WorldWideScience

Sample records for noncommutative symplectic geometry

  1. Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology & Symplectic Geometry, Noncommutative Geometry and Physics

    CERN Document Server

    Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry

    2014-01-01

    Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...

  2. Symplectic geometries on supermanifolds

    CERN Document Server

    Lavrov, P M

    2007-01-01

    Extension of symplectic geometry on manifolds to the supersymmetric case is considered. In the even case it leads to the even symplectic geometry (or, equivalently, to the geometry on supermanifolds endowed with an non-degenerate Poisson bracket) or to the geometry on an even Fedosov supermanifolds. It is proven that in the odd case there are two different scalar symplectic structures (namely, an odd closed differential 2-form and the antibracket) which can be used for construction of different symplectic geometries on supermanifolds.

  3. Lectures on Symplectic Geometry

    CERN Document Server

    Silva, Ana Cannas

    2001-01-01

    The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...

  4. Noncommutative algebra and geometry

    CERN Document Server

    De Concini, Corrado; Vavilov, Nikolai 0

    2005-01-01

    Finite Galois Stable Subgroups of Gln. Derived Categories for Nodal Rings and Projective Configurations. Crowns in Profinite Groups and Applications. The Galois Structure of Ambiguous Ideals in Cyclic Extensions of Degree 8. An Introduction to Noncommutative Deformations of Modules. Symmetric Functions, Noncommutative Symmetric Functions and Quasisymmetric Functions II. Quotient Grothendieck Representations. On the Strong Rigidity of Solvable Lie Algebras. The Role of Bergman in Invesigating Identities in Matrix Algebras with Symplectic Involution. The Triangular Structure of Ladder Functors.

  5. Compactified D=11 supermembranes and symplectic noncommutative gauge theories

    Science.gov (United States)

    Martín, I.; Ovalle, J.; Restuccia, A.

    2001-08-01

    It is shown that a double compactified D=11 supermembrane with nontrivial wrapping may be formulated as a symplectic noncommutative gauge theory on the world volume. The symplectic noncommutative structure is intrinsically obtained from the symplectic two-form on the world volume defined by the minimal configuration of its Hamiltonian. The gauge transformations on the symplectic fibration are generated by the area preserving diffeomorphisms on the world volume. Geometrically, this gauge theory corresponds to a symplectic fibration over a compact Riemann surface with a symplectic connection.

  6. Compactified D=11 supermembranes and symplectic noncommutative gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Martin, I.; Ovalle, J.; Restuccia, A.

    2001-08-15

    It is shown that a double compactified D=11 supermembrane with nontrivial wrapping may be formulated as a symplectic noncommutative gauge theory on the world volume. The symplectic noncommutative structure is intrinsically obtained from the symplectic two-form on the world volume defined by the minimal configuration of its Hamiltonian. The gauge transformations on the symplectic fibration are generated by the area preserving diffeomorphisms on the world volume. Geometrically, this gauge theory corresponds to a symplectic fibration over a compact Riemann surface with a symplectic connection.

  7. Supersymmetry and noncommutative geometry

    CERN Document Server

    Beenakker, Wim; Suijlekom, Walter D van

    2016-01-01

    In this work the question whether noncommutative geometry allows for supersymmetric theories is addressed. Noncommutative geometry has seen remarkable applications in high energy physics, viz. the geometrical interpretation of the Standard Model, however such a question has not been answered in a conclusive way so far. The book starts with a systematic analysis of the possibilities for so-called almost-commutative geometries on a 4-dimensional, flat background to exhibit not only a particle content that is eligible for supersymmetry, but also have a supersymmetric action. An approach is proposed in which the basic `building blocks' of potentially supersymmetric theories and the demands for their action to be supersymmetric are identified. It is then described how a novel kind of soft supersymmetry breaking Lagrangian arises naturally from the spectral action. Finally, the above formalism is applied to explore the existence of a noncommutative version of the minimal supersymmetric Standard Model. This book is ...

  8. Embedding Commutative and Noncommutative Theories in the Symplectic Framework

    CERN Document Server

    Neves, C; Rodrigues, D C; Wotzasek, C; Neves, Clifford; Oliveira, Wilson; Rodrigues, Davi C.; Wotzasek, Clovis

    2004-01-01

    This paper is devoted to study gauge embedding of either commutative and noncommutative theories in the framework of the symplectic formalism. We illustrate our ideas in the Proca model, the irrotational fluid model and the noncommutative self-dual model. In the process of this new path of embedding, the infinitesimal gauge generators of the gauge embedded theory are easily and directly chosen. Among other advantages, this enables a greater control over the final Lagrangian and puts some light on the so called ''arbitrariness problem".

  9. Higgs mass in noncommutative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Devastato, A.; Martinetti, P. [Dipartimento di Fisica, Universita di Napoli Federico II, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Via Cintia, 80126 Napoli (Italy); Lizzi, F. [Dipartimento di Fisica, Universita di Napoli Federico II, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Via Cintia, 80126 Napoli (Italy); Departament de Estructura i Constituents de la Materia, Universitat de Barcelona, Marti y Franques, Barcelona, Catalonia (Spain)

    2014-09-11

    In the noncommutative geometry approach to the standard model, an extra scalar field σ - initially suggested by particle physicist to stabilize the electroweak vacuum - makes the computation of the Higgs mass compatible with the 126 GeV experimental value. We give a brief account on how to generate this field from the Majorana mass of the neutrino, following the principles of noncommutative geometry. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Holographic thermalization in noncommutative geometry

    CERN Document Server

    Zeng, Xiao-Xiong; Liu, Wen-Biao

    2014-01-01

    Gravitational collapse of a dust shell in noncommutative geometry is probed by the renormalized geodesic length and minimal area surface, which are dual to the two-point correlation function and expectation value of Wilson loop in the dual conformal field theory. For the spacetime without a horizon, we find the shell will not collapse all the time but will stop in a stable state. For the spacetime with a horizon, we investigate how the noncommutative parameter affects the thermalization process in detail. From the numeric results, we find that larger the noncommutative parameter is, longer the thermalization time is, which implies that the large noncommutative parameter delays the thermalization process. From the fitted functions of the thermalization curve, we find for both thermalization probes, there is a phase transition point during the thermalization process, which divides the thermalization into an acceleration phase and a deceleration phase. During the acceleration phase, the acceleration is found to ...

  11. Loop groups and noncommutative geometry

    CERN Document Server

    Carpi, Sebastiano

    2015-01-01

    We describe the representation theory of loop groups in terms of K-theory and noncommutative geometry. This is done by constructing suitable spectral triples associated with the level l projective unitary positive-energy representations of any given loop group LG. The construction is based on certain supersymmetric conformal field theory models associated with LG.

  12. Compactified D=11 Supermembranes and Symplectic Non-Commutative Gauge Theories

    CERN Document Server

    Martin, I; Restuccia, A

    2001-01-01

    It is shown that a double compactified D=11 supermembrane with non trivial wrapping may be formulated as a symplectic non-commutative gauge theory on the world volume. The symplectic non commutative structure is intrinsically obtained from the symplectic 2-form on the world volume defined by the minimal configuration of its hamiltonian. The gauge transformations on the symplectic fibration are generated by the area preserving diffeomorphisms on the world volume. Geometrically, this gauge theory corresponds to a symplectic fibration over a compact Riemman surface with a symplectic connection.

  13. Hopf algebras in noncommutative geometry

    CERN Document Server

    Varilly, J C

    2001-01-01

    We give an introductory survey to the use of Hopf algebras in several problems of noncommutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of noncommutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups.

  14. The Geometry of Noncommutative Space-Time

    Science.gov (United States)

    Mendes, R. Vilela

    2016-10-01

    Stabilization, by deformation, of the Poincaré-Heisenberg algebra requires both the introduction of a fundamental lentgh and the noncommutativity of translations which is associated to the gravitational field. The noncommutative geometry structure that follows from the deformed algebra is studied both for the non-commutative tangent space and the full space with gravity. The contact points of this approach with the work of David Finkelstein are emphasized.

  15. Distances in Finite Spaces from Noncommutative Geometry

    CERN Document Server

    Iochum, B; Martinetti, P

    2001-01-01

    Following the general principles of noncommutative geometry, it is possible to define a metric on the space of pure states of the noncommutative algebra generated by the coordinates. This metric generalizes the usual Riemannian one. We investigate some general properties of this metric in the finite commutative case which corresponds to a metric on a finite set, and also give some examples of computations in both commutative and noncommutative cases.

  16. The noncommutative geometry of Zitterbewegung

    CERN Document Server

    Eckstein, Michał; Miller, Tomasz

    2016-01-01

    Based on the mathematics of noncommutative geometry, we model a 'classical' Dirac fermion propagating in a curved spacetime. We demonstrate that the inherent causal structure of the model encodes the possibility of Zitterbewegung - the 'trembling motion' of the fermion. We recover the well-known frequency of Zitterbewegung as the highest possible speed of change in the fermion's 'internal space'. Furthermore, we show that the latter does not change in the presence of an external electromagnetic field and derive its explicit analogue when the mass parameter is promoted to a Higgs-like field. We discuss a table-top experiment in the domain of quantum simulation to test the predictions of the model and outline the consequences of our model for quantum gauge theories.

  17. Wormhole inspired by non-commutative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook, E-mail: rahaman@iucaa.ernet.in [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India); Karmakar, Sreya, E-mail: sreya.karmakar@gmail.com [Department of Physics, Calcutta Institute of Engineering and Management, Kolkata 700040, West Bengal (India); Karar, Indrani, E-mail: indrani.karar08@gmail.com [Department of Mathematics, Saroj Mohan Institute of Technology, Guptipara, West Bengal (India); Ray, Saibal, E-mail: saibal@iucaa.ernet.in [Department of Physics, Government College of Engineering & Ceramic Technology, Kolkata 700010, West Bengal (India)

    2015-06-30

    In the present Letter we search for a new wormhole solution inspired by noncommutative geometry with the additional condition of allowing conformal Killing vectors (CKV). A special aspect of noncommutative geometry is that it replaces point-like structures of gravitational sources with smeared objects under Gaussian distribution. However, the purpose of this letter is to obtain wormhole solutions with noncommutative geometry as a background where we consider a point-like structure of gravitational object without smearing effect. It is found through this investigation that wormhole solutions exist in this Lorentzian distribution with viable physical properties.

  18. Wormhole inspired by non-commutative geometry

    Directory of Open Access Journals (Sweden)

    Farook Rahaman

    2015-06-01

    Full Text Available In the present Letter we search for a new wormhole solution inspired by noncommutative geometry with the additional condition of allowing conformal Killing vectors (CKV. A special aspect of noncommutative geometry is that it replaces point-like structures of gravitational sources with smeared objects under Gaussian distribution. However, the purpose of this letter is to obtain wormhole solutions with noncommutative geometry as a background where we consider a point-like structure of gravitational object without smearing effect. It is found through this investigation that wormhole solutions exist in this Lorentzian distribution with viable physical properties.

  19. Noncommutative geometry, Lorentzian structures and causality

    CERN Document Server

    Franco, Nicolas

    2014-01-01

    The theory of noncommutative geometry provides an interesting mathematical background for developing new physical models. In particular, it allows one to describe the classical Standard Model coupled to Euclidean gravity. However, noncommutative geometry has mainly been developed using the Euclidean signature, and the typical Lorentzian aspects of space-time, the causal structure in particular, are not taken into account. We present an extension of noncommutative geometry \\`a la Connes suitable the for accommodation of Lorentzian structures. In this context, we show that it is possible to recover the notion of causality from purely algebraic data. We explore the causal structure of a simple toy model based on an almost commutative geometry and we show that the coupling between the space-time and an internal noncommutative space establishes a new `speed of light constraint'.

  20. Noncommutative geometry and Cayley-Smooth orders

    CERN Document Server

    Le Bruyn, Lieven

    2007-01-01

    Preface Introduction Noncommutative algebra Noncommutative geometryNoncommutative desingularizationsCayley-Hamilton Algebras Conjugacy classes of matrices Simultaneous conjugacy classesMatrix invariants and necklaces The trace algebraThe symmetric group Necklace relations Trace relations Cayley-Hamilton algebrasReconstructing Algebras Representation schemes Some algebraic geometry The Hilbert criterium Semisimple modules Some invariant theory Geometric reconstruction The Gerstenhaber-Hesselink theoremThe real moment mapÉtale Technology Étale topologyCentral simple algebrasSpectral sequencesTse

  1. Gravitational lensing of wormholes in noncommutative geometry

    CERN Document Server

    Kuhfittig, Peter K F

    2015-01-01

    It has been shown that a noncommutative-geometry background may be able to support traversable wormholes. This paper discusses the possible detection of such wormholes in the outer regions of galactic halos by means of gravitational lensing. The procedure allows a comparison to other models such as the NFW model and f(R) modified gravity and is likely to favor a model based on noncommutative geometry.

  2. Kaluza-Klein Aspects of Noncommutative Geometry

    CERN Document Server

    Madore, J

    2015-01-01

    Using some elementary methods from noncommutative geometry a structure is given to a point of space-time which is different from and simpler than that which would come from extra dimensions. The structure is described by a supplementary factor in the algebra which in noncommutative geometry replaces the algebra of functions. Using different examples of algebras it is shown that the extra structure can be used to describe spin or isospin.

  3. Quanta of Geometry: Noncommutative Aspects

    Science.gov (United States)

    Chamseddine, Ali H.; Connes, Alain; Mukhanov, Viatcheslav

    2015-03-01

    In the construction of spectral manifolds in noncommutative geometry, a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of real scalar fields naturally appears and implies, by equality with the index formula, the quantization of the volume. We first show that this condition implies that the manifold decomposes into disconnected spheres, which will represent quanta of geometry. We then refine the condition by involving the real structure and two types of geometric quanta, and show that connected spin manifolds with large quantized volume are then obtained as solutions. The two algebras M2(H ) and M4(C ) are obtained, which are the exact constituents of the standard model. Using the two maps from M4 to S4 the four-manifold is built out of a very large number of the two kinds of spheres of Planckian volume. We give several physical applications of this scheme such as quantization of the cosmological constant, mimetic dark matter, and area quantization of black holes.

  4. High Energy Effects of Noncommutative Spacetime Geometry

    CERN Document Server

    Sidharth, Burra G

    2016-01-01

    In this paper, we endeavour to obtain a modified form of the Foldy-Wouthuysen and Cini-Toushek transformations by resorting to the noncommutative nature of space-time geometry, starting from the Klein-Gordon equation. Also, we obtain a shift in the energy levels due to noncommutativity and from these results a limit for the Lorentz factor in the ultra-relativistic case has been derived in conformity with observations

  5. MSc Thesis: Presentation of Certain New Trends in Noncommutative Geometry

    CERN Document Server

    Buachalla, Réamonn Ó

    2011-01-01

    MSc thesis of the author offering an introduction to the operator algebraic approach to noncommutative geometry, with a treatment of some more advanced elements such as the noncommutative geometry of quantum groups, fuzzy physics, and compact quantum metric spaces.

  6. Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory

    CERN Document Server

    Landau, Olav Arnfinn

    2011-01-01

    This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory o

  7. Strings, Conformal Field Theory And Noncommutative Geometry

    CERN Document Server

    Matsubara, K

    2004-01-01

    This thesis describes some aspects of noncommutative geometry and conformal field theory. The motivation for the investigations made comes to a large extent from string theory. This theory is today considered to be the most promising way to find a solution to the problem of unifying the four fundamental interactions in one single theory. The thesis gives a short background presentation of string theory and points out how noncommutative geometry and conformal field theory are of relevance within the string theoretical framework. There is also given some further information on noncommutative geometry and conformal field theory. The results from the three papers on which the thesis is based are presented in the text. It is shown in Paper 1 that, for a gauge theory in a flat noncommutative background only the gauge groups U(N) can be used in a straightforward way. These theories can arise as low energy limits of string theory. Paper 2 concerns boundary conformal field theory, which can be used to describe open s...

  8. The Bell states in noncommutative algebraic geometry

    Science.gov (United States)

    Beil, Charlie

    2014-10-01

    We introduce new mathematical aspects of the Bell states using matrix factorizations, non-noetherian singularities, and noncommutative blowups. A matrix factorization of a polynomial p consists of two matrices ϕ1, ϕ2 such that ϕ1ϕ2 = ϕ2ϕ1 = p id. Using this notion, we show how the Bell states emerge from the separable product of two mixtures, by defining pure states over complex matrices rather than just the complex numbers. We then show in an idealized algebraic setting that pure states are supported on non-noetherian singularities. Moreover, we find that the collapse of a Bell state is intimately related to the representation theory of the noncommutative blowup along its singular support. This presents an exchange in geometry: the nonlocal commutative spacetime of the entangled state emerges from an underlying local noncommutative spacetime.

  9. Noncommutative geometry and fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy; Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)

    2016-11-15

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  10. Noncommutative geometry with graded differential Lie algebras

    Science.gov (United States)

    Wulkenhaar, Raimar

    1997-06-01

    Starting with a Hilbert space endowed with a representation of a unitary Lie algebra and an action of a generalized Dirac operator, we develop a mathematical concept towards gauge field theories. This concept shares common features with the Connes-Lott prescription of noncommutative geometry, differs from that, however, by the implementation of unitary Lie algebras instead of associative * -algebras. The general scheme is presented in detail and is applied to functions ⊗ matrices.

  11. Two Approaches to Non-Commutative Geometry

    CERN Document Server

    Kisil, V V

    1997-01-01

    Looking to the history of mathematics one could find out two outer approaches to Geometry. First one (algebraic) is due to Descartes and second one (group-theoretic)--to Klein. We will see that they are not rivalling but are tied (by Galois). We also examine their modern life as philosophies of non-commutative geometry. Connections between different objects (see keywords) are discussed. Keywords: Heisenberg group, Weyl commutation relation, Manin plain, quantum groups, SL(2, R), Hardy space, Bergman space, Segal-Bargmann space, Szeg"o projection, Bergman projection, Clifford analysis, Moebius transformations, functional calculus, Weyl calculus (quantization), Berezin quantization, Wick ordering, quantum mechanics.

  12. Gravity in Non-Commutative Geometry

    CERN Document Server

    Chamseddine, A H; Fröhlich, J

    1993-01-01

    We study general relativity in the framework of non-commutative differential geometry. In particular, we introduce a gravity action for a space-time which is the product of a four dimensional manifold by a two-point space. In the simplest situation, where the Riemannian metric is taken to be the same on the two copies of the manifold, one obtains a model of a scalar field coupled to Einstein gravity. This field is geometrically interpreted as describing the distance between the two points in the internal space.

  13. Particle and Field Symmetries and Noncommutative Geometry

    CERN Document Server

    Patwardhan, A

    2003-01-01

    The development of Noncommutative Geometry is creating a reworking and new possibilities in physics. This paper identifies some of the commutation and derivation structures that arise in particle and field interactions and fundamental symmetries. The requirements of coexisting structures, and their consistency, produce a mathematical framework that underlies a fundamental physics theory. Among other developments in Quantum theory of particles and fields are the symmetries of gauge fields and the Fermi-Bose symmetry of particles. These involve a gauge covariant derivation and the action functionals; and commutation algebras and Bogoliubov transforms. The non commutative Theta form introduces an additional and fundamental structure. This paper obtains the interrelations of various structures, and the conditions for the symmetries of Fermionic/Bosonic particles interacting with Yang Mills gauge fields. Many example physical systems are being solved, and the mathematical formalism is being created to understand t...

  14. Non-Commutative Geometry, Categories and Quantum Physics

    CERN Document Server

    Bertozzini, Paolo; Lewkeeratiyutkul, Wicharn

    2008-01-01

    After an introduction to some basic issues in non-commutative geometry (Gel'fand duality, spectral triples), we present a "panoramic view" of the status of our current research program on the use of categorical methods in the setting of A.Connes' non-commutative geometry: morphisms/categories of spectral triples, categorification of Gel'fand duality. We conclude with a summary of the expected applications of "categorical non-commutative geometry" to structural questions in relativistic quantum physics: (hyper)covariance, quantum space-time, (algebraic) quantum gravity.

  15. Computational commutative and non-commutative algebraic geometry

    CERN Document Server

    Cojocaru, S; Ufnarovski, V

    2005-01-01

    This publication gives a good insight in the interplay between commutative and non-commutative algebraic geometry. The theoretical and computational aspects are the central theme in this study. The topic is looked at from different perspectives in over 20 lecture reports. It emphasizes the current trends in commutative and non-commutative algebraic geometry and algebra. The contributors to this publication present the most recent and state-of-the-art progresses which reflect the topic discussed in this publication. Both researchers and graduate students will find this book a good source of information on commutative and non-commutative algebraic geometry.

  16. Noncommutative spectral geometry, dissipation and the origin of quantization

    CERN Document Server

    Sakellariadou, Mairi; Vitiello, Giuseppe

    2012-01-01

    We present a physical interpretation of the doubling of the algebra, which is the basic ingredient of the noncommutative spectral geometry, developed by Connes and collaborators as an approach to unification. We discuss its connection to dissipation and to the gauge structure of the theory. We then argue, following 't Hooft's conjecture, that noncommutative spectral geometry classical construction carries implicit in its feature of the doubling of the algebra the seeds of quantization.

  17. Noncommutative spectral geometry: A guided tour for theoretical physicists

    CERN Document Server

    Sakellariadou, Mairi

    2012-01-01

    We review a gravitational model based on noncommutative geometry and the spectral action principle. The space-time geometry is described by the tensor product of a four-dimensional Riemanian manifold by a discrete noncommutative space consisting of only two points. With a specific choice of the finite dimensional involutive algebra, the noncommutative spectral action leads to the standard model of electroweak and strong interactions minimally coupled to Einstein and Weyl gravity. We present the main mathematical ingredients of this model and discuss their physical implications. We argue that the doubling of the algebra is intimately related to dissipation and the gauge field structure. We then show how this noncommutative spectral geometry model, a purely classical construction, carries implicit in the doubling of the algebra the seeds of quantization. After a short review on the phenomenological consequences of this geometric model as an approach to unification, we discuss some of its cosmological consequenc...

  18. Noncommutative Differential Geometry of Generalized Weyl Algebras

    Science.gov (United States)

    Brzeziński, Tomasz

    2016-06-01

    Elements of noncommutative differential geometry of Z-graded generalized Weyl algebras A(p;q) over the ring of polynomials in two variables and their zero-degree subalgebras B(p;q), which themselves are generalized Weyl algebras over the ring of polynomials in one variable, are discussed. In particular, three classes of skew derivations of A(p;q) are constructed, and three-dimensional first-order differential calculi induced by these derivations are described. The associated integrals are computed and it is shown that the dimension of the integral space coincides with the order of the defining polynomial p(z). It is proven that the restriction of these first-order differential calculi to the calculi on B(p;q) is isomorphic to the direct sum of degree 2 and degree -2 components of A(p;q). A Dirac operator for B(p;q) is constructed from a (strong) connection with respect to this differential calculus on the (free) spinor bimodule defined as the direct sum of degree 1 and degree -1 components of A(p;q). The real structure of KO-dimension two for this Dirac operator is also described.

  19. Grand Unification in Non-Commutative Geometry

    CERN Document Server

    Chamseddine, A H; Fröhlich, J

    1993-01-01

    The formalism of non-commutative geometry of A. Connes is used to construct models in particle physics. The physical space-time is taken to be a product of a continuous four-manifold by a discrete set of points. The treatment of Connes is modified in such a way that the basic algebra is defined over the space of matrices, and the breaking mechanism is planted in the Dirac operator. This mechanism is then applied to three examples. In the first example the discrete space consists of two points, and the two algebras are taken respectively to be those of $2\\times 2$ and $1\\times 1$ matrices. With the Dirac operator containing the vacuum breaking $SU(2)\\times U(1)$ to $U(1)$, the model is shown to correspond to the standard model. In the second example the discrete space has three points, two of the algebras are identical and consist of $5\\times 5$ complex matrices, and the third algebra consists of functions. With an appropriate Dirac operator this model is almost identical to the minimal $SU(5)$ model of Georgi...

  20. Complex J-Symplectic Geometry With Application to Ordinary Differential Operators

    Institute of Scientific and Technical Information of China (English)

    王万义

    2001-01-01

    @@In this paper, we deal with complex J-symplectic geometry with application to ordinary differential operators. We define complex J-symplectic spaces and their J-Lagrangian subspaces and complete J-Lagrangian subspaces, and then we discuss their basic algebraic properties. Then we apply them to the theory of J-selfadjoint operators and give J-symplectic geometry complete characterizations of J-selfadjoint extensions of J-symmetric operators.

  1. Modular Theory, Non-Commutative Geometry and Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Wicharn Lewkeeratiyutkul

    2010-08-01

    Full Text Available This paper contains the first written exposition of some ideas (announced in a previous survey on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.

  2. Commutative and Non-commutative Parallelogram Geometry: an Experimental Approach

    OpenAIRE

    Bertram, Wolfgang

    2013-01-01

    By "parallelogram geometry" we mean the elementary, "commutative", geometry corresponding to vector addition, and by "trapezoid geometry" a certain "non-commutative deformation" of the former. This text presents an elementary approach via exercises using dynamical software (such as geogebra), hopefully accessible to a wide mathematical audience, from undergraduate students and high school teachers to researchers, proceeding in three steps: (1) experimental geometry, (2) algebra (linear algebr...

  3. On supermatrix models, Poisson geometry, and noncommutative supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Klimčík, Ctirad [Aix Marseille Université, CNRS, Centrale Marseille I2M, UMR 7373, 13453 Marseille (France)

    2015-12-15

    We construct a new supermatrix model which represents a manifestly supersymmetric noncommutative regularisation of the UOSp(2|1) supersymmetric Schwinger model on the supersphere. Our construction is much simpler than those already existing in the literature and it was found by using Poisson geometry in a substantial way.

  4. Intersecting Quantum Gravity with Noncommutative Geometry - a Review

    Directory of Open Access Journals (Sweden)

    Johannes Aastrup

    2012-03-01

    Full Text Available We review applications of noncommutative geometry in canonical quantum gravity. First, we show that the framework of loop quantum gravity includes natural noncommutative structures which have, hitherto, not been explored. Next, we present the construction of a spectral triple over an algebra of holonomy loops. The spectral triple, which encodes the kinematics of quantum gravity, gives rise to a natural class of semiclassical states which entail emerging fermionic degrees of freedom. In the particular semiclassical approximation where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. We end the paper with an extended outlook section.

  5. Charged thin-shell gravastars in noncommutative geometry

    Science.gov (United States)

    Övgün, Ali; Banerjee, Ayan; Jusufi, Kimet

    2017-08-01

    In this paper we construct a charged thin-shell gravastar model within the context of noncommutative geometry. To do so, we choose the interior of the nonsingular de Sitter spacetime with an exterior charged noncommutative solution by cut-and-paste technique and apply the generalized junction conditions. We then investigate the stability of a charged thin-shell gravastar under linear perturbations around the static equilibrium solutions as well as the thermodynamical stability of the charged gravastar. We find the stability regions, by choosing appropriate parameter values, located sufficiently close to the event horizon.

  6. From Tools in Symplectic and Poisson Geometry to J.-M. Souriau’s Theories of Statistical Mechanics and Thermodynamics

    Directory of Open Access Journals (Sweden)

    Charles-Michel Marle

    2016-10-01

    Full Text Available I present in this paper some tools in symplectic and Poisson geometry in view of their applications in geometric mechanics and mathematical physics. After a short discussion of the Lagrangian an Hamiltonian formalisms, including the use of symmetry groups, and a presentation of the Tulczyjew’s isomorphisms (which explain some aspects of the relations between these formalisms, I explain the concept of manifold of motions of a mechanical system and its use, due to J.-M. Souriau, in statistical mechanics and thermodynamics. The generalization of the notion of thermodynamic equilibrium in which the one-dimensional group of time translations is replaced by a multi-dimensional, maybe non-commutative Lie group, is fully discussed and examples of applications in physics are given.

  7. Noncommutative Geometry in M-Theory and Conformal Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Morariu, Bogdan [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of Uq(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Funq (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.

  8. Noncommutative spectral geometry, algebra doubling, and the seeds of quantization

    Science.gov (United States)

    Sakellariadou, Mairi; Stabile, Antonio; Vitiello, Giuseppe

    2011-08-01

    A physical interpretation of the two-sheeted space, the most fundamental ingredient of noncommutative spectral geometry proposed by Connes as an approach to unification, is presented. It is shown that the doubling of the algebra is related to dissipation and to the gauge structure of the theory, the gauge field acting as a reservoir for the matter field. In a regime of completely deterministic dynamics, dissipation appears to play a key role in the quantization of the theory, according to the ’t Hooft’s conjecture. It is thus argued that the noncommutative spectral geometry classical construction carries the seeds of quantization, implicit in its feature of the doubling of the algebra.

  9. Application of Noncommutative Differential Geometry on Lattice to Anomaly

    CERN Document Server

    Fujiwara, T; Wu, K; Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke

    1999-01-01

    The chiral anomaly in lattice abelian gauge theory is investigated by applying the geometric and topological method in noncommutative differential geometry(NCDG). A new kind of double complex and descent equation are proposed on infinite hypercubic lattice in arbitrary even dimensional Euclidean space, in the framework of NCDG. Using the general solutions to proposed descent equation, we derive the chiral anomaly in Abelian lattice gauge theory. The topological origin of anomaly is nothing but the Chern classes in NCDG.

  10. Global Eikonal Condition for Lorentzian Distance Function in Noncommutative Geometry

    Directory of Open Access Journals (Sweden)

    Nicolas Franco

    2010-08-01

    Full Text Available Connes' noncommutative Riemannian distance formula is constructed in two steps, the first one being the construction of a path-independent geometrical functional using a global constraint on continuous functions. This paper generalizes this first step to Lorentzian geometry. We show that, in a globally hyperbolic spacetime, a single global timelike eikonal condition is sufficient to construct a path-independent Lorentzian distance function.

  11. Regular black holes and noncommutative geometry inspired fuzzy sources

    Science.gov (United States)

    Kobayashi, Shinpei

    2016-05-01

    We investigated regular black holes with fuzzy sources in three and four dimensions. The density distributions of such fuzzy sources are inspired by noncommutative geometry and given by Gaussian or generalized Gaussian functions. We utilized mass functions to give a physical interpretation of the horizon formation condition for the black holes. In particular, we investigated three-dimensional BTZ-like black holes and four-dimensional Schwarzschild-like black holes in detail, and found that the number of horizons is related to the space-time dimensions, and the existence of a void in the vicinity of the center of the space-time is significant, rather than noncommutativity. As an application, we considered a three-dimensional black hole with the fuzzy disc which is a disc-shaped region known in the context of noncommutative geometry as a source. We also analyzed a four-dimensional black hole with a source whose density distribution is an extension of the fuzzy disc, and investigated the horizon formation condition for it.

  12. Noncommutative geometry and the primordial dipolar imaginary power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Pankaj; Rath, Pranati K. [Indian Institue of Technology Kanpur, Department of Physics, Kanpur (India)

    2015-03-01

    We argue that noncommutative space-times lead to an anisotropic dipolar imaginary primordial power spectrum. We define a new product rule, which allows us to consistently extract the power spectrum in such space-times. The precise nature of the power spectrum depends on the model of noncommutative geometry. We assume a simple dipolar model which has a power dependence on the wave number, k, with a spectral index, α. We show that such a spectrum provides a good description of the observed dipole modulation in the cosmic microwave background radiation (CMBR) data with α ∼ 0. We extract the parameters of this model from the data. The dipole modulation is related to the observed hemispherical anisotropy in the CMBR data, which might represent the first signature of quantum gravity. (orig.)

  13. Noncommutative geometry and the primordial dipolar imaginary power spectrum

    Science.gov (United States)

    Jain, Pankaj; Rath, Pranati K.

    2015-03-01

    We argue that noncommutative space-times lead to an anisotropic dipolar imaginary primordial power spectrum. We define a new product rule, which allows us to consistently extract the power spectrum in such space-times. The precise nature of the power spectrum depends on the model of noncommutative geometry. We assume a simple dipolar model which has a power dependence on the wave number, , with a spectral index, . We show that such a spectrum provides a good description of the observed dipole modulation in the cosmic microwave background radiation (CMBR) data with . We extract the parameters of this model from the data. The dipole modulation is related to the observed hemispherical anisotropy in the CMBR data, which might represent the first signature of quantum gravity.

  14. Exact Random Walk Distributions using Noncommutative Geometry

    CERN Document Server

    Bellissard, J; Barelli, A; Claro, F; Bellissard, Jean; Camacho, Carlos J; Barelli, Armelle; Claro, Francisco

    1997-01-01

    Using the results obtained by the non commutative geometry techniques applied to the Harper equation, we derive the areas distribution of random walks of length $ N $ on a two-dimensional square lattice for large $ N $, taking into account finite size contributions.

  15. Towards a Monge-Kantorovich metric in noncommutative geometry

    CERN Document Server

    Martinetti, Pierre

    2012-01-01

    We investigate whether the identification between Connes' spectral distance in noncommutative geometry and the Monge-Kantorovich distance of order 1 in the theory of optimal transport - that has been pointed out by Rieffel in the commutative case - still makes sense in a noncommutative framework. To this aim, given a spectral triple (A, H, D) with noncommutative A, we introduce a "Monge-Kantorovich"-like distance W_D on the space of states of A, taking as a cost function the spectral distance d_D between pure states. We show in full generality that d_D is never greater than W_D, and exhibit several examples where the equality actually holds true, in particular on the unit two-ball viewed as the state space of the algebra of complex 2-by-2 matrices. We also discuss W_D in a two-sheet model (product of a manifold by C^2), pointing towards a possible interpretation of the Higgs field as a cost function that does not vanish on the diagonal.

  16. Noncommutative spectral geometry, Bogoliubov transformations and neutrino oscillations

    Science.gov (United States)

    Vittoria Gargiulo, Maria; Sakellariadou, Mairi; Vitiello, Giuseppe

    2015-07-01

    In this report we show that neutrino mixing is intrinsically contained in Connes’ noncommutatives pectral geometry construction, thanks to the introduction of the doubling of algebra, which is connected to the Bogoliubov transformation. It is known indeed that these transformations are responsible for the mixing, turning the mass vacuum state into the flavor vacuum state, in such a way that mass and flavor vacuum states are not unitary equivalent. There is thus a red thread that binds the doubling of algebra of Connes’ model to the neutrino mixing.

  17. Noncommutative geometry, Grand Symmetry and twisted spectral triple

    CERN Document Server

    Devastato, Agostino

    2015-01-01

    In the noncommutative geometry approach to the standard model we discuss the possibility to derive the extra scalar field sv- initially suggested by particle physicist to stabilize the electroweak vacuum - from a "grand algebra" that contains the usual standard model algebra. We introduce the Connes-Moscovici twisted spectral triples for the Grand Symmetry model, to cure a technical problem, that is the appearance, together with the field sv, of unbounded vectorial terms. The twist makes these terms bounded, and also permits to understand the breaking making the computation of the Higgs mass compatible with the 126 GeV experimental value.

  18. A Partial Unification Model in Non-commutative Geometry

    CERN Document Server

    Hanlon, B E

    1994-01-01

    We consider the construction of $SU(2)_{L}\\otimes SU(2)_{R}\\otimes SU(4)$ partial unification models as an example of phenomenologically acceptable unification models in the absence of supersymmetry in non-commutative geometry. We exploit the Chamseddine, Felder and Fr\\"ohlich generalization of the Connes and Lott model building prescription. By introducing a bi-module structure and appropriate permutation symmetries we construct a model with triplet Higgs fields in the $SU(2)$ sectors and spontaneous breaking of $SU(4)$.

  19. Noncommutative spectral geometry, algebra doubling and the seeds of quantization

    CERN Document Server

    Sakellariadou, Mairi; Vitiello, Giuseppe

    2011-01-01

    A physical interpretation of the two-sheeted space, the most fundamental ingredient of noncommutative spectral geometry proposed by Connes as an approach to unification, is presented. It is shown that the doubling of the algebra is strictly related to dissipation. As a consequence, the doubling of the algebra is intimately related to the gauge structure of the theory. In a regime of completely deterministic dynamics, dissipation seems also to play a key role in the quantization of the theory, following 't Hooft's conjecture. It is thus argued that Connes' classical construction carries implicit in its feature of the doubling of the algebra the seeds of quantization.

  20. Asymmetric Orbifolds, Noncommutative Geometry and Type I String Vacua

    CERN Document Server

    Blumenhagen, R; Körs, B; Lüst, Dieter; Blumenhagen, Ralph; Goerlich, Lars; Kors, Boris; Lust, Dieter

    2000-01-01

    We investigate the D-brane contents of asymmetric orbifolds. Using T-dualitywe find that the consistent description of open strings in asymmetric orbifoldsrequires to turn on background gauge fields on the D-branes. Hence open stringsand D-branes in generic asymmetric orbifolds necessarily lead to noncommutativegeometry. We derive the corresponding noncommutative geometry arising on suchD-branes with mixed Neumann-Dirichlet boundary conditions by applying anasymmetric rotation to ordinary D-branes with pure Dirichlet boundaryconditions. As a concrete application of our results we construct asymmetrictype I vacua requiring open strings with mixed boundary conditions for tadpolecancellation.

  1. Noncommutative geometry, Grand Symmetry and twisted spectral triple

    Science.gov (United States)

    Devastato, Agostino

    2015-08-01

    In the noncommutative geometry approach to the standard model we discuss the possibility to derive the extra scalar field sv - initially suggested by particle physicist to stabilize the electroweak vacuum - from a “grand algebra” that contains the usual standard model algebra. We introduce the Connes-Moscovici twisted spectral triples for the Grand Symmetry model, to cure a technical problem, that is the appearance, together with the field sv, of unbounded vectorial terms. The twist makes these terms bounded, and also permits to understand the breaking making the computation of the Higgs mass compatible with the 126 GeV experimental value.

  2. Post-Riemannian approach for the symplectic and elliptic geometries of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Cartas-Fuentevilla, R; Solano-Altamirano, J M [Instituto de Fisica, Universidad Autonoma de Puebla, Apartado postal J-48 72570 Puebla Pue. (Mexico); Enriquez-Silverio, P, E-mail: rcartas@sirio.ifuap.buap.mx [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, Apartado postal 1152, 72001 Puebla Pue. (Mexico)

    2011-05-13

    Considering a post-Riemannian approach for manifolds where metric and connection are not necessarily compatible, the symplectic geometry of the covariant phase space of gravity is considered; the symplectic structure associated allows us to study the Poincare charges and the weak-field approach at the asymptotic region, specifically the effects of torsional contributions through metric deformations. Additionally, the elliptic geometry of the moduli space of gravitational instantons is considered along the same lines, which provides the grounds for the construction of the partition function of the theory and new invariants for smooth four-manifolds from a post-Riemannian theoretic point of view.

  3. Clifford Algebras in Symplectic Geometry and Quantum Mechanics

    OpenAIRE

    Binz, Ernst; de Gosson, Maurice A.; Hiley, Basil J.

    2011-01-01

    The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C(0,2). This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional s...

  4. Noncommutative Geometry of the Moyal Plane: Translation Isometries, Connes' Distance on Coherent States, Pythagoras Equality

    Science.gov (United States)

    Martinetti, Pierre; Tomassini, Luca

    2013-10-01

    We study the metric aspect of the Moyal plane from Connes' noncommutative geometry point of view. First, we compute Connes' spectral distance associated with the natural isometric action of on the algebra of the Moyal plane . We show that the distance between any state of and any of its translated states is precisely the amplitude of the translation. As a consequence, we obtain the spectral distance between coherent states of the quantum harmonic oscillator as the Euclidean distance on the plane. We investigate the classical limit, showing that the set of coherent states equipped with Connes' spectral distance tends towards the Euclidean plane as the parameter of deformation goes to zero. The extension of these results to the action of the symplectic group is also discussed, with particular emphasis on the orbits of coherent states under rotations. Second, we compute the spectral distance in the double Moyal plane, intended as the product of (the minimal unitization of) by . We show that on the set of states obtained by translation of an arbitrary state of , this distance is given by the Pythagoras theorem. On the way, we prove some Pythagoras inequalities for the product of arbitrary unital and non-degenerate spectral triples. Applied to the Doplicher- Fredenhagen-Roberts model of quantum spacetime [DFR], these two theorems show that Connes' spectral distance and the DFR quantum length coincide on the set of states of optimal localization.

  5. Geometry of the gauge algebra in noncommutative Yang-Mills theory

    Science.gov (United States)

    Lizzi, Fedele; Zampini, Alessandro; Szabo, Richard J.

    2001-08-01

    A detailed description of the infinite-dimensional Lie algebra of star-gauge transformations in non-commutative Yang-Mills theory is presented. Various descriptions of this algebra are given in terms of inner automorphisms of the underlying deformed algebra of functions on spacetime, of deformed symplectic diffeomorphisms, of the infinite unitary Lie algebra u(∞), and of the C*-algebra of compact operators on a quantum mechanical Hilbert space. The spacetime and string interpretations are also elucidated.

  6. Geometry of the Gauge Algebra in Noncommutative Yang-Mills Theory

    CERN Document Server

    Lizzi, F; Zampini, A

    2001-01-01

    A detailed description of the infinite-dimensional Lie algebra of star-gauge transformations in noncommutative Yang-Mills theory is presented. Various descriptions of this algebra are given in terms of inner automorphisms of the underlying deformed algebra of functions on spacetime, of deformed symplectic diffeomorphisms, of the infinite unitary Lie algebra, and of the algebra of compact operators on a quantum mechanical Hilbert space. The spacetime and string interpretations are also elucidated.

  7. A View on Optimal Transport from Noncommutative Geometry

    Directory of Open Access Journals (Sweden)

    Francesco D'Andrea

    2010-07-01

    Full Text Available We discuss the relation between the Wasserstein distance of order 1 between probability distributions on a metric space, arising in the study of Monge-Kantorovich transport problem, and the spectral distance of noncommutative geometry. Starting from a remark of Rieffel on compact manifolds, we first show that on any - i.e. non-necessary compact - complete Riemannian spin manifolds, the two distances coincide. Then, on convex manifolds in the sense of Nash embedding, we provide some natural upper and lower bounds to the distance between any two probability distributions. Specializing to the Euclidean space R^n, we explicitly compute the distance for a particular class of distributions generalizing Gaussian wave packet. Finally we explore the analogy between the spectral and the Wasserstein distances in the noncommutative case, focusing on the standard model and the Moyal plane. In particular we point out that in the two-sheet space of the standard model, an optimal-transport interpretation of the metric requires a cost function that does not vanish on the diagonal. The latest is similar to the cost function occurring in the relativistic heat equation.

  8. Clifford Algebras in Symplectic Geometry and Quantum Mechanics

    CERN Document Server

    Binz, Ernst; Hiley, Basil J

    2011-01-01

    The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C(0,2). This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional sub-space, Fa of the Euclidean three-space. This enables us to construct a Poisson Clifford algebra, H(F), of a finite dimensional phase space which will carry the dynamics. The quantum dynamics appears as a realization of H(F) in terms of a Clifford algebra consisting of Hermitian operators.

  9. Accretion onto a noncommutative geometry inspired black hole

    Science.gov (United States)

    Kumar, Rahul; Ghosh, Sushant G.

    2017-09-01

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate \\dot{M}, sonic speed a_s and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that \\dot{M} ≈ {M^2} is still achievable but r_s seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process.

  10. Noncommutative-geometry model for closed bosonic strings

    Science.gov (United States)

    Sen, Siddhartha; Holman, R.

    1987-01-01

    It is shown how Witten's (1986) noncommutative geometry may be extended to describe the closed bosonic string. For closed strings, an explicit representation is provided of the integral operator needed to construct an action and of an associative product on string fields. The proper choice of the action of the integral operator and the associative product in order to give rise to a reasonable theory is explained, and the consequences of such a choice are discussed. It is shown that the ghost numbers of the operator and associative product can be chosen arbitrarily for both open and closed strings, and that this construct can be used as an action for interacting closed bosonic strings.

  11. Structural aspects of quantum field theory and noncommutative geometry

    CERN Document Server

    Grensing, Gerhard

    2013-01-01

    This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...

  12. Editors' preface for the topical issue on Seven papers on Noncommutative Geometry and Operator Algebras

    Science.gov (United States)

    Guido, Daniele; Landi, Giovanni; Vassout, Stéphane

    2016-07-01

    This topical issue grew out of the International Conference "Noncommutative Geometry and Applications" held 16-21 June 2014 at Villa Mondragone, Frascati (Roma). The main purpose of the conference was to have a unified view of different incarnations of noncommutative geometry and its applications. The seven papers collected in the present topical issue represent a good sample of the topics covered at the workshop. The conference itself was one of the climaxes of the Franco-Italian project GREFI-GENCO, which was initiated in 2007 by CNRS and INDAM to promote and enhance collaboration and exchanges between French and Italian researchers in the area of noncommutative geometry.

  13. Stability analysis of lower dimensional gravastars in noncommutative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata (India); Hansraj, Sudan [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2016-11-15

    The Banados et al. (Phys. Rev. Lett 69:1849, 1992), black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry (Phys. Rev. D 87:084014, 2013). In this article, we explore the exact gravastar solutions in three-dimensional anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size √(α) and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, a stability analysis is carried out for the specific case when χ < 0.214 under radial perturbations about the static equilibrium solutions. To give theoretical support we are also trying to explore their physical properties and characteristics. (orig.)

  14. Stability analysis of Lower Dimensional Gravastars in noncommutative geometry

    CERN Document Server

    Banerjee, Ayan

    2016-01-01

    The Ba\\~{n}ados, Teitelboim and Zanelli \\cite{BTZ1992}, black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry \\cite{Rahaman(2013)}. In this article, we explore the exact gravastar solutions in three-dimension anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size $\\sqrt{\\alpha}$ and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, stability analysis is carried out for the dynamic case for the specific case when $\\chi < 0. 214$ under radial perturbations about static equilibrium solutions. To give theoretical support we also trying to explore...

  15. Symplectic quantum structure

    Energy Technology Data Exchange (ETDEWEB)

    Voit, Kay-Michael

    2008-06-16

    In the first part we considered the quantum phase space in terms of noncommutative differential geometry. Following relevant literature, a short introduction to vector fields and differential forms on the differential vector space M{sub N}(C) was given. Special emphasis has been laid on the construction of a canonical symplectic form analogous to the one known from classical mechanics. The canonical choice of this form has been shown to be just the (scaled) commutator of two matrices. Using the Schwinger basis, the symplectic form derived in the first sections has been further examined by calculating concrete expressions for products of general matrices and their commutators which are, as we remember, just the symplectic form. Subsequently, a discrete analog to the continuous theory has been developed, in which the lattice of the quantum phase space forms the base space, and the Heisenberg group including the Schwinger elements is identified with the fiber space. In the continuum limit it could be shown that the discrete theory seamlessly passed into the commonly known continuous theory of connection forms on fiber bundles. The connection form and its exterior covariant derivation, the curvature form, have been calculated. It has been found that the curvature form can even be pulled back to the symplectic form by the section defined by the Schwinger elements. (orig.)

  16. Beyond the Standard Model with noncommutative geometry, strolling towards quantum gravity

    CERN Document Server

    Martinetti, Pierre

    2015-01-01

    Noncommutative geometry, in its many incarnations, appears at the crossroad of various researches in theoretical and mathematical physics: from models of quantum space-time (with or without breaking of Lorentz symmetry) to loop gravity and string theory, from early considerations on UV-divergencies in quantum field theory to recent models of gauge theories on noncommutative spacetime, from Connes description of the standard model of elementary particles to recent Pati-Salam like extensions. We list several of these applications, emphasizing also the original point of view brought by noncommutative geometry on the nature of time. This text serves as an introduction to the volume of proceedings of the parallel session "Noncommutative geometry and quantum gravity", as a part of the conference "Conceptual and technical challenges in quantum gravity" organized at the University of Rome "La Sapienza" in September 2014.

  17. A note on nonlinear σ-models in noncommutative geometry

    Science.gov (United States)

    Lee, Hyun Ho

    2016-03-01

    We study nonlinear σ-models defined on a noncommutative torus as a two-dimensional string worldsheet. We consider (i) a two-point space, (ii) a circle, (iii) a noncommutative torus, (iv) a classical group SU(2, ℂ) as examples of space-time. Based on established results, the trivial harmonic unitaries of the noncommutative chiral model known as local minima are shown not to be global minima by comparing them to the symmetric unitaries derived from instanton solutions of the noncommutative Ising model corresponding to a two-point space. In addition, a ℤ2-action on field maps is introduced to a noncommutative torus, and its action on solutions of various Euler-Lagrange equations is described.

  18. Minimum Supersymmetric Standard Model on the Noncommutative Geometry

    CERN Document Server

    Ishihara, Satoshi; Matsukawa, Atsuko; Sato, Hikaru; Shimojo, Masafumi

    2013-01-01

    We have obtained the supersymmetric extension of spectral triple which specify a noncommutative geometry(NCG). We assume that the functional space H constitutes of wave functions of matter fields and their superpartners included in the minimum supersymmetric standard model(MSSM). We introduce the internal fluctuations to the Dirac operator on the manifold as well as on the finite space by elements of the algebra A in the triple. So, we obtain not only the vector supermultiplets which meditate SU(3)xSU(2)xU(1)_Y gauge degrees of freedom but also Higgs supermultiplets which appear in MSSM on the same standpoint. Accoding to the supersymmetric version of the spectral action principle, we calculate the square of the fluctuated total Dirac operator and verify that the Seeley-DeWitt coeffients give the correct action of MSSM. We also verify that the relation between coupling constants of $SU(3)$,$SU(2)$ and $U(1)_Y$ is same as that of SU(5) unification theory.

  19. Noncommutative Geometry Framework and The Feynman's Proof of Maxwell Equations

    CERN Document Server

    Boulahoual, A

    2003-01-01

    The main focus of the present work is to study the Feynman's proof of the Maxwell equations using the NC geometry framework. To accomplish this task, we consider two kinds of noncommutativity formulations going along the same lines as Feynman's approach. This allows us to go beyond the standard case and discover non-trivial results. In fact, while the first formulation gives rise to the static Maxwell equations, the second formulation is based on the following assumption $m[x_{j},\\dot{x_{k}}]=i\\hbar \\delta_{jk}+im\\theta_{jk}f.$ The results extracted from the second formulation are more significant since they are associated to a non trivial $\\theta $-extension of the Bianchi-set of Maxwell equations. We find $div_{\\theta}B=\\eta_{\\theta}$ and $\\frac{\\partial B_{s}}{\\partial t}+\\epsilon_{kjs}\\frac{\\partial E_{j}}{\\partial x_{k}}=A_{1}\\frac{d^{2}f}{dt^{2}}+A_{2}\\frac{df}{dt}+A_{3},$ where $\\eta_{\\theta}$, $A_{1}$, $A_{2}$ and $A_{3}$ are local functions depending on the NC $\\theta $-parameter. The novelty of this...

  20. Notes on "quantum gravity" and non-commutative geometry

    CERN Document Server

    Gracia-Bondia, Jose M

    2010-01-01

    I hesitated for a long time before giving shape to these notes, originally intended for preliminary reading by the attendees to the Summer School "New paths towards quantum gravity" (Holbaek Bay, Denmark, May 2008). At the end, I decide against just selling my mathematical wares, and for a survey, necessarily very selective, but taking a global phenomenological approach to its subject matter. After all, non-commutative geometry does not purport yet to solve the riddle of quantum gravity; it is more of an insurance policy against the probable failure of the other approaches. The plan is as follows: the introduction invites students to the fruitful doubts and conundrums besetting the application of even classical gravity. Next, the first experiments detecting quantum gravitational states inoculate us a healthy dose of skepticism on some of the current ideologies. In Section 3 we look at the action for general relativity as a consequence of gauge theory for quantum tensor fields. Section 4 briefly deals with the...

  1. Nontrivial Flavor Structure from Noncompact Lie Group in Noncommutative Geometry

    CERN Document Server

    Yang, Masaki J S

    2015-01-01

    In this paper, we propose a mechanism which induces nontrivial flavor structure from transformations of a noncompact Lie group SL(3,C) in noncommutative geometry. Matrices $L \\in$ SL(3,C) are associated with accompanied by the preon fields as $a_{L,R} (x) \\to L_{L,R} a_{L,R} (x)$. In order to retain the Hermiticity of the Lagrangian, we assume the same trick when $\\psi^{\\dagger} \\psi$ is replaced by $\\bar \\psi \\psi$ to construct a Lorentz invariant Lagrangian. As a result, the Dirac Lagrangian has both of flavor-universal gauge interactions and nontrivial Yukawa interactions. Removing the unphysical unitary transformations, Yukawa matrices found to be $Y_{ij} = L_{L}^{\\dagger} k L_{R} \\to \\Lambda_{L}^{} U^{\\dagger}_{L} k U_{R} \\Lambda_{R}$. Here, $k$ is a coefficient, $U$ is 3 $\\times$ 3 unitary matrix and $\\Lambda$ is the eigenvalue matrix $\\Lambda = {\\rm diag}(\\lambda_{1}, \\lambda_{2}, \\lambda_{3})$ with $\\lambda_{1}\\lambda_{2}\\lambda_{3} = 1$. If $L_{L,R}$ are originated from a broken symmetry, the hierarc...

  2. Quantum gravity from noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)

    2014-12-15

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  3. Noncommutative Geometry, Negative Probabilities and Cantorian-Fractal Spacetime

    CERN Document Server

    Castro, C

    2001-01-01

    A straightforward explanation of the Young's two-slit experiment of a quantum particle is obtained within the framework of the Noncommutative Geometric associated with El Naschie's Cantorian-Fractal transfinite Spacetime continuum.

  4. Towards an axiomatic noncommutative geometry of quantum space and time

    CERN Document Server

    Kiselev, Arthemy V

    2013-01-01

    By exploring a possible physical realisation of the geometric concept of noncommutative tangent bundle, we outline an axiomatic quantum picture of space as topological manifold and time as a count of its reconfiguration events.

  5. Quantum field theory on a discrete space and noncommutative geometry

    OpenAIRE

    Haeussling, R.

    2001-01-01

    We analyse in detail the quantization of a simple noncommutative model of spontaneous symmetry breaking in zero dimensions taking into account the noncommutative setting seriously. The connection to the counting argument of Feyman diagrams of the corresponding theory in four dimensions is worked out explicitly. Special emphasis is put on the motivation as well as the presentation of some well-known basic notions of quantum field theory which in the zero-dimensional theory can be studied witho...

  6. From Monge to Higgs: a survey of distance computations in noncommutative geometry

    CERN Document Server

    Martinetti, Pierre

    2016-01-01

    This is a review of explicit computations of Connes distance in noncommutative geometry, covering finite dimensional spectral triples, almost-commutative geometries, and spectral triples on the algebra of compact operators. Several applications to physics are covered, like the metric interpretation of the Higgs field, and the comparison of Connes distance with the minimal length that emerges in various models of quantum spacetime. Links with other areas of mathematics are studied, in particular the horizontal distance in sub-Riemannian geometry. The interpretation of Connes distance as a noncommutative version of the Monge-Kantorovich metric in optimal transport is also discussed.

  7. Symplectic Calabi-Yau manifolds, minimal surfaces and the hyperbolic geometry of the conifold

    CERN Document Server

    Fine, Joel

    2008-01-01

    Given an SO(3)-bundle with connection, the associated two-sphere bundle carries a natural closed 2-form. Asking that this be symplectic gives a curvature inequality first considered by Reznikov. We study this inequality in the case when the base has dimension four, with three main aims. Firstly, we use this approach to construct symplectic six-manifolds with c_1=0 which are never Kahler; e.g., we produce such manifolds with b_1=0=b_3 and also with c_2.omega <0, answering questions posed by Smith-Thomas-Yau. Examples come from Riemannian geometry, via the Levi-Civita connection on Lambda^+. The underlying six-manifold is then the twistor space and often the symplectic structure tames the Eells-Salamon twistor almost complex structure. Our second aim is to exploit this to deduce new results about minimal surfaces: if a certain curvature inequality holds, it follows that the space of minimal surfaces (with fixed topological invariants) is compactifiable; the minimal surfaces must also satisfy an adjunction in...

  8. T-Duality in Type II String Theory via Noncommutative Geometry and Beyond

    Science.gov (United States)

    Mathai, V.

    This brief survey on how nocommutative and nonassociative geometry appears naturally in the study of T-duality in type II string theory, is essentially a transcript of my talks given at the 21st Nishinomiya-Yukawa Memorial Symposium on Theoretical Physics: Noncommutative Geometry and Quantum Spacetime in Physics, Japan, 11--15 November 2006.

  9. Field Equations and Radial Solution in a Noncommutative Spherically Symmetric Geometry

    CERN Document Server

    Yazdani, Aref

    2014-01-01

    We study a noncommutative theory of gravity in the framework of torsional spacetime. This theory is based on a Lagrangian obtained by applying the technique of dimensional reduction of noncommutative gauge theory and that the yielded diffeomorphism invariant field theory can be made equivalent to a teleparallel formulation of gravity. Field equations are derived in the framework of teleparallel gravity through Weitzenbock geometry. We solve these field equations by considering a mass that is distributed spherically symmetrically in a stationary static spacetime in order to obtain a noncommutative line element.This new line element interestingly reaffirms the coherent state theory for a noncommutative Schwarzschild black hole. For the first time, we derive the Newtonian gravitational force equation in the commutative relativity framework, and this result could provide the possibility to investigate examples in various topics in quantum and ordinary theories of gravity.

  10. A computational non-commutative geometry program for disordered topological insulators

    CERN Document Server

    Prodan, Emil

    2017-01-01

    This work presents a computational program based on the principles of non-commutative geometry and showcases several applications to topological insulators. Noncommutative geometry has been originally proposed by Jean Bellissard as a theoretical framework for the investigation of homogeneous condensed matter systems. Recently, this approach has been successfully applied to topological insulators, where it facilitated many rigorous results concerning the stability of the topological invariants against disorder. In the first part of the book the notion of a homogeneous material is introduced and the class of disordered crystals defined together with the classification table, which conjectures all topological phases from this class. The manuscript continues with a discussion of electrons’ dynamics in disordered crystals and the theory of topological invariants in the presence of strong disorder is briefly reviewed. It is shown how all this can be captured in the language of noncommutative geometry using the co...

  11. Quantum field theory on a discrete space and noncommutative geometry

    CERN Document Server

    Häussling, R

    2001-01-01

    We analyse in detail the quantization of a simple noncommutative model of spontaneous symmetry breaking in zero dimensions taking into account the noncommutative setting seriously. The connection to the counting argument of Feyman diagrams of the corresponding theory in four dimensions is worked out explicitly. Special emphasis is put on the motivation as well as the presentation of some well-known basic notions of quantum field theory which in the zero-dimensional theory can be studied without being spoiled by technical complications due to the absence of divergencies.

  12. A course on noncommutative geometry in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, R. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2014-09-11

    In this pedagogical mini course the basics of the derivation of the noncommutative structures appearing in string theory are reviewed. First we discuss the well established appearance of the noncommutative Moyal-Weyl star-product in the correlation functions of open string vertex operators on a magnetized D-brane. Second, we will review the most recent attempts to generalize these concepts to the closed string moving in a nongeometric flux background. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. PREFACE: Conceptual and Technical Challenges for Quantum Gravity 2014 - Parallel session: Noncommutative Geometry and Quantum Gravity

    Science.gov (United States)

    Martinetti, P.; Wallet, J.-C.; Amelino-Camelia, G.

    2015-08-01

    The conference Conceptual and Technical Challenges for Quantum Gravity at Sapienza University of Rome, from 8 to 12 September 2014, has provided a beautiful opportunity for an encounter between different approaches and different perspectives on the quantum-gravity problem. It contributed to a higher level of shared knowledge among the quantum-gravity communities pursuing each specific research program. There were plenary talks on many different approaches, including in particular string theory, loop quantum gravity, spacetime noncommutativity, causal dynamical triangulations, asymptotic safety and causal sets. Contributions from the perspective of philosophy of science were also welcomed. In addition several parallel sessions were organized. The present volume collects contributions from the Noncommutative Geometry and Quantum Gravity parallel session4, with additional invited contributions from specialists in the field. Noncommutative geometry in its many incarnations appears at the crossroad of many researches in theoretical and mathematical physics: • from models of quantum space-time (with or without breaking of Lorentz symmetry) to loop gravity and string theory, • from early considerations on UV-divergencies in quantum field theory to recent models of gauge theories on noncommutative spacetime, • from Connes description of the standard model of elementary particles to recent Pati-Salam like extensions. This volume provides an overview of these various topics, interesting for the specialist as well as accessible to the newcomer. 4partially funded by CNRS PEPS /PTI ''Metric aspect of noncommutative geometry: from Monge to Higgs''

  14. Noncommutative Geometry: Fuzzy Spaces, the Groenewold-Moyal Plane

    Directory of Open Access Journals (Sweden)

    Aiyalam P. Balachandran

    2006-12-01

    Full Text Available In this talk, we review the basics concepts of fuzzy physics and quantum field theory on the Groenewold-Moyal Plane as examples of noncommutative spaces in physics. We introduce the basic ideas, and discuss some important results in these fields. At the end we outline some recent developments in the field.

  15. Noncommutative geometry, symmetries and quantum structure of space-time

    Energy Technology Data Exchange (ETDEWEB)

    Govindarajan, T R [Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113 (India); Gupta, Kumar S [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Harikumar, E [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Meljanac, S, E-mail: trg@imsc.res.in, E-mail: kumars.gupta@saha.ac.in, E-mail: harisp@uohyd.ernet.in, E-mail: meljanac@irb.hr [Rudjer Botkovic Institute, Bijenicka c.54, HR-10002 Zagreb (Croatia)

    2011-07-08

    We discuss how space-time noncommutativity affects the symmetry groups and particle statistics. Assuming that statistics is superselected under a symmetry transformation, we argue that the corresponding flip operator must be twisted. It is argued that the twisted statistics naturally leads to a deformed oscillator algebra for scalar fields in such a background.

  16. Noncommutative Geometry Inspired Rotating Black Hole in Three Dimensions

    OpenAIRE

    2010-01-01

    We find a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution.

  17. Limit Algebras of Differential Forms in Non-Commutative Geometry

    Indian Academy of Sciences (India)

    S J Bhatt; A Inoue

    2008-08-01

    Given a C∗-normed algebra A which is either a Banach ∗-algebra or a Frechet ∗-algebra, we study the algebras ∞A and A obtained by taking respectively the projective limit and the inductive limit of Banach ∗-algebras obtained by completing the universal graded differential algebra ∗A of abstract non-commutative differential forms over A. Various quantized integrals on ∞A induced by a K-cycle on A are considered. The GNS-representation of ∞A defined by a d-dimensional non-commutative volume integral on a d+-summable K-cycle on A is realized as the representation induced by the left action of A on ∗A. This supplements the representation A on the space of forms discussed by Connes (Ch. VI.1, Prop. 5, p. 550 of [C]).

  18. Noncommutative geometry-inspired rotating black hole in three dimensions

    Indian Academy of Sciences (India)

    Juan Manuel Tejeiro; Alexis Larrañaga

    2012-01-01

    We find a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution and give corrections to the area law to get the exact nature of the Bekenstein–Hawking entropy.

  19. Noncommutative Geometry and the Primordial Dipolar Imaginary Power Spectrum

    CERN Document Server

    Jain, P

    2014-01-01

    We argue that an anisotropic dipolar imaginary primordial power spectrum is possible within the framework of noncommutative space-times. We show that such a spectrum provides a good description of the observed dipole modulation in CMBR data. We extract the corresponding power spectrum from data. The dipole modulation is related to the observed hemispherical anisotropy in CMBR data, which might represent the first signature of quantum gravity.

  20. Doubling of the Algebra and Neutrino Mixing within Noncommutative Spectral Geometry

    CERN Document Server

    Gargiulo, Maria Vittoria; Vitiello, Giuseppe

    2014-01-01

    We study physical implications of the doubling of the algebra, an essential element in the construction of the noncommutative spectral geometry model, proposed by Connes and his collaborators as offering a geometric explanation for the standard model of strong and electroweak interactions. Linking the algebra doubling to the deformed Hopf algebra, we build Bogogliubov transformations and show the emergence of neutrino mixing.

  1. Noncommutative Geometry, Extended W(infty) Algebra and Grassmannian Solitons in Multicomponent Quantum Hall Systems

    CERN Document Server

    Ezawa, Z F; Hasebe, K

    2003-01-01

    Noncommutative geometry governs the physics of quantum Hall (QH) effects. We introduce the Weyl ordering of the second quantized density operator to explore the dynamics of electrons in the lowest Landau level. We analyze QH systems made of $N$-component electrons at the integer filling factor $\

  2. Doubling of the algebra and neutrino mixing within noncommutative spectral geometry

    Science.gov (United States)

    Gargiulo, Maria Vittoria; Sakellariadou, Mairi; Vitiello, Giuseppe

    2014-01-01

    We study the physical implications of the doubling of the algebra, an essential element in the construction of the noncommutative spectral geometry model, proposed by Connes and his collaborators as offering a geometric explanation for the standard model of the strong and electroweak interactions. Linking the algebra doubling to the deformed Hopf algebra, we build Bogoliubov transformations and show the emergence of neutrino mixing.

  3. Self Sustained Traversable Wormholes Induced by Gravity’s Rainbow and Noncommutative Geometry

    Directory of Open Access Journals (Sweden)

    Garattini Remo

    2013-09-01

    Full Text Available We compare the effects of Noncommutative Geometry and Gravity’s Rainbow on traversable wormholes which are sustained by their own gravitational quantum fluctuations. Fixing the geometry on a well tested model, we find that the final result shows that the wormhole is of the Planckian size. This means that the traversability of the wormhole is in principle, but not in practice.

  4. Noncommutative geometry in string and twisted Hopf algebra of diffeomorphism

    Science.gov (United States)

    Watamura, Satoshi

    2011-09-01

    We discuss the Hopf algebra structure in string theory and present the twist quantization as a unified formulation of the world sheet quantization of the string and the symmetry of the target spacetime. Applying it to the case with a nonzero B-field background, we explain a method to decompose the twist into two successive twists. There are two different possibilities of decomposition: The first is a natural decomposition from the viewpoint of the twist quantization, leading to a new type of twisted Poincaré symmetry. The second decomposition reveals the relation of our formulation to the twisted Poincaré symmetry on the Moyal type noncommutative space.

  5. An algebraic formulation of causality for noncommutative geometry

    Science.gov (United States)

    Franco, Nicolas; Eckstein, Michał

    2013-07-01

    We propose an algebraic formulation of the notion of causality for spectral triples corresponding to globally hyperbolic manifolds with a well-defined noncommutative generalization. The causality is given by a specific cone of Hermitian elements respecting an algebraic condition based on the Dirac operator and a fundamental symmetry. We prove that in the commutative case the usual notion of causality is recovered. We show that, when the dimension of the manifold is even, the result can be extended in order to have an algebraic constraint suitable for a Lorentzian distance formula.

  6. Non-commutative tachyon action and D-brane geometry

    CERN Document Server

    Herbst, Manfred; Kreuzer, M; Herbst, Manfred; Kling, Alexander; Kreuzer, Maximilian

    2002-01-01

    We analyse open string correlators in non-constant background fields, including the metric $g$, the antisymmetric $B$-field, and the gauge field $A$. Working with a derivative expansion for the background fields, but exact in their constant parts, we obtain a tachyonic on-shell condition for the inserted functions and extract the kinetic term for the tachyon action. The 3-point correlator yields a non-commutative tachyon potential. We also find a remarkable feature of the differential structure on the D-brane: Although the boundary metric $G$ plays an essential role in the action, the natural connection on the D-brane is the same as in closed string theory, i.e. it is compatible with the bulk metric and has torsion $H=dB$. This means, in particular, that the parallel transport on the brane is independent of the gauge field $A$.

  7. A Note on Symplectic Algorithm

    Institute of Scientific and Technical Information of China (English)

    GUO Han-Ying; LI Yu-Qi; WU Ke

    2001-01-01

    We present the symplectic algorithm in the Lagrangian formalism for the Hamiltonian systems by virtue of the noncommutative differential calculus with respect to the discrete time and the Euler-Lagrange cohomological concepts. We also show that the trapezoidal integrator is symplectic in certain sense.``

  8. Noncommutative geometry, extended W∞ algebra, and Grassmannian solitons in multicomponent quantum Hall systems

    Science.gov (United States)

    Ezawa, Z. F.; Tsitsishvili, G.; Hasebe, K.

    2003-03-01

    Noncommutative geometry governs the physics of quantum Hall (QH) effects. We introduce the Weyl ordering of the second quantized density operator to explore the dynamics of electrons in the lowest Landau level. We analyze QH systems made of N-component electrons at the integer filling factor ν=k⩽N. The basic algebra is the SU(N)-extended W∞. A specific feature is that noncommutative geometry leads to a spontaneous development of SU(N) quantum coherence by generating the exchange Coulomb interaction. The effective Hamiltonian is the Grassmannian GN,k sigma model, and the dynamical field is the Grassmannian GN,k field, describing k(N-k) complex Goldstone modes and one kind of topological solitons (Grassmannian solitons).

  9. A C*-algebra approach to noncommutative Lorentzian geometry of globally-hyperbolic spacetimes

    CERN Document Server

    Moretti, V

    2003-01-01

    The structure of globally hyperbolic spacetimes is investigated from the point of view of Connes' noncommutative geometry. No foliation of the spacetime by means of spacelike surfaces is employed, the complete Lorentzian geometry is considered. Connes' functional formula for the distance is generalized to the Lorentzian case using the d'Alembert operator and the causal functions of a globally hyperbolic spacetime (continuous functions which do not decrease along future-directed causal curves).The formula concerns the Lorentzian distance which determines the causal part of the Synge world function, satisfies an inverse triangular inequality and completely determines the topology, the differentiable structure, the metric tensor and the temporal orientation of a globally hyperbolic spacetime. Afterwards, using a C*-algebra approach, the spacetime causal structure and the Lorentzian distance are generalized into noncommutative structures. The generalized spacetime consists of a direct set of of Hilbert spaces and...

  10. Noncommutative spectral geometry and the deformed Hopf algebra structure of quantum field theory

    Science.gov (United States)

    Sakellariadou, Mairi; Stabile, Antonio; Vitiello, Giuseppe

    2013-06-01

    We report the results obtained in the study of Alain Connes noncommutative spectral geometry construction focusing on its essential ingredient of the algebra doubling. We show that such a two-sheeted structure is related with the gauge structure of the theory, its dissipative character and carries in itself the seeds of quantization. From the algebraic point of view, the algebra doubling process has the same structure of the deformed Hops algebra structure which characterizes quantum field theory.

  11. Noncommutative spectral geometry and the deformed Hopf algebra structure of quantum field theory

    CERN Document Server

    Sakellariadou, Mairi; Vitiello, Giuseppe

    2013-01-01

    We report the results obtained in the study of Alain Connes noncommutative spectral geometry construction focusing on its essential ingredient of the algebra doubling. We show that such a two-sheeted structure is related with the gauge structure of the theory, its dissipative character and carries in itself the seeds of quantization. From the algebraic point of view, the algebra doubling process has the same structure of the deformed Hops algebra structure which characterizes quantum field theory.

  12. Vacuum Solutions of Classical Gravity on Cyclic Groups from Noncommutative Geometry

    Institute of Scientific and Technical Information of China (English)

    DAI Jian; SONG Xing-Chang

    2002-01-01

    Based on the observation that the moduli of a link variable on a cyclic group modify Connes' distance on this group, we construct several action functionals for this link variable within the framework of noncommutative geometry. After solving the equations of motion, we find that one type of action gives nontrivial vacuum solution for gravity on this cyclic group in a broad range of coupling constants and that such a solution can be expressed with Chebyshev's polynomials.

  13. Non-commutative geometry, the Bohm interpretation and the mind-matter relationship

    Science.gov (United States)

    Hiley, B. J.

    2001-06-01

    It is argued that in order to address the mind/matter relationship, we will have to radically change the conceptual structure normally assumed in physics. Rather than fields and/or particles-in-interaction described in the traditional Cartesian order based a local evolution in spacetime, we need to introduce a more general notion of process described by a non-commutative algebra. This will have radical implications for both for physical processes and for geometry. By showing how the Bohm interpretation of quantum mechanics can be understood within a non-commutative structure, we can give a much clearer meaning to the implicate order introduced by Bohm. It is through this implicate order that mind and matter can be seen as different aspects of the same general process.

  14. Noncommutative differential geometry, and the matrix representations of generalised algebras

    Science.gov (United States)

    Gratus, J.

    1998-05-01

    The underly ing algebra I or a noncummutative geometry is taken to be a matrix algebra, and the set of derivatives the ad joint of a subset of traceless matrices. This is sufficient to calculate the dual 1-forms, and show that the space of 1-firms is at free module over the algebra of matrices. The concept of a generalised algebra is delined and it is shown that this is required in order for the space of 2-forms to exist, The exterior derivative is generalised for higher-order forms and these are also shown to he free modules over the matrix algebra. Examples of mappings that preserve the differential Structure are peen, Also giken are four examples of matrix generalised algebras, and the corresponding noncommutntive geometries, including the cases where the generalised algebra corresponds to a representation of a Lie algebra or a q-deformed algebra.

  15. Minimal length in quantum space and integrations of the line element in Noncommutative Geometry

    CERN Document Server

    Martinetti, Pierre; Tomassini, Luca

    2011-01-01

    We question the emergence of a minimal length in quantum spacetime, confronting two notions that appeared at various points in the literature: length as the spectrum of an operator L in the Doplicher Fredenhagen Roberts (DFR) quantum spacetime and the canonical noncommutative spacetime (theta-Minkowski) on the one side; Connes spectral distance in noncommutative geometry on the other side. Although on the Euclidean space - as well as on manifolds with suitable symmetry - the two notions merge into the one of geodesic distance, they yield distinct results in the noncommutative framework. In particular, the widespread idea that quantizing the coordinates inevitably yields a minimal length should be handle with care: on the Moyal plane for instance, both the quantum length (intended as the mean value of the length operator on a separable two-point state) and the spectral distance are discrete, but only the former is bounded above from zero. We propose a framework in which the comparison of the two objects makes ...

  16. An introduction to noncommutative spaces and their geometries characterization of the shallow subsurface implications for urban infrastructure and environmental assessment

    CERN Document Server

    Landi, Giovanni

    1997-01-01

    These lecture notes are an introduction to several ideas and applications of noncommutative geometry. It starts with a not necessarily commutative but associative algebra which is thought of as the algebra of functions on some 'virtual noncommutative space'. Attention is switched from spaces, which in general do not even exist, to algebras of functions. In these notes, particular emphasis is put on seeing noncommutative spaces as concrete spaces, namely as a collection of points with a topology. The necessary mathematical tools are presented in a systematic and accessible way and include among other things, C'*-algebras, module theory and K-theory, spectral calculus, forms and connection theory. Application to Yang--Mills, fermionic, and gravity models are described. Also the spectral action and the related invariance under automorphism of the algebra is illustrated. Some recent work on noncommutative lattices is presented. These lattices arose as topologically nontrivial approximations to 'contuinuum' topolo...

  17. The Symplectic Camel and Quantum Universal Invariants: the Angel of Geometry vs. the Demon of Algebra

    CERN Document Server

    de Gosson, Maurice A

    2012-01-01

    A positive definite symmetric matrix {\\sigma} qualifies as a quantum mechanical covariance matrix if and only if {\\sigma}+(1/2)i\\hbar{\\Omega}\\geq0 where {\\Omega} is the standard symplectic matrix. This well-known condition is a strong version of the uncertainty principle, which can be reinterpreted in terms of the topological notion of symplectic capacity, closely related to Gromov's non-squeezing theorem. We show that a recent refinement of the latter leads to a new class of geometric invariants. These are the volumes of the orthogonal projections of the covariance ellipsoid on symplectic subspaces of the phase space. We compare these geometric invariants to the algebraic "universal quantum invariants" of Dodonov and Serafini.

  18. Symplectic geometry of the moduli space of projective structures in homological coordinates

    CERN Document Server

    Bertola, Marco; Norton, Chaya

    2015-01-01

    We introduce a natural symplectic structure on the moduli space of quadratic differentials with simple zeros and describe its Darboux coordinate systems in terms of so-called homological coordinates. We then show that this structure coincides with the canonical Poisson structure on the cotangent bundle of the moduli space of Riemann surfaces, and therefore the homological coordinates provide a new system of Darboux coordinates. We define a natural family of commuting "homological flows" on the moduli space of quadratic differentials and find the corresponding action-angle variables. The space of projective structures over the moduli space can be identified with the cotangent bundle upon selection of a reference projective connection that varies holomorphically and thus can be naturally endowed with a symplectic structure. Different choices of projective connections of this kind (Bergman, Schottky, Wirtinger) give rise to equivalent symplectic structures on the space of projective connections but different sym...

  19. A Note on Semi-densities in Anti-symplectic Geometry

    CERN Document Server

    Bering, K

    2006-01-01

    We revisit Khudaverdian's geometric construction of an odd nilpotent operator \\Delta_E that sends semi-densities to semi-densities on an anti-symplectic manifold. We find a local formula for the \\Delta_E operator in arbitrary coordinates and we discuss its connection to Batalin-Vilkovisky quantization.

  20. Phase space quantization, non-commutativity and the gravitational field

    CERN Document Server

    Chatzistavrakidis, Athanasios

    2014-01-01

    In this paper we study the structure of the phase space in non-commutative geometry in the presence of a non-trivial frame. Our basic assumptions are that the underlying space is a symplectic and parallelizable manifold. Furthermore, we assume the validity of the Leibniz rule and the Jacobi identities. We consider non-commutative spaces due to the quantization of the symplectic structure and determine the momentum operators that guarantee a set of canonical commutation relations, appropriately extended to include the non-trivial frame. We stress the important role of left vs. right acting operators and of symplectic duality. This enables us to write down the form of the full phase space algebra on these non-commutative spaces, both in the non-compact and in the compact case. We test our results against the class of 4D and 6D symplectic nilmanifolds, thus presenting a large set of non-trivial examples that realize the general formalism.

  1. Unification of gravity and quantum field theory from extended noncommutative geometry

    Science.gov (United States)

    Yu, Hefu; Ma, Bo-Qiang

    2017-02-01

    We make biframe and quaternion extensions on the noncommutative geometry, and construct the biframe spacetime for the unification of gravity and quantum field theory (QFT). The extended geometry distinguishes between the ordinary spacetime based on the frame bundle and an extra non-coordinate spacetime based on the biframe bundle constructed by our extensions. The ordinary spacetime frame is globally flat and plays the role as the spacetime frame in which the fields of the Standard Model are defined. The non-coordinate frame is locally flat and is the gravity spacetime frame. The field defined in both frames of such “flat” biframe spacetime can be quantized and plays the role as the gravity field which couples with all the fields to connect the gravity effect with the Standard Model. Thus, we provide a geometric paradigm in which gravity and QFT can be unified.

  2. Symplectic Applicability of Lagrangian Surfaces

    Directory of Open Access Journals (Sweden)

    Lorenzo Nicolodi

    2009-06-01

    Full Text Available We develop an approach to affine symplectic invariant geometry of Lagrangian surfaces by the method of moving frames. The fundamental invariants of elliptic Lagrangian immersions in affine symplectic four-space are derived together with their integrability equations. The invariant setup is applied to discuss the question of symplectic applicability for elliptic Lagrangian immersions. Explicit examples are considered.

  3. Noncommutative Symmetries and Gravity

    CERN Document Server

    Aschieri, P

    2006-01-01

    Spacetime geometry is twisted (deformed) into noncommutative spacetime geometry, where functions and tensors are now star-multiplied. Consistently, spacetime diffeomorhisms are twisted into noncommutative diffeomorphisms. Their deformed Lie algebra structure and that of infinitesimal Poincare' transformations is defined and explicitly constructed. This allows to construct a noncommutative theory of gravity.

  4. The 750 GeV diphoton excess in unified Pati-Salam models from noncommutative geometry

    CERN Document Server

    Aydemir, Ufuk; Sun, Chen; Takeuchi, Tatsu

    2016-01-01

    We discuss a possible interpretation of the $750$ GeV diphoton resonance, recently reported at the LHC, within a class of Pati-Salam models with gauge coupling unification. The unification is imposed by the underlying non-commutative geometry (NCG), which in these models is extended to a left-right symmetric completion of the Standard Model (SM). Within such unified Pati-Salam models the Higgs content is restrictively determined from the underlying NCG, instead of being arbitrarily selected as in canonical, non-unified, Pati-Salam models. We show that the observed cross sections involving the $750$ GeV diphoton resonance could be realized through a SM singlet scalar field accompanied by colored scalars, present in these unified models. In view of this result we discuss the underlying rigidity of these models in the NCG framework and the wider implications of the NCG approach for physics beyond the SM.

  5. On noncommutative Nahm transform

    Energy Technology Data Exchange (ETDEWEB)

    Astashkevich, A.; Schwarz, A. [California Univ., Davis, CA (United States). Dept. of Mathematics; Nekrasov, N. [Lyman Laboratory of Physics, Harvard University, Cambridge, MA (United States); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)

    2000-04-01

    Motivated by the recently observed relation between the physics of D-branes in the background of B-field and the noncommutative geometry we study the analogue of the Nahm transform for the instantons on the noncommutative torus. (orig.)

  6. Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry

    Science.gov (United States)

    Boyle, Latham; Farnsworth, Shane

    2015-04-01

    Connes' non-commutative geometry (NCG) is a generalization of Riemannian geometry that is particularly apt for expressing the standard model of particle physics coupled to Einstein gravity. Recently, we suggested a reformulation of this framework that is: (i) simpler and more unified in its axioms, and (ii) allows the Lagrangian for the standard model of particle physics (coupled to Einstein gravity) to be specified in a way that is tighter and more explanatory than the traditional algorithm based on effective field theory. Here we explain how this same reformulation yields a new perspective on the symmetries of a given NCG. Applying this perspective to the NCG traditionally used to describe the standard model we find, instead, an extension of the standard model by an extra U(1) B - L gauge symmetry, and a single extra complex scalar field σ, which is a singlet under SU(3)C × SU(2)L × U(1)Y , but has B - L = 2 . This field has cosmological implications, and offers a new solution to the discrepancy between the observed Higgs mass and the NCG prediction. We acknowledge support from an NSERC Discovery Grant.

  7. Rethinking Connes’ Approach to the Standard Model of Particle Physics Via Non-Commutative Geometry

    Science.gov (United States)

    Farnsworth, Shane; Boyle, Latham

    2015-02-01

    Connes’ non-commutative geometry (NCG) is a generalization of Riemannian geometry that is particularly apt for expressing the standard model of particle physics coupled to Einstein gravity. In a previous paper, we suggested a reformulation of this framework that is: (i) simpler and more unified in its axioms, and (ii) allows the Lagrangian for the standard model of particle physics (coupled to Einstein gravity) to be specified in a way that is tighter and more explanatory than the traditional algorithm based on effective field theory. Here we explain how this same reformulation yields a new perspective on the symmetries of a given NCG. Applying this perspective to the NCG traditionally used to describe the standard model we find, instead, an extension of the standard model by an extra U{{(1)}B-L} gauge symmetry, and a single extra complex scalar field σ, which is a singlet under SU{{(3)}C}× SU{{(2)}L}× U{{(1)}Y}, but has B-L=2. This field has cosmological implications, and offers a new solution to the discrepancy between the observed Higgs mass and the NCG prediction.

  8. Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry

    CERN Document Server

    Farnsworth, Shane

    2015-01-01

    Connes' non-commutative geometry (NCG) is a generalization of Riemannian geometry that is particularly apt for expressing the standard model of particle physics coupled to Einstein gravity. In a previous paper, we suggested a reformulation of this framework that is: (i) simpler and more unified in its axioms, and (ii) allows the Lagrangian for the standard model of particle physics (coupled to Einstein gravity) to be specified in a way that is tighter and more explanatory than the traditional algorithm based on effective field theory. Here we explain how this same reformulation yields a new perspective on the symmetries of a given NCG. Applying this perspective to the NCG traditionally used to describe the standard model we find, instead, an extension of the standard model by an extra $U(1)_{B-L}$ gauge symmetry, and a single extra complex scalar field $\\sigma$, which is a singlet under $SU(3)_{C}\\times SU(2)_{L}\\times U(1)_{Y}$, but has $B-L=2$. This field has cosmological implications, and offers a new solu...

  9. Three-dimensional topological field theory and symplectic algebraic geometry I

    Energy Technology Data Exchange (ETDEWEB)

    Kapustin, Anton [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA (United States)], E-mail: kapustin@theory.caltech.edu; Rozansky, Lev [University of North Carolina (United States)], E-mail: rozansky@math.unc.edu; Saulina, Natalia [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA (United States)], E-mail: saulina@theory.caltech.edu

    2009-08-01

    We study boundary conditions and defects in a three-dimensional topological sigma-model with a complex symplectic target space X (the Rozansky-Witten model). We show that boundary conditions correspond to complex Lagrangian submanifolds in X equipped with complex fibrations. The set of boundary conditions has the structure of a 2-category; morphisms in this 2-category are interpreted physically as one-dimensional defect lines separating parts of the boundary with different boundary conditions. This 2-category is a categorification of the Z{sub 2}-graded derived category of X; it is also related to categories of matrix factorizations and a categorification of deformation quantization (quantization of symmetric monoidal categories). In Appendix B we describe a deformation of the B-model and the associated category of branes by forms of arbitrary even degree.

  10. Non-topological non-commutativity in string theory

    CERN Document Server

    Guttenberg, Sebastian; Kreuzer, Maximilian; Rashkov, Radoslav

    2007-01-01

    Quantization of coordinates leads to the non-commutative product of deformation quantization, but is also at the roots of string theory, for which space-time coordinates become the dynamical fields of a two-dimensional conformal quantum field theory. Appositely, open string diagrams provided the inspiration for Kontsevich's solution of the long-standing problem of quantization of Poisson geometry by virtue of his formality theorem. In the context of D-brane physics non-commutativity is not limited, however, to the topolocial sector. We show that non-commutative effective actions still make sense when associativity is lost and establish a generalized Connes-Flato-Sternheimer condition through second order in a derivative expansion. The measure in general curved backgrounds is naturally provided by the Born--Infeld action and reduces to the symplectic measure in the topological limit, but remains non-singular even for degenerate Poisson structures. Analogous superspace deformations by RR--fields are also discus...

  11. a Detailed Account of Alain CONNES’ Version of the Standard Model in Non-Commutative Differential Geometry III

    Science.gov (United States)

    Kastler, Daniel

    We describe in detail Alain Connes’ last presentation of the (classical level of the) standard model in noncommutative differential geometry, now free of the cumbersome adynamical fields which parasited the initial treatment. Accessorily, the theory is presented in a more transparent way by systematic use of the skew tensor-product structure, and of 2×2 matrices with 2×2 matrix-entries instead of the previous 4×4 matrices.

  12. Noncommutative geometry inspired 3-dimensional charged black hole solution in an anti-de Sitter background spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook; Bhar, Piyali [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Sharma, Ranjan [P. D. Women' s College, Department of Physics, Jalpaiguri (India); Tiwari, Rishi Kumar [Govt. Model Science College, Department of Mathematics, Rewa, MP (India)

    2015-03-01

    We report a 3-D charged black hole solution in an anti-de Sitter space inspired by noncommutative geometry. In this construction, the black hole exhibits two horizons, which turn into a single horizon in the extreme case. We investigate the impacts of electromagnetic field on the location of the event horizon, mass and thermodynamic properties such as Hawking temperature, entropy, and heat capacity of the black hole. The geodesics of the charged black hole are also analyzed. (orig.)

  13. Pati-Salam Unification from Non-commutative Geometry and the TeV-scale W_R boson

    CERN Document Server

    Aydemir, Ufuk; Sun, Chen; Takeuchi, Tatsu

    2016-01-01

    We analyze the compatibility of the unified left-right symmetric Pati-Salam models motivated by non-commutative geometry and the TeV scale right-handed W boson suggested by recent LHC data. We find that the unification/matching conditions place conflicting demands on the symmetry breaking scales and that generating the required W_R mass and coupling is non-trivial.

  14. Doubling of the algebra and neutrino mixing within noncommutative spectral geometry. Doubling of the algebra and neutrino mixing

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Maria Vittoria; Vitiello, Giuseppe [I.N.F.N., Salerno (Italy); Universita di Salerno, Dipartimento di Fisica, Salerno (Italy); Sakellariadou, Mairi [King' s College London, University of London, Department of Physics, London (United Kingdom)

    2014-01-15

    We study the physical implications of the doubling of the algebra, an essential element in the construction of the noncommutative spectral geometry model, proposed by Connes and his collaborators as offering a geometric explanation for the standard model of the strong and electroweak interactions. Linking the algebra doubling to the deformed Hopf algebra, we build Bogoliubov transformations and show the emergence of neutrino mixing. (orig.)

  15. Reconstruction of the standard model with classical conformal invariance in noncommutative geometry

    CERN Document Server

    Yang, Masaki J S

    2015-01-01

    In this paper, we derive the standard model with classical conformal invariance from the Yang--Mills--Higgs model in noncommutative geometry (NCG). In the ordinary context of the NCG, the {\\it distance matrix} $M_{nm}$ which corresponds to the vacuum expectation value of Higgs fields is taken to be finite. However, since $M_{nm}$ is arbitrary in this formulation, we can take all $M_{nm}$ to be zero. In the original composite scheme, the Higgs field itself vanishes with the condition $M_{nm} = 0$. Then, we adopt the elemental scheme, in which the gauge and the Higgs bosons are regarded as elemental fields. By these assumptions, all scalars do not have vevs at tree level. The symmetry breaking mechanism will be implemented by the Coleman--Weinberg mechanism. As a result, we show a possibility to solve the hierarchy problem in the context of NCG. Unfortunately, the Coleman--Weinberg mechanism does not work in the SM Higgs sector, because the Coleman--Weinberg effective potential becomes unbounded from below for ...

  16. Noncommutative geometry inspired 3-dimensional charged black hole solution in an anti-de Sitter background space-time

    CERN Document Server

    Rahaman, Farook; Sharma, Ranjan; Tiwari, Rishi Kumar

    2014-01-01

    We report a 3D charged black hole solution in an anti desetter space inspired by noncommutative geometry.In this construction,the black hole exhibits two horizon which turn into a single horizon in the extreme case.We investigate the impacts of the electromagnetic field on the location of the event horizon,mass and thermodynamic properties such as Hawking temperature,entropy and heat capacity of the black hole.The geodesics of the charged black hole are also analyzed.

  17. Twisted rings and moduli stacks of "fat" point modules in non-commutative projective geometry

    CERN Document Server

    Chan, Daniel

    2010-01-01

    The Hilbert scheme of point modules was introduced by Artin-Tate-Van den Bergh to study non-commutative graded algebras. The key tool is the construction of a map from the algebra to a twisted ring on this Hilbert scheme. In this paper, we study moduli stacks of more general "fat" point modules, and show that there is a similar map to a twisted ring associated to the stack. This is used to provide a sufficient criterion for a non-commutative projective surface to be birationally PI. It is hoped that such a criterion will be useful in understanding Mike Artin's conjecture on the birational classification of non-commutative surfaces.

  18. Symplectic Origami

    OpenAIRE

    da Silva, A. Cannas; Guillemin, V.; A. R. Pires

    2009-01-01

    An origami manifold is a manifold equipped with a closed 2-form which is symplectic except on a hypersurface, where it is like the pullback of a symplectic form by a folding map and its kernel fibrates with oriented circle fibers over a compact base. We can move back and forth between origami and symplectic manifolds using cutting (unfolding) and radial blow-up (folding), modulo compatibility conditions. We prove an origami convexity theorem for Hamiltonian torus actions, classify toric origa...

  19. A Lie-Algebra model for a noncommutative space time geometry

    CERN Document Server

    Doerfel, B D

    2002-01-01

    We propose a Lie-algebra model for noncommutative coordinate and momentum space . Based on a rigid commutation relation for the commutators of space time operators the model is quite constrained if one tries to keep Lorentz invariance as much as possible. We discuss the question of invariants esp. the definition of a mass.

  20. P- v criticality in the extended phase space of a noncommutative geometry inspired Reissner-Nordström black hole in AdS space-time

    Science.gov (United States)

    Liang, Jun; Guan, Zhi-Hua; Liu, Yan-Chun; Liu, Bo

    2017-02-01

    The P- v criticality and phase transition in the extended phase space of a noncommutative geometry inspired Reissner-Nordström (RN) black hole in Anti-de Sitter (AdS) space-time are studied, where the cosmological constant appears as a dynamical pressure and its conjugate quantity is thermodynamic volume of the black hole. It is found that the P- v criticality and the small black hole/large black hole phase transition appear for the noncommutative RN-AdS black hole. Numerical calculations indicate that the noncommutative parameter affects the phase transition as well as the critical temperature, horizon radius, pressure and ratio. The critical ratio is no longer universal, which is different from the result in the van de Waals liquid-gas system. The nature of phase transition at the critical point is also discussed. Especially, for the noncommutative geometry inspired RN-AdS black hole, a new thermodynamic quantity Ψ conjugate to the noncommutative parameter θ has to be defined further, which is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.

  1. Function theory on symplectic manifolds

    CERN Document Server

    Polterovich, Leonid

    2014-01-01

    This is a book on symplectic topology, a rapidly developing field of mathematics which originated as a geometric tool for problems of classical mechanics. Since the 1980s, powerful methods such as Gromov's pseudo-holomorphic curves and Morse-Floer theory on loop spaces gave rise to the discovery of unexpected symplectic phenomena. The present book focuses on function spaces associated with a symplectic manifold. A number of recent advances show that these spaces exhibit intriguing properties and structures, giving rise to an alternative intuition and new tools in symplectic topology. The book provides an essentially self-contained introduction into these developments along with applications to symplectic topology, algebra and geometry of symplectomorphism groups, Hamiltonian dynamics and quantum mechanics. It will appeal to researchers and students from the graduate level onwards. I like the spirit of this book. It formulates concepts clearly and explains the relationship between them. The subject matter is i...

  2. Symplectic Origami

    CERN Document Server

    da Silva, A Cannas; Pires, A R

    2009-01-01

    An origami manifold is a manifold equipped with a closed 2-form which is symplectic except on a hypersurface where it is like the pullback of a symplectic form by a folding map and its kernel defines a circle fibration. We can move back and forth between origami and symplectic manifolds using cutting (unfolding) and radial blow-up (folding), modulo compatibility conditions. We prove an origami convexity theorem for hamiltonian torus actions, classify toric origami manifolds by polyhedral objects resembling paper origami and discuss examples. We also prove a cobordism result and some of its classical consequences, and compute the cohomology of a special class of origami manifolds.

  3. The Gribov problem in noncommutative QED

    Science.gov (United States)

    Canfora, Fabrizio; Kurkov, Maxim A.; Rosa, Luigi; Vitale, Patrizia

    2016-01-01

    It is shown that in the noncommutative version of QED (NCQED) Gribov copies induced by the noncommutativity of space-time appear in the Landau gauge. This is a genuine effect of noncommutative geometry which disappears when the noncommutative parameter vanishes.

  4. Muon $g-2$ measurements and non-commutative geometry of quantum beams

    Indian Academy of Sciences (India)

    Y Srivastava; A Widom

    2004-03-01

    We discuss a completely quantum mechanical treatment of the measurement of the anomalous magnetic moment of the muon. A beam of muons move in a strong uniform magnetic field and a weak focusing electrostatic field. Errors in the classical beam analysis are exposed. In the Dirac quantum beam analysis, an important role is played by non-commutative muon beam coordinates leading to a discrepancy between the classical and quantum theories. We obtain a quantum limit to the accuracy achievable in BNL type experiments. Some implications of the quantum corrected data analysis for supersymmetry are briefly mentioned.

  5. Noncommutative Algebra and Noncommutative Geometry

    OpenAIRE

    2014-01-01

    Divided into three parts, the first marks out enormous geometric issues with the notion of quasi-freenss of an algebra and seeks to replace this notion of formal smoothness with an approximation by means of a minimal unital commutative algebra's smoothness. The second part of this text is then, devoted to the approximating of properties of nc. schemes through the properties of two uniquely determined (classical) schemes estimating the nc. scheme in question in a maximal way from the inside an...

  6. Non-commutative geometry as a realization of varying speed of light cosmology

    CERN Document Server

    Alexander, S H S; Alexander, Stephon H.S.; Magueijo, Jo\\~ao

    2001-01-01

    We examine the cosmological implications of space-time non-commutativity, discovering yet another realization of the varying speed of light model. Our starting point is the well-known fact that non-commutativity leads to deformed dispersion relations, relating energy and momentum, implying a frequency dependent speed of light. A Hot Big Bang Universe therefore experiences a higher speed of light as it gets hotter. We study the statistical physics of this "deformed radiation", recovering standard results at low temperatures, but a number of novelties at high temperatures: a deformed Planck's spectrum, a temperature dependent equation of state $w=p/\\rho$ (ranging from 1/3 to infinity), a new Stephan-Boltzmann law, and a new entropy relation. These new photon properties closely mimic those of phonons in crystals, hardly a surprising analogy. They combine to solve the horizon and flatness problems, explaining also the large entropy of the Universe. We also show how one would find a direct imprint of non-commutati...

  7. Quantum geometry and quantization on U(u(2)) background. Noncommutative Dirac monopole

    Science.gov (United States)

    Gurevich, Dimitri; Saponov, Pavel

    2016-08-01

    In our previous publications we introduced differential calculus on the enveloping algebras U(gl(m)) similar to the usual calculus on the commutative algebra Sym (gl(m)) . The main ingredients of our calculus are quantum partial derivatives which turn into the usual partial derivatives in the classical limit. In the particular case m = 2 we prolonged this calculus on a central extension A of the algebra U(gl(2)) . In the present paper we consider the problem of a further extension of the quantum partial derivatives on the skew-field of the algebra A and define the corresponding de Rham complex. As an application of the differential calculus we suggest a method of transferring dynamical models defined on an extended Sym (u(2)) to an extended algebra U(u(2)) . We call this procedure the quantization with noncommutative configuration space. In this sense we quantize the Dirac monopole and find a solution of this model.

  8. J-对称微分算子的J-对称扩张的J-辛几何刻画%Complex J-Symplectic Geometry Characterization for J-Symmetric Extensions of J-Symmetric Differential Operators

    Institute of Scientific and Technical Information of China (English)

    王万义; 孙炯

    2003-01-01

    本文利用J-辛几何,刻画了J-对称微分算子的J-对称扩张.%We give complex J-symplectic geometry characterizations for J-symmetric exten-sions of J-symmetric ordinary differential operators.

  9. SYMPLECTIC INTERPOLATION.

    Energy Technology Data Exchange (ETDEWEB)

    MACKAY, W.W.; LUCCIO, A.U.

    2006-06-23

    It is important to have symplectic maps for the various electromagnetic elements in an accelerator ring. For some tracking problems we must consider elements which evolve during a ramp. Rather than performing a computationally intensive numerical integration for every turn, it should be possible to integrate the trajectory for a few sets of parameters, and then interpolate the transport map as a function of one or more parameters, such as energy. We present two methods for interpolation of symplectic matrices as a function of parameters: one method is based on the calculation of a representation in terms of a basis of group generators [2, 3] and the other is based on the related but simpler symplectification method of Healy [1]. Both algorithms guarantee a symplectic result.

  10. WKB Approximation in Noncommutative Gravity

    Directory of Open Access Journals (Sweden)

    Maja Buric

    2007-12-01

    Full Text Available We consider the quasi-commutative approximation to a noncommutative geometry defined as a generalization of the moving frame formalism. The relation which exists between noncommutativity and geometry is used to study the properties of the high-frequency waves on the flat background.

  11. On the noncommutative geometry of the endomorphism algebra of a vector bundle

    Science.gov (United States)

    Masson, Thierry

    1999-09-01

    In this paper we investigate some aspects of the noncummutative differential geometry based on derivations of the algebra of endomorphism of an oriented complex formation vector bundle. We relate it, in a natural way, to the geometry of the underlying principal bundle, we introduce on it a notion of metric and we study the cohomology of its complex of noncummutative differential forms.

  12. Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics

    Science.gov (United States)

    Manno, Gianni; Moreno, Giovanni

    2016-03-01

    This paper is a natural companion of [Alekseevsky D.V., Alonso Blanco R., Manno G., Pugliese F., Ann. Inst. Fourier (Grenoble) 62 (2012), 497-524, arXiv:1003.5177], generalising its perspectives and results to the context of third-order (2D) Monge-Ampère equations, by using the so-called ''meta-symplectic structure'' associated with the 8D prolongation M^{(1)} of a 5D contact manifold M. We write down a geometric definition of a third-order Monge-Ampère equation in terms of a (class of) differential two-form on M^{(1)}. In particular, the equations corresponding to decomposable forms admit a simple description in terms of certain three-dimensional distributions, which are made from the characteristics of the original equations. We conclude the paper with a study of the intermediate integrals of these special Monge-Ampère equations, herewith called of Goursat type.

  13. A noncommutative model of BTZ spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Maceda, Marco [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Fisica, A.P. 55-534, Mexico D.F. (Mexico); Macias, Alfredo [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Fisica, A.P. 55-534, Mexico D.F. (Mexico); CINVESTAV-IPN, Departamento de Fisica, A.P. 14-740, Mexico D.F. (Mexico)

    2013-04-15

    We analyze a noncommutative model of BTZ spacetime based on deformation of the standard symplectic structure of phase space, i.e., a modification of the standard commutation relations among coordinates and momenta in phase space. We find a BTZ-like solution that is nonperturbative in the non-trivial noncommutative structure. It is shown that the use of deformed commutation relations in the modified non-canonical phase space eliminates the horizons of the standard metric. (orig.)

  14. Symplectic embeddings and continued fractions: a survey

    CERN Document Server

    McDuff, Dusa

    2009-01-01

    As has been known since the time of Gromov's Nonsqueezing Theorem, symplectic embedding questions lie at the heart of symplectic geometry. After surveying some of the most important ways of measuring the size of a symplectic set, these notes discuss some recent developments concerning the question of when a 4-dimensional ellipsoid can be symplectically embedded in a ball. This problem turns out to have unexpected relations to the properties of continued fractions and of exceptional curves in blow ups of the complex projective plane. It is also related to questions of lattice packing of planar triangles.

  15. D1/D5 system with B-field, noncommutative geometry and the CFT of the higgs branch

    CERN Document Server

    Dhar, A; Wadia, S R; Yogendran, K P; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R.

    2000-01-01

    The D1/D5 system is considered in the presence of the NS B field. An explicit supergravity solution in the asymptotically flat and near horizon limits is presented. Explicit mass formulae are presented in both cases. This solution has no D3 source branes and represents a true bound state of the D1/D5 system. We study the motion of a separated D1-brane in the background geometry described above and reproduce the Liouville potential that binds the D1 brane. A gauge theory analysis is also presented in the presence of Fayet-Iliopoulos (FI) parameters which can be identified with the self-dual part of the NS B field. In the case of a single D5-brane and an arbitrary number of D1 branes we can demonstrate the existence of a bound state in the Higgs branch. We also point out the connection of the SCFT on the resolved Sym$_{Q_1Q_5}(\\tilde T^4)$ with recent developments in non-commutative Yang-Mills theory.

  16. Differential calculi on noncommutative bundles

    OpenAIRE

    Pflaum, Markus J.; Schauenburg, Peter

    1996-01-01

    We introduce a category of noncommutative bundles. To establish geometry in this category we construct suitable noncommutative differential calculi on these bundles and study their basic properties. Furthermore we define the notion of a connection with respect to a differential calculus and consider questions of existence and uniqueness. At the end these constructions are applied to basic examples of noncommutative bundles over a coquasitriangular Hopf algebra.

  17. Quantum Field Theory on Noncommutative Spaces

    CERN Document Server

    Szabó, R J

    2003-01-01

    A pedagogical and self-contained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the Weyl-Wigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommutative Yang-Mills theory on infinite space and on the torus, Morita equivalences of noncommutative gauge theories, twisted reduced models, and an in-depth study of the gauge group of noncommutative Yang-Mills theory. Some of the more mathematical ideas and techniques of noncommutative geometry are also briefly explained.

  18. J-对称微分算子自共轭域的辛几何刻画(Ⅲ)%Symplectic Geometry Characterization of Self-Adjoint Domainsfor J-Symmetric Differential Operators (Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    王志敬; 李丽君

    2011-01-01

    研究了二阶奇型J-对称微分算子辛几何刻画问题,通过构造商空间,应用辛几何的方法讨论了二阶J-对称微分算子的自共轭扩张问题.给出了与二阶微分算子自共轭域相对应的完全J-Lagrangian子流型的分类与描述.%The symplectic geometry characterization of second order singular J - symmetric differential operators was investigated. By constructing different quotient spaces, self-adjoint extensions of second order J - symmetric differential operators were studied using the method of symplectic geometry. Then classification and description of complete J - Lagrangian submanifold corresponding with self-adjoint domains of second order differential operators were obtained.

  19. Non-topological non-commutativity in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, S. [NCSR Demokritos, INP, Patriarchou Gregoriou and Neapoleos Str., 15310 Agia Paraskevi Attikis (Greece); Herbst, M. [CERN, 1211 Geneva 23 (Switzerland); Kreuzer, M. [Institute for Theoretical Physics, TU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna (Austria); Rashkov, R. [Erwin Schroedinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Vienna (Austria)

    2008-04-15

    Quantization of coordinates leads to the non-commutative product of deformation quantization, but is also at the roots of string theory, for which space-time coordinates become the dynamical fields of a two-dimensional conformal quantum field theory. Appositely, open string diagrams provided the inspiration for Kontsevich's solution of the long-standing problem of quantization of Poisson geometry by virtue of his formality theorem. In the context of D-brane physics non-commutativity is not limited, however, to the topological sector. We show that non-commutative effective actions still make sense when associativity is lost and establish a generalized Connes-Flato-Sternheimer condition through second order in a derivative expansion. The measure in general curved backgrounds is naturally provided by the Born-Infeld action and reduces to the symplectic measure in the topological limit, but remains non-singular even for degenerate Poisson structures. Analogous superspace deformations by RR-fields are also discussed. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  20. Symplectic Categories

    CERN Document Server

    Weinstein, Alan

    2009-01-01

    Quantization problems suggest that the category of symplectic manifolds and symplectomorphisms be augmented by the inclusion of canonical relations as morphisms. These relations compose well when a transversality condition is satisfied, but the failure of the most general compositions to be smooth manifolds means that the canonical relations do not comprise the morphisms of a category. We discuss several existing and potential remedies to the nontransversality problem. Some of these involve restriction to classes of lagrangian submanifolds for which the transversality property automatically holds. Others involve allowing lagrangian "objects" more general than submanifolds.

  1. The Gribov problem in Noncommutative QED

    CERN Document Server

    Canfora, Fabrizio; Rosa, Luigi; Vitale, Patrizia

    2016-01-01

    It is shown that in the noncommutative version of QED {(NCQED)} Gribov copies induced by the noncommutativity of space-time do appear in the Landau gauge. This is a genuine effect of noncommutative geometry which disappears when the noncommutative parameter vanishes. On the basis of existing applications of the Gribov-Zwanziger propagator in NCQED to deal with the UV/IR mixing problem, we argue that the two problems may have a common origin and possibly a common solution.

  2. Noncommutative Gravity and Quantum Field Theory on Noncommutative Curved Spacetimes

    CERN Document Server

    Schenkel, Alexander

    2012-01-01

    The focus of this PhD thesis is on applications, new developments and extensions of the noncommutative gravity theory proposed by Julius Wess and his group. In part one we propose an extension of the usual symmetry reduction procedure to noncommutative gravity. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models. In part two we develop a new formalism for quantum field theory on noncommutative curved spacetimes by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. We also study explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories. The convergent deformation of simple toy models is investigated and it is found that ...

  3. Instantons and vortices on noncommutative toric varieties

    Science.gov (United States)

    Cirio, Lucio S.; Landi, Giovanni; Szabo, Richard J.

    2014-09-01

    We elaborate on the quantization of toric varieties by combining techniques from toric geometry, isospectral deformations and noncommutative geometry in braided monoidal categories, and the construction of instantons thereon by combining methods from noncommutative algebraic geometry and a quantized twistor theory. We classify the real structures on a toric noncommutative deformation of the Klein quadric and use this to derive a new noncommutative four-sphere which is the unique deformation compatible with the noncommutative twistor correspondence. We extend the computation of equivariant instanton partition functions to noncommutative gauge theories with both adjoint and fundamental matter fields, finding agreement with the classical results in all instances. We construct moduli spaces of noncommutative vortices from the moduli of invariant instantons, and derive corresponding equivariant partition functions which also agree with those of the classical limit.

  4. ON THE SYMPLECTIC REDUCTIONS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A symplectic reduction method for symplectic G-spaces is given in this paper without using the existence of momentum mappings.By a method similar to the above one,the arthors give a symplectic reduction method for the Poisson action of Poisson Lie groups on symplectic manifolds,also without using the existence of momentum mappings.The symplectic reduction method for momentum mappings is thus a special case of the above results.

  5. MULTIRESOLUTION SYMPLECTIC SCHEME FOR WAVE PROPAGATION IN COMPLEX MEDIA

    Institute of Scientific and Technical Information of China (English)

    马坚伟; 杨慧珠

    2004-01-01

    A fast adaptive symplectic algorithm named Multiresolution Symplectic Scheme (MSS) was first presented to solve the problem of the wave propagation (WP) in complex media, using the symplectic scheme and Daubechies' compactly supported orthogonal wavelet transform to respectively discretise the time and space dimension of wave equation. The problem was solved in multiresolution symplectic geometry space under the conservative Hamiltonian system rather than the traditional Lagrange system. Due to the fascinating properties of the wavelets and symplectic scheme, MSS is a promising method because of little computational burden, robustness and reality of long-time simulation.

  6. Elementary symplectic topology and mechanics

    CERN Document Server

    Cardin, Franco

    2015-01-01

    This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hörmander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in...

  7. SO(d, d; Z) Transformation Property for Gauge Fluxes and Ramond-Ramond Fields in Noncommutative Geometry

    Institute of Scientific and Technical Information of China (English)

    WANG Pei

    2002-01-01

    In this paper we study the spinor constructions of gauge fluxes and Ramond Ramond fields on noncommu-tative tori Td up to d=6. In which the spinor and conjugate spinor are distinguished and dual bases are also introduced.So that we can express the Chern Simons Lagrangian in toroidal compactification as a product of spinors.

  8. Left-right symmetric gauge theory in non-commutative geometry on M{sub 4} x Z{sub N}

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Yoshitaka [Chubu Univ., Kasugai, Aichi (Japan)

    1995-10-01

    The left-right symmetric gauge model (LRSM) is reconstructed using the previously proposed formalism based on the non-commutative differential geometry extended on the discrete space M{sub 4} x Z{sub N}. This formalism is so flexible and applicable that not only the standard model but also the SU(5) grand unified model have already been reformulated in this formalism, which presents many attractive points such as the unified picture of the gauge field and Higgs field as the generalized connection in non-commutative geometry. LRSM is still alive as a model with the intermediate symmetry of the spontaneously broken SO(10) grand unified theory (GUT). Six sheets are prepared for LRSM (N=6), one is for SU(3){sub c} color symmetry and the rest of five are for SU(2){sub L} x SU(2){sub R} x U(1) symmetry. We can achieve the reformulation of LRSM with the quite different configurations of Higgs particles from the ordinary one. Namely, the left-right symmetric gauge groups are broken owing to two (2, 1) and two (1, 2) doublet Higgs fields with hypercharge 1, one (2, 2{sup *}) Higgs field, and one (1, 3) Higgs field with hypercharge -2. The fermion sectors are nicely incorporated so that the seesaw mechanism works well to make the right-handed neutrino super heavy and the left-handed neutrino super light. (author).

  9. Noncommutative Geometry and Supergravity

    CERN Document Server

    López, J L; Ryan, M P; Sabido, M

    2013-01-01

    A spectral action associated with an Einstein-Cartan formulation of supergravity is proposed. To construct this action we make use of the Seeley-DeWitt coefficients in a Riemann-Cartan space. For consistency in its construction the Rarita-Schwinger action is added to the resulting spectral action.

  10. Classification and equivalences of noncommutative tori and quantum lens spaces

    NARCIS (Netherlands)

    Venselaar, J.J.

    2012-01-01

    In noncommutative geometry, one studies abstract spaces through their, possibly noncommutative, algebras of continuous functions. Through these function algebras, and certain operators interacting with them, one can derive much geometrical information of the underlying space, even though this space

  11. Finite Symplectic Matrix Groups

    OpenAIRE

    2011-01-01

    The finite subgroups of GL(m, Q) are those subgroups that fix a full lattice in Q^m together with some positive definite symmetric form. A subgroup of GL(m, Q) is called symplectic, if it fixes a nondegenerate skewsymmetric form. Such groups only exist if m is even. A symplectic subgroup of GL(2n, Q) is called maximal finite symplectic if it is not properly contained in some finite symplectic subgroup of GL(2n, Q). This thesis classifies all conjugacy classes of maximal finite symplectic subg...

  12. Field Theory on Curved Noncommutative Spacetimes

    Directory of Open Access Journals (Sweden)

    Alexander Schenkel

    2010-08-01

    Full Text Available We study classical scalar field theories on noncommutative curved spacetimes. Following the approach of Wess et al. [Classical Quantum Gravity 22 (2005, 3511 and Classical Quantum Gravity 23 (2006, 1883], we describe noncommutative spacetimes by using (Abelian Drinfel'd twists and the associated *-products and *-differential geometry. In particular, we allow for position dependent noncommutativity and do not restrict ourselves to the Moyal-Weyl deformation. We construct action functionals for real scalar fields on noncommutative curved spacetimes, and derive the corresponding deformed wave equations. We provide explicit examples of deformed Klein-Gordon operators for noncommutative Minkowski, de Sitter, Schwarzschild and Randall-Sundrum spacetimes, which solve the noncommutative Einstein equations. We study the construction of deformed Green's functions and provide a diagrammatic approach for their perturbative calculation. The leading noncommutative corrections to the Green's functions for our examples are derived.

  13. Linear connections on matrix geometries

    CERN Document Server

    Madore, J; Mourad, J; Madore, John; Masson, Thierry; Mourad, Jihad

    1994-01-01

    A general definition of a linear connection in noncommutative geometry has been recently proposed. Two examples are given of linear connections in noncommutative geometries which are based on matrix algebras. They both possess a unique metric connection.

  14. Difference Discrete Variational Principle in Discrete Mechanics and Symplectic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LUO Xu-Dong; GUO Han-Ying; LI Yu-Qi; WU Ke

    2004-01-01

    We propose the difference discrete variational principle in discrete mechanics and symplectic algorithmwith variable step-length of time in finite duration based upon a noncommutative differential calculus established inthis paper. This approach keeps both symplecticity and energy conservation discretely. We show that there exists thediscrete version of the Euler-Lagrange cohomology in these discrete systems. We also discuss the solution existencein finite time-length and its site density in continuous limit, and apply our approach to the pendulum with periodicperturbation. The numerical results are satisfactory.

  15. The Maslov index in weak symplectic functional analysis

    CERN Document Server

    Booss-Bavnbek, Bernhelm

    2013-01-01

    We recall the Chernoff-Marsden definition of weak symplectic structure and give a rigorous treatment of the functional analysis and geometry of weak symplectic Banach spaces. We define the Maslov index of a continuous path of Fredholm pairs of Lagrangian subspaces in continuously varying Banach spaces. We derive basic properties of this Maslov index and emphasize the new features appearing.

  16. Conference on Strings, Duality, and Geometry

    CERN Document Server

    Phong, Duong; Yau, Shing-Tung; Mirror Symmetry IV

    2002-01-01

    This book presents contributions of participants of a workshop held at the Centre de Recherches Mathématiques (CRM), University of Montréal. It can be viewed as a sequel to Mirror Symmetry I (1998), Mirror Symmetry II (1996), and Mirror Symmetry III (1999), copublished by the AMS and International Press. The volume presents a broad survey of many of the noteworthy developments that have taken place in string theory, geometry, and duality since the mid 1990s. Some of the topics emphasized include the following: Integrable models and supersymmetric gauge theories; theory of M- and D-branes and noncommutative geometry; duality between strings and gauge theories; and elliptic genera and automorphic forms. Several introductory articles present an overview of the geometric and physical aspects of mirror symmetry and of corresponding developments in symplectic geometry. The book provides an efficient way for a very broad audience of mathematicians and physicists to explore the frontiers of research into this rapi...

  17. Newton's Second Law in a Noncommutative Space

    CERN Document Server

    Romero, J M; Vergara, J D; Romero, Juan M.

    2003-01-01

    In this work we show that corrections to the Newton's second law appears if we assume that the phase space has a symplectic structure consistent with the rules of commutation of noncommutative quantum mechanis. In the central field case we find that the correction term breaks the rotational symmetry. In particular, for the Kepler problem, this term takes the form of a Coriolis force produced by the weak gravitational field far from a rotating massive object.

  18. Classical Mechanics and Symplectic Integration

    DEFF Research Database (Denmark)

    Nordkvist, Nikolaj; Hjorth, Poul G.

    2005-01-01

    Content: Classical mechanics: Calculus of variations, Lagrange’s equations, Symmetries and Noether’s theorem, Hamilton’s equations, cannonical transformations, integrable systems, pertubation theory. Symplectic integration: Numerical integrators, symplectic integrators, main theorem on symplectic...

  19. Mapping spaces and automorphism groups of toric noncommutative spaces

    CERN Document Server

    Barnes, Gwendolyn E; Szabo, Richard J

    2016-01-01

    We develop a sheaf theory approach to toric noncommutative geometry which allows us to formalize the concept of mapping spaces between two toric noncommutative spaces. As an application we study the `internalized' automorphism group of a toric noncommutative space and show that its Lie algebra has an elementary description in terms of braided derivations.

  20. Symplectic algebraic dynamics algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the algebraic dynamics solution of ordinary differential equations andintegration of  ,the symplectic algebraic dynamics algorithm sn is designed,which preserves the local symplectic geometric structure of a Hamiltonian systemand possesses the same precision of the na ve algebraic dynamics algorithm n.Computer experiments for the 4th order algorithms are made for five test modelsand the numerical results are compared with the conventional symplectic geometric algorithm,indicating that sn has higher precision,the algorithm-inducedphase shift of the conventional symplectic geometric algorithm can be reduced,and the dynamical fidelity can be improved by one order of magnitude.

  1. Physics on noncommutative spacetimes

    Science.gov (United States)

    Padmanabhan, Pramod

    The structure of spacetime at the Planck scale remains a mystery to this date with a lot of insightful attempts to unravel this puzzle. One such attempt is the proposition of a 'pointless' structure for spacetime at this scale. This is done by studying the geometry of the spacetime through a noncommutative algebra of functions defined on it. We call such spacetimes 'noncommutative spacetimes'. This dissertation probes physics on several such spacetimes. These include compact noncommutative spaces called fuzzy spaces and noncompact spacetimes. The compact examples we look at are the fuzzy sphere and the fuzzy Higg's manifold. The noncompact spacetimes we study are the Groenewold-Moyal plane and the Bcn⃗ plane. A broad range of physical effects are studied on these exotic spacetimes. We study spin systems on the fuzzy sphere. The construction of Dirac and chirality operators for an arbitrary spin j is studied on both S2F and S2 in detail. We compute the spectrums of the spin 1 and spin 32 Dirac operators on S2F . These systems have novel thermodynamical properties which have no higher dimensional analogs, making them interesting models. The fuzzy Higg's manifold is found to exhibit topology change, an important property for any theory attempting to quantize gravity. We study how this change occurs in the classical setting and how quantizing this manifold smoothens the classical conical singularity. We also show the construction of the star product on this manifold using coherent states on the noncommutative algebra describing this noncommutative space. On the Moyal plane we develop the LSZ formulation of scalar quantum field theory. We compute scattering amplitudes and remark on renormalization of this theory. We show that the LSZ formalism is equivalent to the interaction representation formalism for computing scattering amplitudes on the Moyal plane. This result is true for on-shell Green's functions and fails to hold for off-shell Green's functions. With the

  2. Symplectic and hyperkahler implosion

    OpenAIRE

    Dancer, Andrew; Doran, Brent; Kirwan, Frances; Swann, Andrew

    2014-01-01

    We review the quiver descriptions of symplectic and hyperk\\"ahler implosion in the case of SU(n) actions. We give quiver descriptions of symplectic implosion for other classical groups, and discuss some of the issues involved in obtaining a similar description for hyperk\\"ahler implosion.

  3. Hamiltonian formalism and symplectic matrices; Formalisme Hamiltonien et Matrices symplectiques

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, P. [Project SPIRAL, Grand Accelerateur National d`Ions Lourds, BP 5027, Bd. H. Becquerel, 14076 Caen cedex 5 (France)

    1997-12-31

    This work consists of five sections. The first one introduces the Lagrangian formalism starting from the fundamental equation of the dynamics. The sections 2 to 4 are devoted to the Hamiltonian formalism and to symplectic matrices. Lie algebra and groups were avoided, although these notions are very useful if higher order effects have to be investigated. The paper is dealing with the properties of the transfer matrices describing different electromagnetic objects like, for instance: dipoles, quadrupoles, cyclotrons, electrostatic deflectors, spiral inflectors, etc. A remarkable property of the first order exact transfer matrices, is the symplecticity which in case of a 3-D object, described in 6-D phase space, provides 15 non-linear equations relating the matrix coefficients. The symplectic matrix ensemble forms an multiplication non-commuting group, consequently the product of n symplectic matrices is still a symplectic matrix. This permits the global description of a system of n objects. Thus, the notion symplecticity is fundamental for the selection of a given electromagnetic object, for its optimization and insertion in a line of beam transfer. The symplectic relations indicate actually that if a given beam characteristic is modified, then another characteristic will be affected and as a result the spurious effects can be limited when a line is to be adjusted. The last section is devoted to the application of the elaborated procedure to describe the drift of non-relativistic and relativistic particles, the dipole and the Muller inflector. Hopefully, this elementary Hamiltonian formalism will help in the familiarization with the symplectic matrices extensively utilized at GANIL 10 refs.

  4. Anisotropic non-gaussianity with noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Nautiyal, Akhilesh

    2014-01-20

    We study single field inflation in noncommutative spacetime and compute two-point and three-point correlation functions for the curvature perturbation. We find that both power spectrum and bispectrum for comoving curvature perturbation are statistically anisotropic and the bispectrum is also modified by a phase factor depending upon the noncommutative parameters. The non-linearity parameter f{sub NL} is small for small statistical anisotropic corrections to the bispectrum coming from the noncommutative geometry and is consistent with the recent PLANCK bounds. There is a scale dependence of f{sub NL} due to the noncommutative spacetime which is different from the standard single field inflation models and statistically anisotropic vector field inflation models. Deviations from statistical isotropy of CMB, observed by PLANCK can tightly constraint the effects due to noncommutative geometry on power spectrum and bispectrum.

  5. The 750 GeV diphoton excess in unified SU(2)L ×SU(2)R ×SU(4) models from noncommutative geometry

    Science.gov (United States)

    Aydemir, Ufuk; Minic, Djordje; Sun, Chen; Takeuchi, Tatsu

    2016-06-01

    We discuss a possible interpretation of the 750 GeV diphoton resonance, recently reported at the large hadron collider (LHC), within a class of SU(2)L ×SU(2)R ×SU(4) models with gauge coupling unification. The unification is imposed by the underlying noncommutative geometry (NCG), which in these models is extended to a left-right symmetric completion of the Standard Model (SM). Within such unified SU(2)L ×SU(2)R ×SU(4) models the Higgs content is restrictively determined from the underlying NCG, instead of being arbitrarily selected. We show that the observed cross-sections involving the 750 GeV diphoton resonance could be realized through a SM singlet scalar field accompanied by colored scalars, present in these unified models. In view of this result, we discuss the underlying rigidity of these models in the NCG framework and the wider implications of the NCG approach for physics beyond the SM.

  6. Noncommutative analysis in a curved phase-space and coherent states quantization

    CERN Document Server

    Rizzuti, B F; Mendes, A C R; Freitas, M A; Nikoofard, V

    2014-01-01

    In this work we have shown precisely that the curvature of a 2-sphere introduces quantum features in the system through the introduction of the noncommutative (NC) parameter that appeared naturally via equations of motion. To obtain this result we used the fact that quantum mechanics can be understood as a NC symplectic geometry, which generalized the standard description of classical mechanics as a symplectic geometry. In this work, we have also analyzed the dynamics of the model of a free particle over a 2-sphere in a NC phase-space. Besides, we have shown the solution of the equations of motion allows one to show the equivalence between the movement of the particle physical degrees of freedom upon a 2-sphere and the one described by a central field. We have considered the effective force felt by the particle as being caused by the curvature of the space. We have analyzed the NC Poisson algebra of classical observables in order to obtain the NC corrections to Newton's second law. We have demonstrated precis...

  7. Notes in quantum noncommutativity in quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira-Neto, Gil de [Universidade Federal de Juiz de Fora (ICE/UFJF), MG (Brazil). Dept. de Fisica; Monerat, Germano A.; Silva, Eduardo V. Correa; Neves, Clifford; Ferreira Filho, Luiz G. [Universidade do Estado do Rio de Janeiro (FAT/UERJ), RJ (Brazil). Dept. de Matematica, Fisica e Computacao

    2013-07-01

    Full text: In the present work, we study the noncommutative version of a quantum cosmology model. The model has a Friedmann-Robertson-Walker (FRW) geometry, the matter content is a radiative perfect fluid and the spatial sections have positive constant curvatures. We work in the Schutz's variational formalism. The noncommutativity that we are about to propose is not the typical noncommutativity between usual spatial coordinates. We are describing a FRW model using the Hamiltonian formalism, therefore the present model phase space is given by the canonical variables and conjugated momenta:{ a, P_a, τ, P_τ}. Then, the noncommutativity, at the quantum level, we are about to propose will be between these phase space variables. Since these variables are functions of the time coordinate t, this procedure is a generalization of the typical noncommutativity between usual spatial coordinates. The noncommutativity between those types of phase space variables have already been proposed in the literature. We quantize the model and obtain the appropriate Wheeler-DeWitt equation. In this model the states are bounded therefore we compute the discrete energy spectrum and the corresponding eigenfunctions. The energies depend on a noncommutative parameter. We observe that, due to the boundary conditions, the noncommutativity forces the universe to start expanding from an initial scale factor greater than zero. We also notice that, one can only construct wave-packets if the noncommutative parameter is discrete, with a well-defined mathematical expression, in a certain region of its domain. (author)

  8. Noncommutative Field Theory on Homogeneous Gravitational Waves

    CERN Document Server

    Halliday, S; Halliday, Sam; Szabo, Richard J.

    2006-01-01

    We describe an algebraic approach to the time-dependent noncommutative geometry of a six-dimensional Cahen-Wallach pp-wave string background supported by a constant Neveu-Schwarz flux, and develop a general formalism to construct and analyse quantum field theories defined thereon. Various star-products are derived in closed explicit form and the Hopf algebra of twisted isometries of the plane wave is constructed. Scalar field theories are defined using explicit forms of derivative operators, traces and noncommutative frame fields for the geometry, and various physical features are described. Noncommutative worldvolume field theories of D-branes in the pp-wave background are also constructed.

  9. Orthogonal and symplectic Yangians

    Science.gov (United States)

    Kirschner, R.

    2017-01-01

    We consider Yang-Baxter relations with orthogonal or symplectic symmetry, in particular L matrices defining the related Yangian algebra. We study the conditions resulting from the truncation of the expansion of L(u).

  10. Holographic noncommutativity

    NARCIS (Netherlands)

    Berman, DS; Campos, VL; Cederwall, M; Gran, U; Larsson, H; Nielsen, M; Nilsson, BEW; Sundell, P

    2001-01-01

    We examine noncommutative Yang-Mills and open string theories using magnetically and electrically deformed supergravity duals. The duals are near horizon regions of Dp-brane bound state solutions which are obtained by using O(p + 1; p + 1) transformations of Dp-branes. The action of the T-duality gr

  11. Complex/Symplectic Mirrors

    CERN Document Server

    Chuang, W; Tomasiello, A; Chuang, Wu-yen; Kachru, Shamit; Tomasiello, Alessandro

    2005-01-01

    We construct a class of symplectic non--Kaehler and complex non--Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten--dimensional supergravity and KK reduction on SU(3)--structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  12. Anomalies and noncommutative index theory

    CERN Document Server

    Perrot, D

    2006-01-01

    These are the notes of a lecture given during the summer school "Geometric and Topological Methods for Quantum Field Theory", Villa de Leyva, Colombia, july 11 - 29, 2005. We review basic facts concerning gauge anomalies and discuss the link with the Connes-Moscovici index formula in noncommutative geometry.

  13. Noncommutative Differential Calculus and Its Application on Discrete Spaces

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-Liang; LIU Zhen; ZHANG Jin-Liang; BAI Yong-Qiang; LI Xiang-Zheng; WU Ke; GUO Han-Ying

    2008-01-01

    We present the noncommutative differential calculus on the function space of the infinite set and construct a homotopy operator to prove the analogue of the Poincar(e) lemma for the difference complex. Then the horizontal and vertical complexes are introduced with the total differential map and vertical exterior derivative. As the application of the differential calculus, we derive the schemes with the conservation of symplecticity and energy for Hamiltonian system and a two-dimensional integral models with infinite sequence of conserved currents. Then an Euler Lagrange cohomology with symplectic structure-preserving is given in the discrete classical mechanics.

  14. Complex/Symplectic Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Wu-yen; Kachru, Shamit; /Stanford U., ITP /SLAC; Tomasiello, Alessandro; /Stanford U., ITP

    2005-10-28

    We construct a class of symplectic non-Kaehler and complex non-Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten-dimensional supergravity and KK reduction on SU(3)-structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  15. k-symplectic formalism on Lie algebroids

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, M; De Diego, D Martin [Instituto de Ciencias Matematicas (CSIC-UAM-UC3M-UCM) C/Serrano 123, 28006 Madrid (Spain); Salgado, M; Vilarino, S [Departamento de XeometrIa e TopoloxIa, Facultade de Matematicas, Universidade de Santiago de Compostela, 15782-Santiago de Compostela (Spain)], E-mail: mdeleon@imaff.cfmac.csic.es, E-mail: d.martin@imaff.cfmac.csic.es, E-mail: modesto.salgado@usc.es, E-mail: silvia.vilarino@usc.es

    2009-09-25

    In this paper we introduce a geometric description of Lagrangian and Hamiltonian classical field theories on Lie algebroids in the framework of k-symplectic geometry. We discuss the relation between the Lagrangian and Hamiltonian descriptions through a convenient notion of Legendre transformation. The theory is a natural generalization of the standard one; in addition, other interesting examples are studied, in particular, systems with symmetry and Poisson-sigma models.

  16. A Geometric Approach to Noncommutative Principal Bundles

    CERN Document Server

    Wagner, Stefan

    2011-01-01

    From a geometrical point of view it is, so far, not sufficiently well understood what should be a "noncommutative principal bundle". Still, there is a well-developed abstract algebraic approach using the theory of Hopf algebras. An important handicap of this approach is the ignorance of topological and geometrical aspects. The aim of this thesis is to develop a geometrically oriented approach to the noncommutative geometry of principal bundles based on dynamical systems and the representation theory of the corresponding transformation group.

  17. D-branes, symplectomorphisms and noncommutative gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Martin, I.; Ovalle, J.; Restuccia, A

    2001-09-01

    It is shown that the dual of the double compactified D=11 Supermembrane and a suitable compactified D=10 Super 4D-brane with nontrivial wrapping on the target space may be formulated as non-commutative gauge theories. The Poisson bracket over the world-volume is intrinsically defined in terms of the minima of the hamiltonian of the theory, which may be expressed in terms of a non degenerate 2-form. A deformation of the Poisson bracket in terms of the Moyal brackets is then performed. A non-commutative gauge theory in terms of the Moyal star bracket is obtained. It is shown that all these theories may be described in terms of symplectic connections on symplectic fibrations, the world volume being its base manifold and the (sub)group of volume preserving diffeomorphisms, p = 2 (p > 2), generate the symplectomorphisms which preserve the (infinite dimensional) Poisson bracket of the fibration.

  18. D-branes, symplectomorphisms and noncommutative gauge theories

    Science.gov (United States)

    Martín, I.; Ovalle, J.; Restuccia, A.

    It is shown that the dual of the double compactified D=11 Supermembrane and a suitable compactified D=10 Super 4D-brane with nontrivial wrapping on the target space may be formulated as non-commutative gauge theories. The Poisson bracket over the world-volume is intrinsically defined in terms of the minima of the hamiltonian of the theory, which may be expressed in terms of a non degenerate 2-form. A deformation of the Poisson bracket in terms of the Moyal brackets is then performed. A non-commutative gauge theory in terms of the Moyal star bracket is obtained. It is shown that all these theories may be described in terms of symplectic connections on symplectic fibrations, the world volume being its base manifold and the (sub)group of volume preserving diffeomorphisms, p = 2 ( p > 2), generate the symplectomorphisms which preserve the (infinite dimensional) Poisson bracket of the fibration.

  19. SYMPLECTIC STRUCTURE OF POISSON SYSTEM

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-qiang; MA Zhong-qi; TIAN Yi-min; QIN Meng-zhao

    2005-01-01

    When the Poisson matrix of Poisson system is non-constant, classical symplectic methods, such as symplectic Runge-Kutta method, generating function method, cannot preserve the Poisson structure. The non-constant Poisson structure was transformed into the symplectic structure by the nonlinear transform.Arbitrary order symplectic method was applied to the transformed Poisson system. The Euler equation of the free rigid body problem was transformed into the symplectic structure and computed by the mid-point scheme. Numerical results show the effectiveness of the nonlinear transform.

  20. Noncommutative physics on Lie algebras, Z_2^n lattices and Clifford algebras

    CERN Document Server

    Majid, S

    2004-01-01

    We survey noncommutative spacetimes with coordinates being enveloping algebras of Lie algebras. We also explain how to do differential geometry on noncommutative spaces that are obtained from commutative ones via a Moyal-product type cocycle twist, such as the noncommutative torus, $\\theta$-spaces and Clifford algebras. The latter are noncommutative deformations of the finite lattice $(Z_2)^n$ and we compute their noncommutative de Rham cohomology and moduli of solutions of Maxwell's equations. We exactly quantize noncommutative U(1)-Yang-Mills theory on $Z_2\\times Z_2$ in a path integral approach.

  1. Group theoretical construction of planar noncommutative phase spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ngendakumana, Ancille, E-mail: nancille@yahoo.fr; Todjihoundé, Leonard, E-mail: leonardt@imsp.uac.org [Institut de Mathématiques et des Sciences Physiques (IMSP), Porto-Novo (Benin); Nzotungicimpaye, Joachim, E-mail: kimpaye@kie.ac.rw [Kigali Institute of Education (KIE), Kigali (Rwanda)

    2014-01-15

    Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given.

  2. k-Symplectic Lie systems: theory and applications

    Science.gov (United States)

    de Lucas, J.; Vilariño, S.

    2015-03-01

    A Lie system is a system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of vector fields: a so-called Vessiot-Guldberg Lie algebra. We suggest the definition of a particular class of Lie systems, the k-symplectic Lie systems, admitting a Vessiot-Guldberg Lie algebra of Hamiltonian vector fields with respect to the presymplectic forms of a k-symplectic structure. We devise new k-symplectic geometric methods to study their superposition rules, t-independent constants of motion and general properties. Our results are illustrated through examples of physical and mathematical interest. As a byproduct, we find a new interesting setting of application of the k-symplectic geometry: systems of first-order ordinary differential equations.

  3. Birefringence and noncommutative structure of space-time

    Energy Technology Data Exchange (ETDEWEB)

    Maceda, Marco, E-mail: mmac@xanum.uam.mx [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, A.P. 55-534, C.P. 09340, Mexico D.F. (Mexico); Macias, Alfredo, E-mail: amac@xanum.uam.mx [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, A.P. 55-534, C.P. 09340, Mexico D.F. (Mexico)

    2011-11-03

    We analyze the phenomenon of birefringence of the electromagnetic field in the context of noncommutative geometry, using as background a deformed pp-wave solution to noncommutative Einstein's equations. The light-cone structure is determined using a generalized Fresnel equation characterizing the propagation of light in premetric vacuum electrodynamics.

  4. Holographic Entanglement in a Noncommutative Gauge Theory

    CERN Document Server

    Fischler, Willy; Kundu, Sandipan

    2014-01-01

    In this article we investigate aspects of entanglement entropy and mutual information in a large-N strongly coupled noncommutative gauge theory, both at zero and at finite temperature. Using the gauge-gravity duality and the Ryu-Takayanagi (RT) prescription, we adopt a scheme for defining spatial regions on such noncommutative geometries and subsequently compute the corresponding entanglement entropy. We observe that for regions which do not lie entirely in the noncommutative plane, the RT-prescription yields sensible results. In order to make sense of the divergence structure of the corresponding entanglement entropy, it is essential to introduce an additional cut-off in the theory. For regions which lie entirely in the noncommutative plane, the corresponding minimal area surfaces can only be defined at this cut-off and they have distinctly peculiar properties.

  5. Holographic entanglement in a noncommutative gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Fischler, Willy [Theory Group, Department of Physics, University of Texas,Austin, TX 78712 (United States); Texas Cosmology Center, University of Texas,Austin, TX 78712 (United States); Kundu, Arnab [Theory Group, Department of Physics, University of Texas,Austin, TX 78712 (United States); Kundu, Sandipan [Theory Group, Department of Physics, University of Texas,Austin, TX 78712 (United States); Texas Cosmology Center, University of Texas,Austin, TX 78712 (United States)

    2014-01-24

    In this article we investigate aspects of entanglement entropy and mutual information in a large-N strongly coupled noncommutative gauge theory, both at zero and at finite temperature. Using the gauge-gravity duality and the Ryu-Takayanagi (RT) prescription, we adopt a scheme for defining spatial regions on such noncommutative geometries and subsequently compute the corresponding entanglement entropy. We observe that for regions which do not lie entirely in the noncommutative plane, the RT-prescription yields sensible results. In order to make sense of the divergence structure of the corresponding entanglement entropy, it is essential to introduce an additional cut-off in the theory. For regions which lie entirely in the noncommutative plane, the corresponding minimal area surfaces can only be defined at this cut-off and they have distinctly peculiar properties.

  6. Dirac operators on noncommutative curved spacetimes

    CERN Document Server

    Schenkel, Alexander

    2013-01-01

    We study Dirac operators in the framework of twist-deformed noncommutative geometry. The definition of noncommutative Dirac operators is not unique and we focus on three different ones, each generalizing the commutative Dirac operator in a natural way. We show that the three definitions are mutually inequivalent, and that demanding formal self-adjointness with respect to a suitable inner product singles out a preferred choice. A detailed analysis shows that, if the Drinfeld twist contains sufficiently many Killing vector fields, the three operators coincide, which can simplify explicit calculations considerably. We then turn to the construction of quantized Dirac fields on noncommutative curved spacetimes. We show that there exist unique retarded and advanced Green's operators and construct a canonical anti-commutation relation algebra. In the last part we study noncommutative Minkowski and AdS spacetimes as explicit examples.

  7. Measure Theory in Noncommutative Spaces

    Directory of Open Access Journals (Sweden)

    Steven Lord

    2010-09-01

    Full Text Available The integral in noncommutative geometry (NCG involves a non-standard trace called a Dixmier trace. The geometric origins of this integral are well known. From a measure-theoretic view, however, the formulation contains several difficulties. We review results concerning the technical features of the integral in NCG and some outstanding problems in this area. The review is aimed for the general user of NCG.

  8. Exotic Newton-Hooke group, noncommutative plane and superconformal symmetry

    CERN Document Server

    Alvarez, Pedro D

    2009-01-01

    In this thesis we have studied some systems with exotic symmetries, which are a peculiarity in 2+1 space-time dimensions. Coded in the exotic structure appears noncommutative coordinates and a phases structure. This kind of systems has attracted attention from different areas of physics independently. Among them we can mention: theory of ray representations of Lie groups, anyons physics, some condensed matter systems, for instance the quantum Hall effect, planar gauge and gravitation theories, noncommutative field theory, noncommutative geometry and noncommutative quantum mechanics. We will focus our study in some topics on exotic nonrelativistic symmetries, such as the exotic Newton-Hooke group, the relation between the systems of exotic Newton-Hooke and the noncommutative Landau problem and the symmetries of noncommutative Landau problem, its conformal and supersymmetric extensions. The exotic Newton-Hooke group correspond to the nonrelativistic limit of the de Sitter groups, and has as a particular case (f...

  9. Algebraic deformations of toric varieties II. Noncommutative instantons

    CERN Document Server

    Cirio, Lucio; Szabo, Richard J

    2011-01-01

    We continue our study of the noncommutative algebraic and differential geometry of a particular class of deformations of toric varieties, focusing on aspects pertinent to the construction and enumeration of noncommutative instantons on these varieties. We develop a noncommutative version of twistor theory, which introduces a new example of a noncommutative four-sphere. We develop a braided version of the ADHM construction and show that it parametrizes a certain moduli space of framed torsion free sheaves on a noncommutative projective plane. We use these constructions to explicitly build instanton gauge bundles with canonical connections on the noncommutative four-sphere that satisfy appropriate anti-selfduality equations. We construct projective moduli spaces for the torsion free sheaves and demonstrate that they are smooth. We define equivariant partition functions of these moduli spaces, finding that they coincide with the usual instanton partition functions for supersymmetric gauge theories on C^2.

  10. Holomorphic Symplectic Fermions

    CERN Document Server

    Davydov, Alexei

    2016-01-01

    Let V be the even part of the vertex operator super-algebra of r pairs of symplectic fermions. Up to two conjectures, we show that V admits a unique holomorphic extension if r is a multiple of 8, and no holomorphic extension otherwise. This is implied by two results obtained in this paper: 1) If r is a multiple of 8, one possible holomorphic extension is given by the lattice vertex operator algebra for the even self dual lattice $D_r^+$ with shifted stress tensor. 2) We classify Lagrangian algebras in SF(h), a ribbon category associated to symplectic fermions. The classification of holomorphic extensions of V follows from 1) and 2) if one assumes that SF(h) is ribbon equivalent to Rep(V), and that simple modules of extensions of V are in one-to-one relation with simple local modules of the corresponding commutative algebra in SF(h).

  11. Wilson Loops and Area-Preserving Diffeomorphisms in Twisted Noncommutative Gauge Theory

    CERN Document Server

    Riccardi, M; Riccardi, Mauro; Szabo, Richard J.

    2007-01-01

    We use twist deformation techniques to analyse the behaviour under area-preserving diffeomorphisms of quantum averages of Wilson loops in Yang-Mills theory on the noncommutative plane. We find that while the classical gauge theory is manifestly twist covariant, the holonomy operators break the quantum implementation of the twisted symmetry in the usual formal definition of the twisted quantum field theory. These results are deduced by analysing general criteria which guarantee twist invariance of noncommutative quantum field theories. From this a number of general results are also obtained, such as the twisted symplectic invariance of noncommutative scalar quantum field theories with polynomial interactions and the existence of a large class of holonomy operators with both twisted gauge covariance and twisted symplectic invariance.

  12. Noncommutative Quantum Cosmology

    CERN Document Server

    García-Compéan, H; Ramírez, C

    2001-01-01

    We propose a model for noncommutative quantum cosmology by means of a deformation of minisuperspace. For the Kantowski-Sachs metric we are able to find the exact solution to the deformed Wheeler-DeWitt equation. We construct wave packets and show that noncommutativity could remarkably modify the quantum behavior of the universe. We discuss the relation with space-time noncommutativity and exhibit a program to search for the influence of noncommutativity at early times in the universe.

  13. Noncommutative Sugawara construction

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemkhani, M. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of)

    2015-07-15

    The noncommutative extension of the Sugawara construction for free massless fermionic fields in two dimensions is studied. We prove that the equivalence of the noncommutative Sugawara energy-momentum tensor and symmetric energy-momentum tensor persists in the noncommutative extension. Some relevant physical results of this equivalence are also discussed. (orig.)

  14. Noncommutative Brownian motion

    CERN Document Server

    Santos, Willien O; Souza, Andre M C

    2016-01-01

    We investigate the Brownian motion of a particle in a two-dimensional noncommutative (NC) space. Using the standard NC algebra embodied by the sympletic Weyl-Moyal formalism we find that noncommutativity induces a non-vanishing correlation between both coordinates at different times. The effect itself stands as a signature of spatial noncommutativity and offers further alternatives to experimentally detect the phenomena.

  15. Symplectic $S_5$ action on symplectic homotopy K3 surfaces

    Indian Academy of Sciences (India)

    HONGXIA LI

    2017-04-01

    Let $X$ be a symplectic homotopy K3 surface and $G = S_5$ act on $X$ symplectically. In this paper, we give a weak classification of the $G$ action on $X$ by discussing the fixed-point set structure. Besides, we analyse the exoticness of smoothstructures of $X$ under the action of $G$.

  16. SYMPLECTIC RK METHODS AND SYMPLECTIC PRK METHODS WITH REAL EIGENVALUES

    Institute of Scientific and Technical Information of China (English)

    Hong-yu Liu; Geng Sun

    2004-01-01

    Properties of symplectic Runge-Kutta (RK) methods and symplectic partitioned RungeKutta (PRK) methods with real eigenvalues are discussed in this paper. It is shown that an s stage such method can't reach order more than s + 1. Particularly, we prove that no symplectic RK method with real eigenvalues exists in stage s of order s + 1 when s is even. But an example constructed by using the W-transformation shows that PRK method of this type does not necessarily meet this order barrier. Another useful way other than W-transformation to construct symplectic PRK method with real eigenvalues is then presented. Finally, a class of efficient symplectic methods is recommended.

  17. Global Differential Geometry

    CERN Document Server

    Bär, Christian; Schwarz, Matthias

    2012-01-01

    This volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry. The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.

  18. Strong Field, Noncommutative QED

    Directory of Open Access Journals (Sweden)

    Anton Ilderton

    2010-05-01

    Full Text Available We review the effects of strong background fields in noncommutative QED. Beginning with the noncommutative Maxwell and Dirac equations, we describe how combined noncommutative and strong field effects modify the propagation of fermions and photons. We extend these studies beyond the case of constant backgrounds by giving a new and revealing interpretation of the photon dispersion relation. Considering scattering in background fields, we then show that the noncommutative photon is primarily responsible for generating deviations from strong field QED results. Finally, we propose a new method for constructing gauge invariant variables in noncommutative QED, and use it to analyse the physics of our null background fields.

  19. Fixed points of symplectic periodic flows

    CERN Document Server

    Pelayo, Alvaro

    2010-01-01

    The study of fixed points is a classical subject in geometry and dynamics. If the circle acts in a Hamiltonian fashion on a compact symplectic manifold M, then it is classically known that there are at least 1 + dim(M)/2 fixed points; this follows from Morse theory for the momentum map of the action. In this paper we use Atiyah-Bott-Berline-Vergne (ABBV) localization in equivariant cohomology to prove that this conclusion also holds for symplectic circle actions with non-empty fixed sets, as long as the Chern class map is somewhere injective -- the Chern class map assigns to a fixed point the sum of the action weights at the point. We complement this result with less sharp lower bounds on the number of fixed points, under no assumptions; from a dynamical systems viewpoint, our results imply that there is no symplectic periodic flow with exactly one or two equilibrium points on a compact manifold of dimension at least eight.

  20. Deformed symmetries in noncommutative and multifractional spacetimes

    CERN Document Server

    Calcagni, Gianluca

    2016-01-01

    We clarify the relation between noncommutative spacetimes and multifractional geometries where the spacetime dimension changes with the probed scale. In the absence of curvature and comparing the symmetries of both position and momentum space, we show that $\\kappa$-Minkowski spacetime and the commutative multifractional theory with $q$-derivatives are physically inequivalent but they admit several contact points that allow one to describe certain aspects of $\\kappa$-Minkowski noncommutative geometry as a multifractional theory and vice versa. Contrary to previous literature, this result holds without assuming any specific measure for $\\kappa$-Minkowski. More generally, no well-defined $\\star$-product can be constructed from the $q$-theory, although the latter does admit a natural noncommutative extension with a given deformed Poincar\\'e algebra. A similar no-go theorem may be valid for all multiscale theories with factorizable measures. Turning gravity on, we write the algebras of gravitational first-class co...

  1. Noncommutativity Parameter and Composite Fermions

    Science.gov (United States)

    Jellal, Ahmed

    We determine some particular values of the noncommutativity parameter θ and show that the Murthy Shankar approach is in fact a particular case of a more general one. Indeed, using the fractional quantum Hall effect (FQHE) experimental data, we give a measurement of θ. This measurement can be obtained by considering some values of the filling factor ν and other ingredients, magnetic field B and electron density ρ. Moreover, it is found that θ can be quantized either fractionally or integrally in terms of the magnetic length l0 and the quantization is exactly what Murthy and Shankar formulated recently for the FQHE. On the other hand, we show that the mapping of the FQHE in terms of the composite fermion basis has a noncommutative geometry nature and therefore there is a more general way than the Murthy Shankar method to do this mapping.

  2. Berry's Phase in Noncommutative Spaces

    Institute of Scientific and Technical Information of China (English)

    S. A. Alavi

    2003-01-01

    We discuss the perturbative aspects of noncommutative quantum mechanics. Then we study Berry's phase within the framework of noncommutative quantum mechanics. The results show deviations from the usual quantum mechanics, which depend on the parameter of space/space noncommutativity.

  3. Leibniz operad on symplectic plane and cohomological vector fields

    CERN Document Server

    Uchino, K

    2011-01-01

    By using help of algebraic operad theory, Leibniz algebra theory and symplectic geometry are connected. We introduce the notion of cohomological vector field defined on nongraded symplectic plane. It will be proved that the cohomological vector fields induce the finite dimensional Leibniz algebras by the derived bracket construction. This proposition is a Leibniz analogue of the cohomological field theory in the category of Lie algebras. The basic properties of the cohomological fields will be studied, in particular, we discuss a factorization problem with the cohomological fields and introduce the notion of double-algebra in the category of Leibniz algebras.

  4. Noncommutative Algebraic Equations and Noncommutative Eigenvalue Problem

    CERN Document Server

    Schwarz, A

    2000-01-01

    We analyze the perturbation series for noncommutative eigenvalue problem $AX=X\\lambda$ where $\\lambda$ is an element of a noncommutative ring, $ A$ is a matrix and $X$ is a column vector with entries from this ring. As a corollary we obtain a theorem about the structure of perturbation series for Tr $x^r$ where $x$ is a solution of noncommutative algebraic equation (for $r=1$ this theorem was proved by Aschieri, Brace, Morariu, and Zumino, hep-th/0003228, and used to study Born-Infeld lagrangian for the gauge group $U(1)^k$).

  5. Noncommutative gravity and quantum field theory on noncummutative curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, Alexander

    2011-10-24

    The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the

  6. Noncommutative o*(N) and usp*(2N) algebras and the corresponding gauge field theories

    CERN Document Server

    Bars, Itzhak; Vasilev, M

    2001-01-01

    The extension of the noncommutative u*(N) Lie algebra to noncommutative orthogonal and symplectic Lie algebras is studied. Using an anti-automorphism of the star-matrix algebra, we show that the u*(N) can consistently be restricted to o*(N) and usp*(N) algebras that have new mathematical structures. We give explicit fundamental matrix representations of these algebras, through which the formulation for the corresponding noncommutative gauge field theories are obtained. In addition, we present a D-brane configuration with an orientifold which realizes geometrically our algebraic construction, thus embedding the new noncommutative gauge theories in superstring theory in the presence of a constant background magnetic field. Some algebraic generalizations that may have applications in other areas of physics are also discussed.

  7. Noncommutative o*(N) and usp*(2N) algebras and the corresponding gauge field theories

    Science.gov (United States)

    Bars, I.; Sheikh-Jabbari, M. M.; Vasiliev, M. A.

    2001-10-01

    The extension of the noncommutative u*(N) Lie algebra to noncommutative orthogonal and symplectic Lie algebras is studied. Using an antiautomorphism of the star-matrix algebra, we show that the u*(N) can consistently be restricted to o*(N) and usp*(N) algebras that have new mathematical structures. We give explicit fundamental matrix representations of these algebras, through which the formulation for the corresponding noncommutative gauge field theories are obtained. In addition, we present a D-brane configuration with an orientifold that realizes geometrically our algebraic construction, thus embedding the new noncommutative gauge theories in a superstring theory in the presence of a constant background magnetic field. Some algebraic generalizations that may have applications in other areas of physics are also discussed.

  8. The 'symplectic camel principle' and semiclassical mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Gosson, Maurice A. de [Blekinge Institute of Technology, Karlskrona (Sweden); University of Colorado at Boulder, Boulder, CO (United States)

    2002-08-16

    We propose a theory of semiclassical mechanics in phase space based on the notion of quantized symplectic area. The definition of symplectic area makes use of a deep topological property of symplectic mappings, known as the 'principle of the symplectic camel' which places stringent conditions on the global geometry of Hamiltonian mechanics. Following this principle, symplectic mappings - and hence Hamiltonian flows - are much more rigid than Liouville's theorem suggests. The dynamical objects of our semiclassical theory are 'waveforms', whose definition requires the notion of square root of de Rham forms. The arguments of these square roots are calculated by using the properties of a generalized Maslov index. The motion of waveforms is determined by Hamiltonian mechanics, and the local expressions of these moving waveforms on configuration space are the usual approximate solutions of WKB-Maslov theory. (author)

  9. Noncommutative quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C; Bertolami, O [Departamento de Fisica, Institute Superior Teico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2009-06-01

    We present a phase-space noncommutative extension of Quantum Cosmology in the context of a Kantowski-Sachs (KS) minisuperspace model. We obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system through the ADM formalism and a suitable Seiberg-Witten map. The resulting WDW equation explicitly depends on the phase-space noncommutative parameters, theta and eta. Numerical solutions of the noncommutative WDW equation are found and, interestingly, also bounds on the values of the nonommutative parameters. Moreover, we conclude that the noncommutativity in the momenta sector lead to a damped wave function implying that this type of noncommutativity can be relevant for a selection of possible initial states for the universe.

  10. A geometric approach to noncommutative principal torus bundles

    DEFF Research Database (Denmark)

    Wagner, Stefan

    2013-01-01

    for noncommutative algebras and say that a dynamical system (A, 핋n,α) is called a noncommutative principal 핋n-bundle, if localization leads to a trivial noncommutative principal 핋n-bundle. We prove that this approach extends the classical theory of principal torus bundles and present a bunch of (nontrivial......A (smooth) dynamical system with transformation group 핋n is a triple (A, 핋n,α), consisting of a unital locally convex algebra A, the n-torus 핋n and a group homomorphism α:핋n→Aut(A), which induces a (smooth) continuous action of 핋n on A. In this paper, we present a new, geometrically oriented...... approach to the noncommutative geometry of principal torus bundles based on such dynamical systems. Our approach is inspired by the classical setting: In fact, after recalling the definition of a trivial noncommutative principal torus bundle, we introduce a convenient (smooth) localization method...

  11. Noncommutativity and Humanity -- Julius Wess and his Legacy

    CERN Document Server

    Djordjevic, Goran S

    2014-01-01

    A personal view on Julius Wess's human and scientific legacy in Serbia and the Balkan region is given. Motivation for using noncommutative and nonarchimedean geometry on very short distances is presented. In addition to some mathematical preliminaries, we present a short introduction in adelic quantum mechanics in a way suitable for its noncommutative generalization. We also review the basic ideas and tools embedded in $q$-deformed and noncommutative quantum mechanics. A rather fundamental approach, called deformation quantization, is noted. A few relations between noncommutativity and nonarchimedean spaces, as well as similarities between corresponding quantum theories, in particular, quantum cosmology are pointed out. An extended Moyal product in a frame of an adelic noncommutative quantum mechanics is also considered.

  12. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  13. Lie algebraic noncommutative gravity

    Science.gov (United States)

    Banerjee, Rabin; Mukherjee, Pradip; Samanta, Saurav

    2007-06-01

    We exploit the Seiberg-Witten map technique to formulate the theory of gravity defined on a Lie algebraic noncommutative space-time. Detailed expressions of the Seiberg-Witten maps for the gauge parameters, gauge potentials, and the field strengths have been worked out. Our results demonstrate that notwithstanding the introduction of more general noncommutative structure there is no first order correction, exactly as happens for a canonical (i.e. constant) noncommutativity.

  14. On Noncommutative Classical Mechanics

    CERN Document Server

    Djemai, A E F

    2003-01-01

    In this work, I investigate the noncommutative Poisson algebra of classical observables corresponding to a proposed general Noncommutative Quantum Mechanics, \\cite{1}. I treat some classical systems with various potentials and some Physical interpretations are given concerning the presence of noncommutativity at large scales (Celeste Mechanics) directly tied to the one present at small scales (Quantum Mechanics) and its possible relation with UV/IR mixing.

  15. Noncommutative Valuation of Options

    Science.gov (United States)

    Herscovich, Estanislao

    2016-12-01

    The aim of this note is to show that the classical results in finance theory for pricing of derivatives, given by making use of the replication principle, can be extended to the noncommutative world. We believe that this could be of interest in quantum probability. The main result called the First fundamental theorem of asset pricing, states that a noncommutative stock market admits no-arbitrage if and only if it admits a noncommutative equivalent martingale probability.

  16. Noncommutativity in the early universe

    Science.gov (United States)

    Oliveira-Neto, G.; Silva de Oliveira, M.; Monerat, G. A.; Corrêa Silva, E. V.

    In the present work, we study the noncommutative version of a quantum cosmology model. The model has a Friedmann-Robertson-Walker (FRW) geometry, the matter content is a radiative perfect fluid and the spatial sections have zero constant curvature. In this model, the scale factor takes values in a bounded domain. Therefore, its quantum mechanical version has a discrete energy spectrum. We compute the discrete energy spectrum and the corresponding eigenfunctions. The energies depend on a noncommutative parameter β. We compute the scale factor expected value () for several values of β. For all of them, oscillates between maxima and minima values and never vanishes. It gives an initial indication that those models are free from singularities, at the quantum level. We improve this result by showing that if we subtract a quantity proportional to the standard deviation of a from , this quantity is still positive. The behavior, for the present model, is a drastic modification of the behavior in the corresponding commutative version of the present model. There, grows without limits with the time variable. Therefore, if the present model may represent the early stages of the universe, the results of the present paper give an indication that may have been, initially, bounded due to noncommutativity. We also compute the Bohmian trajectories for a, which are in accordance with , and the quantum potential Q. From Q, we may understand why that model is free from singularities, at the quantum level.

  17. Noncommutative Gauge Theories: Model for Hodge theory

    CERN Document Server

    Upadhyay, Sudhaker

    2013-01-01

    The nilpotent BRST, anti-BRST, dual-BRST and anti-dual-BRST symmetry transformations are constructed in the context of noncommutative (NC) 1-form as well as 2-form gauge theories. The corresponding Noether's charges for these symmetries on the Moyal plane are shown to satisfy the same algebra as by the de Rham cohomological operators of differential geometry. The Hodge decomposition theorem on compact manifold is also studied. We show that noncommutative gauge theories are field theoretic models for Hodge theory.

  18. Lie algebraic Noncommutative Gravity

    CERN Document Server

    Banerjee, R; Samanta, S; Banerjee, Rabin; Mukherjee, Pradip; Samanta, Saurav

    2007-01-01

    The minimal (unimodular) formulation of noncommutative general relativity, based on gauging the Poincare group, is extended to a general Lie algebra valued noncommutative structure. We exploit the Seiberg -- Witten map technique to formulate the theory as a perturbative Lagrangian theory. Detailed expressions of the Seiberg -- Witten maps for the gauge parameters, gauge potentials and the field strengths have been worked out. Our results demonstrate that notwithstanding the introduction of more general noncommutative structure there is no first order correction, exactly as happens for a canonical (i.e. constant) noncommutativity.

  19. Bounding Noncommutative QCD

    CERN Document Server

    Carlson, C E; Lebed, R F; Carlson, Carl E.; Carone, Christopher D.; Lebed, Richard F.

    2001-01-01

    Jurco, Moller, Schraml, Schupp, and Wess have shown how to construct noncommutative SU(N) gauge theories from a consistency relation. Within this framework, we present the Feynman rules for noncommutative QCD and compute explicitly the most dangerous Lorentz-violating operator generated through radiative corrections. We find that interesting effects appear at the one-loop level, in contrast to conventional noncommutative U(N) gauge theories, leading to a stringent bound. Our results are consistent with others appearing recently in the literature that suggest collider limits are not competitive with low-energy tests of Lorentz violation for bounding the scale of spacetime noncommutativity.

  20. Maxwell's Optics Symplectic Hamiltonian

    CERN Document Server

    Kulyabov, D S; Sevastyanov, L A

    2015-01-01

    The Hamiltonian formalism is extremely elegant and convenient to mechanics problems. However, its application to the classical field theories is a difficult task. In fact, you can set one to one correspondence between the Lagrangian and Hamiltonian in the case of hyperregular Lagrangian. It is impossible to do the same in gauge-invariant field theories. In the case of irregular Lagrangian the Dirac Hamiltonian formalism with constraints is usually used, and this leads to a number of certain difficulties. The paper proposes a reformulation of the problem to the case of a field without sources. This allows to use a symplectic Hamiltonian formalism. The proposed formalism will be used by the authors in the future to justify the methods of vector bundles (Hamiltonian bundles) in transformation optics.

  1. Cosmological production of noncommutative black holes

    CERN Document Server

    Mann, Robert B

    2011-01-01

    We investigate the pair creation of noncommutative black holes in a background with positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild deSitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive mass spacetimes admit one cosmological horizon and two, one or no black hole horizons, while negative mass spacetimes have just a cosmological horizon. All these manifolds are everywhere regular, since the noncommutative fluctuations at the origin improve the curvature singularity. On the thermodynamic side, the black hole temperature, instead of a divergent behavior for small length scales, admits a maximum value. Then the black hole evaporation proceeds until an equilibrium configuration with the deSitter background temperature. On the other hand, the cosmological horizon is thermalized by the presence of the black hole and has a temperature higher than that of the conv...

  2. Noncommutative spaces and covariant formulation of statistical mechanics

    CERN Document Server

    Hosseinzadeh, V; Nozari, K; Vakili, B

    2015-01-01

    We study the statistical mechanics of a general Hamiltonian system in the context of symplectic structure of the corresponding phase space. This covariant formalism reveals some interesting correspondences between properties of the phase space and the associated statistical physics. While topology, as a global property, turns out to be related to the total number of microstates, the invariant measure which assigns priori probability distribution over the microstates, is determined by the local form of the symplectic structure. As an example of a model for which the phase space has a nontrivial topology, we apply our formulation on the Snyder noncommutative space-time with de Sitter four-momentum space and analyze the results. Finally, in the framework of such a setup, we examine our formalism by studying the thermodynamical properties of a harmonic oscillator system.

  3. Noncommutative spaces and covariant formulation of statistical mechanics

    Science.gov (United States)

    Hosseinzadeh, V.; Gorji, M. A.; Nozari, K.; Vakili, B.

    2015-07-01

    We study the statistical mechanics of a general Hamiltonian system in the context of symplectic structure of the corresponding phase space. This covariant formalism reveals some interesting correspondences between properties of the phase space and the associated statistical physics. While topology, as a global property, turns out to be related to the total number of microstates, the invariant measure which assigns a priori probability distribution over the microstates is determined by the local form of the symplectic structure. As an example of a model for which the phase space has a nontrivial topology, we apply our formulation on the Snyder noncommutative space-time with de Sitter four-momentum space and analyze the results. Finally, in the framework of such a setup, we examine our formalism by studying the thermodynamical properties of a harmonic oscillator system.

  4. HAMILTONIAN SYMPLECTIC SEMI-ANALYTICAL METHOD AND ITS APPLICATION IN INHOMOGENEOUS ELECTROMAGNETIC WAVEGUIDES

    Institute of Scientific and Technical Information of China (English)

    SUN Yan; XIE Jun

    2005-01-01

    Dual vectors are applied in Hamilton system of applied mechanics. Electric and magnetic field vectors are the dual vectors in electromagnetic field. The Hamilton system method is introduced into the analysis of electromagnetism waveguide with inhomogeneous materials. The transverse electric and magnetic fields are regarded as the dual. The basic equations are solved in Hamilton system and symplectic geometry. With the Hamilton variational principle, the symplectic semi-analytical equations are derived and preserve their symplectic structures. The given numerical example demonstrates the solution of LSE (Longitudinal Section Electric) mode in a dielectric waveguide.

  5. Noncommutative Nonlinear Supersymmetry

    CERN Document Server

    Nishino, H; Nishino, Hitoshi; Rajpoot, Subhash

    2002-01-01

    We present noncommutative nonlinear supersymmetric theories. The first example is a non-polynomial Akulov-Volkov-type lagrangian with noncommutative nonlinear global supersymmetry in arbitrary space-time dimensions. The second example is the generalization of this lagrangian to Dirac-Born-Infeld lagrangian with nonlinear supersymmetry realized in dimensions D=2,3,4 and 6 (mod 8).

  6. Effects of Noncommutativity on the Black Hole Entropy

    CERN Document Server

    Gupta, Kumar S; Juric, Tajron; Meljanac, Stjepan; Samsarov, Andjelo

    2013-01-01

    In this paper the BTZ black hole geometry is probed with a noncommutative scalar field which obeys the $\\kappa$-Minkowski algebra. The entropy of the BTZ black hole is calculated using the brick wall method. The contribution of the noncommutativity to the black hole entropy is explicitly evaluated up to the first order in the deformation parameter. We also argue that such a correction to the black hole entropy can be interpreted as arising from the renormalization of the Newton's constant due to the effects of the noncommutativity.

  7. A noncommutative Embedding of Reissner-Nordstrm{\\o}m Spacetime

    CERN Document Server

    Romero-Ayala, Rubí; Valdez-Alvarado, Susana

    2015-01-01

    A deformed embedding of the Reissner-Nordstr{\\o}m solution is constructed within the framework of a noncommutative Riemannian geometry. We find noncommutative corrections to the usual commutative expressions for the metric and curvature tensors, which are valid to all orders in a certain deformation parameter. Finally we calculate the area of the event horizon of the corresponding noncommutative R-N black-hole. We obtain corrections up to fourth order in the deformation parameter for the area of the black-hole.

  8. Noncommutative topology and the world's simplest index theorem.

    Science.gov (United States)

    van Erp, Erik

    2010-05-11

    In this article we outline an approach to index theory on the basis of methods of noncommutative topology. We start with an explicit index theorem for second-order differential operators on 3-manifolds that are Fredholm but not elliptic. This low-brow index formula is expressed in terms of winding numbers. We then proceed to show how it is derived as a special case of an index theorem for hypoelliptic operators on contact manifolds. Finally, we discuss the noncommutative topology that is employed in the proof of this theorem. The article is intended to illustrate that noncommutative topology can be a powerful tool for proving results in classical analysis and geometry.

  9. Canonical Noncommutativity Algebra for the Tetrad Field in General Relativity

    CERN Document Server

    Kober, Martin

    2011-01-01

    General relativity under the assumption of noncommuting components of the tetrad field is considered in this paper. Since the algebraic properties of the tetrad field representing the gravitational field are assumed to correspond to the noncommutativity algebra of the coordinates in the canonical case of noncommutative geometry, this idea is closely related to noncommutative geometry as well as to canonical quantization of gravity. According to this presupposition there are derived generalized field equations for general relativity which are obtained by replacing the usual tetrad field by the tetrad field operator within the actions and then building expectation values of the corresponding field equations between coherent states. These coherent states refer to creation and annihilation operators created from the components of the tetrad field operator. In this sense the obtained theory could be regarded as a kind of semiclassical approximation of a complete quantum description of gravity. The consideration pr...

  10. Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms

    Science.gov (United States)

    Xin-Lei, Kong; Hui-Bin, Wu; Feng-Xiang, Mei

    2016-01-01

    In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertible transformation which drives the Birkhoffian equations reduce to the Hamiltonian equations. When there exists such a transformation, applying the corresponding inverse map to symplectic discretization of the Hamiltonian equations, then resulting difference schemes are verified to be Birkhoffian symplectic for the original Birkhoffian equations. To illustrate the operation process of the method, we construct several desirable algorithms for the linear damped oscillator and the single pendulum with linear dissipation respectively. All of them exhibit excellent numerical behavior, especially in preserving conserved quantities. Project supported by the National Natural Science Foundation of China (Grant No. 11272050), the Excellent Young Teachers Program of North China University of Technology (Grant No. XN132), and the Construction Plan for Innovative Research Team of North China University of Technology (Grant No. XN129).

  11. Symplectic surgeries and normal surface singularities

    OpenAIRE

    Gay, David T.; Stipsicz, Andras I.

    2007-01-01

    We show that every negative definite configuration of symplectic surfaces in a symplectic 4--manifold has a strongly symplectically convex neighborhood. We use this to show that, if a negative definite configuration satisfies an additional negativity condition at each surface in the configuration, and if the complex singularity with resolution diffeomorphic to a neighborhood of the configuration has a smoothing, then the configuration can be symplectically replaced by the smoothing of the sin...

  12. Linked alternating forms and linked symplectic Grassmannians

    CERN Document Server

    Osserman, Brian

    2011-01-01

    Motivated by applications to higher-rank Brill-Noether theory and the Bertram-Feinberg-Mukai conjecture, we introduce the concepts of linked alternating and linked symplectic forms on a chain of vector bundles, and show that the linked symplectic Grassmannians parametrizing chains of subbundles isotropic for a given linked symplectic form has good dimensional behavior analogous to that of the classical symplectic Grassmannian.

  13. The symplectic group and classical mechanics.

    Science.gov (United States)

    Dragt, Alex J

    2005-06-01

    The symplectic group is the underlying symmetry group for Hamiltonian dynamics. Yet relatively little is commonly known about its properties including its Lie structure and representations. This paper describes and summarizes some of these properties; and, as a first application of symplectic group theory, provides a symplectic classification of all first-order differential equations in an even number of variables.

  14. CONJUGATE-SYMPLECTICITY OF LINEAR MULTISTEP METHODS

    Institute of Scientific and Technical Information of China (English)

    Ernst Hairer

    2008-01-01

    For the numerical treatment of Hamiltonian differential equations, symplectic integra-tors are the most suitable choice, and methods that are conjugate to a symplectic integrator share the same good long-time behavior. This note characterizes linear multistep methods whose underlying one-step method is conjugate to a symplectic integrator. The bounded-hess of parasitic solution components is not addressed.

  15. Rigid subsets of symplectic manifolds

    CERN Document Server

    Entov, Michael

    2007-01-01

    We show that there is an hierarchy of intersection rigidity properties of sets in a closed symplectic manifold: some sets cannot be displaced by symplectomorphisms from more sets than the others. We also find new examples of rigidity of intersections involving, in particular, specific fibers of moment maps of Hamiltonian torus actions, monotone Lagrangian submanifolds (following the previous work of P.Albers) as well as certain, possibly singular, sets defined in terms of Poisson-commutative subalgebras of smooth functions. In addition, we get some geometric obstructions to semi-simplicity of the quantum homology of symplectic manifolds. The proofs are based on the Floer-theoretical machinery of partial symplectic quasi-states.

  16. Comments on Noncommutative Superspace

    CERN Document Server

    Terashima, S; Terashima, Seiji; Yee, Jung-Tay

    2003-01-01

    We study the N=1/2 supersymmetric theory on noncommutative superspace found by Seiberg which is a deformation of usual superspace. We consider deformed Wess-Zumino model as an example and shows vanishing of vacuum energy, renormalization of superpotential and nonvanishing of tadpole. We find that the perturbative effective action has terms which are not written in the star deformation. Also we consider gauge theory on noncommutative superspace and observe that gauge group is restricted. We generalize the star deformation to include noncommutativity between bosonic coordinates and fermionic coordinates.

  17. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C; Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2010-04-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, {eta}. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  18. Symplectic manifolds with no Kähler structure

    CERN Document Server

    Tralle, Aleksy

    1997-01-01

    This is a research monograph covering the majority of known results on the problem of constructing compact symplectic manifolds with no Kaehler structure with an emphasis on the use of rational homotopy theory. In recent years, some new and stimulating conjectures and problems have been formulated due to an influx of homotopical ideas. Examples include the Lupton-Oprea conjecture, the Benson-Gordon conjecture, both of which are in the spirit of some older and still unsolved problems (e.g. Thurston's conjecture and Sullivan's problem). Our explicit aim is to clarify the interrelations between certain aspects of symplectic geometry and homotopy theory in the framework of the problems mentioned above. We expect that the reader is aware of the basics of differential geometry and algebraic topology at graduate level.

  19. Residual Diffeomorphisms and Symplectic Hair on Black Holes

    CERN Document Server

    Sheikh-Jabbari, M M

    2016-01-01

    General covariance is the cornerstone of Einstein's General Relativity and implies that any two metrics which are related by diffeomorphisms are physically equivalent. There are, however, many examples pointing to the fact that this strict statement of general covariance needs refinement. There are a very special (measure-zero) subset of diffeomorphisms, the residual diffeomrphisms, to which one can associate well-defined conserved charges. We discuss that these symmetries may be appropriately called "symplectic symmetries". This would hence render these diffeomorphic geometries physically distinct. Existence of residual diffeomorphisms and sympelctic symmetries can be a quite general feature and not limited to the examples discussed so far in the literature. We propose that, in the context of black holes, these diffeomorphic, but distinct, geometries may be viewed as "symplectic hair" on black holes. We comment on how this may remedy black hole microstate problem and possibly the information paradox.

  20. An extended Dirac equation in noncommutative space-time

    CERN Document Server

    Mendes, R Vilela

    2015-01-01

    Stabilizing, by deformation, the algebra of relativistic quantum mechanics a non-commutative space-time geometry is obtained. The exterior algebra of this geometry leads to an extended massless Dirac equation which has both a massless and a large mass solution. The nature of the solutions is discussed, as well as the effects of coupling the two solutions.

  1. Symplecticity in Beam Dynamics: An Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Rees, John R

    2003-06-10

    A particle in a particle accelerator can often be considered a Hamiltonian system, and when that is the case, its motion obeys the constraints of the Symplectic Condition. This tutorial monograph derives the condition from the requirement that a canonical transformation must yield a new Hamiltonian system from an old one. It then explains some of the consequences of symplecticity and discusses examples of its applications, touching on symplectic matrices, phase space and Liouville's Theorem, Lagrange and Poisson brackets, Lie algebra, Lie operators and Lie transformations, symplectic maps and symplectic integrators.

  2. Geometry

    CERN Document Server

    Pedoe, Dan

    1988-01-01

    ""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he

  3. A noncommutative sigma model

    Directory of Open Access Journals (Sweden)

    Mauritz van den Worm

    2013-02-01

    Full Text Available We replace the classical string theory notions of mapping between parameter space and world-time with noncommutative tori mapping between these spaces. The dynamics of mappings between different noncommutative tori are studied and noncommutative versions of the Polyakov action and the Euler-Lagrange equations are derived. The quantum torus is studied in detail, as well as C*-homomorphisms between different quantum tori. A finite dimensional representation of the quantum torus is studied, and the partition function and other path integrals are calculated. At the end we prove existence theorems for mappings between different noncommutative tori.

  4. Difference Discrete Variational Principles, Euler-Lagrange Cohomology and Symplectic, Multisyrnplectic Structures Ⅲ: Application to Symplectic and Multisymplectic Algorithms

    Institute of Scientific and Technical Information of China (English)

    GUO HanYing; LI YuQi; WU Ke; WANG ShiKun

    2002-01-01

    In the previous papers I and H, we have studied the difference discrete variational principle and the EulerLagrange cohomology in the framework of multi-parameter differential approach. W5 have gotten the difference discreteEulcr-Lagrangc equations and canonical ones for the difference discrete versions of classical mechanics and tield theoryas well as the difference discrete versions for the Euler-Lagrange cohomology and applied them to get the necessaryand sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangianand Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler-Lagrangecohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonianschemes or Lagrangian ones in both the symplectic and multisymplectic algorithms arc variational integrators and theirdifference discrete symplectic structure-preserving properties can always be established not only in the solution spacebut also in the function space if and only if the related closed Euler Lagrange cohomological conditions are satisfied.

  5. Zeeman Effect In The Framework of Moyal Noncommutativity and String Theory

    CERN Document Server

    Boukili, A E; Sedra, M B

    2006-01-01

    Stimulated by the importance of noncommutative geometry in recent developments in string theory, the discovery of D-branes and integrable systems, one intends in this work to present a new insight towards adapting the famous idea of Zeeman effect to noncommutativity \\`a la Moyal and develop an analysis leading to connect our results to the Bigatti-Suskind (BS) formulation.

  6. Noncommutative Black Holes

    CERN Document Server

    Bastos, C; Dias, N C; Prata, J N

    2010-01-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity regime and it is shown that the wave function vanishes in this limit.

  7. GENERALIZED SIMPLE NONCOMMUTATIVE TORI

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The generalized noncommutative torus Tkp of rank n was defined in [4] by the crossed product noncommutative torus Ap of rank n. It is shown in this paper that Tkp is strongly Morita equivalent to Ap, and that Tkp Mp∞ is isomorphic to Ap Mk(C) Mp∞ if and only if the set of prime factors of k is a subset of the set of prime factors of p.

  8. Noncommutative Lagrange Mechanics

    Directory of Open Access Journals (Sweden)

    Denis Kochan

    2008-02-01

    Full Text Available It is proposed how to impose a general type of ''noncommutativity'' within classical mechanics from first principles. Formulation is performed in completely alternative way, i.e. without any resort to fuzzy and/or star product philosophy, which are extensively applied within noncommutative quantum theories. Newton-Lagrange noncommutative equations of motion are formulated and their properties are analyzed from the pure geometrical point of view. It is argued that the dynamical quintessence of the system consists in its kinetic energy (Riemannian metric specifying Riemann-Levi-Civita connection and thus the inertia geodesics of the free motion. Throughout the paper, ''noncommutativity'' is considered as an internal geometric structure of the configuration space, which can not be ''observed'' per se. Manifestation of the noncommutative phenomena is mediated by the interaction of the system with noncommutative background under the consideration. The simplest model of the interaction (minimal coupling is proposed and it is shown that guiding affine connection is modified by the quadratic analog of the Lorentz electromagnetic force (contortion term.

  9. NUMERICAL METHOD BASED ON HAMILTON SYSTEM AND SYMPLECTIC ALGORITHM TO DIFFERENTIAL GAMES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The resolution of differential games often concerns the difficult problem of two points border value (TPBV), then ascribe linear quadratic differential game to Hamilton system. To Hamilton system, the algorithm of symplectic geometry has the merits of being able to copy the dynamic structure of Hamilton system and keep the measure of phase plane. From the viewpoint of Hamilton system, the symplectic characters of linear quadratic differential game were probed; as a try, Symplectic-Runge-Kutta algorithm was presented for the resolution of infinite horizon linear quadratic differential game. An example of numerical calculation was given, and the result can illuminate the feasibility of this method. At the same time, it embodies the fine conservation characteristics of symplectic algorithm to system energy.

  10. Noncommutative correction to the Cornell potential in heavy-quarkonium atoms

    Science.gov (United States)

    Mirjalili, A.; Taki, M.

    2016-02-01

    We investigate the effect of space-time noncommutativity on the Cornell potential in heavy-quarkonium systems. It is known that the space-time noncommutativity can create bound states, and we therefore consider the noncommutative geometry of the space-time as a correction in quarkonium models. Furthermore, we take the experimental hyperfine measurements of the bottomium ground state as an upper limit on the noncommutative energy correction and derive the maximum possible value of the noncommutative parameter θ, obtaining θ ≤ 37.94 · 10-34 m2. Finally, we use our model to calculate the maximum value of the noncommutative energy correction for energy levels of charmonium and bottomium in 1S and 2S levels. The energy correction as a binding effect in quarkonium system is smaller for charmonium than for bottomium, as expected.

  11. Noncommuting Electric Fields and Algebraic Consistency in Noncommutative Gauge theories

    CERN Document Server

    Banerjee, R

    2003-01-01

    We show that noncommuting electric fields occur naturally in noncommutative gauge theories. Using this noncommutativity, which is field dependent, and a hamiltonian generalisation of the Seiberg-Witten Map, the algebraic consistency in the lagrangian and hamiltonian formulations of these theories, is established. The stability of the Poisson algebra, under this generalised map, is studied.

  12. Ward identity in noncommutative QED

    OpenAIRE

    Mariz, T.; Pires, C. A. de S.; R F Ribeiro

    2002-01-01

    Although noncommutative QED presents a nonabelian structure, it does not present structure constants. In view of this we investigate how Ward identity is satisfied in pair annihilation process and $\\gamma \\gamma \\to \\gamma \\gamma$ scattering in noncommutative QED.

  13. Deformed symmetries in noncommutative and multifractional spacetimes

    Science.gov (United States)

    Calcagni, Gianluca; Ronco, Michele

    2017-02-01

    We clarify the relation between noncommutative spacetimes and multifractional geometries, two quantum-gravity-related approaches where the fundamental description of spacetime is not given by a classical smooth geometry. Despite their different conceptual premises and mathematical formalisms, both research programs allow for the spacetime dimension to vary with the probed scale. This feature and other similarities led to ask whether there is a duality between these two independent proposals. In the absence of curvature and comparing the symmetries of both position and momentum space, we show that κ -Minkowski spacetime and the commutative multifractional theory with q -derivatives are physically inequivalent but they admit several contact points that allow one to describe certain aspects of κ -Minkowski noncommutative geometry as a multifractional theory and vice versa. Contrary to previous literature, this result holds without assuming any specific measure for κ -Minkowski. More generally, no well-defined ⋆-product can be constructed from the q -theory, although the latter does admit a natural noncommutative extension with a given deformed Poincaré algebra. A similar no-go theorem may be valid for all multiscale theories with factorizable measures. Turning gravity on, we write the algebras of gravitational first-class constraints in the multifractional theories with q - and weighted derivatives and discuss their differences with respect to the deformed algebras of κ -Minkowski spacetime and of loop quantum gravity.

  14. ON HARMONIC MAPS INTO SYMPLECTIC GROUPS Sp(N)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By means of the theory of harmonic maps into the unitary group U(N), the authors study harmonic maps into the symplectic group Sp(N). The symplectic uniton and symplectic ex- tended uniton are introduced. The method of the symplectic Backlund transformation and the Darboux transformation is used to construct new symplectic unitons from a known one.

  15. Noncommutative Topological Theories of Gravity

    CERN Document Server

    García-Compéan, H; Ramírez, C; Sabido, M

    2003-01-01

    The possibility of noncommutative gravity arising in the same manner as Yang-Mills theory is explored. Using the Seiberg-Witten map we give a noncommutative version of topological gravity, from which the Euler characteristic and the signature are obtained, in both cases up to third order in the noncommutativity parameter. Finally, we discuss possible ways towards obtaining noncommutative gravitational instantons and to detect local and global gravitational anomalies within this context.

  16. Noncommutative Self-dual Gravity

    CERN Document Server

    García-Compéan, H; Ramírez, C; Sabido, M

    2003-01-01

    Starting from a self-dual formulation of gravity, we obtain a noncommutative theory of pure Einstein theory in four dimensions. In order to do that, we use Seiberg-Witten map. It is shown that the noncommutative torsion constraint is solved by the vanishing of commutative torsion. Finally, the noncommutative corrections to the action are computed up to second order.

  17. Classification of Noncommutative Domain Algebras

    CERN Document Server

    Arias, Alvaro

    2012-01-01

    Noncommutative domain algebras are noncommutative analogues of the algebras of holomorphic functions on domains of $\\C^n$ defined by holomorphic polynomials, and they generalize the noncommutative Hardy algebras. We present here a complete classification of these algebras based upon techniques inspired by multivariate complex analysis, and more specifically the classification of domains in hermitian spaces up to biholomorphic equivalence.

  18. The special symplectic structure of binary cubics

    CERN Document Server

    Slupinski, Marcus

    2009-01-01

    Let $k$ be a field of characteristic not 2 or 3. Let $V$ be the $k$-space of binary cubic polynomials. The natural symplectic structure on $k^2$ promotes to a symplectic structure $\\omega$ on $V$ and from the natural symplectic action of $\\textrm{Sl}(2,k)$ one obtains the symplectic module $(V,\\omega)$. We give a complete analysis of this symplectic module from the point of view of the associated moment map, its norm square $Q$ (essentially the classical discriminant) and the symplectic gradient of $Q$. Among the results are a symplectic derivation of the Cardano-Tartaglia formulas for the roots of a cubic, detailed parameters for all $\\textrm{Sl}(2,k)$ and $\\textrm{Gl}(2,k)$-orbits, in particular identifying a group structure on the set of $\\textrm{Sl}(2,k)$-orbits of fixed nonzero discriminant, and a purely symplectic generalization of the classical Eisenstein syzygy for the covariants of a binary cubic. Such fine symplectic analysis is due to the special symplectic nature inherited from the ambient excepti...

  19. Algebraic approach to quantum gravity II: noncommutative spacetime

    CERN Document Server

    Majid, S

    2006-01-01

    We provide a self-contained introduction to the quantum group approach to noncommutative geometry as the next-to-classical effective geometry that might be expected from any successful quantum gravity theory. We focus particularly on a thorough account of the bicrossproduct model noncommutative spacetimes of the form [t,x_i]=i \\lambda x_i and the correct formulation of predictions for it including a variable speed of light. We also study global issues in the Poincar\\'e group in the model with the 2D case as illustration. We show that any off-shell momentum can be boosted to infinite negative energy by a finite Lorentz transformaton.

  20. Emergence of wave equations from quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Shahn [School of Mathematical Sciences, Queen Mary University of London, 327 Mile End Rd, London E1 4NS (United Kingdom)

    2012-09-24

    We argue that classical geometry should be viewed as a special limit of noncommutative geometry in which aspects which are inter-constrained decouple and appear arbitrary in the classical limit. In particular, the wave equation is really a partial derivative in a unified extra-dimensional noncommutative geometry and arises out of the greater rigidity of the noncommutative world not visible in the classical limit. We provide an introduction to this 'wave operator' approach to noncommutative geometry as recently used[27] to quantize any static spacetime metric admitting a spatial conformal Killing vector field, and in particular to construct the quantum Schwarzschild black hole. We also give an introduction to our related result that every classical Riemannian manifold is a shadow of a slightly noncommutative one wherein the meaning of the classical Ricci tensor becomes very natural as the square of a generalised braiding.

  1. Period mappings with applications to symplectic complex spaces

    CERN Document Server

    Kirschner, Tim

    2015-01-01

    Extending Griffiths’ classical theory of period mappings for compact Kähler manifolds, this book develops and applies a theory of period mappings of “Hodge-de Rham type” for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part investigates the degeneration behavior of the relative Frölicher spectral sequence associated to a submersive morphism of complex manifolds. The third part applies the preceding material to the study of irreducible symplectic complex spaces. The latter notion generalizes the idea of an irreducible symplectic manifold, dubbed an irreducible hyperkähler manifold in differential geometry, to possibly singular spaces. The three parts of the work are of independent interest, but intertwine nicely.

  2. Principal noncommutative torus bundles

    DEFF Research Database (Denmark)

    Echterhoff, Siegfried; Nest, Ryszard; Oyono-Oyono, Herve

    2008-01-01

    In this paper we study continuous bundles of C*-algebras which are non-commutative analogues of principal torus bundles. We show that all such bundles, although in general being very far away from being locally trivial bundles, are at least locally trivial with respect to a suitable bundle version...... of bivariant K-theory (denoted RKK-theory) due to Kasparov. Using earlier results of Echterhoff and Williams, we shall give a complete classification of principal non-commutative torus bundles up to equivariant Morita equivalence. We then study these bundles as topological fibrations (forgetting the group...... action) and give necessary and sufficient conditions for any non-commutative principal torus bundle being RKK-equivalent to a commutative one. As an application of our methods we shall also give a K-theoretic characterization of those principal torus-bundles with H-flux, as studied by Mathai...

  3. Introduction to noncommutative algebra

    CERN Document Server

    Brešar, Matej

    2014-01-01

    Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.

  4. Puffed Noncommutative Nonabelian Vortices

    CERN Document Server

    Bouatta, N; MacCaferri, C; Bouatta, Nazim; Evslin, Jarah; Maccaferri, Carlo

    2007-01-01

    We present new solutions of noncommutative gauge theories in which coincident unstable vortices expand into unstable circular shells. As the theories are noncommutative, the naive definition of the locations of the vortices and shells is gauge-dependent, and so we define and calculate the profiles of these solutions using the gauge-invariant noncommutative Wilson lines introduced by Gross and Nekrasov. We find that charge 2 vortex solutions are characterized by two positions and a single nonnegative real number, which we demonstrate is the radius of the shell. We find that the radius is identically zero in all 2-dimensional solutions. If one considers solutions that depend on an additional commutative direction, then there are time-dependent solutions in which the radius oscillates, resembling a braneworld description of a cyclic universe. There are also smooth BIon-like space-dependent solutions in which the shell expands to infinity, describing a vortex ending on a domain wall.

  5. Symplectic maps for accelerator lattices

    Energy Technology Data Exchange (ETDEWEB)

    Warnock, R.L.; Ruth, R.; Gabella, W.

    1988-05-01

    We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs.

  6. Analytic torsion and symplectic volume

    DEFF Research Database (Denmark)

    McLellan, Brendan Donald Kenneth

    2013-01-01

    This article studies the abelian analytic torsion on a closed, oriented, quasi-regular Sasakian three-manifold and identifies this quantity as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections. This identification effectively computes...... the analytic torsion explicitly in terms of Seifert data for a given quasi-regular Sasakian structure on a three-manifold....

  7. Optimization of polynomials in non-commuting variables

    CERN Document Server

    Burgdorf, Sabine; Povh, Janez

    2016-01-01

    This book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithmic considerations; several examples and information on how to use NCSOStools open source package to obtain the results provided. Results are presented on detecting the eigenvalue and trace positivity of polynomials in non-commuting variables using Newton chip method and Newton cyclic chip method, relaxations for constrained and unconstrained optimization problems, semidefinite programming formulations of the relaxations and finite convergence of the hierarchies of these relaxations, and the practical efficiency of algorithms.

  8. Renormalization on noncommutative torus

    CERN Document Server

    D'Ascanio, D; Vassilevich, D V

    2016-01-01

    We study a self-interacting scalar $\\varphi^4$ theory on the $d$-dimensional noncommutative torus. We determine, for the particular cases $d=2$ and $d=4$, the nonlocal counterterms required by one-loop renormalization. We discuss higher loops in two dimensions and two-loop contributions to the self-energy in four dimensions. Our analysis points towards the absence of any problems related to the UV/IR mixing and thus to renormalizability of the theory. However, we find another potentially troubling phenomenon which is a wild behavior of the two-point amplitude as a function of the noncommutativity matrix $\\theta$.

  9. Renormalization on noncommutative torus

    Energy Technology Data Exchange (ETDEWEB)

    D' Ascanio, D.; Pisani, P. [Universidad Nacional de La Plata, Instituto de Fisica La Plata-CONICET, La Plata (Argentina); Vassilevich, D.V. [Universidade Federal do ABC, CMCC, Santo Andre, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation)

    2016-04-15

    We study a self-interacting scalar φ{sup 4} theory on the d-dimensional noncommutative torus. We determine, for the particular cases d = 2 and d = 4, the counterterms required by one-loop renormalization. We discuss higher loops in two dimensions and two-loop contributions to the self-energy in four dimensions. Our analysis points toward the absence of any problems related to the ultraviolet/infrared mixing and thus to renormalizability of the theory. However, we find another potentially troubling phenomenon which is a wild behavior of the two-point amplitude as a function of the noncommutativity matrix θ. (orig.)

  10. Renormalization on noncommutative torus

    Science.gov (United States)

    D'Ascanio, D.; Pisani, P.; Vassilevich, D. V.

    2016-04-01

    We study a self-interacting scalar \\varphi ^4 theory on the d-dimensional noncommutative torus. We determine, for the particular cases d=2 and d=4, the counterterms required by one-loop renormalization. We discuss higher loops in two dimensions and two-loop contributions to the self-energy in four dimensions. Our analysis points toward the absence of any problems related to the ultraviolet/infrared mixing and thus to renormalizability of the theory. However, we find another potentially troubling phenomenon which is a wild behavior of the two-point amplitude as a function of the noncommutativity matrix θ.

  11. Prime divisors and noncommutative valuation theory

    CERN Document Server

    Marubayashi, Hidetoshi

    2012-01-01

    Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves.  But the noncommutative equivalent is mainly applied to finite dimensional skewfields.  Recently however, new types of algebras have become popular in modern algebra; Weyl algebras, deformed and quantized algebras, quantum groups and Hopf algebras, etc. The advantage of valuation theory in the commutative case is that it allows effective calculations, bringing the arithmetical properties of the ground field into the picture.  This arithmetical nature is also present in the theory of maximal orders in central simple algebras.  Firstly, we aim at uniting maximal orders, valuation rings, Dubrovin valuations, etc. in a common theory, the theory of primes of algebras.  Secondly, we establish possible applications of the noncommutative arithmetics to interesting classes of algebras, including the extension of central valuations to nice classes of quantized a...

  12. Instantons, quivers and noncommutative Donaldson-Thomas theory

    Energy Technology Data Exchange (ETDEWEB)

    Cirafici, Michele, E-mail: cirafici@math.ist.utl.pt [Centro de Analise Matematica, Geometria e Sistemas Dinamicos, Departamento de Matematica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Sinkovics, Annamaria, E-mail: A.Sinkovics@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Szabo, Richard J., E-mail: R.J.Szabo@ma.hw.ac.uk [Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom); Maxwell Institute for Mathematical Sciences, Edinburgh (United Kingdom)

    2011-12-11

    We construct noncommutative Donaldson-Thomas invariants associated with abelian orbifold singularities by analyzing the instanton contributions to a six-dimensional topological gauge theory. The noncommutative deformation of this gauge theory localizes on noncommutative instantons which can be classified in terms of three-dimensional Young diagrams with a colouring of boxes according to the orbifold group. We construct a moduli space for these gauge field configurations which allows us to compute its virtual numbers via the counting of representations of a quiver with relations. The quiver encodes the instanton dynamics of the noncommutative gauge theory, and is associated to the geometry of the singularity via the generalized McKay correspondence. The index of BPS states which compute the noncommutative Donaldson-Thomas invariants is realized via topological quantum mechanics based on the quiver data. We illustrate these constructions with several explicit examples, involving also higher rank Coulomb branch invariants and geometries with compact divisors, and connect our approach with other ones in the literature.

  13. A Noncommutative Enumeration Problem

    Directory of Open Access Journals (Sweden)

    Maria Simonetta Bernabei

    2011-01-01

    Full Text Available We tackle the combinatorics of coloured hard-dimer objects. This is achieved by identifying coloured hard-dimer configurations with a certain class of rooted trees that allow for an algebraic treatment in terms of noncommutative formal power series. A representation in terms of matrices then allows to find the asymptotic behaviour of these objects.

  14. Fractional and noncommutative spacetimes

    NARCIS (Netherlands)

    Arzano, M.; Calcagni, M.; Oriti, D.; Scalisi, M.

    2011-01-01

    We establish a mapping between fractional and noncommutative spacetimes in configuration space. Depending on the scale at which the relation is considered, there arise two possibilities. For a fractional spacetime with log-oscillatory measure, the effective measure near the fundamental scale determi

  15. An Asymmetric Noncommutative Torus

    Science.gov (United States)

    Dąbrowski, Ludwik; Sitarz, Andrzej

    2015-09-01

    We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici).

  16. Noncommuting electric fields and algebraic consistency in noncommutative gauge theories

    Science.gov (United States)

    Banerjee, Rabin

    2003-05-01

    We show that noncommuting electric fields occur naturally in θ-expanded noncommutative gauge theories. Using this noncommutativity, which is field dependent, and a Hamiltonian generalization of the Seiberg-Witten map, the algebraic consistency in the Lagrangian and Hamiltonian formulations of these theories is established. A comparison of results in different descriptions shows that this generalized map acts as a canonical transformation in the physical subspace only. Finally, we apply the Hamiltonian formulation to derive the gauge symmetries of the action.

  17. Hartogs figure and symplectic non-squeezing

    CERN Document Server

    Sukhov, A

    2011-01-01

    We solve a problem on filling by Levi-flat hypersurfaces for a class of totally real 2-tori in a real 4-manifold with an almost complex structure tamed by an exact symplectic form. As an application we obtain a simple proof of Gromov's non-squeezing theorem in dimension 4 and new results on rigidity of symplectic structures.

  18. On symplectic and symmetric ARKN methods

    Science.gov (United States)

    Shi, Wei; Wu, Xinyuan

    2012-06-01

    Symplecticness and symmetry are favorable properties for solving Hamiltonian systems. For the oscillatory second-order initial value problems of the form q+ωq=f(q,q), adapted Runge-Kutta-Nyström methods (ARKN methods, in short notation) were investigated by several authors. In a wide range of physical applications from molecular dynamics to nonlinear wave propagation, an important class of the problems is Hamiltonian systems for which symplectic methods should be preferred. Hence it is quite natural to raise a question of the symplecticness for ARKN methods. In this paper we investigate the symplecticness conditions of ARKN methods for separable Hamiltonian systems. We conclude that there exist only one-stage explicit symplectic ARKN (SARKN, in short notation) methods under the symplecticness conditions of ARKN methods. The SARKN methods have a special form and the algebraic order cannot exceed 2. We also point out that no ARKN method can be symmetric. An explicit SARKN method of order two is proposed with the analysis of phase and stability properties. The numerical results accompanied show good performance for the new explicit symplectic algorithm in comparison with the popular symplectic methods in the scientific literature.

  19. On extensions of a symplectic class

    CERN Document Server

    Kuribayashi, Katsuhiko

    2011-01-01

    Let F be a fibration on a simply-connected base with symplectic fibre (M, \\omega). Assume that the fibre is nilpotent and T^{2k}-separable for some integer k or a nilmanifold. Then our main theorem, Theorem 1.8, gives a necessary and sufficient condition for the cohomology class [\\omega] to extend to a cohomology class of the total space of F. This allows us to describe Thurston's criterion for a symplectic fibration to admit a compatible symplectic form in terms of the classifying map for the underlying fibration. The obstruction due to Lalond and McDuff for a symplectic bundle to be Hamiltonian is also rephrased in the same vein. Furthermore, with the aid of the main theorem, we discuss a global nature of the set of the homotopy equivalence classes of fibrations with symplectic fibre in which the class [\\omega] is extendable.

  20. The Monge-Ampère equation: Hamiltonian and symplectic structures, recursions, and hierarchies

    NARCIS (Netherlands)

    Kersten, P.H.M.; Krasil'shchik, I.; Verbovetsky, A.V.

    2004-01-01

    Using methods of geometry and cohomology developed recently, we study the Monge-Ampère equation, arising as the first nontrivial equation in the associativity equations, or WDVV equations. We describe Hamiltonian and symplectic structures as well as recursion operators for this equation in its

  1. Measure Synchronization on Symplectic Map

    Institute of Scientific and Technical Information of China (English)

    CHEN Shao-Ying; XU Hai-Bo; WANG Guang-Rui; CHEN Shi-Gang

    2004-01-01

    Measure synchronization in coupled Hamiltonian systems is a novel synchronization phenomenon. The measure synchronization on symplectic map is observed numerically, for identical coupled systems with different parameters. We have found the properties of the characteristic frequency and the amplitude of phase locking in regular motion when the measure synchronization of coupled systems is obtained. The relations between the change of the largest Lyapunov exponent and the course of phase desynchronization are also discussed in coupled systems, some useful results are obtained. A new approach is proposed for describing the measure synchronization of coupled systems numerically,which is advantage in judging the measure synchronization, especially for the coupled systems in nonregular region.

  2. Towards Noncommutative Quantum Black Holes

    CERN Document Server

    Lopez-Dominguez, J C; Ramírez, C; Sabido, M

    2006-01-01

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Trough the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular we calculate the Hawking's temperature and entropy for the Noncommutative Schwarzschild black hole.

  3. Algebra of Noncommutative Riemann Surfaces

    OpenAIRE

    2006-01-01

    We examine several algebraic properties of the noncommutive $z$-plane and Riemann surfaces. The starting point of our investigation is a two-dimensional noncommutative field theory, and the framework of the theory will be converted into that of a complex coordinate system. The basis of noncommutative complex analysis is obtained thoroughly, and the considerations on functional analysis are also given before performing the examination of the conformal mapping and the Teichm\\"{u}ller theory. (K...

  4. A non-commutative framework for topological insulators

    Science.gov (United States)

    Bourne, C.; Carey, A. L.; Rennie, A.

    2016-04-01

    We study topological insulators, regarded as physical systems giving rise to topological invariants determined by symmetries both linear and anti-linear. Our perspective is that of non-commutative index theory of operator algebras. In particular, we formulate the index problems using Kasparov theory, both complex and real. We show that the periodic table of topological insulators and superconductors can be realized as a real or complex index pairing of a Kasparov module capturing internal symmetries of the Hamiltonian with a spectral triple encoding the geometry of the sample’s (possibly non-commutative) Brillouin zone.

  5. Non-commutative black holes in D dimensions

    CERN Document Server

    Klimcík, C; Pompos, A

    1994-01-01

    Recently introduced classical theory of gravity in non-commutative geometry is studied. The most general (four parametric) family of D dibensional static spherically symmetric spacetimes is identified and its properties are studied in detail. For wide class of the choices of parameters, the corresponding spacetimes have the structure of asymptotically flat black holes with a smooth event horizon hiding the curvature singularity. A specific attention is devoted to the behavior of components of the metric in non-commutative direction, which are interpreted as the black hole hair.

  6. Moduli Space Dynamics of Noncommutative U(2) Instantons

    CERN Document Server

    Iskauskas, Andrew

    2015-01-01

    We consider the low energy dynamics of charge two instantons on noncommutative $\\mathbb{R}^{2}_{NC}\\times\\mathbb{R}^{2}_{NC}$ in U(2) 5-dimensional super-Yang-Mills, using the Manton approximation for slow-moving instantons to calculate the moduli space metric. By employing the ADHM construction, we are able to understand some aspects of the geometry and topology of the system. We also consider the effect of adding a potential to the moduli space, giving scattering results for noncommutative dyonic instantons.

  7. Phenomenology of Noncommutative Field Theories

    CERN Document Server

    Carone, C D

    2006-01-01

    Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model.

  8. Multiple Qubits as Symplectic Polar Spaces of Order Two

    CERN Document Server

    Saniga, M; Planat, Michel; Saniga, Metod

    2006-01-01

    It is surmised that the algebra of the Pauli operators on the Hilbert space of N-qubits is embodied in the geometry of the symplectic polar space of rank N and order two, W_{2N - 1}(2). The operators (discarding the identity) answer to the points of W_{2N - 1}(2), their partitionings into maximally commuting subsets correspond to spreads of the space, a maximally commuting subset has its representative in a maximal totally isotropic subspace of W_{2N - 1}(2) and, finally, "commuting" translates into "collinear" (or "perpendicular").

  9. Exotic smoothness, noncommutative geometry and particle physics

    CERN Document Server

    Sladkowski, J

    1994-01-01

    We investigate how exotic differential structures may reveal themselves in particle physics. The analysis is based on the A. Connes' construction of the standard model. It is shown that, if one of the copies of the spacetime manifold is equipped with an exotic differential structure, compact object of geometric origin may exist even if the spacetime is topologically trivial. Possible implications are discussed. An SU(3)\\otimes SU(2)\\otimes U(1) gauge model is constructed. This model may not be realistic but it shows what kind of physical phenomena might be expected due to the existence of exotic differential structures on the spacetime manifold.

  10. Non-Commutative Geometry from Strings

    OpenAIRE

    Chu, Chong-Sun

    2005-01-01

    Comment: 26 pages, no figures. To appear in the Elsevier Encyclopedia of Mathematical Physics. This web version has a more comprehensive list of references. Comments and corrections welcome. v2: Typos corrected, references and some comments added. v3: 27 pages. more references and Comments added. v4: references added. Final version

  11. Derived Algebraic Geometry II: Noncommutative Algebra

    CERN Document Server

    Lurie, Jacob

    2007-01-01

    In this paper, we present an infinity-categorical version of the theory of monoidal categories. We show that the infinity category of spectra admits an essentially unique monoidal structure (such that the tensor product preserves colimits in each variable), and thereby recover the classical smash-product operation on spectra. We develop a general theory of algebras in a monoidal infinity category, which we use to (re)prove some basic results in the theory of associative ring spectra. We also develop an infinity-categorical theory of monads, and prove a version of the Barr-Beck theorem.

  12. Automorphisms of associative algebras and noncommutative geometry

    Science.gov (United States)

    Dimakis, A.; Müller-Hoissen, F.

    2004-02-01

    A class of differential calculi is explored which is determined by a set of automorphisms of the underlying associative algebra. Several examples are presented. In particular, differential calculi on the quantum plane, the h-deformed plane and the quantum group GLp,q(2) are recovered in this way. Geometric structures such as metrics and compatible linear connections are introduced.

  13. Fractional and noncommutative spacetimes

    Science.gov (United States)

    Arzano, Michele; Calcagni, Gianluca; Oriti, Daniele; Scalisi, Marco

    2011-12-01

    We establish a mapping between fractional and noncommutative spacetimes in configuration space. Depending on the scale at which the relation is considered, there arise two possibilities. For a fractional spacetime with log-oscillatory measure, the effective measure near the fundamental scale determining the log-period coincides with the nonrotation-invariant but cyclicity-preserving measure of κ-Minkowski spacetime. At scales larger than the log-period, the fractional measure is averaged and becomes a power law with real exponent. This can be also regarded as the cyclicity-inducing measure in a noncommutative spacetime defined by a certain nonlinear algebra of the coordinates, which interpolates between κ-Minkowski and canonical spacetime. These results are based upon a braiding formula valid for any nonlinear algebra which can be mapped onto the Heisenberg algebra.

  14. Fractional and noncommutative spacetimes

    CERN Document Server

    Arzano, Michele; Oriti, Daniele; Scalisi, Marco

    2011-01-01

    We establish a mapping between fractional and noncommutative spacetimes in configuration space. Depending on the scale at which the relation is considered, there arise two possibilities. For a fractional spacetime with log-oscillatory measure, the effective measure near the fundamental scale determining the log-period coincides with the non-rotation-invariant but cyclicity-preserving measure of \\kappa-Minkowski. At scales larger than the log-period, the fractional measure is averaged and becomes a power-law with real exponent. This can be also regarded as the cyclicity-inducing measure in a noncommutative spacetime defined by a certain nonlinear algebra of the coordinates, which interpolates between \\kappa-Minkowski and canonical spacetime. These results are based upon a braiding formula valid for any nonlinear algebra which can be mapped onto the Heisenberg algebra.

  15. Noncommutative SO(2,3) gauge theory and noncommutative gravity

    CERN Document Server

    Dimitrijevic, Marija

    2014-01-01

    In this paper noncommutative gravity is constructed as a gauge theory of the noncommutative SO(2,3) group, while the noncommutativity is canonical (constant). The Seiberg-Witten map is used to express noncommutative fields in terms of the corresponding commutative fields. The commutative limit of the model is the Einstein-Hilbert action with the cosmological constant term and the topological Gauss-Bonnet term. We calculate the second order correction to this model and obtain terms that are of zeroth to fourth power in the curvature tensor and torsion. Trying to relate our results with $f(R)$ and $f(T)$ models, we analyze different limits of our model. In the limit of big cosmological constant and vanishing torsion we obtain a $x$-dependent correction to the cosmological constant, i.e. noncommutativity leads to a $x$-dependent cosmological constant. We also discuss the limit of small cosmological constant and vanishing torsion and the teleparallel limit.

  16. The Maslov index in symplectic Banach spaces

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm; Zhu, Chaofeng

    index. As an application, we consider curves of elliptic operators which have varying principal symbol, varying maximal domain and are not necessarily of Dirac type. For this class of operator curves, we derive a desuspension spectral ow formula for varying well-posed boundary conditions on manifolds...... such decompositions we dene the Maslov index of the curve by symplectic reduction to the classical nite-dimensional case. We prove the transitivity of repeated symplectic reductions and obtain the invariance of the Maslov index under symplectic reduction, while recovering all the standard properties of the Maslov...

  17. Heisenberg algebra for noncommutative Landau problem

    Science.gov (United States)

    Li, Kang; Cao, Xiao-Hua; Wang, Dong-Yan

    2006-10-01

    The Landau problem on non-commutative quantum mechanics is studied, where the Heisenberg algebra and the Landau energy levels as well as the non-commutative angular momentum are constructed in detail in non-commutative space and non-commutative phase space respectively.

  18. On Non-commutative Geodesic Motion

    CERN Document Server

    Ulhoa, S C; Santos, A F

    2013-01-01

    In this work we study the geodesic motion on a noncommutative space-time. As a result we find a non-commutative geodesic equation and then we derive corrections of the deviation angle per revolution in terms of the non-commutative parameter when we specify the problem of Mercury's perihelion. In this way, we estimate the noncommutative parameter based in experimental data.

  19. On non-commutative geodesic motion

    Science.gov (United States)

    Ulhoa, S. C.; Amorim, R. G. G.; Santos, A. F.

    2014-07-01

    In this work we study the geodesic motion on a noncommutative space-time. As a result we find a non-commutative geodesic equation and then we derive corrections of the deviation angle per revolution in terms of the non-commutative parameter when we specify the problem of Mercury's perihelion. In this way, we estimate the noncommutative parameter based in experimental data.

  20. Heisenberg algebra for noncommutative Landau problem

    Institute of Scientific and Technical Information of China (English)

    Li Kang; Cao Xiao-Hua; Wang Dong-Yan

    2006-01-01

    The Landau problem on non-commutative quantum mechanics is studied, where the Heisenberg algebra and the Landau energy levels as well as the non-commutative angular momentum are constructed in detail in non-commutative space and non-commutative phase space respectively.

  1. Symplectic and Killing symmetries of AdS{sub 3} gravity: holographic vs boundary gravitons

    Energy Technology Data Exchange (ETDEWEB)

    Compère, G.; Mao, P. [Université Libre de Bruxelles and International Solvay Institutes,CP 231 B-1050 Brussels (Belgium); Seraj, A.; Sheikh-Jabbari, M.M. [School of Physics, Institute for Research in Fundamental Sciences (IPM),P.O.Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-01-14

    The set of solutions to the AdS{sub 3} Einstein gravity with Brown-Henneaux boundary conditions is known to be a family of metrics labeled by two arbitrary periodic functions, respectively left and right-moving. It turns out that there exists an appropriate presymplectic form which vanishes on-shell. This promotes this set of metrics to a phase space in which the Brown-Henneaux asymptotic symmetries become symplectic symmetries in the bulk of spacetime. Moreover, any element in the phase space admits two global Killing vectors. We show that the conserved charges associated with these Killing vectors commute with the Virasoro symplectic symmetry algebra, extending the Virasoro symmetry algebra with two U(1) generators. We discuss that any element in the phase space falls into the coadjoint orbits of the Virasoro algebras and that each orbit is labeled by the U(1) Killing charges. Upon setting the right-moving function to zero and restricting the choice of orbits, one can take a near-horizon decoupling limit which preserves a chiral half of the symplectic symmetries. Here we show two distinct but equivalent ways in which the chiral Virasoro symplectic symmetries in the near-horizon geometry can be obtained as a limit of the bulk symplectic symmetries.

  2. Flat Symplectic Bundles of N-Extended Supergravities, Central Charges and Black-Hole Entropy

    CERN Document Server

    Andrianopoli, Laura; Ferrara, Sergio

    1998-01-01

    In these lectures we give a geometrical formulation of N-extended supergravities which generalizes N=2 special geometry of N=2 theories. In all these theories duality symmetries are related to the notion of "flat symplectic bundles" and central charges may be defined as "sections" over these bundles. Attractor points giving rise to "fixed scalars" of the horizon geometry and Bekenstein-Hawking entropy formula for extremal black-holes are discussed in some details.

  3. Symplectic maps from cluster algebras

    CERN Document Server

    Fordy, Allan

    2011-01-01

    We consider nonlinear recurrences generated from the iteration of maps that arise from cluster algebras. More precisely, starting from a skew-symmetric integer matrix, or its corresponding %associated quiver, one can define a set of mutation operations, as well as a set of associated cluster mutations that are applied to a set of affine coordinates (the cluster variables). Fordy and Marsh recently provided a complete classification of all such quivers that have a certain periodicity property under sequences of mutations. This periodicity implies that a suitable sequence of cluster mutations is precisely equivalent to iteration of a nonlinear recurrence relation. Here we explain briefly how to introduce a % symplectic structure in this setting, which is preserved by a corresponding birational map (possibly on a space of lower dimension). We give examples of both integrable and non-integrable maps that arise from this construction. We use algebraic entropy as an approach to classifying integrable cases. The deg...

  4. Landau problem in noncommutative quantum mechanics

    Institute of Scientific and Technical Information of China (English)

    Sayipjamal Dulat; LI Kang

    2008-01-01

    The Landau problem in non-commutative quantum mechanics (NCQM) is studied.First by solving the Schr(o)dinger equations on noncommutative (NC) space we obtain the Landau energy levels and the energy correction that is caused by space-space noncommutativity.Then we discuss the noncommutative phase space case,namely,space-space and momentum-momentum non-commutative case,and we get the explicit expression of the Hamfltonian as well as the corresponding eigenfunctions and eigenvalues.

  5. Symplectic gauge fields and dark matter

    CERN Document Server

    Asorey, J; Garcia-Alvarez, D

    2015-01-01

    The dynamics of symplectic gauge fields provides a consistent framework for fundamental interactions based on spin three gauge fields. One remarkable property is that symplectic gauge fields only have minimal couplings with gravitational fields and not with any other field of the Standard Model. Interactions with ordinary matter and radiation can only arise from radiative corrections. In spite of the gauge nature of symplectic fields they acquire a mass by the Coleman-Weinberg mechanism which generates Higgs-like mass terms where the gravitational field is playing the role of a Higgs field. Massive symplectic gauge fields weakly interacting with ordinary matter are natural candidates for the dark matter component of the Universe.

  6. Symplectic gauge fields and dark matter

    Science.gov (United States)

    Asorey, J.; Asorey, M.; García-Álvarez, D.

    2015-11-01

    The dynamics of symplectic gauge fields provides a consistent framework for fundamental interactions based on spin-3 gauge fields. One remarkable property is that symplectic gauge fields only have minimal couplings with gravitational fields and not with any other field of the Standard Model. Interactions with ordinary matter and radiation can only arise from radiative corrections. In spite of the gauge nature of symplectic fields they acquire a mass by the Coleman-Weinberg mechanism which generates Higgs-like mass terms where the gravitational field is playing the role of a Higgs field. Massive symplectic gauge fields weakly interacting with ordinary matter are natural candidates for the dark matter component of the Universe.

  7. Noncommutative Compactifications of Type I Strings on Tori with Magnetic Background Flux

    CERN Document Server

    Blumenhagen, R; Körs, B; Lüst, Dieter; Blumenhagen, Ralph; Goerlich, Lars; Kors, Boris; Lust, Dieter

    2000-01-01

    We construct six- and four-dimensional toroidal compactifications of the Type I string with magnetic flux on the D-branes. The open strings in this background probe a noncommutative internal geometry. Phenomenologically appealing features such as chiral fermions and supersymmetry breaking in the gauge sector are naturally realized by these vacua. We investigate the spectra of such noncommutative string compactifications and in a bottom-up approach discuss the possibility to obtain the standard or some GUT like model.

  8. Strongly stable real infinitesimally symplectic mappings

    NARCIS (Netherlands)

    Cushman, R.; Kelley, A.

    1979-01-01

    We prove that a mapA εsp(σ,R), the set of infinitesimally symplectic maps, is strongly stable if and only if its centralizerC(A) insp(σ,R) contains only semisimple elements. Using the theorem that everyB insp(σ,R) close toA is conjugate by a real symplectic map to an element ofC(A), we give a new pr

  9. How Wigner functions transform under symplectic maps

    Energy Technology Data Exchange (ETDEWEB)

    Dragt, A.J. [Univ. of Maryland, College Park, MD (United States). Center for Theoretical Physics; Habib, S. [Los Alamos National Lab., NM (United States). Theoretical Div.

    1998-05-16

    It is shown that, while Wigner and Liouville functions transform in an identical way under linear symplectic maps, in general they do not transform identically for nonlinear symplectic maps. Instead there are quantum corrections whose {Dirac_h} {r_arrow} 0 limit may be very complicated. Examples of the behavior of Wigner functions in the {Dirac_h} {r_arrow} 0 limit are given in order to examine to what extent the corresponding Liouville densities are recovered.

  10. Duality and helicity: A symplectic viewpoint

    Science.gov (United States)

    Elbistan, M.; Duval, C.; Horváthy, P. A.; Zhang, P.-M.

    2016-10-01

    The theorem which says that helicity is the conserved quantity associated with the duality symmetry of the vacuum Maxwell equations is proved by viewing electromagnetism as an infinite dimensional symplectic system. In fact, it is shown that helicity is the moment map of duality acting as an SO (2) group of canonical transformations on the symplectic space of all solutions of the vacuum Maxwell equations.

  11. Fischer decomposition in symplectic harmonic analysis

    OpenAIRE

    Brackx, Fred; De Schepper, Hennie; Eelbode, David; Lávička, Roman; Soucek, Vladimir

    2014-01-01

    In the framework of quaternionic Clifford analysis in Euclidean space , which constitutes a refinement of Euclidean and Hermitian Clifford analysis, the Fischer decomposition of the space of complex valued polynomials is obtained in terms of spaces of so-called (adjoint) symplectic spherical harmonics, which are irreducible modules for the symplectic group Sp. Its Howe dual partner is determined to be sl(2, C) circle plus sl(2, C) = so(4, C).

  12. How Wigner functions transform under symplectic maps

    Energy Technology Data Exchange (ETDEWEB)

    Dragt, A.J. [Univ. of Maryland, College Park, MD (United States). Center for Theoretical Physics; Habib, S. [Los Alamos National Lab., NM (United States). Theoretical Div.

    1998-05-16

    It is shown that, while Wigner and Liouville functions transform in an identical way under linear symplectic maps, in general they do not transform identically for nonlinear symplectic maps. Instead there are quantum corrections whose {Dirac_h} {r_arrow} 0 limit may be very complicated. Examples of the behavior of Wigner functions in the {Dirac_h} {r_arrow} 0 limit are given in order to examine to what extent the corresponding Liouville densities are recovered.

  13. SYMPLECTIC SOLUTION SYSTEM FOR REISSNER PLATE BENDING

    Institute of Scientific and Technical Information of China (English)

    姚伟岸; 隋永枫

    2004-01-01

    Based on the Hellinger-Reissner variatonal principle for Reissner plate bending and introducing dual variables, Hamiltonian dual equations for Reissner plate bending were presented. Therefore Hamiltonian solution system can also be applied to Reissner plate bending problem, and the transformation from Euclidian space to symplectic space and from Lagrangian system to Hamiltonian system was realized. So in the symplectic space which consists of the original variables and their dual variables, the problem can be solved via effective mathematical physics methods such as the method of separation of variables and eigenfunction-vector expansion. All the eigensolutions and Jordan canonical form eigensolutions for zero eigenvalue of the Hamiltonian operator matrix are solved in detail,and their physical meanings are showed clearly. The adjoint symplectic orthonormal relation of the eigenfunction vectors for zero eigenvalue are formed. It is showed that the all eigensolutions for zero eigenvalue are basic solutions of the Saint-Venant problem and they form a perfect symplectic subspace for zero eigenvalue. And the eigensolutions for nonzero eigenvalue are covered by the Saint-Venant theorem. The symplectic solution method is not the same as the classical semi- inverse method and breaks through the limit of the traditional semi-inverse solution. The symplectic solution method will have vast application.

  14. Difference Discrete Variational Principles,Euler—Lagrange Cohomology and Symplectic,Multisymplectic Structures Ⅲ:Application to Symplectic and Multisymplectic Algorithms

    Institute of Scientific and Technical Information of China (English)

    GUOHan-Ying; WUKe; 等

    2002-01-01

    In the previous papers I and II,we have studied the difference discrete variational principle and the Euler-Lagrange cohomology in the framework of multi-parameter differential approach.We have gotten the difference discrete Euler-Lagrange equations and canonical ones for the difference discrete versions of classical mechanics and field theory as well as the difference discrete versions for the Euler-Lagrange cohomology and applied them to get the necessary and sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the lagrangian and Hamiltonian formalisms.In this paper,we apply the difference discrete variational principle and Euler-Lagrange cohomological approach directly to the symplectic and multisymplectic algorithms.We will show that either Hamiltonian schemes of Lagrangian ones in both the symplectic and multisymplectic algorithms are variational integrators and their difference discrete symplectic structure-preserving properties can always be established not only in the solution space but also in the function space if and only if the related closed Euler-Lagrange cohomological conditions are satisfied.

  15. Noncommutative quantum mechanics

    Science.gov (United States)

    Gamboa, J.; Loewe, M.; Rojas, J. C.

    2001-09-01

    A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter θ, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of θ the model can be solved by using perturbation theory.

  16. A Remark on Polar Noncommutativity

    CERN Document Server

    Iskauskas, Andrew

    2015-01-01

    Noncommutative space has been found to be of use in a number of different contexts. In particular, one may use noncommutative spacetime to generate quantised gravity theories. Via an identification between the Moyal $\\star$-product on function space and commutators on a Hilbert space, one may use the Seiberg-Witten map to generate corrections to such gravity theories. However, care must be taken with the derivation of commutation relations. We examine conditions for the validity of such an approach, and determine the correct form for polar noncommutativity in $\\mathbb{R}^{2}$. Such an approach lends itself readily to extension to more complicated spacetime parametrisations.

  17. Noncommutative spaces from matrix models

    Science.gov (United States)

    Lu, Lei

    Noncommutative (NC) spaces commonly arise as solutions to matrix model equations of motion. They are natural generalizations of the ordinary commutative spacetime. Such spaces may provide insights into physics close to the Planck scale, where quantum gravity becomes relevant. Although there has been much research in the literature, aspects of these NC spaces need further investigation. In this dissertation, we focus on properties of NC spaces in several different contexts. In particular, we study exact NC spaces which result from solutions to matrix model equations of motion. These spaces are associated with finite-dimensional Lie-algebras. More specifically, they are two-dimensional fuzzy spaces that arise from a three-dimensional Yang-Mills type matrix model, four-dimensional tensor-product fuzzy spaces from a tensorial matrix model, and Snyder algebra from a five-dimensional tensorial matrix model. In the first part of this dissertation, we study two-dimensional NC solutions to matrix equations of motion of extended IKKT-type matrix models in three-space-time dimensions. Perturbations around the NC solutions lead to NC field theories living on a two-dimensional space-time. The commutative limit of the solutions are smooth manifolds which can be associated with closed, open and static two-dimensional cosmologies. One particular solution is a Lorentzian fuzzy sphere, which leads to essentially a fuzzy sphere in the Minkowski space-time. In the commutative limit, this solution leads to an induced metric that does not have a fixed signature, and have a non-constant negative scalar curvature, along with singularities at two fixed latitudes. The singularities are absent in the matrix solution which provides a toy model for resolving the singularities of General relativity. We also discussed the two-dimensional fuzzy de Sitter space-time, which has irreducible representations of su(1,1) Lie-algebra in terms of principal, complementary and discrete series. Field

  18. Relative symplectic caps, 4-genus and fibered knots

    Indian Academy of Sciences (India)

    Siddhartha Gadgil; Dheeraj Kulkarni

    2016-05-01

    We prove relative versions of the symplectic capping theorem and sufficiency of Giroux’s criterion for Stein fillability and use these to study the 4-genus of knots. More precisely, suppose we have a symplectic 4-manifold with convex boundary and a symplectic surface in such that is a transverse knot in . In this paper, we prove that there is a closed symplectic 4-manifold with a closed symplectic surface such that (, ) embeds into (, ) symplectically. As a consequence we obtain a relative version of the symplectic Thom conjecture. We also prove a relative version of the sufficiency part of Giroux’s criterion for Stein fillability, namely, we show that a fibered knot whose mondoromy is a product of positive Dehn twists bounds a symplectic surface in a Stein filling. We use this to study 4-genus of fibered knots in $\\mathbb S^3$. Further, we give a criterion for quasipositive fibered knots to be strongly quasipositive.

  19. Non-commuting variations in mathematics and physics a survey

    CERN Document Server

    Preston, Serge

    2016-01-01

    This text presents and studies the method of so –called noncommuting variations in Variational Calculus. This method was pioneered by Vito Volterra who noticed that the conventional Euler-Lagrange (EL-) equations are not applicable in Non-Holonomic Mechanics and suggested to modify the basic rule used in Variational Calculus. This book presents a survey of Variational Calculus with non-commutative variations and shows that most basic properties of conventional Euler-Lagrange Equations are, with some modifications, preserved for EL-equations with K-twisted (defined by K)-variations. Most of the book can be understood by readers without strong mathematical preparation (some knowledge of Differential Geometry is necessary). In order to make the text more accessible the definitions and several necessary results in Geometry are presented separately in Appendices I and II Furthermore in Appendix III a short presentation of the Noether Theorem describing the relation between the symmetries of the differential equa...

  20. Altering symplectic manifolds by homologous recombination

    CERN Document Server

    Abouzaid, Mohammed

    2010-01-01

    We use symplectic cohomology to study the non-uniqueness of symplectic structures on the smooth manifolds underlying affine varieties. Starting with a Lefschetz fibration on such a variety and a finite set of primes, the main new tool is a method, which we call homologous recombination, for constructing a Lefschetz fibration whose total space is smoothly equivalent to the original variety, but for which symplectic cohomology with coefficients in the given set of primes vanishes (there is also a simpler version that kills symplectic cohomology completely). Rather than relying on a geometric analysis of periodic orbits of a flow, the computation of symplectic cohomology depends on describing the Fukaya category associated to the new fibration. As a consequence we use a result of McLean to prove, for example, that an affine variety of real dimension greater than or equal to 4 supports infinitely many different (Wein)stein structures of finite type, and, assuming a mild cohomological condition, uncountably many d...

  1. Phenomenological Prospects of Noncommutative QED

    Science.gov (United States)

    Álvarez-Gaumé, Luis; Vázquez-Mozo, Miguel A.

    2004-08-01

    We study the phenomenological potential of noncommutative QED as obtained from the Seiberg-Witten limit of string theories in the presence of an external B-field. We manage to define the theory free of tachyons by embedding it into {N}=4 noncommutative super Yang-Mills and breaking supersymmetry softly by adding masses to fermions and scalars. However, this requires a fine-tuning of the soft-breaking mass and the resulting theory has massive polarization for the photon.

  2. Weight structure on noncommutative motives

    CERN Document Server

    Tabuada, Goncalo

    2011-01-01

    In this note we endow Kontsevich's category KMM of noncommutative mixed motives with a non-degenerate weight structure in the sense of Bondarko. As an application we obtain a convergent weight spectral sequence for every additive invariant (e.g. algebraic K-theory, cyclic homology, topological Hochschild homology, etc.), and a ring isomorphism between the Grothendieck ring of KMM and the Grothendieck ring of the category of noncommutative Chow motives.

  3. Principal Fibrations from Noncommutative Spheres

    Science.gov (United States)

    Landi, Giovanni; Suijlekom, Walter Van

    2005-11-01

    We construct noncommutative principal fibrations Sθ7→Sθ4 which are deformations of the classical SU(2) Hopf fibration over the four sphere. We realize the noncommutative vector bundles associated to the irreducible representations of SU(2) as modules of coequivariant maps and construct corresponding projections. The index of Dirac operators with coefficients in the associated bundles is computed with the Connes-Moscovici local index formula. "The algebra inclusion is an example of a not-trivial quantum principal bundle."

  4. Quantum cohomology of the odd symplectic Grassmannian of lines

    CERN Document Server

    Pech, Clélia

    2010-01-01

    Odd symplectic Grassmannians are a generalization of symplectic Grassmannians to odd-dimensional spaces. Here we compute the classical and quantum cohomology of the odd symplectic Grassmannian of lines. Although these varieties are non homogeneous, we obtain Pieri and Giambelli formulas that are very similar to the symplectic case. We notice that their quantum cohomology is semi-simple, which enables us to check Dubrovin's conjecture for this case.

  5. Moduli of K3 Surfaces and Irreducible Symplectic Manifolds

    CERN Document Server

    Gritsenko, V; Sankaran, G K

    2010-01-01

    The name "K3 surfaces" was coined by A. Weil in 1957 when he formulated a research programme for these surfaces and their moduli. Since then, irreducible holomorphic symplectic manifolds have been introduced as a higher dimensional analogue of K3 surfaces. In this paper we present a review of this theory starting from the definition of K3 surfaces and going as far as the global Torelli theorem for irreducible holomorphic symplectic manifolds as recently proved by M. Verbitsky. For many years the last open question of Weil's programme was that of the geometric type of the moduli spaces of polarised K3 surfaces. We explain how this problem has been solved. Our method uses algebraic geometry, modular forms and Borcherds automorphic products. We collect and discuss the relevant facts from the theory of modular forms with respect to the orthogonal group O(2,n). We also give a detailed description of quasi pull-back of automorphic Borcherds products. This part contains previously unpublished results. We apply our g...

  6. Noncommutative Yang-Mills-Higgs actions from derivation-based differential calculus

    CERN Document Server

    Cagnache, Eric; Wallet, Jean-Christophe

    2008-01-01

    Derivations of a (noncommutative) algebra can be used to construct various consistent differential calculi, the so-called derivation-based differential calculi. We apply this framework to the noncommutative Moyal algebras for which all the derivations are inner and analyse in detail the case where the derivation algebras generating the differential calculus are related to area preserving diffeomorphisms. The ordinary derivations corresponding to spatial dimensions are supplemented by additional derivations necessarely related to additional covariant coordinates. It is shown that these latter have a natural interpretation as Higgs fields when involved in gauge invariant actions built from the noncommutative curvature. The UV/IR mixing problem for (some of) the resulting Yang-Mills-Higgs models is discussed. A comparition to other noncommutative geometries already considered in the litterature is given.

  7. A SIMPLE WAY CONSTRUCTING SYMPLECTIC RUNGE-KUTTA METHODS

    Institute of Scientific and Technical Information of China (English)

    Geng Sun

    2000-01-01

    With the help of symplecticity conditions of Partitioned Runge-Kutta methods, a simple way constructing symplectic methods is derived. Examples including sev eral classes of high order symplectic Runge-Kutta methods are given, and showed up the relationship between existing high order Runge-Kutta methods.

  8. Symplectic structures from Lefschetz pencils in high dimensions

    OpenAIRE

    Gompf, Robert E.

    2004-01-01

    A symplectic structure is canonically constructed on any manifold endowed with a topological linear k-system whose fibers carry suitable symplectic data. As a consequence, the classification theory for Lefschetz pencils in the context of symplectic topology is analogous to the corresponding theory arising in differential topology.

  9. Causality in noncommutative two-sheeted space-times

    Science.gov (United States)

    Franco, Nicolas; Eckstein, Michał

    2015-10-01

    We investigate the causal structure of two-sheeted space-times using the tools of Lorentzian spectral triples. We show that the noncommutative geometry of these spaces allows for causal relations between the two sheets. The computation is given in detail when the sheet is a 2- or 4-dimensional globally hyperbolic spin manifold. The conclusions are then generalised to a point-dependent distance between the two sheets resulting from the fluctuations of the Dirac operator.

  10. Causality in noncommutative two-sheeted space-times

    CERN Document Server

    Franco, Nicolas

    2015-01-01

    We investigate the causal structure of two-sheeted space-times using the tools of Lorentzian spectral triples. We show that the noncommutative geometry of these spaces allows for causal relations between the two sheets. The computation is given in details when the sheet is a 2- or 4-dimensional globally hyperbolic spin manifold. The conclusions are then generalised to a point-dependent distance between the two sheets resulting from the fluctuations of the Dirac operator.

  11. Non-commutative Complex Projective Spaces and the Standard Model

    OpenAIRE

    Dolan, Brian P

    2003-01-01

    The standard model fermion spectrum, including a right handed neutrino, can be obtained as a zero-mode of the Dirac operator on a space which is the product of complex projective spaces of complex dimension two and three. The construction requires the introduction of topologically non-trivial background gauge fields. By borrowing from ideas in Connes' non-commutative geometry and making the complex spaces `fuzzy' a matrix approximation to the fuzzy space allows for three generations to emerge...

  12. Generalized Kahler geometry

    CERN Document Server

    Gualtieri, Marco

    2010-01-01

    Generalized Kahler geometry is the natural analogue of Kahler geometry, in the context of generalized complex geometry. Just as we may require a complex structure to be compatible with a Riemannian metric in a way which gives rise to a symplectic form, we may require a generalized complex structure to be compatible with a metric so that it defines a second generalized complex structure. We explore the fundamental aspects of this geometry, including its equivalence with the bi-Hermitian geometry on the target of a 2-dimensional sigma model with (2,2) supersymmetry, as well as the relation to holomorphic Dirac geometry and the resulting derived deformation theory. We also explore the analogy between pre-quantum line bundles and gerbes in the context of generalized Kahler geometry.

  13. Creation of Matter in a Noncommutative Universe

    CERN Document Server

    Miller, T

    2016-01-01

    The dark matter and dark energy problem, that is now dominating the research in cosmology, makes the question of the origin of mass-energy content of the universe more urgent than ever. There are two philosophies regarding this question: according to Mach's principle it is matter that generates geometry of space-time, and according to Wheeler's geometrodynamics some configurations of space-time geometry are to be interpreted as its material content. Neither of these philosophies has led to success. In the present paper, we show that there exists an algebraic generalisation of geometry that reconciles, in a sense, these two seemingly opposite standpoints. The geometry is constructed with the help of a noncommutative algebra of smooth functions on a groupoid and its derivations. The groupoid in question has a nice physical interpretation: it can be regarded as a space of Lorentz rotations. In this way, Lorentz symmetries are inherent to the generalised geometry of space-time. We define the action for this geome...

  14. Stochastic symplectic and multi-symplectic methods for nonlinear Schrödinger equation with white noise dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jianbo, E-mail: jianbocui@lsec.cc.ac.cn [Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, 100190 (China); Hong, Jialin, E-mail: hjl@lsec.cc.ac.cn [Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, 100190 (China); Liu, Zhihui, E-mail: liuzhihui@lsec.cc.ac.cn [Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, 100190 (China); Zhou, Weien, E-mail: weienzhou@nudt.edu.cn [College of Science, National University of Defense Technology, Changsha 410073 (China)

    2017-08-01

    We indicate that the nonlinear Schrödinger equation with white noise dispersion possesses stochastic symplectic and multi-symplectic structures. Based on these structures, we propose the stochastic symplectic and multi-symplectic methods, which preserve the continuous and discrete charge conservation laws, respectively. Moreover, we show that the proposed methods are convergent with temporal order one in probability. Numerical experiments are presented to verify our theoretical results.

  15. Characterization and solvability of quasipolynomial symplectic mappings

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Bermejo, Benito [ESCET (Edificio Departamental II), Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933-Mostoles-Madrid (Spain); Brenig, Leon [Service de Physique Theorique et Mathematique, Universite Libre de Bruxelles, Campus Plaine, CP 231, Boulevard du Triomphe, B-1050 Brussels (Belgium)

    2004-02-13

    Quasipolynomial (or QP) mappings constitute a wide generalization of the well-known Lotka-Volterra mappings, of importance in different fields such as population dynamics, physics, chemistry or economy. In addition, QP mappings are a natural discrete-time analogue of the continuous QP systems, which have been extensively used in different pure and applied domains. After presenting the basic definitions and properties of QP mappings in a previous paper, the purpose of this work is to focus on their characterization by considering the existence of symplectic QP mappings. In what follows such QP symplectic maps are completely characterized. Moreover, use of the QP formalism can be made in order to demonstrate that all QP symplectic mappings have an analytical solution that is explicitly and generally constructed. Examples are given.

  16. Noncommutative Quantum Mechanics and Quantum Cosmology

    CERN Document Server

    Bastos, Catarina; Dias, Nuno; Prata, Joao Nuno

    2009-01-01

    We present a phase-space noncommutative version of quantum mechanics and apply this extension to Quantum Cosmology. We motivate this type of noncommutative algebra through the gravitational quantum well (GQW) where the noncommutativity between momenta is shown to be relevant. We also discuss some qualitative features of the GQW such as the Berry phase. In the context of quantum cosmology we consider a Kantowski-Sachs cosmological model and obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system through the ADM formalism and a suitable Seiberg-Witten (SW) map. The WDW equation is explicitly dependent on the noncommutative parameters, $\\theta$ and $\\eta$. We obtain numerical solutions of the noncommutative WDW equation for different values of the noncommutative parameters. We conclude that the noncommutativity in the momenta sector leads to a damped wave function implying that this type of noncommmutativity can be relevant for a selection of possible initial states for the universe.

  17. Duality and noncommutative planes

    DEFF Research Database (Denmark)

    Jøndrup, Søren

    2015-01-01

    We study extensions of simple modules over an associative ring A   and we prove that for twosided ideals mm and nn with artinian factors the condition ExtA1(A/m,A/n)≠0 holds for the left A  -modules A/mA/m and A/nA/n if and only if it holds for the right modules A/nA/n and A/mA/m. The methods pro...... proving this are applied to show that noncommutative models of the plane, i.e. algebras of the form k〈x,y〉/(f)k〈x,y〉/(f), where f∈([x,y])f∈([x,y]) are noetherian only in case (f)=([x,y])...

  18. Phase structures in fuzzy geometries

    CERN Document Server

    Govindarajan, T R; Gupta, K S; Martin, X

    2012-01-01

    We study phase structures of quantum field theories in fuzzy geometries. Several examples of fuzzy geometries as well as QFT's on such geometries are considered. They are fuzzy spheres and beyond as well as noncommutative deformations of BTZ blackholes. Analysis is done analytically and through simulations. Several features like novel stripe phases as well as spontaneous symmetry breaking avoiding Colemen, Mermin, Wagner theorem are brought out. Also we establish that these phases are stable due to topological obstructions.

  19. LENTICULAR NONCOMMUTATIVE TORI

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    All C*-algebras of sections of locally trivial C*-algebra bundles over ∏si=1 Lki (ni)with fibres Aω Mc(C) are constructed, under the assumption that every completely irra-tional noncommutative torus Aω is realized as an inductive limit of circle algebras, whereLki (ni) are lens spaces. Let Lcd be a cd-homogeneous C*-algebra over ∏si=1 Lki (ni) × Tr+2whose cd-homogeneous C*-subalgebra restricted to the subspace Tr × T2 is realized asC(Tr) Al/d Mc(C), and of which no non-trivial matrix algebra can be factored out.The lenticular noncommutative torus Lcd p is defined by twisting C*(Tr+2) C*(Zm-2)in Lcd C*(Zm-2) by a totally skew multiplier ρ on Tr+2 × Zm-2. It is shown thatLcdp Mp∞ is isomorphic to (∏si=1 Lki (ni)) Aρ Mcd(C) Mp∞ if and only if the setof prime factors of cd is a subset of the set of prime factors of p, and that Lcd p is not stablyisomorphic to C(∏si=1 Lki (ni)) Aρ Mcd(C) if the cd-homogeneous C*-subalgebra ofLcdp restricted to some subspace Lki (ni) ∏si=1 Lki (ni) is realized as the crossed productby the obvious non-trivial action of Zki on a cd/ki-homogeneous C*-algebra over S2ni+1 forki an integer greater than 1.

  20. Noncommutative Black Holes and the Singularity Problem

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C; Bertolami, O [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.pt, E-mail: orfeu.bertolami@fc.up.pt, E-mail: ncdias@mail.telepac.pt, E-mail: joao.prata@mail.telepac.pt [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2011-09-22

    A phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model is considered to study the interior of a Schwarzschild black hole. Due to the divergence of the probability of finding the black hole at the singularity from a canonical noncommutativity, one considers a non-canonical noncommutativity. It is shown that this more involved type of noncommutativity removes the problem of the singularity in a Schwarzschild black hole.

  1. Space-Time Symmetries of Noncommutative Spaces

    OpenAIRE

    Calmet, Xavier

    2004-01-01

    We define a noncommutative Lorentz symmetry for canonical noncommutative spaces. The noncommutative vector fields and the derivatives transform under a deformed Lorentz transformation. We show that the star product is invariant under noncommutative Lorentz transformations. We then apply our idea to the case of actions obtained by expanding the star product and the fields taken in the enveloping algebra via the Seiberg-Witten maps and verify that these actions are invariant under these new non...

  2. Detecting multimode entanglement by symplectic uncertainty relations

    CERN Document Server

    Serafini, A

    2005-01-01

    Quantities invariant under symplectic (i.e. linear and canonical) transformations are constructed as functions of the second moments of N pairs of bosonic field operators. A general multimode uncertainty relation is derived as a necessary constraint on such symplectic invariants. In turn, necessary conditions for the separability of multimode continuous variable states under (MxN)-mode bipartitions are derived from the uncertainty relation. These conditions are proven to be necessary and sufficient for (1+N)-mode Gaussian states and for (M+N)-mode bisymmetric Gaussian states.

  3. The symplectic camel and phase space quantization

    Energy Technology Data Exchange (ETDEWEB)

    Gosson, Maurice de [Blekinge Institute of Technology, Karlskrona (Sweden)

    2001-11-30

    We show that a result of symplectic topology, Gromov's non-squeezing theorem, also known as the 'principle of the symplectic camel', can be used to quantize phase space in cells. That quantization scheme leads to the correct energy levels for integrable systems and to Maslov quantization of Lagrangian manifolds by purely topological arguments. We finally show that the argument leading to the proof of the non-squeezing theorem leads to a classical form of Heisenberg's inequalities. (author)

  4. Hydrogen Atom Spectrum in Noncommutative Phase Space

    Institute of Scientific and Technical Information of China (English)

    LI Kang; CHAMOUN Nidal

    2006-01-01

    @@ We study the energy levels of the hydrogen atom in the noncommutative phase space with simultaneous spacespace and momentum-momentum noncommutative relations. We find new terms compared to the case that only noncommutative space-space relations are assumed. We also present some comments on a previous paper [Alavi S A hep-th/0501215].

  5. Noncommutative Topological Half-flat Gravity

    CERN Document Server

    García-Compéan, H; Ramírez, C

    2004-01-01

    We formulate a noncommutative description of topological half-flat gravity in four dimensions. BRST symmetry of this topological gravity is deformed through a twisting of the usual BRST quantization of noncommutative gauge theories. Finally it is argued that resulting moduli space of instantons is characterized by the solutions of a noncommutative version of the Plebanski's heavenly equation.

  6. Noncommutative field theory and Lorentz violation.

    Science.gov (United States)

    Carroll, S M; Harvey, J A; Kostelecký, V A; Lane, C D; Okamoto, T

    2001-10-01

    The role of Lorentz symmetry in noncommutative field theory is considered. Any realistic noncommutative theory is found to be physically equivalent to a subset of a general Lorentz-violating standard-model extension involving ordinary fields. Some theoretical consequences are discussed. Existing experiments bound the scale of the noncommutativity parameter to (10 TeV)(-2).

  7. Canonical functions, differential graded symplectic pairs in supergeometry, and Alexandrov-Kontsevich-Schwartz-Zaboronsky sigma models with boundaries

    Science.gov (United States)

    Ikeda, Noriaki; Xu, Xiaomeng

    2014-11-01

    Consistent boundary conditions for Alexandrov-Kontsevich-Schwartz-Zaboronsky (AKSZ) sigma models and the corresponding boundary theories are analyzed. As their mathematical structures, we introduce a generalization of differential graded symplectic manifolds, called twisted QP manifolds, in terms of graded symplectic geometry, canonical functions, and QP pairs. We generalize the AKSZ construction of topological sigma models to sigma models with Wess-Zumino terms and show that all the twisted Poisson-like structures known in the literature can actually be naturally realized as boundary conditions for AKSZ sigma models.

  8. Generalised Complex Geometry in Thermodynamical Fluctuation Theory

    Directory of Open Access Journals (Sweden)

    P. Fernández de Córdoba

    2015-08-01

    Full Text Available We present a brief overview of some key concepts in the theory of generalized complex manifolds. This new geometry interpolates, so to speak, between symplectic geometry and complex geometry. As such it provides an ideal framework to analyze thermodynamical fluctuation theory in the presence of gravitational fields. To illustrate the usefulness of generalized complex geometry, we examine a simplified version of the Unruh effect: the thermalising effect of gravitational fields on the Schroedinger wavefunction.

  9. Modular Curvature for Noncommutative Two-Tori

    CERN Document Server

    Connes, Alain

    2011-01-01

    Starting from the description of the conformal geometry of noncommutative 2-tori in the framework of modular spectral triples, we explicitly compute the local curvature functionals determined by the value at zero of the zeta functions affiliated with these spectral triples. We give a closed formula for the Ray-Singer analytic torsion in terms of the Dirichlet quadratic form and the generating function for Bernoulli numbers applied to the modular operator. The gradient of the Ray-Singer analytic torsion is then expressed in terms of these functionals, and yields the analogue of scalar curvature. Computing this gradient in two ways elucidates the meaning of the complicated two variable functions occurring in the formula for the scalar curvature. Moreover, the corresponding evolution equation for the metric produces the appropriate analogue of Ricci curvature. We prove the analogue of the classical result which asserts that in every conformal class the maximum value of the determinant of the Laplacian on metrics...

  10. Noncommutative analysis, operator theory and applications

    CERN Document Server

    Cipriani, Fabio; Colombo, Fabrizio; Guido, Daniele; Sabadini, Irene; Sauvageot, Jean-Luc

    2016-01-01

    This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.

  11. Invariant metric for nonlinear symplectic maps

    Indian Academy of Sciences (India)

    Govindan Rangarajan; Minita Sachidanand

    2002-03-01

    In this paper, we construct an invariant metric in the space of homogeneous polynomials of a given degree (≥ 3). The homogeneous polynomials specify a nonlinear symplectic map which in turn represents a Hamiltonian system. By minimizing the norm constructed out of this metric as a function of system parameters, we demonstrate that the performance of a nonlinear Hamiltonian system is enhanced.

  12. On the Langlands correspondence for symplectic motives

    Science.gov (United States)

    Gross, B. H.

    2016-08-01

    We present a refinement of the global Langlands correspondence for symplectic motives. Using the local theory of generic representations of odd orthogonal groups, we define a new vector in the associated automorphic representation, which is the tensor product of test vectors for the Whittaker functionals.

  13. Noncommutative geometrical origin of the energy-momentum dispersion relation

    Science.gov (United States)

    Watcharangkool, A.; Sakellariadou, M.

    2017-01-01

    We investigate a link between the energy-momentum dispersion relation and the spectral distance in the context of a Lorentzian almost-commutative spectral geometry, defined by the product of Minkowski spacetime and an internal discrete noncommutative space. Using the causal structure, the almost-commutative manifold can be identified with a pair of four-dimensional Minkowski spacetimes embedded in a five-dimensional Minkowski geometry. Considering fermions traveling within the light cone of the ambient five-dimensional spacetime, we then derive the energy-momentum dispersion relation.

  14. WKB-type Approximation to Noncommutative Quantum Cosmology

    CERN Document Server

    Mena, E; Sabido, M

    2007-01-01

    In this work, we develop and apply the WKB approximation to several examples of noncommutative quantum cosmology, obtaining the time evolution of the noncommutative universe, this is done starting from a noncommutative quantum formulation of cosmology where the noncommutativity is introduced by a deformation on the minisuperspace variables. This procedure gives a straightforward algorithm to incorporate noncommutativity to cosmology and inflation.

  15. Algebraic Proofs over Noncommutative Formulas

    CERN Document Server

    Tzameret, Iddo

    2010-01-01

    We study possible formulations of algebraic propositional proof systems operating with noncommutative formulas. We observe that a simple formulation gives rise to systems at least as strong as Frege---yielding a semantic way to define a Cook-Reckhow (i.e., polynomially verifiable) algebraic analogue of Frege proofs, different from that given in [BIKPRS96,GH03]. We then turn to an apparently weaker system, namely, polynomial calculus (PC) where polynomials are written as ordered formulas ("PC over ordered formulas", for short). This is an algebraic propositional proof system that operates with noncommutative polynomials in which the order of products in all monomials respects a fixed linear order on the variables, and where proof-lines are written as noncommutative formulas. We show that the latter proof system is strictly stronger than resolution, polynomial calculus and polynomial calculus with resolution (PCR) and admits polynomial-size refutations for the pigeonhole principle and the Tseitin's formulas. We...

  16. Noncommutative mathematics for quantum systems

    CERN Document Server

    Franz, Uwe

    2016-01-01

    Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...

  17. The Affine Structure of Gravitational Theories: Symplectic Groups and Geometry

    CERN Document Server

    Capozziello, Salvatore; De Laurentis, Mariafelicia

    2014-01-01

    We give a geometrical description of gravitational theories from the viewpoint of symmetries and affine structure. We show how gravity, considered as a gauge theory, can be consistently achieved by the nonlinear realization of the conformal-affine group in an indirect manner: due the partial isomorphism between $CA\\left( 3,1\\right) $ and the centrally extended $Sp\\left( 8\\right) $, we perform a nonlinear realization of the centrally extended (CE)$Sp\\left( 8\\right) $ in its semi-simple version. In particular, starting from the bundle structure of gravity, we derive the conformal-affine Lie algebra and then, by the non-linear realization, we define the coset field transformations, the Cartan forms and the inverse Higgs constraints. Finally we discuss the geometrical Lagrangians where all the information on matter fields and their interactions can be contained.

  18. Noncommutative QFT and renormalization

    Science.gov (United States)

    Grosse, H.; Wulkenhaar, R.

    2006-03-01

    It was a great pleasure for me (Harald Grosse) to be invited to talk at the meeting celebrating the 70th birthday of Prof. Julius Wess. I remember various interactions with Julius during the last years: At the time of my studies at Vienna with Walter Thirring, Julius left already Vienna, I learned from his work on effective chiral Lagrangians. Next we met at various conferences and places like CERN (were I worked with Andre Martin, an old friend of Julius), and we all learned from Julius' and Bruno's creation of supersymmetry, next we realized our common interests in noncommutative quantum field theory and did have an intensive exchange. Julius influenced our perturbative approach to gauge field theories were we used the Seiberg-Witten map after his advice. And finally I lively remember the sad days when during my invitation to Vienna Julius did have the serious heart attack. So we are very happy, that you recovered so well, and we wish you all the best for the forthcoming years. Many happy recurrences.

  19. Noncommutative QFT and renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, H. [Institut fuer Theoretische Physik, Universitaet Wien, Boltzmanngasse 5, 1090 Wien (Austria); Wulkenhaar, R. [Mathematisches Institut der Westfaelischen Wilhelms-Universitaet, Einsteinstrasse 62, 48149 Muenster (Germany)

    2006-03-01

    It was a great pleasure for me (Harald Grosse) to be invited to talk at the meeting celebrating the 70th birthday of Prof. Julius Wess. I remember various interactions with Julius during the last years: At the time of my studies at Vienna with Walter Thirring, Julius left already Vienna, I learned from his work on effective chiral Lagrangians. Next we met at various conferences and places like CERN (were I worked with Andre Martin, an old friend of Julius), and we all learned from Julius' and Bruno's creation of supersymmetry, next we realized our common interests in noncommutative quantum field theory and did have an intensive exchange. Julius influenced our perturbative approach to gauge field theories were we used the Seiberg-Witten map after his advice. And finally I lively remember the sad days when during my invitation to Vienna Julius did have the serious heart attack. So we are very happy, that you recovered so well, and we wish you all the best for the forthcoming years. Many happy recurrences. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  20. Generating toric noncommutative crepant resolutions

    CERN Document Server

    Bocklandt, Raf

    2011-01-01

    We present an algorithm that finds all toric noncommutative crepant resolutions of a given toric 3-dimensional Gorenstein singularity. The algorithm embeds the quivers of these algebras inside a real 3-dimensional torus such that the relations are homotopy relations. One can project these embedded quivers down to a 2-dimensional torus to obtain the corresponding dimer models. We discuss some examples and use the algorithm to show that all toric noncommutative crepant resolutions of a finite quotient of the conifold singularity can be obtained by mutating one basic dimer model. We also discuss how this algorithm might be extended to higher dimensional singularities.

  1. Noncommutative connections on bimodules and Drinfeld twist deformation

    CERN Document Server

    Aschieri, Paolo

    2012-01-01

    Given a Hopf algebra H, we study modules and bimodules over an algebra A that carry an H-action, as well as their morphisms and connections. Bimodules naturally arise when considering noncommutative analogues of tensor bundles. For quasitriangular Hopf algebras and bimodules with an extra quasi-commutativity property we induce connections on the tensor product over A of two bimodules from connections on the individual bimodules. This construction applies to arbitrary connections, i.e. not necessarily H-equivariant ones, and further extends to the tensor algebra generated by a bimodule and its dual. Examples of these noncommutative structures arise in deformation quantization via Drinfeld twists of the commutative differential geometry of a smooth manifold, where the Hopf algebra H is the universal enveloping algebra of vector fields (or a finitely generated Hopf subalgebra). We extend the Drinfeld twist deformation theory of modules and algebras to morphisms and connections that are not necessarily H-equivari...

  2. Lectures on Differential Geometry of Modules and Rings

    CERN Document Server

    Sardanashvily, G

    2009-01-01

    Generalizing differential geometry of smooth vector bundles formulated in algebraic terms of the ring of smooth functions, its derivations and the Koszul connection, one can define differential operators, differential calculus and connections on modules over arbitrary commutative, graded commutative and noncommutative rings. For instance, this is the case of quantum theory, SUSY theory and noncommutative geometry, respectively. The relevant material on this subject is summarized.

  3. Topological quantum field theory structure on symplectic cohomology

    CERN Document Server

    Ritter, Alexander F

    2010-01-01

    We prove that symplectic cohomology has the structure of a topological quantum field theory, and that this also holds for the twisted symplectic cohomology. This structure is compatible with the isomorphism between the symplectic cohomology of a cotangent bundle and the homology of the free loop space. Indeed it recovers the TQFT structure arising in string topology. The TQFT structure is also compatible with Viterbo functoriality, which yields concrete applications in symplectic topology. For example, we obtain new obstructions to the existence of exact contact hypersurfaces in cotangent bundles. We also prove that if the boundary of M is Hamiltonian displaceable in the symplectization of M then the symplectic cohomology of M vanishes, in particular M does not contain any exact Lagrangian submanifolds.

  4. High Order Three Part Split Symplectic Integration Schemes

    CERN Document Server

    Gerlach, Enrico; Skokos, Charalampos; Bodyfelt, Joshua D; Papamikos, Georgios

    2013-01-01

    Symplectic integration methods based on operator splitting are well established in many branches of science. For Hamiltonian systems which split in more than two parts, symplectic methods of higher order have been studied in detail only for a few special cases. In this work, we present and compare different ways to construct high order symplectic schemes for general Hamiltonian systems that can be split in three integrable parts. We use these techniques to numerically solve the equations of motion for a simple toy model, as well as the disordered discrete nonlinear Schr\\"odinger equation. We thereby compare the efficiency of symplectic and non-symplectic integration methods. Our results show that the new symplectic schemes are superior to the other tested methods, with respect to both long term energy conservation and computational time requirements.

  5. Noncommutativity Parameter and Composite Fermions

    CERN Document Server

    Jellal, A

    2003-01-01

    In this note, we would like to determine some particular values of noncommutativity parameter $\\te$ and show that the Murthy-Shankar approach is in fact a particular case of a more general one. Indeed, using fractional quantum Hall effect (FQHE) experimental data, one can give a measurement of $\\te$. This measurement can be obtained by considering some values of the filling factor $\

  6. Noncommutativity Parameter and Composite Fermions

    OpenAIRE

    Jellal, Ahmed

    2002-01-01

    We determine some particular values of the noncommutativity parameter \\theta and show that the Murthy-Shankar approach is in fact a particular case of a more general one. Indeed, using the fractional quantum Hall effect (FQHE) experimental data, we give a measurement of \\theta. This measurement can be obtained by considering some values of the filling factor \

  7. Non-Commutative Ring Theory

    CERN Document Server

    López-Permouth, Sergio

    1990-01-01

    The papers of this volume share as a common goal the structure and classi- fication of noncommutative rings and their modules, and deal with topics of current research including: localization, serial rings, perfect endomorphism rings, quantum groups, Morita contexts, generalizations of injectivitiy, and Cartan matrices.

  8. Symplectic Manifolds, Coherent States and Semiclassical Approximation

    CERN Document Server

    Rajeev, S G; Sen, S; Sen, Siddhartha

    1994-01-01

    We describe the symplectic structure and Hamiltonian dynamics for a class of Grassmannian manifolds. Using the two dimensional sphere ($S^2$) and disc ($D^2$) as illustrative cases, we write their path integral representations using coherent state techniques. These path integrals can be evaluated exactly by semiclassical methods, thus providing examples of localisation formula. Along the way, we also give a local coordinate description for a class of Grassmannians.

  9. Symplectic cobordisms and the strong Weinstein conjecture

    OpenAIRE

    GEIGES, Hansjörg; Zehmisch, Kai

    2011-01-01

    We study holomorphic spheres in certain symplectic cobordisms and derive information about periodic Reeb orbits in the concave end of these cobordisms from the non-compactness of the relevant moduli spaces. We use this to confirm the strong Weinstein conjecture (predicting the existence of null-homologous Reeb links) for various higher-dimensional contact manifolds, including contact type hypersurfaces in subcritical Stein manifolds and in some cotangent bundles. The quantitative character of...

  10. Multi-symplectic method for generalized Boussinesq equation

    Institute of Scientific and Technical Information of China (English)

    HU Wei-peng; DENG Zi-chen

    2008-01-01

    The generalized Boussinesq equation that represents a group of important nonlinear equations possesses many interesting properties. Multi-symplectic formulations of the generalized Boussinesq equation in the Hamilton space are introduced in this paper. And then an implicit multi-symplectic scheme equivalent to the multi-symplectic Box scheme is constructed to solve the partial differential equations (PDEs) derived from the generalized Boussinesq equation. Finally, the numerical experiments on the soliton solutions of the generalized Boussinesq equation are reported. The results show that the multi-symplectic method is an efficient algorithm with excellent long-time numerical behaviors for nonlinear partial differential equations.

  11. Infinitesimal deformations of a formal symplectic groupoid

    CERN Document Server

    Karabegov, Alexander

    2010-01-01

    Given a formal symplectic groupoid $G$ over a Poisson manifold $(M, \\pi_0)$, we define a new object, an infinitesimal deformation of $G$, which can be thought of as a formal symplectic groupoid over the manifold $M$ equipped with an infinitesimal deformation $\\pi_0 + \\varepsilon \\pi_1$ of the Poisson bivector field $\\pi_0$. The source and target mappings of a deformation of $G$ are deformations of the source and target mappings of $G$. To any pair of natural star products $(\\ast, \\tilde\\ast)$ having the same formal symplectic groupoid $G$ we relate an infinitesimal deformation of $G$. We call it the deformation groupoid of the pair $(\\ast, \\tilde\\ast)$. We give explicit formulas for the source and target mappings of the deformation groupoid of a pair of star products with separation of variables on a Kaehler- Poisson manifold. Finally, we give an algorithm for calculating the principal symbols of the components of the logarithm of a formal Berezin transform of a star product with separation of variables. This...

  12. Conserved symmetries in noncommutative quantum mechanics

    CERN Document Server

    Kupriyanov, V G

    2014-01-01

    We consider a problem of the consistent deformation of physical system introducing a new features, but preserving its fundamental properties. In particular, we study how to implement the noncommutativity of space-time without violation of the rotational symmetry in quantum mechanics or the Lorentz symmetry in f{i}eld theory. Since the canonical (Moyal) noncommutativity breaks the above symmetries one should work with more general case of coordinate-dependent noncommutative spaces, when the commutator between coordinates is a function of these coordinates. F{i}rst we describe in general lines how to construct the quantum mechanics on coordinate-dependent noncommutative spaces. Then we consider the particular examples: the Hydrogen atom on rotationally invariant noncommutative space and the Dirac equation on covariant noncommutative space-time.

  13. Conserved symmetries in noncommutative quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, V.G. [CMCC, Universidade Federal do ABC, Santo Andre, SP (Brazil)

    2014-09-11

    We consider a problem of the consistent deformation of physical system introducing a new features, but preserving its fundamental properties. In particular, we study how to implement the noncommutativity of space-time without violation of the rotational symmetry in quantum mechanics or the Lorentz symmetry in field theory. Since the canonical (Moyal) noncommutativity breaks the above symmetries one should work with more general case of coordinate-dependent noncommutative spaces, when the commutator between coordinates is a function of these coordinates. First we describe in general lines how to construct the quantum mechanics on coordinate-dependent noncommutative spaces. Then we consider the particular examples: the Hydrogen atom on rotationally invariant noncommutative space and the Dirac equation on covariant noncommutative space-time. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Noncommutative Spacetime Symmetries from Covariant Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Alessandro Moia

    2017-01-01

    Full Text Available In the last decades, noncommutative spacetimes and their deformed relativistic symmetries have usually been studied in the context of field theory, replacing the ordinary Minkowski background with an algebra of noncommutative coordinates. However, spacetime noncommutativity can also be introduced into single-particle covariant quantum mechanics, replacing the commuting operators representing the particle’s spacetime coordinates with noncommuting ones. In this paper, we provide a full characterization of a wide class of physically sensible single-particle noncommutative spacetime models and the associated deformed relativistic symmetries. In particular, we prove that they can all be obtained from the standard Minkowski model and the usual Poincaré transformations via a suitable change of variables. Contrary to previous studies, we find that spacetime noncommutativity does not affect the dispersion relation of a relativistic quantum particle, but only the transformation properties of its spacetime coordinates under translations and Lorentz transformations.

  15. The Dyon Charge in Noncommutative Gauge Theories

    Directory of Open Access Journals (Sweden)

    L. Cieri

    2008-01-01

    Full Text Available We construct a dyon solution for the noncommutative version of the Yang-Mills-Higgs model with a ϑ-term. Extending the Noether method to the case of a noncommutative gauge theory, we analyze the effect of CP violation induced both by the ϑ-term and by noncommutativity proving that the Witten effect formula for the dyon charge remains the same as in ordinary space.

  16. Thermodynamics of noncommutative quantum Kerr black holes

    CERN Document Server

    Escamilla-Herrera, L F; Torres-Arenas, J

    2016-01-01

    Thermodynamic formalism for rotating black holes, characterized by noncommutative and quantum corrections, is constructed. From a fundamental thermodynamic relation, equations of state and thermodynamic response functions are explicitly given and the effect of noncommutativity and quantum correction is discussed. It is shown that the well known divergence exhibited in specific heat is not removed by any of these corrections. However, regions of thermodynamic stability are affected by noncommutativity, increasing the available states for which the system is thermodynamically stable.

  17. SO(2,3 noncommutative gravity model

    Directory of Open Access Journals (Sweden)

    Dimitrijević Marija

    2014-01-01

    Full Text Available In this paper the noncommutative gravity is treated as a gauge theory of the noncommutative SO(2,3* group, while the noncommutativity is canonical. The Seiberg-Witten (SW map is used to express noncommutative fields in terms of the corresponding commutative fields. The commutative limit of the model is the Einstein-Hilbert action plus the cosmological term and the topological Gauss-Bonnet term. We calculate the second order correction to this model and obtain terms that are zeroth, first, . . . and fourth power of the curvature tensor. Finally, we discuss physical consequences of those correction terms in the limit of big cosmological constant.

  18. SO(2, 3) noncommutative gravity model

    Science.gov (United States)

    Dimitrijević, M.; Radovanović, V.

    2014-12-01

    In this paper the noncommutative gravity is treated as a gauge theory of the non-commutative SO(2, 3)★ group, while the noncommutativity is canonical. The Seiberg-Witten (SW) map is used to express noncommutative fields in terms of the corresponding commutative fields. The commutative limit of the model is the Einstein-Hilbert action plus the cosmological term and the topological Gauss-Bonnet term. We calculate the second order correction to this model and obtain terms that are zeroth, first, ... and fourth power of the curvature tensor. Finally, we discuss physical consequences of those correction terms in the limit of big cosmological constant.

  19. Gravitational radiation in dynamical noncommutative spaces

    CERN Document Server

    Alavi, S A

    2015-01-01

    The gravitational radiation in dynamical non-commutative spaces (DNCS) is explored. we derive the corrections due to dynamical noncommutativity on the gravitational potential. We obtain the DNC corrections on the angular velocity as well as the radiated power of the system. By calculating the period decay of the system and using the observational data we obtain an upper bound for the DNS parameter {\\tau} . We also study quantum interference induced by gravitational potential in usual non-commutative and dynamical non-commutative spaces. The phase difference induced by gravity is calculated on two different paths and then, it is compared with the phase difference induced by gravity in commutative space.

  20. Noncommutative Time in Quantum Field Theory

    CERN Document Server

    Salminen, Tapio

    2011-01-01

    We analyze, starting from first principles, the quantization of field theories, in order to find out to which problems a noncommutative time would possibly lead. We examine the problem in the interaction picture (Tomonaga-Schwinger equation), the Heisenberg picture (Yang-Feldman-K\\"all\\'{e}n equation) and the path integral approach. They all indicate inconsistency when time is taken as a noncommutative coordinate. The causality issue appears as the key aspect, while the unitarity problem is subsidiary. These results are consistent with string theory, which does not admit a time-space noncommutative quantum field theory as its low-energy limit, with the exception of light-like noncommutativity.

  1. Predictions of noncommutative space-time

    OpenAIRE

    Viet, Nguyen Ai

    1994-01-01

    An unified structure of noncommutative space-time for both gravity and particle physics is presented. This gives possibilities of testing the idea of noncommutative space-time at the currently available energy scale. There are several arguments indicating that noncommutative space-time is visible already at the electroweak scale. This noncommutative space-time predicts the top quark mass m_t \\sim 172 GeV, the Higgs mass M_H \\sim 241 GeV and the existence of a vector meson and a scalar, which ...

  2. Noncommutative magnetic moment of charged particles

    CERN Document Server

    Adorno, T C; Shabad, A E; Vassilevich, D V

    2011-01-01

    It has been argued, that in noncommutative field theories sizes of physical objects cannot be taken smaller than an elementary length related to noncommutativity parameters. By gauge-covariantly extending field equations of noncommutative U(1)_*-theory to the presence of external sources, we find electric and magnetic fields produces by an extended charge. We find that such a charge, apart from being an ordinary electric monopole, is also a magnetic dipole. By writing off the existing experimental clearance in the value of the lepton magnetic moments for the present effect, we get the bound on noncommutativity at the level of 10^4 TeV.

  3. Geometry and W-Gravity

    OpenAIRE

    Hull, C. M.

    1993-01-01

    The higher-spin geometries of $W_\\infty$-gravity and $W_N$-gravity are analysed and used to derive the complete non-linear structure of the coupling to matter and its symmetries. The symmetry group is a subgroup of the symplectic diffeomorphisms of the cotangent bundle of the world-sheet, and the $W_N$ geometry is obtained from a non-linear truncation of the $W_\\infty$ geometry. Quantum W-gravity is briefly discussed. (Talk given at {\\it Pathways to Fundamental Interactions}, the 16th John Ho...

  4. Geometry and W-Gravity

    CERN Document Server

    Hull, C M

    1993-01-01

    The higher-spin geometries of $W_\\infty$-gravity and $W_N$-gravity are analysed and used to derive the complete non-linear structure of the coupling to matter and its symmetries. The symmetry group is a subgroup of the symplectic diffeomorphisms of the cotangent bundle of the world-sheet, and the $W_N$ geometry is obtained from a non-linear truncation of the $W_\\infty$ geometry. Quantum W-gravity is briefly discussed. (Talk given at {\\it Pathways to Fundamental Interactions}, the 16th John Hopkins Workshop on Current Problems in Particle Theory, Gothenborg, 1992.)

  5. Differential geometry and mathematical physics

    CERN Document Server

    Rudolph, Gerd

    Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous d...

  6. Noncommutative spaces and matrix embeddings on flat ℝ{sup 2n+1}

    Energy Technology Data Exchange (ETDEWEB)

    Karczmarek, Joanna L.; Yeh, Ken Huai-Che [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver (Canada)

    2015-11-23

    We conjecture an embedding operator which assigns, to any 2n+1 hermitian matrices, a 2n-dimensional hypersurface in flat (2n+1)-dimensional Euclidean space. This corresponds to precisely defining a fuzzy D(2n)-brane corresponding to N D0-branes. Points on the emergent hypersurface correspond to zero eigenstates of the embedding operator, which have an interpretation as coherent states underlying the emergent noncommutative geometry. Using this correspondence, all physical properties of the emergent D(2n)-brane can be computed. We apply our conjecture to noncommutative flat and spherical spaces. As a by-product, we obtain a construction of a rotationally symmetric flat noncommutative space in 4 dimensions.

  7. Noncommutative Fluid and Cosmological Perturbations

    CERN Document Server

    Das, Praloy

    2016-01-01

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the NC fluid dynamics and kinematics. In the second part we construct an extension of Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing in anisotropy and inhomogeneity in th...

  8. Symplectic hypersurfaces and transversality in Gromov-Witten theory

    OpenAIRE

    2007-01-01

    We present a new method to prove transversality for holomorphic curves in symplectic manifolds, and show how it leads to a definition of genus zero Gromov-Witten invariants. The main idea is to introduce additional marked points that are mapped to a symplectic hypersurface of high degree in order to stabilize the domains of holomorphic maps.

  9. Non-commutative Nash inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Kastoryano, Michael [NBIA, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Temme, Kristan [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena California 91125 (United States)

    2016-01-15

    A set of functional inequalities—called Nash inequalities—are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative L{sub p} spaces, where their relationship to Poincaré and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups.

  10. On noncommutative spherically symmetric spaces

    Energy Technology Data Exchange (ETDEWEB)

    Buric, Maja [University of Belgrade, Faculty of Physics, P.O. Box 44, Belgrade (Serbia); Madore, John [Laboratoire de Physique Theorique, Orsay (France)

    2014-03-15

    Two families of noncommutative extensions are given of a general space-time metric with spherical symmetry, both based on the matrix truncation of the functions on the sphere of symmetry. The first family uses the truncation to foliate space as an infinite set of spheres, and it is of dimension four and necessarily time-dependent; the second can be time-dependent or static, is of dimension five, and uses the truncation to foliate the internal space. (orig.)

  11. On noncommutative spherically symmetric spaces

    CERN Document Server

    Buric, Maja

    2014-01-01

    Two families of noncommutative extensions are given of a general space-time metric with spherical symmetry, both based on the matrix truncation of the functions on the sphere of symmetry. The first family uses the truncation to foliate space as an infinite set of spheres, is of dimension four and necessarily time-dependent; the second can be time-dependent or static, is of dimension five and uses the truncation to foliate the internal space.

  12. The principle of least action in geometry and dynamics

    CERN Document Server

    Siburg, Karl Friedrich

    2004-01-01

    New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplectic geometry). Thus, topics from modern dynamical systems and modern symplectic geometry are linked in a new and sometimes surprising way. The central object is Mather’s minimal action functional. The level is for graduate students onwards, but also for researchers in any of the subjects touched in the book.

  13. A Spectral Symplectic Algorithm for Cylindrical Electromagnetic Plasma Simulations

    CERN Document Server

    Webb, Stephen D; Cook, Nathan M; Bruhwiler, David L

    2016-01-01

    Symplectic integrators for Hamiltonian systems have been quite successful for studying few-body dynamical systems. These integrators are frequently derived using a formalism built on symplectic maps. There have been recent efforts to extend the symplectic approach to plasmas, which have focused primarily on discrete Lagrangian mechanics. In this paper, we derive a a symplectic electromagnetic macroparticle algorithm using the map formalism. The resulting algorithm is designed to prevent numerical instabilities such as numerical \\v{C}erenkov, which result from incorrect dispersion relations for the fields, as well as the artificial heating of plasmas, which arise from the non-symplectic nature of conventional particle-in-cell algorithms. This is the first self-consistent electromagnetic algorithm derived using a map-based approach.

  14. Lorentz Covariant Canonical Symplectic Algorithms for Dynamics of Charged Particles

    CERN Document Server

    Wang, Yulei; Qin, Hong

    2016-01-01

    In this paper, the Lorentz covariance of algorithms is introduced. Under Lorentz transformation, both the form and performance of a Lorentz covariant algorithm are invariant. To acquire the advantages of symplectic algorithms and Lorentz covariance, a general procedure for constructing Lorentz covariant canonical symplectic algorithms (LCCSA) is provided, based on which an explicit LCCSA for dynamics of relativistic charged particles is built. LCCSA possesses Lorentz invariance as well as long-term numerical accuracy and stability, due to the preservation of discrete symplectic structure and Lorentz symmetry of the system. For situations with time-dependent electromagnetic fields, which is difficult to handle in traditional construction procedures of symplectic algorithms, LCCSA provides a perfect explicit canonical symplectic solution by implementing the discretization in 4-spacetime. We also show that LCCSA has built-in energy-based adaptive time steps, which can optimize the computation performance when th...

  15. On Non-Abelian Symplectic Cutting

    DEFF Research Database (Denmark)

    Martens, Johan; Thaddeus, Michael

    2012-01-01

    We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinrenken, and show it can be interpreted in algebro......-geometric terms. A key ingredient is the `universal cut' of the cotangent bundle of the group itself, which is identified with a moduli space of framed bundles on chains of projective lines recently introduced by the authors....

  16. Stochastic deformation of a thermodynamic symplectic structure

    Science.gov (United States)

    Kazinski, P. O.

    2009-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered.

  17. J-holomorphic curves and symplectic topology

    CERN Document Server

    McDuff, Dusa

    2012-01-01

    The theory of J-holomorphic curves has been of great importance since its introduction by Gromov in 1985. In mathematics, its applications include many key results in symplectic topology. It was also one of the main inspirations for the creation of Floer homology. In mathematical physics, it provides a natural context in which to define Gromov-Witten invariants and quantum cohomology, two important ingredients of the mirror symmetry conjecture. The main goal of this book is to establish the fundamental theorems of the subject in full and rigorous detail. In particular, the book contains comple

  18. Noncommutative de Sitter and FRW spaces

    Energy Technology Data Exchange (ETDEWEB)

    Buric, Maja [University of Belgrade, Faculty of Physics, P.O. Box 44, Belgrade (Serbia); Madore, John [Laboratoire de Physique Theorique, Orsay (France)

    2015-10-15

    Several versions of fuzzy four-dimensional de Sitter space are constructed using the noncommutative frame formalism. Although all noncommutative spacetimes which are found have commutative de Sitter metric as a classical limit, the algebras and the differential calculi which define them have many differences, which we derive and discuss. (orig.)

  19. Noncommutative de Sitter and FRW spaces

    Energy Technology Data Exchange (ETDEWEB)

    Burić, Maja, E-mail: majab@ipb.ac.rs [Faculty of Physics, University of Belgrade, P.O. Box 44, 11001, Belgrade (Serbia); Madore, John, E-mail: madore@th.u-psud.fr [Laboratoire de Physique Théorique, 91405, Orsay (France)

    2015-10-24

    Several versions of fuzzy four-dimensional de Sitter space are constructed using the noncommutative frame formalism. Although all noncommutative spacetimes which are found have commutative de Sitter metric as a classical limit, the algebras and the differential calculi which define them have many differences, which we derive and discuss.

  20. Noncommutative de Sitter and FRW spaces

    CERN Document Server

    Buric, Maja

    2015-01-01

    Several versions of fuzzy four-dimensional de Sitter space are constructed using the noncommutative frame formalism. Although all noncommutative spacetimes which are found have commutative de Sitter metric as a classical limit, the algebras and the differential calculi which define them have many differences which we derive and discuss.

  1. Liouville Black Hole In A Noncommutative Space

    CERN Document Server

    Bilal, K; Nach, M; Sedra, M B

    2011-01-01

    The space-noncommutativity adapted to the Liouville black hole theory is studied in the present work. Among our contributions, we present the solutions of noncommutative Liouville Black hole equations of motion and find their classical properties such as the ADM mass, the horizon and the scalar Ricci curvature.

  2. Parton model in Lorentz invariant noncommutative space

    Science.gov (United States)

    Haghighat, M.; Ettefaghi, M. M.

    2004-08-01

    We consider the Lorentz invariant noncommutative QED and complete the Feynman rules for the theory up to the order θ2. In the Lorentz invariant version of the noncommutative QED the particles with fractional charges can be also considered. We show that in the parton model, even at the lowest order, the Bjorken scaling violates as ˜θ2Q4.

  3. Abel's theorem in the noncommutative case

    Science.gov (United States)

    Leitenberger, Frank

    2004-03-01

    We define noncommutative binary forms. Using the typical representation of Hermite we prove the fundamental theorem of algebra and we derive a noncommutative Cardano formula for cubic forms. We define quantized elliptic and hyperelliptic differentials of the first kind. Following Abel we prove Abel's theorem.

  4. Effective Potential in Noncommutative BTZ Black Hole

    Science.gov (United States)

    Sadeghi, Jafar; Shajiee, Vahid Reza

    2016-02-01

    In this paper, we investigated the noncommutative rotating BTZ black hole and showed that such a space-time is not maximally symmetric. We calculated effective potential for the massive and the massless test particle by geodesic equations, also we showed effect of non-commutativity on the minimum mass of BTZ black hole.

  5. Even and odd geometries on supermanifolds

    CERN Document Server

    Asorey, M

    2008-01-01

    We analyze from a general perspective all possible supersymmetric generalizations of symplectic and metric structures on smooth manifolds. There are two different types of structures according to the even/odd character of the corresponding quadratic tensors. In general we can have even/odd symplectic supermanifolds, Fedosov supermanifolds and Riemannian supermanifolds. The geometry of even Fedosov supermanifolds is strongly constrained and has to be flat. In the odd case, the scalar curvature is only constrained by Bianchi identities. However, we show that odd Riemannian supermanifolds can only have constant scalar curvature. We also point out that the supersymmetric generalizations of AdS space do not exist in the odd case.

  6. The Multi-Symplectic Algorithm for “Good” Boussinesq Equation

    Institute of Scientific and Technical Information of China (English)

    曾文平; 黄浪扬; 秦孟兆

    2002-01-01

    The multi-symplectic formulations of the "Good" Boussinesq equation were considered. For the multi-symplectic formulation, a new fifteen-point difference scheme which is equivalent to the multi-symplectic Preissman integrator was derived. The numerical experiments show that the multi-symplectic scheme have excellent long-time numerical behavior.

  7. Constraints of noncommutativity from Astrophysical studies

    CERN Document Server

    Garcia-Aspeitia, Miguel A; Ortiz, C; Hinojosa-Ruiz, Sinhue; Rodriguez-Meza, Mario A

    2015-01-01

    This paper is devoted to study the astrophysical consequences of noncommutativity, focusing in stellar dynamics and rotational curves of galaxies. We start exploring a star filled with an incompressible fluid and a noncommutative fluid under the Tolman-Oppenheimer-Volkoff background. We analyze the effective pressure and mass, resulting in a constraint for the noncommutative parameter. Also we explore the rotation curves of galaxies assuming that the dark matter halo is a noncommutative fluid, obtaining an average value of the noncommutative parameter through an analysis of twelve LSB galaxies; our results are compared with traditional models like Pseudoisothermal, Navarro-Frenk-White and Burkert. As a final remark, we summarize our results as: $\\sqrt{\\theta}>0.075R$, from star constraints which is strong dependent of the stellar radius and $\\langle\\sqrt{\\theta}\\rangle\\simeq2.666\\rm kpc$ with standard deviation $\\sigma\\simeq1.090\\rm kpc$ from the galactic constraints.

  8. Phase-Space Noncommutative Quantum Cosmology

    CERN Document Server

    Bastos, Catarina; Dias, Nuno Costa; Prata, João Nuno

    2007-01-01

    We present a noncommutative extension of Quantum Cosmology and study the Kantowski-Sachs (KS) cosmological model requiring that the two scale factors of the KS metric, the coordinates of the system, and their conjugate canonical momenta do not commute. Through the ADM formalism, we obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system. The Seiberg-Witten map is used to transform the noncommutative equation into a commutative one, i.e. into an equation with commutative variables, which depend on the noncommutative parameters, $\\theta$ and $\\eta$. Numerical solutions are found both for the classical and the quantum formulations of the system. These solutions are used to characterize the dynamics and the state of the universe. From the classical solutions we obtain the behavior of quantities such as the volume expansion, the shear and the characteristic volume. However the analysis of these quantities does not lead to any restriction on the value of the noncommutative parameters, $\\theta$ and $\\...

  9. Noncommutative integrability, paths and quasi-determinants

    CERN Document Server

    Di Francesco, Philippe

    2010-01-01

    In previous work, we showed that the solution of certain systems of discrete integrable equations, notably $Q$ and $T$-systems, is given in terms of partition functions of positively weighted paths, thereby proving the positive Laurent phenomenon of Fomin and Zelevinsky for these cases. This method of solution is amenable to generalization to non-commutative weighted paths. Under certain circumstances, these describe solutions of discrete evolution equations in non-commutative variables: Examples are the corresponding quantum cluster algebras [BZ], the Kontsevich evolution [DFK09b] and the $T$-systems themselves [DFK09a]. In this paper, we formulate certain non-commutative integrable evolutions by considering paths with non-commutative weights, together with an evolution of the weights that reduces to cluster algebra mutations in the commutative limit. The general weights are expressed as Laurent monomials of quasi-determinants of path partition functions, allowing for a non-commutative version of the positiv...

  10. Nonlinear partial differential equations: Integrability, geometry and related topics

    Science.gov (United States)

    Krasil'shchik, Joseph; Rubtsov, Volodya

    2017-03-01

    Geometry and Differential Equations became inextricably entwined during the last one hundred fifty years after S. Lie and F. Klein's fundamental insights. The two subjects go hand in hand and they mutually enrich each other, especially after the "Soliton Revolution" and the glorious streak of Symplectic and Poisson Geometry methods in the context of Integrability and Solvability problems for Non-linear Differential Equations.

  11. Space-Time Noncommutative Field Theories And Unitarity

    OpenAIRE

    Gomis, Jaume; Mehen, Thomas

    2000-01-01

    We study the perturbative unitarity of noncommutative scalar field theories. Field theories with space-time noncommutativity do not have a unitary S-matrix. Field theories with only space noncommutativity are perturbatively unitary. This can be understood from string theory, since space noncommutative field theories describe a low energy limit of string theory in a background magnetic field. On the other hand, there is no regime in which space-time noncommutative field theory is an appropriat...

  12. Homological mirror symmetry and tropical geometry

    CERN Document Server

    Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia

    2014-01-01

    The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Ge...

  13. Symplectic map description of Halley's comet dynamics

    CERN Document Server

    Haag, P; Lages, J

    2014-01-01

    The main features of 1P/Halley chaotic dynamics can be described by a two dimensional symplectic map. Using Mel'nikov integral we semi-analytically determine such a map for 1P/Halley taking into account gravitational interactions from the Sun and the eight planets. We determine the Solar system kick function ie the energy transfer to 1P/Halley along one passage through the Solar system. Our procedure allows to compute for each planet its contribution to the Solar system kick function which appears to be the sum of the Keplerian potential of the planet and of a rotating circular gravitational dipole potential due to the Sun movement around Solar system barycenter. We test the robustness of the symplectic Halley map by directly integrating Newton's equations over $\\sim 2.4\\cdot 10^4$ yr around Y2K and by reconstructing the Solar system kick function. Our results show that the Halley map with fixed parameters gives a reliable description of comet dynamics on time scales of $10^4$ yr while on a larger scales the ...

  14. Applications Of Nonclassical Geometry To String Theory

    CERN Document Server

    Zunger, Y

    2003-01-01

    String theory is built on a foundation of geometry. This thesis examines several applications of geometry beyond the classical Riemannian geometry of curved surfaces. The first part considers the use of extended spaces with internal dimensions to each point (“twistors”) to probe systems with a great deal of symmetry but complicated dynamics. These systems are of critical interest in understanding holographic phenomena in string theory and the origins of entropy. We develop a twistor formulation of coset spaces and use this to write simplified actions for particles and strings on anti-de Sitter space, which are easier to quantize than the ordinary (highly nonlinear) actions. In the second part, we consider two aspects of noncommutative geometry, a generalization of ordinary geometry where points are “fuzzed out” and functions of space become noncommuting operators. We first examine strings with one endpoint on a D-brane in a background magnetic field. (Strings with both ...

  15. A NEW MULTI-SYMPLECTIC SCHEME FOR NONLINEAR "GOOD" BOUSSINESQ EQUATION

    Institute of Scientific and Technical Information of China (English)

    Lang-yang Huang; Wen-ping Zeng; Meng-zhao Qin

    2003-01-01

    The Hamiltonian formulations of the linear "good" Boussinesq (L.G.B.) equation and the multi-symplectic formulation of the nonlinear "good" Boussinesq (N.G.B.) equation are considered. For the multi-symplectic formulation, a new fifteen-point difference scheme which is equivalent to the multi-symplectic Preissmann integrator is derived. We also present numerical experiments, which show that the symplectic and multi-symplectic schemes have excellent long-time numerical behavior.

  16. Perspectives in Analysis, Geometry, and Topology

    CERN Document Server

    Itenberg, I V; Passare, Mikael

    2012-01-01

    The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.

  17. On Thermodynamics and Phase Space of Near Horizon Extremal Geometries

    CERN Document Server

    Hajian, Kamal

    2015-01-01

    Near Horizon Extremal Geometries (NHEG), are geometries which may appear in the near horizon region of the extremal black holes. These geometries have $SL(2,\\mathbb{R})\\!\\times\\!U(1)^n$ isometry, and constitute a family of solutions to the theory under consideration. In the first part of this report, their thermodynamic properties are reviewed, and their three universal laws are derived. In addition, at the end of the first part, the role of these laws in black hole thermodynamics is presented. In the second part of this thesis, we review building their classical phase space in the Einstein-Hilbert theory. The elements in the NHEG phase space manifold are built by appropriately chosen coordinate transformations of the original metric. These coordinate transformations are generated by some vector fields, dubbed "symplectic symmetry generators." To fully specify the phase space, we also need to identify the symplectic structure. In order to fix the symplectic structure, we use the formulation of Covariant Phase...

  18. Worldline Formalism and Noncommutative Theories

    CERN Document Server

    Franchino-Viñas, Sebastián A

    2015-01-01

    The objective of this Ph.D. thesis is the implementation of the Worldline Formalism in the frame of Noncommutative Quantum Field Theories. The result is a master formula for the 1-loop effective action that is applied to a number of scalar models -- among them the Grosse-Wulkenhaar model. As a byproduct we find an expression for the small propertime expansion of general nonlocal operators' Heat Kernel. As an introduction, basic notions of spectral functions, Quantum Field Theories --path integrals and renormalization by means of spectral functions-- and the Worldline Formalism for commutative theories are given.

  19. Noncommutative 6D Gauge Higgs Unification Models

    CERN Document Server

    Lopez-Dominguez, J C; Ramírez, C

    2005-01-01

    The influence of higher dimensions in noncommutative field theories is considered. For this purpose, we analize the bosonic sector of a recently proposed 6 dimensional SU(3) orbifold model for the electroweak interactions. The corresponding noncommutative theory is constructed by means of the Seiberg-Witten map in 6D. We find, in the corresponding 4D theory, couplings between the gauge and Higgs fields with interesting phenomenological implications and which are new with respect to other known 4D noncommutative formulations under the Seiberg-Witten map.

  20. Emergent Abelian Gauge Fields from Noncommutative Gravity

    Directory of Open Access Journals (Sweden)

    Allen Stern

    2010-02-01

    Full Text Available We construct exact solutions to noncommutative gravity following the formulation of Chamseddine and show that they are in general accompanied by Abelian gauge fields which are first order in the noncommutative scale. This provides a mechanism for generating cosmological electromagnetic fields in an expanding space-time background, and also leads to multipole-like fields surrounding black holes. Exact solutions to noncommutative Einstein-Maxwell theory can give rise to first order corrections to the metric tensor, as well as to the electromagnetic fields. This leads to first order shifts in the horizons of charged black holes.

  1. Entropic gravity from noncommutative black holes

    CERN Document Server

    Nunes, Rafael C; Barboza, Edésio M; Abreu, Everton M C; Neto, Jorge Ananias

    2016-01-01

    In this paper we will investigate the effects of a noncommutative (NC) space-time on the dynamics of the universe. We will generalize the black hole entropy formula for a NC black hole. Then, using the entropic gravity formalism, we will show that the noncommutativity changes the strength of the gravitational field. By applying this result to a homogeneous and isotropic universe containing nonrelativistic matter and a cosmological constant, we will show that the model modified by the noncommutativity of the space-time is a better fit to the obtained data than the standard one.

  2. Conceptual Issues for Noncommutative Gravity on Algebras and Finite Sets

    Science.gov (United States)

    Majid, Shahn

    We discuss some of the issues to be addressed in arriving at a definitive noncommutative Riemannian geometry that generalises conventional geometry both to the quantum domain and to the discrete domain. This also provides an introduction to our 1997 formulation based on quantum group frame bundles. We outline now the local formulae with general differential calculus both on the base "quantum manifold" and on the structure group Gauge transforms with nonuniversal calculi, Dirac operator, Levi-Civita condition, Ricci tensor and other topics are also covered. As an application we outline an intrinsic or relative theory of quantum measurement and propose it as a possible framework to explore the link between gravity in quantum systems and entropy.

  3. Lagrange versus symplectic algorithm for constrained systems

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Heinz J; Rothe, Klaus D [Institut fuer Theoretische Physik - Universitaet Heidelberg, Philosophenweg 16, D-69120 Heidelberg (Germany)

    2003-02-14

    The systematization of the purely Lagrangian approach to constrained systems in the form of an algorithm involves the iterative construction of a generalized Hessian matrix W taking a rectangular form. This Hessian will exhibit as many left zero modes as there are Lagrangian constraints in the theory. We apply this approach to a general Lagrangian in the first-order formulation and show how the seemingly overdetermined set of equations is solved for the velocities by suitably extending W to a rectangular matrix. As a byproduct we thereby demonstrate the equivalence of the Lagrangian approach to the traditional Dirac approach. By making use of this equivalence we show that a recently proposed symplectic algorithm does not necessarily reproduce the full constraint structure of the traditional Dirac algorithm.

  4. Symplectic invariants, entropic measures and correlations of Gaussian states

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, Alessio; Illuminati, Fabrizio; Siena, Silvio De [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi, SA (Italy)

    2004-01-28

    We present a derivation of the Von Neumann entropy and mutual information of arbitrary two-mode Gaussian states, based on the explicit determination of the symplectic eigenvalues of a generic covariance matrix. The key role of the symplectic invariants in such a determination is pointed out. We show that the Von Neumann entropy depends on two symplectic invariants, while the purity (or the linear entropy) is determined by only one invariant, so that the two quantities provide two different hierarchies of mixed Gaussian states. A comparison between mutual information and entanglement of formation for symmetric states is considered, taking note of the crucial role of the symplectic eigenvalues in qualifying and quantifying the correlations present in a generic state. (letter to the editor)

  5. Two New Fourth-Order Three-Stage Symplectic Integrators

    Institute of Scientific and Technical Information of China (English)

    LI Rong; WU Xin

    2011-01-01

    Two new fourth-order three-stage symplectic integrators are specifically designed for a family of Hamiltonian systems,such as the harmonic oscillator,mathematical pendulum and lattice ψ4 model.When the nonintegrable lattice ψ4 system is taken as a test model,numerical comparisons show that the new methods have a great advantage over the second-order Verlet symplectic integrators in the accuracy of energy,become explicitly better than the usual non-gradient fourth-order seven-stage symplectic integrator of Forest and Ruth,and are almost equivalent to a fourth-order seven-stage force gradient symplectic integrator of Chin.As the most important advantage,the new integrators are convenient for solving the variational equations of many Hamiltonian systems so as to save a great deal of the computational cost when scanning a lot of orbits for chaos.

  6. AdS-inspired noncommutative gravity on the Moyal plane

    CERN Document Server

    Radovanovic, Marija Dimitrijevic Voja

    2012-01-01

    We consider noncommutative gravity on a space with canonical noncommutativity that is based on the commutative AdS gravity. Gravity is treated as gauge theory of the noncommutative $SO(1,3)_\\star$ group and the Seiberg-Witten (SW) map is used to express noncommutative fields in terms of the corresponding commutative fields. In the commutative limit the noncommutative action reduces to the Einstein-Hilbert action plus the cosmological term and the topological Gauss-Bonnet term. After the SW expansion in the noncommutative parameter the first order correction to the action, as expected, vanishes. We calculate the second order correction and write it in a manifestly gauge covariant way.

  7. Obstructions to gauging WZ terms a symplectic curiosity

    CERN Document Server

    Figueroa-O'Farrill, J M

    1995-01-01

    This is an expository talk about the relation between gauging the WZ term of a one-dimensional sigma-model with a symplectic target and the existence of an equivariant moment mapping for symplectic group actions. The punch line is that the obstructions for gauging coincide with the obstructions for the existence of the moment mapping. This paper can be thought of a "prequel" of hep-th/9407149.

  8. A SYMPLECTIC ALGORITHM FOR DYNAMICS OF RIGID BODY

    Institute of Scientific and Technical Information of China (English)

    LU Ying-jie; REN Ge-xue

    2006-01-01

    For the dynamics of a rigid body with a fixed point based on the quaternion and the corresponding generalized momenta, a displacement-based symplectic integration scheme for differential-algebraic equations is proposed and applied to the Lagrange's equations based on dependent generalized momenta. Numerical experiments show that the algorithm possesses such characters as high precision and preserving system invariants.More importantly, the generalized momenta based Lagrange's equations show unique advantages over the traditional Lagrange's equations in symplectic integrations.

  9. On the n-symplectic structure of faithful irreducible representations

    Science.gov (United States)

    Norris, L. K.

    2017-04-01

    Each faithful irreducible representation of an N-dimensional vector space V1 on an n-dimensional vector space V2 is shown to define a unique irreducible n-symplectic structure on the product manifold V1×V2 . The basic details of the associated Poisson algebra are developed for the special case N = n2, and 2n-dimensional symplectic submanifolds are shown to exist.

  10. Dehn twists and free subgroups of symplectic mapping class groups

    CERN Document Server

    Keating, Ailsa

    2012-01-01

    Given two Lagrangian spheres in an exact symplectic manifold, we find conditions under which the Dehn twists about them generate a free non-abelian subgroup of the symplectic mapping class group. This extends a result of Ishida for Riemann surfaces. The proof generalises the categorical version of Seidel's long exact sequence to arbitrary powers of a fixed Dehn twist. We also show that the Milnor fibre of any isolated degenerate hypersurface singularity contains such pairs of spheres.

  11. Comparing Maps to Symplectic Integrators in a Galactic Type Hamiltonian

    Indian Academy of Sciences (India)

    N. D. Caranicolas; N. J. Papadopoulos

    2003-09-01

    We obtain the - Poincare phase plane for a two dimensional, resonant, galactic type Hamiltonian using conventional numerical integration, a second order symplectic integrator and a map based on the averaged Hamiltonian. It is found that all three methods give good results, for small values of the perturbation parameter, while the symplectic integrator does a better job than the mapping, for large perturbations. The dynamical spectra are used to distinguish between regular and chaotic motion.

  12. International conference on Algebraic and Complex Geometry

    CERN Document Server

    Kloosterman, Remke; Schütt, Matthias; Springer Proceedings in Mathematics & Statistics : Volume 71

    2014-01-01

    Several important aspects of moduli spaces and irreducible holomorphic symplectic manifolds were highlighted at the conference “Algebraic and Complex Geometry” held September 2012 in Hannover, Germany. These two subjects of recent ongoing progress belong to the most spectacular developments in Algebraic and Complex Geometry. Irreducible symplectic manifolds are of interest to algebraic and differential geometers alike, behaving similar to K3 surfaces and abelian varieties in certain ways, but being by far less well-understood. Moduli spaces, on the other hand, have been a rich source of open questions and discoveries for decades and still continue to be a hot topic in itself as well as with its interplay with neighbouring fields such as arithmetic geometry and string theory. Beyond the above focal topics this volume reflects the broad diversity of lectures at the conference and comprises 11 papers on current research from different areas of algebraic and complex geometry sorted in alphabetic order by the ...

  13. On triangular algebras with noncommutative diagonals

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We construct a triangular algebra whose diagonals form a noncommutative algebra and its lattice of invariant projections contains only two nontrivial projections. Moreover we prove that our triangular algebra is maximal.

  14. Noncommutative effects of spacetime on holographic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ghorai, Debabrata, E-mail: debanuphy123@gmail.com [S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098 (India); Gangopadhyay, Sunandan, E-mail: sunandan.gangopadhyay@gmail.com [Department of Physics, West Bengal State University, Barasat (India); Inter University Centre for Astronomy & Astrophysics, Pune (India)

    2016-07-10

    The Sturm–Liouville eigenvalue method is employed to analytically investigate the properties of holographic superconductors in higher dimensions in the framework of Born–Infeld electrodynamics incorporating the effects of noncommutative spacetime. In the background of pure Einstein gravity in noncommutative spacetime, we obtain the relation between the critical temperature and the charge density. We also obtain the value of the condensation operator and the critical exponent. Our findings suggest that the higher value of noncommutative parameter and Born–Infeld parameter make the condensate harder to form. We also observe that the noncommutative structure of spacetime makes the critical temperature depend on the mass of the black hole and higher value of black hole mass is favourable for the formation of the condensate.

  15. Noncommutative principal bundles through twist deformation

    CERN Document Server

    Aschieri, Paolo; Pagani, Chiara; Schenkel, Alexander

    2016-01-01

    We construct noncommutative principal bundles deforming principal bundles with a Drinfeld twist (2-cocycle). If the twist is associated with the structure group then we have a deformation of the fibers. If the twist is associated with the automorphism group of the principal bundle, then we obtain noncommutative deformations of the base space as well. Combining the two twist deformations we obtain noncommutative principal bundles with both noncommutative fibers and base space. More in general, the natural isomorphisms proving the equivalence of a closed monoidal category of modules and its twist related one are used to obtain new Hopf-Galois extensions as twists of Hopf-Galois extensions. A sheaf approach is also considered, and examples presented.

  16. Chiral bosonization for non-commutative fields

    CERN Document Server

    Das, A; Méndez, F; López-Sarrion, J; Das, Ashok; Gamboa, Jorge; M\\'endez, Fernando; L\\'opez-Sarri\\'on, Justo

    2004-01-01

    A model of chiral bosons on a non-commutative field space is constructed and new generalized bosonization (fermionization) rules for these fields are given. The conformal structure of the theory is characterized by a level of the Kac-Moody algebra equal to $(1+ \\theta^2)$ where $\\theta$ is the non-commutativity parameter and chiral bosons living in a non-commutative fields space are described by a rational conformal field theory with the central charge of the Virasoro algebra equal to 1. The non-commutative chiral bosons are shown to correspond to a free fermion moving with a speed equal to $ c^{\\prime} = c \\sqrt{1+\\theta^2} $ where $c$ is the speed of light. Lorentz invariance remains intact if $c$ is rescaled by $c \\to c^{\\prime}$. The dispersion relation for bosons and fermions, in this case, is given by $\\omega = c^{\\prime} | k|$.

  17. Magnetic Backgrounds and Noncommutative Field Theory

    OpenAIRE

    Szabo, Richard J.

    2004-01-01

    This paper is a rudimentary introduction, geared at non-specialists, to how noncommutative field theories arise in physics and their applications to string theory, particle physics and condensed matter systems.

  18. On triangular algebras with noncommutative diagonals

    Institute of Scientific and Technical Information of China (English)

    DONG AiJu

    2008-01-01

    We construct a triangular algebra whose diagonals form a noncommutative algebra and its lattice of invariant projections contains only two nontrivial projections.Moreover we prove that our triangular algebra is maximal.

  19. Isomorphisms of noncommutative domain algebras II

    CERN Document Server

    Arias, Alvaro

    2010-01-01

    This paper extends the results of the previous work of the authors on the classification on noncommutative domain algebras up to completely isometric isomorphism. Using Sunada's classification of Reinhardt domains in $C^n$, we show that aspherical noncommutative domain algebras are isomorphic if and only if their defining symbols are equivalent, in the sense that one can be obtained from the other via permutation and scaling of the free variables. Our result also shows that the automorphism groups of aspherical noncommutative domain algebras consists of a subgroup of some finite dimensional unitary group. We conclude by illustrating how our methods can be used to extend to noncommutative domain algebras some results from analysis in $C^n$ with the example of Cartan's lemma.

  20. Covariant non-commutative space–time

    Directory of Open Access Journals (Sweden)

    Jonathan J. Heckman

    2015-05-01

    Full Text Available We introduce a covariant non-commutative deformation of 3+1-dimensional conformal field theory. The deformation introduces a short-distance scale ℓp, and thus breaks scale invariance, but preserves all space–time isometries. The non-commutative algebra is defined on space–times with non-zero constant curvature, i.e. dS4 or AdS4. The construction makes essential use of the representation of CFT tensor operators as polynomials in an auxiliary polarization tensor. The polarization tensor takes active part in the non-commutative algebra, which for dS4 takes the form of so(5,1, while for AdS4 it assembles into so(4,2. The structure of the non-commutative correlation functions hints that the deformed theory contains gravitational interactions and a Regge-like trajectory of higher spin excitations.

  1. Noncommutative effects of spacetime on holographic superconductors

    Directory of Open Access Journals (Sweden)

    Debabrata Ghorai

    2016-07-01

    Full Text Available The Sturm–Liouville eigenvalue method is employed to analytically investigate the properties of holographic superconductors in higher dimensions in the framework of Born–Infeld electrodynamics incorporating the effects of noncommutative spacetime. In the background of pure Einstein gravity in noncommutative spacetime, we obtain the relation between the critical temperature and the charge density. We also obtain the value of the condensation operator and the critical exponent. Our findings suggest that the higher value of noncommutative parameter and Born–Infeld parameter make the condensate harder to form. We also observe that the noncommutative structure of spacetime makes the critical temperature depend on the mass of the black hole and higher value of black hole mass is favourable for the formation of the condensate.

  2. Quantization of noncommutative completely integrable Hamiltonian systems

    CERN Document Server

    Giachetta, G; Sardanashvily, G

    2007-01-01

    Integrals of motion of a Hamiltonian system need not be commutative. The classical Mishchenko-Fomenko theorem enables one to quantize a noncommutative completely integrable Hamiltonian system around its invariant submanifold as an abelian completely integrable Hamiltonian system.

  3. Quantization of noncommutative completely integrable Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Giachetta, G. [Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (Italy); Mangiarotti, L. [Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (Italy); Sardanashvily, G. [Department of Theoretical Physics, Moscow State University, 117234 Moscow (Russian Federation)]. E-mail: gennadi.sardanashvily@unicam.it

    2007-02-26

    Integrals of motion of a Hamiltonian system need not commute. The classical Mishchenko-Fomenko theorem enables one to quantize a noncommutative completely integrable Hamiltonian system around its invariant submanifold as the Abelian one.

  4. Constraining noncommutative spacetime from GW150914

    Science.gov (United States)

    Kobakhidze, Archil; Lagger, Cyril; Manning, Adrian

    2016-09-01

    The gravitational wave signal GW150914, recently detected by LIGO and Virgo collaborations, is used to place a bound on the scale of quantum fuzziness of noncommutative space-time. We show that the leading noncommutative correction to the phase of the gravitational waves produced by a binary system appears at the second order of the post-Newtonian expansion. This correction is proportional to Λ2≡|θ0 i|2/(lPtP)2, where θμ ν is the antisymmetric tensor of noncommutativity. To comply with GW150914 data, we find that √{Λ }≲3.5 , namely at the order of the Planck scale. This is the most stringent bound on the noncommutative scale, exceeding the previous constraints from particle physics processes by ˜15 orders of magnitude.

  5. Four formulations of noncommutative quantum mechanics

    CERN Document Server

    Gouba, Laure

    2016-01-01

    Four formulations of noncommutative quantum mechanics are reviewed. These are the canonical, path-integral, Weyl-Wigner and systematic formulations. The four formulations are charaterized by a deformed Heisenberg algebra but differ in mathematical and conceptual overview.

  6. Concentration for noncommutative polynomials in random matrices

    OpenAIRE

    2011-01-01

    We present a concentration inequality for linear functionals of noncommutative polynomials in random matrices. Our hypotheses cover most standard ensembles, including Gaussian matrices, matrices with independent uniformly bounded entries and unitary or orthogonal matrices.

  7. Verification and Invalidation of the Theory of Symplectic Manifold with Contact Degeneracies as Applied to the Classical Field Theory

    CERN Document Server

    Sokolov, Igor V

    2015-01-01

    A theory of Symplectic Manifold with Contact Degeneracies (SMCD) was developed in [Zot'ev,2007]. The symplectic geometry uses an anti-symmetric tensor (closed differential form) such as a field tensor used in the classical field theory. The SMCD theory studies degeneracies of such form. In [Zot'ev,2011] the SMCD theory was applied to study a front of an electromagnetic pulsed field propagating into a region with no field. Here, the result of [Zot'ev,2011] is compared with the problem solution obtained using the well-known method presented in Witham, G.B., Linear and nonlinear waves, 1974. It is shown that the SMCD theory prediction is not supported by the result obtained with the Witham method.

  8. A modified symplectic PRK scheme for seismic wave modeling

    Science.gov (United States)

    Liu, Shaolin; Yang, Dinghui; Ma, Jian

    2017-02-01

    A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.

  9. Symmetries of the Space of Linear Symplectic Connections

    Science.gov (United States)

    Fox, Daniel J. F.

    2017-01-01

    There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen-Gutt moment map, the Ricci tensor, and a translational term. The critical points of a functional constructed from it interpolate between the equations for preferred symplectic connections and the equations for critical symplectic connections. The commutative algebra of formal sums of symmetric tensors on a symplectic manifold carries a pair of compatible Poisson structures, one induced from the canonical Poisson bracket on the space of functions on the cotangent bundle polynomial in the fibers, and the other induced from the algebraic fiberwise Schouten bracket on the symmetric algebra of each fiber of the cotangent bundle. These structures are shown to be compatible, and the required Lie algebras are constructed as central extensions of their! linear combinations restricted to formal sums of symmetric tensors whose first order term is a multiple of the differential of its zeroth order term.

  10. Noncommutative effects in astrophysical objects: a survey

    CERN Document Server

    Bertolami, Orfeu

    2010-01-01

    The main implications of noncommutativity over astrophysical objects are examined. Noncommutativity is introduced through a deformed dispersion relation $E^{2}=p^{2}c^{2}(1+\\lambda E)^{2} + m^{2}c^{4}$ and the relevant thermodynamical quantities are calculated using the grand canonical ensemble formalism. These results are applied to simple physical models describing main-sequence stars, white-dwarfs and neutron stars. The stability of main-sequence stars and white dwarfs is discussed.

  11. Twisted Covariant Noncommutative Self-dual Gravity

    CERN Document Server

    Estrada-Jimenez, S; Obregón, O; Ramírez, C

    2008-01-01

    A twisted covariant formulation of noncommutative self-dual gravity is presented. The recent formulation introduced by J. Wess and coworkers for constructing twisted Yang-Mills fields is used. It is shown that the noncommutative torsion is solved at any order of the $\\theta$-expansion in terms of the tetrad and the extra fields of the theory. In the process the first order expansion in $\\theta$ for the Pleba\\'nski action is explicitly obtained.

  12. Quantum field theory on locally noncommutative spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Gandalf [Univ. Leipzig (Germany). Inst. fuer Theoretische Physik; Waldmann, Stefan [Leuven Univ. (Belgium)

    2012-07-01

    A class of spacetimes which are noncommutative only in a prescribed region is presented. These spacetimes are obtained by a generalization of Rieffel's deformation procedure to deformations of locally convex algebras and modules by smooth polynomially bounded R{sup n}-actions with compact support. Extending previous results of Bahns and Waldmann, it is shown how to perform such deformations in a strict sense. Some results on quantum fields propagating on locally noncommutative spacetimes are also given.

  13. Noncommuting Coordinates in the Landau Problem

    OpenAIRE

    Magro, Gabrielle

    2003-01-01

    Basic ideas about noncommuting coordinates are summarized, and then coordinate noncommutativity, as it arises in the Landau problem, is investigated. I review a quantum solution to the Landau problem, and evaluate the coordinate commutator in a truncated state space of Landau levels. Restriction to the lowest Landau level reproduces the well known commutator of planar coordinates. Inclusion of a finite number of Landau levels yields a matrix generalization.

  14. Cosmological perturbations in a noncommutative braneworld inflation

    Institute of Scientific and Technical Information of China (English)

    Kourosh Nozari; Siamak Akhshabi

    2012-01-01

    We use the smeared,coherent state picture of noncommutativity to study evolution of perturbations in a noncommutative braneworld scenario.Within the standard procedure of studying braneworld cosmological perturbations,we study the evolution of the Bardeen metric potential and curvature perturbations in this model.We show that in this setup,the early stage of the universe's evolution has a transient phantom evolution with imaginary effective sound speed.

  15. Photon defects in noncommutative standard model candidates

    Energy Technology Data Exchange (ETDEWEB)

    Abel, S.A.; Khoze, V.V. [Durham Univ. (United Kingdom). Center for Particle Theory; Jaeckel, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-06-15

    Restrictions imposed by gauge invariance in noncommutative spaces together with the effects of ultraviolet/infrared mixing lead to strong constraints on possible candidates for a noncommutative extension of the Standard Model. We study a general class of noncommutative models consistent with these restrictions. Specifically we consider models based upon a gauge theory with the gauge group U(N{sub 1}) x U(N{sub 2}) x.. x U(N{sub m}) coupled to matter fields transforming in the (anti)-fundamental, bi-fundamental and adjoint representations. We pay particular attention to overall trace-U(1) factors of the gauge group which are affected by the ultraviolet/infrared mixing. Typically, these trace-U(1) gauge fields do not decouple sufficiently fast in the infrared, and lead to sizable Lorentz symmetry violating effects in the low-energy effective theory. In a 4-dimensional theory on a continuous space-time making these effects unobservable would require making the effects of noncommutativity tiny, M{sub NC} >> M{sub P}. This severely limits the phenomenological prospects of such models. However, adding additional universal extra dimensions the trace-U(1) factors decouple with a power law and the constraint on the noncommutativity scale is weakened considerably. Finally, we briefly mention some interesting properties of the photon that could arise if the noncommutative theory is modified at a high energy scale. (Orig.)

  16. Non-commutative standard model: model building

    CERN Document Server

    Chaichian, Masud; Presnajder, P

    2003-01-01

    A non-commutative version of the usual electro-weak theory is constructed. We discuss how to overcome the two major problems: (1) although we can have non-commutative U(n) (which we denote by U sub * (n)) gauge theory we cannot have non-commutative SU(n) and (2) the charges in non-commutative QED are quantized to just 0,+-1. We show how the latter problem with charge quantization, as well as with the gauge group, can be resolved by taking the U sub * (3) x U sub * (2) x U sub * (1) gauge group and reducing the extra U(1) factors in an appropriate way. Then we proceed with building the non-commutative version of the standard model by specifying the proper representations for the entire particle content of the theory, the gauge bosons, the fermions and Higgs. We also present the full action for the non-commutative standard model (NCSM). In addition, among several peculiar features of our model, we address the inherentCP violation and new neutrino interactions. (orig.)

  17. Classes of f-Deformed Landau Operators: Nonlinear Noncommutative Coordinates from Algebraic Representations

    CERN Document Server

    Geloun, Joseph Ben; Hounkonnou, M N

    2008-01-01

    We consider, in a superspace, new operator dependent noncommutative (NC) geometries of the nonlinear quantum Hall limit related to classes of f-deformed Landau operators in the spherical harmonic well. Different NC coordinate algebras are determined using unitary representation spaces of Fock-Heisenberg tensored algebras and of the Schwinger-Fock realisation of the su(1,1) Lie algebra. A reduced model allowing an underlying N=2 superalgebra is also discussed.

  18. The Cutkosky Rule of Three Dimensional Noncommutative Field Theory in Lie Algebraic Noncommutative Spacetime

    Science.gov (United States)

    Sasai, Yuya; Sasakura, Naoki

    2009-12-01

    We have investigated the unitarity of three dimensional noncommutative scalar field theory in Lie algebraic noncommutative spacetime [x̂i, x̂j] = 2iκɛijkx̂k, (i, j, k = 0, 1, 2). This noncommutative field theory possesses an SL(2, R)/Z2 group momentum space, which leads to a Hopf algebraic translational symmetry. We have checked the Cutkosky rule of the one-loop self-energy diagrams in the noncommutative φ3 theory when we include a braiding, which is necessary for the noncommutative field theory to possess the Hopf algebraic translational symmetry at quantum level. Then, we have found that the Cutkosky rule is satisfied if the mass of the scalar field is less than 1/√2κ , which however leads to be violations of the Cutkosky rule for smaller masses in more complicated diagrams.

  19. The Cutkosky rule of three dimensional noncommutative field theory in Lie algebraic noncommutative spacetime

    CERN Document Server

    Sasai, Yuya

    2009-01-01

    We investigate the unitarity of three dimensional noncommutative scalar field theory in the Lie algebraic noncommutative spacetime [x^i,x^j]=2i kappa epsilon^{ijk}x_k. This noncommutative field theory possesses a SL(2,R)/Z_2 group momentum space, which leads to a Hopf algebraic translational symmetry. We check the Cutkosky rule of the one-loop self-energy diagrams in the noncommutative phi^3 theory when we include a braiding, which is necessary for the noncommutative field theory to possess the Hopf algebraic translational symmetry at quantum level. Then, we find that the Cutkosky rule is satisfied if the mass is less than 1/(2^(1/2)kappa).

  20. Geometry, topology, and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Varadarajan, Uday

    2003-07-10

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  1. Discrete Symmetries In Lorentz-Invariant Non-Commutative QED

    CERN Document Server

    Morita, K

    2003-01-01

    It is pointed out that the usual $\\theta$-algebra assumed for non-commuting coordinates is not $P$- and $T$-invariant, unless one {\\it formally} transforms the non-commutativity parameter $\\theta^{\\mu\

  2. Combinatorial Hopf Algebras in (Noncommutative) Quantum Field Theory

    CERN Document Server

    Tanasa, Adrian

    2010-01-01

    We briefly review the r\\^ole played by algebraic structures like combinatorial Hopf algebras in the renormalizability of (noncommutative) quantum field theory. After sketching the commutative case, we analyze the noncommutative Grosse-Wulkenhaar model.

  3. Braneworld cosmology and noncommutative inflation

    CERN Document Server

    Calcagni, G

    2005-01-01

    In this work we develop the patch formalism, an approach providing a very simple and compact description of braneworld-motivated cosmologies with nonstandard effective Friedmann equations. In particular, the Hubble parameter is assumed to depend on some power of the brane energy density, H^2 \\propto \\rho^q. The high-energy limit of Randall-Sundrum (q=2) and Gauss-Bonnet (q=2/3) braneworlds are considered, during an accelerating era triggered by a single ordinary or tachyonic scalar field. The inflationary dynamics, solutions, and spectra are provided. Using the latest results from WMAP and other experiments for estimates of cosmological observables, it is shown that future data and missions can in principle discriminate between standard four-dimensional and braneworld scenarios. The issue of non-Gaussianity is also studied within nonlinear perturbation theory. The introduction of a fundamental energy scale reinforces these results. Several classes of noncommutative inflationary models are considered and their...

  4. Deformation of noncommutative quantum mechanics

    Science.gov (United States)

    Jiang, Jian-Jian; Chowdhury, S. Hasibul Hassan

    2016-09-01

    In this paper, the Lie group GNC α , β , γ , of which the kinematical symmetry group GNC of noncommutative quantum mechanics (NCQM) is a special case due to fixed nonzero α, β, and γ, is three-parameter deformation quantized using the method suggested by Ballesteros and Musso [J. Phys. A: Math. Theor. 46, 195203 (2013)]. A certain family of QUE algebras, corresponding to GNC α , β , γ with two of the deformation parameters approaching zero, is found to be in agreement with the existing results of the literature on quantum Heisenberg group. Finally, we dualize the underlying QUE algebra to obtain an expression for the underlying star-product between smooth functions on GNC α , β , γ .

  5. Lorentz distributed noncommutative wormhole solutions in extended teleparallel gravity

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul; Rani, Shamaila [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2015-04-01

    In this paper, we study static spherically symmetric wormhole solutions in extended teleparallel gravity with the inclusion of noncommutative geometry under a Lorentzian distribution. We obtain expressions of matter components for a non-diagonal tetrad. The effective energy-momentum tensor leads to the violation of energy conditions which impose a condition on the normal matter to satisfy these conditions. We explore the noncommutative wormhole solutions by assuming a viable power-law f(T) and shape function models. For the first model, we discuss two cases in which one leads to teleparallel gravity and the other is for f(T) gravity. The normal matter violates the weak energy condition for the first case, while there exists a possibility for micro physically acceptable wormhole solution. There exists a physically acceptable wormhole solution for the power-law b(r) model. Also, we check the equilibrium condition for these solutions, which is only satisfied for the teleparallel case, while for the f(T) case, these solutions are less stable. (orig.)

  6. On the scalar curvature for the noncommutative four torus

    Science.gov (United States)

    Fathizadeh, Farzad

    2015-06-01

    The scalar curvature for noncommutative four tori TΘ 4 , where their flat geometries are conformally perturbed by a Weyl factor, is computed by making the use of a noncommutative residue that involves integration over the 3-sphere. This method is more convenient since it does not require the rearrangement lemma and it is advantageous as it explains the simplicity of the final functions of one and two variables, which describe the curvature with the help of a modular automorphism. In particular, it readily allows to write the function of two variables as the sum of a finite difference and a finite product of the one variable function. The curvature formula is simplified for dilatons of the form sp, where s is a real parameter and p ∈ C ∞ ( TΘ 4 ) is an arbitrary projection, and it is observed that, in contrast to the two dimensional case studied by Connes and Moscovici, J. Am. Math. Soc. 27(3), 639-684 (2014), unbounded functions of the parameter s appear in the final formula. An explicit formula for the gradient of the analog of the Einstein-Hilbert action is also calculated.

  7. Classical electrodynamics in a space with spin noncommutativity of coordinates

    OpenAIRE

    Vasyuta, V. M.; Tkachuk, V. M.

    2016-01-01

    We propose a new relativistic Lorentz-invariant spin-noncommutative algebra. Using the Weyl ordering of noncommutative position operators, we build an analogue of the Moyal-Groenewald product for the proposed algebra. The Lagrange function of an electromagnetic field in the space with spin noncommutativity is constructed. In such a space electromagnetic field becomes non-abelian. A gauge transformation law of this field is also obtained. Exact nonlinear field equations of noncommutative elect...

  8. Hopf-algebra description of noncommutative-spacetime symmetries

    OpenAIRE

    2003-01-01

    In the study of certain noncommutative versions of Minkowski spacetime there is still a large ambiguity concerning the characterization of their symmetries. Adopting as our case study the kappaMinkowski noncommutative space-time, on which a large literature is already available, we propose a line of analysis of noncommutative-spacetime symmetries that relies on the introduction of a Weyl map (connecting a given function in the noncommutative Minkowski with a corresponding function in commutat...

  9. Enveloping algebra Noncommutative SM: Renormalisability and High Energy Physics Phenomenology

    CERN Document Server

    Trampetic, Josip

    2009-01-01

    In this talk we discuss enveloping algebra based noncommutative gauge field theory, constructed at the first order in noncommutative parameter theta, as an effective, anomaly free theory, with one-loop renormalizable gauge sector. Limits on the scale of noncommutativity parameter Lambda_NC, via related phenomenology and associated experiments, are analyzed and a firm bound to the scale of the noncommutativity is set around few TeV's.

  10. Monopoles in Space-Time Noncommutative Born-Infeld theory

    OpenAIRE

    Aschieri, Paolo

    2001-01-01

    We transform static solutions of space-noncommutative Dirac-Born-Infeld theory (DBI) into static solutions of space-time noncommutative DBI. Via Seiberg-Witten map we match this symmetry transformation with a corresponding symmetry of commutative DBI. This allows to: 1) study new BPS type magnetic monopoles, with constant electric and magnetic background and describe them both in the commutative and in the noncommutative setting; 2) relate by S-duality space-noncommutative magnetic monopoles ...

  11. Spectral Geometry and Causality

    CERN Document Server

    Kopf, T

    1996-01-01

    For a physical interpretation of a theory of quantum gravity, it is necessary to recover classical spacetime, at least approximately. However, quantum gravity may eventually provide classical spacetimes by giving spectral data similar to those appearing in noncommutative geometry, rather than by giving directly a spacetime manifold. It is shown that a globally hyperbolic Lorentzian manifold can be given by spectral data. A new phenomenon in the context of spectral geometry is observed: causal relationships. The employment of the causal relationships of spectral data is shown to lead to a highly efficient description of Lorentzian manifolds, indicating the possible usefulness of this approach. Connections to free quantum field theory are discussed for both motivation and physical interpretation. It is conjectured that the necessary spectral data can be generically obtained from an effective field theory having the fundamental structures of generalized quantum mechanics: a decoherence functional and a choice of...

  12. Nucleon structure functions in noncommutative space-time

    CERN Document Server

    Rafiei, Ali; Mirjalili, Abolfazl

    2016-01-01

    In the context of noncommutative space-time, we investigate the nucleon structure functions which plays an important role to identify the internal structure of nucleons. We use the corrected vertices and employ new vertices that appear in two approaches of noncommutativity and calculate the proton structure functions in terms of noncommutative tensor \\theta_{\\mu\

  13. Softer Hard Scattering and Noncommutative Gauge-String Duality

    CERN Document Server

    Rey, S J; Rey, Soo-Jong; Yee, Jung-Tay

    2003-01-01

    We study exclusive scattering of `hadrons' at high energy and fixed angle in (nonconformal) noncommutative gauge theories. Via gauge-string duality, we show that the noncommutativity renders the scattering soft, leading to exponential suppression. The result fits with the picture that, in noncommutative gauge theory, fundamental parton contents constitute wee-partons only and `hadrons' are made out of open Wilson lines.

  14. A C *-Algebraic Model for Locally Noncommutative Spacetimes

    Science.gov (United States)

    Heller, Jakob G.; Neumaier, Nikolai; Waldmann, Stefan

    2007-06-01

    Locally noncommutative spacetimes provide a refined notion of noncommutative spacetimes where the noncommutativity is present only for small distances. Here we discuss a non-perturbative approach based on Rieffel’s strict deformation quantization. To this end, we extend the usual C *-algebraic results to a pro-C *-algebraic framework.

  15. Continual Lie algebras and noncommutative counterparts of exactly solvable models

    Science.gov (United States)

    Zuevsky, A.

    2004-01-01

    Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.

  16. Entropic gravity, phase-space noncommutativity and the equivalence principle

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, Catarina [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bertolami, Orfeu [Departamento de Fisica e Astronomia, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Dias, Nuno Costa; Prata, Joao Nuno, E-mail: catarina.bastos@ist.utl.pt, E-mail: orfeu.bertolami@fc.up.pt, E-mail: ncdias@meo.pt, E-mail: joao.prata@mail.telepac.pt [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2011-06-21

    We generalize E Verlinde's entropic gravity reasoning to a phase-space noncommutativity setup. This allows us to impose a bound on the product of the noncommutative parameters based on the equivalence principle. The key feature of our analysis is an effective Planck's constant that naturally arises when accounting for the noncommutative features of the phase-space.

  17. Entropic Gravity, Phase-Space Noncommutativity and the Equivalence Principle

    CERN Document Server

    Bastos, Catarina; Dias, Nuno Costa; Prata, João Nuno

    2010-01-01

    We generalize E. Verlinde's entropic gravity reasoning to a phase-space noncommutativity set-up. This allow us to impose a bound on the product of the noncommutative parameters based on the Equivalence Principle. The key feature of our analysis is an effective Planck's constant that naturally arises when accounting for the noncommutative features of the phase-space.

  18. Electrodynamics in Non-commutative Curved Space Time

    OpenAIRE

    Jafari, Abolfazl

    2009-01-01

    We study the issue of the electrodynamics theory in noncommutative curved space time (NCCST) with a new star-product. In this paper, the motion equation of electrodynamics and canonical energy-momentum tensor in noncommutative curved space time will be found. The most important point is the assumption of the noncommutative parameter ($\\theta$) be $x^{\\m}$-independent.

  19. Wigner Functions for harmonic oscillator in noncommutative phase space

    OpenAIRE

    Wang, Jianhua; Li, Kang; Dulat, Sayipjamal

    2009-01-01

    We study the Wigner Function in non-commutative quantum mechanics. By solving the time independent Schr\\"{o}dinger equation both on a non-commutative (NC) space and a non-commutative phase space, we obtain the Wigner Function for the harmonic oscillator on NC space and NC phase space respectively.

  20. Gup-Based and Snyder Noncommutative Algebras, Relativistic Particle Models, Deformed Symmetries and Interaction: a Unified Approach

    Science.gov (United States)

    Pramanik, Souvik; Ghosh, Subir

    2013-10-01

    We have developed a unified scheme for studying noncommutative algebras based on generalized uncertainty principle (GUP) and Snyder form in a relativistically covariant point particle Lagrangian (or symplectic) framework. Even though the GUP-based algebra and Snyder algebra are very distinct, the more involved latter algebra emerges from an approximation of the Lagrangian model of the former algebra. Deformed Poincaré generators for the systems that keep space-time symmetries of the relativistic particle models have been studied thoroughly. From a purely constrained dynamical analysis perspective the models studied here are very rich and provide insights on how to consistently construct approximate models from the exact ones when nonlinear constraints are present in the system. We also study dynamics of the GUP particle in presence of external electromagnetic field.