WorldWideScience

Sample records for noncommutative standard model

  1. Non-commutative standard model: model building

    CERN Document Server

    Chaichian, Masud; Presnajder, P

    2003-01-01

    A non-commutative version of the usual electro-weak theory is constructed. We discuss how to overcome the two major problems: (1) although we can have non-commutative U(n) (which we denote by U sub * (n)) gauge theory we cannot have non-commutative SU(n) and (2) the charges in non-commutative QED are quantized to just 0,+-1. We show how the latter problem with charge quantization, as well as with the gauge group, can be resolved by taking the U sub * (3) x U sub * (2) x U sub * (1) gauge group and reducing the extra U(1) factors in an appropriate way. Then we proceed with building the non-commutative version of the standard model by specifying the proper representations for the entire particle content of the theory, the gauge bosons, the fermions and Higgs. We also present the full action for the non-commutative standard model (NCSM). In addition, among several peculiar features of our model, we address the inherentCP violation and new neutrino interactions. (orig.)

  2. Photon defects in noncommutative standard model candidates

    International Nuclear Information System (INIS)

    Abel, S.A.; Khoze, V.V.

    2006-06-01

    Restrictions imposed by gauge invariance in noncommutative spaces together with the effects of ultraviolet/infrared mixing lead to strong constraints on possible candidates for a noncommutative extension of the Standard Model. We study a general class of noncommutative models consistent with these restrictions. Specifically we consider models based upon a gauge theory with the gauge group U(N 1 ) x U(N 2 ) x.. x U(N m ) coupled to matter fields transforming in the (anti)-fundamental, bi-fundamental and adjoint representations. We pay particular attention to overall trace-U(1) factors of the gauge group which are affected by the ultraviolet/infrared mixing. Typically, these trace-U(1) gauge fields do not decouple sufficiently fast in the infrared, and lead to sizable Lorentz symmetry violating effects in the low-energy effective theory. In a 4-dimensional theory on a continuous space-time making these effects unobservable would require making the effects of noncommutativity tiny, M NC >> M P . This severely limits the phenomenological prospects of such models. However, adding additional universal extra dimensions the trace-U(1) factors decouple with a power law and the constraint on the noncommutativity scale is weakened considerably. Finally, we briefly mention some interesting properties of the photon that could arise if the noncommutative theory is modified at a high energy scale. (Orig.)

  3. The standard model on non-commutative space-time

    International Nuclear Information System (INIS)

    Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M.; Wess, J.

    2002-01-01

    We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter θ μν . No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in θ μν we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)

  4. The standard model on non-commutative space-time

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M. [Sektion Physik, Universitaet Muenchen (Germany); Wess, J. [Sektion Physik, Universitaet Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2002-03-01

    We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter {theta}{sup {mu}}{sup {nu}}. No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in {theta}{sup {mu}}{sup {nu}} we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)

  5. Noncommutative geometry and the standard model vacuum

    International Nuclear Information System (INIS)

    Barrett, John W.; Dawe Martins, Rachel A.

    2006-01-01

    The space of Dirac operators for the Connes-Chamseddine spectral action for the standard model of particle physics coupled to gravity is studied. The model is extended by including right-handed neutrino states, and the S 0 -reality axiom is not assumed. The possibility of allowing more general fluctuations than the inner fluctuations of the vacuum is proposed. The maximal case of all possible fluctuations is studied by considering the equations of motion for the vacuum. While there are interesting nontrivial vacua with Majorana-type mass terms for the leptons, the conclusion is that the equations are too restrictive to allow solutions with the standard model mass matrix

  6. Noncommutative GUTs, Standard Model and C,P,T

    International Nuclear Information System (INIS)

    Aschieri, P.; Jurco, B.; Schupp, P.; Wess, J.

    2003-01-01

    Noncommutative Yang-Mills theories are sensitive to the choice of the representation that enters in the gauge kinetic term. We constrain this ambiguity by considering grand unified theories. We find that at first order in the noncommutativity parameter θ, SU(5) is not truly a unified theory, while SO(10) has a unique noncommutative generalization. In view of these results we discuss the noncommutative SM theory that is compatible with SO(10) GUT and find that there are no modifications to the SM gauge kinetic term at lowest order in θ. We study in detail the reality, Hermiticity and C,P,T properties of the Seiberg-Witten map and of the resulting effective actions expanded in ordinary fields. We find that in models of GUTs (or compatible with GUTs) right-handed fermions and left-handed ones appear with opposite Seiberg-Witten map

  7. Noncommutative GUTs, Standard Model and C,P,T

    Energy Technology Data Exchange (ETDEWEB)

    Aschieri, P. E-mail: aschieri@theorie.physik.uni-muenchen.de; Jurco, B. E-mail: jurco@theorie.physik.uni-muenchen.de; Schupp, P. E-mail: p.schupp@iu-bremen.de; Wess, J. E-mail: wess@theorie.physik.uni-muenchen.de

    2003-02-17

    Noncommutative Yang-Mills theories are sensitive to the choice of the representation that enters in the gauge kinetic term. We constrain this ambiguity by considering grand unified theories. We find that at first order in the noncommutativity parameter {theta}, SU(5) is not truly a unified theory, while SO(10) has a unique noncommutative generalization. In view of these results we discuss the noncommutative SM theory that is compatible with SO(10) GUT and find that there are no modifications to the SM gauge kinetic term at lowest order in {theta}. We study in detail the reality, Hermiticity and C,P,T properties of the Seiberg-Witten map and of the resulting effective actions expanded in ordinary fields. We find that in models of GUTs (or compatible with GUTs) right-handed fermions and left-handed ones appear with opposite Seiberg-Witten map.

  8. Noncommutative geometry and its application to the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Martinetti, Pierre [Georg-August Universitaet, Goettingen (Germany)

    2009-07-01

    We give an overview of the description of the standard model of particle physics minimally coupled to gravity within the framework of noncommutative geometry. Especially we study in detail the metric structure of spacetime that emerges from the spectral triple recently proposed by Chamseddine, Connes and Marcolli. Within this framework points of spacetime acquire an internal structure inherited from the gauge group of the standard model. A distance is defined on this generalized spacetime which is fully encoded by the Yang-Mills gauge fields together with the Higgs field. We focus on some explicit examples, underlying the link between this distance and other distances well known by physicists and mathematicians, such has the Carnot-Caratheodory horizontal distance or the Monge-Kantorovitch transport distance.

  9. Beyond the Standard Model with noncommutative geometry, strolling towards quantum gravity

    International Nuclear Information System (INIS)

    Martinetti, Pierre

    2015-01-01

    Noncommutative geometry in its many incarnations appears at the crossroad of many researches in theoretical and mathematical physics: from models of quantum spacetime(with or without breaking of Lorentz symmetry) to loop gravity and string theory, from early considerations on UV-divergenciesin quantum field theory to recent models of gauge theories on noncommutatives pacetime, from Connes description of the standard model of elementary particles to recent Pati-Salam like extensions. We list several of these applications, emphasizing also the original point of view brought by noncommutative geometry on the nature of time. This text serves as an introduction to the volume of proceedings of the parallel session “Noncommutative geometry and quantum gravity”, as a part of the conference “Conceptual and technical challenges in quantum gravity” organized at the University of Rome La Sapienza sin September 2014. (paper)

  10. Anomalies, Weinberg angle and a noncommutative geometric description of the standard model

    International Nuclear Information System (INIS)

    Scheck, F.

    1992-01-01

    The conditions on weak hypercharge assignments of quarks and leptons that are imposed by the absence of chiral anomalies, are identical with the supertrace conditions that appear in descriptions of the minimal standard model based on noncommutative geometry. Even though in these approaches there is no more explicit symmetry in the electroweak sector than the well-known SU(2) L xU(1), the noncommutative, graded algebra characterized by the modified exterior (Cartan and discrete) derivative is stringent enough to fix - at the classical level - the Weinberg angle. With the usual fermion content of the standard model the value typical for grand unified theories is found. (orig.)

  11. Conceptual Explanation for the Algebra in the Noncommutative Approach to the Standard Model

    International Nuclear Information System (INIS)

    Chamseddine, Ali H.; Connes, Alain

    2007-01-01

    The purpose of this Letter is to remove the arbitrariness of the ad hoc choice of the algebra and its representation in the noncommutative approach to the standard model, which was begging for a conceptual explanation. We assume as before that space-time is the product of a four-dimensional manifold by a finite noncommmutative space F. The spectral action is the pure gravitational action for the product space. To remove the above arbitrariness, we classify the irreducible geometries F consistent with imposing reality and chiral conditions on spinors, to avoid the fermion doubling problem, which amounts to have total dimension 10 (in the K-theoretic sense). It gives, almost uniquely, the standard model with all its details, predicting the number of fermions per generation to be 16, their representations and the Higgs breaking mechanism, with very little input

  12. The noncommutative standard model. Construction beyond leading order in θ and collider phenomenology

    International Nuclear Information System (INIS)

    Alboteanu, A.M.

    2007-01-01

    Within this work we study the phenomenological consequences of a possible realization of QFT on noncommutative space-time. In the first part we performed a phenomenological analysis of the hadronic process pp → Z γ → l + l - γ at the LHC and of electron-positron pair annihilation into a Z boson and a photon at the International Linear Collider (ILC). The noncommutative extension of the SM considered within this work relies on two building blocks: the Moyal-Weyl *-product of functions on ordinary space-time and the Seiberg-Witten maps. A consequence of the noncommutativity of space-time is the violation of rotational invariance with respect to the beam axis. This effect shows up in the azimuthal dependence of cross sections, which is absent in the SM as well as in other models beyond the SM. We have found this dependence to be best suited for deriving the sensitivity bounds on the noncommutative scale NC. By studying pp→Z γ →l + l - γ to first order in the noncommutative parameter θ, we show in the first part of this work that measurements at the LHC are sensitive to noncommutative effects only in certain cases, giving bounds on the noncommutative scale of Λ NC >or similar 1.2 TeV. By means of e + e - → Z γ → l + l - γ to O(θ) we have shown that ILC measurements are complementary to LHC measurements of the noncommutative parameters. In addition, the bounds on Λ NC derived from the ILC are significantly higher and reach Λ NC >or similar 6 TeV. In the second part of this work we expand the neutral current sector of the noncommutative SM to second order in θ. We found that, against the general expectation, the theory must be enlarged by additional parameters. The new parameters enter the theory as ambiguities of the Seiberg-Witten maps. The latter are not uniquely determined and differ by homogeneous solutions of the gauge equivalence equations. The expectation was that the ambiguities correspond to field redefinitions and therefore should

  13. The noncommutative standard model. Construction beyond leading order in {theta} and collider phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Alboteanu, A.M.

    2007-07-01

    Within this work we study the phenomenological consequences of a possible realization of QFT on noncommutative space-time. In the first part we performed a phenomenological analysis of the hadronic process pp {yields} Z{sub {gamma}} {yields} l{sup +}l{sup -}{gamma} at the LHC and of electron-positron pair annihilation into a Z boson and a photon at the International Linear Collider (ILC). The noncommutative extension of the SM considered within this work relies on two building blocks: the Moyal-Weyl *-product of functions on ordinary space-time and the Seiberg-Witten maps. A consequence of the noncommutativity of space-time is the violation of rotational invariance with respect to the beam axis. This effect shows up in the azimuthal dependence of cross sections, which is absent in the SM as well as in other models beyond the SM. We have found this dependence to be best suited for deriving the sensitivity bounds on the noncommutative scale NC. By studying pp{yields}Z{sub {gamma}} {yields}l{sup +}l{sup -}{gamma} to first order in the noncommutative parameter {theta}, we show in the first part of this work that measurements at the LHC are sensitive to noncommutative effects only in certain cases, giving bounds on the noncommutative scale of {lambda}{sub NC} >or similar 1.2 TeV. By means of e{sup +}e{sup -} {yields} Z{sub {gamma}} {yields} l{sup +}l{sup -}{gamma} to O({theta}) we have shown that ILC measurements are complementary to LHC measurements of the noncommutative parameters. In addition, the bounds on {lambda}{sub NC} derived from the ILC are significantly higher and reach {lambda}{sub NC} >or similar 6 TeV. In the second part of this work we expand the neutral current sector of the noncommutative SM to second order in {theta}. We found that, against the general expectation, the theory must be enlarged by additional parameters. The new parameters enter the theory as ambiguities of the Seiberg-Witten maps. The latter are not uniquely determined and differ by

  14. Vacuum energy from noncommutative models

    Science.gov (United States)

    Mignemi, S.; Samsarov, A.

    2018-04-01

    The vacuum energy is computed for a scalar field in a noncommutative background in several models of noncommutative geometry. One may expect that the noncommutativity introduces a natural cutoff on the ultraviolet divergences of field theory. Our calculations show however that this depends on the particular model considered: in some cases the divergences are suppressed and the vacuum energy is only logarithmically divergent, in other cases they are stronger than in the commutative theory.

  15. Perturbed nonlinear models from noncommutativity

    International Nuclear Information System (INIS)

    Cabrera-Carnero, I.; Correa-Borbonet, Luis Alejandro; Valadares, G.C.S.

    2007-01-01

    By means of the Ehrenfest's Theorem inside the context of a noncommutative Quantum Mechanics it is obtained the Newton's Second Law in noncommutative space. Considering discrete systems with infinite degrees of freedom whose dynamical evolutions are governed by the noncommutative Newton's Second Law we have constructed some alternative noncommutative generalizations of two-dimensional field theories. (author)

  16. The Standard Model in noncommutative geometry: fundamental fermions as internal forms

    Science.gov (United States)

    Dąbrowski, Ludwik; D'Andrea, Francesco; Sitarz, Andrzej

    2018-05-01

    Given the algebra, Hilbert space H, grading and real structure of the finite spectral triple of the Standard Model, we classify all possible Dirac operators such that H is a self-Morita equivalence bimodule for the associated Clifford algebra.

  17. Continual Lie algebras and noncommutative counterparts of exactly solvable models

    Science.gov (United States)

    Zuevsky, A.

    2004-01-01

    Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.

  18. Quantum aspects of the noncommutative Sine-Gordon model

    International Nuclear Information System (INIS)

    Kuerkcueoglu

    2007-01-01

    In this talk, I will first present some of the quantum field theoretical aspects of the integrable noncommutative sine-Gordon model proposed in [hep-th/0406065] using standard semi-classical methods. In particular, I will discuss the fluctuations at quadratic order around the static kink solution using the background field method. I will argue that at 0(θ 2 ) the spectrum of fluctuations remains essentially the same as that of the corresponding commutative theory. A brief analysis of one-loop two-point functions will also be presented and it will be followed by some remarks on the obstacles in determining the noncommutativity corrections to the quantum mass of the kink. (author)

  19. On the energy crisis in noncommutative CP(1) model

    International Nuclear Information System (INIS)

    Sourrouille, Lucas

    2010-01-01

    We study the CP(1) system in (2+1)-dimensional noncommutative space with and without Chern-Simons term. Using the Seiberg-Witten map we convert the noncommutative CP(1) system to an action written in terms of the commutative fields. We find that this system presents the same infinite size instanton solution as the commutative Chern-Simons-CP(1) model without a potential term. Based on this result we argue that the BPS equations are compatible with the full variational equations of motion, rejecting the hypothesis of an 'energy crisis'. In addition we examine the noncommutative CP(1) system with a Chern-Simons interaction. In this case we find that when the theory is transformed by the Seiberg-Witten map it also presents the same instanton solution as the commutative Chern-Simons-CP(1) model.

  20. General classical solutions in the noncommutative CPN-1 model

    International Nuclear Information System (INIS)

    Foda, O.; Jack, I.; Jones, D.R.T.

    2002-01-01

    We give an explicit construction of general classical solutions for the noncommutative CP N-1 model in two dimensions, showing that they correspond to integer values for the action and topological charge. We also give explicit solutions for the Dirac equation in the background of these general solutions and show that the index theorem is satisfied

  1. Noncommutative gauge theory and symmetry breaking in matrix models

    International Nuclear Information System (INIS)

    Grosse, Harald; Steinacker, Harold; Lizzi, Fedele

    2010-01-01

    We show how the fields and particles of the standard model can be naturally realized in noncommutative gauge theory. Starting with a Yang-Mills matrix model in more than four dimensions, an SU(n) gauge theory on a Moyal-Weyl space arises with all matter and fields in the adjoint of the gauge group. We show how this gauge symmetry can be broken spontaneously down to SU(3) c xSU(2) L xU(1) Q [resp. SU(3) c xU(1) Q ], which couples appropriately to all fields in the standard model. An additional U(1) B gauge group arises which is anomalous at low energies, while the trace-U(1) sector is understood in terms of emergent gravity. A number of additional fields arise, which we assume to be massive, in a pattern that is reminiscent of supersymmetry. The symmetry breaking might arise via spontaneously generated fuzzy spheres, in which case the mechanism is similar to brane constructions in string theory.

  2. Noncommutativity and unitarity violation in gauge boson scattering

    International Nuclear Information System (INIS)

    Hewett, J. L.; Petriello, F. J.; Rizzo, T. G.

    2002-01-01

    We examine the unitarity properties of spontaneously broken noncommutative gauge theories. We find that the symmetry breaking mechanism in the noncommutative standard model of Chaichian et al. leads to an unavoidable violation of tree-level unitarity in gauge boson scattering at high energies. We then study a variety of simplified spontaneously broken noncommutative theories and isolate the source of this unitarity violation. Given the group theoretic restrictions endemic to noncommutative model building, we conclude that it is difficult to build a noncommutative standard model under the Weyl-Moyal approach that preserves unitarity

  3. One-loop beta functions for the orientable non-commutative Gross Neveu model TH1"-->

    Science.gov (United States)

    Lakhoua, A.; Vignes-Tourneret, F.; Wallet, J.-C.

    2007-11-01

    We compute at the one-loop order the β-functions for a renormalisable non-commutative analog of the Gross Neveu model defined on the Moyal plane. The calculation is performed within the so called x-space formalism. We find that this non-commutative field theory exhibits asymptotic freedom for any number of colors. The β-function for the non-commutative counterpart of the Thirring model is found to be non vanishing.

  4. Noncommutative gauge field theories: A no-go theorem

    International Nuclear Information System (INIS)

    Chaichian, M.; Tureanu, A.; Presnajder, P.; Sheikh-Jabbari, M.M.

    2001-06-01

    Studying the mathematical structure of the noncommutative groups in more detail, we prove a no-go theorem for the noncommutative gauge theories. According to this theorem, the closure condition of the gauge algebra implies that: 1) the local noncommutative u(n) algebra only admits the irreducible nxn matrix-representation. Hence the gauge fields, as elements of the algebra, are in nxn matrix form, while the matter fields can only be either in fundamental, adjoint or singlet states; 2) for any gauge group consisting of several simple group factors, the matter fields can transform nontrivially under at most two noncommutative group factors. In other words, the matter fields cannot carry more than two simple noncommutative gauge group charges. This no-go theorem imposes strong restrictions on the construction of the noncommutative version of the Standard Model and in resolving the standing problem of charge quantization in noncommutative QED. (author)

  5. Loop calculations for the non-commutative U*(1) gauge field model with oscillator term

    International Nuclear Information System (INIS)

    Blaschke, Daniel N.; Grosse, Harald; Kronberger, Erwin; Schweda, Manfred; Wohlgenannt, Michael

    2010-01-01

    Motivated by the success of the non-commutative scalar Grosse-Wulkenhaar model, a non-commutative U * (1) gauge field theory including an oscillator-like term in the action has been put forward in (Blaschke et al. in Europhys. Lett. 79:61002, 2007). The aim of the current work is to analyze whether that action can lead to a fully renormalizable gauge model on non-commutative Euclidean space. In a first step, explicit one-loop graph computations are hence presented, and their results as well as necessary modifications of the action are successively discussed. (orig.)

  6. Late time acceleration in a non-commutative model of modified cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Malekolkalami, B., E-mail: b.malakolkalami@uok.ac.ir [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of); Vakili, B., E-mail: b-vakili@iauc.ac.ir [Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2014-12-12

    We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.

  7. Late time acceleration in a non-commutative model of modified cosmology

    International Nuclear Information System (INIS)

    Malekolkalami, B.; Atazadeh, K.; Vakili, B.

    2014-01-01

    We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution

  8. Noncommutative baby Skyrmions

    International Nuclear Information System (INIS)

    Ioannidou, Theodora; Lechtenfeld, Olaf

    2009-01-01

    We subject the baby Skyrme model to a Moyal deformation, for unitary or Grassmannian target spaces and without a potential term. In the Abelian case, the radial BPS configurations of the ordinary noncommutative sigma model also solve the baby Skyrme equation of motion. This gives a class of exact analytic noncommutative baby Skyrmions, which have a singular commutative limit but are stable against scaling due to the noncommutativity. We compute their energies, investigate their stability and determine the asymptotic two-Skyrmion interaction.

  9. Models with oscillator terms in noncommutative quantum field theory

    International Nuclear Information System (INIS)

    Kronberger, E.

    2010-01-01

    The main focus of this Ph.D. thesis is on noncommutative models involving oscillator terms in the action. The first one historically is the successful Grosse-Wulkenhaar (G.W.) model which has already been proven to be renormalizable to all orders of perturbation theory. Remarkably it is furthermore capable of solving the Landau ghost problem. In a first step, we have generalized the G.W. model to gauge theories in a very straightforward way, where the action is BRS invariant and exhibits the good damping properties of the scalar theory by using the same propagator, the so-called Mehler kernel. To be able to handle some more involved one-loop graphs we have programmed a powerful Mathematica package, which is capable of analytically computing Feynman graphs with many terms. The result of those investigations is that new terms originally not present in the action arise, which led us to the conclusion that we should better start from a theory where those terms are already built in. Fortunately there is an action containing this complete set of terms. It can be obtained by coupling a gauge field to the scalar field of the G.W. model, integrating out the latter, and thus 'inducing' a gauge theory. Hence the model is called Induced Gauge Theory. Despite the advantage that it is by construction completely gauge invariant, it contains also some unphysical terms linear in the gauge field. Advantageously we could get rid of these terms using a special gauge dedicated to this purpose. Within this gauge we could again establish the Mehler kernel as gauge field propagator. Furthermore we where able to calculate the ghost propagator, which turned out to be very involved. Thus we were able to start with the first few loop computations showing the expected behavior. The next step is to show renormalizability of the model, where some hints towards this direction will also be given. (author) [de

  10. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  11. String states, loops and effective actions in noncommutative field theory and matrix models

    Directory of Open Access Journals (Sweden)

    Harold C. Steinacker

    2016-09-01

    Full Text Available Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  12. String states, loops and effective actions in noncommutative field theory and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold C., E-mail: harold.steinacker@univie.ac.at

    2016-09-15

    Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  13. Matrix models as non-commutative field theories on R3

    International Nuclear Information System (INIS)

    Livine, Etera R

    2009-01-01

    In the context of spin foam models for quantum gravity, group field theories are a useful tool allowing on the one hand a non-perturbative formulation of the partition function and on the other hand admitting an interpretation as generalized matrix models. Focusing on 2d group field theories, we review their explicit relation to matrix models and show their link to a class of non-commutative field theories invariant under a quantum-deformed 3d Poincare symmetry. This provides a simple relation between matrix models and non-commutative geometry. Moreover, we review the derivation of effective 2d group field theories with non-trivial propagators from Boulatov's group field theory for 3d quantum gravity. Besides the fact that this gives a simple and direct derivation of non-commutative field theories for the matter dynamics coupled to (3d) quantum gravity, these effective field theories can be expressed as multi-matrix models with a non-trivial coupling between matrices of different sizes. It should be interesting to analyze this new class of theories, both from the point of view of matrix models as integrable systems and for the study of non-commutative field theories.

  14. General classical solutions in the noncommutative CP{sup N-1} model

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.; Jack, I.; Jones, D.R.T

    2002-10-31

    We give an explicit construction of general classical solutions for the noncommutative CP{sup N-1} model in two dimensions, showing that they correspond to integer values for the action and topological charge. We also give explicit solutions for the Dirac equation in the background of these general solutions and show that the index theorem is satisfied.

  15. Fermions in noncommutative emergent gravity

    International Nuclear Information System (INIS)

    Klammer, D.

    2010-01-01

    Noncommutative emergent gravity is a novel framework disclosing how gravity is contained naturally in noncommutative gauge theory formulated as a matrix model. It describes a dynamical space-time which itself is a four-dimensional brane embedded in a higher-dimensional space. In noncommutative emergent gravity, the metric is not a fundamental object of the model; rather it is determined by the Poisson structure and by the induced metric of the embedding. In this work the coupling of fermions to these matrix models is studied from the point of view of noncommutative emergent gravity. The matrix Dirac operator as given by the IKKT matrix model defines an appropriate coupling for fermions to an effective gravitational metric of noncommutative four-dimensional spaces that are embedded into a ten-dimensional ambient space. As it turns out this coupling is non-standard due to a spin connection that vanishes in the preferred but unobservable coordinates defined by the model. The purpose of this work is to study the one-loop effective action of this approach. Standard results of the literature cannot be applied due to this special coupling of the fermions. However, integrating out these fields in a nontrivial geometrical background induces indeed the Einstein-Hilbert action of the effective metric, as well as additional terms which couple the noncommutative structure to the Riemann tensor, and a dilaton-like term. It remains to be understood what the effects of these terms are and whether they can be avoided. In a second step, the existence of a duality between noncommutative gauge theory and gravity which explains the phenomenon of UV/IR mixing as a gravitational effect is discussed. We show how the gravitational coupling of fermions can be interpreted as a coupling of fermions to gauge fields, which suffers then from UV/IR mixing. This explanation does not render the model finite but it reveals why some UV/IR mixing remains even in supersymmetric models, except in the N

  16. Introduction to Dubois-Violette's non-commutative differential geometry

    International Nuclear Information System (INIS)

    Djemai, A.E.F.

    1994-07-01

    In this work, one presents a detailed review of Dubois-Violette et al. approach to non-commutative differential calculus. The non-commutative differential geometry of matrix algebras and the non-commutative Poisson structures are treated in some details. We also present the analog of the Maxwell's theory and the new models of Yang-Mills-Higgs theories that can be constructed in this framework. In particular, some simple models are compared with the standard model. Finally, we discuss some perspectives and open questions. (author). 32 refs

  17. Noncommutative calculi of probabilty

    Directory of Open Access Journals (Sweden)

    Michał Heller

    2010-12-01

    Full Text Available The paper can be regarded as a short and informal introduction to noncommutative calculi of probability. The standard theory of probability is reformulated in the algebraic language. In this form it is readily generalized to that its version which is virtually present in quantum mechanics, and then generalized to the so-called free theory of probability. Noncommutative theory of probability is a pair (M, φ where M is a von Neumann algebra, and φ a normal state on M which plays the role of a noncommutative probability measure. In the standard (commutative theory of probability, there is, in principle, one mathematically interesting probability measure, namely the Lebesgue measure, whereas in the noncommutative theories there are many nonequivalent probability measures. Philosophical implications of this fact are briefly discussed.

  18. On conservation laws for models in discrete, noncommutative and fractional differential calculus

    International Nuclear Information System (INIS)

    Klimek, M.

    2001-01-01

    We present the general method of derivation the explicit form of conserved currents for equations built within the framework of discrete, noncommutative or fractional differential calculus. The procedure applies to linear models with variable coefficients including also nonlinear potential part. As an example an equation on quantum plane, nonlinear Toda lattice model and homogeneous equation of fractional diffusion in 1+1 dimensions are studied

  19. Dispersion relations in the noncommutative φ3 and Wess-Zumino model in the Yang-Feldman formalism

    International Nuclear Information System (INIS)

    Doescher, C.; Zahn, J.

    2006-05-01

    We study dispersion relations in the noncommutative φ 3 and Wess-Zumino model in the Yang-Feldman formalism at one-loop order. Non-planar graphs lead to a distortion of the dispersion relation. We find that this effect is small if the scale of noncommutativity is identified with the Planck scale and parameters typical for a Higgs field are employed. (Orig.)

  20. Effective potential and spontaneous symmetry breaking in the noncommutative φ6 model

    International Nuclear Information System (INIS)

    Barbosa, G.D.

    2004-01-01

    We study the conditions for spontaneous symmetry breaking of the (2+1)-dimensional noncommutative φ 6 model in the small-θ limit. In this regime, considering the model as a cutoff theory, it is reasonable to assume translational invariance as a property of the vacuum state and study the conditions for spontaneous symmetry breaking by an effective potential analysis. An investigation of up to the two-loop level reveals that noncommutative effects can modify drastically the shape of the effective potential. Under reasonable conditions, the nonplanar sector of the theory can become dominant and induce symmetry breaking for values of the mass and coupling constants not reached by the commutative counterpart

  1. Phenomenology of noncommutative field theories

    International Nuclear Information System (INIS)

    Carone, C D

    2006-01-01

    Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model

  2. Noncommutative Lagrange Mechanics

    Directory of Open Access Journals (Sweden)

    Denis Kochan

    2008-02-01

    Full Text Available It is proposed how to impose a general type of ''noncommutativity'' within classical mechanics from first principles. Formulation is performed in completely alternative way, i.e. without any resort to fuzzy and/or star product philosophy, which are extensively applied within noncommutative quantum theories. Newton-Lagrange noncommutative equations of motion are formulated and their properties are analyzed from the pure geometrical point of view. It is argued that the dynamical quintessence of the system consists in its kinetic energy (Riemannian metric specifying Riemann-Levi-Civita connection and thus the inertia geodesics of the free motion. Throughout the paper, ''noncommutativity'' is considered as an internal geometric structure of the configuration space, which can not be ''observed'' per se. Manifestation of the noncommutative phenomena is mediated by the interaction of the system with noncommutative background under the consideration. The simplest model of the interaction (minimal coupling is proposed and it is shown that guiding affine connection is modified by the quadratic analog of the Lorentz electromagnetic force (contortion term.

  3. Noncommutative gravity

    International Nuclear Information System (INIS)

    Schupp, P.

    2007-01-01

    Heuristic arguments suggest that the classical picture of smooth commutative spacetime should be replaced by some kind of quantum / noncommutative geometry at length scales and energies where quantum as well as gravitational effects are important. Motivated by this idea much research has been devoted to the study of quantum field theory on noncommutative spacetimes. More recently the focus has started to shift back to gravity in this context. We give an introductory overview to the formulation of general relativity in a noncommutative spacetime background and discuss the possibility of exact solutions. (author)

  4. Aspects of solitons in noncommutative field theories. The modified Ward model

    International Nuclear Information System (INIS)

    Petersen, S.

    2006-01-01

    In this thesis several aspects of solutions to the equations of motions to noncommutative field theories are investigated in detail. The main focus of the analysis is on the integrable chiral or modified unitary sigma model with U(n)-valued fields as introduced by Ward and its noncommutative extension where the above mentioned new solutions arise. Of particular interest in this context are to us the question of stability of static solitons and the applicability of the so-called adiabatic approach to as a means to approximate time-dependent solutions by geodesic motion in the moduli space of static solutions. After some introductory remarks we proceed to present the Ward model together with its noncommutative extension and give a unified exposition of its known static solutions. This model, as the prime example of an almost Lorentz-invariant field theory in 1+2 dimensions, has several virtues which make its analysis worthwhile. First of all it is integrable thus allowing for powerful, well developed, techniques to generate soliton solutions. At the same time these feature interaction among them. Furthermore, the commutative counterpart of the Ward model has been investigated in great detail such that many results are available for comparison. Next, the question of stability for the present static solutions is considered. This stability is governed by the quadratic form of the fluctuations, which, upon concentrating on the case of diagonal U(1) solutions, is explicitly computed. We show that the considered solutions are stable within a certain subsector of possible configurations, namely the grassmannian ones, and become unstable upon embedding them into the full unitary sigma model. Finally, we remark on some possible generalization of these results. This subject is followed, after a brief review of time-dependent Ward model solutions, by the application of the adiabatic approach, as proposed by Manton, to the static solutions. (orig.)

  5. Matrix models from localization of five-dimensional supersymmetric noncommutative U(1) gauge theory

    International Nuclear Information System (INIS)

    Lee, Bum-Hoon; Ro, Daeho; Yang, Hyun Seok

    2017-01-01

    We study localization of five-dimensional supersymmetric U(1) gauge theory on S 3 ×ℝ θ 2 where ℝ θ 2 is a noncommutative (NC) plane. The theory can be isomorphically mapped to three-dimensional supersymmetric U(N→∞) gauge theory on S 3 using the matrix representation on a separable Hilbert space on which NC fields linearly act. Therefore the NC space ℝ θ 2 allows for a flexible path to derive matrix models via localization from a higher-dimensional supersymmetric NC U(1) gauge theory. The result shows a rich duality between NC U(1) gauge theories and large N matrix models in various dimensions.

  6. Noncommutative gauge theories on ℝ{sub λ}{sup 3}: perturbatively finite models

    Energy Technology Data Exchange (ETDEWEB)

    Géré, Antoine [Dipartimento di Matematica, Università di Genova,Via Dodecaneso, 35, I-16146 Genova (Italy); Jurić, Tajron [Ruđer Bošković Institute, Theoretical Physics Division,Bijenička c.54, HR-10002 Zagreb (Croatia); Wallet, Jean-Christophe [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, University Paris-Saclay,Bât. 210, 91405 Orsay (France)

    2015-12-09

    We show that natural noncommutative gauge theory models on ℝ{sub λ}{sup 3} can accommodate gauge invariant harmonic terms, thanks to the existence of a relationship between the center of ℝ{sub λ}{sup 3} and the components of the gauge invariant 1-form canonical connection. This latter object shows up naturally within the present noncommutative differential calculus. Restricting ourselves to positive actions with covariant coordinates as field variables, a suitable gauge-fixing leads to a family of matrix models with quartic interactions and kinetic operators with compact resolvent. Their perturbative behavior is then studied. We first compute the 2-point and 4-point functions at the one-loop order within a subfamily of these matrix models for which the interactions have a symmetric form. We find that the corresponding contributions are finite. We then extend this result to arbitrary order. We find that the amplitudes of the ribbon diagrams for the models of this subfamily are finite to all orders in perturbation. This result extends finally to any of the models of the whole family of matrix models obtained from the above gauge-fixing. The origin of this result is discussed. Finally, the existence of a particular model related to integrable hierarchies is indicated, for which the partition function is expressible as a product of ratios of determinants.

  7. Lorentz invariant noncommutative algebra for cosmological models coupled to a perfect fluid

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Everton M.C.; Marcial, Mateus V.; Mendes, Albert C.R.; Oliveira, Wilson [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil); Universidade Federal de Juiz de Fora, MG (Brazil)

    2013-07-01

    Full text: In current theoretical physics there is a relevant number of theoretical investigations that lead to believe that at the first moments of our Universe, the geometry was not commutative and the dominating physics at that time was ruled by the laws of noncommutative (NC) geometry. Therefore, the idea is that the physics of the early moments can be constructed based on these concepts. The first published work using the idea of a NC spacetime were carried out by Snyder who believed that NC principles could make the quantum field theory infinities disappear. However, it did not occur and Snyder's ideas were put to sleep for a long time. The main modern motivations that rekindle the investigation about NC field theories came from string theory and quantum gravity. In the context of quantum mechanics for example, R. Banerjee discussed how NC structures appear in planar quantum mechanics providing a useful way for obtaining them. The analysis was based on the NC algebra used in planar quantum mechanics that was originated from 't Hooft's analysis on dissipation and quantization. In this work we carry out a NC algebra analysis of the Friedmann-Robert-Walker model, coupled to a perfect fluid and in the presence of a cosmological constant. The classical field equations are modified, by the introduction of a shift operator, in order to introduce noncommutativity in these models. (author)

  8. Lorentz invariant noncommutative algebra for cosmological models coupled to a perfect fluid

    International Nuclear Information System (INIS)

    Abreu, Everton M.C.; Marcial, Mateus V.; Mendes, Albert C.R.; Oliveira, Wilson

    2013-01-01

    Full text: In current theoretical physics there is a relevant number of theoretical investigations that lead to believe that at the first moments of our Universe, the geometry was not commutative and the dominating physics at that time was ruled by the laws of noncommutative (NC) geometry. Therefore, the idea is that the physics of the early moments can be constructed based on these concepts. The first published work using the idea of a NC spacetime were carried out by Snyder who believed that NC principles could make the quantum field theory infinities disappear. However, it did not occur and Snyder's ideas were put to sleep for a long time. The main modern motivations that rekindle the investigation about NC field theories came from string theory and quantum gravity. In the context of quantum mechanics for example, R. Banerjee discussed how NC structures appear in planar quantum mechanics providing a useful way for obtaining them. The analysis was based on the NC algebra used in planar quantum mechanics that was originated from 't Hooft's analysis on dissipation and quantization. In this work we carry out a NC algebra analysis of the Friedmann-Robert-Walker model, coupled to a perfect fluid and in the presence of a cosmological constant. The classical field equations are modified, by the introduction of a shift operator, in order to introduce noncommutativity in these models. (author)

  9. Emergent gravity and noncommutative branes from Yang-Mills matrix models

    International Nuclear Information System (INIS)

    Steinacker, Harold

    2009-01-01

    The framework of emergent gravity arising from Yang-Mills matrix models is developed further, for general noncommutative branes embedded in R D . The effective metric on the brane turns out to have a universal form reminiscent of the open string metric, depending on the dynamical Poisson structure and the embedding metric in R D . A covariant form of the tree-level equations of motion is derived, and the Newtonian limit is discussed. This points to the necessity of branes in higher dimensions. The quantization is discussed qualitatively, which singles out the IKKT model as a prime candidate for a quantum theory of gravity coupled to matter. The Planck scale is then identified with the scale of N=4 SUSY breaking. A mechanism for avoiding the cosmological constant problem is exhibited

  10. On the development of non-commutative translation-invariant quantum gauge field models

    International Nuclear Information System (INIS)

    Sedmik, R.I.P.

    2009-01-01

    Aiming to understand the most fundamental principles of nature one has to approach the highest possible energy scales corresponding to the smallest possible distances - the Planck scale. Historically, three different theoretical fields have been developed to treat the problems appearing in this endeavor: string theory, quantum gravity, and non-commutative (NC) quantum field theory (QFT). The latter was originally motivated by the conjecture that the introduction of uncertainty relations between space-time coordinates introduces a natural energy cutoff, which should render the resulting computations well defined and finite. Despite failing to fulfill this expectation, NC physics is a challenging field of research, which has proved to be a fruitful source for new ideas and methods. Mathematically, non-commutativity is implemented by the so called Weyl quantization, giving rise to a modified product - the Groenewold-Moyal product. It realizes an operator ordering, and allows to work within the well established framework of QFT on non-commutative spaces. The main obstacle of NCQFT is the appearance of singularities being shifted from high to low energies. This effect, being referred to as 'uV/IR mixing', is a direct consequence of the deformation of the product, and inhibits or complicates the direct application of well approved renormalization schemes. In order to remedy this problem, several approaches have been worked out during the past decade which, unfortunately, all have shortcomings such as the breaking of translation invariance or an inappropriate alternation of degrees of freedom. Thence, the resulting theories are either being rendered 'unphysical', or considered a priori to be toy models. Nonetheless, these efforts have helped to analyze the mechanisms leading to uV/IR mixing and finally led to the insight that renormalizability can only be achieved by respecting the inherent connection of long and short distances (scales) of NCQFT in the construction of

  11. Chiral effective potential in N = {1/2} non-commutative Wess-Zumino model

    International Nuclear Information System (INIS)

    Banin, A.T.; Buchbinder, I.L.; Pletnev, N.G.

    2004-01-01

    We study a structure of holomorphic quantum contributions to the effective action for N = {1/2} noncommutative Wess-Zumino model. Using the symbol operator techniques we present the one-loop chiral effective potential in a form of integral over proper time of the appropriate heat kernel. We prove that this kernel can be exactly found. As a result we obtain the exact integral representation of the one-loop effective potential. Also we study the expansion of the effective potential in a series in powers of the chiral superfield φ and derivative D 2 φ and construct a procedure for systematic calculation of the coefficients in the series. We show that all terms in the series without derivatives can be summed up in an explicit form. (author)

  12. Superconnections: an interpretation of the standard model

    Directory of Open Access Journals (Sweden)

    Gert Roepstorff

    2000-07-01

    Full Text Available The mathematical framework of superbundles as pioneered by D. Quillen suggests that one consider the Higgs field as a natural constituent of a superconnection. I propose to take as superbundle the exterior algebra obtained from a Hermitian vector bundle of rank n where n=2 for the electroweak theory and n=5 for the full Standard Model. The present setup is similar to but avoids the use of non-commutative geometry.

  13. Metric interpretation of gauge fields in noncommutative geometry

    International Nuclear Information System (INIS)

    Martinetti, P.

    2007-01-01

    We shall give an overview of the metric interpretation of gauge fields in noncommutative geometry, via Connes distance formula. Especially we shall focus on the Higgs fields in the standard model, and gauge fields in various models of fiber bundle. (author)

  14. Noncommutative solitons

    International Nuclear Information System (INIS)

    Gopakumar, R.

    2002-01-01

    Though noncommutative field theories have been explored for several years, a resurgence of interest in it was sparked off after it was realised that they arise very naturally as limits of string theory in certain background fields. It became more plausible (at least to string theorists) that these nonlocal deformations of usual quantum field theories are consistent theories in themselves. This led to a detailed exploration of many of their classical and quantum properties. I will elaborate further on the string theory context in the next section. One of the consequences of this exploration was the discovery of novel classical solutions in noncommutative field theories. Since then much work has been done in exploring many of their novel properties. My lectures focussed on some specific aspects of these noncommutative solitons. They primarily reflect the topics that I have worked on and are not intended to be a survey of the large amount of work on this topic. We have tried to give a flavour of the physics that can be captured by the relatively elementary classical solutions of noncommutative field theories. We have seen in different contexts how these solitons are really simple manifestations of D-branes, possessing many of their important features. Though they have been primarily studied in the context of tachyon condensation, we saw that they can also shed some light on the resolution of singularities in spacetime by D-brane probes. In addition to other applications in string theory it is important at this stage to explore their presence in other systems with a strong magnetic field like the quantum hall effect

  15. Noncommutative solitons

    Energy Technology Data Exchange (ETDEWEB)

    Gopakumar, R [Harish-Chandra Research Institute, Jhusi, Allahabad (India)

    2002-05-15

    Though noncommutative field theories have been explored for several years, a resurgence of interest in it was sparked off after it was realised that they arise very naturally as limits of string theory in certain background fields. It became more plausible (at least to string theorists) that these nonlocal deformations of usual quantum field theories are consistent theories in themselves. This led to a detailed exploration of many of their classical and quantum properties. I will elaborate further on the string theory context in the next section. One of the consequences of this exploration was the discovery of novel classical solutions in noncommutative field theories. Since then much work has been done in exploring many of their novel properties. My lectures focussed on some specific aspects of these noncommutative solitons. They primarily reflect the topics that I have worked on and are not intended to be a survey of the large amount of work on this topic. We have tried to give a flavour of the physics that can be captured by the relatively elementary classical solutions of noncommutative field theories. We have seen in different contexts how these solitons are really simple manifestations of D-branes, possessing many of their important features. Though they have been primarily studied in the context of tachyon condensation, we saw that they can also shed some light on the resolution of singularities in spacetime by D-brane probes. In addition to other applications in string theory it is important at this stage to explore their presence in other systems with a strong magnetic field like the quantum hall effect.

  16. Noncommutative Schur polynomials and the crystal limit of the U_{q} \\widehat{\\mathfrak {sl}}(2)-vertex model

    Science.gov (United States)

    Korff, Christian

    2010-10-01

    Starting from the Verma module of U_{q}\\mathfrak {sl}(2) we consider the evaluation module for affine U_{q}\\widehat{\\mathfrak {sl}}(2) and discuss its crystal limit (q → 0). There exists an associated integrable statistical mechanics model on a square lattice defined in terms of vertex configurations. Its transfer matrix is the generating function for noncommutative complete symmetric polynomials in the generators of the affine plactic algebra, an extension of the finite plactic algebra first discussed by Lascoux and Schützenberger. The corresponding noncommutative elementary symmetric polynomials were recently shown to be generated by the transfer matrix of the so-called phase model discussed by Bogoliubov, Izergin and Kitanine. Here we establish that both generating functions satisfy Baxter's TQ-equation in the crystal limit by tying them to special U_{q}\\widehat{ \\mathfrak {sl}}(2) solutions of the Yang-Baxter equation. The TQ-equation amounts to the well-known Jacobi-Trudi formula leading naturally to the definition of noncommutative Schur polynomials. The latter can be employed to define a ring which has applications in conformal field theory and enumerative geometry: it is isomorphic to the fusion ring of the \\widehat{\\mathfrak {sl}}(n)_{k} Wess-Zumino-Novikov-Witten model whose structure constants are the dimensions of spaces of generalized θ-functions over the Riemann sphere with three punctures.

  17. Noncommutative geometry

    CERN Document Server

    Connes, Alain

    1994-01-01

    This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.Key Features* First full treatment of the subject and its applications* Written by the pioneer of this field* Broad applications in mathemat

  18. Strings from position-dependent noncommutativity

    International Nuclear Information System (INIS)

    Fring, Andreas; Gouba, Laure; Scholtz, Frederik G

    2010-01-01

    We introduce a new set of noncommutative spacetime commutation relations in two space dimensions. The space-space commutation relations are deformations of the standard flat noncommutative spacetime relations taken here to have position-dependent structure constants. Some of the new variables are non-Hermitian in the most natural choice. We construct their Hermitian counterparts by means of a Dyson map, which also serves to introduce a new metric operator. We propose PT-like symmetries, i.e. antilinear involutory maps, respected by these deformations. We compute minimal lengths and momenta arising in this space from generalized versions of Heisenberg's uncertainty relations and find that any object in this two-dimensional space is string like, i.e. having a fundamental length in one direction beyond which a resolution is impossible. Subsequently, we formulate and partly solve some simple models in these new variables, the free particle, its PT-symmetric deformations and the harmonic oscillator.

  19. Noncommuting observables and local realism

    International Nuclear Information System (INIS)

    Malley, James D.; Fine, Arthur

    2005-01-01

    A standard approach in the foundations of quantum mechanics studies local realism and hidden variables models exclusively in terms of violations of Bell-like inequalities. Thus quantum nonlocality is tied to the celebrated no-go theorems, and these comprise a long list that includes the Kochen-Specker and Bell theorems, as well as elegant refinements by Mermin, Peres, Hardy, GHZ, and many others. Typically entanglement or carefully prepared multipartite systems have been considered essential for violations of local realism and for understanding quantum nonlocality. Here we show, to the contrary, that sharp violations of local realism arise almost everywhere without entanglement. The pivotal fact driving these violations is just the noncommutativity of quantum observables. We demonstrate how violations of local realism occur for arbitrary noncommuting projectors, and for arbitrary quantum pure states. Finally, we point to elementary tests for local realism, using single particles and without reference to entanglement, thus avoiding experimental loopholes and efficiency issues that continue to bedevil the Bell inequality related tests

  20. On noncommutativity with bifermionic parameter

    International Nuclear Information System (INIS)

    Acatrinei, Ciprian Sorin

    2008-01-01

    Recently Gitman and Vassilevich proposed an interesting model of noncommutative (NC) scalar field theory, with a noncommutativity parameter assumed to be the product of two Grassmann variables. They showed in particular that the model possesses a local energy-momentum tensor. Since such a property is quite unusual for a NC model, we provide here an alternative picture, based on an operatorial formulation of NC field theory. It leads to complete locality of the degrees of freedom of the theory, a property in agreement with the termination of the star-product at the second term in its series. (author)

  1. Noncommutative quantum mechanics

    Science.gov (United States)

    Gamboa, J.; Loewe, M.; Rojas, J. C.

    2001-09-01

    A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter θ, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of θ the model can be solved by using perturbation theory.

  2. Note on the extended noncommutativity of coordinates

    International Nuclear Information System (INIS)

    Boulahoual, Amina; Sedra, My. Brahim

    2001-04-01

    We present in this short note an idea about a possible extension of the standard noncommutative algebra to the formal differential operators framework. In this sense, we develop an analysis and derive an extended noncommutative algebra given by [x a , x b ] * =i(θ+χ) ab where θ ab , is the standard noncommutative parameter and χ ab (x)≡χ ab μ (x)δ μ =1/2(x a θ μ b -x b θ a )δ μ is an antisymmetric non-constant vector-field shown to play the role of the extended deformation parameter. This idea was motivated by the importance of noncommutative geometry framework in the current subject of D-brane and matrix theory physics. (author)

  3. Higgs production in e−e+ collisions as a probe of noncommutativity

    International Nuclear Information System (INIS)

    Ghasemkhani, M.; Goldouzian, R.; Khanpour, H.; Yanehsari, M. Khatiri; Najafabadi, M. Mohammadi

    2014-01-01

    We examine the sensitivity of the angular distribution of the Higgs boson in the process of e + e − →ZH and the total cross section in the minimal noncommutative standard model (mNCSM) framework to set a lower limit on the noncommutative characteristic scale (Λ). In contrast to the standard model case, in this process the Higgs boson tends to be emitted anisotropically in the transverse plane. Based on this fact, the profile likelihood ratio is used to set the lower limit on Λ. The lower limit is presented as a function of the integrated luminosity. We show that at a center-of-mass energy of 1.5 TeV and with 500 fb −1 of data, the noncommutative characteristic energy scale Λ can be excluded up to 1.2 TeV

  4. Noncommutative Valuation of Options

    Science.gov (United States)

    Herscovich, Estanislao

    2016-12-01

    The aim of this note is to show that the classical results in finance theory for pricing of derivatives, given by making use of the replication principle, can be extended to the noncommutative world. We believe that this could be of interest in quantum probability. The main result called the First fundamental theorem of asset pricing, states that a noncommutative stock market admits no-arbitrage if and only if it admits a noncommutative equivalent martingale probability.

  5. PREFACE: Conceptual and Technical Challenges for Quantum Gravity 2014 - Parallel session: Noncommutative Geometry and Quantum Gravity

    Science.gov (United States)

    Martinetti, P.; Wallet, J.-C.; Amelino-Camelia, G.

    2015-08-01

    The conference Conceptual and Technical Challenges for Quantum Gravity at Sapienza University of Rome, from 8 to 12 September 2014, has provided a beautiful opportunity for an encounter between different approaches and different perspectives on the quantum-gravity problem. It contributed to a higher level of shared knowledge among the quantum-gravity communities pursuing each specific research program. There were plenary talks on many different approaches, including in particular string theory, loop quantum gravity, spacetime noncommutativity, causal dynamical triangulations, asymptotic safety and causal sets. Contributions from the perspective of philosophy of science were also welcomed. In addition several parallel sessions were organized. The present volume collects contributions from the Noncommutative Geometry and Quantum Gravity parallel session4, with additional invited contributions from specialists in the field. Noncommutative geometry in its many incarnations appears at the crossroad of many researches in theoretical and mathematical physics: • from models of quantum space-time (with or without breaking of Lorentz symmetry) to loop gravity and string theory, • from early considerations on UV-divergencies in quantum field theory to recent models of gauge theories on noncommutative spacetime, • from Connes description of the standard model of elementary particles to recent Pati-Salam like extensions. This volume provides an overview of these various topics, interesting for the specialist as well as accessible to the newcomer. 4partially funded by CNRS PEPS /PTI ''Metric aspect of noncommutative geometry: from Monge to Higgs''

  6. Unitary quantum physics with time-space non-commutativity

    International Nuclear Information System (INIS)

    Balachandran, A P; Govindarajan, T R; Martins, A G; Molina, C; Teotonio-Sobrinho, P

    2005-01-01

    In these lectures 4 quantum physics in noncommutative spacetime is developed. It is based on the work of Doplicher et al. which allows for time-space noncommutativity. In the context of noncommutative quantum mechanics, some important points are explored, such as the formal construction of the theory, symmetries, causality, simultaneity and observables. The dynamics generated by a noncommutative Schroedinger equation is studied. The theory is further extended to certain noncommutative versions of the cylinder, R 3 and R x S 3 . In all these models, only discrete time translations are possible. One striking consequence of quantised time translations is that even though a time independent Hamiltonian is an observable, in scattering processes, it is conserved only modulo 2π/θ, where θ is the noncommutative parameter. Scattering theory is formulated and an approach to quantumfield theory is outlined

  7. Duality and noncommutative planes

    DEFF Research Database (Denmark)

    Jøndrup, Søren

    2015-01-01

    We study extensions of simple modules over an associative ring A   and we prove that for twosided ideals mm and nn with artinian factors the condition ExtA1(A/m,A/n)≠0 holds for the left A  -modules A/mA/m and A/nA/n if and only if it holds for the right modules A/nA/n and A/mA/m. The methods pro...... proving this are applied to show that noncommutative models of the plane, i.e. algebras of the form k〈x,y〉/(f)k〈x,y〉/(f), where f∈([x,y])f∈([x,y]) are noetherian only in case (f)=([x,y])...

  8. Noncommutative gravity and quantum field theory on noncummutative curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, Alexander

    2011-10-24

    The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the

  9. Noncommutative gravity and quantum field theory on noncummutative curved spacetimes

    International Nuclear Information System (INIS)

    Schenkel, Alexander

    2011-01-01

    The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the noncommutative

  10. Covariant Noncommutative Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Jimenez, S [Licenciaturas en Fisica y en Matematicas, Facultad de Ingenieria, Universidad Autonoma de Chiapas Calle 4a Ote. Nte. 1428, Tuxtla Gutierrez, Chiapas (Mexico); Garcia-Compean, H [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico D.F., Mexico and Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Via del Conocimiento 201, Parque de Investigacion e Innovacion Tecnologica (PIIT) Autopista nueva al Aeropuerto km 9.5, Lote 1, Manzana 29, cp. 66600 Apodaca Nuevo Leon (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato P.O. Box E-143, 37150 Leon Gto. (Mexico); Ramirez, C [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)

    2008-07-02

    The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.

  11. Covariant Noncommutative Field Theory

    International Nuclear Information System (INIS)

    Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.

    2008-01-01

    The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced

  12. Noncommutative conformally coupled scalar field cosmology and its commutative counterpart

    International Nuclear Information System (INIS)

    Barbosa, G.D.

    2005-01-01

    We study the implications of a noncommutative geometry of the minisuperspace variables for the Friedmann-Robertson-Walker universe with a conformally coupled scalar field. The investigation is carried out by means of a comparative study of the universe evolution in four different scenarios: classical commutative, classical noncommutative, quantum commutative, and quantum noncommutative, the last two employing the Bohmian formalism of quantum trajectories. The role of noncommutativity is discussed by drawing a parallel between its realizations in two possible frameworks for physical interpretation: the NC frame, where it is manifest in the universe degrees of freedom, and in the C frame, where it is manifest through θ-dependent terms in the Hamiltonian. As a result of our comparative analysis, we find that noncommutative geometry can remove singularities in the classical context for sufficiently large values of θ. Moreover, under special conditions, the classical noncommutative model can admit bouncing solutions characteristic of the commutative quantum Friedmann-Robertson-Walker universe. In the quantum context, we find nonsingular universe solutions containing bounces or being periodic in the quantum commutative model. When noncommutativity effects are turned on in the quantum scenario, they can introduce significant modifications that change the singular behavior of the universe solutions or that render them dynamical whenever they are static in the commutative case. The effects of noncommutativity are completely specified only when one of the frames for its realization is adopted as the physical one. Nonsingular solutions in the NC frame can be mapped into singular ones in the C frame

  13. Noncommutative Black Holes at the LHC

    Science.gov (United States)

    Villhauer, Elena Michelle

    2017-12-01

    Based on the latest public results, 13 TeV data from the Large Hadron Collider at CERN has not indicated any evidence of hitherto tested models of quantum black holes, semiclassical black holes, or string balls. Such models have predicted signatures of particles with high transverse momenta. Noncommutative black holes remain an untested model of TeV-scale gravity that offers the starkly different signature of particles with relatively low transverse momenta. Considerations for a search for charged noncommutative black holes using the ATLAS detector will be discussed.

  14. Time-space noncommutativity: quantised evolutions

    International Nuclear Information System (INIS)

    Balachandran, Aiyalam P.; Govindarajan, Thupil R.; Teotonio-Sobrinho, Paulo; Martins, Andrey Gomes

    2004-01-01

    In previous work, we developed quantum physics on the Moyal plane with time-space noncommutativity, basing ourselves on the work of Doplicher et al. Here we extend it to certain noncommutative versions of the cylinder, R 3 and Rx S 3 . In all these models, only discrete time translations are possible, a result known before in the first two cases. One striking consequence of quantised time translations is that even though a time independent hamiltonian is an observable, in scattering processes, it is conserved only modulo 2π/θ, where θ is the noncommutative parameter. (In contrast, on a one-dimensional periodic lattice of lattice spacing a and length L = Na, only momentum mod 2π/L is observable (and can be conserved).) Suggestions for further study of this effect are made. Scattering theory is formulated and an approach to quantum field theory is outlined. (author)

  15. Index theory for locally compact noncommutative geometries

    CERN Document Server

    Carey, A L; Rennie, A; Sukochev, F A

    2014-01-01

    Spectral triples for nonunital algebras model locally compact spaces in noncommutative geometry. In the present text, the authors prove the local index formula for spectral triples over nonunital algebras, without the assumption of local units in our algebra. This formula has been successfully used to calculate index pairings in numerous noncommutative examples. The absence of any other effective method of investigating index problems in geometries that are genuinely noncommutative, particularly in the nonunital situation, was a primary motivation for this study and the authors illustrate this point with two examples in the text. In order to understand what is new in their approach in the commutative setting the authors prove an analogue of the Gromov-Lawson relative index formula (for Dirac type operators) for even dimensional manifolds with bounded geometry, without invoking compact supports. For odd dimensional manifolds their index formula appears to be completely new.

  16. Arithmetic noncommutative geometry

    CERN Document Server

    Marcolli, Matilde

    2005-01-01

    Arithmetic noncommutative geometry denotes the use of ideas and tools from the field of noncommutative geometry, to address questions and reinterpret in a new perspective results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at archimedean places of arithmetic surfaces and varieties. The main reason why noncommutative geometry can be expected to say something about topics of arithmetic interest lies in the fact that it provides the right framework in which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry, such as moduli spaces (of which modular curves are the simplest case) or arithmetic varieties (completed by suitable "fibers at infinity"), by adding boundaries...

  17. Coulomb Scattering in the Massless Nelson Model III: Ground State Wave Functions and Non-commutative Recurrence Relations

    Science.gov (United States)

    Dybalski, Wojciech; Pizzo, Alessandro

    2018-02-01

    Let $H_{P,\\sigma}$ be the single-electron fiber Hamiltonians of the massless Nelson model at total momentum $P$ and infrared cut-off $\\sigma>0$. We establish detailed regularity properties of the corresponding $n$-particle ground state wave functions $f^n_{P,\\sigma}$ as functions of $P$ and $\\sigma$. In particular, we show that \\[ |\\partial_{P^j}f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)|, \\ \\ |\\partial_{P^j} \\partial_{P^{j'}} f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)| \\leq \\frac{1}{\\sqrt{n!}} \\frac{(c\\lambda_0)^n}{\\sigma^{\\delta_{\\lambda_0}}} \\prod_{i=1}^n\\frac{ \\chi_{[\\sigma,\\kappa)}(k_i)}{|k_i|^{3/2}}, \\] where $c$ is a numerical constant, $\\lambda_0\\mapsto \\delta_{\\lambda_0}$ is a positive function of the maximal admissible coupling constant which satisfies $\\lim_{\\lambda_0\\to 0}\\delta_{\\lambda_0}=0$ and $\\chi_{[\\sigma,\\kappa)}$ is the (approximate) characteristic function of the energy region between the infrared cut-off $\\sigma$ and the ultraviolet cut-off $\\kappa$. While the analysis of the first derivative is relatively straightforward, the second derivative requires a new strategy. By solving a non-commutative recurrence relation we derive a novel formula for $f^n_{P,\\sigma}$ with improved infrared properties. In this representation $\\partial_{P^{j'}}\\partial_{P^{j}}f^n_{P,\\sigma}$ is amenable to sharp estimates obtained by iterative analytic perturbation theory in part II of this series of papers. The bounds stated above are instrumental for scattering theory of two electrons in the Nelson model, as explained in part I of this series.

  18. Group field theory with noncommutative metric variables.

    Science.gov (United States)

    Baratin, Aristide; Oriti, Daniele

    2010-11-26

    We introduce a dual formulation of group field theories as a type of noncommutative field theories, making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity by imposing the simplicity constraints directly at the level of the group field theory action.

  19. Non-commutative geometry and supersymmetry 2

    International Nuclear Information System (INIS)

    Hussain, F.; Thompson, G.

    1991-05-01

    Following the general construction of supersymmetric models, the model based on the idea of non-commutative geometry is formulated as a Yang-Mills theory of the graded Lie algebra U(2/1) over a graded space-time manifold. 4 refs

  20. A noncommutative catenoid

    Science.gov (United States)

    Arnlind, Joakim; Holm, Christoffer

    2018-01-01

    A noncommutative algebra corresponding to the classical catenoid is introduced together with a differential calculus of derivations. We prove that there exists a unique metric and torsion-free connection that is compatible with the complex structure, and the curvature is explicitly calculated. A noncommutative analogue of the fact that the catenoid is a minimal surface is studied by constructing a Laplace operator from the connection and showing that the embedding coordinates are harmonic. Furthermore, an integral is defined and the total curvature is computed. Finally, classes of left and right modules are introduced together with constant curvature connections, and bimodule compatibility conditions are discussed in detail.

  1. Almost-commutative geometries beyond the standard model

    International Nuclear Information System (INIS)

    Stephan, Christoph A

    2006-01-01

    In Iochum et al (2004 J. Math. Phys. 45 5003), Jureit and Stephan (2005 J. Math. Phys. 46 043512), Schuecker T (2005 Preprint hep-th/0501181) and Jureit et al (2005 J. Math. Phys. 46 072303), a conjecture is presented that almost-commutative geometries, with respect to sensible physical constraints, allow only the standard model of particle physics and electro-strong models as Yang-Mills-Higgs theories. In this paper, a counter-example will be given. The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs model which consists of the standard model of particle physics and two new fermions of opposite electro-magnetic charge. This is the second Yang-Mills-Higgs model within noncommutative geometry, after the standard model, which could be compatible with experiments. Combined to a hydrogen-like composite particle, these new particles provide a novel dark matter candidate

  2. Principal noncommutative torus bundles

    DEFF Research Database (Denmark)

    Echterhoff, Siegfried; Nest, Ryszard; Oyono-Oyono, Herve

    2008-01-01

    of bivariant K-theory (denoted RKK-theory) due to Kasparov. Using earlier results of Echterhoff and Williams, we shall give a complete classification of principal non-commutative torus bundles up to equivariant Morita equivalence. We then study these bundles as topological fibrations (forgetting the group...

  3. Noncommutative field gas driven inflation

    Energy Technology Data Exchange (ETDEWEB)

    Barosi, Luciano; Brito, Francisco A [Departamento de Fisica, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraiba (Brazil); Queiroz, Amilcar R, E-mail: lbarosi@ufcg.edu.br, E-mail: fabrito@df.ufcg.edu.br, E-mail: amilcarq@gmail.com [Centro Internacional de Fisica da Materia Condensada, Universidade de Brasilia, Caixa Postal 04667, Brasilia, DF (Brazil)

    2008-04-15

    We investigate early time inflationary scenarios in a Universe filled with a dilute noncommutative bosonic gas at high temperature. A noncommutative bosonic gas is a gas composed of a bosonic scalar field with noncommutative field space on a commutative spacetime. Such noncommutative field theories were recently introduced as a generalization of quantum mechanics on a noncommutative spacetime. Key features of these theories are Lorentz invariance violation and CPT violation. In the present study we use a noncommutative bosonic field theory that, besides the noncommutative parameter {theta}, shows up a further parameter {sigma}. This parameter {sigma} controls the range of the noncommutativity and acts as a regulator for the theory. Both parameters play a key role in the modified dispersion relations of the noncommutative bosonic field, leading to possible striking consequences for phenomenology. In this work we obtain an equation of state p = {omega}({sigma},{theta};{beta}){rho} for the noncommutative bosonic gas relating pressure p and energy density {rho}, in the limit of high temperature. We analyse possible behaviours for these gas parameters {sigma}, {theta} and {beta}, so that -1{<=}{omega}<-1/3, which is the region where the Universe enters an accelerated phase.

  4. Noncommutative geometry and fluid dynamics

    International Nuclear Information System (INIS)

    Das, Praloy; Ghosh, Subir

    2016-01-01

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  5. Noncommutative geometry and fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy; Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)

    2016-11-15

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  6. Non-Commutative Mechanics in Mathematical & in Condensed Matter Physics

    Directory of Open Access Journals (Sweden)

    Peter A. Horváthy

    2006-12-01

    Full Text Available Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1. Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space.

  7. Wigner Functions for the Bateman System on Noncommutative Phase Space

    Science.gov (United States)

    Heng, Tai-Hua; Lin, Bing-Sheng; Jing, Si-Cong

    2010-09-01

    We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra.

  8. Wigner Functions for the Bateman System on Noncommutative Phase Space

    International Nuclear Information System (INIS)

    Tai-Hua, Heng; Bing-Sheng, Lin; Si-Cong, Jing

    2010-01-01

    We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra

  9. Quantum mechanics on noncommutative spacetime

    International Nuclear Information System (INIS)

    Calmet, Xavier; Selvaggi, Michele

    2006-01-01

    We consider electrodynamics on a noncommutative spacetime using the enveloping algebra approach and perform a nonrelativistic expansion of the effective action. We obtain the Hamiltonian for quantum mechanics formulated on a canonical noncommutative spacetime. An interesting new feature of quantum mechanics formulated on a noncommutative spacetime is an intrinsic electric dipole moment. We note, however, that noncommutative intrinsic dipole moments are not observable in present experiments searching for an electric dipole moment of leptons or nuclei such as the neutron since they are spin independent. These experiments are sensitive to the energy difference between two states and the noncommutative effect thus cancels out. Bounds on the noncommutative scale found in the literature relying on such intrinsic electric dipole moments are thus incorrect

  10. An invitation to noncommutative geometry

    CERN Document Server

    Marcolli, Matilde

    2008-01-01

    This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory. Sample Chapter(s). A Walk in the Noncommutative Garden (1,639 KB). Contents: A Walk in the Noncommutative Garden (A Connes & M Marcolli); Renormalization of Noncommutative Quantum Field Theory (H Grosse & R Wulke

  11. Noncommutativity and Duality through the Symplectic Embedding Formalism

    Directory of Open Access Journals (Sweden)

    Everton M.C. Abreu

    2010-07-01

    Full Text Available This work is devoted to review the gauge embedding of either commutative and noncommutative (NC theories using the symplectic formalism framework. To sum up the main features of the method, during the process of embedding, the infinitesimal gauge generators of the gauge embedded theory are easily and directly chosen. Among other advantages, this enables a greater control over the final Lagrangian and brings some light on the so-called ''arbitrariness problem''. This alternative embedding formalism also presents a way to obtain a set of dynamically dual equivalent embedded Lagrangian densities which is obtained after a finite number of steps in the iterative symplectic process, oppositely to the result proposed using the BFFT formalism. On the other hand, we will see precisely that the symplectic embedding formalism can be seen as an alternative and an efficient procedure to the standard introduction of the Moyal product in order to produce in a natural way a NC theory. In order to construct a pedagogical explanation of the method to the nonspecialist we exemplify the formalism showing that the massive NC U(1 theory is embedded in a gauge theory using this alternative systematic path based on the symplectic framework. Further, as other applications of the method, we describe exactly how to obtain a Lagrangian description for the NC version of some systems reproducing well known theories. Naming some of them, we use the procedure in the Proca model, the irrotational fluid model and the noncommutative self-dual model in order to obtain dual equivalent actions for these theories. To illustrate the process of noncommutativity introduction we use the chiral oscillator and the nondegenerate mechanics.

  12. Quantum gravity boundary terms from the spectral action of noncommutative space.

    Science.gov (United States)

    Chamseddine, Ali H; Connes, Alain

    2007-08-17

    We study the boundary terms of the spectral action of the noncommutative space, defined by the spectral triple dictated by the physical spectrum of the standard model, unifying gravity with all other fundamental interactions. We prove that the spectral action predicts uniquely the gravitational boundary term required for consistency of quantum gravity with the correct sign and coefficient. This is a remarkable result given the lack of freedom in the spectral action to tune this term.

  13. Chiral Models in Noncommutative N=1/2 Four Dimensional Superspace

    DEFF Research Database (Denmark)

    Ryttov, Thomas; Sannino, Francesco

    2005-01-01

    We derive the component Lagrangian for a generic N=1/2 supersymmetric chiral model with an arbitrary number of fields in four space-time dimensions. We then investigate a toy model in which the deformation parameter modifies the undeformed potential near the origin of the field space in a way which...

  14. Non-commutative analysis

    CERN Document Server

    Jorgensen, Palle

    2017-01-01

    The book features new directions in analysis, with an emphasis on Hilbert space, mathematical physics, and stochastic processes. We interpret 'non-commutative analysis' broadly to include representations of non-Abelian groups, and non-Abelian algebras; emphasis on Lie groups and operator algebras (C* algebras and von Neumann algebras.)A second theme is commutative and non-commutative harmonic analysis, spectral theory, operator theory and their applications. The list of topics includes shift invariant spaces, group action in differential geometry, and frame theory (over-complete bases) and their applications to engineering (signal processing and multiplexing), projective multi-resolutions, and free probability algebras.The book serves as an accessible introduction, offering a timeless presentation, attractive and accessible to students, both in mathematics and in neighboring fields.

  15. Noncommutative field theory

    International Nuclear Information System (INIS)

    Douglas, Michael R.; Nekrasov, Nikita A.

    2001-01-01

    This article reviews the generalization of field theory to space-time with noncommuting coordinates, starting with the basics and covering most of the active directions of research. Such theories are now known to emerge from limits of M theory and string theory and to describe quantum Hall states. In the last few years they have been studied intensively, and many qualitatively new phenomena have been discovered, on both the classical and the quantum level

  16. Noncommutativity from spectral flow

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas; Ilderton, Anton [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2007-07-27

    We investigate the transition from second- to first-order systems. Quantum mechanically, this transforms configuration space into phase space and hence introduces noncommutativity in the former. This transition may be described in terms of spectral flow. Gaps in the energy or mass spectrum may become large which effectively truncates the available state space. Using both operator and path integral languages we explicitly discuss examples in quantum mechanics (light-front) quantum field theory and string theory.

  17. A View on Optimal Transport from Noncommutative Geometry

    Directory of Open Access Journals (Sweden)

    Francesco D'Andrea

    2010-07-01

    Full Text Available We discuss the relation between the Wasserstein distance of order 1 between probability distributions on a metric space, arising in the study of Monge-Kantorovich transport problem, and the spectral distance of noncommutative geometry. Starting from a remark of Rieffel on compact manifolds, we first show that on any - i.e. non-necessary compact - complete Riemannian spin manifolds, the two distances coincide. Then, on convex manifolds in the sense of Nash embedding, we provide some natural upper and lower bounds to the distance between any two probability distributions. Specializing to the Euclidean space R^n, we explicitly compute the distance for a particular class of distributions generalizing Gaussian wave packet. Finally we explore the analogy between the spectral and the Wasserstein distances in the noncommutative case, focusing on the standard model and the Moyal plane. In particular we point out that in the two-sheet space of the standard model, an optimal-transport interpretation of the metric requires a cost function that does not vanish on the diagonal. The latest is similar to the cost function occurring in the relativistic heat equation.

  18. Exact master equation for a noncommutative Brownian particle

    International Nuclear Information System (INIS)

    Costa Dias, Nuno; Nuno Prata, Joao

    2009-01-01

    We derive the Hu-Paz-Zhang master equation for a Brownian particle linearly coupled to a bath of harmonic oscillators on the plane with spatial noncommutativity. The results obtained are exact to all orders in the noncommutative parameter. As a by-product we derive some miscellaneous results such as the equilibrium Wigner distribution for the reservoir of noncommutative oscillators, the weak coupling limit of the master equation and a set of sufficient conditions for strict purity decrease of the Brownian particle. Finally, we consider a high-temperature Ohmic model and obtain an estimate for the time scale of the transition from noncommutative to ordinary quantum mechanics. This scale is considerably smaller than the decoherence scale

  19. Towards Noncommutative Linking Numbers via the Seiberg-Witten Map

    Directory of Open Access Journals (Sweden)

    H. García-Compeán

    2015-01-01

    Full Text Available Some geometric and topological implications of noncommutative Wilson loops are explored via the Seiberg-Witten map. In the abelian Chern-Simons theory on a three-dimensional manifold, it is shown that the effect of noncommutativity is the appearance of 6n new knots at the nth order of the Seiberg-Witten expansion. These knots are trivial homology cycles which are Poincaré dual to the higher-order Seiberg-Witten potentials. Moreover the linking number of a standard 1-cycle with the Poincaré dual of the gauge field is shown to be written as an expansion of the linking number of this 1-cycle with the Poincaré dual of the Seiberg-Witten gauge fields. In the process we explicitly compute the noncommutative “Jones-Witten” invariants up to first order in the noncommutative parameter. Finally in order to exhibit a physical example, we apply these ideas explicitly to the Aharonov-Bohm effect. It is explicitly displayed at first order in the noncommutative parameter; we also show the relation to the noncommutative Landau levels.

  20. Trace Dynamics and a non-commutative special relativity

    International Nuclear Information System (INIS)

    Lochan, Kinjalk; Singh, T.P.

    2011-01-01

    Trace Dynamics is a classical dynamical theory of non-commuting matrices in which cyclic permutation inside a trace is used to define the derivative with respect to an operator. We use the methods of Trace Dynamics to construct a non-commutative special relativity. We define a line-element using the Trace over space-time coordinates which are assumed to be operators. The line-element is shown to be invariant under standard Lorentz transformations, and is used to construct a non-commutative relativistic dynamics. The eventual motivation for constructing such a non-commutative relativity is to relate the statistical thermodynamics of this classical theory to quantum mechanics. -- Highlights: → Classical time is external to quantum mechanics. → This implies need for a formulation of quantum theory without classical time. → A starting point could be a non-commutative special relativity. → Such a relativity is developed here using the theory of Trace Dynamics. → A line-element is defined using the Trace over non-commuting space-time operators.

  1. Exact BPS bound for noncommutative baby Skyrmions

    International Nuclear Information System (INIS)

    Domrin, Andrei; Lechtenfeld, Olaf; Linares, Román; Maceda, Marco

    2013-01-01

    The noncommutative baby Skyrme model is a Moyal deformation of the two-dimensional sigma model plus a Skyrme term, with a group-valued or Grassmannian target. Exact abelian solitonic solutions have been identified analytically in this model, with a singular commutative limit. Inside any given Grassmannian, we establish a BPS bound for the energy functional, which is saturated by these baby Skyrmions. This asserts their stability for unit charge, as we also test in second-order perturbation theory

  2. Quantum theory of noncommutative fields

    International Nuclear Information System (INIS)

    Carmona, J.M.; Cortes, J.L.; Gamboa, J.; Mendez, F.

    2003-01-01

    Generalizing the noncommutative harmonic oscillator construction, we propose a new extension of quantum field theory based on the concept of 'noncommutative fields'. Our description permits to break the usual particle-antiparticle degeneracy at the dispersion relation level and introduces naturally an ultraviolet and an infrared cutoff. Phenomenological bounds for these new energy scales are given. (author)

  3. The Gribov problem in noncommutative QED

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio [Centro de Estudios Científicos (CECS),Casilla 1469, Valdivia (Chile); Kurkov, Maxim A. [Dipartimento di Matematica, Università di Napoli Federico II,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); CMCC-Universidade Federal do ABC,Santo André, S.P. (Brazil); INFN, Sezione di Napoli,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); Rosa, Luigi; Vitale, Patrizia [Dipartimento di Fisica, Università di Napoli Federico II,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy)

    2016-01-04

    It is shown that in the noncommutative version of QED (NCQED) Gribov copies induced by the noncommutativity of space-time appear in the Landau gauge. This is a genuine effect of noncommutative geometry which disappears when the noncommutative parameter vanishes.

  4. Hall effect in noncommutative coordinates

    International Nuclear Information System (INIS)

    Dayi, Oemer F.; Jellal, Ahmed

    2002-01-01

    We consider electrons in uniform external magnetic and electric fields which move on a plane whose coordinates are noncommuting. Spectrum and eigenfunctions of the related Hamiltonian are obtained. We derive the electric current whose expectation value gives the Hall effect in terms of an effective magnetic field. We present a receipt to find the action which can be utilized in path integrals for noncommuting coordinates. In terms of this action we calculate the related Aharonov-Bohm phase and show that it also yields the same effective magnetic field. When magnetic field is strong enough this phase becomes independent of magnetic field. Measurement of it may give some hints on spatial noncommutativity. The noncommutativity parameter θ can be tuned such that electrons moving in noncommutative coordinates are interpreted as either leading to the fractional quantum Hall effect or composite fermions in the usual coordinates

  5. Beyond the standard model

    International Nuclear Information System (INIS)

    Wilczek, F.

    1993-01-01

    The standard model of particle physics is highly successful, although it is obviously not a complete or final theory. In this presentation the author argues that the structure of the standard model gives some quite concrete, compelling hints regarding what lies beyond. Essentially, this presentation is a record of the author's own judgement of what the central clues for physics beyond the standard model are, and also it is an attempt at some pedagogy. 14 refs., 6 figs

  6. Standard Model processes

    CERN Document Server

    Mangano, M.L.; Aguilar-Saavedra, Juan Antonio; Alekhin, S.; Badger, S.; Bauer, C.W.; Becher, T.; Bertone, V.; Bonvini, M.; Boselli, S.; Bothmann, E.; Boughezal, R.; Cacciari, M.; Carloni Calame, C.M.; Caola, F.; Campbell, J.M.; Carrazza, S.; Chiesa, M.; Cieri, L.; Cimaglia, F.; Febres Cordero, F.; Ferrarese, P.; D'Enterria, D.; Ferrera, G.; Garcia i Tormo, X.; Garzelli, M.V.; Germann, E.; Hirschi, V.; Han, T.; Ita, H.; Jäger, B.; Kallweit, S.; Karlberg, A.; Kuttimalai, S.; Krauss, F.; Larkoski, A.J.; Lindert, J.; Luisoni, G.; Maierhöfer, P.; Mattelaer, O.; Martinez, H.; Moch, S.; Montagna, G.; Moretti, M.; Nason, P.; Nicrosini, O.; Oleari, C.; Pagani, D.; Papaefstathiou, A.; Petriello, F.; Piccinini, F.; Pierini, M.; Pierog, T.; Pozzorini, S.; Re, E.; Robens, T.; Rojo, J.; Ruiz, R.; Sakurai, K.; Salam, G.P.; Salfelder, L.; Schönherr, M.; Schulze, M.; Schumann, S.; Selvaggi, M.; Shivaji, A.; Siodmok, A.; Skands, P.; Torrielli, P.; Tramontano, F.; Tsinikos, I.; Tweedie, B.; Vicini, A.; Westhoff, S.; Zaro, M.; Zeppenfeld, D.; CERN. Geneva. ATS Department

    2017-06-22

    This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  7. Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, J.W.

    2006-12-15

    We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the {phi}{sup 3} and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)

  8. Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space

    International Nuclear Information System (INIS)

    Zahn, J.W.

    2006-12-01

    We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the Φ 3 and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)

  9. Investigations on the renormalizability of a non-commutative u(1) gauge theory

    International Nuclear Information System (INIS)

    Rofner, A.

    2009-01-01

    standard model is formulated via gauge field theories. It is therefore crucial to find their non-commutative, renormalizable counterparts. Having said this we have already addressed the goal and content of this dissertation, which consists in finding a potentially renormalizable theta-deformed u(1) gauge theory. In a first step, we studied in detail a localized version of a model, which represents an extension of ordinary u(1) gauge theory (formulated on Euclidean space) to the non-commutative setting, and is based on adding a term similar to the one of Gurau et. al., leading to an IR-damped gauge boson propagator. In the course of one-loop calculations, we have shown that it implements additional degrees of freedom and hence modifies the original physical content of the theory. A way out was found by implementing the modification of the IR sector through the introduction of a soft breaking term similar to the approach of Gribov and Zwanziger known from commutative Yang Mills theory. However, when trying to show renormalizability at one-loop level, it turned out that the action does not contain the appropriate terms for absorbing the IR divergences. usually, in such cases one constructs an effective renormalizable action via application of renormalization schemes such as Algebraic Renormalization, which in this case fails, due to the inherent non-locality of the star product. As a consequence, some ideas regarding the applicability and possible extension of traditional renormalization schemes to non-commutative GFTs have been discussed. Finally a new action (the BRSW model) was constructed. It could be shown to be renormalizable to one-loop order. Although a rigorous proof is still missing, we expect it to be a very promising candidate for the first fully renormalizable non-commutative gauge field theory.(author) [de

  10. Abelian Toda field theories on the noncommutative plane

    Science.gov (United States)

    Cabrera-Carnero, Iraida

    2005-10-01

    Generalizations of GL(n) abelian Toda and GL with tilde above(n) abelian affine Toda field theories to the noncommutative plane are constructed. Our proposal relies on the noncommutative extension of a zero-curvature condition satisfied by algebra-valued gauge potentials dependent on the fields. This condition can be expressed as noncommutative Leznov-Saveliev equations which make possible to define the noncommutative generalizations as systems of second order differential equations, with an infinite chain of conserved currents. The actions corresponding to these field theories are also provided. The special cases of GL(2) Liouville and GL with tilde above(2) sinh/sine-Gordon are explicitly studied. It is also shown that from the noncommutative (anti-)self-dual Yang-Mills equations in four dimensions it is possible to obtain by dimensional reduction the equations of motion of the two-dimensional models constructed. This fact supports the validity of the noncommutative version of the Ward conjecture. The relation of our proposal to previous versions of some specific Toda field theories reported in the literature is presented as well.

  11. The Standard Model course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    Suggested Readings: Aspects of Quantum Chromodynamics/A Pich, arXiv:hep-ph/0001118. - The Standard Model of Electroweak Interactions/A Pich, arXiv:hep-ph/0502010. - The Standard Model of Particle Physics/A Pich The Standard Model of Elementary Particle Physics will be described. A detailed discussion of the particle content, structure and symmetries of the theory will be given, together with an overview of the most important experimental facts which have established this theoretical framework as the Standard Theory of particle interactions.

  12. Non-commutative representation for quantum systems on Lie groups

    Energy Technology Data Exchange (ETDEWEB)

    Raasakka, Matti Tapio

    2014-01-27

    space path integral with the help of the non-commutative dual variables. In studying the classical limit of the path integral, we show that we recover the correct classical equations of motion for the particle, if we account for the deformation of the phase space in the variational calculus. The non-commutative variables correspond in this limit to the classical momentum variables, further verifying their physical interpretation. We conclude that the non-commutative harmonic analysis facilitates a convenient study of the classical limit of quantum dynamics on a Lie group even if the group is compact, in which case variational calculus cannot easily be applied. As the second physics application, we repeat our above considerations for the case of Ponzano-Regge spin foam model for 3-dimensional quantum gravity. The non-commutative dual variables correspond in this case to discrete metric variables, thus illuminating the geometrical interpretation of the model. Again, we find that a convenient study of the classical limit is made possible through the non-commutative phase space path integral.

  13. Non-commutative representation for quantum systems on Lie groups

    International Nuclear Information System (INIS)

    Raasakka, Matti Tapio

    2014-01-01

    integral with the help of the non-commutative dual variables. In studying the classical limit of the path integral, we show that we recover the correct classical equations of motion for the particle, if we account for the deformation of the phase space in the variational calculus. The non-commutative variables correspond in this limit to the classical momentum variables, further verifying their physical interpretation. We conclude that the non-commutative harmonic analysis facilitates a convenient study of the classical limit of quantum dynamics on a Lie group even if the group is compact, in which case variational calculus cannot easily be applied. As the second physics application, we repeat our above considerations for the case of Ponzano-Regge spin foam model for 3-dimensional quantum gravity. The non-commutative dual variables correspond in this case to discrete metric variables, thus illuminating the geometrical interpretation of the model. Again, we find that a convenient study of the classical limit is made possible through the non-commutative phase space path integral.

  14. Beyond the standard model

    International Nuclear Information System (INIS)

    Pleitez, V.

    1994-01-01

    The search for physics laws beyond the standard model is discussed in a general way, and also some topics on supersymmetry theories. An approach is made on recent possibilities rise in the leptonic sector. Finally, models with SU(3) c X SU(2) L X U(1) Y symmetry are considered as alternatives for the extensions of the elementary particles standard model. 36 refs., 1 fig., 4 tabs

  15. Supersymmetry on the noncommutative lattice

    International Nuclear Information System (INIS)

    Nishimura, Jun; Rey, Soo-Jong; Sugino, Fumihiko

    2003-01-01

    Built upon the proposal of Kaplan et al. (heplat{0206109}), we construct noncommutative lattice gauge theory with manifest supersymmetry. We show that such theory is naturally implementable via orbifold conditions generalizing those used by Kaplan et al. We present the prescription in detail and illustrate it for noncommutative gauge theories latticized partially in two dimensions. We point out a deformation freedom in the defining theory by a complex-parameter, reminiscent of discrete torsion in string theory. We show that, in the continuum limit, the supersymmetry is enhanced only at a particular value of the deformation parameter, determined solely by the size of the noncommutativity. (author)

  16. The Standard Model

    International Nuclear Information System (INIS)

    Sutton, Christine

    1994-01-01

    The initial evidence from Fermilab for the long awaited sixth ('top') quark puts another rivet in the already firm structure of today's Standard Model of physics. Analysis of the Fermilab CDF data gives a top mass of 174 GeV with an error of ten per cent either way. This falls within the mass band predicted by the sum total of world Standard Model data and underlines our understanding of physics in terms of six quarks and six leptons. In this specially commissioned overview, physics writer Christine Sutton explains the Standard Model

  17. Nonperturbative studies of quantum field theories on noncommutative spaces

    Energy Technology Data Exchange (ETDEWEB)

    Volkholz, J.

    2007-11-16

    This work deals with three quantum field theories on spaces with noncommuting position operators. Noncommutative models occur in the study of string theories and quantum gravity. They usually elude treatment beyond the perturbative level. Due to the technique of dimensional reduction, however, we are able to investigate these theories nonperturbatively. This entails translating the action functionals into a matrix language, which is suitable for numerical simulations. First we explore the {lambda}{phi}{sup 4} model on a noncommutative plane. We investigate the continuum limit at fixed noncommutativity, which is known as the double scaling limit. Here we focus especially on the fate of the striped phase, a phase peculiar to the noncommutative version of the regularized {lambda}{phi}{sup 4} model. We find no evidence for its existence in the double scaling limit. Next we examine the U(1) gauge theory on a four-dimensional spacetime, where two spatial directions are noncommutative. We examine the phase structure and find a new phase with a spontaneously broken translation symmetry. In addition we demonstrate the existence of a finite double scaling limit which confirms the renormalizability of the theory. Furthermore we investigate the dispersion relation of the photon. In the weak coupling phase our results are consistent with an infrared instability predicted by perturbation theory. If the translational symmetry is broken, however, we find a dispersion relation corresponding to a massless particle. Finally, we investigate a supersymmetric theory on the fuzzy sphere, which features scalar neutral bosons and Majorana fermions. The supersymmetry is exact in the limit of infinitely large matrices. We investigate the phase structure of the model and find three distinct phases. Summarizing, we study noncommutative field theories beyond perturbation theory. Moreover, we simulate a supersymmetric theory on the fuzzy sphere, which might provide an alternative to attempted

  18. Nonperturbative studies of quantum field theories on noncommutative spaces

    International Nuclear Information System (INIS)

    Volkholz, J.

    2007-01-01

    This work deals with three quantum field theories on spaces with noncommuting position operators. Noncommutative models occur in the study of string theories and quantum gravity. They usually elude treatment beyond the perturbative level. Due to the technique of dimensional reduction, however, we are able to investigate these theories nonperturbatively. This entails translating the action functionals into a matrix language, which is suitable for numerical simulations. First we explore the λφ 4 model on a noncommutative plane. We investigate the continuum limit at fixed noncommutativity, which is known as the double scaling limit. Here we focus especially on the fate of the striped phase, a phase peculiar to the noncommutative version of the regularized λφ 4 model. We find no evidence for its existence in the double scaling limit. Next we examine the U(1) gauge theory on a four-dimensional spacetime, where two spatial directions are noncommutative. We examine the phase structure and find a new phase with a spontaneously broken translation symmetry. In addition we demonstrate the existence of a finite double scaling limit which confirms the renormalizability of the theory. Furthermore we investigate the dispersion relation of the photon. In the weak coupling phase our results are consistent with an infrared instability predicted by perturbation theory. If the translational symmetry is broken, however, we find a dispersion relation corresponding to a massless particle. Finally, we investigate a supersymmetric theory on the fuzzy sphere, which features scalar neutral bosons and Majorana fermions. The supersymmetry is exact in the limit of infinitely large matrices. We investigate the phase structure of the model and find three distinct phases. Summarizing, we study noncommutative field theories beyond perturbation theory. Moreover, we simulate a supersymmetric theory on the fuzzy sphere, which might provide an alternative to attempted lattice formulations. (orig.)

  19. Worldline approach to noncommutative field theory

    International Nuclear Information System (INIS)

    Bonezzi, R; Corradini, O; Viñas, S A Franchino; Pisani, P A G

    2012-01-01

    The study of the heat-trace expansion in non-commutative field theory has shown the existence of Moyal non-local Seeley–DeWitt coefficients which are related to the UV/IR mixing and manifest, in some cases, the non-renormalizability of the theory. We show that these models can be studied in a worldline approach implemented in phase space and arrive at a master formula for the n-point contribution to the heat-trace expansion. This formulation could be useful in understanding some open problems in this area, as the heat-trace expansion for the non-commutative torus or the introduction of renormalizing terms in the action, as well as for generalizations to other non-local operators. (paper)

  20. Testing Non-commutative QED, Constructing Non-commutative MHD

    OpenAIRE

    Guralnik, Z.; Jackiw, R.; Pi, S. Y.; Polychronakos, A. P.

    2001-01-01

    The effect of non-commutativity on electromagnetic waves violates Lorentz invariance: in the presence of a background magnetic induction field b, the velocity for propagation transverse to b differs from c, while propagation along b is unchanged. In principle, this allows a test by the Michelson-Morley interference method. We also study non-commutativity in another context, by constructing the theory describing a charged fluid in a strong magnetic field, which forces the fluid particles into ...

  1. Beyond the standard model

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1990-04-01

    The unresolved issues of the standard model are reviewed, with emphasis on the gauge hierarchy problem. A possible mechanism for generating a hierarchy in the context of superstring theory is described. 24 refs

  2. Nonabelian noncommutative gauge theory via noncommutative extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, Branislav E-mail: jurco@theorie.physik.uni-muenchen.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de

    2001-06-18

    The concept of covariant coordinates on noncommutative spaces leads directly to gauge theories with generalized noncommutative gauge fields of the type that arises in string theory with background B-fields. The theory is naturally expressed in terms of cochains in an appropriate cohomology; we discuss how it fits into the framework of projective modules. The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map). As application we show the exact equality of the Dirac-Born-Infeld action with B-field in the commutative setting and its semi-noncommutative cousin in the intermediate picture. Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; an explicit map between abelian and nonabelian gauge fields is given. All constructions are also valid for non-constant B-field, Poisson structure and metric.

  3. Nonabelian noncommutative gauge theory via noncommutative extra dimensions

    International Nuclear Information System (INIS)

    Jurco, Branislav; Schupp, Peter; Wess, Julius

    2001-01-01

    The concept of covariant coordinates on noncommutative spaces leads directly to gauge theories with generalized noncommutative gauge fields of the type that arises in string theory with background B-fields. The theory is naturally expressed in terms of cochains in an appropriate cohomology; we discuss how it fits into the framework of projective modules. The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map). As application we show the exact equality of the Dirac-Born-Infeld action with B-field in the commutative setting and its semi-noncommutative cousin in the intermediate picture. Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; an explicit map between abelian and nonabelian gauge fields is given. All constructions are also valid for non-constant B-field, Poisson structure and metric

  4. Testing the standard model

    International Nuclear Information System (INIS)

    Gordon, H.; Marciano, W.; Williams, H.H.

    1982-01-01

    We summarize here the results of the standard model group which has studied the ways in which different facilities may be used to test in detail what we now call the standard model, that is SU/sub c/(3) x SU(2) x U(1). The topics considered are: W +- , Z 0 mass, width; sin 2 theta/sub W/ and neutral current couplings; W + W - , Wγ; Higgs; QCD; toponium and naked quarks; glueballs; mixing angles; and heavy ions

  5. Angular correlations in top quark decays in standard model extensions

    International Nuclear Information System (INIS)

    Batebi, S.; Etesami, S. M.; Mohammadi-Najafabadi, M.

    2011-01-01

    The CMS Collaboration at the CERN LHC has searched for the t-channel single top quark production using the spin correlation of the t-channel. The signal extraction and cross section measurement rely on the angular distribution of the charged lepton in the top quark decays, the angle between the charged lepton momentum and top spin in the top rest frame. The behavior of the angular distribution is a distinct slope for the t-channel single top (signal) while it is flat for the backgrounds. In this Brief Report, we investigate the contributions which this spin correlation may receive from a two-Higgs doublet model, a top-color assisted technicolor (TC2) and the noncommutative extension of the standard model.

  6. Beyond the standard model

    International Nuclear Information System (INIS)

    Cuypers, F.

    1997-05-01

    These lecture notes are intended as a pedagogical introduction to several popular extensions of the standard model of strong and electroweak interactions. The topics include the Higgs sector, the left-right symmetric model, grand unification and supersymmetry. Phenomenological consequences and search procedures are emphasized. (author) figs., tabs., 18 refs

  7. Soldering formalism in noncommutative field theory: a brief note

    International Nuclear Information System (INIS)

    Ghosh, Subir

    2004-01-01

    In this Letter, I develop the soldering formalism in a new domain--the noncommutative planar field theories. The soldering mechanism fuses two distinct theories showing opposite or complimentary properties of some symmetry, taking into account the interference effects. The above mentioned symmetry is hidden in the composite (or soldered) theory. In the present work it is shown that a pair of noncommutative Maxwell-Chern-Simons theories, having opposite signs in their respective topological terms, can be consistently soldered to yield the Proca model (Maxwell theory with a mass term) with corrections that are at least quadratic in the noncommutativity parameter. We further argue that this model can be thought of as the noncommutative generalization of the Proca theory of ordinary spacetime. It is well known that abelian noncommutative gauge theory bears a close structural similarity with non-abelian gauge theory. This fact is manifested in a non-trivial way if the present Letter is compared with existing literature, where soldering of non-abelian models are discussed. Thus the present work further establishes the robustness of the soldering programme. The subtle role played by gauge invariance (or the lack of it), in the above soldering process, is revealed in an interesting way

  8. Beyond the standard model

    International Nuclear Information System (INIS)

    Altarelli, G.

    1987-01-01

    The standard model of particle interactions is a complete and relatively simple theoretical framework which describes all the observed fundamental forces. It consists of quantum chromodynamics (QCD) and of the electro-weak theory of Glashow, Salam and Weinberg. The former is the theory of colored quarks and gluons, which underlies the observed phenomena of strong interactions, the latter leads to a unified description of electromagnetism and of weak interactions. The inclusion of the classical Einstein theory of gravity completes the set of established basic knowledge. The standard model is in agreement with essentially all of the experimental information which is very rich by now. The recent discovery of the charged and neutral intermediate vector bosons of weak interactions at the expected masses has closed a really important chapter of particle physics. Never before the prediction of new particles was so neat and quantitatively precise. Yet the experimental proof of the standard model is not completed. For example, the hints of experimental evidence for the top quark at a mass ∼ 40 GeV have not yet been firmly established. The Higgs sector of the theory has not been tested at all. Beyond the realm of pure QED, even remaining within the electro-weak sector, the level of quantitative precision in testing the standard model does not exceed 5% or so. Furthermore, the standard model does not look as the ultimate theory. To a closer inspection a large class of fundamental questions emerges and one finds that a host of crucial problems are left open by the standard model

  9. Noncommuting fields and non-Abelian fluids

    International Nuclear Information System (INIS)

    Jackiw, R.

    2004-01-01

    The original ideas about noncommuting coordinates are recalled. The connection between U(1) gauge fields defined on noncommuting coordinates and fluid mechanics is explained. Non-Abelian fluid mechanics is described

  10. Noncommutative Blackwell-Ross martingale inequality

    Science.gov (United States)

    Talebi, Ali; Moslehian, Mohammad Sal; Sadeghi, Ghadir

    We establish a noncommutative Blackwell-Ross inequality for supermartingales under a suitable condition which generalizes Khan’s work to the noncommutative setting. We then employ it to deduce an Azuma-type inequality.

  11. Conformal quantum mechanics and holography in noncommutative space-time

    Science.gov (United States)

    Gupta, Kumar S.; Harikumar, E.; Zuhair, N. S.

    2017-09-01

    We analyze the effects of noncommutativity in conformal quantum mechanics (CQM) using the κ-deformed space-time as a prototype. Up to the first order in the deformation parameter, the symmetry structure of the CQM algebra is preserved but the coupling in a canonical model of the CQM gets deformed. We show that the boundary conditions that ensure a unitary time evolution in the noncommutative CQM can break the scale invariance, leading to a quantum mechanical scaling anomaly. We calculate the scaling dimensions of the two and three point functions in the noncommutative CQM which are shown to be deformed. The AdS2 / CFT1 duality for the CQM suggests that the corresponding correlation functions in the holographic duals are modified. In addition, the Breitenlohner-Freedman bound also picks up a noncommutative correction. The strongly attractive regime of a canonical model of the CQM exhibit quantum instability. We show that the noncommutativity softens this singular behaviour and its implications for the corresponding holographic duals are discussed.

  12. Beyond the Standard Model

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1997-05-01

    These lectures constitute a short course in ''Beyond the Standard Model'' for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e + e - colliders

  13. Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1997-05-01

    These lectures constitute a short course in ``Beyond the Standard Model`` for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e{sup +}e{sup {minus}} colliders.

  14. Conference: STANDARD MODEL @ LHC

    CERN Multimedia

    2012-01-01

    HCØ institute Universitetsparken 5 DK-2100 Copenhagen Ø Denmark Room: Auditorium 2 STANDARD MODEL @ LHC Niels Bohr International Academy and Discovery Center 10-13 April 2012 This four day meeting will bring together both experimental and theoretical aspects of Standard Model phenomenology at the LHC. The very latest results from the LHC experiments will be under discussion. Topics covered will be split into the following categories:     * QCD (Hard,Soft & PDFs)     * Vector Boson production     * Higgs searches     * Top Quark Physics     * Flavour physics

  15. The Standard Model

    Science.gov (United States)

    Burgess, Cliff; Moore, Guy

    2012-04-01

    List of illustrations; List of tables; Preface; Acknowledgments; Part I. Theoretical Framework: 1. Field theory review; 2. The standard model: general features; 3. Cross sections and lifetimes; Part II. Applications: Leptons: 4. Elementary boson decays; 5. Leptonic weak interactions: decays; 6. Leptonic weak interactions: collisions; 7. Effective Lagrangians; Part III. Applications: Hadrons: 8. Hadrons and QCD; 9. Hadronic interactions; Part IV. Beyond the Standard Model: 10. Neutrino masses; 11. Open questions, proposed solutions; Appendix A. Experimental values for the parameters; Appendix B. Symmetries and group theory review; Appendix C. Lorentz group and the Dirac algebra; Appendix D. ξ-gauge Feynman rules; Appendix E. Metric convention conversion table; Select bibliography; Index.

  16. Einstein-Podolski-Rosen experiment from noncommutative quantum gravity

    International Nuclear Information System (INIS)

    Heller, Michael; Sasin, Wieslaw

    1998-01-01

    It is shown that the Einstein-Podolski-Rosen type experiments are the natural consequence of the groupoid approach to noncommutative unification of general relativity and quantum mechanics. The geometry of this model is determined by the noncommutative algebra A=C c ∞ (G,C) of complex valued, compactly supported, functions (with convolution as multiplication) on the groupoid G=ExΓ. In the model considered in the present paper E is the total space of the frame bundle over space-time and Γ is the Lorentz group. The correlations of the EPR type should be regarded as remnants of the totally non-local physics below the Planck threshold which is modelled by a noncommutative geometry

  17. Noncommutative QED and anomalous dipole moments

    International Nuclear Information System (INIS)

    Riad, I.F.; Sheikh-Jabbari, M.M.

    2000-09-01

    We study QED on noncommutative spaces, NCQED. In particular we present the detailed calculation for the noncommutative electron-photon vertex and show that the Ward identity is satisfied. We discuss that in the noncommutative case moving electron will show electric dipole effects. In addition, we work out the electric and magnetic dipole moments up to one loop level. For the magnetic moment we show that noncommutative electron has an intrinsic (spin independent) magnetic moment. (author)

  18. Constraining the noncommutative spectral action via astrophysical observations.

    Science.gov (United States)

    Nelson, William; Ochoa, Joseph; Sakellariadou, Mairi

    2010-09-03

    The noncommutative spectral action extends our familiar notion of commutative spaces, using the data encoded in a spectral triple on an almost commutative space. Varying a rather simple action, one can derive all of the standard model of particle physics in this setting, in addition to a modified version of Einstein-Hilbert gravity. In this Letter we use observations of pulsar timings, assuming that no deviation from general relativity has been observed, to constrain the gravitational sector of this theory. While the bounds on the coupling constants remain rather weak, they are comparable to existing bounds on deviations from general relativity in other settings and are likely to be further constrained by future observations.

  19. Structural aspects of quantum field theory and noncommutative geometry

    CERN Document Server

    Grensing, Gerhard

    2013-01-01

    This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...

  20. Beyond the Standard Model

    International Nuclear Information System (INIS)

    Ross, G.G.

    1995-01-01

    The attempts to develop models beyond the Standard Model are briefly reviewed paying particular regard to the mechanisms responsible for symmetry breaking and mass generation. A comparison is made of the theoretical expectations with recent precision measurements for theories with composite Higgs and for supersymmetric theories with elementary Higgs boson(s). The implications of a heavy top quark and the origin of the light quark and lepton masses and mixing angles are considered within these frameworks. ((orig.))

  1. Standard Model festival

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-10-15

    The 'Standard Model' of modern particle physics, with the quantum chromodynamics (QCD) theory of inter-quark forces superimposed on the unified electroweak picture, is still unchallenged, but it is not the end of physics. This was the message at the big International Symposium on Lepton and Photon Interactions at High Energies, held in Hamburg from 27-31 July.

  2. Standard Model festival

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The 'Standard Model' of modern particle physics, with the quantum chromodynamics (QCD) theory of inter-quark forces superimposed on the unified electroweak picture, is still unchallenged, but it is not the end of physics. This was the message at the big International Symposium on Lepton and Photon Interactions at High Energies, held in Hamburg from 27-31 July

  3. Beyond the Standard Model

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    The necessity for new physics beyond the Standard Model will be motivated. Theoretical problems will be exposed and possible solutions will be described. The goal is to present the exciting new physics ideas that will be tested in the near future. Supersymmetry, grand unification, extra dimensions and string theory will be presented.

  4. Quantum Field Theory with a Minimal Length Induced from Noncommutative Space

    International Nuclear Information System (INIS)

    Lin Bing-Sheng; Chen Wei; Heng Tai-Hua

    2014-01-01

    From the inspection of noncommutative quantum mechanics, we obtain an approximate equivalent relation for the energy dependence of the Planck constant in the noncommutative space, which means a minimal length of the space. We find that this relation is reasonable and it can inherit the main properties of the noncommutative space. Based on this relation, we derive the modified Klein—Gordon equation and Dirac equation. We investigate the scalar field and ϕ 4 model and then quantum electrodynamics in our theory, and derive the corresponding Feynman rules. These results may be considered as reasonable approximations to those of noncommutative quantum field theory. Our theory also shows a connection between the space with a minimal length and the noncommutative space. (physics of elementary particles and fields)

  5. Noncommutative products of Euclidean spaces

    Science.gov (United States)

    Dubois-Violette, Michel; Landi, Giovanni

    2018-05-01

    We present natural families of coordinate algebras on noncommutative products of Euclidean spaces R^{N_1} × _R R^{N_2} . These coordinate algebras are quadratic ones associated with an R -matrix which is involutive and satisfies the Yang-Baxter equations. As a consequence, they enjoy a list of nice properties, being regular of finite global dimension. Notably, we have eight-dimensional noncommutative euclidean spaces R4 × _R R4 . Among these, particularly well behaved ones have deformation parameter u \\in S^2 . Quotients include seven spheres S7_u as well as noncommutative quaternionic tori TH_u = S^3 × _u S^3 . There is invariance for an action of {{SU}}(2) × {{SU}}(2) on the torus TH_u in parallel with the action of U(1) × U(1) on a `complex' noncommutative torus T^2_θ which allows one to construct quaternionic toric noncommutative manifolds. Additional classes of solutions are disjoint from the classical case.

  6. Beyond the Standard Model

    International Nuclear Information System (INIS)

    Lykken, Joseph D.

    2010-01-01

    'BSM physics' is a phrase used in several ways. It can refer to physical phenomena established experimentally but not accommodated by the Standard Model, in particular dark matter and neutrino oscillations (technically also anything that has to do with gravity, since gravity is not part of the Standard Model). 'Beyond the Standard Model' can also refer to possible deeper explanations of phenomena that are accommodated by the Standard Model but only with ad hoc parameterizations, such as Yukawa couplings and the strong CP angle. More generally, BSM can be taken to refer to any possible extension of the Standard Model, whether or not the extension solves any particular set of puzzles left unresolved in the SM. In this general sense one sees reference to the BSM 'theory space' of all possible SM extensions, this being a parameter space of coupling constants for new interactions, new charges or other quantum numbers, and parameters describing possible new degrees of freedom or new symmetries. Despite decades of model-building it seems unlikely that we have mapped out most of, or even the most interesting parts of, this theory space. Indeed we do not even know what is the dimensionality of this parameter space, or what fraction of it is already ruled out by experiment. Since Nature is only implementing at most one point in this BSM theory space (at least in our neighborhood of space and time), it might seem an impossible task to map back from a finite number of experimental discoveries and measurements to a unique BSM explanation. Fortunately for theorists the inevitable limitations of experiments themselves, in terms of resolutions, rates, and energy scales, means that in practice there are only a finite number of BSM model 'equivalence classes' competing at any given time to explain any given set of results. BSM phenomenology is a two-way street: not only do experimental results test or constrain BSM models, they also suggest - to those who get close enough to listen

  7. Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Lykken, Joseph D.; /Fermilab

    2010-05-01

    'BSM physics' is a phrase used in several ways. It can refer to physical phenomena established experimentally but not accommodated by the Standard Model, in particular dark matter and neutrino oscillations (technically also anything that has to do with gravity, since gravity is not part of the Standard Model). 'Beyond the Standard Model' can also refer to possible deeper explanations of phenomena that are accommodated by the Standard Model but only with ad hoc parameterizations, such as Yukawa couplings and the strong CP angle. More generally, BSM can be taken to refer to any possible extension of the Standard Model, whether or not the extension solves any particular set of puzzles left unresolved in the SM. In this general sense one sees reference to the BSM 'theory space' of all possible SM extensions, this being a parameter space of coupling constants for new interactions, new charges or other quantum numbers, and parameters describing possible new degrees of freedom or new symmetries. Despite decades of model-building it seems unlikely that we have mapped out most of, or even the most interesting parts of, this theory space. Indeed we do not even know what is the dimensionality of this parameter space, or what fraction of it is already ruled out by experiment. Since Nature is only implementing at most one point in this BSM theory space (at least in our neighborhood of space and time), it might seem an impossible task to map back from a finite number of experimental discoveries and measurements to a unique BSM explanation. Fortunately for theorists the inevitable limitations of experiments themselves, in terms of resolutions, rates, and energy scales, means that in practice there are only a finite number of BSM model 'equivalence classes' competing at any given time to explain any given set of results. BSM phenomenology is a two-way street: not only do experimental results test or constrain BSM models, they also suggest

  8. Noncommutative QFT and renormalization

    International Nuclear Information System (INIS)

    Grosse, H.; Wulkenhaar, R.

    2006-01-01

    It was a great pleasure for me (Harald Grosse) to be invited to talk at the meeting celebrating the 70th birthday of Prof. Julius Wess. I remember various interactions with Julius during the last years: At the time of my studies at Vienna with Walter Thirring, Julius left already Vienna, I learned from his work on effective chiral Lagrangians. Next we met at various conferences and places like CERN (were I worked with Andre Martin, an old friend of Julius), and we all learned from Julius' and Bruno's creation of supersymmetry, next we realized our common interests in noncommutative quantum field theory and did have an intensive exchange. Julius influenced our perturbative approach to gauge field theories were we used the Seiberg-Witten map after his advice. And finally I lively remember the sad days when during my invitation to Vienna Julius did have the serious heart attack. So we are very happy, that you recovered so well, and we wish you all the best for the forthcoming years. Many happy recurrences. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  9. Testing the Standard Model

    CERN Document Server

    Riles, K

    1998-01-01

    The Large Electron Project (LEP) accelerator near Geneva, more than any other instrument, has rigorously tested the predictions of the Standard Model of elementary particles. LEP measurements have probed the theory from many different directions and, so far, the Standard Model has prevailed. The rigour of these tests has allowed LEP physicists to determine unequivocally the number of fundamental 'generations' of elementary particles. These tests also allowed physicists to ascertain the mass of the top quark in advance of its discovery. Recent increases in the accelerator's energy allow new measurements to be undertaken, measurements that may uncover directly or indirectly the long-sought Higgs particle, believed to impart mass to all other particles.

  10. Noncommutative CPN and CHN and their physics

    International Nuclear Information System (INIS)

    Sako, Akifumi; Suzuki, Toshiya; Umetsu, Hiroshi

    2013-01-01

    We study noncommutative deformation of manifolds by constructing star products. We start from a noncommutative R d and discuss more genaral noncommutative manifolds. In general, star products can not be described in concrete expressions without some exceptions. In this article we introduce new examples of noncommutative manifolds with explicit star products. Karabegov's deformation quantization of CP N and CH N with separation of variables gives explicit calulable star products represented by gamma functions. Using the results of star products between inhomogeneous coordinates, we find creation and anihilation operators and obtain the Fock representation of the noncommutative CP N and CH N .

  11. Standard Model physics

    CERN Multimedia

    Altarelli, Guido

    1999-01-01

    Introduction structure of gauge theories. The QEDand QCD examples. Chiral theories. The electroweak theory. Spontaneous symmetry breaking. The Higgs mechanism Gauge boson and fermion masses. Yukawa coupling. Charges current couplings. The Cabibo-Kobayashi-Maskawa matrix and CP violation. Neutral current couplings. The Glasow-Iliopoulos-Maiani mechanism. Gauge boson and Higgs coupling. Radiative corrections and loops. Cancellation of the chiral anomaly. Limits on the Higgs comparaison. Problems of the Standard Model. Outlook.

  12. Standard model and beyond

    International Nuclear Information System (INIS)

    Quigg, C.

    1984-09-01

    The SU(3)/sub c/ circle crossSU(2)/sub L/circle crossU(1)/sub Y/ gauge theory of ineractions among quarks and leptons is briefly described, and some recent notable successes of the theory are mentioned. Some shortcomings in our ability to apply the theory are noted, and the incompleteness of the standard model is exhibited. Experimental hints that Nature may be richer in structure than the minimal theory are discussed. 23 references

  13. Noncommutative mathematics for quantum systems

    CERN Document Server

    Franz, Uwe

    2016-01-01

    Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...

  14. On noncommutative open string theories

    International Nuclear Information System (INIS)

    Russo, J.G.; Sheikh-Jabbari, M.M.

    2000-08-01

    We investigate new compactifications of OM theory giving rise to a 3+1 dimensional open string theory with noncommutative x 0 -x 1 and x 2 -x 3 coordinates. The theory can be directly obtained by starting with a D3 brane with parallel (near critical) electric and magnetic field components, in the presence of a RR scalar field. The magnetic parameter permits to interpolate continuously between the x 0 -x 1 noncommutative open string theory and the x 2 -x 3 spatial noncommutative U(N) super Yang-Mills theory. We discuss SL(2, Z) transformations of this theory. Using the supergravity description of the large N limit, we also compute corrections to the quark-antiquark Coulomb potential arising in the NCOS theory. (author)

  15. Charged thin-shell gravastars in noncommutative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Oevguen, Ali [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Eastern Mediterranean University, Physics Department, Famagusta, Northern Cyprus (Turkey); Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Jusufi, Kimet [State University of Tetovo, Physics Department, Tetovo (Macedonia, The Former Yugoslav Republic of); Institute of Physics, Ss. Cyril and Methodius University, Faculty of Natural Sciences and Mathematics, Skopje (Macedonia, The Former Yugoslav Republic of)

    2017-08-15

    In this paper we construct a charged thin-shell gravastar model within the context of noncommutative geometry. To do so, we choose the interior of the nonsingular de Sitter spacetime with an exterior charged noncommutative solution by cut-and-paste technique and apply the generalized junction conditions. We then investigate the stability of a charged thin-shell gravastar under linear perturbations around the static equilibrium solutions as well as the thermodynamical stability of the charged gravastar. We find the stability regions, by choosing appropriate parameter values, located sufficiently close to the event horizon. (orig.)

  16. Quasi standard model physics

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1986-01-01

    Possible small extensions of the standard model are considered, which are motivated by the strong CP problem and by the baryon asymmetry of the Universe. Phenomenological arguments are given which suggest that imposing a PQ symmetry to solve the strong CP problem is only tenable if the scale of the PQ breakdown is much above M W . Furthermore, an attempt is made to connect the scale of the PQ breakdown to that of the breakdown of lepton number. It is argued that in these theories the same intermediate scale may be responsible for the baryon number of the Universe, provided the Kuzmin Rubakov Shaposhnikov (B+L) erasing mechanism is operative. (orig.)

  17. Standard-model bundles

    CERN Document Server

    Donagi, Ron; Pantev, Tony; Waldram, Dan; Donagi, Ron; Ovrut, Burt; Pantev, Tony; Waldram, Dan

    2002-01-01

    We describe a family of genus one fibered Calabi-Yau threefolds with fundamental group ${\\mathbb Z}/2$. On each Calabi-Yau $Z$ in the family we exhibit a positive dimensional family of Mumford stable bundles whose symmetry group is the Standard Model group $SU(3)\\times SU(2)\\times U(1)$ and which have $c_{3} = 6$. We also show that for each bundle $V$ in our family, $c_{2}(Z) - c_{2}(V)$ is the class of an effective curve on $Z$. These conditions ensure that $Z$ and $V$ can be used for a phenomenologically relevant compactification of Heterotic M-theory.

  18. The standard model

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1994-03-01

    In these lectures, my aim is to provide a survey of the standard model with emphasis on its renormalizability and electroweak radiative corrections. Since this is a school, I will try to be somewhat pedagogical by providing examples of loop calculations. In that way, I hope to illustrate some of the commonly employed tools of particle physics. With those goals in mind, I have organized my presentations as follows: In Section 2, renormalization is discussed from an applied perspective. The technique of dimensional regularization is described and used to define running couplings and masses. The utility of the renormalization group for computing leading logs is illustrated for the muon anomalous magnetic moment. In Section 3 electroweak radiative corrections are discussed. Standard model predictions are surveyed and used to constrain the top quark mass. The S, T, and U parameters are introduced and employed to probe for ''new physics''. The effect of Z' bosons on low energy phenomenology is described. In Section 4, a detailed illustration of electroweak radiative corrections is given for atomic parity violation. Finally, in Section 5, I conclude with an outlook for the future

  19. LAPLACE-RUNGE-LENZ VECTOR IN QUANTUM MECHANICS IN NONCOMMUTATIVE SPACE

    Directory of Open Access Journals (Sweden)

    Peter Prešnajder

    2014-04-01

    Full Text Available The object under scrutiny is the dynamical symmetry connected with conservation of the Laplace-Runge-Lenz vector (LRL in the hydrogen atom problem solved by means of noncommutative quantum mechanics (NCQM. The considered noncommutative configuration space has such a “fuzzy”structure that the rotational invariance is not spoilt. An analogy with the LRL vector in the NCQM is brought to provide our results and also a comparison with the standard QM predictions.

  20. Connecting dissipation and noncommutativity: A Bateman system case study

    Science.gov (United States)

    Pal, Sayan Kumar; Nandi, Partha; Chakraborty, Biswajit

    2018-06-01

    We present an approach to the problem of quantization of the damped harmonic oscillator. To start with, we adopt the standard method of doubling the degrees of freedom of the system (Bateman form) and then, by introducing some new parameters, we get a generalized coupled set of equations from the Bateman form. Using the corresponding time-independent Lagrangian, quantum effects on a pair of Bateman oscillators embedded in an ambient noncommutative space (Moyal plane) are analyzed by using both path integral and canonical quantization schemes within the framework of the Hilbert-Schmidt operator formulation. Our method is distinct from those existing in the literature and where the ambient space was taken to be commutative. Our quantization shows that we end up again with a Bateman system except that the damping factor undergoes renormalization. Strikingly, the corresponding expression shows that the renormalized damping factor can be nonzero even if "bare" one is zero to begin with. In other words, noncommutativity can act as a source of dissipation. Conversely, the noncommutative parameter θ , taken to be a free one now, can be fine tuned to get a vanishing renormalized damping factor. This indicates in some sense a "duality" between dissipation and noncommutativity. Our results match the existing results in the commutative limit.

  1. Beyond the standard model

    International Nuclear Information System (INIS)

    Domokos, G.; Elliott, B.; Kovesi-Domokos, S.; Mrenna, S.

    1992-01-01

    In this paper the authors briefly review the necessity of going beyond the Standard Model. We argue that certain types of composite models of quarks and leptons may resolve some of the difficulties of the SM. Furthermore the authors argue that, even without a full specification of a composite model, one may predict some observable effects following from the compositeness hypothesis. The effects are most easily seen in reaction channels in which there is little competition from known processes predicted by the SM, typically in neutrino induced reactions. The authors suggest that above a certain characteristic energy, neutrino cross sections rise well above those predicted within the framework of the SM and the difference between the characteristic features of lepton and hadron induced reactions is blurred. The authors claim that there is some (so far, tenuous) evidence for the phenomenon we just alluded to: in certain high energy cosmic ray interactions it appears that photons and/or neutrinos behave in a manner which is inconsistent with the SM. The authors analyze the data and conclude that the origin of the anomaly in the observational data arises from an increased neutrino interaction cross section

  2. Standard model baryogenesis

    CERN Document Server

    Gavela, M.B.; Orloff, J.; Pene, O

    1994-01-01

    Simply on CP arguments, we argue against a Standard Model explanation of baryogenesis via the charge transport mechanism. A CP-asymmetry is found in the reflection coefficients of quarks hitting the electroweak phase boundary created during a first order phase transition. The problem is analyzed both in an academic zero temperature case and in the realistic finite temperature one. At finite temperature, a crucial role is played by the damping rate of quasi-quarks in a hot plasma, which induces loss of spatial coherence and suppresses reflection on the boundary even at tree-level. The resulting baryon asymmetry is many orders of magnitude below what observation requires. We comment as well on related works.

  3. Non-commutative gauge Gravity: Second- order Correction and Scalar Particles Creation

    International Nuclear Information System (INIS)

    Zaim, S.

    2009-01-01

    A noncommutative gauge theory for a charged scalar field is constructed. The invariance of this model under local Poincare and general coordinate transformations is verified. Using the general modified field equation, a general Klein-Gordon equation up to the second order of the noncommu- tativity parameter is derived. As an application, we choose the Bianchi I universe. Using the Seiberg-Witten maps, the deformed noncommutative metric is obtained and a particle production process is studied. It is shown that the noncommutativity plays the same role as an electric field, gravity and chemical potential.

  4. Twisted covariant noncommutative self-dual gravity

    International Nuclear Information System (INIS)

    Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.

    2008-01-01

    A twisted covariant formulation of noncommutative self-dual gravity is presented. The formulation for constructing twisted noncommutative Yang-Mills theories is used. It is shown that the noncommutative torsion is solved at any order of the θ expansion in terms of the tetrad and some extra fields of the theory. In the process the first order expansion in θ for the Plebanski action is explicitly obtained.

  5. Noncommutative quantum electrodynamics in path integral framework

    Energy Technology Data Exchange (ETDEWEB)

    Bourouaine, S; Benslama, A [Departement de Physique, Faculte des Sciences, Universite Mentouri, Constantine (Algeria)

    2005-08-19

    In this paper, the dynamics of a relativistic particle of spin 1/2, interacting with an external electromagnetic field in noncommutative space, is studied in the path integral framework. By adopting the Fradkin-Gitman formulation, the exact Green's function in noncommutative space (NCGF) for the quadratic case of a constant electromagnetic field is computed, and it is shown that its form is similar to its counterpart given in commutative space. In addition, it is deduced that the effect of noncommutativity has the same effect as an additional constant field depending on a noncommutative {theta} matrix.

  6. Noncommutative quantum electrodynamics in path integral framework

    International Nuclear Information System (INIS)

    Bourouaine, S; Benslama, A

    2005-01-01

    In this paper, the dynamics of a relativistic particle of spin 1/2, interacting with an external electromagnetic field in noncommutative space, is studied in the path integral framework. By adopting the Fradkin-Gitman formulation, the exact Green's function in noncommutative space (NCGF) for the quadratic case of a constant electromagnetic field is computed, and it is shown that its form is similar to its counterpart given in commutative space. In addition, it is deduced that the effect of noncommutativity has the same effect as an additional constant field depending on a noncommutative θ matrix

  7. Noncommutative time in quantum field theory

    International Nuclear Information System (INIS)

    Salminen, Tapio; Tureanu, Anca

    2011-01-01

    We analyze, starting from first principles, the quantization of field theories, in order to find out to which problems a noncommutative time would possibly lead. We examine the problem in the interaction picture (Tomonaga-Schwinger equation), the Heisenberg picture (Yang-Feldman-Kaellen equation), and the path integral approach. They all indicate inconsistency when time is taken as a noncommutative coordinate. The causality issue appears as the key aspect, while the unitarity problem is subsidiary. These results are consistent with string theory, which does not admit a time-space noncommutative quantum field theory as its low-energy limit, with the exception of lightlike noncommutativity.

  8. Canonical noncommutativity in special and general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Chryssomalakos, C; Hernandez, H; Okon, E; Vazquez Montejo, P [Instituto de Ciencias Nucleares, Universidad National Autonoma de Mexico, 04510 Mexico, D.F. (Mexico)

    2007-05-15

    There are two main points that concern us in this short contribution. The first one is the conceptual distinction between a intrinsically noncommuting spacetime, i.e., one where the coordinate functions fail to commute among themselves, on the one hand, and the proposal of noncommuting position operators, on the other. The second point concerns a particular form of position operator noncommutativity, involving the spin of the particle, to which several approaches seem to converge. We also suggest an analysis of the effects of spacetime curvature on position operator noncommutativity.

  9. Noncommutative geometry and twisted conformal symmetry

    International Nuclear Information System (INIS)

    Matlock, Peter

    2005-01-01

    The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted coproduct. This allows for the definition of conformal symmetry in a noncommutative background geometry. The twisted coproduct is reviewed for the Poincare algebra and the construction is then extended to the full conformal algebra. The case of Moyal-type noncommutativity of the coordinates is considered. It is demonstrated that conformal invariance need not be viewed as incompatible with noncommutative geometry; the noncommutativity of the coordinates appears as a consequence of the twisting, as has been shown in the literature in the case of the twisted Poincare algebra

  10. Nucleon structure functions in noncommutative space-time

    Energy Technology Data Exchange (ETDEWEB)

    Rafiei, A.; Rezaei, Z.; Mirjalili, A. [Yazd University, Physics Department, Yazd (Iran, Islamic Republic of)

    2017-05-15

    In the context of noncommutative space-time we investigate the nucleon structure functions which play an important role in identifying the internal structure of nucleons. We use the corrected vertices and employ new vertices that appear in two approaches of noncommutativity and calculate the proton structure functions in terms of the noncommutative tensor θ{sub μν}. To check our results we plot the nucleon structure function (NSF), F{sub 2}(x), and compare it with experimental data and the results from the GRV, GJR and CT10 parametrization models. We show that with the new vertex that arises the noncommutativity correction will lead to a better consistency between theoretical results and experimental data for the NSF. This consistency will be better for small values of the Bjorken variable x. To indicate and confirm the validity of our calculations we also act conversely. We obtain a lower bound for the numerical values of Λ{sub NC} scale which correspond to recent reports. (orig.)

  11. Noncommutative instantons: a new approach

    International Nuclear Information System (INIS)

    Schwarz, A.

    2001-01-01

    We discuss instantons on noncommutative four-dimensional Euclidean space. In the commutative case one can consider instantons directly on Euclidean space, then we should restrict ourselves to the gauge fields that are gauge equivalent to the trivial field at infinity. However, technically it is more convenient to work on the four-dimensional sphere. We will show that the situation in the noncommutative case is quite similar. One can analyze instantons taking as a starting point the algebra of smooth functions vanishing at infinity, but it is convenient to add a unit element to this algebra (this corresponds to a transition to a sphere at the level of topology). Our approach is more rigorous than previous considerations; it seems that it is also simpler and more transparent. In particular, we obtain the ADHM equations in a very simple way. (orig.)

  12. Non-commutative Nash inequalities

    International Nuclear Information System (INIS)

    Kastoryano, Michael; Temme, Kristan

    2016-01-01

    A set of functional inequalities—called Nash inequalities—are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative L p spaces, where their relationship to Poincaré and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups

  13. Quantum gravity from noncommutative spacetime

    International Nuclear Information System (INIS)

    Lee, Jungjai; Yang, Hyunseok

    2014-01-01

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  14. Quantum gravity from noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)

    2014-12-15

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  15. Noncommuting limits of oscillator wave functions

    International Nuclear Information System (INIS)

    Daboul, J.; Pogosyan, G. S.; Wolf, K. B.

    2007-01-01

    Quantum harmonic oscillators with spring constants k > 0 plus constant forces f exhibit rescaled and displaced Hermite-Gaussian wave functions, and discrete, lower bound spectra. We examine their limits when (k, f) → (0, 0) along two different paths. When f → 0 and then k → 0, the contraction is standard: the system becomes free with a double continuous, positive spectrum, and the wave functions limit to plane waves of definite parity. On the other hand, when k → 0 first, the contraction path passes through the free-fall system, with a continuous, nondegenerate, unbounded spectrum and displaced Airy wave functions, while parity is lost. The subsequent f → 0 limit of the nonstandard path shows the dc hysteresis phenomenon of noncommuting contractions: the lost parity reappears as an infinitely oscillating superposition of the two limiting solutions that are related by the symmetry

  16. Time-dependent transitions with time–space noncommutativity and its implications in quantum optics

    International Nuclear Information System (INIS)

    Chandra, Nitin

    2012-01-01

    We study the time-dependent transitions of a quantum-forced harmonic oscillator in noncommutative R 1,1 perturbatively to linear order in the noncommutativity θ. We show that the Poisson distribution gets modified, and that the vacuum state evolves into a ‘squeezed’ state rather than a coherent state. The time evolutions of uncertainties in position and momentum in vacuum are also studied and imply interesting consequences for modeling nonlinear phenomena in quantum optics. (paper)

  17. Noncommutativity into Dirac Equation with mass dependent on the position

    International Nuclear Information System (INIS)

    Bastos, Samuel Batista; Almeida, Carlos Alberto Santos; Nunes, Luciana Angelica da Silva

    2013-01-01

    Full text: In recent years, there is growing interest in the study of theories in non-commutative spaces. Non-commutative fields theories are related with compactifications of M theory, string theory and the quantum Hall effect. Moreover, the role of the non-commutativity of theories of a particle finds large applications when analyzed in scenarios of quantum mechanics and relativistic quantum mechanics. In these contexts investigations on the Schrodinger and Dirac equations with mass depending on the position (MDP) has attracted much attention in the literature. Systems endowed with MDP models are useful for the study of many physical problems. In particular, they are used to study the energy density in problems of many bodies, determining the electronic properties of semiconductor heterostructures and also to describe the properties of heterojunctions and quantum dots. In particular, the investigation of relativistic effects it is important for systems containing heavy atoms or doping by heavy ions. For these types of materials, the study of the properties of the Dirac equation, in the case where the mass becomes variable is of great interest. In this paper, we seek for the non-relativistic limit of the Dirac Hamiltonian in the context of a theory of effective mass, through a Foldy-Wouthuysen transformation. We analyse the Dirac equation with mass dependent on the position, in a smooth step shape mass distribution, in non-commutative space (NC). This potential type kink was recently discussed by several authors in the commutative context and now we present our results in the non-commutative context. (author)

  18. Black Hole Complementary Principle and Noncommutative Membrane

    International Nuclear Information System (INIS)

    Wei Ren

    2006-01-01

    In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.

  19. Vector fields and differential operators: noncommutative case

    International Nuclear Information System (INIS)

    Borowiec, A.

    1997-01-01

    A notion of Cartan pairs as an analogy of vector fields in the realm of noncommutative geometry has been proposed previously. In this paper an outline is given of the construction of a noncommutative analogy of the algebra of differential operators as well as its (algebraic) Fock space realization. Co-universal vector fields and covariant derivatives will also be discussed

  20. Noncommutative de Sitter and FRW spaces

    International Nuclear Information System (INIS)

    Burić, Maja; Madore, John

    2015-01-01

    Several versions of fuzzy four-dimensional de Sitter space are constructed using the noncommutative frame formalism. Although all noncommutative spacetimes which are found have commutative de Sitter metric as a classical limit, the algebras and the differential calculi which define them have many differences, which we derive and discuss

  1. Quantum information aspects of noncommutative quantum mechanics

    Science.gov (United States)

    Bertolami, Orfeu; Bernardini, Alex E.; Leal, Pedro

    2018-01-01

    Some fundamental aspects related with the construction of Robertson-Schrödinger-like uncertainty-principle inequalities are reported in order to provide an overall description of quantumness, separability and nonlocality of quantum systems in the noncommutative phase-space. Some consequences of the deformed noncommutative algebra are also considered in physical systems of interest.

  2. Noncommutative induced gauge theories on Moyal spaces

    International Nuclear Information System (INIS)

    Wallet, J-C

    2008-01-01

    Noncommutative field theories on Moyal spaces can be conveniently handled within a framework of noncommutative geometry. Several renormalisable matter field theories that are now identified are briefly reviewed. The construction of renormalisable gauge theories on these noncommutative Moyal spaces, which remains so far a challenging problem, is then closely examined. The computation in 4-D of the one-loop effective gauge theory generated from the integration over a scalar field appearing in a renormalisable theory minimally coupled to an external gauge potential is presented. The gauge invariant effective action is found to involve, beyond the expected noncommutative version of the pure Yang-Mills action, additional terms that may be interpreted as the gauge theory counterpart of the harmonic term, which for the noncommutative ψ 4 -theory on Moyal space ensures renormalisability. A class of possible candidates for renormalisable gauge theory actions defined on Moyal space is presented and discussed

  3. Noncommutative instantons via dressing and splitting approaches

    International Nuclear Information System (INIS)

    Horvath, Zalan; Lechtenfeld, Olaf; Wolf, Martin

    2002-01-01

    Almost all known instanton solutions in noncommutative Yang-Mills theory have been obtained in the modified ADHM scheme. In this paper we employ two alternative methods for the construction of the self-dual U(2) BPST instanton on a noncommutative euclidean four-dimensional space with self-dual noncommutativity tensor. Firstly, we use the method of dressing transformations, an iterative procedure for generating solutions from a given seed solution, and thereby generalize Belavin's and Zakharov's work to the noncommutative setup. Secondly, we relate the dressing approach with Ward's splitting method based on the twistor construction and rederive the solution in this context. It seems feasible to produce nonsingular noncommutative multi-instantons with these techniques. (author)

  4. Chirality Quantum Phase Transition in Noncommutative Dirac Oscillator

    International Nuclear Information System (INIS)

    Wang Shao-Hua; Hou Yu-Long; Jing Jian; Wang Qing; Long Zheng-Wen

    2014-01-01

    The charged Dirac oscillator on a noncommutative plane coupling to a uniform perpendicular magnetic held is studied in this paper. We map the noncommutative plane to a commutative one by means of Bopp shift and study this problem on the commutative plane. We find that this model can be mapped onto a quantum optics model which contains Anti—Jaynes—Cummings (AJC) or Jaynes—Cummings (JC) interactions when a dimensionless parameter ζ (which is the function of the intensity of the magnetic held) takes values in different regimes. Furthermore, this model behaves as experiencing a chirality quantum phase transition when the dimensionless parameter ζ approaches the critical point. Several evidences of the chirality quantum phase transition are presented. We also study the non-relativistic limit of this model and find that a similar chirality quantum phase transition takes place in its non-relativistic limit. (physics of elementary particles and fields)

  5. Premise for Standardized Sepsis Models.

    Science.gov (United States)

    Remick, Daniel G; Ayala, Alfred; Chaudry, Irshad; Coopersmith, Craig M; Deutschman, Clifford; Hellman, Judith; Moldawer, Lyle; Osuchowski, Marcin

    2018-06-05

    Sepsis morbidity and mortality exacts a toll on patients and contributes significantly to healthcare costs. Preclinical models of sepsis have been used to study disease pathogenesis and test new therapies, but divergent outcomes have been observed with the same treatment even when using the same sepsis model. Other disorders such as diabetes, cancer, malaria, obesity and cardiovascular diseases have used standardized, preclinical models that allow laboratories to compare results. Standardized models accelerate the pace of research and such models have been used to test new therapies or changes in treatment guidelines. The National Institutes of Health (NIH) mandated that investigators increase data reproducibility and the rigor of scientific experiments and has also issued research funding announcements about the development and refinement of standardized models. Our premise is that refinement and standardization of preclinical sepsis models may accelerate the development and testing of potential therapeutics for human sepsis, as has been the case with preclinical models for other disorders. As a first step towards creating standardized models, we suggest 1) standardizing the technical standards of the widely used cecal ligation and puncture model and 2) creating a list of appropriate organ injury and immune dysfunction parameters. Standardized sepsis models could enhance reproducibility and allow comparison of results between laboratories and may accelerate our understanding of the pathogenesis of sepsis.

  6. 13th Workshop on What Comes Beyond the Standard Models

    CERN Document Server

    Nielsen, Holger Bech; Lukman, Dragan; What Comes Beyond the Standard Models

    2010-01-01

    1. Noncommutativity and Topology within Lattice Field Theories 2. The Construction of Quantum Field Operators 3. The Bargmann-Wigner Formalism for Spin 2 Fields 4. New Light on Dark Matter from the LHC 5. Extra Dimensional Metric Reversal Symmetry and its Prospect... 6. Masses and Mixing Matrices of Families within SU(3) Flavor Symmetry ... 7. Dark Atoms of the Universe: OHe Nuclear Physics, 8. Can the Matter-Antimatter Asymmetry be Easier to Understand Within the "Spin-charge-family-theory", .. 9. Mass Matrices of Twice Four Families of Quarks and Leptons, ...in the "Spin-charge-family-theory" 10. Bohmian Quantum Mechanics or What Comes Before the Standard Model 11. Backward Causation in Complex Action Model ... 12. Is the Prediction of the "Spin-charge-family-theory" in Disagreement with the XENON100..? 13. Masses and Mixing Matrices of Families of Quarks and Leptons Within the "Spin-charge-family-theory" 14. Can the Stable Fifth Family of the "Spin-charge-family-theory" ...Form the Fifth Antibaryon Cluster...

  7. Weinberg-Salam theory in non-commutative geometry

    International Nuclear Information System (INIS)

    Morita, Katsusada; Okumura, Yoshitaka.

    1994-01-01

    Ordinary differential calculus on smooth manifold is generalized so as to construct gauge theory coupled to fermions on discrete space M 4 xZ 2 which is an underlying space-time in the non-commutative geometry for the standard model. We can reproduce not only the bosonic sector but also the fermionic sector of the Weinberg-Salam theory without recourse to the Dirac operator at the outset. Treatment of the fermionic sector is based on the generalized spinor one-forms from which the Dirac lagrangian is derived through taking the inner product. Two model constructions are presented using our formalism, both giving the classical mass relation m H = √2m w . The first model leaves the Weinberg angle arbitrary as usual, while the second one predicts sin 2 θ w = 1/4 in the tree level. This prediction is the same as that of Connes but we obtain it from correct hypercharge assignment of 2x2 matrix-valued Higgs field and from vanishing photon mass, thereby dispensing with Connes' 0-trace condition or the equivalent. (author)

  8. Beyond Standard Model Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bellantoni, L.

    2009-11-01

    There are many recent results from searches for fundamental new physics using the TeVatron, the SLAC b-factory and HERA. This talk quickly reviewed searches for pair-produced stop, for gauge-mediated SUSY breaking, for Higgs bosons in the MSSM and NMSSM models, for leptoquarks, and v-hadrons. There is a SUSY model which accommodates the recent astrophysical experimental results that suggest that dark matter annihilation is occurring in the center of our galaxy, and a relevant experimental result. Finally, model-independent searches at D0, CDF, and H1 are discussed.

  9. UV/IR mixing and the Goldstone theorem in noncommutative field theory

    International Nuclear Information System (INIS)

    Ruiz Ruiz, F.

    2002-01-01

    Noncommutative IR singularities and UV/IR mixing in relation with the Goldstone theorem for complex scalar field theory are investigated. The classical model has two coupling constants, λ 1 and λ 2 , associated to the two noncommutative extensions phi*starphistarphi* starphi and phistarphi*starphistarphi of the interaction term vertical bar phi vertical bar 4 on commutative spacetime. It is shown that the symmetric phase is one-loop renormalizable for all λ 1 and λ 2 compatible with perturbation theory, whereas the broken phase is proved to exist at one loop only if λ 2 =0, a condition required by the Ward identities for global U(1) invariance. Explicit expressions for the noncommutative IR singularities in the 1PI Green functions of both phases are given. They show that UV/IR duality does not hold for any of the phases and that the broken phase is free of quadratic noncommutative IR singularities. More remarkably, the pion selfenergy does not have noncommutative IR singularities at all, which proves essential to formulate the Goldstone theorem at one loop for all values of the spacetime noncommutativity parameter θ

  10. Non-commutative analytic geometry and a new model for the field theory of closed bosonic strings

    International Nuclear Information System (INIS)

    Awada, M.A.

    1986-07-01

    We propose a new model for the field theory of interacting closed bosonic strings. The key ingredient in our constructions is based on the assumption that the action is written in terms of two independent states rather than one state. The first state is chiral while the second state is antichiral. The new picture of the corresponding vertex operator is not just an overlap ''δ'' functional

  11. Standard model without Higgs particles

    International Nuclear Information System (INIS)

    Kovalenko, S.G.

    1992-10-01

    A modification of the standard model of electroweak interactions with the nonlocal Higgs sector is proposed. Proper form of nonlocality makes Higgs particles unobservable after the electroweak symmetry breaking. They appear only as a virtual state because their propagator is an entire function. We discuss some specific consequences of this approach comparing it with the conventional standard model. (author). 12 refs

  12. Spin Hall effect on a noncommutative space

    International Nuclear Information System (INIS)

    Ma Kai; Dulat, Sayipjamal

    2011-01-01

    We study the spin-orbital interaction and the spin Hall effect of an electron moving on a noncommutative space under the influence of a vector potential A(vector sign). On a noncommutative space, we find that the commutator between the vector potential A(vector sign) and the electric potential V 1 (r(vector sign)) of the lattice induces a new term, which can be treated as an effective electric field, and the spin Hall conductivity obtains some correction. On a noncommutative space, the spin current and spin Hall conductivity have distinct values in different directions, and depend explicitly on the noncommutative parameter. Once this spin Hall conductivity in different directions can be measured experimentally with a high level of accuracy, the data can then be used to impose bounds on the value of the space noncommutativity parameter. We have also defined a new parameter, σ=ρθ (ρ is the electron concentration, θ is the noncommutativity parameter), which can be measured experimentally. Our approach is based on the Foldy-Wouthuysen transformation, which gives a general Hamiltonian of a nonrelativistic electron moving on a noncommutative space.

  13. Stability of a non-commutative Jackiw-Teitelboim gravity

    Energy Technology Data Exchange (ETDEWEB)

    Vassilevich, D.V. [Universitaet Leipzig, Institut fuer Theoretische Physik, Postfach 100 920, Leipzig (Germany); St. Petersburg University, V.A. Fock Institute of Physics, St. Petersburg (Russian Federation); Fresneda, R.; Gitman, D.M. [Sao Paulo Univ. (Brazil). Inst. de Fisica

    2006-07-15

    We start with a non-commutative version of the Jackiw-Teitelboim gravity in two dimensions which has a linear potential for the dilaton fields. We study whether it is possible to deform this model by adding quadratic terms to the potential but preserving the number of gauge symmetries. We find that no such deformation exists (provided one does not twist the gauge symmetries). (orig.)

  14. Stringy Fuzziness as the Custodial of Time-Space Noncommutativity

    CERN Document Server

    Barbón, José L F

    2000-01-01

    We study aspects of obtaining field theories with noncommuting time-space coordinates as limits of open-string theories in constant electric-field backgrounds. We find that, within the standard closed-string backgrounds, there is an obstruction to decoupling the time-space noncommutativity scale from that of the string fuzziness scale. We speculate that this censorship may be string-theory's way of protecting the causality and unitarity structure. We study the moduli space of the obstruction in terms of the open- and closed-string backgrounds. Cases of both zero and infinite brane tensions as well as zero string couplings are obtained. A decoupling can be achieved formally by considering complex values of the dilaton and inverting the role of space and time of the light cone. This is reminiscent of a black-hole horizon. We study the corresponding supergravity solution in the large-N limit and find that the geometry has a naked singularity at the physical scale of noncommutativity.

  15. Stringy fuzziness as the custodian of time-space noncommutativity

    CERN Document Server

    Barbón, José L F

    2000-01-01

    We study aspects of obtaining field theories with noncommuting time- space coordinates as limits of open-string theories in constant electric-field backgrounds. We find that, within the standard closed- string backgrounds, there is an obstruction to decoupling the time- space noncommutativity scale from that of the string fuzziness scale. We speculate that this censorship may be string-theory's way of protecting the causality and unitarity structure. We study the moduli space of the obstruction in terms of the open- and closed-string backgrounds. Cases of both zero and infinite brane tensions as well as zero string couplings are obtained. A decoupling can be achieved formally by considering complex values of the dilaton and inverting the role of space and time in the light cone. This is reminiscent of a black-hole horizon. We study the corresponding supergravity solution in the large-N limit and find that the geometry has a naked singularity at the physical scale of noncommutativity. (23 refs).

  16. Noncommutative Geometry, Quantum Fields and Motives

    CERN Document Server

    Connes, Alain

    2007-01-01

    The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book dea

  17. Noncommutative gauge theories and Kontsevich's formality theorem

    International Nuclear Information System (INIS)

    Jurco, B.; Schupp, P.; Wess, J.

    2001-01-01

    The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a 'Mini Seiberg-Witten map' that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor

  18. Emergent Abelian Gauge Fields from Noncommutative Gravity

    Directory of Open Access Journals (Sweden)

    Allen Stern

    2010-02-01

    Full Text Available We construct exact solutions to noncommutative gravity following the formulation of Chamseddine and show that they are in general accompanied by Abelian gauge fields which are first order in the noncommutative scale. This provides a mechanism for generating cosmological electromagnetic fields in an expanding space-time background, and also leads to multipole-like fields surrounding black holes. Exact solutions to noncommutative Einstein-Maxwell theory can give rise to first order corrections to the metric tensor, as well as to the electromagnetic fields. This leads to first order shifts in the horizons of charged black holes.

  19. Noncommutative quantum scattering in a central field

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Yeranyan, Armen

    2005-01-01

    In this Letter the problem of noncommutative elastic scattering in a central field is considered. General formulas for the differential cross-section for two cases are obtained. For the case of high energy of an incident wave it is shown that the differential cross-section coincides with that on the commutative space. For the case in which noncommutativity yields only a small correction to the central potential it is shown that the noncommutativity leads to the redistribution of particles along the azimuthal angle, although the whole cross-section coincides with the commutative case

  20. Noncommutative quantum mechanics and Bohm's ontological interpretation

    International Nuclear Information System (INIS)

    Barbosa, G.D.; Pinto-Neto, N.

    2004-01-01

    We carry out an investigation into the possibility of developing a Bohmian interpretation based on the continuous motion of point particles for noncommutative quantum mechanics. The conditions for such an interpretation to be consistent are determined, and the implications of its adoption for noncommutativity are discussed. A Bohmian analysis of the noncommutative harmonic oscillator is carried out in detail. By studying the particle motion in the oscillator orbits, we show that small-scale physics can have influence at large scales, something similar to the IR-UV mixing

  1. Local field theory on κ-Minkowski space, star products and noncommutative translations

    International Nuclear Information System (INIS)

    Kosinski, P.; Maslanka, P.; Lukierski, J.

    2000-01-01

    We consider local field theory on κ-deformed Minkowski space which is an example of solvable Lie-algebraic noncommutative structure. Using integration formula over κ-Minkowski space and κ-deformed Fourier transform, we consider for deformed local fields the reality conditions as well as deformation of action functionals in standard Minkowski space. We present explicit formulas for two equivalent star products describing CBH quantization of field theory on κ-Minkowski space. We express also via star product technique the noncommutative translations in κ-Minkowski space by commutative translations in standard Minkowski space. (author)

  2. Beyond the standard model; Au-dela du modele standard

    Energy Technology Data Exchange (ETDEWEB)

    Cuypers, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-05-01

    These lecture notes are intended as a pedagogical introduction to several popular extensions of the standard model of strong and electroweak interactions. The topics include the Higgs sector, the left-right symmetric model, grand unification and supersymmetry. Phenomenological consequences and search procedures are emphasized. (author) figs., tabs., 18 refs.

  3. Holographic entanglement in a noncommutative gauge theory

    International Nuclear Information System (INIS)

    Fischler, Willy; Kundu, Arnab; Kundu, Sandipan

    2014-01-01

    In this article we investigate aspects of entanglement entropy and mutual information in a large-N strongly coupled noncommutative gauge theory, both at zero and at finite temperature. Using the gauge-gravity duality and the Ryu-Takayanagi (RT) prescription, we adopt a scheme for defining spatial regions on such noncommutative geometries and subsequently compute the corresponding entanglement entropy. We observe that for regions which do not lie entirely in the noncommutative plane, the RT-prescription yields sensible results. In order to make sense of the divergence structure of the corresponding entanglement entropy, it is essential to introduce an additional cut-off in the theory. For regions which lie entirely in the noncommutative plane, the corresponding minimal area surfaces can only be defined at this cut-off and they have distinctly peculiar properties

  4. The local index formula in noncommutative geometry

    International Nuclear Information System (INIS)

    Higson, N.

    2003-01-01

    These notes present a partial account of the local index theorem in non-commutative geometry discovered by Alain Connes and Henri Moscovici. It includes Elliptic partial differential operators, cyclic homology theory, Chern characters, homotopy invariants and the index formulas

  5. Covariant non-commutative space–time

    Directory of Open Access Journals (Sweden)

    Jonathan J. Heckman

    2015-05-01

    Full Text Available We introduce a covariant non-commutative deformation of 3+1-dimensional conformal field theory. The deformation introduces a short-distance scale ℓp, and thus breaks scale invariance, but preserves all space–time isometries. The non-commutative algebra is defined on space–times with non-zero constant curvature, i.e. dS4 or AdS4. The construction makes essential use of the representation of CFT tensor operators as polynomials in an auxiliary polarization tensor. The polarization tensor takes active part in the non-commutative algebra, which for dS4 takes the form of so(5,1, while for AdS4 it assembles into so(4,2. The structure of the non-commutative correlation functions hints that the deformed theory contains gravitational interactions and a Regge-like trajectory of higher spin excitations.

  6. Foundations of free noncommutative function theory

    CERN Document Server

    Kaliuzhnyi-Verbovetskyi, Dmitry S

    2014-01-01

    In this book the authors develop a theory of free noncommutative functions, in both algebraic and analytic settings. Such functions are defined as mappings from square matrices of all sizes over a module (in particular, a vector space) to square matrices over another module, which respect the size, direct sums, and similarities of matrices. Examples include, but are not limited to, noncommutative polynomials, power series, and rational expressions. Motivation and inspiration for using the theory of free noncommutative functions often comes from free probability. An important application area is "dimensionless" matrix inequalities; these arise, e.g., in various optimization problems of system engineering. Among other related areas are those of polynomial identities in rings, formal languages and finite automata, quasideterminants, noncommutative symmetric functions, operator spaces and operator algebras, and quantum control.

  7. Entropic force, noncommutative gravity, and ungravity

    International Nuclear Information System (INIS)

    Nicolini, Piero

    2010-01-01

    After recalling the basic concepts of gravity as an emergent phenomenon, we analyze the recent derivation of Newton's law in terms of entropic force proposed by Verlinde. By reviewing some points of the procedure, we extend it to the case of a generic quantum gravity entropic correction to get compelling deviations to the Newton's law. More specifically, we study: (1) noncommutative geometry deviations and (2) ungraviton corrections. As a special result in the noncommutative case, we find that the noncommutative character of the manifold would be equivalent to the temperature of a thermodynamic system. Therefore, in analogy to the zero temperature configuration, the description of spacetime in terms of a differential manifold could be obtained only asymptotically. Finally, we extend the Verlinde's derivation to a general case, which includes all possible effects, noncommutativity, ungravity, asymptotically safe gravity, electrostatic energy, and extra dimensions, showing that the procedure is solid versus such modifications.

  8. Noncommutative gauge theory for Poisson manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, Branislav E-mail: jurco@mpim-bonn.mpg.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de

    2000-09-25

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.

  9. Noncommutative gauge theory for Poisson manifolds

    International Nuclear Information System (INIS)

    Jurco, Branislav; Schupp, Peter; Wess, Julius

    2000-01-01

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem

  10. Noncommutative Gauge Theory with Covariant Star Product

    International Nuclear Information System (INIS)

    Zet, G.

    2010-01-01

    We present a noncommutative gauge theory with covariant star product on a space-time with torsion. In order to obtain the covariant star product one imposes some restrictions on the connection of the space-time. Then, a noncommutative gauge theory is developed applying this product to the case of differential forms. Some comments on the advantages of using a space-time with torsion to describe the gravitational field are also given.

  11. Non-commutative tomography and signal processing

    International Nuclear Information System (INIS)

    Mendes, R Vilela

    2015-01-01

    Non-commutative tomography is a technique originally developed and extensively used by Professors M A Man’ko and V I Man’ko in quantum mechanics. Because signal processing deals with operators that, in general, do not commute with time, the same technique has a natural extension to this domain. Here, a review is presented of the theory and some applications of non-commutative tomography for time series as well as some new results on signal processing on graphs. (paper)

  12. Extension of noncommutative soliton hierarchies

    International Nuclear Information System (INIS)

    Dimakis, Aristophanes; Mueller-Hoissen, Folkert

    2004-01-01

    A linear system, which generates a Moyal-deformed two-dimensional soliton equation as an integrability condition, can be extended to a three-dimensional linear system, treating the deformation parameter as an additional coordinate. The supplementary integrability conditions result in a first-order differential equation with respect to the deformation parameter, the flow of which commutes with the flow of the deformed soliton equation. In this way, a deformed soliton hierarchy can be extended to a bigger hierarchy by including the corresponding deformation equations. We prove the extended hierarchy properties for the deformed AKNS hierarchy, and specialize to the cases of deformed NLS, KdV and mKdV hierarchies. Corresponding results are also obtained for the deformed KP hierarchy. A deformation equation determines a kind of Seiberg-Witten map from classical solutions to solutions of the respective 'noncommutative' deformed equation

  13. Phenomenology beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Lykken, Joseph D.; /Fermilab

    2005-03-01

    An elementary review of models and phenomenology for physics beyond the Standard Model (excluding supersymmetry). The emphasis is on LHC physics. Based upon a talk given at the ''Physics at LHC'' conference, Vienna, 13-17 July 2004.

  14. About the standard solar model

    International Nuclear Information System (INIS)

    Cahen, S.

    1986-07-01

    A discussion of the still controversial solar helium content is presented, based on a comparison of recent standard solar models. Our last model yields an helium mass fraction ∼0.276, 6.4 SNU on 37 Cl and 126 SNU on 71 Ga

  15. The standard model and colliders

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1987-03-01

    Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated

  16. Dynamics of the standard model

    CERN Document Server

    Donoghue, John F; Holstein, Barry R

    2014-01-01

    Describing the fundamental theory of particle physics and its applications, this book provides a detailed account of the Standard Model, focusing on techniques that can produce information about real observed phenomena. The book begins with a pedagogic account of the Standard Model, introducing essential techniques such as effective field theory and path integral methods. It then focuses on the use of the Standard Model in the calculation of physical properties of particles. Rigorous methods are emphasized, but other useful models are also described. This second edition has been updated to include recent theoretical and experimental advances, such as the discovery of the Higgs boson. A new chapter is devoted to the theoretical and experimental understanding of neutrinos, and major advances in CP violation and electroweak physics have been given a modern treatment. This book is valuable to graduate students and researchers in particle physics, nuclear physics and related fields.

  17. CMB statistical anisotropy from noncommutative gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Maresuke; Ricciardone, Angelo [Dipartimento di Fisica e Astronomia ' ' G. Galilei' ' , Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Mota, David F. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Arroja, Frederico, E-mail: maresuke.shiraishi@pd.infn.it, E-mail: d.f.mota@astro.uio.no, E-mail: angelo.ricciardone@pd.infn.it, E-mail: arroja@pd.infn.it [INFN, Sezione di Padova, via Marzolo 8, I-35131, Padova (Italy)

    2014-07-01

    Primordial statistical anisotropy is a key indicator to investigate early Universe models and has been probed by the cosmic microwave background (CMB) anisotropies. In this paper, we examine tensor-mode CMB fluctuations generated from anisotropic gravitational waves, parametrised by P{sub h}(k) = P{sub h}{sup (0)}(k) [ 1 + ∑{sub LM} f{sub L}(k) g{sub LM} Y{sub LM} ( k-circumflex )], where P{sub h}{sup (0)}(k) is the usual scale-invariant power spectrum. Such anisotropic tensor fluctuations may arise from an inflationary model with noncommutativity of fields. It is verified that in this model, an isotropic component and a quadrupole asymmetry with f{sub 0}(k) = f{sub 2}(k) ∝ k{sup -2} are created and hence highly red-tilted off-diagonal components arise in the CMB power spectra, namely ℓ{sub 2} = ℓ{sub 1} ± 2 in TT, TE, EE and BB, and ℓ{sub 2} = ℓ{sub 1} ± 1 in TB and EB. We find that B-mode polarisation is more sensitive to such signals than temperature and E-mode polarisation due to the smallness of large-scale cosmic variance and we can potentially measure g{sub 00} = 30 and g{sub 2M} = 58 at 68% CL in a cosmic-variance-limited experiment. Such a level of signal may be measured in a PRISM like experiment, while the instrumental noise contaminates it in the Planck experiment. These results imply that it is impossible to measure the noncommutative parameter if it is small enough for the perturbative treatment to be valid. Our formalism and methodology for dealing with the CMB tensor statistical anisotropy are general and straightforwardly applicable to other early Universe models.

  18. Realization of bicovariant differential calculus on the Lie algebra type noncommutative spaces

    Science.gov (United States)

    Meljanac, Stjepan; Krešić–Jurić, Saša; Martinić, Tea

    2017-07-01

    This paper investigates bicovariant differential calculus on noncommutative spaces of the Lie algebra type. For a given Lie algebra g0, we construct a Lie superalgebra g =g0⊕g1 containing noncommutative coordinates and one-forms. We show that g can be extended by a set of generators TAB whose action on the enveloping algebra U (g ) gives the commutation relations between monomials in U (g0 ) and one-forms. Realizations of noncommutative coordinates, one-forms, and the generators TAB as formal power series in a semicompleted Weyl superalgebra are found. In the special case dim(g0 ) =dim(g1 ) , we also find a realization of the exterior derivative on U (g0 ) . The realizations of these geometric objects yield a bicovariant differential calculus on U (g0 ) as a deformation of the standard calculus on the Euclidean space.

  19. Quantum effects of Aharonov-Bohm type and noncommutative quantum mechanics

    Science.gov (United States)

    Rodriguez R., Miguel E.

    2018-01-01

    Quantum mechanics in noncommutative space modifies the standard result of the Aharonov-Bohm effect for electrons and other recent quantum effects. Here we obtain the phase in noncommutative space for the Spavieri effect, a generalization of Aharonov-Bohm effect which involves a coherent superposition of particles with opposite charges moving along a single open interferometric path. By means of the experimental considerations a limit √{θ }≃(0.13TeV)-1 is achieved, improving by 10 orders of magnitude the results derived by Chaichian et al. [Phys. Lett. B 527, 149 (2002), 10.1016/S0370-2693(02)01176-0] for the Aharonov-Bohm effect. It is also shown that the noncommutative phases of the Aharonov-Casher and He-McKellar-Willkens effects are nullified in the current experimental tests.

  20. On the Generalized Geometry Origin of Noncommutative Gauge Theory

    CERN Document Server

    Jurco, Branislav; Vysoky, Jan

    2013-01-01

    We discuss noncommutative gauge theory from the generalized geometry point of view. We argue that the equivalence between the commutative and semiclassically noncommutative DBI actions is naturally encoded in the generalized geometry of D-branes.

  1. Noncommutative black-body radiation: Implications on cosmic microwave background

    International Nuclear Information System (INIS)

    Fatollahi, A.H.; Hajirahimi, M.

    2006-01-01

    Including loop corrections, black-body radiation in noncommutative space is anisotropic. A direct implication of possible space non-commutativity on the cosmic microwave background map is argued. (authors)

  2. Perspectives in the standard model

    International Nuclear Information System (INIS)

    Ellis, R.K.; Hill, C.T.; Lykken, J.D.

    1992-01-01

    Particle physics is an experimentally based science, with a need for the best theorists to make contact with data and to enlarge and enhance their theoretical descriptions as the subject evolves. The authors felt it imperative that the TASI (Theoretical Advanced Study Institute) program reflect this need. The goal of this conference, was to provide the students with a comprehensive look at the current understanding of the standard model, as well as the techniques which promise to advance that understanding in the future. Topics covered include: symmetry breaking in the standard model; physics beyond the standard model; chiral effective Lagrangians; semi-classical string theory; renormalization of electroweak gauge interactions; electroweak experiments at LEP; the CKM matrix and CP violation; axion searches; lattice QCD; perturbative QCD; heavy quark effective field theory; heavy flavor physics on the lattice; and neutrinos. Separate abstracts were prepared for 13 papers in this conference

  3. The standard model and beyond

    CERN Document Server

    Langacker, Paul

    2017-01-01

    This new edition of The Standard Model and Beyond presents an advanced introduction to the physics and formalism of the standard model and other non-abelian gauge theories. It provides a solid background for understanding supersymmetry, string theory, extra dimensions, dynamical symmetry breaking, and cosmology. In addition to updating all of the experimental and phenomenological results from the first edition, it contains a new chapter on collider physics; expanded discussions of Higgs, neutrino, and dark matter physics; and many new problems. The book first reviews calculational techniques in field theory and the status of quantum electrodynamics. It then focuses on global and local symmetries and the construction of non-abelian gauge theories. The structure and tests of quantum chromodynamics, collider physics, the electroweak interactions and theory, and the physics of neutrino mass and mixing are thoroughly explored. The final chapter discusses the motivations for extending the standard model and examin...

  4. Standard model of knowledge representation

    Science.gov (United States)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  5. Extensions of the Standard Model

    CERN Document Server

    Zwirner, Fabio

    1996-01-01

    Rapporteur talk at the International Europhysics Conference on High Energy Physics, Brussels (Belgium), July 27-August 2, 1995. This talk begins with a brief general introduction to the extensions of the Standard Model, reviewing the ideology of effective field theories and its practical implications. The central part deals with candidate extensions near the Fermi scale, focusing on some phenomenological aspects of the Minimal Supersymmetric Standard Model. The final part discusses some possible low-energy implications of further extensions near the Planck scale, namely superstring theories.

  6. Custom v. Standardized Risk Models

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-05-01

    Full Text Available We discuss when and why custom multi-factor risk models are warranted and give source code for computing some risk factors. Pension/mutual funds do not require customization but standardization. However, using standardized risk models in quant trading with much shorter holding horizons is suboptimal: (1 longer horizon risk factors (value, growth, etc. increase noise trades and trading costs; (2 arbitrary risk factors can neutralize alpha; (3 “standardized” industries are artificial and insufficiently granular; (4 normalization of style risk factors is lost for the trading universe; (5 diversifying risk models lowers P&L correlations, reduces turnover and market impact, and increases capacity. We discuss various aspects of custom risk model building.

  7. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.

    2008-01-01

    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  8. Some remarks on K_0 of noncommutative tori

    OpenAIRE

    Chakraborty, Sayan

    2017-01-01

    Using Rieffel's construction of projective modules over higher dimensional noncommutative tori, we construct projective modules over some continuous field of C*-algebras whose fibers are noncommutative tori. Using a result of Echterhoff et al., our construction gives generators of K_0 of all noncommutative tori.

  9. Mapping spaces and automorphism groups of toric noncommutative spaces

    Science.gov (United States)

    Barnes, Gwendolyn E.; Schenkel, Alexander; Szabo, Richard J.

    2017-09-01

    We develop a sheaf theory approach to toric noncommutative geometry which allows us to formalize the concept of mapping spaces between two toric noncommutative spaces. As an application, we study the `internalized' automorphism group of a toric noncommutative space and show that its Lie algebra has an elementary description in terms of braided derivations.

  10. Quantum electrodynamics with arbitrary charge on a noncommutative space

    International Nuclear Information System (INIS)

    Zhou Wanping; Long Zhengwen; Cai Shaohong

    2009-01-01

    Using the Seiberg-Witten map, we obtain a quantum electrodynamics on a noncommutative space, which has arbitrary charge and keep the gauge invariance to at the leading order in theta. The one-loop divergence and Compton scattering are reinvestigated. The noncommutative effects are larger than those in ordinary noncommutative quantum electrodynamics. (authors)

  11. Noncommutative generalization of SU(n)-principal fiber bundles: a review

    International Nuclear Information System (INIS)

    Masson, T

    2008-01-01

    This is an extended version of a communication made at the international conference 'Noncommutative Geometry and Physics' held at Orsay in april 2007. In this proceeding, we make a review of some noncommutative constructions connected to the ordinary fiber bundle theory. The noncommutative algebra is the endomorphism algebra of a SU(n)-vector bundle, and its differential calculus is based on its Lie algebra of derivations. It is shown that this noncommutative geometry contains some of the most important constructions introduced and used in the theory of connections on vector bundles, in particular, what is needed to introduce gauge models in physics, and it also contains naturally the essential aspects of the Higgs fields and its associated mechanics of mass generation. It permits one also to extend some previous constructions, as for instance symmetric reduction of (here noncommutative) connections. From a mathematical point of view, these geometrico-algebraic considerations highlight some new point on view, in particular we introduce a new construction of the Chern characteristic classes

  12. The standard model and beyond

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1989-05-01

    In these lectures, my aim is to present a status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows. I survey the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also commented on. In addition, I have included an appendix on dimensional regularization and a simple example which employs that technique. I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, extra Z' bosons, and compositeness are discussed. An overview of the physics of tau decays is also included. I discuss weak neutral current phenomenology and the extraction of sin 2 θW from experiment. The results presented there are based on a global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, implications for grand unified theories (GUTS), extra Z' gauge bosons, and atomic parity violation. The potential for further experimental progress is also commented on. Finally, I depart from the narrowest version of the standard model and discuss effects of neutrino masses, mixings, and electromagnetic moments. 32 refs., 3 figs., 5 tabs

  13. Beyond the Standard Model course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    The necessity for new physics beyond the Standard Model will be motivated. Theoretical problems will be exposed and possible solutions will be described. The goal is to present the exciting new physics ideas that will be tested in the near future, at LHC and elsewhere. Supersymmetry, grand unification, extra dimensions and a glimpse of string theory will be presented.

  14. An introduction to noncommutative spaces and their geometries characterization of the shallow subsurface implications for urban infrastructure and environmental assessment

    CERN Document Server

    Landi, Giovanni

    1997-01-01

    These lecture notes are an introduction to several ideas and applications of noncommutative geometry. It starts with a not necessarily commutative but associative algebra which is thought of as the algebra of functions on some 'virtual noncommutative space'. Attention is switched from spaces, which in general do not even exist, to algebras of functions. In these notes, particular emphasis is put on seeing noncommutative spaces as concrete spaces, namely as a collection of points with a topology. The necessary mathematical tools are presented in a systematic and accessible way and include among other things, C'*-algebras, module theory and K-theory, spectral calculus, forms and connection theory. Application to Yang--Mills, fermionic, and gravity models are described. Also the spectral action and the related invariance under automorphism of the algebra is illustrated. Some recent work on noncommutative lattices is presented. These lattices arose as topologically nontrivial approximations to 'contuinuum' topolo...

  15. Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry

    International Nuclear Information System (INIS)

    Alvarez, Pedro D.; Gomis, Joaquim; Kamimura, Kiyoshi; Plyushchay, Mikhail S.

    2008-01-01

    We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropic and maximally anisotropic, cases. The system is described by the same (2+1)-dimensional exotic Newton-Hooke symmetry as in the isotropic case, and develops three different phases depending on the values of the two central charges. The special cases of the exotic Newton-Hooke particle and non-commutative Landau problem are shown to be characterized by additional, so(3) or so(2,1) Lie symmetry, which reflects their peculiar spectral properties

  16. Cardy-Verlinde Formula of Noncommutative Schwarzschild Black Hole

    Directory of Open Access Journals (Sweden)

    G. Abbas

    2014-01-01

    Full Text Available Few years ago, Setare (2006 has investigated the Cardy-Verlinde formula of noncommutative black hole obtained by noncommutativity of coordinates. In this paper, we apply the same procedure to a noncommutative black hole obtained by the coordinate coherent approach. The Cardy-Verlinde formula is entropy formula of conformal field theory in an arbitrary dimension. It relates the entropy of conformal field theory to its total energy and Casimir energy. In this paper, we have calculated the total energy and Casimir energy of noncommutative Schwarzschild black hole and have shown that entropy of noncommutative Schwarzschild black hole horizon can be expressed in terms of Cardy-Verlinde formula.

  17. Discreteness of area in noncommutative space

    Energy Technology Data Exchange (ETDEWEB)

    Amelino-Camelia, Giovanni [Dipartimento di Fisica, Universita di Roma ' La Sapienza' and Sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy)], E-mail: amelino@roma1.infn.it; Gubitosi, Giulia; Mercati, Flavio [Dipartimento di Fisica, Universita di Roma ' La Sapienza' and Sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy)

    2009-06-08

    We introduce an area operator for the Moyal noncommutative plane. We find that the spectrum is discrete, but, contrary to the expectation formulated by other authors, not characterized by a 'minimum-area principle'. We show that an intuitive analysis of the uncertainty relations obtained from Moyal-plane noncommutativity is fully consistent with our results for the spectrum, and we argue that our area operator should be generalizable to several other noncommutative spaces. We also observe that the properties of distances and areas in the Moyal plane expose some weaknesses in the line of reasoning adopted in some of the heuristic analyses of the measurability of geometric spacetime observables in the quantum-gravity realm.

  18. Discreteness of area in noncommutative space

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Gubitosi, Giulia; Mercati, Flavio

    2009-01-01

    We introduce an area operator for the Moyal noncommutative plane. We find that the spectrum is discrete, but, contrary to the expectation formulated by other authors, not characterized by a 'minimum-area principle'. We show that an intuitive analysis of the uncertainty relations obtained from Moyal-plane noncommutativity is fully consistent with our results for the spectrum, and we argue that our area operator should be generalizable to several other noncommutative spaces. We also observe that the properties of distances and areas in the Moyal plane expose some weaknesses in the line of reasoning adopted in some of the heuristic analyses of the measurability of geometric spacetime observables in the quantum-gravity realm.

  19. Non-commutativity in polar coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, James P. [Universidad Michoacana de San Nicolas de Hidalgo, Ciudad Universitaria, Instituto de Fisica y Matematicas, Morelia, Michoacan (Mexico)

    2017-05-15

    We reconsider the fundamental commutation relations for non-commutative R{sup 2} described in polar coordinates with non-commutativity parameter θ. Previous analysis found that the natural transition from Cartesian coordinates to the traditional polar system led to a representation of [r, φ] as an everywhere diverging series. In this article we compute the Borel resummation of this series, showing that it can subsequently be extended throughout parameter space and hence provide an interpretation of this commutator. Our analysis provides a complete solution for arbitrary r and θ that reproduces the earlier calculations at lowest order and benefits from being generally applicable to problems in a two-dimensional non-commutative space. We compare our results to previous literature in the (pseudo-)commuting limit, finding a surprising spatial dependence for the coordinate commutator when θ >> r{sup 2}. Finally, we raise some questions for future study in light of this progress. (orig.)

  20. Noncommutative geometry and basic physics

    International Nuclear Information System (INIS)

    Kastler, D.

    2000-01-01

    The author describes spectral triples as generalized Dirac operators, the electroweak inner spectral triple, the application of the quantum Yang-Mills algorithm to the electroweak standard model sector, real spectral triples, the asymptotic heat-kernel expansion of the spectral action, tree approximation, the fermionic action, and the regular representation of the finite U q (sl2)

  1. The standard model and beyond

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1989-05-01

    The field of elementary particle, or high energy, physics seeks to identify the most elementary constituents of nature and to study the forces that govern their interactions. Increasing the energy of a probe in a laboratory experiment increases its power as an effective microscope for discerning increasingly smaller structures of matter. Thus we have learned that matter is composed of molecules that are in turn composed of atoms, that the atom consists of a nucleus surrounded by a cloud of electrons, and that the atomic nucleus is a collection of protons and neutrons. The more powerful probes provided by high energy particle accelerators have taught us that a nucleon is itself made of objects called quarks. The forces among quarks and electrons are understood within a general theoretical framework called the ''standard model,'' that accounts for all interactions observed in high energy laboratory experiments to date. These are commonly categorized as the ''strong,'' ''weak'' and ''electromagnetic'' interactions. In this lecture I will describe the standard model, and point out some of its limitations. Probing for deeper structures in quarks and electrons defines the present frontier of particle physics. I will discuss some speculative ideas about extensions of the standard model and/or yet more fundamental forces that may underlie our present picture. 11 figs., 1 tab

  2. Extensions of the standard model

    International Nuclear Information System (INIS)

    Ramond, P.

    1983-01-01

    In these lectures we focus on several issues that arise in theoretical extensions of the standard model. First we describe the kinds of fermions that can be added to the standard model without affecting known phenomenology. We focus in particular on three types: the vector-like completion of the existing fermions as would be predicted by a Kaluza-Klein type theory, which we find cannot be realistically achieved without some chiral symmetry; fermions which are vector-like by themselves, such as do appear in supersymmetric extensions, and finally anomaly-free chiral sets of fermions. We note that a chiral symmetry, such as the Peccei-Quinn symmetry can be used to produce a vector-like theory which, at scales less than M/sub W/, appears to be chiral. Next, we turn to the analysis of the second hierarchy problem which arises in Grand Unified extensions of the standard model, and plays a crucial role in proton decay of supersymmetric extensions. We review the known mechanisms for avoiding this problem and present a new one which seems to lead to the (family) triplication of the gauge group. Finally, this being a summer school, we present a list of homework problems. 44 references

  3. Consistency Across Standards or Standards in a New Business Model

    Science.gov (United States)

    Russo, Dane M.

    2010-01-01

    Presentation topics include: standards in a changing business model, the new National Space Policy is driving change, a new paradigm for human spaceflight, consistency across standards, the purpose of standards, danger of over-prescriptive standards, a balance is needed (between prescriptive and general standards), enabling versus inhibiting, characteristics of success-oriented standards, characteristics of success-oriented standards, and conclusions. Additional slides include NASA Procedural Requirements 8705.2B identifies human rating standards and requirements, draft health and medical standards for human rating, what's been done, government oversight models, examples of consistency from anthropometry, examples of inconsistency from air quality and appendices of government and non-governmental human factors standards.

  4. Exact multi-line soliton solutions of noncommutative KP equation

    International Nuclear Information System (INIS)

    Wang, Ning; Wadati, Miki

    2003-01-01

    A method of solving noncommutative linear algebraic equations plays a key role in the extension of the ∂-bar -dressing on the noncommutative space-time manifold. In this paper, a solution-generating method of noncommutative linear algebraic equations is proposed. By use of the proposed method, a class of multi-line soliton solutions of noncommutative KP (ncKP) equation is constructed explicitly. The method is expected to be of use for constructions of noncommutative soliton equations. The significance of the noncommutativity of coordinates is investigated. It is found that the noncommutativity of the space-time coordinate has a role to split the spatial waveform of the classical multi-line solitons and reform it to a new configuration. (author)

  5. Institutional model for supporting standardization

    International Nuclear Information System (INIS)

    Sanford, M.O.; Jackson, K.J.

    1993-01-01

    Restoring the nuclear option for utilities requires standardized designs. This premise is widely accepted by all parties involved in ALWR development activities. Achieving and maintaining standardization, however, demands new perspectives on the roles and responsibilities for the various commercial organizations involved in nuclear power. Some efforts are needed to define a workable model for a long-term support structure that will allow the benefits of standardization to be realized. The Nuclear Power Oversight Committee (NPOC) has developed a strategic plan that lays out the steps necessary to enable the nuclear industry to be in a position to order a new nuclear power plant by the mid 1990's. One of the key elements of the plan is the, ''industry commitment to standardization: through design certification, combined license, first-of-a-kind engineering, construction, operation, and maintenance of nuclear power plants.'' This commitment is a result of the recognition by utilities of the substantial advantages to standardization. Among these are economic benefits, licensing benefits from being treated as one of a family, sharing risks across a broader ownership group, sharing operating experiences, enhancing public safety, and a more coherent market force. Utilities controlled the construction of the past generation of nuclear units in a largely autonomous fashion procuring equipment and designs from a vendor, engineering services from an architect/engineer, and construction from a construction management firm. This, in addition to forcing the utility to assume virtually all of the risks associated with the project, typically resulted in highly customized designs based on preferences of the individual utility. However, the benefits of standardization can be realized only through cooperative choices and decision making by the utilities and through working as partners with reactor vendors, architect/engineers, and construction firms

  6. Noncommutative gauge theory without Lorentz violation

    International Nuclear Information System (INIS)

    Carlson, Carl E.; Carone, Christopher D.; Zobin, Nahum

    2002-01-01

    The most popular noncommutative field theories are characterized by a matrix parameter θ μν that violates Lorentz invariance. We consider the simplest algebra in which the θ parameter is promoted to an operator and Lorentz invariance is preserved. This algebra arises through the contraction of a larger one for which explicit representations are already known. We formulate a star product and construct the gauge-invariant Lagrangian for Lorentz-conserving noncommutative QED. Three-photon vertices are absent in the theory, while a four-photon coupling exists and leads to a distinctive phenomenology

  7. The boosts in the noncommutative special relativity

    International Nuclear Information System (INIS)

    Lagraa, M.

    2001-01-01

    From the quantum analogue of the Iwasawa decomposition of SL(2, C) group and the correspondence between quantum SL(2, C) and Lorentz groups we deduce the different properties of the Hopf algebra representing the boost of particles in noncommutative special relativity. The representation of the boost in the Hilbert space states is investigated and the addition rules of the velocities are established from the coaction. The q-deformed Clebsch-Gordon coefficients describing the transformed states of the evolution of particles in noncommutative special relativity are introduced and their explicit calculation are given. (author)

  8. Noncommutative spectral geometry, Bogoliubov transformations and neutrino oscillations

    International Nuclear Information System (INIS)

    Gargiulo, Maria Vittoria; Vitiello, Giuseppe; Sakellariadou, Mairi

    2015-01-01

    In this report we show that neutrino mixing is intrinsically contained in Connes’ noncommutatives pectral geometry construction, thanks to the introduction of the doubling of algebra, which is connected to the Bogoliubov transformation. It is known indeed that these transformations are responsible for the mixing, turning the mass vacuum state into the flavor vacuum state, in such a way that mass and flavor vacuum states are not unitary equivalent. There is thus a red thread that binds the doubling of algebra of Connes’ model to the neutrino mixing. (paper)

  9. Noncommutative unification of general relativity and quantum mechanics

    International Nuclear Information System (INIS)

    Heller, Michael; Pysiak, Leszek; Sasin, Wieslaw

    2005-01-01

    We present a model unifying general relativity and quantum mechanics based on a noncommutative geometry. This geometry is developed in terms of a noncommutative algebra A which is defined on a transformation groupoid Γ given by the action of a noncompact group G on the total space E of a principal fiber bundle over space-time M. The case is important since to obtain physical effects predicted by the model we should assume that G is a Lorentz group or some of its representations. We show that the generalized Einstein equation of the model has the form of the eigenvalue equation for the generalized Ricci operator, and all relevant operators in the quantum sector of the model are random operators; we study their dynamics. We also show that the model correctly reproduces general relativity and the usual quantum mechanics. It is interesting that the latter is recovered by performing the measurement of any observable. In the act of such a measurement the model 'collapses' to the usual quantum mechanics

  10. Review of the standard model

    International Nuclear Information System (INIS)

    Treille, D.

    1992-01-01

    The goal of this review is not to make one more celebration of the accuracy of LEP results, but rather to put them in a broader perspective. This set of measurements are compared with what they could and should be in the future if the various options available at LEP are exploited properly, and show that much is left to be done. Then various classes of non-LEP results are discussed which are already remarkable and still prone to improvements, which bring complementary information on the Standard Model, by probing it in widely different domains of applicability. (author) 46 refs.; 29 figs.; 12 tabs

  11. On the UV renormalizability of noncommutative field theories

    International Nuclear Information System (INIS)

    Sarkar, Swarnendu

    2002-01-01

    UV/IR mixing is one of the most important features of noncommutative field theories. As a consequence of this coupling of the UV and IR sectors, the configuration of fields at the zero momentum limit in these theories is a very singular configuration. We show that the renormalization conditions set at a particular momentum configuration with a fixed number of zero momenta, renormalizes the Green's functions for any general momenta only when this configuration has same set of zero momenta. Therefore only when renormalization conditions are set at a point where all the external momenta are nonzero, the quantum theory is renormalizable for all values of nonzero momentum. This arises as a result of different scaling behaviors of Green's functions with respect to the UV cutoff (Λ) for configurations containing different set of zero momenta. We study this in the noncommutative φ 4 theory and analyse similar results for the Gross-Neveu model at one loop level. We next show this general feature using Wilsonian RG of Polchinski in the globally O(N) symmetric scalar theory and prove the renormalizability of the theory to all orders with an infrared cutoff. In the context of spontaneous symmetry breaking (SSB) in noncommutative scalar theory, it is essential to note the different scaling behaviors of Green's functions with respect to Λ for different set of zero momenta configurations. We show that in the broken phase of the theory the Ward identities are satisfied to all orders only when one keeps an infrared regulator by shifting to a nonconstant vacuum. (author)

  12. Noncommutative Geometry in M-Theory and Conformal Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Morariu, Bogdan [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of Uq(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Funq (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.

  13. Noncommutative Geometry in M-Theory and Conformal Field Theory

    International Nuclear Information System (INIS)

    Morariu, Bogdan

    1999-01-01

    In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of U q (SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Fun q (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models

  14. Moving vortices in noncommutative gauge theory

    International Nuclear Information System (INIS)

    Horvathy, P.A.; Stichel, P.C.

    2004-01-01

    Exact time-dependent solutions of nonrelativistic noncommutative Chern-Simons gauge theory are presented in closed analytic form. They are different from (indeed orthogonal to) those discussed recently by Hadasz, Lindstroem, Rocek and von Unge. Unlike theirs, our solutions can move with an arbitrary constant velocity, and can be obtained from the previously known static solutions by the recently found 'exotic' boost symmetry

  15. Holographic complexity and noncommutative gauge theory

    Science.gov (United States)

    Couch, Josiah; Eccles, Stefan; Fischler, Willy; Xiao, Ming-Lei

    2018-03-01

    We study the holographic complexity of noncommutative field theories. The four-dimensional N=4 noncommutative super Yang-Mills theory with Moyal algebra along two of the spatial directions has a well known holographic dual as a type IIB supergravity theory with a stack of D3 branes and non-trivial NS-NS B fields. We start from this example and find that the late time holographic complexity growth rate, based on the "complexity equals action" conjecture, experiences an enhancement when the non-commutativity is turned on. This enhancement saturates a new limit which is exactly 1/4 larger than the commutative value. We then attempt to give a quantum mechanics explanation of the enhancement. Finite time behavior of the complexity growth rate is also studied. Inspired by the non-trivial result, we move on to more general setup in string theory where we have a stack of D p branes and also turn on the B field. Multiple noncommutative directions are considered in higher p cases.

  16. Noncommutative phase spaces on Aristotle group

    Directory of Open Access Journals (Sweden)

    Ancille Ngendakumana

    2012-03-01

    Full Text Available We realize noncommutative phase spaces as coadjoint orbits of extensions of the Aristotle group in a two dimensional space. Through these constructions the momenta of the phase spaces do not commute due to the presence of a naturally introduced magnetic eld. These cases correspond to the minimal coupling of the momentum with a magnetic potential.

  17. On total noncommutativity in quantum mechanics

    Science.gov (United States)

    Lahti, Pekka J.; Ylinen, Kari

    1987-11-01

    It is shown within the Hilbert space formulation of quantum mechanics that the total noncommutativity of any two physical quantities is necessary for their satisfying the uncertainty relation or for their being complementary. The importance of these results is illustrated with the canonically conjugate position and momentum of a free particle and of a particle closed in a box.

  18. Finite quantum physics and noncommutative geometry

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Ercolessi, E.; Landi, G.; Teotonio-Sobrinho, P.; Lizzi, F.; Sparano, G.

    1994-04-01

    Conventional discrete approximations of a manifold do not preserve its nontrivial topological features. In this article we describe an approximation scheme due to Sorkin which reproduces physically important aspects of manifold topology with striking fidelity. The approximating topological spaces in this scheme are partially ordered sets (posets). Now, in ordinary quantum physics on a manifold M, continuous probability densities generate the commutative C * -algebra C(M) of continuous functions on M. It has a fundamental physical significance, containing the information to reconstruct the topology of M, and serving to specify the domains of observables like the Hamiltonian. For a poset, the role of this algebra is assumed by a noncommutative C * -algebra A. As noncommutative geometries are based on noncommutative C * -algebra, we therefore have a remarkable connection between finite approximations to quantum physics and noncommutative geometries. Varies methods for doing quantum physics using A are explored. Particular attention is paid to developing numerically viable approximation schemes which at the same time preserve important topological features of continuum physics. (author). 21 refs, 13 figs

  19. Non-commutative arithmetic circuits with division

    Czech Academy of Sciences Publication Activity Database

    Hrubeš, Pavel; Wigderson, A.

    2015-01-01

    Roč. 11, Article 14 (2015), s. 357-393 ISSN 1557-2862 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : arithmetic circuits * non-commutative rational function * skew field Subject RIV: BA - General Mathematics http://theoryofcomputing.org/articles/v011a014/

  20. Standard for Models and Simulations

    Science.gov (United States)

    Steele, Martin J.

    2016-01-01

    This NASA Technical Standard establishes uniform practices in modeling and simulation to ensure essential requirements are applied to the design, development, and use of models and simulations (MS), while ensuring acceptance criteria are defined by the program project and approved by the responsible Technical Authority. It also provides an approved set of requirements, recommendations, and criteria with which MS may be developed, accepted, and used in support of NASA activities. As the MS disciplines employed and application areas involved are broad, the common aspects of MS across all NASA activities are addressed. The discipline-specific details of a given MS should be obtained from relevant recommended practices. The primary purpose is to reduce the risks associated with MS-influenced decisions by ensuring the complete communication of the credibility of MS results.

  1. Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory

    CERN Document Server

    Landau, Olav Arnfinn

    2011-01-01

    This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory o

  2. Gravitational amplitudes in black hole evaporation: the effect of non-commutative geometry

    International Nuclear Information System (INIS)

    Grezia, Elisabetta Di; Esposito, Giampiero; Miele, Gennaro

    2006-01-01

    Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat spacetime and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in non-commutative geometry have shown that, in general relativity, the effects of non-commutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. The present paper, relying on the recently obtained non-commutativity effect on a static, spherically symmetric metric, considers from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes is shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F are derived which are compatible with the adiabatic approximation here exploited. Approximate formulae for the particle emission rate are also obtained within this framework

  3. Bootstrapping non-commutative gauge theories from L∞ algebras

    Science.gov (United States)

    Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter

    2018-05-01

    Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.

  4. Establishing the isolated Standard Model

    International Nuclear Information System (INIS)

    Wells, James D.; Zhang, Zhengkang; Zhao, Yue

    2017-02-01

    The goal of this article is to initiate a discussion on what it takes to claim ''there is no new physics at the weak scale,'' namely that the Standard Model (SM) is ''isolated.'' The lack of discovery of beyond the SM (BSM) physics suggests that this may be the case. But to truly establish this statement requires proving all ''connected'' BSM theories are false, which presents a significant challenge. We propose a general approach to quantitatively assess the current status and future prospects of establishing the isolated SM (ISM), which we give a reasonable definition of. We consider broad elements of BSM theories, and show many examples where current experimental results are not sufficient to verify the ISM. In some cases, there is a clear roadmap for the future experimental program, which we outline, while in other cases, further efforts - both theoretical and experimental - are needed in order to robustly claim the establishment of the ISM in the absence of new physics discoveries.

  5. The standard model and beyond

    CERN Document Server

    Vergados, J D

    2017-01-01

    This book contains a systematic and pedagogical exposition of recent developments in particle physics and cosmology. It starts with two introductory chapters on group theory and the Dirac theory. Then it proceeds with the formulation of the Standard Model (SM) of Particle Physics, particle content and symmetries, fully exploiting the first chapters. It discusses the concept of gauge symmetries and emphasizes their role in particle physics. It then analyses the Higgs mechanism and the spontaneous symmetry breaking (SSB). It explains how the particles (gauge bosons and fermions) after SSB acquire a mass and get admixed. The various forms of charged currents are discussed in detail as well as how the parameters of the SM, which cannot be determined by the theory, are fixed by experiment, including the recent LHC data and the Higgs discovery. Quantum chromodynamics is discussed and various low energy approximations to it are presented. The Feynman diagrams are introduced and applied, in a way undertandable by fir...

  6. Twisted Spectral Triple for the Standard Model and Spontaneous Breaking of the Grand Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Devastato, Agostino, E-mail: agostino.devastato@na.infn.it; Martinetti, Pierre, E-mail: martinetti@dima.unige.it [Università di Napoli Federico II, Dipartimento di Fisica (Italy)

    2017-03-15

    Grand symmetry models in noncommutative geometry, characterized by a non-trivial action of functions on spinors, have been introduced to generate minimally (i.e. without adding new fermions) and in agreement with the first order condition an extra scalar field beyond the standard model, which both stabilizes the electroweak vacuum and makes the computation of the mass of the Higgs compatible with its experimental value. In this paper, we use a twist in the sense of Connes-Moscovici to cure a technical problem due to the non-trivial action on spinors, that is the appearance together with the extra scalar field of unbounded vectorial terms. The twist makes these terms bounded and - thanks to a twisted version of the first-order condition that we introduce here - also permits to understand the breaking to the standard model as a dynamical process induced by the spectral action, as conjectured in [24]. This is a spontaneous breaking from a pre-geometric Pati-Salam model to the almost-commutativegeometryofthestandardmodel,withtwoHiggs-likefields: scalar and vector.

  7. Construction of non-Abelian gauge theories on noncommutative spaces

    International Nuclear Information System (INIS)

    Jurco, B.; Schupp, P.; Moeller, L.; Wess, J.; Max-Planck-Inst. fuer Physik, Muenchen; Humboldt-Univ., Berlin; Schraml, S.; Humboldt-Univ., Berlin

    2001-01-01

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories. (orig.)

  8. Construction of non-Abelian gauge theories on noncommutative spaces

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B.; Schupp, P. [Sektion Physik, Muenchen Univ. (Germany); Moeller, L.; Wess, J. [Sektion Physik, Muenchen Univ. (Germany); Max-Planck-Inst. fuer Physik, Muenchen (Germany); Humboldt-Univ., Berlin (Germany). Inst. fuer Physik; Schraml, S. [Sektion Physik, Muenchen Univ. (Germany)

    2001-06-01

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories. (orig.)

  9. Recursive relations for processes with n photons of noncommutative QED

    International Nuclear Information System (INIS)

    Jafari, Abolfazl

    2007-01-01

    Recursion relations are derived in the sense of Berends-Giele for the multi-photon processes of noncommutative QED. The relations concern purely photonic processes as well as the processes with two fermions involved, both for arbitrary number of photons at tree level. It is shown that despite of the dependence of noncommutative vertices on momentum, in contrast to momentum-independent color factors of QCD, the recursion relation method can be employed for multi-photon processes of noncommutative QED

  10. Path integral representations in noncommutative quantum mechanics and noncommutative version of Berezin-Marinov action

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Kupriyanov, V.G. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Tomsk State University, Physics Department, Tomsk (Russian Federation)

    2008-03-15

    It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them {theta}-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing {theta}-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract {theta}-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein-Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as {theta}-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein-Gordon and Dirac equations in the noncommutative field theories. The {theta}-modified action of the relativistic spinning particle is just a generalization of the Berezin-Marinov pseudoclassical action for the noncommutative case. (orig.)

  11. Reconstruction of the spontaneously broken gauge theory in non-commutative geometry

    International Nuclear Information System (INIS)

    Okumura, Y.; Morita, K.

    1996-01-01

    The scheme previously proposed by the present authors is modified to incorporate the strong interaction by affording the direct product internal symmetry. The authors do not need to prepare the extra discrete space for the colour gauge group responsible for the strong interaction to reconstruct the standard model and the left-right symmetric gauge model (LRSM). The approach based on non-commutative geometry leads us to present many attractive points such as the unified picture of the gauge and Higgs field as the generalized connection on the discrete space M 4 x Z N . This approach leads to unified picture of gauge and Higgs fields as the generalized connection. The standard model needs N=2 discrete space for reconstruction in this formalism. LRSM is still alive as a model with the intermediate symmetry of the spontaneously broken SO(10) grand unified theory (GUT). N=3 discrete space is needed for the reconstruction of LRSM to include two Higgs φ and ξ bosons usual transformed as (2, 2 * , 0) and (1, 3, -2) under SU(2) L x SU(2) R x U(1) Y , respectively. ξ is responsible to make v R Majorana fermion and so well explains the seesaw mechanism. Up and down quarks have different masses through the vacuum expectation value of φ

  12. Moyal noncommutative integrability and the Burgers-KdV mapping

    International Nuclear Information System (INIS)

    Sedra, M.B.

    2005-12-01

    The Moyal momentum algebra, is once again used to discuss some important aspects of NC integrable models and 2d conformal field theories. Among the results presented, we set up algebraic structures and makes useful convention notations leading to extract non trivial properties of the Moyal momentum algebra. We study also the Lax pair building mechanism for particular examples namely, the noncommutative KdV and Burgers systems. We show in a crucial step that these two systems are mapped to each other through the following crucial mapping ∂ t 2 → ∂ t 3 ≡ ∂ t 2 ∂ x + α∂ x 3 . This makes a strong constraint on the NC Burgers system which corresponds to linearizing its associated differential equation. From the CFT's point of view, this constraint equation is nothing but the analogue of the conservation law of the conformal current. We believe that the considered mapping might help to bring new insights towards understanding the integrability of noncommutative 2d-systems. (author)

  13. Pair production by a constant external field in noncommutative QED

    International Nuclear Information System (INIS)

    Chair, N.; Sheikh-Jabbari, M.M.

    2000-09-01

    In this paper we study QED on the noncommutative space in the constant electro-magnetic field background. Using the explicit solutions of the noncommutative version of Dirac equation in such background, we show that there are well-defined in and out-going asymptotic states and also there is a causal Green's function. We calculate the pair production rate in this case. We show that at tree level noncommutativity will not change the pair production and the threshold electric field. We also calculate the pair production rate considering the first loop corrections. In this case we show that the threshold electric field is decreased by the noncommutativity effects. (author)

  14. Deformation quantization of noncommutative quantum mechanics and dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal); Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal); Dias, N C [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande 376, 1749-024 Lisbon (Portugal); Prata, J N [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande 376, 1749-024 Lisbon (Portugal)

    2007-05-15

    We review the main features of the Weyl-Wigner formulation of noncommutative quantum mechanics. In particular, we present a *-product and a Moyal bracket suitable for this theory as well as the concept of noncommutative Wigner function. The properties of these quasi-distributions are discussed as well as their relation to the sets of ordinary Wigner functions and positive Liouville probability densities. Based on these notions we propose criteria for assessing whether a commutative regime has emerged in the realm of noncommutative quantum mechanics. To induce this noncommutative-commutative transition, we couple a particle to an external bath of oscillators. The master equation for the Brownian particle is deduced.

  15. Classical mechanics in non-commutative phase space

    International Nuclear Information System (INIS)

    Wei Gaofeng; Long Chaoyun; Long Zhengwen; Qin Shuijie

    2008-01-01

    In this paper the laws of motion of classical particles have been investigated in a non-commutative phase space. The corresponding non-commutative relations contain not only spatial non-commutativity but also momentum non-commutativity. First, new Poisson brackets have been defined in non-commutative phase space. They contain corrections due to the non-commutativity of coordinates and momenta. On the basis of this new Poisson brackets, a new modified second law of Newton has been obtained. For two cases, the free particle and the harmonic oscillator, the equations of motion are derived on basis of the modified second law of Newton and the linear transformation (Phys. Rev. D, 2005, 72: 025010). The consistency between both methods is demonstrated. It is shown that a free particle in commutative space is not a free particle with zero-acceleration in the non-commutative phase space, but it remains a free particle with zero-acceleration in non-commutative space if only the coordinates are non-commutative. (authors)

  16. Cancellation of soft and collinear divergences in noncommutative QED

    International Nuclear Information System (INIS)

    Mirza, B.; Zarei, M.

    2006-01-01

    In this paper, we investigate the behavior of noncommutative IR divergences and will also discuss their cancellation in the physical cross sections. The commutative IR (soft) divergences existing in the nonplanar diagrams will be examined in order to prove an all-order cancellation of these divergences using the Weinberg's method. In noncommutative QED, collinear divergences due to triple photon splitting vertex, were encountered, which are shown to be canceled out by the noncommutative version of KLN theorem. This guarantees that there is no mixing between the Collinear, soft divergences and noncommutative IR divergences

  17. Discrete symmetries (C,P,T) in noncommutative field theories

    International Nuclear Information System (INIS)

    Sheikh-Jabbari, M.M.

    2000-01-01

    In this paper we study the invariance of the noncommutative gauge theories tinder C, P and T transformations. For the noncommutative space (when only the spatial part of θ is non-zero) we show that NCQED is Parity invariant. In addition, we show that under charge conjugation the theory on noncommutative R θ 4 is transformed to the theory on R -θ 4 , so NCQED is a CP violating theory. The theory remains invariant under time reversal if, together with proper changes in fields, we also change θ by -θ. Hence altogether NCQED is CPT invariant. Moreover we show that the CPT invariance holds for general noncommutative space-time. (author)

  18. Yang-Feldman formalism on noncommutative Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Doescher, C.

    2006-12-15

    We examine quantum field theory on noncummutative spacetime. For this we choose an approach which lives explicitly on the noncommutative Minkowski space, namely the Yang-Feldman formalism. Here the ansatz is to try to solve the field equation of the quantum fields. In this setting we first take a look at an additional mass term, and use this to discuss possible IR cutoffs. We find classes of IR cutoffs which indeed yield the expected limit. Furthermore, we look at interacting models, namely the {phi}{sup 3} model in four and six dimensions, the {phi}{sup 4} model and the Wess-Zumino model. For these we calculate dispersion relations. We see that there exist huge differences in the orders of magnitude between logarithmically and quadratically divergent models. Integrals which are made finite by twisting factors are calculated rigorously in the sense of the theory of oscillatory integrals. (orig.)

  19. Establishing the isolated Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Wells, James D.; Zhang, Zhengkang [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zhao, Yue [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics

    2017-02-15

    The goal of this article is to initiate a discussion on what it takes to claim ''there is no new physics at the weak scale,'' namely that the Standard Model (SM) is ''isolated.'' The lack of discovery of beyond the SM (BSM) physics suggests that this may be the case. But to truly establish this statement requires proving all ''connected'' BSM theories are false, which presents a significant challenge. We propose a general approach to quantitatively assess the current status and future prospects of establishing the isolated SM (ISM), which we give a reasonable definition of. We consider broad elements of BSM theories, and show many examples where current experimental results are not sufficient to verify the ISM. In some cases, there is a clear roadmap for the future experimental program, which we outline, while in other cases, further efforts - both theoretical and experimental - are needed in order to robustly claim the establishment of the ISM in the absence of new physics discoveries.

  20. Experiments beyond the standard model

    International Nuclear Information System (INIS)

    Perl, M.L.

    1984-09-01

    This paper is based upon lectures in which I have described and explored the ways in which experimenters can try to find answers, or at least clues toward answers, to some of the fundamental questions of elementary particle physics. All of these experimental techniques and directions have been discussed fully in other papers, for example: searches for heavy charged leptons, tests of quantum chromodynamics, searches for Higgs particles, searches for particles predicted by supersymmetric theories, searches for particles predicted by technicolor theories, searches for proton decay, searches for neutrino oscillations, monopole searches, studies of low transfer momentum hadron physics at very high energies, and elementary particle studies using cosmic rays. Each of these subjects requires several lectures by itself to do justice to the large amount of experimental work and theoretical thought which has been devoted to these subjects. My approach in these tutorial lectures is to describe general ways to experiment beyond the standard model. I will use some of the topics listed to illustrate these general ways. Also, in these lectures I present some dreams and challenges about new techniques in experimental particle physics and accelerator technology, I call these Experimental Needs. 92 references

  1. Prime divisors and noncommutative valuation theory

    CERN Document Server

    Marubayashi, Hidetoshi

    2012-01-01

    Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves.  But the noncommutative equivalent is mainly applied to finite dimensional skewfields.  Recently however, new types of algebras have become popular in modern algebra; Weyl algebras, deformed and quantized algebras, quantum groups and Hopf algebras, etc. The advantage of valuation theory in the commutative case is that it allows effective calculations, bringing the arithmetical properties of the ground field into the picture.  This arithmetical nature is also present in the theory of maximal orders in central simple algebras.  Firstly, we aim at uniting maximal orders, valuation rings, Dubrovin valuations, etc. in a common theory, the theory of primes of algebras.  Secondly, we establish possible applications of the noncommutative arithmetics to interesting classes of algebras, including the extension of central valuations to nice classes of quantized a...

  2. Noncommutative Phase Spaces by Coadjoint Orbits Method

    Directory of Open Access Journals (Sweden)

    Ancille Ngendakumana

    2011-12-01

    Full Text Available We introduce noncommutative phase spaces by minimal couplings (usual one, dual one and their mixing. We then realize some of them as coadjoint orbits of the anisotropic Newton-Hooke groups in two- and three-dimensional spaces. Through these constructions the positions and the momenta of the phase spaces do not commute due to the presence of a magnetic field and a dual magnetic field.

  3. Gravity and the structure of noncommutative algebras

    International Nuclear Information System (INIS)

    Buric, Maja; Madore, John; Grammatikopoulos, Theodoros; Zoupanos, George

    2006-01-01

    A gravitational field can be defined in terms of a moving frame, which when made noncommutative yields a preferred basis for a differential calculus. It is conjectured that to a linear perturbation of the commutation relations which define the algebra there corresponds a linear perturbation of the gravitational field. This is shown to be true in the case of a perturbation of Minkowski space-time

  4. Cosmological production of noncommutative black holes

    International Nuclear Information System (INIS)

    Mann, Robert B.; Nicolini, Piero

    2011-01-01

    We investigate the pair creation of noncommutative black holes in a background with a positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild-de Sitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive-mass spacetimes admit one cosmological horizon and two, one, or no black hole horizons, while negative-mass spacetimes have just a cosmological horizon. These new black holes share the properties of the corresponding asymptotically flat solutions, including the nonsingular core and thermodynamic stability in the final phase of the evaporation. As a second step we determine the action which generates the matter sector of gravitational field equations and we construct instantons describing the pair production of black holes and the other admissible topologies. As a result we find that for current values of the cosmological constant the de Sitter background is quantum mechanically stable according to experience. However, positive-mass noncommutative black holes and solitons would have plentifully been produced during inflationary times for Planckian values of the cosmological constant. As a special result we find that, in these early epochs of the Universe, Planck size black holes production would have been largely disfavored. We also find a potential instability for production of negative-mass solitons.

  5. Dynamics of Strings in Noncommutative Gauge Theory

    International Nuclear Information System (INIS)

    Gross, David J.; Nekrasov, Nikia A.

    2000-01-01

    We continue our study of solitons in noncommutative gauge theories and present an extremely simple BPS solution of N=4 U(1) noncommutative gauge theory in 4 dimensions, which describes N infinite D1 strings that pierce a D3 brane at various points, in the presence of a background B-field in the Seiberg-Witten limit. We call this solution the N-fluxon. For N=1 we calculate the complete spectrum of small fluctuations about the fluxon and find three kinds of modes: the fluctuations of the superstring in 10 dimensions arising from fundamental strings attached to the D1 strings, the ordinary particles of the gauge theory in 4 dimensions and a set of states with discrete spectrum, localized at the intersection point - corresponding to fundamental strings stretched between the D1 string and the D3 brane. We discuss the fluctuations about the N-fluxon as well and derive explicit expressions for the amplitudes of interactions between these various modes. We show that translations in noncommutative gauge theories are equivalent to gauge transformations (plus a constant shift of the gauge field) and discuss the implications for the translational zeromodes of our solitons. We also find the dyonic versions of N-fluxon, as well as of our previous string-monopole solution. (author)

  6. Probing noncommutative theories with quantum optical experiments

    Directory of Open Access Journals (Sweden)

    Sanjib Dey

    2017-11-01

    Full Text Available One of the major difficulties of modern science underlies at the unification of general relativity and quantum mechanics. Different approaches towards such theory have been proposed. Noncommutative theories serve as the root of almost all such approaches. However, the identification of the appropriate passage to quantum gravity is suffering from the inadequacy of experimental techniques. It is beyond our ability to test the effects of quantum gravity thorough the available scattering experiments, as it is unattainable to probe such high energy scale at which the effects of quantum gravity appear. Here we propose an elegant alternative scheme to test such theories by detecting the deformations emerging from the noncommutative structures. Our protocol relies on the novelty of an opto-mechanical experimental setup where the information of the noncommutative oscillator is exchanged via the interaction with an optical pulse inside an optical cavity. We also demonstrate that our proposal is within the reach of current technology and, thus, it could uncover a feasible route towards the realization of quantum gravitational phenomena thorough a simple table-top experiment.

  7. Aspects of noncommutative (1+1)-dimensional black holes

    International Nuclear Information System (INIS)

    Mureika, Jonas R.; Nicolini, Piero

    2011-01-01

    We present a comprehensive analysis of the spacetime structure and thermodynamics of (1+1)-dimensional black holes in a noncommutative framework. It is shown that a wider variety of solutions are possible than the commutative case considered previously in the literature. As expected, the introduction of a minimal length √(θ) cures singularity pathologies that plague the standard two-dimensional general relativistic case, where the latter solution is recovered at large length scales. Depending on the choice of input parameters (black hole mass M, cosmological constant Λ, etc.), black hole solutions with zero, up to six, horizons are possible. The associated thermodynamics allows for the either complete evaporation, or the production of black hole remnants.

  8. Accretion onto a noncommutative geometry inspired black hole

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Jamia Millia Islamia, Multidisciplinary Centre for Advanced Research and Studies (MCARS), New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-09-15

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate M, sonic speed a{sub s} and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that M ∼ M{sup 2} is still achievable but r{sub s} seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process. (orig.)

  9. A Model for Semantic IS Standards

    NARCIS (Netherlands)

    Folmer, Erwin Johan Albert; Oude Luttighuis, Paul; van Hillegersberg, Jos

    2011-01-01

    We argue that, in order to suggest improvements of any kind to semantic information system (IS) standards, better understanding of the conceptual structure of semantic IS standard is required. This study develops a model for semantic IS standard, based on literature and expert knowledge. The model

  10. Noncommutative quantum field theory: attempts on renormalization

    International Nuclear Information System (INIS)

    Popp, L.

    2002-05-01

    Quantum field theory is the art of dealing with problems at small distances or, equivalently, large momenta. Although there are different approaches (string theory, for example), it is generally accepted that these principles cannot be extrapolated to arbitrarily small distances as can be shown by applying simple, heuristic arguments. Therefore, the concept of space-time as a differential manifold has to be replaced by something else at such scales, the road we have chosen to follow is noncommutative geometry. We start from the basic relation [ x μ , x ν ] = i θ { μν}, where θ is a (usually) constant, antisymmetric matrix. This relation amounts to a noncommutativity of position measurements, or, put differently, the points are somehow 'smeared' out, which should have a positive effect on field theory since infinities arise from point-like interactions. However, it was shown that the effects of the commutation relation (leading to the so-called Moyal product) do not necessarily cure the divergences but introduce a new kind of problem: whereas UV-divergent integrals are rendered finite by phase factors (that arise as a consequence of the Moyal product), this same kind of 'regularization' introduces IR-divergences which led to the name 'UV/IR-mixing' for this problem. In order to overcome this peculiarity, one expands the action in θ which is immediate for the phase factors but requires the so-called Seiberg-Witten map for the fields. In this thesis, we emphasize the derivation of the Seiberg-Witten map by using noncommutative Lorentz symmetries, which is more general than the original derivation. After that, we concentrate on a treatment of θ-expanded theories and their renormalization, where it can be shown that the photon self-energy of noncommutative Maxwell theory can be renormalized to all orders in hbar and θ when the freedom in the Seiberg-Witten map (there are ambiguities in the map) is exploited. Although this is very promising, it cannot be

  11. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a ''standard model''. The ''standard model'' consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the ''standard model'' to determine if the requirements of ''non-standard'' architectures can be met. Several possible extensions to the ''standard model'' are suggested including software as well as the hardware architectural feature

  12. On tea, donuts and non-commutative geometry

    Directory of Open Access Journals (Sweden)

    Igor V. Nikolaev

    2018-03-01

    Full Text Available As many will agree, it feels good to complement a cup of tea by a donut or two. This sweet relationship is also a guiding principle of non-commutative geometry known as Serre Theorem. We explain the algebra behind this theorem and prove that elliptic curves are complementary to the so-called non-commutative tori.

  13. Black-body radiation of noncommutative gauge fields

    International Nuclear Information System (INIS)

    Fatollahi, Amir H.; Hajirahimi, Maryam

    2006-01-01

    The black-body radiation is considered in a theory with noncommutative electRomegnetic fields; that is noncommutativity is introduced in field space, rather than in real space. A direct implication of the result on cosmic microwave background map is argued

  14. Hydrogen atom spectrum and the Lamb shift in noncommutative QED

    International Nuclear Information System (INIS)

    Chaichian, M. . Helsinki Institute of Physics, Helsinki; Tureanu, A. . Helsinki Institute of Physics, Helsinki; FI)

    2000-10-01

    We have calculated the energy levels of the hydrogen atom and as well the Lamb shift within the noncommutative quantum electrodynamics theory. The results show deviations from the usual QED both on the classical and on the quantum levels. On both levels, the deviations depend on the parameter of space/space noncommutativity. (author)

  15. Linearization of non-commuting operators in the partition function

    International Nuclear Information System (INIS)

    Ahmed, M.

    1983-06-01

    A generalization of the Stratonovich-Hubbard scheme for evaluating the grand canonical partition function is given. The scheme involves linearization of products of non-commuting operators using the functional integral method. The non-commutivity of the operators leads to an additional term which can be absorbed in the single-particle Hamiltonian. (author)

  16. An alternative to the standard model

    International Nuclear Information System (INIS)

    Baek, Seungwon; Ko, Pyungwon; Park, Wan-Il

    2014-01-01

    We present an extension of the standard model to dark sector with an unbroken local dark U(1) X symmetry. Including various singlet portal interactions provided by the standard model Higgs, right-handed neutrinos and kinetic mixing, we show that the model can address most of phenomenological issues (inflation, neutrino mass and mixing, baryon number asymmetry, dark matter, direct/indirect dark matter searches, some scale scale puzzles of the standard collisionless cold dark matter, vacuum stability of the standard model Higgs potential, dark radiation) and be regarded as an alternative to the standard model. The Higgs signal strength is equal to one as in the standard model for unbroken U(1) X case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if U(1) X is spontaneously broken, because of a mixing with a new neutral scalar boson in the models

  17. Field theory and the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, E [Orsay, LPT (France)

    2014-07-01

    This brief introduction to Quantum Field Theory and the Standard Model contains the basic building blocks of perturbation theory in quantum field theory, an elementary introduction to gauge theories and the basic classical and quantum features of the electroweak sector of the Standard Model. Some details are given for the theoretical bias concerning the Higgs mass limits, as well as on obscure features of the Standard Model which motivate new physics constructions.

  18. Wigner functions for noncommutative quantum mechanics: A group representation based construction

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, S. Hasibul Hassan, E-mail: shhchowdhury@gmail.com [Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada); Ali, S. Twareque, E-mail: twareque.ali@concordia.ca [Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada)

    2015-12-15

    This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group G{sub NC}, which is the three fold central extension of the Abelian group of ℝ{sup 4}. These representations have been exhaustively studied in earlier papers. The group G{sub NC} is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only.

  19. On bound states of photons in noncommutative U(1) gauge theory

    International Nuclear Information System (INIS)

    Fatollahi, A.H.; Jafari, A.

    2006-01-01

    We consider the possibility that photons of noncommutative U(1) gauge theory can make bound states. Using the potential model, developed based on the constituent gluon picture of QCD glue-balls, arguments are presented in favor of the existence of these bound states. The basic ingredient of the potential model is that the self-interacting massless gauge particles may get mass by the inclusion of non-perturbative effects. (orig.)

  20. Electric Chern-Simons term, enlarged exotic Galilei symmetry and noncommutative plane

    International Nuclear Information System (INIS)

    Olmo, Mariano A. del; Plyushchay, Mikhail S.

    2006-01-01

    The extended exotic planar model for a charged particle is constructed. It includes a Chern-Simons-like term for a dynamical electric field, but produces usual equations of motion for the particle in background constant uniform electric and magnetic fields. The electric Chern-Simons term is responsible for the noncommutativity of the boost generators in the 10-dimensional enlarged exotic Galilei symmetry algebra of the extended system. The model admits two reduction schemes by the integrals of motion, one of which reproduces the usual formulation for the charged particle in external constant electric and magnetic fields with associated field-deformed Galilei symmetry, whose commuting boost generators are identified with the nonlocal in time Noether charges reduced on-shell. Another reduction scheme, in which electric field transmutes into the commuting space translation generators, extracts from the model a free particle on the noncommutative plane described by the twofold centrally extended Galilei group of the nonrelativistic anyons

  1. Quality model for semantic IS standards

    NARCIS (Netherlands)

    Folmer, Erwin Johan Albert

    2011-01-01

    Semantic IS (Information Systems) standards are essential for achieving interoperability between organizations. However a recent survey suggests that not the full benefits of standards are achieved, due to the quality issues. This paper presents a quality model for semantic IS standards, that should

  2. Essay on physics and non-commutative geometry

    International Nuclear Information System (INIS)

    Connes, A.

    1990-01-01

    Our aim, in this article, is to try to discover what physics would be like if the space in which it took place was not a set of points, but a non-commutative space. We shall not go very far in this direction, and the consequences of this investigation are for the moment either mathematical or only applied to a commutative space-time. It is clear, however, that a tool as remarkable as the Dixmier trace for analyzing logarithmic divergences should be useful to physicists. Moreover we have been able to show that a small modification of our picture of space-time gives a conceptual explanation of the Higgs fields and of the way they appear in the Weinberg-Salam model. This should allow us to make at the classical level explicit predictions of the Higgs mass: a very crude one is discussed. (author)

  3. A revisited standard solar model

    International Nuclear Information System (INIS)

    Casse, M.; Cahen, S.; Doom, C.

    1987-01-01

    Recent models of the Sun, including our own, based on canonical physics and featuring modern reaction rates and radiative opacities are presented. They lead to a presolar helium abundance, in better agreement with the value found in the Orion nebula. Most models predict a neutrino counting rate greater than 6 SNU in the chlorine-argon detector, which is at least 3 times higher than the observed rate. The primordial helium abundance derived from the solar one, on the basis of recent models of helium production from the birth of the Galaxy to the birth of the sun, is significantly higher than the value inferred from observations of extragalactic metal-poor nebulae. This indicates that the stellar production of helium is probably underestimated by the models considered

  4. A noncommutative convexity in C*-bimodules

    Directory of Open Access Journals (Sweden)

    Mohsen Kian

    2017-02-01

    Full Text Available Let A and B be C*-algebras. We consider a noncommutative convexity in Hilbert A-B-bimodules, called A-B-convexity, as a generalization of C*-convexity in C*-algebras. We show that if X is a Hilbert A-B-bimodule, then Mn(X is a Hilbert Mn(A-Mn(B-bimodule and apply it to show that the closed unit ball of every Hilbert A-B-bimodule is A-B-convex. Some properties of this kind of convexity and various examples have been given.

  5. Remarks on twisted noncommutative quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2006-04-15

    We review recent results on twisted noncommutative quantum field theory by embedding it into a general framework for the quantization of systems with a twisted symmetry. We discuss commutation relations in this setting and show that the twisted structure is so rigid that it is hard to derive any predictions, unless one gives up general principles of quantum theory. It is also shown that the twisted structure is not responsible for the presence or absence of UV/IR-mixing, as claimed in the literature. (Orig.)

  6. S-duality and noncommutative gauge theory

    International Nuclear Information System (INIS)

    Gopakumar, R.; Maldacena, J.; Minwalla, S.; Strominger, A.

    2000-01-01

    It is conjectured that strongly coupled, spatially noncommutative CN=4 Yang-Mills theory has a dual description as a weakly coupled open string theory in a near critical electric field, and that this dual theory is fully decoupled from closed strings. Evidence for this conjecture is given by the absence of physical closed string poles in the non-planar one-loop open string diagram. The open string theory can be viewed as living in a geometry in which space and time coordinates do not commute. (author)

  7. Non-commutative tools for topological insulators

    International Nuclear Information System (INIS)

    Prodan, Emil

    2010-01-01

    This paper reviews several analytic tools for the field of topological insulators, developed with the aid of non-commutative calculus and geometry. The set of tools includes bulk topological invariants defined directly in the thermodynamic limit and in the presence of disorder, whose robustness is shown to have nontrivial physical consequences for the bulk states. The set of tools also includes a general relation between the current of an observable and its edge index, a relation that can be used to investigate the robustness of the edge states against disorder. The paper focuses on the motivations behind creating such tools and on how to use them.

  8. Modeling in the Common Core State Standards

    Science.gov (United States)

    Tam, Kai Chung

    2011-01-01

    The inclusion of modeling and applications into the mathematics curriculum has proven to be a challenging task over the last fifty years. The Common Core State Standards (CCSS) has made mathematical modeling both one of its Standards for Mathematical Practice and one of its Conceptual Categories. This article discusses the need for mathematical…

  9. Beyond the supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.J.

    1988-02-01

    The possibility of baryon number violation at the weak scale and an alternative primordial nucleosynthesis scheme arising from the decay of gravitations are discussed. The minimal low energy supergravity model is defined and a few of its features are described. Renormalization group scaling and flavor physics are mentioned.

  10. A revisited standard solar model

    International Nuclear Information System (INIS)

    Casse, M.; Cahen, S.; Doom, C.

    1985-09-01

    Recent models of the Sun, including our own, based on canonical physics and featuring modern reaction rates and radiative opacities are presented. They lead to a presolar helium abundance of approximately 0.28 by mass, at variance with the value of 0.25 proposed by Bahcall et al. (1982, 1985), but in better agreement with the value found in the Orion nebula. Most models predict a neutrino counting rate greater than 6 SNU in the chlorine-argon detector, which is at least 3 times higher than the observed rate. The primordial helium abundance derived from the solar one, on the basis of recent models of helium production from the birth of the Galaxy to the birth of the sun, Ysub(P) approximately 0.26, is significantly higher than the value inferred from observations of extragalactic metal-poor nebulae (Y approximately 0.23). This indicates that the stellar production of helium is probably underestimated by the models considered

  11. Beyond the supersymmetric standard model

    International Nuclear Information System (INIS)

    Hall, L.J.

    1988-02-01

    The possibility of baryon number violation at the weak scale and an alternative primordial nucleosynthesis scheme arising from the decay of gravitations are discussed. The minimal low energy supergravity model is defined and a few of its features are described. Renormalization group scaling and flavor physics are mentioned

  12. Physics beyond the Standard Model

    Science.gov (United States)

    Lach, Theodore

    2011-04-01

    Recent discoveries of the excited states of the Bs** meson along with the discovery of the omega-b-minus have brought into popular acceptance the concept of the orbiting quarks predicted by the Checker Board Model (CBM) 14 years ago. Back then the concept of orbiting quarks was not fashionable. Recent estimates of velocities of these quarks inside the proton and neutron are in excess of 90% the speed of light also in agreement with the CBM model. Still a 2D structure of the nucleus has not been accepted nor has it been proven wrong. The CBM predicts masses of the up and dn quarks are 237.31 MeV and 42.392 MeV respectively and suggests that a lighter generation of quarks u and d make up a different generation of quarks that make up light mesons. The CBM also predicts that the T' and B' quarks do exist and are not as massive as might be expected. (this would make it a 5G world in conflict with the SM) The details of the CB model and prediction of quark masses can be found at: http://checkerboard.dnsalias.net/ (1). T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000). (2). T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/.

  13. Self Sustained Traversable Wormholes Induced by Gravity’s Rainbow and Noncommutative Geometry

    Directory of Open Access Journals (Sweden)

    Garattini Remo

    2013-09-01

    Full Text Available We compare the effects of Noncommutative Geometry and Gravity’s Rainbow on traversable wormholes which are sustained by their own gravitational quantum fluctuations. Fixing the geometry on a well tested model, we find that the final result shows that the wormhole is of the Planckian size. This means that the traversability of the wormhole is in principle, but not in practice.

  14. Marginal and non-commutative deformations via non-abelian T-duality

    Energy Technology Data Exchange (ETDEWEB)

    Hoare, Ben [Institut für Theoretische Physik, ETH Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Thompson, Daniel C. [Theoretische Natuurkunde, Vrije Universiteit Brussel & The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-10

    In this short article we develop recent proposals to relate Yang-Baxter sigma-models and non-abelian T-duality. We demonstrate explicitly that the holographic space-times associated to both (multi-parameter)-β-deformations and non-commutative deformations of N=4 super Yang-Mills gauge theory including the RR fluxes can be obtained via the machinery of non-abelian T-duality in Type II supergravity.

  15. Beyond the Standard Model of Cosmology

    International Nuclear Information System (INIS)

    Ellis, John; Nanopoulos, D. V.

    2004-01-01

    Recent cosmological observations of unprecented accuracy, by WMAP in particular, have established a 'Standard Model' of cosmology, just as LEP established the Standard Model of particle physics. Both Standard Models raise open questions whose answers are likely to be linked. The most fundamental problems in both particle physics and cosmology will be resolved only within a framework for Quantum Gravity, for which the only game in town is string theory. We discuss novel ways to model cosmological inflation and late acceleration in a non-critical string approach, and discuss possible astrophysical tests

  16. The minimal non-minimal standard model

    International Nuclear Information System (INIS)

    Bij, J.J. van der

    2006-01-01

    In this Letter I discuss a class of extensions of the standard model that have a minimal number of possible parameters, but can in principle explain dark matter and inflation. It is pointed out that the so-called new minimal standard model contains a large number of parameters that can be put to zero, without affecting the renormalizability of the model. With the extra restrictions one might call it the minimal (new) non-minimal standard model (MNMSM). A few hidden discrete variables are present. It is argued that the inflaton should be higher-dimensional. Experimental consequences for the LHC and the ILC are discussed

  17. Computational commutative and non-commutative algebraic geometry

    CERN Document Server

    Cojocaru, S; Ufnarovski, V

    2005-01-01

    This publication gives a good insight in the interplay between commutative and non-commutative algebraic geometry. The theoretical and computational aspects are the central theme in this study. The topic is looked at from different perspectives in over 20 lecture reports. It emphasizes the current trends in commutative and non-commutative algebraic geometry and algebra. The contributors to this publication present the most recent and state-of-the-art progresses which reflect the topic discussed in this publication. Both researchers and graduate students will find this book a good source of information on commutative and non-commutative algebraic geometry.

  18. The application of *-products to noncommutative geometry and gauge theory

    International Nuclear Information System (INIS)

    Sykora, A.

    2004-06-01

    Due to the singularities arising in quantum field theory and the difficulties in quantizing gravity it is often believed that the description of spacetime by a smooth manifold should be given up at small length scales or high energies. In this work we will replace spacetime by noncommutative structures arising within the framework of deformation quantization. The ordinary product between functions will be replaced by a *-product, an associative product for the space of functions on a manifold. We develop a formalism to realize algebras defined by relations on function spaces. For this purpose we construct the Weyl-ordered *-product and present a method how to calculate *-products with the help of commuting vector fields. Concepts developed in noncommutative differential geometry will be applied to this type of algebras and we construct actions for noncommutative field theories. In the classical limit these noncommutative theories become field theories on manifolds with nonvanishing curvature. It becomes clear that the application of *-products is very fruitful to the solution of noncommutative problems. In the semiclassical limit every *-product is related to a Poisson structure, every derivation of the algebra to a vector field on the manifold. Since in this limit many problems are reduced to a couple of differential equations the *-product representation makes it possible to construct noncommutative spaces corresponding to interesting Riemannian manifolds. Derivations of *-products makes it further possible to extend noncommutative gauge theory in the Seiberg-Witten formalism with covariant derivatives. The resulting noncommutative gauge fields may be interpreted as one forms of a generalization of the exterior algebra of a manifold. For the Formality *-product we prove the existence of the abelian Seiberg-Witten map for derivations of these *-products. We calculate the enveloping algebra valued non abelian Seiberg-Witten map pertubatively up to second order for

  19. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a open-quotes standard modelclose quotes. The open-quotes standard modelclose quotes consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the open-quotes standard modelclose quotes to determine if the requirements of open-quotes non-standardclose quotes architectures can be met. Several possible extensions to the open-quotes standard modelclose quotes are suggested including software as well as the hardware architectural features

  20. Noncommutative geometry a functorial approach

    CERN Document Server

    Nikolaev, Igor V

    2017-01-01

    The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monogr...

  1. Electroweak baryogenesis and the standard model

    International Nuclear Information System (INIS)

    Huet, P.

    1994-01-01

    Electroweak baryogenesis is addressed within the context of the standard model of particle physics. Although the minimal standard model has the means of fulfilling the three Sakharov's conditions, it falls short to explaining the making of the baryon asymmetry of the universe. In particular, it is demonstrated that the phase of the CKM mixing matrix is an, insufficient source of CP violation. The shortcomings of the standard model could be bypassed by enlarging the symmetry breaking sector and adding a new source of CP violation

  2. Discrete symmetry breaking beyond the standard model

    NARCIS (Netherlands)

    Dekens, Wouter Gerard

    2015-01-01

    The current knowledge of elementary particles and their interactions is summarized in the Standard Model of particle physics. Practically all the predictions of this model, that have been tested, were confirmed experimentally. Nonetheless, there are phenomena which the model cannot explain. For

  3. Beyond the Standard Model (2/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  4. Beyond the Standard Model (5/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  5. Beyond the Standard Model (3/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  6. Beyond the Standard Model (4/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  7. The standard model in a nutshell

    CERN Document Server

    Goldberg, Dave

    2017-01-01

    For a theory as genuinely elegant as the Standard Model--the current framework describing elementary particles and their forces--it can sometimes appear to students to be little more than a complicated collection of particles and ranked list of interactions. The Standard Model in a Nutshell provides a comprehensive and uncommonly accessible introduction to one of the most important subjects in modern physics, revealing why, despite initial appearances, the entire framework really is as elegant as physicists say. Dave Goldberg uses a "just-in-time" approach to instruction that enables students to gradually develop a deep understanding of the Standard Model even if this is their first exposure to it. He covers everything from relativity, group theory, and relativistic quantum mechanics to the Higgs boson, unification schemes, and physics beyond the Standard Model. The book also looks at new avenues of research that could answer still-unresolved questions and features numerous worked examples, helpful illustrat...

  8. Is the Standard Model about to crater?

    CERN Multimedia

    Lane, Kenneth

    2015-01-01

    The Standard Model is coming under more and more pressure from experiments. New results from the analysis of LHC's Run 1 data show effects that, if confirmed, would be the signature of new interactions at the TeV scale.

  9. Beyond the Standard Model (1/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  10. Noncommutative Yang-Mills from equivalence of star products

    International Nuclear Information System (INIS)

    Jurco, B.; Schupp, P.

    2000-01-01

    It is shown that the transformation between ordinary and noncommutative Yang-Mills theory as formulated by Seiberg and Witten is due to the equivalence of certain star products on the D-brane world-volume. (orig.)

  11. Noncommutative Yang-Mills from equivalence of star products

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. [Max-Planck-Institut fuer Mathematik, Bonn (Germany); Schupp, P. [Sektion Physik, Universitaet Muenchen, Theresienstrasse 37, 80333 Muenchen (Germany)

    2000-05-01

    It is shown that the transformation between ordinary and noncommutative Yang-Mills theory as formulated by Seiberg and Witten is due to the equivalence of certain star products on the D-brane world-volume. (orig.)

  12. Noncommutative SO(n) and Sp(n) gauge theories

    International Nuclear Information System (INIS)

    Bonora, L.; INFN, Sezione di Trieste, Trieste; Schnabl, M.; INFN, Sezione di Trieste, Trieste; Sheikh-Jabbari, M.M.; Tomasiello, A.

    2000-08-01

    We study the generalization of noncommutative gauge theories to the case of orthogonal and symplectic groups. We find out that this is possible, since we are allowed to define orthogonal and symplectic subgroups of noncommutative unitary gauge transformations even though the gauge potentials and gauge transformations are not valued in the orthogonal and symplectic subalgebras of the Lie algebra of antihermitean matrices. Our construction relies on an antiautomorphism of the basic noncommutative algebra of functions which generalizes the charge conjugation operator of ordinary field theory. We show that the corresponding noncommutative picture from low energy string theory is obtained via orientifold projection in the presence of a non-trivial NSNS B-field. (author)

  13. Deformed two-photon squeezed states in noncommutative space

    International Nuclear Information System (INIS)

    Zhang Jianzu

    2004-01-01

    Recent studies on nonperturbation aspects of noncommutative quantum mechanics explored a new type of boson commutation relations at the deformed level, described by deformed annihilation-creation operators in noncommutative space. This correlated boson commutator correlates different degrees of freedom, and shows an essential influence on dynamics. This Letter devotes to the development of formalism of deformed two-photon squeezed states in noncommutative space. General representations of deformed annihilation-creation operators and the consistency condition for the electromagnetic wave with a single mode of frequency in noncommunicative space are obtained. Two-photon squeezed states are studied. One finds that variances of the dimensionless Hermitian quadratures of the annihilation operator in one degree of freedom include variances in the other degree of freedom. Such correlations show the new feature of spatial noncommutativity and allow a deeper understanding of the correlated boson commutator

  14. Minimal length uncertainty and generalized non-commutative geometry

    International Nuclear Information System (INIS)

    Farmany, A.; Abbasi, S.; Darvishi, M.T.; Khani, F.; Naghipour, A.

    2009-01-01

    A generalized formulation of non-commutative geometry for the Bargmann-Fock space of quantum field theory is presented. The analysis is related to the symmetry of the simplistic space and a minimal length uncertainty.

  15. Quantum group of isometries in classical and noncommutative geometry

    International Nuclear Information System (INIS)

    Goswami, D.

    2007-04-01

    We formulate a quantum generalization of the notion of the group of Riemannian isometries for a compact Riemannian manifold, by introducing a natural notion of smooth and isometric action by a compact quantum group on a classical or noncommutative manifold described by spectral triples, and then proving the existence of a universal object (called the quantum isometry group) in the category of compact quantum groups acting smoothly and isometrically on a given (possibly noncommutative) manifold. Our formulation accommodates spectral triples which are not of type II. We give an explicit description of quantum isometry groups of commutative and noncommutative tori, and in this context, obtain the quantum double torus defined in [7] as the universal quantum group of holomorphic isometries of the noncommutative torus. (author)

  16. Accretion onto a noncommutative-inspired Schwarzschild black hole

    Science.gov (United States)

    Gangopadhyay, Sunandan; Paik, Biplab; Mandal, Rituparna

    2018-05-01

    In this paper, we investigate the problem of ordinary baryonic matter accretion onto the noncommutative (NC) geometry-inspired Schwarzschild black hole. The fundamental equations governing the spherically symmetric steady state matter accretion are deduced. These equations are seen to be modified due to the presence of noncommutativity. The matter accretion rate is computed and is found to increase rapidly with the increase in strength of the NC parameter. The sonic radius reduces while the sound speed at the sonic point increases with the increase in the strength of noncommutativity. The profile of the thermal environment is finally investigated below the sonic radius and at the event horizon and is found to be affected by noncommutativity.

  17. Vectors and covectors in non-commutative setting

    OpenAIRE

    Parfionov, G. N.; Romashev, Yu. A.; Zapatrine, R. R.

    1995-01-01

    Following the guidelines of classical differential geometry the `building material' for the tensor calculus in non-commutative geometry is suggested. The algebraic account of moduli of vectors and covectors is carried out.

  18. Some aspects of noncommutative integrable systems a la Moyal

    International Nuclear Information System (INIS)

    Dafounansou, O.; El Boukili, A.; Sedra, M.B.

    2005-12-01

    Besides its various applications in string and D-brane physics, the non commutativity of space (-time) coordinates, based on the *-product, behaves as a more general framework providing more mathematical and physical information about the associated system. Similar to the Gelfand-Dickey framework of pseudo differential operators, the non commutativity a la Moyal applied to physical problems makes the study more systematic. Using these facts, as well as the backgrounds of Moyal momentum algebra introduced in previous works, we look for the important task of studying integrability in the noncommutativity framework. The main focus is on the noncommutative version of the Lax representation of two principal examples: the noncommutative sl 2 KdV equation and the noncommutative version of Burgers systems. Important properties are presented. (author)

  19. Non-commutative geometry on quantum phase-space

    International Nuclear Information System (INIS)

    Reuter, M.

    1995-06-01

    A non-commutative analogue of the classical differential forms is constructed on the phase-space of an arbitrary quantum system. The non-commutative forms are universal and are related to the quantum mechanical dynamics in the same way as the classical forms are related to classical dynamics. They are constructed by applying the Weyl-Wigner symbol map to the differential envelope of the linear operators on the quantum mechanical Hilbert space. This leads to a representation of the non-commutative forms considered by A. Connes in terms of multiscalar functions on the classical phase-space. In an appropriate coincidence limit they define a quantum deformation of the classical tensor fields and both commutative and non-commutative forms can be studied in a unified framework. We interprete the quantum differential forms in physical terms and comment on possible applications. (orig.)

  20. Scalar-graviton interaction in the noncommutative space

    International Nuclear Information System (INIS)

    Brandt, F. T.; Elias-Filho, M. R.

    2006-01-01

    We obtain the leading order interaction between the graviton and the neutral scalar boson in the context of noncommutative field theory. Our approach makes use of the Ward identity associated with the invariance under a subgroup of symplectic diffeomorphisms

  1. From the standard model to dark matter

    International Nuclear Information System (INIS)

    Wilczek, F.

    1995-01-01

    The standard model of particle physics is marvelously successful. However, it is obviously not a complete or final theory. I shall argue here that the structure of the standard model gives some quite concrete, compelling hints regarding what lies beyond. Taking these hints seriously, one is led to predict the existence of new types of very weakly interacting matter, stable on cosmological time scales and produced with cosmologically interesting densities--that is, ''dark matter''. copyright 1995 American Institute of Physics

  2. Standard Model measurements with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Hassani Samira

    2015-01-01

    Full Text Available Various Standard Model measurements have been performed in proton-proton collisions at a centre-of-mass energy of √s = 7 and 8 TeV using the ATLAS detector at the Large Hadron Collider. A review of a selection of the latest results of electroweak measurements, W/Z production in association with jets, jet physics and soft QCD is given. Measurements are in general found to be well described by the Standard Model predictions.

  3. Non-commutative solitons and strong-weak duality

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Harold [Departamento de Matematica - ICET, Universidade Federal de Mato Grosso, Av. Fernando Correa, s/n, Coxipo, 78060-900, Cuiaba - MT (Brazil)]. E-mail: blas@cpd.ufmt.br; Carrion, Hector L. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro (Brazil); Rojas, Moises [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud, 150 CEP 22290-180, Rio de Janeiro-RJ (Brazil)

    2005-03-01

    Some properties of the non-commutative versions of the sine-Gordon model (NCSG) and the corresponding massive Thirring theories (NCMT) are studied. Our method relies on the NC extension of integrable models and the master Lagrangian approach to deal with dual theories. The master lagrangians turn out to be the NC versions of the so-called affine Toda model coupled to matter fields (NCATM) associated to the group GL(2), in which the Toda field belongs to certain representations of either U(1)xU(1) or U(1){sub C} corresponding to the Lechtenfeld et al. (NCSG{sub 1}) or Grisaru-Penati (NCSG{sub 2}) proposals for the NC versions of the sine-Gordon model, respectively. Besides, the relevant NCMT{sub 1,2} models are written for two (four) types of Dirac fields corresponding to the Moyal product extension of one (two) copy(ies) of the ordinary massive Thirring model. The NCATM{sub 1,2} models share the same one-soliton (real Toda field sector of model 2) exact solutions, which are found without expansion in the NC parameter {theta} for the corresponding Toda and matter fields describing the strong-weak phases, respectively. The correspondence NCSG{sub 1} {r_reversible} NCMT{sub 1} is promising since it is expected to hold on the quantum level. (author)

  4. Dirac equation in noncommutative space for hydrogen atom

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C., E-mail: tadorno@nonada.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05508-090 Sao Paulo, SP (Brazil); Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05508-090 Sao Paulo, SP (Brazil); Chaichian, M., E-mail: Masud.Chaichian@helsinki.f [Department of Physics, University of Helsinki and Helsinki Institute of Physics, PO Box 64, FIN-00014 Helsinki (Finland); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05508-090 Sao Paulo, SP (Brazil); Tureanu, A., E-mail: Anca.Tureanu@helsinki.f [Department of Physics, University of Helsinki and Helsinki Institute of Physics, PO Box 64, FIN-00014 Helsinki (Finland)

    2009-11-30

    We consider the energy levels of a hydrogen-like atom in the framework of theta-modified, due to space noncommutativity, Dirac equation with Coulomb field. It is shown that on the noncommutative (NC) space the degeneracy of the levels 2S{sub 1/2}, 2P{sub 1/2} and 2P{sub 3/2} is lifted completely, such that new transition channels are allowed.

  5. Dirac equation in noncommutative space for hydrogen atom

    International Nuclear Information System (INIS)

    Adorno, T.C.; Baldiotti, M.C.; Chaichian, M.; Gitman, D.M.; Tureanu, A.

    2009-01-01

    We consider the energy levels of a hydrogen-like atom in the framework of θ-modified, due to space noncommutativity, Dirac equation with Coulomb field. It is shown that on the noncommutative (NC) space the degeneracy of the levels 2S 1/2 , 2P 1/2 and 2P 3/2 is lifted completely, such that new transition channels are allowed.

  6. Baecklund transformation of the noncommutative Gelfand-Dickey hierarchy

    International Nuclear Information System (INIS)

    Zheng Zhong; He Jingsong; Cheng Yi

    2004-01-01

    We study the Baecklund transformation of the noncommutative Gelfand-Dickey(ncGD) hierarchy. By factorizing its Lax operator into the multiplication form of first order differential operator, the noncommutative modified KdV(ncMKdV) hierarchy and the Miura transformations are defined. Our results show that the ncMKdV equations are invariant under the cyclic permutation, and hence induces the Baecklund transformation of the ncGD hierarchy. (author)

  7. Differential Galois obstructions for non-commutative integrability

    Energy Technology Data Exchange (ETDEWEB)

    Maciejewski, Andrzej J. [Institute of Astronomy, University of Zielona Gora, Podgorna 50, PL-65-246 Zielona Gora (Poland)], E-mail: maciejka@astro.ia.uz.zgora.pl; Przybylska, Maria [Torun Centre for Astronomy, N. Copernicus University, Gagarina 11, PL-87-100 Torun (Poland)], E-mail: mprzyb@astri.uni.torun.pl

    2008-08-11

    We show that if a holomorphic Hamiltonian system is holomorphically integrable in the non-commutative sense in a neighbourhood of a non-equilibrium phase curve which is located at a regular level of the first integrals, then the identity component of the differential Galois group of the variational equations along the phase curve is Abelian. Thus necessary conditions for the commutative and non-commutative integrability given by the differential Galois approach are the same.

  8. Heisenberg groups and noncommutative fluxes

    International Nuclear Information System (INIS)

    Freed, Daniel S.; Moore, Gregory W.; Segal, Graeme

    2007-01-01

    We develop a group-theoretical approach to the formulation of generalized abelian gauge theories, such as those appearing in string theory and M-theory. We explore several applications of this approach. First, we show that there is an uncertainty relation which obstructs simultaneous measurement of electric and magnetic flux when torsion fluxes are included. Next, we show how to define the Hilbert space of a self-dual field. The Hilbert space is Z 2 -graded and we show that, in general, self-dual theories (including the RR fields of string theory) have fermionic sectors. We indicate how rational conformal field theories associated to the two-dimensional Gaussian model generalize to (4k+2)-dimensional conformal field theories. When our ideas are applied to the RR fields of string theory we learn that it is impossible to measure the K-theory class of a RR field. Only the reduction modulo torsion can be measured

  9. Noncommutative spaces and Poincaré symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Meljanac, Stjepan, E-mail: meljanac@irb.hr [Division of Theoretical Physics, Rudjer Bošković Institute, Bijenička c. 54, HR-10002 Zagreb (Croatia); Meljanac, Daniel [Division of Theoretical Physics, Rudjer Bošković Institute, Bijenička c. 54, HR-10002 Zagreb (Croatia); Mercati, Flavio [Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); Pikutić, Danijel [Division of Theoretical Physics, Rudjer Bošković Institute, Bijenička c. 54, HR-10002 Zagreb (Croatia)

    2017-03-10

    We present a framework which unifies a large class of noncommutative spacetimes that can be described in terms of a deformed Heisenberg algebra. The commutation relations between spacetime coordinates are up to linear order in the coordinates, with structure constants depending on the momenta plus terms depending only on the momenta. The possible implementations of the action of Lorentz transformations on these deformed phase spaces are considered, together with the consistency requirements they introduce. It is found that Lorentz transformations in general act nontrivially on tensor products of momenta. In particular the Lorentz group element which acts on the left and on the right of a composition of two momenta is different, and depends on the momenta involved in the process. We conclude with two representative examples, which illustrate the mentioned effect.

  10. Noncommutative analysis, operator theory and applications

    CERN Document Server

    Cipriani, Fabio; Colombo, Fabrizio; Guido, Daniele; Sabadini, Irene; Sauvageot, Jean-Luc

    2016-01-01

    This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.

  11. A first course in noncommutative rings

    CERN Document Server

    Lam, T Y

    2001-01-01

    A First Course in Noncommutative Rings, an outgrowth of the author's lectures at the University of California at Berkeley, is intended as a textbook for a one-semester course in basic ring theory. The material covered includes the Wedderburn-Artin theory of semisimple rings, Jacobson's theory of the radical, representation theory of groups and algebras, prime and semiprime rings, local and semilocal rings, perfect and semiperfect rings, etc. By aiming the level of writing at the novice rather than the connoisseur and by stressing th the role of examples and motivation, the author has produced a text that is suitable not only for use in a graduate course, but also for self- study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition.

  12. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  13. Exploring the Standard Model of Particles

    Science.gov (United States)

    Johansson, K. E.; Watkins, P. M.

    2013-01-01

    With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…

  14. Towards LHC physics with nonlocal Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Tirthabir, E-mail: tbiswas@loyno.edu [Department of Physics, Loyola University, 6363 St. Charles Avenue, Box 92, New Orleans, LA 70118 (United States); Okada, Nobuchika, E-mail: okadan@ua.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487-0324 (United States)

    2015-09-15

    We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5–3 TeV.

  15. Big Bang nucleosynthesis: The standard model

    International Nuclear Information System (INIS)

    Steigman, G.

    1989-01-01

    Current observational data on the abundances of deuterium, helium-3, helium-4 and lithium-7 are reviewed and these data are used to infer (or to bound) the primordial abundances of these elements. The physics of primordial nucleosynthesis in the context of the ''standard'' (isotropic, homogeneous,...) hot big bang model is outlined and the primordial abundances predicted within the context of this model are presented. The theoretical predictions are then confronted with the observational data. This confrontation reveals the remarkable consistency of the standard model, constrains the nucleon abundance to lie within a narrow range and, permits the existence of no more than one additional flavor of light neutrinos

  16. Looking for physics beyond the standard model

    International Nuclear Information System (INIS)

    Binetruy, P.

    2002-01-01

    Motivations for new physics beyond the Standard Model are presented. The most successful and best motivated option, supersymmetry, is described in some detail, and the associated searches performed at LEP are reviewed. These include searches for additional Higgs bosons and for supersymmetric partners of the standard particles. These searches constrain the mass of the lightest supersymmetric particle which could be responsible for the dark matter of the universe. (authors)

  17. The Standard Model and Higgs physics

    Science.gov (United States)

    Torassa, Ezio

    2018-05-01

    The Standard Model is a consistent and computable theory that successfully describes the elementary particle interactions. The strong, electromagnetic and weak interactions have been included in the theory exploiting the relation between group symmetries and group generators, in order to smartly introduce the force carriers. The group properties lead to constraints between boson masses and couplings. All the measurements performed at the LEP, Tevatron, LHC and other accelerators proved the consistency of the Standard Model. A key element of the theory is the Higgs field, which together with the spontaneous symmetry breaking, gives mass to the vector bosons and to the fermions. Unlike the case of vector bosons, the theory does not provide prediction for the Higgs boson mass. The LEP experiments, while providing very precise measurements of the Standard Model theory, searched for the evidence of the Higgs boson until the year 2000. The discovery of the top quark in 1994 by the Tevatron experiments and of the Higgs boson in 2012 by the LHC experiments were considered as the completion of the fundamental particles list of the Standard Model theory. Nevertheless the neutrino oscillations, the dark matter and the baryon asymmetry in the Universe evidence that we need a new extended model. In the Standard Model there are also some unattractive theoretical aspects like the divergent loop corrections to the Higgs boson mass and the very small Yukawa couplings needed to describe the neutrino masses. For all these reasons, the hunt of discrepancies between Standard Model and data is still going on with the aim to finally describe the new extended theory.

  18. The Cosmological Standard Model and Its Implications for Beyond the Standard Model of Particle Physics

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    While the cosmological standard model has many notable successes, it assumes 95% of the mass-energy density of the universe is dark and of unknown nature, and there was an early stage of inflationary expansion driven by physics far beyond the range of the particle physics standard model. In the colloquium I will discuss potential particle-physics implications of the standard cosmological model.

  19. General formulation of standard model the standard model is in need of new concepts

    International Nuclear Information System (INIS)

    Khodjaev, L.Sh.

    2001-01-01

    The phenomenological basis for formulation of the Standard Model has been reviewed. The Standard Model based on the fundamental postulates has been formulated. The concept of the fundamental symmetries has been introduced: To look for not fundamental particles but fundamental symmetries. By searching of more general theory it is natural to search first of all global symmetries and than to learn consequence connected with the localisation of this global symmetries like wise of the standard Model

  20. LHC Higgs physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Spannowsky, M.

    2007-01-01

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan β in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  1. LHC Higgs physics beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Spannowsky, M.

    2007-09-22

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan {beta} in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  2. A solar neutrino loophole: standard solar models

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, C A [General Atomic Co., San Diego, Calif. (USA)

    1975-11-01

    The salient aspects of the existence theorem for a unique solution to a system of linear of nonlinear first-order, ordinary differential equations are given and applied to the equilibrium stellar structure equations. It is shown that values of pressure, temperature, mass and luminosity are needed at one point - and for the sun, the logical point is the solar radius. It is concluded that since standard solar model calculations use split boundary conditions, a solar neutrino loophole still remains: solar model calculations that seek to satisfy the necessary condition for a unique solution to the solar structure equations suggest a solar interior quite different from that deduced in standard models. This, in turn, suggests a theory of formation and solar evolution significantly different from the standard theory.

  3. The Event Horizon of The Schwarzschild Black Hole in Noncommutative Spaces

    OpenAIRE

    Nasseri, Forough

    2005-01-01

    The event horizon of Schwarzschild black hole is obtained in noncommutative spaces up to the second order of perturbative calculations. Because this type of black hole is non-rotating, to the first order there is no any effect on the event horizon due to the noncommutativity of space. A lower limit for the noncommutativity parameter is also obtained. As a result, the event horizon in noncommutative spaces is less than the event horizon in commutative spaces.

  4. Standard model Higgs physics at colliders

    International Nuclear Information System (INIS)

    Rosca, A.

    2007-01-01

    In this report we briefly review the experimental status and prospects to verify the Higgs mechanism of spontaneous symmetry breaking. The focus is on the most relevant aspects of the phenomenology of the Standard Model Higgs boson at current (Tevatron) and future (Large Hadron Collider, LHC and International Linear Collider, ILC) particle colliders. We review the Standard Model searches: searches at the Tevatron, the program planned at the LHC and prospects at the ILC. Emphasis is put on what follows after a candidate discovery at the LHC: the various measurements which are necessary to precisely determine what the properties of this Higgs candidate are. (author)

  5. On a direct approach to quasideterminant solutions of a noncommutative modified KP equation

    International Nuclear Information System (INIS)

    Gilson, C R; Nimmo, J J C; Sooman, C M

    2008-01-01

    A noncommutative version of the modified KP equation and a family of its solutions expressed as quasideterminants are discussed. The origin of these solutions is explained by means of Darboux transformations and the solutions are verified directly. We also verify directly an explicit connection between quasideterminant solutions of the noncommutative mKP equation and the noncommutative KP equation arising from the Miura transformation

  6. Moving mirrors and black hole evaporation in noncommutative space-times

    International Nuclear Information System (INIS)

    Casadio, R.; Cox, P.H.; Harms, B.; Micu, O.

    2006-01-01

    We study the evaporation of black holes in noncommutative space-times. We do this by calculating the correction to the detector's response function for a moving mirror in terms of the noncommutativity parameter Θ and then extracting the number density as modified by this parameter. We find that allowing space and time to be noncommutative increases the decay rate of a black hole

  7. Standard Model mass spectrum in inflationary universe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xingang [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics,60 Garden Street, Cambridge, MA 02138 (United States); Wang, Yi [Department of Physics, The Hong Kong University of Science and Technology,Clear Water Bay, Kowloon, Hong Kong (China); Xianyu, Zhong-Zhi [Center of Mathematical Sciences and Applications, Harvard University,20 Garden Street, Cambridge, MA 02138 (United States)

    2017-04-11

    We work out the Standard Model (SM) mass spectrum during inflation with quantum corrections, and explore its observable consequences in the squeezed limit of non-Gaussianity. Both non-Higgs and Higgs inflation models are studied in detail. We also illustrate how some inflationary loop diagrams can be computed neatly by Wick-rotating the inflation background to Euclidean signature and by dimensional regularization.

  8. Standard Model Effective Potential from Trace Anomalies

    Directory of Open Access Journals (Sweden)

    Renata Jora

    2018-01-01

    Full Text Available By analogy with the low energy QCD effective linear sigma model, we construct a standard model effective potential based entirely on the requirement that the tree level and quantum level trace anomalies must be satisfied. We discuss a particular realization of this potential in connection with the Higgs boson mass and Higgs boson effective couplings to two photons and two gluons. We find that this kind of potential may describe well the known phenomenology of the Higgs boson.

  9. Scale gauge symmetry and the standard model

    International Nuclear Information System (INIS)

    Sola, J.

    1990-01-01

    This paper speculates on a version of the standard model of the electroweak and strong interactions coupled to gravity and equipped with a spontaneously broken, anomalous, conformal gauge symmetry. The scalar sector is virtually absent in the minimal model but in the general case it shows up in the form of a nonlinear harmonic map Lagrangian. A Euclidean approach to the phenological constant problem is also addressed in this framework

  10. Theorists reject challenge to standard model

    CERN Multimedia

    Adam, D

    2001-01-01

    Particle physicists are questioning results that appear to violate the Standard Model. There are concerns that there is not sufficient statistical significance and also charges that the comparison is being made with the 'most convenient' theoretical value for the muon's magnetic moment (1 page).

  11. Precision tests of the Standard Model

    International Nuclear Information System (INIS)

    Ol'shevskij, A.G.

    1996-01-01

    The present status of the precision measurements of electroweak observables is discussed with the special emphasis on the results obtained recently. All together these measurements provide the basis for the stringent test of the Standard Model and determination of the SM parameters. 22 refs., 23 figs., 11 tabs

  12. Standard Model at the LHC 2017

    CERN Document Server

    2017-01-01

    The SM@LHC 2017 conference will be held May 2-5, 2017 at Nikhef, Amsterdam. The meeting aims to bring together experimentalists and theorists to discuss the phenomenology, observational results and theoretical tools for Standard Model physics at the LHC.

  13. Introduction to physics beyond the Standard Model

    CERN Document Server

    Giudice, Gian Francesco

    1998-01-01

    These lectures will give an introductory review of the main ideas behind the attempts to extend the standard-model description of elementary particle interactions. After analysing the conceptual motivations that lead us to blieve in the existence of an underlying fundamental theory, wi will discuss the present status of various theoretical constructs : grand unification, supersymmetry and technicolour.

  14. Is the standard model really tested?

    International Nuclear Information System (INIS)

    Takasugi, E.

    1989-01-01

    It is discussed how the standard model is really tested. Among various tests, I concentrate on the CP violation phenomena in K and B meson system. Especially, the resent hope to overcome the theoretical uncertainty in the evaluation on the CP violation of K meson system is discussed. (author)

  15. Accidentally safe extensions of the Standard Model

    CERN Document Server

    Di Luzio, Luca; Kamenik, Jernej F.; Nardecchia, Marco

    2015-01-01

    We discuss a class of weak-scale extensions of the Standard Model which is completely invisible to low-energy indirect probes. The typical signature of this scenario is the existence of new charged and/or colored states which are stable on the scale of high-energy particle detectors.

  16. Asymptotically Safe Standard Model via Vectorlike Fermions

    Science.gov (United States)

    Mann, R. B.; Meffe, J. R.; Sannino, F.; Steele, T. G.; Wang, Z. W.; Zhang, C.

    2017-12-01

    We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.

  17. Inflation in the standard cosmological model

    Science.gov (United States)

    Uzan, Jean-Philippe

    2015-12-01

    The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multiverse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. xml:lang="fr"

  18. Instantons, quivers and noncommutative Donaldson-Thomas theory

    Science.gov (United States)

    Cirafici, Michele; Sinkovics, Annamaria; Szabo, Richard J.

    2011-12-01

    We construct noncommutative Donaldson-Thomas invariants associated with abelian orbifold singularities by analyzing the instanton contributions to a six-dimensional topological gauge theory. The noncommutative deformation of this gauge theory localizes on noncommutative instantons which can be classified in terms of three-dimensional Young diagrams with a colouring of boxes according to the orbifold group. We construct a moduli space for these gauge field configurations which allows us to compute its virtual numbers via the counting of representations of a quiver with relations. The quiver encodes the instanton dynamics of the noncommutative gauge theory, and is associated to the geometry of the singularity via the generalized McKay correspondence. The index of BPS states which compute the noncommutative Donaldson-Thomas invariants is realized via topological quantum mechanics based on the quiver data. We illustrate these constructions with several explicit examples, involving also higher rank Coulomb branch invariants and geometries with compact divisors, and connect our approach with other ones in the literature.

  19. Instantons, quivers and noncommutative Donaldson-Thomas theory

    Energy Technology Data Exchange (ETDEWEB)

    Cirafici, Michele, E-mail: cirafici@math.ist.utl.pt [Centro de Analise Matematica, Geometria e Sistemas Dinamicos, Departamento de Matematica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Sinkovics, Annamaria, E-mail: A.Sinkovics@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Szabo, Richard J., E-mail: R.J.Szabo@ma.hw.ac.uk [Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom); Maxwell Institute for Mathematical Sciences, Edinburgh (United Kingdom)

    2011-12-11

    We construct noncommutative Donaldson-Thomas invariants associated with abelian orbifold singularities by analyzing the instanton contributions to a six-dimensional topological gauge theory. The noncommutative deformation of this gauge theory localizes on noncommutative instantons which can be classified in terms of three-dimensional Young diagrams with a colouring of boxes according to the orbifold group. We construct a moduli space for these gauge field configurations which allows us to compute its virtual numbers via the counting of representations of a quiver with relations. The quiver encodes the instanton dynamics of the noncommutative gauge theory, and is associated to the geometry of the singularity via the generalized McKay correspondence. The index of BPS states which compute the noncommutative Donaldson-Thomas invariants is realized via topological quantum mechanics based on the quiver data. We illustrate these constructions with several explicit examples, involving also higher rank Coulomb branch invariants and geometries with compact divisors, and connect our approach with other ones in the literature.

  20. Paired quantum Hall states on noncommutative two-tori

    Energy Technology Data Exchange (ETDEWEB)

    Marotta, Vincenzo [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN, Sezione di Napoli, Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy); Naddeo, Adele, E-mail: naddeo@sa.infn.i [CNISM, Unita di Ricerca di Salerno and Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, Via Salvador Allende, 84081 Baronissi (Italy)

    2010-08-01

    By exploiting the notion of Morita equivalence for field theories on noncommutative tori and choosing rational values of the noncommutativity parameter theta (in appropriate units), a one-to-one correspondence between an Abelian noncommutative field theory (NCFT) and a non-Abelian theory of twisted fields on ordinary space can be established. Starting from this general result, we focus on the conformal field theory (CFT) describing a quantum Hall fluid (QHF) at paired states fillings nu=m/(pm+2) Cristofano et al. (2000) , recently obtained by means of m-reduction procedure, and show that it is the Morita equivalent of a NCFT. In this way we extend the construction proposed in Marotta and Naddeo (2008) for the Jain series nu=m/(2pm+1) . The case m=2 is explicitly discussed and the role of noncommutativity in the physics of quantum Hall bilayers is emphasized. Our results represent a step forward the construction of a new effective low energy description of certain condensed matter phenomena and help to clarify the relationship between noncommutativity and quantum Hall fluids.

  1. An integrable noncommutative version of the sine-Gordon system

    International Nuclear Information System (INIS)

    Grisaru, Marcus T.; Penati, Silvia

    2003-01-01

    Using the bicomplex approach we discuss an integrable noncommutative system in two-dimensional Euclidean space. It is described by an equation of motion which reduces to the ordinary sine-Gordon equation when the noncommutation parameter is removed, plus a constraint equation which is nontrivial only in the noncommutative case. The implications of this constraint, which is required by integrability but seems to reduce the space of classical solutions, remain to be understood. We show that the system has an infinite number of conserved currents and we give the general recursive relation for constructing them. For the particular cases of lower spin nontrivial currents we work out the explicit expressions and perform a direct check of their conservation. These currents reduce to the usual sine-Gordon currents in the commutative limit. We find classical 'localized' solutions to first order in the noncommutativity parameter and describe the Backlund transformations for our system. Finally, we comment on the relation of our noncommutative system to the commutative sine-Gordon system

  2. Primordial nucleosynthesis: Beyond the standard model

    International Nuclear Information System (INIS)

    Malaney, R.A.

    1991-01-01

    Non-standard primordial nucleosynthesis merits continued study for several reasons. First and foremost are the important implications determined from primordial nucleosynthesis regarding the composition of the matter in the universe. Second, the production and the subsequent observation of the primordial isotopes is the most direct experimental link with the early (t approx-lt 1 sec) universe. Third, studies of primordial nucleosynthesis allow for important, and otherwise unattainable, constraints on many aspects of particle physics. Finally, there is tentative evidence which suggests that the Standard Big Bang (SBB) model is incorrect in that it cannot reproduce the inferred primordial abundances for a single value of the baryon-to-photon ratio. Reviewed here are some aspects of non-standard primordial nucleosynthesis which mostly overlap with the authors own personal interest. He begins with a short discussion of the SBB nucleosynthesis theory, high-lighting some recent related developments. Next he discusses how recent observations of helium and lithium abundances may indicate looming problems for the SBB model. He then discusses how the QCD phase transition, neutrinos, and cosmic strings can influence primordial nucleosynthesis. He concludes with a short discussion of the multitude of other non-standard nucleosynthesis models found in the literature, and make some comments on possible progress in the future. 58 refs., 7 figs., 2 tabs

  3. Standard Model Higgs Searches at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Knoepfel, Kyle J.

    2012-06-01

    We present results from the search for a standard model Higgs boson using data corresponding up to 10 fb{sup -1} of proton-antiproton collision data produced by the Fermilab Tevatron at a center-of-mass energy of 1.96 TeV. The data were recorded by the CDF and D0 detectors between March 2001 and September of 2011. A broad excess is observed between 105 < m{sub H} < 145 GeV/c{sup 2} with a global significance of 2.2 standard deviations relative to the background-only hypothesis.

  4. Beyond the standard model at Tevatron

    International Nuclear Information System (INIS)

    Pagliarone, C.

    2000-01-01

    Tevatron experiments performed extensive searches for physics beyond the Standard Model. No positive results have been found so far showing that the data are consistent with the SM expectations. CDF and D0 continue the analysis of Run I data placing limits on new physics, including Supersymmetry, large space time dimensions and leptoquark models. With the Run II upgrades, providing an higher acceptance and higher luminosity, it will be possible to make important progresses in the search for new phenomena as well as in setting limits on a larger variety of theoretical models

  5. Study on Standard Fatigue Vehicle Load Model

    Science.gov (United States)

    Huang, H. Y.; Zhang, J. P.; Li, Y. H.

    2018-02-01

    Based on the measured data of truck from three artery expressways in Guangdong Province, the statistical analysis of truck weight was conducted according to axle number. The standard fatigue vehicle model applied to industrial areas in the middle and late was obtained, which adopted equivalence damage principle, Miner linear accumulation law, water discharge method and damage ratio theory. Compared with the fatigue vehicle model Specified by the current bridge design code, the proposed model has better applicability. It is of certain reference value for the fatigue design of bridge in China.

  6. Standard model beyond the TeV

    International Nuclear Information System (INIS)

    Aurenche, P.

    1987-01-01

    The phenomenology of the standard model in the hadronic reactions in the 10 TeV range is described. The predictions of the model concerning the hadronic cross sections being based on the parton model, we first discuss the behaviour of the structure functions at the low values of X (x > 10 -4 ) which are attained at these energies and we show that the development of the leading logarithms equations allow us to calculate them. The production of W, Z, and gauge bosons and gauge boson pairs are reviewed. The Higgs boson production is discussed in detail according to his mass value [fr

  7. Non-commutative and commutative vacua effects in a scalar torsion scenario

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhahmadi, Haidar, E-mail: h.sh.ahmadi@gmail.com [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Aghamohammadi, Ali, E-mail: a.aghamohamadi@iausdj.ac.ir [Sanandaj Branch, Islamic Azad University, Sanandaj (Iran, Islamic Republic of); Saaidi, Khaled, E-mail: ksaaidi@uok.ac.ir [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2015-10-07

    In this work, the effects of non-commutative and commutative vacua on the phase space generated by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, the commutative and non-commutative cases are compared. To take account the effects of non-commutativity, two well known non-commutative parameters, θ and β, are introduced. It should be emphasized, the effects of β which is related to momentum sector has more key role in comparison to θ which is related to space sector. Also the different boundary conditions and mathematical interpretations of non-commutativity are explored.

  8. Non-commutative and commutative vacua effects in a scalar torsion scenario

    International Nuclear Information System (INIS)

    Sheikhahmadi, Haidar; Aghamohammadi, Ali; Saaidi, Khaled

    2015-01-01

    In this work, the effects of non-commutative and commutative vacua on the phase space generated by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, the commutative and non-commutative cases are compared. To take account the effects of non-commutativity, two well known non-commutative parameters, θ and β, are introduced. It should be emphasized, the effects of β which is related to momentum sector has more key role in comparison to θ which is related to space sector. Also the different boundary conditions and mathematical interpretations of non-commutativity are explored.

  9. Non-commutative and commutative vacua effects in a scalar torsion scenario

    Directory of Open Access Journals (Sweden)

    Haidar Sheikhahmadi

    2015-10-01

    Full Text Available In this work, the effects of non-commutative and commutative vacua on the phase space generated by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, the commutative and non-commutative cases are compared. To take account the effects of non-commutativity, two well known non-commutative parameters, θ and β, are introduced. It should be emphasized, the effects of β which is related to momentum sector has more key role in comparison to θ which is related to space sector. Also the different boundary conditions and mathematical interpretations of non-commutativity are explored.

  10. Interacting open Wilson lines from noncommutative field theories

    International Nuclear Information System (INIS)

    Kiem, Youngjai; Lee, Sangmin; Rey, Soo-Jong; Sato, Haru-Tada

    2002-01-01

    In noncommutative field theories, it is known that the one-loop effective action describes the propagation of noninteracting open Wilson lines, obeying the flying dipole's relation. We show that the two-loop effective action describes the cubic interaction among 'closed string' states created by open Wilson line operators. Taking d-dimensional λ[Φ 3 ] * theory as the simplest setup, we compute the nonplanar contribution at a low-energy and large noncommutativity limit. We find that the contribution is expressible in a remarkably simple cubic interaction involving scalar open Wilson lines only and nothing else. We show that the interaction is purely geometrical and noncommutative in nature, depending only on the size of each open Wilson line

  11. A deformation quantization theory for noncommutative quantum mechanics

    International Nuclear Information System (INIS)

    Costa Dias, Nuno; Prata, Joao Nuno; Gosson, Maurice de; Luef, Franz

    2010-01-01

    We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ['Weyl-Wigner formulation of noncommutative quantum mechanics', J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ['Wigner measures in non-commutative quantum mechanics', e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ['A new approach to the *-genvalue equation', Lett. Math. Phys. 85, 173-183 (2008)].

  12. Optimization of polynomials in non-commuting variables

    CERN Document Server

    Burgdorf, Sabine; Povh, Janez

    2016-01-01

    This book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithmic considerations; several examples and information on how to use NCSOStools open source package to obtain the results provided. Results are presented on detecting the eigenvalue and trace positivity of polynomials in non-commuting variables using Newton chip method and Newton cyclic chip method, relaxations for constrained and unconstrained optimization problems, semidefinite programming formulations of the relaxations and finite convergence of the hierarchies of these relaxations, and the practical efficiency of algorithms.

  13. Spectral theorem in noncommutative field theories: Jacobi dynamics

    International Nuclear Information System (INIS)

    Géré, Antoine; Wallet, Jean-Christophe

    2015-01-01

    Jacobi operators appear as kinetic operators of several classes of noncommutative field theories (NCFT) considered recently. This paper deals with the case of bounded Jacobi operators. A set of tools mainly issued from operator and spectral theory is given in a way applicable to the study of NCFT. As an illustration, this is applied to a gauge-fixed version of the induced gauge theory on the Moyal plane expanded around a symmetric vacuum. The characterization of the spectrum of the kinetic operator is given, showing a behavior somewhat similar to a massless theory. An attempt to characterize the noncommutative geometry related to the gauge fixed action is presented. Using a Dirac operator obtained from the kinetic operator, it is shown that one can construct an even, regular, weakly real spectral triple. This spectral triple does not define a noncommutative metric space for the Connes spectral distance. (paper)

  14. Quantization, geometry and noncommutative structures in mathematics and physics

    CERN Document Server

    Morales, Pedro; Ocampo, Hernán; Paycha, Sylvie; Lega, Andrés

    2017-01-01

    This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics. The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics. A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt. The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf a...

  15. Non-commutative flux representation for loop quantum gravity

    Science.gov (United States)

    Baratin, A.; Dittrich, B.; Oriti, D.; Tambornino, J.

    2011-09-01

    The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by sstarf-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.

  16. Test of non-commutative QED in the process $e^{+}e^{-} \\to \\gamma \\gamma$ at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2003-01-01

    Non-communicative QED would lead to deviations from the Standard Model depending on a new energy scale $\\Delta_{NC}$ and a unique direction in space defined by two angles $\\eta$ and $\\xi$. Here in this analysis $\\eta$ is defined as the angle between the unique direction and the rotation axis of the earth. The predictions of such a theory for the process $e^{+} e^{-} \\to \\gamma \\gamma$ are evalued for the specific orientation of the OPAL detector and compared to the measurements. Distributions of the polar and azimuthal scattering angles are used to extract limits on the energy scale $\\Delta_{NC}$ depending on the model parameter $\\eta$. At the 95% confidence level $\\Delta_{NC}$ is found to be larger than 141 GeV for all $\\eta$ and $\\xi$. It is shown that the time dependence of the total cross-section could be used to determine the model parameter $\\xi$ if there were a detectable signal. These are the first limits obtained on non-commutative QED from an $e^{+} e^{-}$ collider experiment.

  17. Anomalous Abelian symmetry in the standard model

    International Nuclear Information System (INIS)

    Ramond, P.

    1995-01-01

    The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated by the Green-Schwarz mechanism. If we assume these two symmetries to be the same, we find the electroweak mixing angle to be sin 2 θ ω = 3/8 at the string scale, just by setting the ratio of the product of down quark to charged lepton masses equal to one at the string scale. This assumes no GUT structure. The generality of the result suggests a superstring origin for the standard model. We generalize our analysis to massive neutrinos, and mixings in the lepton sector

  18. Higgs triplets in the standard model

    International Nuclear Information System (INIS)

    Gunion, J.F.; Vega, R.; Wudka, J.

    1990-01-01

    Even though the standard model of the strong and electroweak interactions has proven enormously successful, it need not be the case that a single Higgs-doublet field is responsible for giving masses to the weakly interacting vector bosons and the fermions. In this paper we explore the phenomenology of a Higgs sector for the standard model which contains both doublet and triplet fields [under SU(2) L ]. The resulting Higgs bosons have many exotic features and surprising experimental signatures. Since a critical task of future accelerators will be to either discover or establish the nonexistence of Higgs bosons with mass below the TeV scale, it will be important to keep in mind the alternative possibilities characteristic of this and other nonminimal Higgs sectors

  19. Neutrons and the new Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey-Musolf, M.J., E-mail: mjrm@physics.wisc.ed [Department of Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2009-12-11

    Fundamental symmetry tests with neutrons can provide unique information about whatever will be the new Standard Model of fundamental interactions. I review two aspects of this possibility: searches for the permanent electric dipole moment of the neutron and its relation to the origin of baryonic matter, and precision studies of neutron decay that can probe new symmetries. I discuss the complementarity of these experiments with other low-energy precision tests and high energy collider searches for new physics.

  20. Phase transition and entropy inequality of noncommutative black holes in a new extended phase space

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yan-Gang; Xu, Zhen-Ming, E-mail: miaoyg@nankai.edu.cn, E-mail: xuzhenm@mail.nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)

    2017-03-01

    We analyze the thermodynamics of the noncommutative high-dimensional Schwarzschild-Tangherlini AdS black hole with the non-Gaussian smeared matter distribution by regarding a noncommutative parameter as an independent thermodynamic variable named as the noncommutative pressure . In the new extended phase space that includes this noncommutative pressure and its conjugate variable, we reveal that the noncommutative pressure and the original thermodynamic pressure related to the negative cosmological constant make the opposite effects in the phase transition of the noncommutative black hole, i.e. the former dominates the UV regime while the latter does the IR regime, respectively. In addition, by means of the reverse isoperimetric inequality, we indicate that only the black hole with the Gaussian smeared matter distribution holds the maximum entropy for a given thermodynamic volume among the noncommutative black holes with various matter distributions.

  1. Beyond the standard model in many directions

    Energy Technology Data Exchange (ETDEWEB)

    Chris Quigg

    2004-04-28

    These four lectures constitute a gentle introduction to what may lie beyond the standard model of quarks and leptons interacting through SU(3){sub c} {direct_product} SU(2){sub L} {direct_product} U(1){sub Y} gauge bosons, prepared for an audience of graduate students in experimental particle physics. In the first lecture, I introduce a novel graphical representation of the particles and interactions, the double simplex, to elicit questions that motivate our interest in physics beyond the standard model, without recourse to equations and formalism. Lecture 2 is devoted to a short review of the current status of the standard model, especially the electroweak theory, which serves as the point of departure for our explorations. The third lecture is concerned with unified theories of the strong, weak, and electromagnetic interactions. In the fourth lecture, I survey some attempts to extend and complete the electroweak theory, emphasizing some of the promise and challenges of supersymmetry. A short concluding section looks forward.

  2. Modular Theory, Non-Commutative Geometry and Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Wicharn Lewkeeratiyutkul

    2010-08-01

    Full Text Available This paper contains the first written exposition of some ideas (announced in a previous survey on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.

  3. Intersecting Quantum Gravity with Noncommutative Geometry - a Review

    Directory of Open Access Journals (Sweden)

    Johannes Aastrup

    2012-03-01

    Full Text Available We review applications of noncommutative geometry in canonical quantum gravity. First, we show that the framework of loop quantum gravity includes natural noncommutative structures which have, hitherto, not been explored. Next, we present the construction of a spectral triple over an algebra of holonomy loops. The spectral triple, which encodes the kinematics of quantum gravity, gives rise to a natural class of semiclassical states which entail emerging fermionic degrees of freedom. In the particular semiclassical approximation where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. We end the paper with an extended outlook section.

  4. Non-commutative covering spaces and their symmetries

    DEFF Research Database (Denmark)

    Canlubo, Clarisson

    dened and its corresponding Galois theory. Using this and basic concepts from algebraic geometryand spectral theory, we will give a full description of the general structure of non-centralcoverings. Examples of coverings of the rational and irrational non-commutative tori will alsobe studied. Using...... will explain this and relate it to bi-Galois theory.Using the OZ-transform, we will show that non-commutative covering spaces come in pairs.Several categories of covering spaces will be dened and studied. Appealing to Tannaka duality,we will explain how this lead to a notion of an etale fundamental group...

  5. Infinite volume of noncommutative black hole wrapped by finite surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baocheng, E-mail: zhangbc.zhang@yahoo.com [School of Mathematics and Physics, China University of Geosciences, Wuhan 430074 (China); You, Li, E-mail: lyou@mail.tsinghua.edu.cn [State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China)

    2017-02-10

    The volume of a black hole under noncommutative spacetime background is found to be infinite, in contradiction with the surface area of a black hole, or its Bekenstein–Hawking (BH) entropy, which is well-known to be finite. Our result rules out the possibility of interpreting the entropy of a black hole by counting the number of modes wrapped inside its surface if the final evaporation stage can be properly treated. It implies the statistical interpretation for the BH entropy can be independent of the volume, provided spacetime is noncommutative. The effect of radiation back reaction is found to be small and doesn't influence the above conclusion.

  6. Relativistic Hydrogen-Like Atom on a Noncommutative Phase Space

    Science.gov (United States)

    Masum, Huseyin; Dulat, Sayipjamal; Tohti, Mutallip

    2017-09-01

    The energy levels of hydrogen-like atom on a noncommutative phase space were studied in the framework of relativistic quantum mechanics. The leading order corrections to energy levels 2 S 1/2, 2 P 1/2 and 2 P 3/2 were obtained by using the 𝜃 and the \\bar θ modified Dirac Hamiltonian of hydrogen-like atom on a noncommutative phase space. The degeneracy of the energy levels 2 P 1/2 and 2 P 3/2 were removed completely by 𝜃-correction. And the \\bar θ -correction shifts these energy levels.

  7. Klein-Gordon oscillators in noncommutative phase space

    International Nuclear Information System (INIS)

    Wang Jianhua

    2008-01-01

    We study the Klein-Gordon oscillators in non-commutative (NC) phase space. We find that the Klein-Gordon oscillators in NC space and NC phase-space have a similar behaviour to the dynamics of a particle in commutative space moving in a uniform magnetic field. By solving the Klein-Gordon equation in NC phase space, we obtain the energy levels of the Klein-Gordon oscillators, where the additional terms related to the space-space and momentum-momentum non-commutativity are given explicitly. (authors)

  8. Noncommutative vector bundles over fuzzy CPN and their covariant derivatives

    International Nuclear Information System (INIS)

    Dolan, Brian P.; Huet, Idrish; Murray, Sean; O'Connor, Denjoe

    2007-01-01

    We generalise the construction of fuzzy CP N in a manner that allows us to access all noncommutative equivariant complex vector bundles over this space. We give a simplified construction of polarization tensors on S 2 that generalizes to complex projective space, identify Laplacians and natural noncommutative covariant derivative operators that map between the modules that describe noncommuative sections. In the process we find a natural generalization of the Schwinger-Jordan construction to su(n) and identify composite oscillators that obey a Heisenberg algebra on an appropriate Fock space

  9. Can noncommutativity resolve the Big-Bang singularity?

    CERN Document Server

    Maceda, M; Manousselis, P; Zoupanos, George

    2004-01-01

    A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has noncommutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a noncommutative version of the Kasner metric is constructed which is nonsingular at all scales and becomes commutative at large length scales.

  10. Beyond standard model calculations with Sherpa

    Energy Technology Data Exchange (ETDEWEB)

    Hoeche, Stefan [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Kuttimalai, Silvan [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Schumann, Steffen [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Siegert, Frank [Institut fuer Kern- und Teilchenphysik, TU Dresden, Dresden (Germany)

    2015-03-01

    We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in Beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level. (orig.)

  11. STAMINA - Model description. Standard Model Instrumentation for Noise Assessments

    NARCIS (Netherlands)

    Schreurs EM; Jabben J; Verheijen ENG; CMM; mev

    2010-01-01

    Deze rapportage beschrijft het STAMINA-model, dat staat voor Standard Model Instrumentation for Noise Assessments en door het RIVM is ontwikkeld. Het instituut gebruikt dit standaardmodel om omgevingsgeluid in Nederland in kaart te brengen. Het model is gebaseerd op de Standaard Karteringsmethode

  12. Fitting Simpson's neutrino into the standard model

    International Nuclear Information System (INIS)

    Valle, J.W.F.

    1985-01-01

    I show how to accomodate the 17 keV state recently by Simpson as one of the neutrinos of the standard model. Experimental constraints can only be satisfied if the μ and tau neutrino combine to a very good approximation to form a Dirac neutrino of 17 keV leaving a light νsub(e). Neutrino oscillations will provide the most stringent test of the model. The cosmological bounds are also satisfied in a natural way in models with Goldstone bosons. Explicit examples are given in the framework of majoron-type models. Constraints on the lepton symmetry breaking scale which follow from astrophysics, cosmology and laboratory experiments are discussed. (orig.)

  13. Experimentally testing the standard cosmological model

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))

    1990-11-01

    The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.

  14. Experimentally testing the standard cosmological model

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1990-11-01

    The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, Ω b , remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that Ω b ∼ 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming Ω total = 1) and the need for dark baryonic matter, since Ω visible b . Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M x approx-gt 20 GeV and an interaction weaker than the Z 0 coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for ν-masses may imply that the ν τ is a good hot dark matter candidate. 73 refs., 5 figs

  15. Classification of digital affine noncommutative geometries

    Science.gov (United States)

    Majid, Shahn; Pachoł, Anna

    2018-03-01

    It is known that connected translation invariant n-dimensional noncommutative differentials dxi on the algebra k[x1, …, xn] of polynomials in n-variables over a field k are classified by commutative algebras V on the vector space spanned by the coordinates. These data also apply to construct differentials on the Heisenberg algebra "spacetime" with relations [xμ, xν] = λΘμν, where Θ is an antisymmetric matrix, as well as to Lie algebras with pre-Lie algebra structures. We specialise the general theory to the field k =F2 of two elements, in which case translation invariant metrics (i.e., with constant coefficients) are equivalent to making V a Frobenius algebra. We classify all of these and their quantum Levi-Civita bimodule connections for n = 2, 3, with partial results for n = 4. For n = 2, we find 3 inequivalent differential structures admitting 1, 2, and 3 invariant metrics, respectively. For n = 3, we find 6 differential structures admitting 0, 1, 2, 3, 4, 7 invariant metrics, respectively. We give some examples for n = 4 and general n. Surprisingly, not all our geometries for n ≥ 2 have zero quantum Riemann curvature. Quantum gravity is normally seen as a weighted "sum" over all possible metrics but our results are a step towards a deeper approach in which we must also "sum" over differential structures. Over F2 we construct some of our algebras and associated structures by digital gates, opening up the possibility of "digital geometry."

  16. Skewness of the standard model possible implications

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1989-09-01

    In this paper we consider combinations of gauge algebra and set of rules for quantization of gauge charges. We show that the combination of the algebra of the standard model and the rule satisfied by the electric charges of the quarks and leptons has an exceptional high degree of a kind of asymmetry which we call skewness. Assuming that skewness has physical significance and adding two other rather plausible assumptions, we may conclude that space time must have a non simply connected topology on very small distances. Such topology would allow a kind of symmetry breakdown leading to a more skew combination of gauge algebra and set of quantization rules. (orig.)

  17. The renormalization of the electroweak standard model

    International Nuclear Information System (INIS)

    Boehm, M.; Spiesberger, H.; Hollik, W.

    1984-03-01

    A renormalization scheme for the electroweak standard model is presented in which the electric charge and the masses of the gauge bosons, Higgs particle and fermions are used as physical parameters. The photon is treated such that quantum electrodynamics is contained in the usual form. Field renormalization respecting the gauge symmetry gives finite Green functions. The Ward identities between the Green functions of the unphysical sector allow a renormalization that maintains the simple pole structure of the propagators. Explicit results for the renormalization self energies and vertex functions are given. They can be directly used as building blocks for the evaluation of l-loop radiative corrections. (orig.)

  18. Baryogenesis and standard model CP violation

    International Nuclear Information System (INIS)

    Huet, P.

    1994-08-01

    The standard model possesses a natural source of CP violation contained in the phase of the CKM matrix. Whether the latter participated to the making of the matter-antimatter asymmetry of the observable universe is a fundamental question which has been addressed only recently. The generation of a CP observable occurs through interference of quantum paths along which a sequence of flavor mixings and chirality flips take place. The coherence of this phenomenon in the primeval plasma is limited by the fast quark-gluon interactions. At the electroweak era, this phenomenon of decoherence forbids a successful baryogenesis based on the sole CP violation of the CKM matrix

  19. Non standard analysis, polymer models, quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.

    1984-01-01

    We give an elementary introduction to non standard analysis and its applications to the theory of stochastic processes. This is based on a joint book with J.E. Fenstad, R. Hoeegh-Krohn and T. Lindstroeem. In particular we give a discussion of an hyperfinite theory of Dirichlet forms with applications to the study of the Hamiltonian for a quantum mechanical particle in the potential created by a polymer. We also discuss new results on the existence of attractive polymer measures in dimension d 1 2 phi 2 2 )sub(d)-model of interacting quantum fields. (orig.)

  20. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  1. Search for the standard model Higgs boson

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miguel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Levinthal, D.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Dennis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Manneli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Techini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Sau Lan Wu; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-08-01

    Using a data sample corresponding to about 1 233 000 hadronic Z decays collected by the ALEPH experiment at LEP, the reaction e+e- → HZ∗ has been used to search for the standard model Higgs boson, in association with missing energy when Z∗ → v v¯, or with a pair of energetic leptons when Z∗ → e+e-or μ +μ -. No signal was found and, at the 95% confidence level, mH exceeds 58.4 GeV/ c2.

  2. Two lectures on D-geometry and noncommutative geometry

    International Nuclear Information System (INIS)

    Douglas, M.R.

    1999-01-01

    This is a write-up of lectures given at the 1998 Spring School at the Abdus Salam ICTP. We give a conceptual introduction to D-geometry, the study of geometry as seen by D-branes in string theory, and to noncommutative geometry as it has appeared in D-brane and Matrix theory physics. (author)

  3. 3D quantum gravity and effective noncommutative quantum field theory.

    Science.gov (United States)

    Freidel, Laurent; Livine, Etera R

    2006-06-09

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.

  4. The M5-brane and non-commutative open strings

    NARCIS (Netherlands)

    Bergshoeff, E.; Berman, D.S.; Schaar, J.P. van der; Sundell, P.

    2001-01-01

    The M-theory origin of non-commutative open-string theory is examined by investigating the M-theory 5-brane at near critical field strength. In particular, it is argued that the open-membrane metric provides the appropriate moduli when calculating the duality relations between M and II

  5. Notes on algebraic invariants for non-commutative dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Longo, R [Rome Univ. (Italy). Istituto di Matematica

    1979-11-01

    We consider an algebraic invariant for non-commutative dynamical systems naturally arising as the spectrum of the modular operator associated to an invariant state, provided certain conditions of mixing type are present. This invariant turns out to be exactly the annihilator of the invariant T of Connes. Further comments are included, in particular on the type of certain algebras of local observables

  6. Newton's second law in a non-commutative space

    International Nuclear Information System (INIS)

    Romero, Juan M.; Santiago, J.A.; Vergara, J. David

    2003-01-01

    In this Letter we show that corrections to Newton's second law appear if we assume a symplectic structure consistent with the commutation rules of the non-commutative quantum mechanics. For central field we find that the correction term breaks the rotational symmetry. For the Kepler problem, this term is similar to a Coriolis force

  7. Quadratic algebras in the noncommutative integration method of wave equation

    International Nuclear Information System (INIS)

    Varaksin, O.L.

    1995-01-01

    The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras

  8. Noncommutative geometry-inspired rotating black hole in three ...

    Indian Academy of Sciences (India)

    We find a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution and give corrections to the area law to get the exact ...

  9. quasi hyperrigidity and weak peak points for non-commutative ...

    Indian Academy of Sciences (India)

    7

    Abstract. In this article, we introduce the notions of weak boundary repre- sentation, quasi hyperrigidity and weak peak points in the non-commutative setting for operator systems in C∗-algebras. An analogue of Saskin's theorem relating quasi hyperrigidity and weak Choquet boundary for particular classes of C∗-algebras is ...

  10. Can the superstring inspire the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.A.

    1988-02-01

    We discuss general features of models in which the E/sub 8/xE'/sub 8/ heterotic superstring is compactified on a specific Calabi-Yau manifold. The gauge group of rank-6 in four dimensions is supposed to be broken down at an intermediate scale m/sub I/ to the standard model group SU(3)/sub C/ x SU(2)/sub L/ x U(1)/sub Y/, as a result of two neutral scalar fields acquiring large vacuum expectations (vev's) in one of many flat directions of the effective potential. We find that it is difficult to generate such an intermediate scale by radiative symmetry breaking, whilst such models have prima facie problems with baryon decay mediated by massive particles and with non-perturbative behaviour of the gauge couplings, unless m/sub I/ > or approx. 10/sup 16/ GeV. Rapid baryon decay mediated by light particles, large neutrino masses, other ..delta..L not = 0 processes and flavour-changing neutral currents are generic features of these models. We illustrate these observations with explicit calculations in a number of different models given by vev's in different flat directions.

  11. Can the superstring inspire the standard model?

    International Nuclear Information System (INIS)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.A.

    1988-01-01

    We discuss general features of models in which the E 8 xE' 8 heterotic superstring is compactified on a specific Calabi-Yau manifold. The gauge group of rank-6 in four dimensions is supposed to be broken down at an intermediate scale m I to the standard model group SU(3) C x SU(2) L x U(1) Y , as a result of two neutral scalar fields acquiring large vacuum expectations (vev's) in one of many flat directions of the effective potential. We find that it is difficult to generate such an intermediate scale by radiative symmetry breaking, whilst such models have prima facie problems with baryon decay mediated by massive particles and with non-perturbative behaviour of the gauge couplings, unless m I > or approx. 10 16 GeV. Rapid baryon decay mediated by light particles, large neutrino masses, other ΔL ≠ 0 processes and flavour-changing neutral currents are generic features of these models. We illustrate these observations with explicit calculations in a number of different models given by vev's in different flat directions. (orig.)

  12. B physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Hewett, J.A.L.

    1997-12-01

    The ability of present and future experiments to test the Standard Model in the B meson sector is described. The authors examine the loop effects of new interactions in flavor changing neutral current B decays and in Z → b anti b, concentrating on supersymmetry and the left-right symmetric model as specific examples of new physics scenarios. The procedure for performing a global fit to the Wilson coefficients which describe b → s transitions is outlined, and the results of such a fit from Monte Carlo generated data is compared to the predictions of the two sample new physics scenarios. A fit to the Zb anti b couplings from present data is also given

  13. Complex singlet extension of the standard model

    International Nuclear Information System (INIS)

    Barger, Vernon; McCaskey, Mathew; Langacker, Paul; Ramsey-Musolf, Michael; Shaughnessy, Gabe

    2009-01-01

    We analyze a simple extension of the standard model (SM) obtained by adding a complex singlet to the scalar sector (cxSM). We show that the cxSM can contain one or two viable cold dark matter candidates and analyze the conditions on the parameters of the scalar potential that yield the observed relic density. When the cxSM potential contains a global U(1) symmetry that is both softly and spontaneously broken, it contains both a viable dark matter candidate and the ingredients necessary for a strong first order electroweak phase transition as needed for electroweak baryogenesis. We also study the implications of the model for discovery of a Higgs boson at the Large Hadron Collider.

  14. Bounds on the Higgs mass in the standard model and the minimal supersymmetric standard model

    CERN Document Server

    Quiros, M.

    1995-01-01

    Depending on the Higgs-boson and top-quark masses, M_H and M_t, the effective potential of the {\\bf Standard Model} can develop a non-standard minimum for values of the field much larger than the weak scale. In those cases the standard minimum becomes metastable and the possibility of decay to the non-standard one arises. Comparison of the decay rate to the non-standard minimum at finite (and zero) temperature with the corresponding expansion rate of the Universe allows to identify the region, in the (M_H, M_t) plane, where the Higgs field is sitting at the standard electroweak minimum. In the {\\bf Minimal Supersymmetric Standard Model}, approximate analytical expressions for the Higgs mass spectrum and couplings are worked out, providing an excellent approximation to the numerical results which include all next-to-leading-log corrections. An appropriate treatment of squark decoupling allows to consider large values of the stop and/or sbottom mixing parameters and thus fix a reliable upper bound on the mass o...

  15. Spectrum of a noncommutative formulation of the D=11 supermembrane with winding

    International Nuclear Information System (INIS)

    Garcia del Moral, M.P.; Restuccia, A.

    2002-01-01

    A regularized model of a noncommutative formulation of the double compactified D=11 supermembrane with nontrivial winding in terms of SU(N) valued maps is obtained. The condition of nontrivial winding is described in terms of a nontrivial line bundle introduced in the formulation of the compactified supermembrane. The multivalued geometrical objects of the model related to the nontrivial wrapping are described in terms of a SU(N) geometrical object, which in the N→∞ limit converges to the symplectic connection related to the area-preserving diffeomorphisms of the recently obtained noncommutative description of the compactified D=11 supermembrane [I. Martin, J. Ovalle, and A. Restuccia, Phys. Rev. D 64, 096001 (2001)]. The SU(N) regularized canonical Lagrangian is explicitly obtained. The spectrum of the Hamiltonian of the double compactified D=11 supermembrane is discussed. Generically, it contains local string such as spikes with zero energy. However, the sector of the theory corresponding to a principle bundle characterized by the winding number n=e0, described by the SU(N) model we propose, is shown to have no local stringlike spikes and hence the spectrum of this sector should be discrete

  16. Consistency test of the standard model

    International Nuclear Information System (INIS)

    Pawlowski, M.; Raczka, R.

    1997-01-01

    If the 'Higgs mass' is not the physical mass of a real particle but rather an effective ultraviolet cutoff then a process energy dependence of this cutoff must be admitted. Precision data from at least two energy scale experimental points are necessary to test this hypothesis. The first set of precision data is provided by the Z-boson peak experiments. We argue that the second set can be given by 10-20 GeV e + e - colliders. We pay attention to the special role of tau polarization experiments that can be sensitive to the 'Higgs mass' for a sample of ∼ 10 8 produced tau pairs. We argue that such a study may be regarded as a negative selfconsistency test of the Standard Model and of most of its extensions

  17. Standard model fermions and N=8 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Hermann [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, Potsdam-Golm (Germany)

    2016-07-01

    In a scheme originally proposed by Gell-Mann, and subsequently shown to be realized at the SU(3) x U(1) stationary point of maximal gauged SO(8) supergravity, the 48 spin-1/2 fermions of the theory remaining after the removal of eight Goldstinos can be identified with the 48 quarks and leptons (including right-chiral neutrinos) of the Standard model, provided one identifies the residual SU(3) with the diagonal subgroup of the color group SU(3){sub c} and a family symmetry SU(3){sub f}. However, there remained a systematic mismatch in the electric charges by a spurion charge of ± 1/6. We here identify the ''missing'' U(1) that rectifies this mismatch, and that takes a surprisingly simple, though unexpected form, and show how it is related to the conjectured R symmetry K(E10) of M Theory.

  18. Quantum field theory and the standard model

    CERN Document Server

    Schwartz, Matthew D

    2014-01-01

    Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...

  19. CMS standard model Higgs boson results

    Directory of Open Access Journals (Sweden)

    Garcia-Abia Pablo

    2013-11-01

    Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.

  20. Standard model group: Survival of the fittest

    Science.gov (United States)

    Nielsen, H. B.; Brene, N.

    1983-09-01

    The essential content of this paper is related to random dynamics. We speculate that the world seen through a sub-Planck-scale microscope has a lattice structure and that the dynamics on this lattice is almost completely random, except for the requirement that the random (plaquette) action is invariant under some "world (gauge) group". We see that the randomness may lead to spontaneous symmetry breakdown in the vacuum (spontaneous collapse) without explicit appeal to any scalar field associated with the usual Higgs mechanism. We further argue that the subgroup which survives as the end product of a possible chain of collapses is likely to have certain properties; the most important is that it has a topologically connected center. The standard group, i.e. the group of the gauge theory which combines the Salam-Weinberg model with QCD, has this property.

  1. Standard model group: survival of the fittest

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H.B. (Niels Bohr Inst., Copenhagen (Denmark); Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark)); Brene, N. (Niels Bohr Inst., Copenhagen (Denmark))

    1983-09-19

    The essential content of this paper is related to random dynamics. We speculate that the world seen through a sub-Planck-scale microscope has a lattice structure and that the dynamics on this lattice is almost completely random, except for the requirement that the random (plaquette) action is invariant under some ''world (gauge) group''. We see that the randomness may lead to spontaneous symmetry breakdown in the vacuum (spontaneous collapse) without explicit appeal to any scalar field associated with the usual Higgs mechanism. We further argue that the subgroup which survives as the end product of a possible chain of collapse is likely to have certain properties; the most important is that it has a topologically connected center. The standard group, i.e. the group of the gauge theory which combines the Salam-Weinberg model with QCD, has this property.

  2. Standard model group: survival of the fittest

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1983-01-01

    Th essential content of this paper is related to random dynamics. We speculate that the world seen through a sub-Planck-scale microscope has a lattice structure and that the dynamics on this lattice is almost completely random, except for the requirement that the random (plaquette) action is invariant under some ''world (gauge) group''. We see that the randomness may lead to spontaneous symmetry breakdown in the vacuum (spontaneous collapse) without explicit appeal to any scalar field associated with the usual Higgs mechanism. We further argue that the subgroup which survives as the end product of a possible chain of collapse is likely to have certain properties; the most important is that it has a topologically connected center. The standard group, i.e. the group of the gauge theory which combines the Salam-Weinberg model with QCD, has this property. (orig.)

  3. Standard model group survival of the fittest

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1983-02-01

    The essential content of this note is related to random dynamics. The authors speculate that the world seen through a sub Planck scale microscope has a lattice structure and that the dynamics on this lattice is almost completely random, except for the requirement that the random (plaquette) action is invariant under some ''world (gauge) group''. It is seen that the randomness may lead to spontaneous symmetry breakdown in the vacuum (spontaneous collapse) without explicit appeal to any scalar field associated with the usual Higgs mechanism. It is further argued that the subgroup which survives as the end product of a possible chain of collapses is likely to have certain properties; the most important is that it has a topologically connected center. The standard group, i.e. the group of the gauge theory which combines the Salam-Weinberg model with QCD, has this property. (Auth.)

  4. Symmetry breaking: The standard model and superstrings

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1988-01-01

    The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g 2 = (√2G/sub F/)/sup /minus/1/ ≅ 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10 3 )GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs

  5. The standard model 30 years of glory

    International Nuclear Information System (INIS)

    Lefrancois, J.

    2001-03-01

    In these 3 lectures the author reviews the achievements of the past 30 years, which saw the birth and the detailed confirmation of the standard model. The first lecture is dedicated to quantum chromodynamics (QCD), deep inelastic scattering, neutrino scattering results, R(e + ,e - ), scaling violation, Drell-Yan reactions and the observation of jets. The second lecture deals with weak interactions and quark and lepton families, the discovery of W and Z bosons, of charm, of the tau lepton and B quarks are detailed. The third lecture focuses on the stunning progress that have been made in accuracy concerning detectors, the typical level of accuracy of previous e + e - experiments was about 5-10%, while the accuracy obtained at LEP/SLC is of order 0.1% to 0.5%. (A.C.)

  6. The standard model 30 years of glory

    Energy Technology Data Exchange (ETDEWEB)

    Lefrancois, J

    2001-03-01

    In these 3 lectures the author reviews the achievements of the past 30 years, which saw the birth and the detailed confirmation of the standard model. The first lecture is dedicated to quantum chromodynamics (QCD), deep inelastic scattering, neutrino scattering results, R(e{sup +},e{sup -}), scaling violation, Drell-Yan reactions and the observation of jets. The second lecture deals with weak interactions and quark and lepton families, the discovery of W and Z bosons, of charm, of the tau lepton and B quarks are detailed. The third lecture focuses on the stunning progress that have been made in accuracy concerning detectors, the typical level of accuracy of previous e{sup +}e{sup -} experiments was about 5-10%, while the accuracy obtained at LEP/SLC is of order 0.1% to 0.5%. (A.C.)

  7. The Standard Model with one universal extra dimension

    Indian Academy of Sciences (India)

    An exhaustive list of the explicit expressions for all physical couplings induced by the ... the standard Green's functions, which implies that the Standard Model observables do ...... renormalizability of standard Green's functions is implicit in this.

  8. PURE STATE ENTANGLEMENT ENTROPY IN NONCOMMUTATIVE 2D DE SITTER SPACE TIME

    Directory of Open Access Journals (Sweden)

    M.F Ghiti

    2014-12-01

    Full Text Available Using the general modified field equation, a general noncommutative Klein-Gordon equation up to the second order of the noncommutativity parameter is derived in the context of noncommutative 2D De Sitter space-time. Using Bogoliubov coefficients and a special technics called conformal time; the boson-antiboson pair creation density is determined. The Von Neumann boson-antiboson pair creation quantum entanglement entropy is presented to compute the entanglement between the modes created presented.

  9. Dispersion relations for the self-energy in noncommutative field theories

    International Nuclear Information System (INIS)

    Brandt, F.T.; Das, Ashok; Frenkel, J.

    2002-01-01

    We study the IR-UV connection in noncommutative φ 3 theory as well as in noncommutative QED from the point of view of the dispersion relation for self-energy. We show that, although the imaginary part of the self-energy is well behaved as the parameter of noncommutativity vanishes, the real part becomes divergent as a consequence of the high energy behavior of the dispersion integral. Some other interesting features that arise from this analysis are also briefly discussed

  10. Open membranes in a constant C-field background and noncommutative boundary strings

    International Nuclear Information System (INIS)

    Kawamoto, Shoichi; Sasakura, Naoki

    2000-01-01

    We investigate the dynamics of open membrane boundaries in a constant C-field background. We follow the analysis for open strings in a B-field background, and take some approximations. We find that open membrane boundaries do show noncommutativity in this case by explicit calculations. Membrane boundaries are one dimensional strings, so we face a new type of noncommutativity, that is, noncommutative strings. (author)

  11. Pair production of Dirac particles in a d + 1-dimensional noncommutative space-time

    Energy Technology Data Exchange (ETDEWEB)

    Ousmane Samary, Dine [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); University of Abomey-Calavi, International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair), Cotonou (Benin); N' Dolo, Emanonfi Elias; Hounkonnou, Mahouton Norbert [University of Abomey-Calavi, International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair), Cotonou (Benin)

    2014-11-15

    This work addresses the computation of the probability of fermionic particle pair production in d + 1-dimensional noncommutative Moyal space. Using Seiberg-Witten maps, which establish relations between noncommutative and commutative field variables, up to the first order in the noncommutative parameter θ, we derive the probability density of vacuum-vacuum pair production of Dirac particles. The cases of constant electromagnetic, alternating time-dependent, and space-dependent electric fields are considered and discussed. (orig.)

  12. On the stringy nature of winding modes in noncommutative thermal field theories

    CERN Document Server

    Arcioni, G; Gomis, J P; Vázquez-Mozo, Miguel Angel; Gomis, Joaquim

    2000-01-01

    We show that thermal noncommutative field theories admit a version of `channel duality' reminiscent of open/closed string duality, where non-planar thermal loops can be replaced by an infinite tower of tree-level exchanges of effective fields. These effective fields resemble closed strings in three aspects: their mass spectrum is that of closed-string winding modes, their interaction vertices contain extra moduli, and they can be regarded as propagating in a higher-dimensional `bulk' space-time. In noncommutative models that can be embedded in a D-brane, we show the precise relation between the effective `winding fields' and closed strings propagating off the D-brane. The winding fields represent the coherent coupling of the infinite tower of closed-string oscillator states. We derive a sum rule that expresses this effective coupling in terms of the elementary couplings of closed strings to the D-brane. We furthermore clarify the relation between the effective propagating dimension of the winding fields and t...

  13. Realization of Cohen-Glashow very special relativity on noncommutative space-time.

    Science.gov (United States)

    Sheikh-Jabbari, M M; Tureanu, A

    2008-12-31

    We show that the Cohen-Glashow very special relativity (VSR) theory [A. G. Cohen and S. L. Glashow, Phys. Rev. Lett. 97, 021601 (2006)] can be realized as the part of the Poincaré symmetry preserved on a noncommutative Moyal plane with lightlike noncommutativity. Moreover, we show that the three subgroups relevant to VSR can also be realized in the noncommutative space-time setting. For all of these three cases, the noncommutativity parameter theta(mu upsilon) should be lightlike (theta(mu upsilon) theta mu upsilon = 0). We discuss some physical implications of this realization of the Cohen-Glashow VSR.

  14. Primordial lithium and the standard model(s)

    International Nuclear Information System (INIS)

    Deliyannis, C.P.; Demarque, P.; Kawaler, S.D.; Krauss, L.M.; Romanelli, P.

    1989-01-01

    We present the results of new theoretical work on surface 7 Li and 6 Li evolution in the oldest halo stars along with a new and refined analysis of the predicted primordial lithium abundance resulting from big-bang nucleosynthesis. This allows us to determine the constraints which can be imposed upon cosmology by a consideration of primordial lithium using both standard big-bang and standard stellar-evolution models. Such considerations lead to a constraint on the baryon density today of 0.0044 2 <0.025 (where the Hubble constant is 100h Km sec/sup -1/ Mpc /sup -1/), and impose limitations on alternative nucleosynthesis scenarios

  15. Searches for Beyond Standard Model Physics with ATLAS and CMS

    CERN Document Server

    Rompotis, Nikolaos; The ATLAS collaboration

    2017-01-01

    The exploration of the high energy frontier with ATLAS and CMS experiments provides one of the best opportunities to look for physics beyond the Standard Model. In this talk, I review the motivation, the strategy and some recent results related to beyond Standard Model physics from these experiments. The review will cover beyond Standard Model Higgs boson searches, supersymmetry and searches for exotic particles.

  16. Connected formulas for amplitudes in standard model

    Energy Technology Data Exchange (ETDEWEB)

    He, Song [CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences,No. 19A Yuquan Road, Beijing 100049 (China); Zhang, Yong [Department of Physics, Beijing Normal University,Beijing 100875 (China); CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China)

    2017-03-17

    Witten’s twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.

  17. Experimental tests of the standard model

    International Nuclear Information System (INIS)

    Nodulman, L.

    1998-01-01

    The title implies an impossibly broad field, as the Standard Model includes the fermion matter states, as well as the forces and fields of SU(3) x SU(2) x U(1). For practical purposes, I will confine myself to electroweak unification, as discussed in the lectures of M. Herrero. Quarks and mixing were discussed in the lectures of R. Aleksan, and leptons and mixing were discussed in the lectures of K. Nakamura. I will essentially assume universality, that is flavor independence, rather than discussing tests of it. I will not pursue tests of QED beyond noting the consistency and precision of measurements of α EM in various processes including the Lamb shift, the anomalous magnetic moment (g-2) of the electron, and the quantum Hall effect. The fantastic precision and agreement of these predictions and measurements is something that convinces people that there may be something to this science enterprise. Also impressive is the success of the ''Universal Fermi Interaction'' description of beta decay processes, or in more modern parlance, weak charged current interactions. With one coupling constant G F , most precisely determined in muon decay, a huge number of nuclear instabilities are described. The slightly slow rate for neutron beta decay was one of the initial pieces of evidence for Cabbibo mixing, now generalized so that all charged current decays of any flavor are covered

  18. Standard Model theory calculations and experimental tests

    International Nuclear Information System (INIS)

    Cacciari, M.; Hamel de Monchenault, G.

    2015-01-01

    To present knowledge, all the physics at the Large Hadron Collider (LHC) can be described in the framework of the Standard Model (SM) of particle physics. Indeed the newly discovered Higgs boson with a mass close to 125 GeV seems to confirm the predictions of the SM. Thus, besides looking for direct manifestations of the physics beyond the SM, one of the primary missions of the LHC is to perform ever more stringent tests of the SM. This requires not only improved theoretical developments to produce testable predictions and provide experiments with reliable event generators, but also sophisticated analyses techniques to overcome the formidable experimental environment of the LHC and perform precision measurements. In the first section, we describe the state of the art of the theoretical tools and event generators that are used to provide predictions for the production cross sections of the processes of interest. In section 2, inclusive cross section measurements with jets, leptons and vector bosons are presented. Examples of differential cross sections, charge asymmetries and the study of lepton pairs are proposed in section 3. Finally, in section 4, we report studies on the multiple production of gauge bosons and constraints on anomalous gauge couplings

  19. Lepton radiative decays in supersymmetric standard model

    International Nuclear Information System (INIS)

    Volkov, G.G.; Liparteliani, A.G.

    1988-01-01

    Radiative decays of charged leptons l i →l j γ(γ * ) have been discussed in the framework of the supersymmetric generalization of the standard model. The most general form of the formfactors for the one-loop vertex function is written. Decay widths of the mentioned radiative decays are calculated. Scalar lepton masses are estimated at the maximal mixing angle in the scalar sector proceeding from the present upper limit for the branching of the decay μ→eγ. In case of the maximal mixing angle and the least mass degeneration of scalar leptons of various generations the following lower limit for the scalar electron mass m e-tilde >1.5 TeV has been obtained. The mass of the scalar neutrino is 0(1) TeV, in case the charged calibrino is lighter than the scalar neutrino. The result obtained sensitive to the choice of the lepton mixing angle in the scalar sector, namely, in decreasing the value sin 2 θ by an order of magnitude, the limitation on the scalar electron mass may decrease more than 3 times. In the latter case the direct observation of electrons at the e + e - -collider (1x1 TeV) becomes available

  20. Geometrical basis for the Standard Model

    Science.gov (United States)

    Potter, Franklin

    1994-02-01

    The robust character of the Standard Model is confirmed. Examination of its geometrical basis in three equivalent internal symmetry spaces-the unitary plane C 2, the quaternion space Q, and the real space R 4—as well as the real space R 3 uncovers mathematical properties that predict the physical properties of leptons and quarks. The finite rotational subgroups of the gauge group SU(2) L × U(1) Y generate exactly three lepton families and four quark families and reveal how quarks and leptons are related. Among the physical properties explained are the mass ratios of the six leptons and eight quarks, the origin of the left-handed preference by the weak interaction, the geometrical source of color symmetry, and the zero neutrino masses. The ( u, d) and ( c, s) quark families team together to satisfy the triangle anomaly cancellation with the electron family, while the other families pair one-to-one for cancellation. The spontaneously broken symmetry is discrete and needs no Higgs mechanism. Predictions include all massless neutrinos, the top quark at 160 GeV/ c 2, the b' quark at 80 GeV/ c 2, and the t' quark at 2600 GeV/ c 2.

  1. Noncommutative geometry inspired black holes in Rastall gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Meng-Sen [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China); Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China)

    2017-09-15

    Under two different metric ansatzes, the noncommutative geometry inspired black holes (NCBH) in the framework of Rastall gravity are derived and analyzed. We consider the fluid-type matter with the Gaussian-distribution smeared mass density. Taking a Schwarzschild-like metric ansatz, it is shown that the noncommutative geometry inspired Schwarzschild black hole (NCSBH) in Rastall gravity, unlike its counterpart in general relativity (GR), is not a regular black hole. It has at most one event horizon. After showing a finite maximal temperature, the black hole will leave behind a point-like massive remnant at zero temperature. Considering a more general metric ansatz and a special equation of state of the matter, we also find a regular NCBH in Rastall gravity, which has a similar geometric structure and temperature to that of NCSBH in GR. (orig.)

  2. Non-commuting variations in mathematics and physics a survey

    CERN Document Server

    Preston, Serge

    2016-01-01

    This text presents and studies the method of so –called noncommuting variations in Variational Calculus. This method was pioneered by Vito Volterra who noticed that the conventional Euler-Lagrange (EL-) equations are not applicable in Non-Holonomic Mechanics and suggested to modify the basic rule used in Variational Calculus. This book presents a survey of Variational Calculus with non-commutative variations and shows that most basic properties of conventional Euler-Lagrange Equations are, with some modifications, preserved for EL-equations with K-twisted (defined by K)-variations. Most of the book can be understood by readers without strong mathematical preparation (some knowledge of Differential Geometry is necessary). In order to make the text more accessible the definitions and several necessary results in Geometry are presented separately in Appendices I and II Furthermore in Appendix III a short presentation of the Noether Theorem describing the relation between the symmetries of the differential equa...

  3. Dolan Grady relations and noncommutative quasi-exactly solvable systems

    Science.gov (United States)

    Klishevich, Sergey M.; Plyushchay, Mikhail S.

    2003-11-01

    We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the {\\mathfrak{su}}(2) and {\\mathfrak{sl}}(2,{\\bb {R}}) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.

  4. The shear viscosity of the non-commutative plasma

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Mas, Javier

    2007-01-01

    We compute the shear viscosity of the non-commutative N = 4 super Yang-Mills quantum field theory at strong coupling using the dual supergravity background. Special interest derives from the fact that the background presents an intrinsic anisotropy in space through the distinction of commutative and non-commutative directions. Despite this anisotropy the analysis exhibits the ubiquitous result η/s = 1/4π for two different shear channels. In order to derive this result, we show that the boundary energy momentum tensor must couple to the open string metric. As a byproduct we compute the renormalised holographic energy momentum tensor and show that it coincides with one in the commutative theory

  5. Noncommutative differential forms on the kappa-deformed space

    International Nuclear Information System (INIS)

    Meljanac, Stjepan; Kresic-Juric, Sasa

    2009-01-01

    We construct a differential algebra of forms on the kappa-deformed space. For a given realization of noncommutative coordinates as formal power series in the Weyl algebra we find an infinite family of one-forms and nilpotent exterior derivatives. We derive explicit expressions for the exterior derivative and one-forms in covariant and noncovariant realizations. We also introduce higher order forms and show that the exterior derivative satisfies the graded Leibniz rule. The differential forms are generally not graded commutative, but they satisfy the graded Jacobi identity. We also consider the star-product of classical differential forms. The star-product is well defined if the commutator between the noncommutative coordinates and one-forms is closed in the space of one-forms alone. In addition, we show that in certain realizations the exterior derivative acting on the star-product satisfies the undeformed Leibniz rule.

  6. Space/time non-commutative field theories and causality

    International Nuclear Information System (INIS)

    Bozkaya, H.; Fischer, P.; Pitschmann, M.; Schweda, M.; Grosse, H.; Putz, V.; Wulkenhaar, R.

    2003-01-01

    As argued previously, amplitudes of quantum field theories on non-commutative space and time cannot be computed using naive path integral Feynman rules. One of the proposals is to use the Gell-Mann-Low formula with time-ordering applied before performing the integrations. We point out that the previously given prescription should rather be regarded as an interaction-point time-ordering. Causality is explicitly violated inside the region of interaction. It is nevertheless a consistent procedure, which seems to be related to the interaction picture of quantum mechanics. In this framework we compute the one-loop self-energy for a space/time non-commutative φ 4 theory. Although in all intermediate steps only three-momenta play a role, the final result is manifestly Lorentz covariant and agrees with the naive calculation. Deriving the Feynman rules for general graphs, we show, however, that such a picture holds for tadpole lines only. (orig.)

  7. Semiclassical and quantum motions on the non-commutative plane

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Gazeau, J.P.; Gitman, D.M.

    2009-01-01

    We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a θ-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the 'classical' trajectories is investigated, and we present numerical explorations of some semiclassical quantities.

  8. Semiclassical and quantum motions on the non-commutative plane

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gazeau, J.P., E-mail: gazeau@apc.univ-paris7.f [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)

    2009-10-19

    We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a theta-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the 'classical' trajectories is investigated, and we present numerical explorations of some semiclassical quantities.

  9. Clifford algebras, noncommutative tori and universal quantum computers

    OpenAIRE

    Vlasov, Alexander Yu.

    2001-01-01

    Recently author suggested [quant-ph/0010071] an application of Clifford algebras for construction of a "compiler" for universal binary quantum computer together with later development [quant-ph/0012009] of the similar idea for a non-binary base. The non-binary case is related with application of some extension of idea of Clifford algebras. It is noncommutative torus defined by polynomial algebraic relations of order l. For l=2 it coincides with definition of Clifford algebra. Here is presente...

  10. Commutative and Non-commutative Parallelogram Geometry: an Experimental Approach

    OpenAIRE

    Bertram, Wolfgang

    2013-01-01

    By "parallelogram geometry" we mean the elementary, "commutative", geometry corresponding to vector addition, and by "trapezoid geometry" a certain "non-commutative deformation" of the former. This text presents an elementary approach via exercises using dynamical software (such as geogebra), hopefully accessible to a wide mathematical audience, from undergraduate students and high school teachers to researchers, proceeding in three steps: (1) experimental geometry, (2) algebra (linear algebr...

  11. Euler Polynomials and Identities for Non-Commutative Operators

    OpenAIRE

    De Angelis, V.; Vignat, C.

    2015-01-01

    Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt, expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, due to J.-C. Pain, links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Fig...

  12. Group theoretical construction of planar noncommutative phase spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ngendakumana, Ancille, E-mail: nancille@yahoo.fr; Todjihoundé, Leonard, E-mail: leonardt@imsp.uac.org [Institut de Mathématiques et des Sciences Physiques (IMSP), Porto-Novo (Benin); Nzotungicimpaye, Joachim, E-mail: kimpaye@kie.ac.rw [Kigali Institute of Education (KIE), Kigali (Rwanda)

    2014-01-15

    Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given.

  13. Group theoretical construction of planar noncommutative phase spaces

    International Nuclear Information System (INIS)

    Ngendakumana, Ancille; Todjihoundé, Leonard; Nzotungicimpaye, Joachim

    2014-01-01

    Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given

  14. Noncommutative geometry inspired Einstein–Gauss–Bonnet black holes

    Science.gov (United States)

    Ghosh, Sushant G.

    2018-04-01

    Low energy limits of a string theory suggests that the gravity action should include quadratic and higher-order curvature terms, in the form of dimensionally continued Gauss–Bonnet densities. Einstein–Gauss–Bonnet is a natural extension of the general relativity to higher dimensions in which the first and second-order terms correspond, respectively, to general relativity and Einstein–Gauss–Bonnet gravity. We obtain five-dimensional (5D) black hole solutions, inspired by a noncommutative geometry, with a static spherically symmetric, Gaussian mass distribution as a source both in the general relativity and Einstein–Gauss–Bonnet gravity cases, and we also analyzes their thermodynamical properties. Owing the noncommutative corrected black hole, the thermodynamic quantities have also been modified, and phase transition is shown to be achievable. The phase transitions for the thermodynamic stability, in both the theories, are characterized by a discontinuity in the specific heat at r_+=rC , with the stable (unstable) branch for r ) rC . The metric of the noncommutative inspired black holes smoothly goes over to the Boulware–Deser solution at large distance. The paper has been appended with a calculation of black hole mass using holographic renormalization.

  15. On Born's deformed reciprocal complex gravitational theory and noncommutative gravity

    International Nuclear Information System (INIS)

    Castro, Carlos

    2008-01-01

    Born's reciprocal relativity in flat spacetimes is based on the principle of a maximal speed limit (speed of light) and a maximal proper force (which is also compatible with a maximal and minimal length duality) and where coordinates and momenta are unified on a single footing. We extend Born's theory to the case of curved spacetimes and construct a deformed Born reciprocal general relativity theory in curved spacetimes (without the need to introduce star products) as a local gauge theory of the deformed Quaplectic group that is given by the semi-direct product of U(1,3) with the deformed (noncommutative) Weyl-Heisenberg group corresponding to noncommutative generators [Z a ,Z b ]≠0. The Hermitian metric is complex-valued with symmetric and nonsymmetric components and there are two different complex-valued Hermitian Ricci tensors R μν ,S μν . The deformed Born's reciprocal gravitational action linear in the Ricci scalars R,S with Torsion-squared terms and BF terms is presented. The plausible interpretation of Z μ =E μ a Z a as noncommuting p-brane background complex spacetime coordinates is discussed in the conclusion, where E μ a is the complex vielbein associated with the Hermitian metric G μν =g (μν) +ig [μν] =E μ a E-bar ν b η ab . This could be one of the underlying reasons why string-theory involves gravity

  16. Non-topological non-commutativity in string theory

    International Nuclear Information System (INIS)

    Guttenberg, S.; Herbst, M.; Kreuzer, M.; Rashkov, R.

    2008-01-01

    Quantization of coordinates leads to the non-commutative product of deformation quantization, but is also at the roots of string theory, for which space-time coordinates become the dynamical fields of a two-dimensional conformal quantum field theory. Appositely, open string diagrams provided the inspiration for Kontsevich's solution of the long-standing problem of quantization of Poisson geometry by virtue of his formality theorem. In the context of D-brane physics non-commutativity is not limited, however, to the topological sector. We show that non-commutative effective actions still make sense when associativity is lost and establish a generalized Connes-Flato-Sternheimer condition through second order in a derivative expansion. The measure in general curved backgrounds is naturally provided by the Born-Infeld action and reduces to the symplectic measure in the topological limit, but remains non-singular even for degenerate Poisson structures. Analogous superspace deformations by RR-fields are also discussed. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  17. On the Lie symmetry group for classical fields in noncommutative space

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ricardo Martinho Lima Santiago [Universidade Federal da Bahia (UFBA), BA (Brazil); Instituto Federal da Bahia (IFBA), BA (Brazil); Ressureicao, Caio G. da [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica; Vianna, Jose David M. [Universidade Federal da Bahia (UFBA), BA (Brazil); Universidade de Brasilia (UnB), DF (Brazil)

    2011-07-01

    Full text: An alternative way to include effects of noncommutative geometries in field theory is based on the concept of noncommutativity among degrees of freedom of the studied system. In this context it is reasonable to consider that, in the multiparticle noncommutative quantum mechanics (NCQM), the noncommutativity among degrees of freedom to discrete system with N particles is also verified. Further, an analysis of the classical limit of the single particle NCQM leads to a deformed Newtonian mechanics where the Newton's second law is modified in order to include the noncommutative parameter {theta}{sub {iota}j} and, for a one-dimensional discrete system with N particles, the dynamical evolution of each particle is given by this modified Newton's second law. Hence, applying the continuous limit to this multiparticle classical system it is possible to obtain a noncommutative extension of two -dimensional field theory in a noncommutative space. In the present communication we consider a noncommutative extension of the scalar field obtained from this approach and we analyze the Lie symmetries in order to compare the Lie group of this field with the usual scalar field in the commutative space. (author)

  18. Seiberg–Witten map and quantum phase effects for neutral Dirac particle on noncommutative plane

    Directory of Open Access Journals (Sweden)

    Kai Ma

    2016-05-01

    Full Text Available We provide a new approach to study the noncommutative effects on the neutral Dirac particle with anomalous magnetic or electric dipole moment on the noncommutative plane. The advantages of this approach are demonstrated by investigating the noncommutative corrections on the Aharonov–Casher and He–McKellar–Wilkens effects. This approach is based on the effective U(1 gauge symmetry for the electrodynamics of spin on the two dimensional space. The Seiberg–Witten map for this symmetry is then employed when we study the noncommutative corrections. Because the Seiberg–Witten map preserves the gauge symmetry, the noncommutative corrections can be defined consistently with the ordinary phases. Based on this approach we find the noncommutative corrections on the Aharonov–Casher and He–McKellar–Wilkens phases consist of two terms. The first one depends on the beam particle velocity and consistence with the previous results. However the second term is velocity-independent and then completely new. Therefore our results indicate it is possible to investigate the noncommutative space by using ultra-cold neutron interferometer in which the velocity-dependent term is negligible. Furthermore, both these two terms are proportional to the ratio between the noncommutative parameter θ and the cross section Ae/m of the electrical/magnetic charged line enclosed by the trajectory of beam particles. Therefore the experimental sensitivity can be significantly enhanced by reducing the cross section of the charge line Ae/m.

  19. Relativistic Equations for Spin Particles: What can We Learn from Noncommutativity?

    International Nuclear Information System (INIS)

    Dvoeglazov, V. V.

    2009-01-01

    We derive relativistic equations for charged and neutral spin particles. The approach for higher-spin particles is based on generalizations of the Bargmann-Wigner formalism. Next, we study, what new physical information can give the introduction of non-commutativity. Additional non-commutative parameters can provide a suitable basis for explanation of the origin of mass.

  20. Quadratic algebras and noncommutative integration of Klein-Gordon equations in non-steckel Riemann spaces

    International Nuclear Information System (INIS)

    Varaksin, O.L.; Firstov, V.V.; Shapovalov, A.V.; Shirokov, I.V.

    1995-01-01

    The method of noncommutative integration of linear partial differential equations is used to solve the Klein-Gordon equations in Riemann space, in the case when the set of noncommutating symmetry operators of this equation for a quadratic algebra consists of one second-order operator and several first-order operators. Solutions that do not permit variable separation are presented

  1. Dirac-Kahler fermion with noncommutative differential forms on a lattice

    International Nuclear Information System (INIS)

    Kanamori, I.; Kawamoto, N.

    2004-01-01

    Noncommutativity between a differential form and a function allows us to define differential operator satisfying Leibniz's rule on a lattice. We propose a new associative Clifford product defined on the lattice by introducing the noncommutative differential forms. We show that this Clifford product naturally leads to the Dirac-Kaehler fermion on the lattice

  2. Noncommutative quantum electrodynamics from Seiberg-Witten maps to all orders in θμν

    International Nuclear Information System (INIS)

    Zeiner, Joerg

    2007-01-01

    The basic question which drove our whole work was to find a meaningful noncommutative gauge theory even for the time-like case (θ 0i ≠0). Our model is based on two fundamental assumptions. The first assumption is given by the commutation relations. This led to the Moyal-Weyl star-product which replaces all point-like products between two fields. The second assumption is to assume that the model built this way is not only invariant under the noncommutative gauge transformation but also under the commutative one. We chose a gauge fixed action as the fundamental action of our model. After having constructed the action of the NCQED including the Seiberg-Witten maps we were confronted with the problem of calculating the Seiberg-Witten maps to all orders in θ μν . We could calculate the Seiberg-Witten maps order by order in the gauge field, where each order in the gauge field contains all orders in the noncommutative parameter. We realized that already the simplest Seiberg-Witten map for the gauge field is not unique. We examined this ambiguity, which we could parametrised by an arbitrary function * f . The next step was to derive the Feynman rules for our NCQED. One finds that the propagators remain unchanged so that the free theory is equal to the commutative QED. The fermion-fermion-photon vertex contains not only a phase factor coming from the Moyal-Weyl star-product but also two additional terms which have their origin in the Seiberg-Witten maps. Beside the 3-photon vertex which is already present in NCQED without Seiberg-Witten maps and which has also additional terms coming from the Seiberg-Witten maps, too, one has a contact vertex which couples two fermions with two photons. After having derived all the vertices we calculated the pair annihilation scattering process e + e - →γγ at Born level. We found that the amplitude of the pair annihilation process becomes equal to the amplitude of the NCQED without Seiberg-Witten maps. On the basis of the pair

  3. Higgs bosons in the standard model, the MSSM and beyond

    Indian Academy of Sciences (India)

    Abstract. I summarize the basic theory and selected phenomenology for the Higgs boson(s) of the standard model, the minimal supersymmetric model and some extensions thereof, including the next-to-minimal supersymmetric model.

  4. Open Wilson lines and generalized star product in noncommutative scalar field theories

    International Nuclear Information System (INIS)

    Kiem, Youngjai; Sato, Haru-Tada; Rey, Soo-Jong; Yee, Jung-Tay

    2002-01-01

    Open Wilson line operators and a generalized star product have been studied extensively in noncommutative gauge theories. We show that they also show up in noncommutative scalar field theories as universal structures. We first point out that the dipole picture of noncommutative geometry provides an intuitive argument for the robustness of the open Wilson lines and generalized star products therein. We calculate the one-loop effective action of noncommutative scalar field theory with a cubic self-interaction and show explicitly that the generalized star products arise in the nonplanar part. It is shown that, at the low-energy, large noncommutativity limit, the nonplanar part is expressible solely in terms of the scalar open Wilson line operator and descendants

  5. Neutrinos: in and out of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen; /Fermilab

    2006-07-01

    The particle physics Standard Model has been tremendously successful in predicting the outcome of a large number of experiments. In this model Neutrinos are massless. Yet recent evidence points to the fact that neutrinos are massive particles with tiny masses compared to the other particles in the Standard Model. These tiny masses allow the neutrinos to change flavor and oscillate. In this series of Lectures, I will review the properties of Neutrinos In the Standard Model and then discuss the physics of Neutrinos Beyond the Standard Model. Topics to be covered include Neutrino Flavor Transformations and Oscillations, Majorana versus Dirac Neutrino Masses, the Seesaw Mechanism and Leptogenesis.

  6. On the generalization of linear least mean squares estimation to quantum systems with non-commutative outputs

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Nina H. [Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States); CNRS, Laboratoire des Signaux et Systemes (L2S) CentraleSupelec, Gif-sur-Yvette (France); Miao, Zibo; Pan, Yu; James, Matthew R. [Australian National University, ARC Centre for Quantum Computation and Communication Technology, Research School of Engineering, Canberra, ACT (Australia); Mabuchi, Hideo [Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States)

    2015-12-15

    The purpose of this paper is to study the problem of generalizing the Belavkin-Kalman filter to the case where the classical measurement signal is replaced by a fully quantum non-commutative output signal. We formulate a least mean squares estimation problem that involves a non-commutative system as the filter processing the non-commutative output signal. We solve this estimation problem within the framework of non-commutative probability. Also, we find the necessary and sufficient conditions which make these non-commutative estimators physically realizable. These conditions are restrictive in practice. (orig.)

  7. Gauge coupling unification in superstring derived standard-like models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1992-11-01

    I discuss gauge coupling unification in a class of superstring standard-like models, which are derived in the free fermionic formulation. Recent calculations indicate that the superstring unification scale is at O(10 18 GeV) while the minimal supersymmetric standard model is consistent with LEP data if the unification scale is at O(10 16 )GeV. A generic feature of the superstring standard-like models is the appearance of extra color triplets (D,D), and electroweak doublets (l,l), in vector-like representations, beyond the supersymmetric standard model. I show that the gauge coupling unification at O(10 18 GeV) in the superstring standard-like models can be consistent with LEP data. I present an explicit standard-like model that can realize superstring gauge coupling unification. (author)

  8. Beyond the standard model with B and K physics

    International Nuclear Information System (INIS)

    Grossman, Y

    2003-01-01

    In the first part of the talk the flavor physics input to models beyond the standard model is described. One specific example of such new physics model is given: A model with bulk fermions in a non factorizable one extra dimension. In the second part of the talk we discuss several observables that are sensitive to new physics. We explain what type of new physics can produce deviations from the standard model predictions in each of these observables

  9. Standardized training in nurse model travel clinics.

    Science.gov (United States)

    Sofarelli, Theresa A; Ricks, Jane H; Anand, Rahul; Hale, Devon C

    2011-01-01

    International travel plays a significant role in the emergence and redistribution of major human diseases. The importance of travel medicine clinics for preventing morbidity and mortality has been increasingly appreciated, although few studies have thus far examined the management and staff training strategies that result in successful travel-clinic operations. Here, we describe an example of travel-clinic operation and management coordinated through the University of Utah School of Medicine, Division of Infectious Diseases. This program, which involves eight separate clinics distributed statewide, functions both to provide patient consult and care services, as well as medical provider training and continuing medical education (CME). Initial training, the use of standardized forms and protocols, routine chart reviews and monthly continuing education meetings are the distinguishing attributes of this program. An Infectious Disease team consisting of one medical doctor (MD) and a physician assistant (PA) act as consultants to travel nurses who comprise the majority of clinic staff. Eight clinics distributed throughout the state of Utah serve approximately 6,000 travelers a year. Pre-travel medical services are provided by 11 nurses, including 10 registered nurses (RNs) and 1 licensed practical nurse (LPN). This trained nursing staff receives continuing travel medical education and participate in the training of new providers. All nurses have completed a full training program and 7 of the 11 (64%) of clinic nursing staff serve more than 10 patients a week. Quality assurance measures show that approximately 0.5% of charts reviewed contain a vaccine or prescription error which require patient notification for correction. Using an initial training program, standardized patient intake forms, vaccine and prescription protocols, preprinted prescriptions, and regular CME, highly trained nurses at travel clinics are able to provide standardized pre-travel care to

  10. Standard Model Constraints from the LHC

    International Nuclear Information System (INIS)

    Boonekamp, M.

    2007-01-01

    With our current knowledge limited by the absence of physics data, I review our expectations from standard processes measurements at the LHC. Focusing on charged and neutral current processes, I illustrate how their measurement will constrain our uncertainties on discovery physics, and give some arguments about our precision goal for the W mass measurement. Detailed analysis reveals that there is no reason to believe we can not measure this fundamental parameter to about 5 MeV. This sets a natural goal of about 500 MeV for the top mass; to decide whether this is realistic requires further investigation. (author)

  11. Space-Time Diffeomorphisms in Noncommutative Gauge Theories

    Directory of Open Access Journals (Sweden)

    L. Román Juarez

    2008-07-01

    Full Text Available In previous work [Rosenbaum M. et al., J. Phys. A: Math. Theor. 40 (2007, 10367–10382] we have shown how for canonical parametrized field theories, where space-time is placed on the same footing as the other fields in the theory, the representation of space-time diffeomorphisms provides a very convenient scheme for analyzing the induced twisted deformation of these diffeomorphisms, as a result of the space-time noncommutativity. However, for gauge field theories (and of course also for canonical geometrodynamics where the Poisson brackets of the constraints explicitely depend on the embedding variables, this Poisson algebra cannot be connected directly with a representation of the complete Lie algebra of space-time diffeomorphisms, because not all the field variables turn out to have a dynamical character [Isham C.J., Kuchar K.V., Ann. Physics 164 (1985, 288–315, 316–333]. Nonetheless, such an homomorphic mapping can be recuperated by first modifying the original action and then adding additional constraints in the formalism in order to retrieve the original theory, as shown by Kuchar and Stone for the case of the parametrized Maxwell field in [Kuchar K.V., Stone S.L., Classical Quantum Gravity 4 (1987, 319–328]. Making use of a combination of all of these ideas, we are therefore able to apply our canonical reparametrization approach in order to derive the deformed Lie algebra of the noncommutative space-time diffeomorphisms as well as to consider how gauge transformations act on the twisted algebras of gauge and particle fields. Thus, hopefully, adding clarification on some outstanding issues in the literature concerning the symmetries for gauge theories in noncommutative space-times.

  12. Strong limit theorems in noncommutative L2-spaces

    CERN Document Server

    Jajte, Ryszard

    1991-01-01

    The noncommutative versions of fundamental classical results on the almost sure convergence in L2-spaces are discussed: individual ergodic theorems, strong laws of large numbers, theorems on convergence of orthogonal series, of martingales of powers of contractions etc. The proofs introduce new techniques in von Neumann algebras. The reader is assumed to master the fundamentals of functional analysis and probability. The book is written mainly for mathematicians and physicists familiar with probability theory and interested in applications of operator algebras to quantum statistical mechanics.

  13. Non-commutative geometry inspired charged black holes

    International Nuclear Information System (INIS)

    Ansoldi, Stefano; Nicolini, Piero; Smailagic, Anais; Spallucci, Euro

    2007-01-01

    We find a new, non-commutative geometry inspired, solution of the coupled Einstein-Maxwell field equations describing a variety of charged, self-gravitating objects, including extremal and non-extremal black holes. The metric smoothly interpolates between de Sitter geometry, at short distance, and Reissner-Nordstrom geometry far away from the origin. Contrary to the ordinary Reissner-Nordstrom spacetime there is no curvature singularity in the origin neither 'naked' nor shielded by horizons. We investigate both Hawking process and pair creation in this new scenario

  14. Noncommutative configuration space. Classical and quantum mechanical aspects

    OpenAIRE

    Vanhecke, F. J.; Sigaud, C.; da Silva, A. R.

    2005-01-01

    In this work we examine noncommutativity of position coordinates in classical symplectic mechanics and its quantisation. In coordinates $\\{q^i,p_k\\}$ the canonical symplectic two-form is $\\omega_0=dq^i\\wedge dp_i$. It is well known in symplectic mechanics {\\bf\\cite{Souriau,Abraham,Guillemin}} that the interaction of a charged particle with a magnetic field can be described in a Hamiltonian formalism without a choice of a potential. This is done by means of a modified symplectic two-form $\\ome...

  15. Samples of noncommutative products in certain differential equations

    International Nuclear Information System (INIS)

    Legare, M

    2010-01-01

    A set of associative noncommutative products is considered in different differential equations of the ordinary and partial types. A method of separation of variables is considered for a large set of those systems. The products involved include for example some * products and some products based on Nijenhuis tensors, which are embedded in the differential equations of the Laplace/Poisson, Lax and Schroedinger styles. A comment on the *-products of Reshetikhin-Jambor-Sykora type is also given in relation to *-products of Vey type.

  16. Can non-commutativity resolve the big-bang singularity?

    Energy Technology Data Exchange (ETDEWEB)

    Maceda, M.; Madore, J. [Laboratoire de Physique Theorique, Universite de Paris-Sud, Batiment 211, 91405, Orsay (France); Manousselis, P. [Department of Engineering Sciences, University of Patras, 26110, Patras (Greece); Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Zoupanos, G. [Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Theory Division, CERN, 1211, Geneva 23 (Switzerland)

    2004-08-01

    A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has non-commutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a modification of the Kasner metric is constructed which is commutative only at large time scales. At small time scales, near the singularity, the commutation relations among the space coordinates diverge. We interpret this result as meaning that the singularity has been completely delocalized. (orig.)

  17. Quantum thetas on noncommutative Td with general embeddings

    International Nuclear Information System (INIS)

    Chang-Young, Ee; Kim, Hoil

    2008-01-01

    In this paper, we construct quantum theta functions over noncommutative T d with general embeddings. Manin has constructed quantum theta functions from the lattice embedding into vector space x finite group. We extend Manin's construction of quantum thetas to the case of general embedding of vector space x lattice x torus. It turns out that only for the vector space part of the embedding there exists the holomorphic theta vector, while for the lattice part there does not. Furthermore, the so-called quantum translations from embedding into the lattice part become non-additive, while those from the vector space part are additive

  18. Quantum Thetas on Noncommutative T^d with General Embeddings

    OpenAIRE

    Chang-Young, Ee; Kim, Hoil

    2007-01-01

    In this paper we construct quantum theta functions over noncommutative T^d with general embeddings. Manin has constructed quantum theta functions from the lattice embedding into vector space x finite group. We extend Manin's construction of quantum thetas to the case of general embedding of vector space x lattice x torus. It turns out that only for the vector space part of the embedding there exists the holomorphic theta vector, while for the lattice part there does not. Furthermore, the so-c...

  19. Non-commutative field theory with twistor-like coordinates

    International Nuclear Information System (INIS)

    Taylor, Tomasz R.

    2007-01-01

    We consider quantum field theory in four-dimensional Minkowski spacetime, with the position coordinates represented by twistors instead of the usual world-vectors. Upon imposing canonical commutation relations between twistors and dual twistors, quantum theory of fields described by non-holomorphic functions of twistor variables becomes manifestly non-commutative, with Lorentz symmetry broken by a time-like vector. We discuss the free field propagation and its impact on the short- and long-distance behavior of physical amplitudes in perturbation theory. In the ultraviolet limit, quantum field theories in twistor space are generically less divergent than their commutative counterparts. Furthermore, there is no infrared-ultraviolet mixing problem

  20. The thermal evolution of universe: standard model

    International Nuclear Information System (INIS)

    Nascimento, L.C.S. do.

    1975-08-01

    A description of the dynamical evolution of the Universe following a model based on the theory of General Relativity is made. The model admits the Cosmological principle,the principle of Equivalence and the Robertson-Walker metric (of which an original derivation is presented). In this model, the universe is considered as a perfect fluid, ideal and symmetric relatively to the number of particles and antiparticles. The thermodynamic relations deriving from these hypothesis are derived, and from them the several eras of the thermal evolution of the universe are established. Finally, the problems arising from certain specific predictions of the model are studied, and the predictions of the abundances of the elements according to nucleosynthesis and the actual behavior of the universe are analysed in detail. (author) [pt