubes). The catalysts were tested in the decomposition of acetylene by CCVD (Catalytic Chemical Vapor Deposition) method. The carbon deposit was imaged by TEM (Transmission......Structural model of helically coiled carbon nanotubes is proposed. It is constructed by means of topological coordinate method. Relaxation and cohesive energy calculation are performed by molecular mechanics, using second-generation bond order potential for hydrocarbons introduced by D. W. Brenner...

  3. Turbulence spectra, transport, and E × B flows in helical plasmas

    International Nuclear Information System (INIS)

    Watanabe, T.-H.; Nunami, M.; Sugama, H.; Satake, S.; Matsuoka, S.; Ishizawa, A.; Tanaka, K.; Maeyama, Shinya

    2012-11-01

    Gyrokinetic simulation of ion temperature gradient turbulence and zonal flows for helical plasmas has been validated against the Large Helical Device experiments with high ion temperature, where a reduced modeling of ion heat transport is also considered. It is confirmed by the entropy transfer analysis that the turbulence spectrum elongated in the radial wavenumber space is associated with successive interactions with zonal flows. A novel multi-scale simulation for turbulence and zonal flows in poloidally-rotating helical plasmas has demonstrated strong zonal flow generation by turbulence, which implies that turbulent transport processes in non-axisymmetric systems are coupled to neoclassical transport through the macroscopic E × B flows determined by the ambipolarty condition for neoclassical particle fluxes. (author)

  4. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao

    2017-11-27

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  5. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao; Wu, Ying; Mei, Jun

    2017-01-01

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  6. Moreau's hydrodynamic helicity and the life of vortex knots and links

    Science.gov (United States)

    Irvine, William T. M.

    2018-03-01

    This contribution to an issue of Comptes rendus Mécanique, commemorating the scientific work of Jean-Jacques Moreau (1923-2014), is intended to give a brief overview of recent developments in the study of helicity dynamics in real fluids and an outlook on the growing legacy of Moreau's work. Moreau's discovery of the conservation of hydrodynamic helicity, presented in an article in the Comptes rendus de l'Académie des sciences in 1961, was not recognized until long after it was published. This seminal contribution is gaining a new life now that modern developments allow the study of helicity and topology in fields and is having a growing impact on diverse areas of physics.

  7. Suitability of helical multislice acquisition technique for routine unenhanced brain CT: an image quality study using a 16-row detector configuration

    Energy Technology Data Exchange (ETDEWEB)

    Hernalsteen, Danielle; Cosnard, Guy; Grandin, Cecile; Duprez, Thierry [Universite Catholique de Louvain, Cliniques Universitaires Saint-Luc, Department of Radiology and Medical Imaging, Brussels (Belgium); Robert, Annie [Public Health School, Universite Catholique de Louvain, Department of Epidemiologics and Medical Statistics, Brussels (Belgium); Vlassenbroek, Alain [CT Clinical Science, Philips Medical Systems, Cleveland, OH (United States)

    2007-04-15

    Subjective and objective image quality (IQ) criteria, radiation doses, and acquisition times were compared using incremental monoslice, incremental multislice, and helical multislice acquisition techniques for routine unenhanced brain computed tomography (CT). Twenty-four patients were examined by two techniques in the same imaging session using a 16-row CT system equipped with 0.75-width detectors. Contiguous ''native'' 3-mm-thick slices were reconstructed for all acquisitions from four detectors for each slice (4 x 0.75 mm), with one channel available per detector. Two protocols were tailored to compare: (1) one-slice vs four-slice incremental images; (2) incremental vs helical four-slice images. Two trained observers independently scored 12 subjective items of IQ. Preference for the technique was assessed by one-tailed t test and the interobserver variation by two-tailed t test. The two observers gave very close IQ scores for the three techniques without significant interobserver variations. Measured IQ parameters failed to reveal any difference between techniques, and an approximate half radiation dose reduction was obtained by using the full 16-row configuration. Acquisition times were cumulatively shortened by using the multislice and the helical modality. (orig.)

  8. Suitability of helical multislice acquisition technique for routine unenhanced brain CT: an image quality study using a 16-row detector configuration

    International Nuclear Information System (INIS)

    Hernalsteen, Danielle; Cosnard, Guy; Grandin, Cecile; Duprez, Thierry; Robert, Annie; Vlassenbroek, Alain

    2007-01-01

    Subjective and objective image quality (IQ) criteria, radiation doses, and acquisition times were compared using incremental monoslice, incremental multislice, and helical multislice acquisition techniques for routine unenhanced brain computed tomography (CT). Twenty-four patients were examined by two techniques in the same imaging session using a 16-row CT system equipped with 0.75-width detectors. Contiguous ''native'' 3-mm-thick slices were reconstructed for all acquisitions from four detectors for each slice (4 x 0.75 mm), with one channel available per detector. Two protocols were tailored to compare: (1) one-slice vs four-slice incremental images; (2) incremental vs helical four-slice images. Two trained observers independently scored 12 subjective items of IQ. Preference for the technique was assessed by one-tailed t test and the interobserver variation by two-tailed t test. The two observers gave very close IQ scores for the three techniques without significant interobserver variations. Measured IQ parameters failed to reveal any difference between techniques, and an approximate half radiation dose reduction was obtained by using the full 16-row configuration. Acquisition times were cumulatively shortened by using the multislice and the helical modality. (orig.)

  9. Helically symmetric experiment, (HSX) goals, design and status

    International Nuclear Information System (INIS)

    Anderson, F.S.B.; Almagri, A.F.; Anderson, D.T.; Matthews, P.G.; Talmadge, J.N.; Shohet, J.L.

    1995-01-01

    HSX is a quasi-helically symmetric (QHS) stellarator currently under construction at the Torsatron-Stellarator Laboratory of the University of Wisconsin-Madison. This device is unique in its magnetic design in that the magnetic field spectrum possesses only a single dominant (helical) component. This design avoids the large direct orbit losses and the low-collisionality neoclassical losses associated with conventional stellarators. The restoration of symmetry to the confining magnetic field makes the neoclassical confinement in this device analogous to an axisymmetric q=1/3 tokamak. The HSX device has been designed with a clear set of primary physics goals: demonstrate the feasibility of construction of a QHS device, examine single particle confinement of injected ions with regard to magnetic field symmetry breaking, compare density and temperature profiles in this helically symmetric system to those for axisymmetric tokamaks and conventional stellarators, examine electric fields and plasma rotation with edge biasing in relation to L-H transitions in symmetric versus non-symmetric stellarator systems, investigate QHS effects on 1/v regime electron confinement, and examine how greatly-reduced neoclassical electron thermal conductivity compares to the experimental χ e profile. 3 refs., 4 figs., 1 tab

  10. Topological characteristics of helical repeat proteins

    NARCIS (Netherlands)

    Groves, M R; Barford, D

    The recent elucidation of protein structures based upon repeating amino acid motifs, including the armadillo motif, the HEAT motif and tetratricopeptide repeats, reveals that they belong to the class of helical repeat proteins. These proteins share the common property of being assembled from tandem

  11. QED polarization asymmetries for e+e- scattering due to helicity flips

    International Nuclear Information System (INIS)

    Anders, T.B.; Sell, E.W.

    1992-01-01

    The polarization asymmetries for the e + e - scattering with polarized incoming of outgoing beams, which are proportional to the amplitudes φ 5 describing one helicity flip and φ 2 describing two helicity flips, have been calculated including their pure QED radiative corrections. These asymmetries are partly large and can be observed well at low energies. (orig.)

  12. Half-dose non-contrast CT in the investigation of urolithiasis: image quality improvement with third-generation integrated circuit CT detectors.

    Science.gov (United States)

    Wang, Jun; Kang, Tony; Arepalli, Chesnal; Barrett, Sarah; O'Connell, Tim; Louis, Luck; Nicolaou, Savvakis; McLaughlin, Patrick

    2015-06-01

    The objective of this study is to establish the effect of third-generation integrated circuit (IC) CT detector on objective image quality in full- and half-dose non-contrast CT of the urinary tract. 51 consecutive patients with acute renal colic underwent non-contrast CT of the urinary tract using a 128-slice dual-source CT before (n = 24) and after (n = 27) the installation of third-generation IC detectors. Half-dose images were generated using projections from detector A using the dual-source RAW data. Objective image noise in the liver, spleen, right renal cortex, and right psoas muscle was compared between DC and IC cohorts for full-dose and half-dose images reconstructed with FBP and IR algorithms using 1 cm(2) regions of interest. Presence and size of obstructing ureteric calculi were also compared for full-dose and half-dose reconstructions using DC and IC detectors. No statistical difference in age and lateral body size was found between patients in the IC and DC cohorts. Radiation dose, as measured by size-specific dose estimates, did not differ significantly either between the two cohorts (10.02 ± 4.54 mGy IC vs. 12.28 ± 7.03 mGy DC). At full dose, objective image noise was not significantly lower in the IC cohort as compared to the DC cohort for the liver, spleen, and right psoas muscle. At half dose, objective image noise was lower in the IC cohort as compared to DC cohort at the liver (21.32 IC vs. 24.99 DC, 14.7% decrease, p 0.05 for all comparisons). Third-generation IC detectors result in lower objective image noise at full- and half-radiation dose levels as compared with traditional DC detectors. The magnitude of noise reduction was greater at half-radiation dose indicating that the benefits of using novel IC detectors are greater in low and ultra-low-dose CT imaging.

  13. Experimental investigation of transverse mixing in porous media under helical flow conditions

    DEFF Research Database (Denmark)

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.

    2016-01-01

    Plume dilution and transverse mixing can be considerably enhanced by helical flow occurring in three-dimensional heterogeneous anisotropic porous media. In this study, we perform tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume...

  14. Hamiltonian theory of vacuum helical torus lines of magnetic force

    International Nuclear Information System (INIS)

    Gnudi, Giovanni; Hatori, Tadatsugu

    1994-01-01

    For making plasma into equilibrium state, the lines of magnetic force must have magnetic surfaces. However in a helical system, space is divided into the region having magnetic surface structure and the region that does not have it. Accordingly, it is an important basic research for the plasma confinement in a helical system to examine where is the boundary of both regions and how is the large area structure of the lines of magnetic force in the boundary region. The lines of magnetic force can be treated as a Hamilton mechanics system, and it has been proved that the Hamiltonian for the lines of magnetic force can be expressed by a set of canonical variables and the function of time. In this research, the Hamiltonian that describes the lines of magnetic force of helical system torus coordination in vacuum was successfully determined concretely. Next, the development of new linear symplectic integration method was carried out. The important supports for the theory of determining Hamiltonian are Lie transformation and paraxial expansion. The procedure is explained. In Appendix, Lie transformation, Hamiltonian for the lines of magnetic force, magnetic potential, Taylor expansion of the potential, cylindrical limit approximation, helical toroidal potential and integrable model are described. (K.I.)

  15. Topology and transport in the edge region of RFX-mod helical regimes

    International Nuclear Information System (INIS)

    Scarin, P.; Vianello, N.; Agostini, M.; Spizzo, G.; Spolaore, M.; Zuin, M.; Cappello, S.; Carraro, L.; Cavazzana, R.; De Masi, G.; Martines, E.; Moresco, M.; Munaretto, S.; Puiatti, M. E.; Valisa, M.

    2011-01-01

    New edge diagnostics and detailed analysis of magnetic topology have significantly improved the comprehension of the processes developing at the boundary of a reversed-field pinch (RFP) plasma in RFX-mod (a = 0.46 m, R = 2 m). An upper critical density n C ∼ 0.4 n G (n G Greenwald density) is found to limit the operational space for the improved quasi-single helical (QSH) regime: magnetic topology reconstructions and diagnostic observations suggest that this limit is due to a helical plasma-wall interaction which determines toroidally and poloidally localized edge density accumulation and cooling. The experimental evidence is provided by a variety of diagnostics: the magnetic boundary as reconstructed from equilibrium codes reveals a helical deformation, which is well correlated with the modulation of edge pressure profile as reconstructed from the thermal helium beam diagnostic. Correlations with the helical deformation are also observed on the space- and time-resolved patterns of the floating potential measured at the wall, and with the edge plasma flow, obtained from different diagnostics. The relevance of these findings is that understanding the mechanisms that limit the operational space of QSH is decisive in achieving the goal of high-density stationary helical RFP equilibrium.

  16. Kinetic assembly of block copolymers in solution helical cylindrical micelles and patchy nanoparticles

    Science.gov (United States)

    Zhong, Sheng

    There is always an interest to understand how molecules behave under different conditions. One application of this knowledge is to self-assemble molecules into increasingly complex structures in a simple fashion. Self-assembly of amphiphilic block copolymer in solution has produced a large variety of nanostructures through the manipulation in polymer chemistry, assembly environment, and additives. Moreover, some reports suggest the formation of many polymeric assemblies is driven by kinetic process. The goal of this dissertation is to study the influence of kinetics on the assembly of block copolymer. The study shows kinetic control can be a very effective way to make novel polymeric nanostructures. Two examples discussed here are helical cylindrical micelles and patchy nanoparticles. Helical cylindrical micelles are made from the co-assembly of amphiphilic triblock copolymer poly(acrylic acid)-block-poly(methyl acrylate)- block-polystyrene and organoamine molecules in a mixture of tetrahydrofuran (THF) and water (H2O). This system has already shown promise of achieving many assembled structures. The unique aspects about this system are the use of amine molecules to complex with acid groups and the existence of cosolvent system. Application of amine molecules offers a convenient control over assembled morphology and the introduction of PMA-PS selective solvent, THF, promotes the mobility of the polymer chains. In this study, multivalent organoamine molecules, such as diethylenetriamine and triethylenetetramine, are used to interact with block copolymer in THF/water mixture. As expected, the assembled morphologies are dependent on the polymer architecture, selection and quantity of the organoamine molecules, and solution composition. Under the right conditions, unprecedented, multimicrometer-long, supramolecular helical cylindrical micelles are formed. Both single-stranded and double-stranded helices are found in the same system. These helical structures share

  17. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    Directory of Open Access Journals (Sweden)

    N. Tsoupas

    2013-04-01

    Full Text Available The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to

  18. Functional performance of the helical coil steam generator, Consolidated Nuclear Steam Generator (CNSG) IV system. Executive summary report

    International Nuclear Information System (INIS)

    Watson, G.B.

    1975-10-01

    The objective of this project was to study the functional performance of the CNSG - IV helical steam generator to demonstrate that the generator meets steady-state and transient thermal-hydraulic performance specifications and that secondary flow instability will not be a problem. Economic success of the CNSG concepts depends to a great extent on minimizing the size of the steam generator and the reactor vessel for ship installation. Also, for marine application the system must meet stringent specifications for operating stability, transient response, and control. The full-size two-tube experimental unit differed from the CNSG only in the number of tubes and the mode of primary flow. In general, the functional performance test demonstrated that the helical steam generator concept will exceed the specified superheat of 35F at 100% load. The experimental measured superheat at comparable operating conditions was 95F. Testing also revealed that available computer codes accurately predict trends and overall performance characteristics

  19. Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic

    Science.gov (United States)

    Bai, Y.; Jia, Z. Y.; Wang, F. J.; Fu, R.; Guo, H. B.; Cheng, D.; Zhang, B. Y.

    2017-06-01

    Drilling is inevitable for CFRP components’ assembling process in the aviation industry. The exit damage frequently occurs and affects the load carrying capacity of components. Consequently, it is of great urgency to enhance drilling exit quality on CFRP components. The article aims to guide the reasonable choice of drill helical direction and effectively reduce exit damage. Exit observation experiments are carried out with left-hand helical, right-hand helical and straight one-shot drill drilling T800S CFRP laminates separately. The development rules of exit damage and delamination factor curves are obtained. Combined with loading conditions and fracture modes of push-out burrs, and thrust force curves, the influence of drill helical direction on exit damage development is derived. It is found that the main fracture modes for left-hand helical, right-hand helical, and straight one-shot drill are mode I, extrusive fracture, mode III respectively. Among them, mode III has the least effect on exit damage development. Meanwhile, the changing rate of thrust force is relative slow for right-hand helical and straight one-shot drill in the thrust force increasing phase of stage II, which is disadvantaged for exit damage development. Therefore, straight one-shot drill’s exit quality is the best.

  20. Modeling and Swimming Property Characterizations of Scaled-Up Helical Microswimmers.

    OpenAIRE

    Xu , Tiantian; Hwang , Gilgueng; Andreff , Nicolas; Régnier , Stéphane

    2014-01-01

    International audience; Micro- and nanorobots capable of controlled propulsion at low Reynolds number are foreseen to change many aspects of medicine by enabling targeted diagnosis and therapy, and minimally invasive surgery. Several kinds of helical swimmers with different heads actuated by a rotating magnetic field have been proposed in prior works. Beyond these proofs of concepts, this paper aims to obtain an optimized design of the helical swimmers adapted to low Reynolds numbers. For thi...