Quantum mechanics on noncommutative spacetime
International Nuclear Information System (INIS)
Calmet, Xavier; Selvaggi, Michele
2006-01-01
We consider electrodynamics on a noncommutative spacetime using the enveloping algebra approach and perform a nonrelativistic expansion of the effective action. We obtain the Hamiltonian for quantum mechanics formulated on a canonical noncommutative spacetime. An interesting new feature of quantum mechanics formulated on a noncommutative spacetime is an intrinsic electric dipole moment. We note, however, that noncommutative intrinsic dipole moments are not observable in present experiments searching for an electric dipole moment of leptons or nuclei such as the neutron since they are spin independent. These experiments are sensitive to the energy difference between two states and the noncommutative effect thus cancels out. Bounds on the noncommutative scale found in the literature relying on such intrinsic electric dipole moments are thus incorrect
A deformation quantization theory for noncommutative quantum mechanics
International Nuclear Information System (INIS)
Costa Dias, Nuno; Prata, Joao Nuno; Gosson, Maurice de; Luef, Franz
2010-01-01
We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ['Weyl-Wigner formulation of noncommutative quantum mechanics', J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ['Wigner measures in non-commutative quantum mechanics', e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ['A new approach to the *-genvalue equation', Lett. Math. Phys. 85, 173-183 (2008)].
Deformation quantization of noncommutative quantum mechanics and dissipation
Energy Technology Data Exchange (ETDEWEB)
Bastos, C [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal); Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisbon (Portugal); Dias, N C [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande 376, 1749-024 Lisbon (Portugal); Prata, J N [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande 376, 1749-024 Lisbon (Portugal)
2007-05-15
We review the main features of the Weyl-Wigner formulation of noncommutative quantum mechanics. In particular, we present a *-product and a Moyal bracket suitable for this theory as well as the concept of noncommutative Wigner function. The properties of these quasi-distributions are discussed as well as their relation to the sets of ordinary Wigner functions and positive Liouville probability densities. Based on these notions we propose criteria for assessing whether a commutative regime has emerged in the realm of noncommutative quantum mechanics. To induce this noncommutative-commutative transition, we couple a particle to an external bath of oscillators. The master equation for the Brownian particle is deduced.
Noncommutative quantum mechanics
Gamboa, J.; Loewe, M.; Rojas, J. C.
2001-09-01
A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter θ, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of θ the model can be solved by using perturbation theory.
Conformal quantum mechanics and holography in noncommutative space-time
Gupta, Kumar S.; Harikumar, E.; Zuhair, N. S.
2017-09-01
We analyze the effects of noncommutativity in conformal quantum mechanics (CQM) using the κ-deformed space-time as a prototype. Up to the first order in the deformation parameter, the symmetry structure of the CQM algebra is preserved but the coupling in a canonical model of the CQM gets deformed. We show that the boundary conditions that ensure a unitary time evolution in the noncommutative CQM can break the scale invariance, leading to a quantum mechanical scaling anomaly. We calculate the scaling dimensions of the two and three point functions in the noncommutative CQM which are shown to be deformed. The AdS2 / CFT1 duality for the CQM suggests that the corresponding correlation functions in the holographic duals are modified. In addition, the Breitenlohner-Freedman bound also picks up a noncommutative correction. The strongly attractive regime of a canonical model of the CQM exhibit quantum instability. We show that the noncommutativity softens this singular behaviour and its implications for the corresponding holographic duals are discussed.
Remarks on the formulation of quantum mechanics on noncommutative phase spaces
International Nuclear Information System (INIS)
Muthukumar, Balasundaram
2007-01-01
We consider the probabilistic description of nonrelativistic, spinless one-particle classical mechanics, and immerse the particle in a deformed noncommutative phase space in which position coordinates do not commute among themselves and also with canonically conjugate momenta. With a postulated normalized distribution function in the quantum domain, the square of the Dirac delta density distribution in the classical case is properly realised in noncommutative phase space and it serves as the quantum condition. With only these inputs, we pull out the entire formalisms of noncommutative quantum mechanics in phase space and in Hilbert space, and elegantly establish the link between classical and quantum formalisms and between Hilbert space and phase space formalisms of noncommutative quantum mechanics. Also, we show that the distribution function in this case possesses 'twisted' Galilean symmetry
Quantum information aspects of noncommutative quantum mechanics
Bertolami, Orfeu; Bernardini, Alex E.; Leal, Pedro
2018-01-01
Some fundamental aspects related with the construction of Robertson-Schrödinger-like uncertainty-principle inequalities are reported in order to provide an overall description of quantumness, separability and nonlocality of quantum systems in the noncommutative phase-space. Some consequences of the deformed noncommutative algebra are also considered in physical systems of interest.
Noncommutative quantum mechanics and Bohm's ontological interpretation
International Nuclear Information System (INIS)
Barbosa, G.D.; Pinto-Neto, N.
2004-01-01
We carry out an investigation into the possibility of developing a Bohmian interpretation based on the continuous motion of point particles for noncommutative quantum mechanics. The conditions for such an interpretation to be consistent are determined, and the implications of its adoption for noncommutativity are discussed. A Bohmian analysis of the noncommutative harmonic oscillator is carried out in detail. By studying the particle motion in the oscillator orbits, we show that small-scale physics can have influence at large scales, something similar to the IR-UV mixing
Quantum effects of Aharonov-Bohm type and noncommutative quantum mechanics
Rodriguez R., Miguel E.
2018-01-01
Quantum mechanics in noncommutative space modifies the standard result of the Aharonov-Bohm effect for electrons and other recent quantum effects. Here we obtain the phase in noncommutative space for the Spavieri effect, a generalization of Aharonov-Bohm effect which involves a coherent superposition of particles with opposite charges moving along a single open interferometric path. By means of the experimental considerations a limit √{θ }≃(0.13TeV)-1 is achieved, improving by 10 orders of magnitude the results derived by Chaichian et al. [Phys. Lett. B 527, 149 (2002), 10.1016/S0370-2693(02)01176-0] for the Aharonov-Bohm effect. It is also shown that the noncommutative phases of the Aharonov-Casher and He-McKellar-Willkens effects are nullified in the current experimental tests.
Noncommutative unification of general relativity and quantum mechanics
International Nuclear Information System (INIS)
Heller, Michael; Pysiak, Leszek; Sasin, Wieslaw
2005-01-01
We present a model unifying general relativity and quantum mechanics based on a noncommutative geometry. This geometry is developed in terms of a noncommutative algebra A which is defined on a transformation groupoid Γ given by the action of a noncompact group G on the total space E of a principal fiber bundle over space-time M. The case is important since to obtain physical effects predicted by the model we should assume that G is a Lorentz group or some of its representations. We show that the generalized Einstein equation of the model has the form of the eigenvalue equation for the generalized Ricci operator, and all relevant operators in the quantum sector of the model are random operators; we study their dynamics. We also show that the model correctly reproduces general relativity and the usual quantum mechanics. It is interesting that the latter is recovered by performing the measurement of any observable. In the act of such a measurement the model 'collapses' to the usual quantum mechanics
On total noncommutativity in quantum mechanics
Lahti, Pekka J.; Ylinen, Kari
1987-11-01
It is shown within the Hilbert space formulation of quantum mechanics that the total noncommutativity of any two physical quantities is necessary for their satisfying the uncertainty relation or for their being complementary. The importance of these results is illustrated with the canonically conjugate position and momentum of a free particle and of a particle closed in a box.
Wigner functions for noncommutative quantum mechanics: A group representation based construction
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, S. Hasibul Hassan, E-mail: shhchowdhury@gmail.com [Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada); Ali, S. Twareque, E-mail: twareque.ali@concordia.ca [Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada)
2015-12-15
This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group G{sub NC}, which is the three fold central extension of the Abelian group of ℝ{sup 4}. These representations have been exhaustively studied in earlier papers. The group G{sub NC} is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only.
Non-commutative geometry on quantum phase-space
International Nuclear Information System (INIS)
Reuter, M.
1995-06-01
A non-commutative analogue of the classical differential forms is constructed on the phase-space of an arbitrary quantum system. The non-commutative forms are universal and are related to the quantum mechanical dynamics in the same way as the classical forms are related to classical dynamics. They are constructed by applying the Weyl-Wigner symbol map to the differential envelope of the linear operators on the quantum mechanical Hilbert space. This leads to a representation of the non-commutative forms considered by A. Connes in terms of multiscalar functions on the classical phase-space. In an appropriate coincidence limit they define a quantum deformation of the classical tensor fields and both commutative and non-commutative forms can be studied in a unified framework. We interprete the quantum differential forms in physical terms and comment on possible applications. (orig.)
LAPLACE-RUNGE-LENZ VECTOR IN QUANTUM MECHANICS IN NONCOMMUTATIVE SPACE
Directory of Open Access Journals (Sweden)
Peter Prešnajder
2014-04-01
Full Text Available The object under scrutiny is the dynamical symmetry connected with conservation of the Laplace-Runge-Lenz vector (LRL in the hydrogen atom problem solved by means of noncommutative quantum mechanics (NCQM. The considered noncommutative configuration space has such a “fuzzy”structure that the rotational invariance is not spoilt. An analogy with the LRL vector in the NCQM is brought to provide our results and also a comparison with the standard QM predictions.
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Kupriyanov, V.G. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Tomsk State University, Physics Department, Tomsk (Russian Federation)
2008-03-15
It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them {theta}-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing {theta}-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract {theta}-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein-Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as {theta}-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein-Gordon and Dirac equations in the noncommutative field theories. The {theta}-modified action of the relativistic spinning particle is just a generalization of the Berezin-Marinov pseudoclassical action for the noncommutative case. (orig.)
Probing noncommutative theories with quantum optical experiments
Directory of Open Access Journals (Sweden)
Sanjib Dey
2017-11-01
Full Text Available One of the major difficulties of modern science underlies at the unification of general relativity and quantum mechanics. Different approaches towards such theory have been proposed. Noncommutative theories serve as the root of almost all such approaches. However, the identification of the appropriate passage to quantum gravity is suffering from the inadequacy of experimental techniques. It is beyond our ability to test the effects of quantum gravity thorough the available scattering experiments, as it is unattainable to probe such high energy scale at which the effects of quantum gravity appear. Here we propose an elegant alternative scheme to test such theories by detecting the deformations emerging from the noncommutative structures. Our protocol relies on the novelty of an opto-mechanical experimental setup where the information of the noncommutative oscillator is exchanged via the interaction with an optical pulse inside an optical cavity. We also demonstrate that our proposal is within the reach of current technology and, thus, it could uncover a feasible route towards the realization of quantum gravitational phenomena thorough a simple table-top experiment.
Unitary quantum physics with time-space non-commutativity
International Nuclear Information System (INIS)
Balachandran, A P; Govindarajan, T R; Martins, A G; Molina, C; Teotonio-Sobrinho, P
2005-01-01
In these lectures 4 quantum physics in noncommutative spacetime is developed. It is based on the work of Doplicher et al. which allows for time-space noncommutativity. In the context of noncommutative quantum mechanics, some important points are explored, such as the formal construction of the theory, symmetries, causality, simultaneity and observables. The dynamics generated by a noncommutative Schroedinger equation is studied. The theory is further extended to certain noncommutative versions of the cylinder, R 3 and R x S 3 . In all these models, only discrete time translations are possible. One striking consequence of quantised time translations is that even though a time independent Hamiltonian is an observable, in scattering processes, it is conserved only modulo 2π/θ, where θ is the noncommutative parameter. Scattering theory is formulated and an approach to quantumfield theory is outlined
Noncommutative Lagrange Mechanics
Directory of Open Access Journals (Sweden)
Denis Kochan
2008-02-01
Full Text Available It is proposed how to impose a general type of ''noncommutativity'' within classical mechanics from first principles. Formulation is performed in completely alternative way, i.e. without any resort to fuzzy and/or star product philosophy, which are extensively applied within noncommutative quantum theories. Newton-Lagrange noncommutative equations of motion are formulated and their properties are analyzed from the pure geometrical point of view. It is argued that the dynamical quintessence of the system consists in its kinetic energy (Riemannian metric specifying Riemann-Levi-Civita connection and thus the inertia geodesics of the free motion. Throughout the paper, ''noncommutativity'' is considered as an internal geometric structure of the configuration space, which can not be ''observed'' per se. Manifestation of the noncommutative phenomena is mediated by the interaction of the system with noncommutative background under the consideration. The simplest model of the interaction (minimal coupling is proposed and it is shown that guiding affine connection is modified by the quadratic analog of the Lorentz electromagnetic force (contortion term.
Saha, Anirban; Gangopadhyay, Sunandan; Saha, Swarup
2018-02-01
Owing to the extreme smallness of any noncommutative scale that may exist in nature, both in the spatial and momentum sector of the quantum phase space, a credible possibility of their detection lies in the gravitational wave (GW) detection scenario, where one effectively probes the relative length-scale variations ˜O [10-20-10-23] . With this motivation, we have theoretically constructed how a free particle and a harmonic oscillator will respond to linearly and circularly polarized gravitational waves if their quantum mechanical phase space has a noncommutative structure. We critically analyze the formal solutions which show resonance behavior in the responses of both free particle and HO systems to GW with both kind of polarizations. We discuss the possible implications of these solutions in detecting noncommutativity in a GW detection experiment. We use the currently available upper-bound estimates on various noncommutative parameters to anticipate the relative importance of various terms in the solutions. We also argue how the quantum harmonic oscillator system we considered here can be very relevant in the context of the resonant bar detectors of GW which are already operational.
Quantum Field Theory with a Minimal Length Induced from Noncommutative Space
International Nuclear Information System (INIS)
Lin Bing-Sheng; Chen Wei; Heng Tai-Hua
2014-01-01
From the inspection of noncommutative quantum mechanics, we obtain an approximate equivalent relation for the energy dependence of the Planck constant in the noncommutative space, which means a minimal length of the space. We find that this relation is reasonable and it can inherit the main properties of the noncommutative space. Based on this relation, we derive the modified Klein—Gordon equation and Dirac equation. We investigate the scalar field and ϕ 4 model and then quantum electrodynamics in our theory, and derive the corresponding Feynman rules. These results may be considered as reasonable approximations to those of noncommutative quantum field theory. Our theory also shows a connection between the space with a minimal length and the noncommutative space. (physics of elementary particles and fields)
Noncommutative mathematics for quantum systems
Franz, Uwe
2016-01-01
Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...
Non-commutative representation for quantum systems on Lie groups
Energy Technology Data Exchange (ETDEWEB)
Raasakka, Matti Tapio
2014-01-27
The topic of this thesis is a new representation for quantum systems on weakly exponential Lie groups in terms of a non-commutative algebra of functions, the associated non-commutative harmonic analysis, and some of its applications to specific physical systems. In the first part of the thesis, after a review of the necessary mathematical background, we introduce a {sup *}-algebra that is interpreted as the quantization of the canonical Poisson structure of the cotangent bundle over a Lie group. From the physics point of view, this represents the algebra of quantum observables of a physical system, whose configuration space is a Lie group. We then show that this quantum algebra can be represented either as operators acting on functions on the group, the usual group representation, or (under suitable conditions) as elements of a completion of the universal enveloping algebra of the Lie group, the algebra representation. We further apply the methods of deformation quantization to obtain a representation of the same algebra in terms of a non-commutative algebra of functions on a Euclidean space, which we call the non-commutative representation of the original quantum algebra. The non-commutative space that arises from the construction may be interpreted as the quantum momentum space of the physical system. We derive the transform between the group representation and the non-commutative representation that generalizes in a natural way the usual Fourier transform, and discuss key properties of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of the non-commutative Fourier transform for three elementary Lie groups: R{sup d}, U(1) and SU(2). In the second part of the thesis, we consider application of the non-commutative representation and harmonic analysis to physics. First, we apply the formalism to quantum mechanics of a point particle on a Lie group. We define the dual non-commutative momentum representation, and derive the phase
Non-commutative representation for quantum systems on Lie groups
International Nuclear Information System (INIS)
Raasakka, Matti Tapio
2014-01-01
The topic of this thesis is a new representation for quantum systems on weakly exponential Lie groups in terms of a non-commutative algebra of functions, the associated non-commutative harmonic analysis, and some of its applications to specific physical systems. In the first part of the thesis, after a review of the necessary mathematical background, we introduce a * -algebra that is interpreted as the quantization of the canonical Poisson structure of the cotangent bundle over a Lie group. From the physics point of view, this represents the algebra of quantum observables of a physical system, whose configuration space is a Lie group. We then show that this quantum algebra can be represented either as operators acting on functions on the group, the usual group representation, or (under suitable conditions) as elements of a completion of the universal enveloping algebra of the Lie group, the algebra representation. We further apply the methods of deformation quantization to obtain a representation of the same algebra in terms of a non-commutative algebra of functions on a Euclidean space, which we call the non-commutative representation of the original quantum algebra. The non-commutative space that arises from the construction may be interpreted as the quantum momentum space of the physical system. We derive the transform between the group representation and the non-commutative representation that generalizes in a natural way the usual Fourier transform, and discuss key properties of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of the non-commutative Fourier transform for three elementary Lie groups: R d , U(1) and SU(2). In the second part of the thesis, we consider application of the non-commutative representation and harmonic analysis to physics. First, we apply the formalism to quantum mechanics of a point particle on a Lie group. We define the dual non-commutative momentum representation, and derive the phase space path
Quantum group of isometries in classical and noncommutative geometry
International Nuclear Information System (INIS)
Goswami, D.
2007-04-01
We formulate a quantum generalization of the notion of the group of Riemannian isometries for a compact Riemannian manifold, by introducing a natural notion of smooth and isometric action by a compact quantum group on a classical or noncommutative manifold described by spectral triples, and then proving the existence of a universal object (called the quantum isometry group) in the category of compact quantum groups acting smoothly and isometrically on a given (possibly noncommutative) manifold. Our formulation accommodates spectral triples which are not of type II. We give an explicit description of quantum isometry groups of commutative and noncommutative tori, and in this context, obtain the quantum double torus defined in [7] as the universal quantum group of holomorphic isometries of the noncommutative torus. (author)
Finite quantum physics and noncommutative geometry
International Nuclear Information System (INIS)
Balachandran, A.P.; Ercolessi, E.; Landi, G.; Teotonio-Sobrinho, P.; Lizzi, F.; Sparano, G.
1994-04-01
Conventional discrete approximations of a manifold do not preserve its nontrivial topological features. In this article we describe an approximation scheme due to Sorkin which reproduces physically important aspects of manifold topology with striking fidelity. The approximating topological spaces in this scheme are partially ordered sets (posets). Now, in ordinary quantum physics on a manifold M, continuous probability densities generate the commutative C * -algebra C(M) of continuous functions on M. It has a fundamental physical significance, containing the information to reconstruct the topology of M, and serving to specify the domains of observables like the Hamiltonian. For a poset, the role of this algebra is assumed by a noncommutative C * -algebra A. As noncommutative geometries are based on noncommutative C * -algebra, we therefore have a remarkable connection between finite approximations to quantum physics and noncommutative geometries. Varies methods for doing quantum physics using A are explored. Particular attention is paid to developing numerically viable approximation schemes which at the same time preserve important topological features of continuum physics. (author). 21 refs, 13 figs
Quantum electrodynamics with arbitrary charge on a noncommutative space
International Nuclear Information System (INIS)
Zhou Wanping; Long Zhengwen; Cai Shaohong
2009-01-01
Using the Seiberg-Witten map, we obtain a quantum electrodynamics on a noncommutative space, which has arbitrary charge and keep the gauge invariance to at the leading order in theta. The one-loop divergence and Compton scattering are reinvestigated. The noncommutative effects are larger than those in ordinary noncommutative quantum electrodynamics. (authors)
Quantum theory of noncommutative fields
International Nuclear Information System (INIS)
Carmona, J.M.; Cortes, J.L.; Gamboa, J.; Mendez, F.
2003-01-01
Generalizing the noncommutative harmonic oscillator construction, we propose a new extension of quantum field theory based on the concept of 'noncommutative fields'. Our description permits to break the usual particle-antiparticle degeneracy at the dispersion relation level and introduces naturally an ultraviolet and an infrared cutoff. Phenomenological bounds for these new energy scales are given. (author)
Einstein-Podolski-Rosen experiment from noncommutative quantum gravity
International Nuclear Information System (INIS)
Heller, Michael; Sasin, Wieslaw
1998-01-01
It is shown that the Einstein-Podolski-Rosen type experiments are the natural consequence of the groupoid approach to noncommutative unification of general relativity and quantum mechanics. The geometry of this model is determined by the noncommutative algebra A=C c ∞ (G,C) of complex valued, compactly supported, functions (with convolution as multiplication) on the groupoid G=ExΓ. In the model considered in the present paper E is the total space of the frame bundle over space-time and Γ is the Lorentz group. The correlations of the EPR type should be regarded as remnants of the totally non-local physics below the Planck threshold which is modelled by a noncommutative geometry
Manin's quantum spaces and standard quantum mechanics
International Nuclear Information System (INIS)
Floratos, E.G.
1990-01-01
Manin's non-commutative coordinate algebra of quantum groups is shown to be identical, for unitary coordinates, with the conventional operator algebras of quantum mechanics. The deformation parameter q is a pure phase for unitary coordinates. When q is a root of unity. Manin's algebra becomes the matrix algebra of quantum mechanics for a discretized and finite phase space. Implications for quantum groups and the associated non-commutative differential calculus of Wess and Zumino are discussed. (orig.)
Noncommutative time in quantum field theory
International Nuclear Information System (INIS)
Salminen, Tapio; Tureanu, Anca
2011-01-01
We analyze, starting from first principles, the quantization of field theories, in order to find out to which problems a noncommutative time would possibly lead. We examine the problem in the interaction picture (Tomonaga-Schwinger equation), the Heisenberg picture (Yang-Feldman-Kaellen equation), and the path integral approach. They all indicate inconsistency when time is taken as a noncommutative coordinate. The causality issue appears as the key aspect, while the unitarity problem is subsidiary. These results are consistent with string theory, which does not admit a time-space noncommutative quantum field theory as its low-energy limit, with the exception of lightlike noncommutativity.
Paired quantum Hall states on noncommutative two-tori
Energy Technology Data Exchange (ETDEWEB)
Marotta, Vincenzo [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN, Sezione di Napoli, Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy); Naddeo, Adele, E-mail: naddeo@sa.infn.i [CNISM, Unita di Ricerca di Salerno and Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, Via Salvador Allende, 84081 Baronissi (Italy)
2010-08-01
By exploiting the notion of Morita equivalence for field theories on noncommutative tori and choosing rational values of the noncommutativity parameter theta (in appropriate units), a one-to-one correspondence between an Abelian noncommutative field theory (NCFT) and a non-Abelian theory of twisted fields on ordinary space can be established. Starting from this general result, we focus on the conformal field theory (CFT) describing a quantum Hall fluid (QHF) at paired states fillings nu=m/(pm+2) Cristofano et al. (2000) , recently obtained by means of m-reduction procedure, and show that it is the Morita equivalent of a NCFT. In this way we extend the construction proposed in Marotta and Naddeo (2008) for the Jain series nu=m/(2pm+1) . The case m=2 is explicitly discussed and the role of noncommutativity in the physics of quantum Hall bilayers is emphasized. Our results represent a step forward the construction of a new effective low energy description of certain condensed matter phenomena and help to clarify the relationship between noncommutativity and quantum Hall fluids.
Noncommutative gravity and quantum field theory on noncummutative curved spacetimes
International Nuclear Information System (INIS)
Schenkel, Alexander
2011-01-01
The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the noncommutative
Noncommutative gravity and quantum field theory on noncummutative curved spacetimes
Energy Technology Data Exchange (ETDEWEB)
Schenkel, Alexander
2011-10-24
The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the
Quantum gravity from noncommutative spacetime
Energy Technology Data Exchange (ETDEWEB)
Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)
2014-12-15
We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.
Quantum gravity from noncommutative spacetime
International Nuclear Information System (INIS)
Lee, Jungjai; Yang, Hyunseok
2014-01-01
We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.
Non-commutative flux representation for loop quantum gravity
Baratin, A.; Dittrich, B.; Oriti, D.; Tambornino, J.
2011-09-01
The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by sstarf-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.
Noncommutative Geometry, Quantum Fields and Motives
Connes, Alain
2007-01-01
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book dea
Intersecting Quantum Gravity with Noncommutative Geometry - a Review
Directory of Open Access Journals (Sweden)
Johannes Aastrup
2012-03-01
Full Text Available We review applications of noncommutative geometry in canonical quantum gravity. First, we show that the framework of loop quantum gravity includes natural noncommutative structures which have, hitherto, not been explored. Next, we present the construction of a spectral triple over an algebra of holonomy loops. The spectral triple, which encodes the kinematics of quantum gravity, gives rise to a natural class of semiclassical states which entail emerging fermionic degrees of freedom. In the particular semiclassical approximation where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. We end the paper with an extended outlook section.
Beyond the Standard Model with noncommutative geometry, strolling towards quantum gravity
International Nuclear Information System (INIS)
Martinetti, Pierre
2015-01-01
Noncommutative geometry in its many incarnations appears at the crossroad of many researches in theoretical and mathematical physics: from models of quantum spacetime(with or without breaking of Lorentz symmetry) to loop gravity and string theory, from early considerations on UV-divergenciesin quantum field theory to recent models of gauge theories on noncommutatives pacetime, from Connes description of the standard model of elementary particles to recent Pati-Salam like extensions. We list several of these applications, emphasizing also the original point of view brought by noncommutative geometry on the nature of time. This text serves as an introduction to the volume of proceedings of the parallel session “Noncommutative geometry and quantum gravity”, as a part of the conference “Conceptual and technical challenges in quantum gravity” organized at the University of Rome La Sapienza sin September 2014. (paper)
Perturbed nonlinear models from noncommutativity
International Nuclear Information System (INIS)
Cabrera-Carnero, I.; Correa-Borbonet, Luis Alejandro; Valadares, G.C.S.
2007-01-01
By means of the Ehrenfest's Theorem inside the context of a noncommutative Quantum Mechanics it is obtained the Newton's Second Law in noncommutative space. Considering discrete systems with infinite degrees of freedom whose dynamical evolutions are governed by the noncommutative Newton's Second Law we have constructed some alternative noncommutative generalizations of two-dimensional field theories. (author)
3D quantum gravity and effective noncommutative quantum field theory.
Freidel, Laurent; Livine, Etera R
2006-06-09
We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.
Martinetti, P.; Wallet, J.-C.; Amelino-Camelia, G.
2015-08-01
The conference Conceptual and Technical Challenges for Quantum Gravity at Sapienza University of Rome, from 8 to 12 September 2014, has provided a beautiful opportunity for an encounter between different approaches and different perspectives on the quantum-gravity problem. It contributed to a higher level of shared knowledge among the quantum-gravity communities pursuing each specific research program. There were plenary talks on many different approaches, including in particular string theory, loop quantum gravity, spacetime noncommutativity, causal dynamical triangulations, asymptotic safety and causal sets. Contributions from the perspective of philosophy of science were also welcomed. In addition several parallel sessions were organized. The present volume collects contributions from the Noncommutative Geometry and Quantum Gravity parallel session4, with additional invited contributions from specialists in the field. Noncommutative geometry in its many incarnations appears at the crossroad of many researches in theoretical and mathematical physics: • from models of quantum space-time (with or without breaking of Lorentz symmetry) to loop gravity and string theory, • from early considerations on UV-divergencies in quantum field theory to recent models of gauge theories on noncommutative spacetime, • from Connes description of the standard model of elementary particles to recent Pati-Salam like extensions. This volume provides an overview of these various topics, interesting for the specialist as well as accessible to the newcomer. 4partially funded by CNRS PEPS /PTI ''Metric aspect of noncommutative geometry: from Monge to Higgs''
Noncommutative configuration space. Classical and quantum mechanical aspects
Vanhecke, F. J.; Sigaud, C.; da Silva, A. R.
2005-01-01
In this work we examine noncommutativity of position coordinates in classical symplectic mechanics and its quantisation. In coordinates $\\{q^i,p_k\\}$ the canonical symplectic two-form is $\\omega_0=dq^i\\wedge dp_i$. It is well known in symplectic mechanics {\\bf\\cite{Souriau,Abraham,Guillemin}} that the interaction of a charged particle with a magnetic field can be described in a Hamiltonian formalism without a choice of a potential. This is done by means of a modified symplectic two-form $\\ome...
Trace Dynamics and a non-commutative special relativity
International Nuclear Information System (INIS)
Lochan, Kinjalk; Singh, T.P.
2011-01-01
Trace Dynamics is a classical dynamical theory of non-commuting matrices in which cyclic permutation inside a trace is used to define the derivative with respect to an operator. We use the methods of Trace Dynamics to construct a non-commutative special relativity. We define a line-element using the Trace over space-time coordinates which are assumed to be operators. The line-element is shown to be invariant under standard Lorentz transformations, and is used to construct a non-commutative relativistic dynamics. The eventual motivation for constructing such a non-commutative relativity is to relate the statistical thermodynamics of this classical theory to quantum mechanics. -- Highlights: → Classical time is external to quantum mechanics. → This implies need for a formulation of quantum theory without classical time. → A starting point could be a non-commutative special relativity. → Such a relativity is developed here using the theory of Trace Dynamics. → A line-element is defined using the Trace over non-commuting space-time operators.
Quantum aspects of the noncommutative Sine-Gordon model
International Nuclear Information System (INIS)
Kuerkcueoglu
2007-01-01
In this talk, I will first present some of the quantum field theoretical aspects of the integrable noncommutative sine-Gordon model proposed in [hep-th/0406065] using standard semi-classical methods. In particular, I will discuss the fluctuations at quadratic order around the static kink solution using the background field method. I will argue that at 0(θ 2 ) the spectrum of fluctuations remains essentially the same as that of the corresponding commutative theory. A brief analysis of one-loop two-point functions will also be presented and it will be followed by some remarks on the obstacles in determining the noncommutativity corrections to the quantum mass of the kink. (author)
Chirality Quantum Phase Transition in Noncommutative Dirac Oscillator
International Nuclear Information System (INIS)
Wang Shao-Hua; Hou Yu-Long; Jing Jian; Wang Qing; Long Zheng-Wen
2014-01-01
The charged Dirac oscillator on a noncommutative plane coupling to a uniform perpendicular magnetic held is studied in this paper. We map the noncommutative plane to a commutative one by means of Bopp shift and study this problem on the commutative plane. We find that this model can be mapped onto a quantum optics model which contains Anti—Jaynes—Cummings (AJC) or Jaynes—Cummings (JC) interactions when a dimensionless parameter ζ (which is the function of the intensity of the magnetic held) takes values in different regimes. Furthermore, this model behaves as experiencing a chirality quantum phase transition when the dimensionless parameter ζ approaches the critical point. Several evidences of the chirality quantum phase transition are presented. We also study the non-relativistic limit of this model and find that a similar chirality quantum phase transition takes place in its non-relativistic limit. (physics of elementary particles and fields)
Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Zahn, J.W.
2006-12-15
We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the {phi}{sup 3} and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)
Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space
International Nuclear Information System (INIS)
Zahn, J.W.
2006-12-01
We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the Φ 3 and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)
Towards Noncommutative Topological Quantum Field Theory: New invariants for 3-manifolds
International Nuclear Information System (INIS)
Zois, I.P.
2016-01-01
We present some ideas for a possible Noncommutative Topological Quantum Field Theory (NCTQFT for short) and Noncommutative Floer Homology (NCFH for short). Our motivation is two-fold and it comes both from physics and mathematics: On the one hand we argue that NCTQFT is the correct mathematical framework for a quantum field theory of all known interactions in nature (including gravity). On the other hand we hope that a possible NCFH will apply to practically every 3-manifold (and not only to homology 3-spheres as ordinary Floer Homology currently does). The two motivations are closely related since, at least in the commutative case, Floer Homology Groups constitute the space of quantum observables of (3+1)-dim Topological Quantum Field Theory. Towards this goal we define some new invariants for 3-manifolds using the space of taut codim-1 foliations modulo coarse isotopy along with various techniques from noncommutative geometry. (paper)
Structural aspects of quantum field theory and noncommutative geometry
Grensing, Gerhard
2013-01-01
This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...
Nonperturbative studies of quantum field theories on noncommutative spaces
International Nuclear Information System (INIS)
Volkholz, J.
2007-01-01
This work deals with three quantum field theories on spaces with noncommuting position operators. Noncommutative models occur in the study of string theories and quantum gravity. They usually elude treatment beyond the perturbative level. Due to the technique of dimensional reduction, however, we are able to investigate these theories nonperturbatively. This entails translating the action functionals into a matrix language, which is suitable for numerical simulations. First we explore the λφ 4 model on a noncommutative plane. We investigate the continuum limit at fixed noncommutativity, which is known as the double scaling limit. Here we focus especially on the fate of the striped phase, a phase peculiar to the noncommutative version of the regularized λφ 4 model. We find no evidence for its existence in the double scaling limit. Next we examine the U(1) gauge theory on a four-dimensional spacetime, where two spatial directions are noncommutative. We examine the phase structure and find a new phase with a spontaneously broken translation symmetry. In addition we demonstrate the existence of a finite double scaling limit which confirms the renormalizability of the theory. Furthermore we investigate the dispersion relation of the photon. In the weak coupling phase our results are consistent with an infrared instability predicted by perturbation theory. If the translational symmetry is broken, however, we find a dispersion relation corresponding to a massless particle. Finally, we investigate a supersymmetric theory on the fuzzy sphere, which features scalar neutral bosons and Majorana fermions. The supersymmetry is exact in the limit of infinitely large matrices. We investigate the phase structure of the model and find three distinct phases. Summarizing, we study noncommutative field theories beyond perturbation theory. Moreover, we simulate a supersymmetric theory on the fuzzy sphere, which might provide an alternative to attempted lattice formulations. (orig.)
Nonperturbative studies of quantum field theories on noncommutative spaces
Energy Technology Data Exchange (ETDEWEB)
Volkholz, J.
2007-11-16
This work deals with three quantum field theories on spaces with noncommuting position operators. Noncommutative models occur in the study of string theories and quantum gravity. They usually elude treatment beyond the perturbative level. Due to the technique of dimensional reduction, however, we are able to investigate these theories nonperturbatively. This entails translating the action functionals into a matrix language, which is suitable for numerical simulations. First we explore the {lambda}{phi}{sup 4} model on a noncommutative plane. We investigate the continuum limit at fixed noncommutativity, which is known as the double scaling limit. Here we focus especially on the fate of the striped phase, a phase peculiar to the noncommutative version of the regularized {lambda}{phi}{sup 4} model. We find no evidence for its existence in the double scaling limit. Next we examine the U(1) gauge theory on a four-dimensional spacetime, where two spatial directions are noncommutative. We examine the phase structure and find a new phase with a spontaneously broken translation symmetry. In addition we demonstrate the existence of a finite double scaling limit which confirms the renormalizability of the theory. Furthermore we investigate the dispersion relation of the photon. In the weak coupling phase our results are consistent with an infrared instability predicted by perturbation theory. If the translational symmetry is broken, however, we find a dispersion relation corresponding to a massless particle. Finally, we investigate a supersymmetric theory on the fuzzy sphere, which features scalar neutral bosons and Majorana fermions. The supersymmetry is exact in the limit of infinitely large matrices. We investigate the phase structure of the model and find three distinct phases. Summarizing, we study noncommutative field theories beyond perturbation theory. Moreover, we simulate a supersymmetric theory on the fuzzy sphere, which might provide an alternative to attempted
International Nuclear Information System (INIS)
Schupp, P.
2007-01-01
Heuristic arguments suggest that the classical picture of smooth commutative spacetime should be replaced by some kind of quantum / noncommutative geometry at length scales and energies where quantum as well as gravitational effects are important. Motivated by this idea much research has been devoted to the study of quantum field theory on noncommutative spacetimes. More recently the focus has started to shift back to gravity in this context. We give an introductory overview to the formulation of general relativity in a noncommutative spacetime background and discuss the possibility of exact solutions. (author)
Modular Theory, Non-Commutative Geometry and Quantum Gravity
Directory of Open Access Journals (Sweden)
Wicharn Lewkeeratiyutkul
2010-08-01
Full Text Available This paper contains the first written exposition of some ideas (announced in a previous survey on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.
An introduction to quantum groups and non-commutative differential calculus
International Nuclear Information System (INIS)
Azcarraga, J.A. de; Rodenas, F.
1995-01-01
An introduction to quantum groups and quantum spaces is presented, and the non-commutative calculus on them is discussed. The case of q-Minkowski space is presented as an illustrative example. A set of useful expressions and formulae are collected in an appendix. 45 refs
Noncommutativity from spectral flow
Energy Technology Data Exchange (ETDEWEB)
Heinzl, Thomas; Ilderton, Anton [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)
2007-07-27
We investigate the transition from second- to first-order systems. Quantum mechanically, this transforms configuration space into phase space and hence introduces noncommutativity in the former. This transition may be described in terms of spectral flow. Gaps in the energy or mass spectrum may become large which effectively truncates the available state space. Using both operator and path integral languages we explicitly discuss examples in quantum mechanics (light-front) quantum field theory and string theory.
Time-dependent transitions with time–space noncommutativity and its implications in quantum optics
International Nuclear Information System (INIS)
Chandra, Nitin
2012-01-01
We study the time-dependent transitions of a quantum-forced harmonic oscillator in noncommutative R 1,1 perturbatively to linear order in the noncommutativity θ. We show that the Poisson distribution gets modified, and that the vacuum state evolves into a ‘squeezed’ state rather than a coherent state. The time evolutions of uncertainties in position and momentum in vacuum are also studied and imply interesting consequences for modeling nonlinear phenomena in quantum optics. (paper)
Remarks on twisted noncommutative quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Zahn, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2006-04-15
We review recent results on twisted noncommutative quantum field theory by embedding it into a general framework for the quantization of systems with a twisted symmetry. We discuss commutation relations in this setting and show that the twisted structure is so rigid that it is hard to derive any predictions, unless one gives up general principles of quantum theory. It is also shown that the twisted structure is not responsible for the presence or absence of UV/IR-mixing, as claimed in the literature. (Orig.)
Quantum thetas on noncommutative Td with general embeddings
International Nuclear Information System (INIS)
Chang-Young, Ee; Kim, Hoil
2008-01-01
In this paper, we construct quantum theta functions over noncommutative T d with general embeddings. Manin has constructed quantum theta functions from the lattice embedding into vector space x finite group. We extend Manin's construction of quantum thetas to the case of general embedding of vector space x lattice x torus. It turns out that only for the vector space part of the embedding there exists the holomorphic theta vector, while for the lattice part there does not. Furthermore, the so-called quantum translations from embedding into the lattice part become non-additive, while those from the vector space part are additive
Noncommutative field gas driven inflation
Energy Technology Data Exchange (ETDEWEB)
Barosi, Luciano; Brito, Francisco A [Departamento de Fisica, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraiba (Brazil); Queiroz, Amilcar R, E-mail: lbarosi@ufcg.edu.br, E-mail: fabrito@df.ufcg.edu.br, E-mail: amilcarq@gmail.com [Centro Internacional de Fisica da Materia Condensada, Universidade de Brasilia, Caixa Postal 04667, Brasilia, DF (Brazil)
2008-04-15
We investigate early time inflationary scenarios in a Universe filled with a dilute noncommutative bosonic gas at high temperature. A noncommutative bosonic gas is a gas composed of a bosonic scalar field with noncommutative field space on a commutative spacetime. Such noncommutative field theories were recently introduced as a generalization of quantum mechanics on a noncommutative spacetime. Key features of these theories are Lorentz invariance violation and CPT violation. In the present study we use a noncommutative bosonic field theory that, besides the noncommutative parameter {theta}, shows up a further parameter {sigma}. This parameter {sigma} controls the range of the noncommutativity and acts as a regulator for the theory. Both parameters play a key role in the modified dispersion relations of the noncommutative bosonic field, leading to possible striking consequences for phenomenology. In this work we obtain an equation of state p = {omega}({sigma},{theta};{beta}){rho} for the noncommutative bosonic gas relating pressure p and energy density {rho}, in the limit of high temperature. We analyse possible behaviours for these gas parameters {sigma}, {theta} and {beta}, so that -1{<=}{omega}<-1/3, which is the region where the Universe enters an accelerated phase.
Noncommutative calculi of probabilty
Directory of Open Access Journals (Sweden)
Michał Heller
2010-12-01
Full Text Available The paper can be regarded as a short and informal introduction to noncommutative calculi of probability. The standard theory of probability is reformulated in the algebraic language. In this form it is readily generalized to that its version which is virtually present in quantum mechanics, and then generalized to the so-called free theory of probability. Noncommutative theory of probability is a pair (M, φ where M is a von Neumann algebra, and φ a normal state on M which plays the role of a noncommutative probability measure. In the standard (commutative theory of probability, there is, in principle, one mathematically interesting probability measure, namely the Lebesgue measure, whereas in the noncommutative theories there are many nonequivalent probability measures. Philosophical implications of this fact are briefly discussed.
Quantum Thetas on Noncommutative T^d with General Embeddings
Chang-Young, Ee; Kim, Hoil
2007-01-01
In this paper we construct quantum theta functions over noncommutative T^d with general embeddings. Manin has constructed quantum theta functions from the lattice embedding into vector space x finite group. We extend Manin's construction of quantum thetas to the case of general embedding of vector space x lattice x torus. It turns out that only for the vector space part of the embedding there exists the holomorphic theta vector, while for the lattice part there does not. Furthermore, the so-c...
Statistical algebraic approach to quantum mechanics
International Nuclear Information System (INIS)
Slavnov, D.A.
2001-01-01
The scheme for plotting the quantum theory with application of the statistical algebraic approach is proposed. The noncommutative algebra elements (observed ones) and nonlinear functionals on this algebra (physical state) are used as the primary constituents. The latter ones are associated with the single-unit measurement results. Certain physical state groups are proposed to consider as quantum states of the standard quantum mechanics. It is shown that the mathematical apparatus of the standard quantum mechanics may be reproduced in such a scheme in full volume [ru
Non-commutative algebra of functions of 4-dimensional quantum Hall droplet
International Nuclear Information System (INIS)
Chen Yixin; Hou Boyu; Hou Boyuan
2002-01-01
We develop the description of non-commutative geometry of the 4-dimensional quantum Hall fluid's theory proposed recently by Zhang and Hu. The non-commutative structure of fuzzy S 4 , which is the base of the bundle S 7 obtained by the second Hopf fibration, i.e., S 7 /S 3 =S 4 , appears naturally in this theory. The fuzzy monopole harmonics, which are the essential elements in the non-commutative algebra of functions on S 4 , are explicitly constructed and their obeying the matrix algebra is obtained. This matrix algebra is associative. We also propose a fusion scheme of the fuzzy monopole harmonics of the coupling system from those of the subsystems, and determine the fusion rule in such fusion scheme. By products, we provide some essential ingredients of the theory of SO(5) angular momentum. In particular, the explicit expression of the coupling coefficients, in the theory of SO(5) angular momentum, are given. We also discuss some possible applications of our results to the 4-dimensional quantum Hall system and the matrix brane construction in M-theory
Energy Technology Data Exchange (ETDEWEB)
Amini, Nina H. [Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States); CNRS, Laboratoire des Signaux et Systemes (L2S) CentraleSupelec, Gif-sur-Yvette (France); Miao, Zibo; Pan, Yu; James, Matthew R. [Australian National University, ARC Centre for Quantum Computation and Communication Technology, Research School of Engineering, Canberra, ACT (Australia); Mabuchi, Hideo [Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States)
2015-12-15
The purpose of this paper is to study the problem of generalizing the Belavkin-Kalman filter to the case where the classical measurement signal is replaced by a fully quantum non-commutative output signal. We formulate a least mean squares estimation problem that involves a non-commutative system as the filter processing the non-commutative output signal. We solve this estimation problem within the framework of non-commutative probability. Also, we find the necessary and sufficient conditions which make these non-commutative estimators physically realizable. These conditions are restrictive in practice. (orig.)
Noncommuting observables and local realism
International Nuclear Information System (INIS)
Malley, James D.; Fine, Arthur
2005-01-01
A standard approach in the foundations of quantum mechanics studies local realism and hidden variables models exclusively in terms of violations of Bell-like inequalities. Thus quantum nonlocality is tied to the celebrated no-go theorems, and these comprise a long list that includes the Kochen-Specker and Bell theorems, as well as elegant refinements by Mermin, Peres, Hardy, GHZ, and many others. Typically entanglement or carefully prepared multipartite systems have been considered essential for violations of local realism and for understanding quantum nonlocality. Here we show, to the contrary, that sharp violations of local realism arise almost everywhere without entanglement. The pivotal fact driving these violations is just the noncommutativity of quantum observables. We demonstrate how violations of local realism occur for arbitrary noncommuting projectors, and for arbitrary quantum pure states. Finally, we point to elementary tests for local realism, using single particles and without reference to entanglement, thus avoiding experimental loopholes and efficiency issues that continue to bedevil the Bell inequality related tests
Statistical mechanics of free particles on space with Lie-type noncommutativity
Energy Technology Data Exchange (ETDEWEB)
Shariati, Ahmad; Khorrami, Mohammad; Fatollahi, Amir H, E-mail: shariati@mailaps.or, E-mail: mamwad@mailaps.or, E-mail: ahfatol@gmail.co [Department of Physics, Alzahra University, Tehran 1993891167 (Iran, Islamic Republic of)
2010-07-16
Effects of Lie-type noncommutativity on thermodynamic properties of a system of free identical particles are investigated. A definition for finite volume of the configuration space is given, and the grandcanonical partition function in the thermodynamic limit is calculated. Two possible definitions for the pressure are discussed, which are equivalent when the noncommutativity vanishes. The thermodynamic observables are extracted from the partition function. Different limits are discussed where either the noncommutativity or the quantum effects are important. Finally, specific cases are discussed where the group is SU(2) or SO(3), and the partition function of a nondegenerate gas is calculated.
Quantum groups, non-commutative differential geometry and applications
International Nuclear Information System (INIS)
Schupp, P.; California Univ., Berkeley, CA
1993-01-01
The topic of this thesis is the development of a versatile and geometrically motivated differential calculus on non-commutative or quantum spaces, providing powerful but easy-to-use mathematical tools for applications in physics and related sciences. A generalization of unitary time evolution is proposed and studied for a simple 2-level system, leading to non-conservation of microscopic entropy, a phenomenon new to quantum mechanics. A Cartan calculus that combines functions, forms, Lie derivatives and inner derivations along general vector fields into one big algebra is constructed for quantum groups and then extended to quantum planes. The construction of a tangent bundle on a quantum group manifold and an BRST type approach to quantum group gauge theory are given as further examples of applications. The material is organized in two parts: Part I studies vector fields on quantum groups, emphasizing Hopf algebraic structures, but also introducing a ''quantum geometric'' construction. Using a generalized semi-direct product construction we combine the dual Hopf algebras A of functions and U of left-invariant vector fields into one fully bicovariant algebra of differential operators. The pure braid group is introduced as the commutant of Δ(U). It provides invariant maps A → U and thereby bicovariant vector fields, casimirs and metrics. This construction allows the translation of undeformed matrix expressions into their less obvious quantum algebraic counter parts. We study this in detail for quasitriangular Hopf algebras, giving the determinant and orthogonality relation for the ''reflection'' matrix. Part II considers the additional structures of differential forms and finitely generated quantum Lie algebras -- it is devoted to the construction of the Cartan calculus, based on an undeformed Cartan identity
Non-commutative tomography and signal processing
International Nuclear Information System (INIS)
Mendes, R Vilela
2015-01-01
Non-commutative tomography is a technique originally developed and extensively used by Professors M A Man’ko and V I Man’ko in quantum mechanics. Because signal processing deals with operators that, in general, do not commute with time, the same technique has a natural extension to this domain. Here, a review is presented of the theory and some applications of non-commutative tomography for time series as well as some new results on signal processing on graphs. (paper)
The foundation of quantum theory and noncommutative spectral theory: Part 2
International Nuclear Information System (INIS)
Kummer, H.
1991-01-01
The present paper comprises Sects. 5-8 of a work which proposes an axiomatic approach to quantum mechanics in which the concept of a filter is the central primitive concept. Having laid down the foundations in the first part of this work, the author arrived at a dual pair left-angle Y,M right-angle consisting of a base norm space Y and an order unit space M, being in order and norm duality with respect to each other. This is precisely the setting of noncommutative spectral theory, a theory which has been developed during the late nineteen seventies by Alfsen and Shultz. In this part he added to the four axioms (Axioms S, DP, R, SP) of Sect. 3 three further axioms (Axioms E, O, L). These axioms are suggested by the work of Alfsen and Shultz and and enable him to derive the JB-algebra structure of quantum mechanics (cf. Theorem 8.9)
The birth and growth of quantum theory. From quantum hypothesis to quantum mechanics
International Nuclear Information System (INIS)
Peng Huanwu
2001-01-01
The short history covers the birth and early growth of quantum theory from 1900 to 1928, beginning with Planck's formula and the quantum hypothesis for the black-body radiation. After a description of the rise and decline of the old quantum theory in connection with its application in spectroscopy, two paths based on the rigorous formulation of the correspondence principle leading to matrix mechanics (1925) and Dirac's non-commuting q-numbers (1925) are explained. Another path based on the generalization of the wave-particle aspect of light quanta is then shown to lead to wave mechanics (1926). Among the works during the early growth of quantum mechanics in 1927-1928, representation theory, the uncertainty principle, two-electron problems, and Dirac's relativistic theory of electrons are discussed
Noncommutativity into Dirac Equation with mass dependent on the position
International Nuclear Information System (INIS)
Bastos, Samuel Batista; Almeida, Carlos Alberto Santos; Nunes, Luciana Angelica da Silva
2013-01-01
Full text: In recent years, there is growing interest in the study of theories in non-commutative spaces. Non-commutative fields theories are related with compactifications of M theory, string theory and the quantum Hall effect. Moreover, the role of the non-commutativity of theories of a particle finds large applications when analyzed in scenarios of quantum mechanics and relativistic quantum mechanics. In these contexts investigations on the Schrodinger and Dirac equations with mass depending on the position (MDP) has attracted much attention in the literature. Systems endowed with MDP models are useful for the study of many physical problems. In particular, they are used to study the energy density in problems of many bodies, determining the electronic properties of semiconductor heterostructures and also to describe the properties of heterojunctions and quantum dots. In particular, the investigation of relativistic effects it is important for systems containing heavy atoms or doping by heavy ions. For these types of materials, the study of the properties of the Dirac equation, in the case where the mass becomes variable is of great interest. In this paper, we seek for the non-relativistic limit of the Dirac Hamiltonian in the context of a theory of effective mass, through a Foldy-Wouthuysen transformation. We analyse the Dirac equation with mass dependent on the position, in a smooth step shape mass distribution, in non-commutative space (NC). This potential type kink was recently discussed by several authors in the commutative context and now we present our results in the non-commutative context. (author)
Noncommutative quantum field theory: attempts on renormalization
International Nuclear Information System (INIS)
Popp, L.
2002-05-01
Quantum field theory is the art of dealing with problems at small distances or, equivalently, large momenta. Although there are different approaches (string theory, for example), it is generally accepted that these principles cannot be extrapolated to arbitrarily small distances as can be shown by applying simple, heuristic arguments. Therefore, the concept of space-time as a differential manifold has to be replaced by something else at such scales, the road we have chosen to follow is noncommutative geometry. We start from the basic relation [ x μ , x ν ] = i θ { μν}, where θ is a (usually) constant, antisymmetric matrix. This relation amounts to a noncommutativity of position measurements, or, put differently, the points are somehow 'smeared' out, which should have a positive effect on field theory since infinities arise from point-like interactions. However, it was shown that the effects of the commutation relation (leading to the so-called Moyal product) do not necessarily cure the divergences but introduce a new kind of problem: whereas UV-divergent integrals are rendered finite by phase factors (that arise as a consequence of the Moyal product), this same kind of 'regularization' introduces IR-divergences which led to the name 'UV/IR-mixing' for this problem. In order to overcome this peculiarity, one expands the action in θ which is immediate for the phase factors but requires the so-called Seiberg-Witten map for the fields. In this thesis, we emphasize the derivation of the Seiberg-Witten map by using noncommutative Lorentz symmetries, which is more general than the original derivation. After that, we concentrate on a treatment of θ-expanded theories and their renormalization, where it can be shown that the photon self-energy of noncommutative Maxwell theory can be renormalized to all orders in hbar and θ when the freedom in the Seiberg-Witten map (there are ambiguities in the map) is exploited. Although this is very promising, it cannot be
Exact master equation for a noncommutative Brownian particle
International Nuclear Information System (INIS)
Costa Dias, Nuno; Nuno Prata, Joao
2009-01-01
We derive the Hu-Paz-Zhang master equation for a Brownian particle linearly coupled to a bath of harmonic oscillators on the plane with spatial noncommutativity. The results obtained are exact to all orders in the noncommutative parameter. As a by-product we derive some miscellaneous results such as the equilibrium Wigner distribution for the reservoir of noncommutative oscillators, the weak coupling limit of the master equation and a set of sufficient conditions for strict purity decrease of the Brownian particle. Finally, we consider a high-temperature Ohmic model and obtain an estimate for the time scale of the transition from noncommutative to ordinary quantum mechanics. This scale is considerably smaller than the decoherence scale
Supersymmetric symplectic quantum mechanics
de Menezes, Miralvo B.; Fernandes, M. C. B.; Martins, Maria das Graças R.; Santana, A. E.; Vianna, J. D. M.
2018-02-01
Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article we extend the methods of supersymmetric quantum mechanics SUSYQM to SQM. With the purpose of applications in quantum systems, the factorization method of the quantum mechanical formalism is then set within supersymmetric SQM. A hierarchy of simpler hamiltonians is generated leading to new computation tools for solving the eigenvalue problem in SQM. We illustrate the results by computing the states and spectra of the problem of a charged particle in a homogeneous magnetic field as well as the corresponding Wigner function.
Quantum mechanics from classical statistics
International Nuclear Information System (INIS)
Wetterich, C.
2010-01-01
Quantum mechanics can emerge from classical statistics. A typical quantum system describes an isolated subsystem of a classical statistical ensemble with infinitely many classical states. The state of this subsystem can be characterized by only a few probabilistic observables. Their expectation values define a density matrix if they obey a 'purity constraint'. Then all the usual laws of quantum mechanics follow, including Heisenberg's uncertainty relation, entanglement and a violation of Bell's inequalities. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. Born's rule for quantum mechanical probabilities follows from the probability concept for a classical statistical ensemble. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem. As an illustration, we discuss a classical statistical implementation of a quantum computer.
Clifford algebras, noncommutative tori and universal quantum computers
Vlasov, Alexander Yu.
2001-01-01
Recently author suggested [quant-ph/0010071] an application of Clifford algebras for construction of a "compiler" for universal binary quantum computer together with later development [quant-ph/0012009] of the similar idea for a non-binary base. The non-binary case is related with application of some extension of idea of Clifford algebras. It is noncommutative torus defined by polynomial algebraic relations of order l. For l=2 it coincides with definition of Clifford algebra. Here is presente...
Quantum thetas on noncommutative T4 from embeddings into lattice
International Nuclear Information System (INIS)
Chang-Young, Ee; Kim, Hoil
2007-01-01
In this paper, we investigate the theta vector and quantum theta function over noncommutative T 4 from the embedding of RxZ 2 . Manin has constructed the quantum theta functions from the lattice embedding into vector space (x finite group). We extend Manin's construction of the quantum theta function to the embedding of vector space x lattice case. We find that the holomorphic theta vector exists only over the vector space part of the embedding, and over the lattice part we can only impose the condition for the Schwartz function. The quantum theta function built on this partial theta vector satisfies the requirement of the quantum theta function. However, two subsequent quantum translations from the embedding into the lattice part are nonadditive, contrary to the additivity of those from the vector space part
International Nuclear Information System (INIS)
Chaichian, M.; Tureanu, A.; Demichev, A.; Presnajder, P.; Sheikh-Jabbari, M.M.
2001-02-01
After discussing the peculiarities of quantum systems on noncommutative (NC) spaces with nontrivial topology and the operator representation of the *-product on them, we consider the Aharonov-Bohm and Casimir effects for such spaces. For the case of the Aharonov-Bohm effect, we have obtained an explicit expression for the shift of the phase, which is gauge invariant in the NC sense. The Casimir energy of a field theory on a NC cylinder is divergent, while it becomes finite on a torus, when the dimensionless parameter of noncommutativity is a rational number. The latter corresponds to a well-defined physical picture. Certain distinctions from other treatments based on a different way of taking the noncommutativity into account are also discussed. (author)
Instantons, quivers and noncommutative Donaldson-Thomas theory
Cirafici, Michele; Sinkovics, Annamaria; Szabo, Richard J.
2011-12-01
We construct noncommutative Donaldson-Thomas invariants associated with abelian orbifold singularities by analyzing the instanton contributions to a six-dimensional topological gauge theory. The noncommutative deformation of this gauge theory localizes on noncommutative instantons which can be classified in terms of three-dimensional Young diagrams with a colouring of boxes according to the orbifold group. We construct a moduli space for these gauge field configurations which allows us to compute its virtual numbers via the counting of representations of a quiver with relations. The quiver encodes the instanton dynamics of the noncommutative gauge theory, and is associated to the geometry of the singularity via the generalized McKay correspondence. The index of BPS states which compute the noncommutative Donaldson-Thomas invariants is realized via topological quantum mechanics based on the quiver data. We illustrate these constructions with several explicit examples, involving also higher rank Coulomb branch invariants and geometries with compact divisors, and connect our approach with other ones in the literature.
Instantons, quivers and noncommutative Donaldson-Thomas theory
Energy Technology Data Exchange (ETDEWEB)
Cirafici, Michele, E-mail: cirafici@math.ist.utl.pt [Centro de Analise Matematica, Geometria e Sistemas Dinamicos, Departamento de Matematica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Sinkovics, Annamaria, E-mail: A.Sinkovics@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Szabo, Richard J., E-mail: R.J.Szabo@ma.hw.ac.uk [Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom); Maxwell Institute for Mathematical Sciences, Edinburgh (United Kingdom)
2011-12-11
We construct noncommutative Donaldson-Thomas invariants associated with abelian orbifold singularities by analyzing the instanton contributions to a six-dimensional topological gauge theory. The noncommutative deformation of this gauge theory localizes on noncommutative instantons which can be classified in terms of three-dimensional Young diagrams with a colouring of boxes according to the orbifold group. We construct a moduli space for these gauge field configurations which allows us to compute its virtual numbers via the counting of representations of a quiver with relations. The quiver encodes the instanton dynamics of the noncommutative gauge theory, and is associated to the geometry of the singularity via the generalized McKay correspondence. The index of BPS states which compute the noncommutative Donaldson-Thomas invariants is realized via topological quantum mechanics based on the quiver data. We illustrate these constructions with several explicit examples, involving also higher rank Coulomb branch invariants and geometries with compact divisors, and connect our approach with other ones in the literature.
Holographic complexity and noncommutative gauge theory
Couch, Josiah; Eccles, Stefan; Fischler, Willy; Xiao, Ming-Lei
2018-03-01
We study the holographic complexity of noncommutative field theories. The four-dimensional N=4 noncommutative super Yang-Mills theory with Moyal algebra along two of the spatial directions has a well known holographic dual as a type IIB supergravity theory with a stack of D3 branes and non-trivial NS-NS B fields. We start from this example and find that the late time holographic complexity growth rate, based on the "complexity equals action" conjecture, experiences an enhancement when the non-commutativity is turned on. This enhancement saturates a new limit which is exactly 1/4 larger than the commutative value. We then attempt to give a quantum mechanics explanation of the enhancement. Finite time behavior of the complexity growth rate is also studied. Inspired by the non-trivial result, we move on to more general setup in string theory where we have a stack of D p branes and also turn on the B field. Multiple noncommutative directions are considered in higher p cases.
Towards Noncommutative Topological Quantum Field Theory: Tangential Hodge-Witten cohomology
International Nuclear Information System (INIS)
Zois, I P
2014-01-01
Some years ago we initiated a program to define Noncommutative Topological Quantum Field Theory (see [1]). The motivation came both from physics and mathematics: On the one hand, as far as physics is concerned, following the well-known holography principle of 't Hooft (which in turn appears essentially as a generalisation of the Hawking formula for black hole entropy), quantum gravity should be a topological quantum field theory. On the other hand as far as mathematics is concerned, the motivation came from the idea to replace the moduli space of flat connections with the Gabai moduli space of codim-1 taut foliations for 3 dim manifolds. In most cases the later is finite and much better behaved and one might use it to define some version of Donaldson-Floer homology which, hopefully, would be easier to compute. The use of foliations brings noncommutative geometry techniques immediately into the game. The basic tools are two: Cyclic cohomology of the corresponding foliation C*-algebra and the so called ''tangential cohomology'' of the foliation. A necessary step towards this goal is to develop some sort of Hodge theory both for cyclic (and Hochschild) cohomology and for tangential cohomology. Here we present a method to develop a Hodge theory for tangential cohomology of foliations by mimicing Witten's approach to ordinary Morse theory by perturbations of the Laplacian
On the Lie symmetry group for classical fields in noncommutative space
Energy Technology Data Exchange (ETDEWEB)
Pereira, Ricardo Martinho Lima Santiago [Universidade Federal da Bahia (UFBA), BA (Brazil); Instituto Federal da Bahia (IFBA), BA (Brazil); Ressureicao, Caio G. da [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica; Vianna, Jose David M. [Universidade Federal da Bahia (UFBA), BA (Brazil); Universidade de Brasilia (UnB), DF (Brazil)
2011-07-01
Full text: An alternative way to include effects of noncommutative geometries in field theory is based on the concept of noncommutativity among degrees of freedom of the studied system. In this context it is reasonable to consider that, in the multiparticle noncommutative quantum mechanics (NCQM), the noncommutativity among degrees of freedom to discrete system with N particles is also verified. Further, an analysis of the classical limit of the single particle NCQM leads to a deformed Newtonian mechanics where the Newton's second law is modified in order to include the noncommutative parameter {theta}{sub {iota}j} and, for a one-dimensional discrete system with N particles, the dynamical evolution of each particle is given by this modified Newton's second law. Hence, applying the continuous limit to this multiparticle classical system it is possible to obtain a noncommutative extension of two -dimensional field theory in a noncommutative space. In the present communication we consider a noncommutative extension of the scalar field obtained from this approach and we analyze the Lie symmetries in order to compare the Lie group of this field with the usual scalar field in the commutative space. (author)
Noncommutative conformally coupled scalar field cosmology and its commutative counterpart
International Nuclear Information System (INIS)
Barbosa, G.D.
2005-01-01
We study the implications of a noncommutative geometry of the minisuperspace variables for the Friedmann-Robertson-Walker universe with a conformally coupled scalar field. The investigation is carried out by means of a comparative study of the universe evolution in four different scenarios: classical commutative, classical noncommutative, quantum commutative, and quantum noncommutative, the last two employing the Bohmian formalism of quantum trajectories. The role of noncommutativity is discussed by drawing a parallel between its realizations in two possible frameworks for physical interpretation: the NC frame, where it is manifest in the universe degrees of freedom, and in the C frame, where it is manifest through θ-dependent terms in the Hamiltonian. As a result of our comparative analysis, we find that noncommutative geometry can remove singularities in the classical context for sufficiently large values of θ. Moreover, under special conditions, the classical noncommutative model can admit bouncing solutions characteristic of the commutative quantum Friedmann-Robertson-Walker universe. In the quantum context, we find nonsingular universe solutions containing bounces or being periodic in the quantum commutative model. When noncommutativity effects are turned on in the quantum scenario, they can introduce significant modifications that change the singular behavior of the universe solutions or that render them dynamical whenever they are static in the commutative case. The effects of noncommutativity are completely specified only when one of the frames for its realization is adopted as the physical one. Nonsingular solutions in the NC frame can be mapped into singular ones in the C frame
Noncommutative Valuation of Options
Herscovich, Estanislao
2016-12-01
The aim of this note is to show that the classical results in finance theory for pricing of derivatives, given by making use of the replication principle, can be extended to the noncommutative world. We believe that this could be of interest in quantum probability. The main result called the First fundamental theorem of asset pricing, states that a noncommutative stock market admits no-arbitrage if and only if it admits a noncommutative equivalent martingale probability.
Noncommutative quantum electrodynamics in path integral framework
International Nuclear Information System (INIS)
Bourouaine, S; Benslama, A
2005-01-01
In this paper, the dynamics of a relativistic particle of spin 1/2, interacting with an external electromagnetic field in noncommutative space, is studied in the path integral framework. By adopting the Fradkin-Gitman formulation, the exact Green's function in noncommutative space (NCGF) for the quadratic case of a constant electromagnetic field is computed, and it is shown that its form is similar to its counterpart given in commutative space. In addition, it is deduced that the effect of noncommutativity has the same effect as an additional constant field depending on a noncommutative θ matrix
Winter School on Operator Spaces, Noncommutative Probability and Quantum Groups
2017-01-01
Providing an introduction to current research topics in functional analysis and its applications to quantum physics, this book presents three lectures surveying recent progress and open problems. A special focus is given to the role of symmetry in non-commutative probability, in the theory of quantum groups, and in quantum physics. The first lecture presents the close connection between distributional symmetries and independence properties. The second introduces many structures (graphs, C*-algebras, discrete groups) whose quantum symmetries are much richer than their classical symmetry groups, and describes the associated quantum symmetry groups. The last lecture shows how functional analytic and geometric ideas can be used to detect and to quantify entanglement in high dimensions. The book will allow graduate students and young researchers to gain a better understanding of free probability, the theory of compact quantum groups, and applications of the theory of Banach spaces to quantum information. The l...
Classical mechanics in non-commutative phase space
International Nuclear Information System (INIS)
Wei Gaofeng; Long Chaoyun; Long Zhengwen; Qin Shuijie
2008-01-01
In this paper the laws of motion of classical particles have been investigated in a non-commutative phase space. The corresponding non-commutative relations contain not only spatial non-commutativity but also momentum non-commutativity. First, new Poisson brackets have been defined in non-commutative phase space. They contain corrections due to the non-commutativity of coordinates and momenta. On the basis of this new Poisson brackets, a new modified second law of Newton has been obtained. For two cases, the free particle and the harmonic oscillator, the equations of motion are derived on basis of the modified second law of Newton and the linear transformation (Phys. Rev. D, 2005, 72: 025010). The consistency between both methods is demonstrated. It is shown that a free particle in commutative space is not a free particle with zero-acceleration in the non-commutative phase space, but it remains a free particle with zero-acceleration in non-commutative space if only the coordinates are non-commutative. (authors)
Noncommutative quantum electrodynamics in path integral framework
Energy Technology Data Exchange (ETDEWEB)
Bourouaine, S; Benslama, A [Departement de Physique, Faculte des Sciences, Universite Mentouri, Constantine (Algeria)
2005-08-19
In this paper, the dynamics of a relativistic particle of spin 1/2, interacting with an external electromagnetic field in noncommutative space, is studied in the path integral framework. By adopting the Fradkin-Gitman formulation, the exact Green's function in noncommutative space (NCGF) for the quadratic case of a constant electromagnetic field is computed, and it is shown that its form is similar to its counterpart given in commutative space. In addition, it is deduced that the effect of noncommutativity has the same effect as an additional constant field depending on a noncommutative {theta} matrix.
An invitation to noncommutative geometry
Marcolli, Matilde
2008-01-01
This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory. Sample Chapter(s). A Walk in the Noncommutative Garden (1,639 KB). Contents: A Walk in the Noncommutative Garden (A Connes & M Marcolli); Renormalization of Noncommutative Quantum Field Theory (H Grosse & R Wulke
Deformed two-photon squeezed states in noncommutative space
International Nuclear Information System (INIS)
Zhang Jianzu
2004-01-01
Recent studies on nonperturbation aspects of noncommutative quantum mechanics explored a new type of boson commutation relations at the deformed level, described by deformed annihilation-creation operators in noncommutative space. This correlated boson commutator correlates different degrees of freedom, and shows an essential influence on dynamics. This Letter devotes to the development of formalism of deformed two-photon squeezed states in noncommutative space. General representations of deformed annihilation-creation operators and the consistency condition for the electromagnetic wave with a single mode of frequency in noncommunicative space are obtained. Two-photon squeezed states are studied. One finds that variances of the dimensionless Hermitian quadratures of the annihilation operator in one degree of freedom include variances in the other degree of freedom. Such correlations show the new feature of spatial noncommutativity and allow a deeper understanding of the correlated boson commutator
International Nuclear Information System (INIS)
Gopakumar, R.
2002-01-01
Though noncommutative field theories have been explored for several years, a resurgence of interest in it was sparked off after it was realised that they arise very naturally as limits of string theory in certain background fields. It became more plausible (at least to string theorists) that these nonlocal deformations of usual quantum field theories are consistent theories in themselves. This led to a detailed exploration of many of their classical and quantum properties. I will elaborate further on the string theory context in the next section. One of the consequences of this exploration was the discovery of novel classical solutions in noncommutative field theories. Since then much work has been done in exploring many of their novel properties. My lectures focussed on some specific aspects of these noncommutative solitons. They primarily reflect the topics that I have worked on and are not intended to be a survey of the large amount of work on this topic. We have tried to give a flavour of the physics that can be captured by the relatively elementary classical solutions of noncommutative field theories. We have seen in different contexts how these solitons are really simple manifestations of D-branes, possessing many of their important features. Though they have been primarily studied in the context of tachyon condensation, we saw that they can also shed some light on the resolution of singularities in spacetime by D-brane probes. In addition to other applications in string theory it is important at this stage to explore their presence in other systems with a strong magnetic field like the quantum hall effect
Energy Technology Data Exchange (ETDEWEB)
Gopakumar, R [Harish-Chandra Research Institute, Jhusi, Allahabad (India)
2002-05-15
Though noncommutative field theories have been explored for several years, a resurgence of interest in it was sparked off after it was realised that they arise very naturally as limits of string theory in certain background fields. It became more plausible (at least to string theorists) that these nonlocal deformations of usual quantum field theories are consistent theories in themselves. This led to a detailed exploration of many of their classical and quantum properties. I will elaborate further on the string theory context in the next section. One of the consequences of this exploration was the discovery of novel classical solutions in noncommutative field theories. Since then much work has been done in exploring many of their novel properties. My lectures focussed on some specific aspects of these noncommutative solitons. They primarily reflect the topics that I have worked on and are not intended to be a survey of the large amount of work on this topic. We have tried to give a flavour of the physics that can be captured by the relatively elementary classical solutions of noncommutative field theories. We have seen in different contexts how these solitons are really simple manifestations of D-branes, possessing many of their important features. Though they have been primarily studied in the context of tachyon condensation, we saw that they can also shed some light on the resolution of singularities in spacetime by D-brane probes. In addition to other applications in string theory it is important at this stage to explore their presence in other systems with a strong magnetic field like the quantum hall effect.
Noncommutative gauge theory for Poisson manifolds
Energy Technology Data Exchange (ETDEWEB)
Jurco, Branislav E-mail: jurco@mpim-bonn.mpg.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de
2000-09-25
A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.
Noncommutative gauge theory for Poisson manifolds
International Nuclear Information System (INIS)
Jurco, Branislav; Schupp, Peter; Wess, Julius
2000-01-01
A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem
Is string interaction the origin of quantum mechanics?
Energy Technology Data Exchange (ETDEWEB)
Bars, Itzhak, E-mail: bars@usc.edu; Rychkov, Dmitry
2014-12-12
String theory was developed by demanding consistency with quantum mechanics. In this paper we wish to reverse the reasoning. We pretend that open string field theory is a fully consistent definition of the theory – it is at least a self-consistent sector. Then we find in its structure that the rules of quantum mechanics emerge from the non-commutative nature of the basic string joining/splitting interactions. Thus, rather than assuming the quantum commutation rules among the usual canonical variables we derive them from the physical process of string interactions. Morally we could apply such an argument to M-theory to cover quantum mechanics for all physics. If string or M-theory really underlies all physics, it seems that the door has been opened to an explanation of the origins of quantum mechanics from the physical processes point of view.
Noncommutative Common Cause Principles in algebraic quantum field theory
International Nuclear Information System (INIS)
Hofer-Szabó, Gábor; Vecsernyés, Péter
2013-01-01
States in algebraic quantum field theory “typically” establish correlation between spacelike separated events. Reichenbach's Common Cause Principle, generalized to the quantum field theoretical setting, offers an apt tool to causally account for these superluminal correlations. In the paper we motivate first why commutativity between the common cause and the correlating events should be abandoned in the definition of the common cause. Then we show that the Noncommutative Weak Common Cause Principle holds in algebraic quantum field theory with locally finite degrees of freedom. Namely, for any pair of projections A, B supported in spacelike separated regions V A and V B , respectively, there is a local projection C not necessarily commuting with A and B such that C is supported within the union of the backward light cones of V A and V B and the set {C, C ⊥ } screens off the correlation between A and B.
Emergence of quantum mechanics from classical statistics
International Nuclear Information System (INIS)
Wetterich, C
2009-01-01
The conceptual setting of quantum mechanics is subject to an ongoing debate from its beginnings until now. The consequences of the apparent differences between quantum statistics and classical statistics range from the philosophical interpretations to practical issues as quantum computing. In this note we demonstrate how quantum mechanics can emerge from classical statistical systems. We discuss conditions and circumstances for this to happen. Quantum systems describe isolated subsystems of classical statistical systems with infinitely many states. While infinitely many classical observables 'measure' properties of the subsystem and its environment, the state of the subsystem can be characterized by the expectation values of only a few probabilistic observables. They define a density matrix, and all the usual laws of quantum mechanics follow. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem.
Noncommutative quantum scattering in a central field
International Nuclear Information System (INIS)
Bellucci, Stefano; Yeranyan, Armen
2005-01-01
In this Letter the problem of noncommutative elastic scattering in a central field is considered. General formulas for the differential cross-section for two cases are obtained. For the case of high energy of an incident wave it is shown that the differential cross-section coincides with that on the commutative space. For the case in which noncommutativity yields only a small correction to the central potential it is shown that the noncommutativity leads to the redistribution of particles along the azimuthal angle, although the whole cross-section coincides with the commutative case
From Quantum Deformations of Relativistic Symmetries to Modified Kinematics and Dynamics
International Nuclear Information System (INIS)
Lukierski, J.
2010-01-01
We present a short review describing the use of noncommutative spacetime in quantum-deformed dynamical theories: classical and quantum mechanics as well as classical and quantum field theory. We expose the role of Hopf algebras and their realizations (noncommutative modules) as important mathematical tool describing quantum-deformed symmetries: quantum Lie groups and quantum Lie algebras. We consider in some detail the most studied examples of noncommutative space-time geometry: the canonical and κ-deformed cases. Finally, we briefly describe the modifications of Einstein gravity obtained by introduction of noncommutative space-time coordinates. (author)
Relativistic Hydrogen-Like Atom on a Noncommutative Phase Space
Masum, Huseyin; Dulat, Sayipjamal; Tohti, Mutallip
2017-09-01
The energy levels of hydrogen-like atom on a noncommutative phase space were studied in the framework of relativistic quantum mechanics. The leading order corrections to energy levels 2 S 1/2, 2 P 1/2 and 2 P 3/2 were obtained by using the 𝜃 and the \\bar θ modified Dirac Hamiltonian of hydrogen-like atom on a noncommutative phase space. The degeneracy of the energy levels 2 P 1/2 and 2 P 3/2 were removed completely by 𝜃-correction. And the \\bar θ -correction shifts these energy levels.
On the development of non-commutative translation-invariant quantum gauge field models
International Nuclear Information System (INIS)
Sedmik, R.I.P.
2009-01-01
Aiming to understand the most fundamental principles of nature one has to approach the highest possible energy scales corresponding to the smallest possible distances - the Planck scale. Historically, three different theoretical fields have been developed to treat the problems appearing in this endeavor: string theory, quantum gravity, and non-commutative (NC) quantum field theory (QFT). The latter was originally motivated by the conjecture that the introduction of uncertainty relations between space-time coordinates introduces a natural energy cutoff, which should render the resulting computations well defined and finite. Despite failing to fulfill this expectation, NC physics is a challenging field of research, which has proved to be a fruitful source for new ideas and methods. Mathematically, non-commutativity is implemented by the so called Weyl quantization, giving rise to a modified product - the Groenewold-Moyal product. It realizes an operator ordering, and allows to work within the well established framework of QFT on non-commutative spaces. The main obstacle of NCQFT is the appearance of singularities being shifted from high to low energies. This effect, being referred to as 'uV/IR mixing', is a direct consequence of the deformation of the product, and inhibits or complicates the direct application of well approved renormalization schemes. In order to remedy this problem, several approaches have been worked out during the past decade which, unfortunately, all have shortcomings such as the breaking of translation invariance or an inappropriate alternation of degrees of freedom. Thence, the resulting theories are either being rendered 'unphysical', or considered a priori to be toy models. Nonetheless, these efforts have helped to analyze the mechanisms leading to uV/IR mixing and finally led to the insight that renormalizability can only be achieved by respecting the inherent connection of long and short distances (scales) of NCQFT in the construction of
Towards Noncommutative Topological Quantum Field Theory – Hodge theory for cyclic cohomology
International Nuclear Information System (INIS)
Zois, I P
2014-01-01
Some years ago we initiated a program to define Noncommutative Topological Quantum Field Theory (see [1]). The motivation came both from physics and mathematics: On the one hand, as far as physics is concerned, following the well-known holography principle of 't Hooft (which in turn appears essentially as a generalisation of the Hawking formula for black hole entropy), quantum gravity should be a topological quantum field theory. On the other hand as far as mathematics is concerned, the motivation came from the idea to replace the moduli space of flat connections with the Gabai moduli space of codim-1 taut foliations for 3 dim manifolds. In most cases the later is finite and much better behaved and one might use it to define some version of Donaldson-Floer homology which, hopefully, would be easier to compute. The use of foliations brings noncommutative geometry techniques immediately into the game. The basic tools are two: Cyclic cohomology of the corresponding foliation C*-algebra and the so called ''tangential cohomology'' of the foliation. A necessary step towards this goal is to develop some sort of Hodge theory both for cyclic (and Hochschild) cohomology and for tangential cohomology. Here we present a method to develop a Hodge theory for cyclic and Hochschild cohomology for the corresponding C*-algebra of a foliation
Hall effect in noncommutative coordinates
International Nuclear Information System (INIS)
Dayi, Oemer F.; Jellal, Ahmed
2002-01-01
We consider electrons in uniform external magnetic and electric fields which move on a plane whose coordinates are noncommuting. Spectrum and eigenfunctions of the related Hamiltonian are obtained. We derive the electric current whose expectation value gives the Hall effect in terms of an effective magnetic field. We present a receipt to find the action which can be utilized in path integrals for noncommuting coordinates. In terms of this action we calculate the related Aharonov-Bohm phase and show that it also yields the same effective magnetic field. When magnetic field is strong enough this phase becomes independent of magnetic field. Measurement of it may give some hints on spatial noncommutativity. The noncommutativity parameter θ can be tuned such that electrons moving in noncommutative coordinates are interpreted as either leading to the fractional quantum Hall effect or composite fermions in the usual coordinates
Gravitational amplitudes in black hole evaporation: the effect of non-commutative geometry
International Nuclear Information System (INIS)
Grezia, Elisabetta Di; Esposito, Giampiero; Miele, Gennaro
2006-01-01
Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat spacetime and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in non-commutative geometry have shown that, in general relativity, the effects of non-commutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. The present paper, relying on the recently obtained non-commutativity effect on a static, spherically symmetric metric, considers from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes is shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F are derived which are compatible with the adiabatic approximation here exploited. Approximate formulae for the particle emission rate are also obtained within this framework
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-06
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Measurements and mathematical formalism of quantum mechanics
Slavnov, D. A.
2007-03-01
A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.
Time-space noncommutativity: quantised evolutions
International Nuclear Information System (INIS)
Balachandran, Aiyalam P.; Govindarajan, Thupil R.; Teotonio-Sobrinho, Paulo; Martins, Andrey Gomes
2004-01-01
In previous work, we developed quantum physics on the Moyal plane with time-space noncommutativity, basing ourselves on the work of Doplicher et al. Here we extend it to certain noncommutative versions of the cylinder, R 3 and Rx S 3 . In all these models, only discrete time translations are possible, a result known before in the first two cases. One striking consequence of quantised time translations is that even though a time independent hamiltonian is an observable, in scattering processes, it is conserved only modulo 2π/θ, where θ is the noncommutative parameter. (In contrast, on a one-dimensional periodic lattice of lattice spacing a and length L = Na, only momentum mod 2π/L is observable (and can be conserved).) Suggestions for further study of this effect are made. Scattering theory is formulated and an approach to quantum field theory is outlined. (author)
Topological field theories and quantum mechanics on commutative space
International Nuclear Information System (INIS)
Lefrancois, M.
2005-12-01
In particle physics, the Standard Model describes the interactions between fundamental particles. However, it was not able till now to unify quantum field theory and general relativity. This thesis focuses on two different unification approaches, though they might show some compatibility: topological field theories and quantum mechanics on non-commutative space. Topological field theories have been introduced some twenty years ago and have a very strong link to mathematics: their observables are topological invariants of the manifold they are defined on. In this thesis, we first give interest to topological Yang-Mills. We develop a superspace formalism and give a systematic method for the determination of the observables. This approach allows, once projected on a particular super gauge (of Wess-Zumino type), to recover the existing results but it also gives a generalisation to the case of an unspecified super-gauge. We have then be able to show that the up-to-now known observables correspond to the most general form of the solutions. This superspace formalism can be applied to more complex models; the case of topological gravity is given here in example. Quantum mechanics on noncommutative space provides an extension of the Heisenberg algebra of ordinary quantum mechanics. What differs here is that the components of the position or momentum operators do not commute with each other anymore. This implies to introduce a fundamental length. The second part of this thesis focuses on the description of the commutation algebra. Applications are made to low-dimensional quantum systems (Landau system, harmonic oscillator...) and to supersymmetric systems. (author)
Quantum gravity boundary terms from the spectral action of noncommutative space.
Chamseddine, Ali H; Connes, Alain
2007-08-17
We study the boundary terms of the spectral action of the noncommutative space, defined by the spectral triple dictated by the physical spectrum of the standard model, unifying gravity with all other fundamental interactions. We prove that the spectral action predicts uniquely the gravitational boundary term required for consistency of quantum gravity with the correct sign and coefficient. This is a remarkable result given the lack of freedom in the spectral action to tune this term.
Advances in quantum mechanics contemporary trends and open problems
Dell'Antonio, Gianfausto
2017-01-01
This volume collects recent contributions on the contemporary trends in the mathematics of quantum mechanics, and more specifically in mathematical problems arising in quantum many-body dynamics, quantum graph theory, cold atoms, unitary gases, with particular emphasis on the developments of the specific mathematical tools needed, including: linear and non-linear Schrödinger equations, topological invariants, non-commutative geometry, resonances and operator extension theory, among others. Most of contributors are international leading experts or respected young researchers in mathematical physics, PDE, and operator theory. All their material is the fruit of recent studies that have already become a reference in the community. Offering a unified perspective of the mathematics of quantum mechanics, it is a valuable resource for researchers in the field.
Newton's second law in a non-commutative space
International Nuclear Information System (INIS)
Romero, Juan M.; Santiago, J.A.; Vergara, J. David
2003-01-01
In this Letter we show that corrections to Newton's second law appear if we assume a symplectic structure consistent with the commutation rules of the non-commutative quantum mechanics. For central field we find that the correction term breaks the rotational symmetry. For the Kepler problem, this term is similar to a Coriolis force
The origin of the algebra of quantum operators in the stochastic formulation of quantum mechanics
International Nuclear Information System (INIS)
Davidson, M.
1979-01-01
The origin of the algebra of the non-commuting operators of quantum mechanics is explained in the general Fenyes-Nelson stochastic models in which the diffusion constant is a free parameter. This is achieved by continuing the diffusion constant to imaginary values, a continuation which destroys the physical interpretation, but does not affect experimental predictions. This continuation leads to great mathematical simplification in the stochastic theory, and to an understanding of the entire mathematical formalism of quantum mechanics. It is more than a formal construction because the diffusion parameter is not an observable in these theories. (Auth.)
Space/time non-commutative field theories and causality
International Nuclear Information System (INIS)
Bozkaya, H.; Fischer, P.; Pitschmann, M.; Schweda, M.; Grosse, H.; Putz, V.; Wulkenhaar, R.
2003-01-01
As argued previously, amplitudes of quantum field theories on non-commutative space and time cannot be computed using naive path integral Feynman rules. One of the proposals is to use the Gell-Mann-Low formula with time-ordering applied before performing the integrations. We point out that the previously given prescription should rather be regarded as an interaction-point time-ordering. Causality is explicitly violated inside the region of interaction. It is nevertheless a consistent procedure, which seems to be related to the interaction picture of quantum mechanics. In this framework we compute the one-loop self-energy for a space/time non-commutative φ 4 theory. Although in all intermediate steps only three-momenta play a role, the final result is manifestly Lorentz covariant and agrees with the naive calculation. Deriving the Feynman rules for general graphs, we show, however, that such a picture holds for tadpole lines only. (orig.)
Hydrogen atom spectrum and the Lamb shift in noncommutative QED
International Nuclear Information System (INIS)
Chaichian, M. . Helsinki Institute of Physics, Helsinki; Tureanu, A. . Helsinki Institute of Physics, Helsinki; FI)
2000-10-01
We have calculated the energy levels of the hydrogen atom and as well the Lamb shift within the noncommutative quantum electrodynamics theory. The results show deviations from the usual QED both on the classical and on the quantum levels. On both levels, the deviations depend on the parameter of space/space noncommutativity. (author)
Problem of quantifying quantum correlations with non-commutative discord
Majtey, A. P.; Bussandri, D. G.; Osán, T. M.; Lamberti, P. W.; Valdés-Hernández, A.
2017-09-01
In this work we analyze a non-commutativity measure of quantum correlations recently proposed by Guo (Sci Rep 6:25241, 2016). By resorting to a systematic survey of a two-qubit system, we detected an undesirable behavior of such a measure related to its representation-dependence. In the case of pure states, this dependence manifests as a non-satisfactory entanglement measure whenever a representation other than the Schmidt's is used. In order to avoid this basis-dependence feature, we argue that a minimization procedure over the set of all possible representations of the quantum state is required. In the case of pure states, this minimization can be analytically performed and the optimal basis turns out to be that of Schmidt's. In addition, the resulting measure inherits the main properties of Guo's measure and, unlike the latter, it reduces to a legitimate entanglement measure in the case of pure states. Some examples involving general mixed states are also analyzed considering such an optimization. The results show that, in most cases of interest, the use of Guo's measure can result in an overestimation of quantum correlations. However, since Guo's measure has the advantage of being easily computable, it might be used as a qualitative estimator of the presence of quantum correlations.
Multiple-event probability in general-relativistic quantum mechanics
International Nuclear Information System (INIS)
Hellmann, Frank; Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo
2007-01-01
We discuss the definition of quantum probability in the context of 'timeless' general-relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multievent probability. In conventional quantum mechanics this can be obtained by means of the 'wave function collapse' algorithm. We first point out certain difficulties of some natural definitions of multievent probability, including the conditional probability widely considered in the literature. We then observe that multievent probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum/classical boundary, one can always trade a sequence of noncommuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the wave function collapse algorithm can nevertheless be recovered. The discussion also bears on the nature of the quantum collapse
Quantum space and quantum completeness
Jurić, Tajron
2018-05-01
Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.
The boosts in the noncommutative special relativity
International Nuclear Information System (INIS)
Lagraa, M.
2001-01-01
From the quantum analogue of the Iwasawa decomposition of SL(2, C) group and the correspondence between quantum SL(2, C) and Lorentz groups we deduce the different properties of the Hopf algebra representing the boost of particles in noncommutative special relativity. The representation of the boost in the Hilbert space states is investigated and the addition rules of the velocities are established from the coaction. The q-deformed Clebsch-Gordon coefficients describing the transformed states of the evolution of particles in noncommutative special relativity are introduced and their explicit calculation are given. (author)
Quantization, geometry and noncommutative structures in mathematics and physics
Morales, Pedro; Ocampo, Hernán; Paycha, Sylvie; Lega, Andrés
2017-01-01
This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics. The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics. A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt. The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf a...
Matrix models as non-commutative field theories on R3
International Nuclear Information System (INIS)
Livine, Etera R
2009-01-01
In the context of spin foam models for quantum gravity, group field theories are a useful tool allowing on the one hand a non-perturbative formulation of the partition function and on the other hand admitting an interpretation as generalized matrix models. Focusing on 2d group field theories, we review their explicit relation to matrix models and show their link to a class of non-commutative field theories invariant under a quantum-deformed 3d Poincare symmetry. This provides a simple relation between matrix models and non-commutative geometry. Moreover, we review the derivation of effective 2d group field theories with non-trivial propagators from Boulatov's group field theory for 3d quantum gravity. Besides the fact that this gives a simple and direct derivation of non-commutative field theories for the matter dynamics coupled to (3d) quantum gravity, these effective field theories can be expressed as multi-matrix models with a non-trivial coupling between matrices of different sizes. It should be interesting to analyze this new class of theories, both from the point of view of matrix models as integrable systems and for the study of non-commutative field theories.
Lorentz invariant noncommutative algebra for cosmological models coupled to a perfect fluid
International Nuclear Information System (INIS)
Abreu, Everton M.C.; Marcial, Mateus V.; Mendes, Albert C.R.; Oliveira, Wilson
2013-01-01
Full text: In current theoretical physics there is a relevant number of theoretical investigations that lead to believe that at the first moments of our Universe, the geometry was not commutative and the dominating physics at that time was ruled by the laws of noncommutative (NC) geometry. Therefore, the idea is that the physics of the early moments can be constructed based on these concepts. The first published work using the idea of a NC spacetime were carried out by Snyder who believed that NC principles could make the quantum field theory infinities disappear. However, it did not occur and Snyder's ideas were put to sleep for a long time. The main modern motivations that rekindle the investigation about NC field theories came from string theory and quantum gravity. In the context of quantum mechanics for example, R. Banerjee discussed how NC structures appear in planar quantum mechanics providing a useful way for obtaining them. The analysis was based on the NC algebra used in planar quantum mechanics that was originated from 't Hooft's analysis on dissipation and quantization. In this work we carry out a NC algebra analysis of the Friedmann-Robert-Walker model, coupled to a perfect fluid and in the presence of a cosmological constant. The classical field equations are modified, by the introduction of a shift operator, in order to introduce noncommutativity in these models. (author)
Foundations of free noncommutative function theory
Kaliuzhnyi-Verbovetskyi, Dmitry S
2014-01-01
In this book the authors develop a theory of free noncommutative functions, in both algebraic and analytic settings. Such functions are defined as mappings from square matrices of all sizes over a module (in particular, a vector space) to square matrices over another module, which respect the size, direct sums, and similarities of matrices. Examples include, but are not limited to, noncommutative polynomials, power series, and rational expressions. Motivation and inspiration for using the theory of free noncommutative functions often comes from free probability. An important application area is "dimensionless" matrix inequalities; these arise, e.g., in various optimization problems of system engineering. Among other related areas are those of polynomial identities in rings, formal languages and finite automata, quasideterminants, noncommutative symmetric functions, operator spaces and operator algebras, and quantum control.
International Nuclear Information System (INIS)
Douglas, Michael R.; Nekrasov, Nikita A.
2001-01-01
This article reviews the generalization of field theory to space-time with noncommuting coordinates, starting with the basics and covering most of the active directions of research. Such theories are now known to emerge from limits of M theory and string theory and to describe quantum Hall states. In the last few years they have been studied intensively, and many qualitatively new phenomena have been discovered, on both the classical and the quantum level
Non-commutative multiple-valued logic algebras
Ciungu, Lavinia Corina
2014-01-01
This monograph provides a self-contained and easy-to-read introduction to non-commutative multiple-valued logic algebras; a subject which has attracted much interest in the past few years because of its impact on information science, artificial intelligence and other subjects. A study of the newest results in the field, the monograph includes treatment of pseudo-BCK algebras, pseudo-hoops, residuated lattices, bounded divisible residuated lattices, pseudo-MTL algebras, pseudo-BL algebras and pseudo-MV algebras. It provides a fresh perspective on new trends in logic and algebras in that algebraic structures can be developed into fuzzy logics which connect quantum mechanics, mathematical logic, probability theory, algebra and soft computing. Written in a clear, concise and direct manner, Non-Commutative Multiple-Valued Logic Algebras will be of interest to masters and PhD students, as well as researchers in mathematical logic and theoretical computer science.
Snyder noncommutativity and pseudo-Hermitian Hamiltonians from a Jordanian twist
International Nuclear Information System (INIS)
Castro, P.G.; Kullock, R.; Toppan, F.
2011-01-01
Nonrelativistic quantum mechanics and conformal quantum mechanics are de- formed through a Jordanian twist. The deformed space coordinates satisfy the Snyder noncommutativity. The resulting deformed Hamiltonians are pseudo-Hermitian Hamiltonians of the type discussed by Mostafazadeh. The quantization scheme makes use of the so-called 'unfolded formalism' discussed in previous works. A Hopf algebra structure, compatible with the physical interpretation of the coproduct, is introduced for the Universal Enveloping Algebra of a suitably chosen dynamical Lie algebra (the Hamiltonian is contained among its generators). The multi-particle sector, uniquely determined by the deformed 2-particle Hamiltonian, is composed of bosonic particles. (author)
A short essay on quantum black holes and underlying noncommutative quantized space-time
International Nuclear Information System (INIS)
Tanaka, Sho
2017-01-01
We emphasize the importance of noncommutative geometry or Lorenz-covariant quantized space-time towards the ultimate theory of quantum gravity and Planck scale physics. We focus our attention on the statistical and substantial understanding of the Bekenstein–Hawking area-entropy law of black holes in terms of the kinematical holographic relation (KHR). KHR manifestly holds in Yang’s quantized space-time as the result of kinematical reduction of spatial degrees of freedom caused by its own nature of noncommutative geometry, and plays an important role in our approach without any recourse to the familiar hypothesis, so-called holographic principle. In the present paper, we find a unified form of KHR applicable to the whole region ranging from macroscopic to microscopic scales in spatial dimension d = 3. We notice a possibility of nontrivial modification of area-entropy law of black holes which becomes most remarkable in the extremely microscopic system close to Planck scale. (paper)
Noncommuting fields and non-Abelian fluids
International Nuclear Information System (INIS)
Jackiw, R.
2004-01-01
The original ideas about noncommuting coordinates are recalled. The connection between U(1) gauge fields defined on noncommuting coordinates and fluid mechanics is explained. Non-Abelian fluid mechanics is described
Lorentz invariant noncommutative algebra for cosmological models coupled to a perfect fluid
Energy Technology Data Exchange (ETDEWEB)
Abreu, Everton M.C.; Marcial, Mateus V.; Mendes, Albert C.R.; Oliveira, Wilson [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil); Universidade Federal de Juiz de Fora, MG (Brazil)
2013-07-01
Full text: In current theoretical physics there is a relevant number of theoretical investigations that lead to believe that at the first moments of our Universe, the geometry was not commutative and the dominating physics at that time was ruled by the laws of noncommutative (NC) geometry. Therefore, the idea is that the physics of the early moments can be constructed based on these concepts. The first published work using the idea of a NC spacetime were carried out by Snyder who believed that NC principles could make the quantum field theory infinities disappear. However, it did not occur and Snyder's ideas were put to sleep for a long time. The main modern motivations that rekindle the investigation about NC field theories came from string theory and quantum gravity. In the context of quantum mechanics for example, R. Banerjee discussed how NC structures appear in planar quantum mechanics providing a useful way for obtaining them. The analysis was based on the NC algebra used in planar quantum mechanics that was originated from 't Hooft's analysis on dissipation and quantization. In this work we carry out a NC algebra analysis of the Friedmann-Robert-Walker model, coupled to a perfect fluid and in the presence of a cosmological constant. The classical field equations are modified, by the introduction of a shift operator, in order to introduce noncommutativity in these models. (author)
Discreteness of area in noncommutative space
Energy Technology Data Exchange (ETDEWEB)
Amelino-Camelia, Giovanni [Dipartimento di Fisica, Universita di Roma ' La Sapienza' and Sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy)], E-mail: amelino@roma1.infn.it; Gubitosi, Giulia; Mercati, Flavio [Dipartimento di Fisica, Universita di Roma ' La Sapienza' and Sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy)
2009-06-08
We introduce an area operator for the Moyal noncommutative plane. We find that the spectrum is discrete, but, contrary to the expectation formulated by other authors, not characterized by a 'minimum-area principle'. We show that an intuitive analysis of the uncertainty relations obtained from Moyal-plane noncommutativity is fully consistent with our results for the spectrum, and we argue that our area operator should be generalizable to several other noncommutative spaces. We also observe that the properties of distances and areas in the Moyal plane expose some weaknesses in the line of reasoning adopted in some of the heuristic analyses of the measurability of geometric spacetime observables in the quantum-gravity realm.
Discreteness of area in noncommutative space
International Nuclear Information System (INIS)
Amelino-Camelia, Giovanni; Gubitosi, Giulia; Mercati, Flavio
2009-01-01
We introduce an area operator for the Moyal noncommutative plane. We find that the spectrum is discrete, but, contrary to the expectation formulated by other authors, not characterized by a 'minimum-area principle'. We show that an intuitive analysis of the uncertainty relations obtained from Moyal-plane noncommutativity is fully consistent with our results for the spectrum, and we argue that our area operator should be generalizable to several other noncommutative spaces. We also observe that the properties of distances and areas in the Moyal plane expose some weaknesses in the line of reasoning adopted in some of the heuristic analyses of the measurability of geometric spacetime observables in the quantum-gravity realm.
Non-commutative and commutative vacua effects in a scalar torsion scenario
Energy Technology Data Exchange (ETDEWEB)
Sheikhahmadi, Haidar, E-mail: h.sh.ahmadi@gmail.com [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Aghamohammadi, Ali, E-mail: a.aghamohamadi@iausdj.ac.ir [Sanandaj Branch, Islamic Azad University, Sanandaj (Iran, Islamic Republic of); Saaidi, Khaled, E-mail: ksaaidi@uok.ac.ir [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)
2015-10-07
In this work, the effects of non-commutative and commutative vacua on the phase space generated by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, the commutative and non-commutative cases are compared. To take account the effects of non-commutativity, two well known non-commutative parameters, θ and β, are introduced. It should be emphasized, the effects of β which is related to momentum sector has more key role in comparison to θ which is related to space sector. Also the different boundary conditions and mathematical interpretations of non-commutativity are explored.
Non-commutative and commutative vacua effects in a scalar torsion scenario
International Nuclear Information System (INIS)
Sheikhahmadi, Haidar; Aghamohammadi, Ali; Saaidi, Khaled
2015-01-01
In this work, the effects of non-commutative and commutative vacua on the phase space generated by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, the commutative and non-commutative cases are compared. To take account the effects of non-commutativity, two well known non-commutative parameters, θ and β, are introduced. It should be emphasized, the effects of β which is related to momentum sector has more key role in comparison to θ which is related to space sector. Also the different boundary conditions and mathematical interpretations of non-commutativity are explored.
Entropic force, noncommutative gravity, and ungravity
International Nuclear Information System (INIS)
Nicolini, Piero
2010-01-01
After recalling the basic concepts of gravity as an emergent phenomenon, we analyze the recent derivation of Newton's law in terms of entropic force proposed by Verlinde. By reviewing some points of the procedure, we extend it to the case of a generic quantum gravity entropic correction to get compelling deviations to the Newton's law. More specifically, we study: (1) noncommutative geometry deviations and (2) ungraviton corrections. As a special result in the noncommutative case, we find that the noncommutative character of the manifold would be equivalent to the temperature of a thermodynamic system. Therefore, in analogy to the zero temperature configuration, the description of spacetime in terms of a differential manifold could be obtained only asymptotically. Finally, we extend the Verlinde's derivation to a general case, which includes all possible effects, noncommutativity, ungravity, asymptotically safe gravity, electrostatic energy, and extra dimensions, showing that the procedure is solid versus such modifications.
Dolan-Grady relations and noncommutative quasi-exactly solvable systems
International Nuclear Information System (INIS)
Klishevich, Sergey M; Plyushchay, Mikhail S
2003-01-01
We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the su(2) and sl(2,R) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems
Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory
Landau, Olav Arnfinn
2011-01-01
This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory o
Non-commutative and commutative vacua effects in a scalar torsion scenario
Directory of Open Access Journals (Sweden)
Haidar Sheikhahmadi
2015-10-01
Full Text Available In this work, the effects of non-commutative and commutative vacua on the phase space generated by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, the commutative and non-commutative cases are compared. To take account the effects of non-commutativity, two well known non-commutative parameters, θ and β, are introduced. It should be emphasized, the effects of β which is related to momentum sector has more key role in comparison to θ which is related to space sector. Also the different boundary conditions and mathematical interpretations of non-commutativity are explored.
Snyder noncommutativity and pseudo-Hermitian Hamiltonians from a Jordanian twist
Energy Technology Data Exchange (ETDEWEB)
Castro, P.G., E-mail: pgcastro@cbpf.b [Universidade Federal de Juiz de Fora (DM/ICE/UFJF), Juiz de Fora, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Matematica; Kullock, R.; Toppan, F., E-mail: ricardokl@cbpf.b, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica
2011-07-01
Nonrelativistic quantum mechanics and conformal quantum mechanics are de- formed through a Jordanian twist. The deformed space coordinates satisfy the Snyder noncommutativity. The resulting deformed Hamiltonians are pseudo-Hermitian Hamiltonians of the type discussed by Mostafazadeh. The quantization scheme makes use of the so-called 'unfolded formalism' discussed in previous works. A Hopf algebra structure, compatible with the physical interpretation of the coproduct, is introduced for the Universal Enveloping Algebra of a suitably chosen dynamical Lie algebra (the Hamiltonian is contained among its generators). The multi-particle sector, uniquely determined by the deformed 2-particle Hamiltonian, is composed of bosonic particles. (author)
International Nuclear Information System (INIS)
Warnock, R.L.
1996-02-01
Ordinary quantum theory is a statistical theory without an underlying probability space. The Wiener-Siegel theory provides a probability space, defined in terms of the usual wave function and its ''stochastic coordinates''; i.e., projections of its components onto differentials of complex Wiener processes. The usual probabilities of quantum theory emerge as measures of subspaces defined by inequalities on stochastic coordinates. Since each point α of the probability space is assigned values (or arbitrarily small intervals) of all observables, the theory gives a pseudo-classical or ''hidden-variable'' view in which normally forbidden concepts are allowed. Joint probabilities for values of noncommuting variables are well-defined. This paper gives a brief description of the theory, including a new generalization to incorporate spin, and reports the first concrete calculation of a joint probability for noncommuting components of spin of a single particle. Bohm's form of the Einstein-Podolsky-Rosen Gedankenexperiment is discussed along the lines of Carlen's paper at this Congress. It would seem that the ''EPR Paradox'' is avoided, since to each α the theory assigns opposite values for spin components of two particles in a singlet state, along any axis. In accordance with Bell's ideas, the price to pay for this attempt at greater theoretical detail is a disagreement with usual quantum predictions. The disagreement is computed and found to be large
International Nuclear Information System (INIS)
Varaksin, O.L.; Firstov, V.V.; Shapovalov, A.V.
1995-01-01
The study is continued on noncommutative integration of linear partial differential equations in application to the exact integration of quantum-mechanical equations in a Riemann space. That method gives solutions to the Klein-Gordon equation when the set of noncommutative symmetry operations for that equation forms a quadratic algebra consisting of one second-order operator and of first-order operators forming a Lie algebra. The paper is a continuation of, where a single nontrivial example is used to demonstrate noncommutative integration of the Klein-Gordon equation in a Riemann space not permitting variable separation
Dolan Grady relations and noncommutative quasi-exactly solvable systems
Klishevich, Sergey M.; Plyushchay, Mikhail S.
2003-11-01
We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the {\\mathfrak{su}}(2) and {\\mathfrak{sl}}(2,{\\bb {R}}) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.
Noncommutative Black Holes at the LHC
Villhauer, Elena Michelle
2017-12-01
Based on the latest public results, 13 TeV data from the Large Hadron Collider at CERN has not indicated any evidence of hitherto tested models of quantum black holes, semiclassical black holes, or string balls. Such models have predicted signatures of particles with high transverse momenta. Noncommutative black holes remain an untested model of TeV-scale gravity that offers the starkly different signature of particles with relatively low transverse momenta. Considerations for a search for charged noncommutative black holes using the ATLAS detector will be discussed.
Cosmological production of noncommutative black holes
International Nuclear Information System (INIS)
Mann, Robert B.; Nicolini, Piero
2011-01-01
We investigate the pair creation of noncommutative black holes in a background with a positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild-de Sitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive-mass spacetimes admit one cosmological horizon and two, one, or no black hole horizons, while negative-mass spacetimes have just a cosmological horizon. These new black holes share the properties of the corresponding asymptotically flat solutions, including the nonsingular core and thermodynamic stability in the final phase of the evaporation. As a second step we determine the action which generates the matter sector of gravitational field equations and we construct instantons describing the pair production of black holes and the other admissible topologies. As a result we find that for current values of the cosmological constant the de Sitter background is quantum mechanically stable according to experience. However, positive-mass noncommutative black holes and solitons would have plentifully been produced during inflationary times for Planckian values of the cosmological constant. As a special result we find that, in these early epochs of the Universe, Planck size black holes production would have been largely disfavored. We also find a potential instability for production of negative-mass solitons.
Optimization of polynomials in non-commuting variables
Burgdorf, Sabine; Povh, Janez
2016-01-01
This book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithmic considerations; several examples and information on how to use NCSOStools open source package to obtain the results provided. Results are presented on detecting the eigenvalue and trace positivity of polynomials in non-commuting variables using Newton chip method and Newton cyclic chip method, relaxations for constrained and unconstrained optimization problems, semidefinite programming formulations of the relaxations and finite convergence of the hierarchies of these relaxations, and the practical efficiency of algorithms.
Models of Quantum Space Time: Quantum Field Planes
Mack, G.; Schomerus, V.
1994-01-01
Quantum field planes furnish a noncommutative differential algebra $\\Omega$ which substitutes for the commutative algebra of functions and forms on a contractible manifold. The data required in their construction come from a quantum field theory. The basic idea is to replace the ground field ${\\bf C}$ of quantum planes by the noncommutative algebra ${\\cal A}$ of observables of the quantum field theory.
Quantum Physics Without Quantum Philosophy
Dürr, Detlef; Zanghì, Nino
2013-01-01
It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Strong limit theorems in noncommutative L2-spaces
Jajte, Ryszard
1991-01-01
The noncommutative versions of fundamental classical results on the almost sure convergence in L2-spaces are discussed: individual ergodic theorems, strong laws of large numbers, theorems on convergence of orthogonal series, of martingales of powers of contractions etc. The proofs introduce new techniques in von Neumann algebras. The reader is assumed to master the fundamentals of functional analysis and probability. The book is written mainly for mathematicians and physicists familiar with probability theory and interested in applications of operator algebras to quantum statistical mechanics.
Non-Commutative Mechanics in Mathematical & in Condensed Matter Physics
Directory of Open Access Journals (Sweden)
Peter A. Horváthy
2006-12-01
Full Text Available Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1. Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space.
PURE STATE ENTANGLEMENT ENTROPY IN NONCOMMUTATIVE 2D DE SITTER SPACE TIME
Directory of Open Access Journals (Sweden)
M.F Ghiti
2014-12-01
Full Text Available Using the general modified field equation, a general noncommutative Klein-Gordon equation up to the second order of the noncommutativity parameter is derived in the context of noncommutative 2D De Sitter space-time. Using Bogoliubov coefficients and a special technics called conformal time; the boson-antiboson pair creation density is determined. The Von Neumann boson-antiboson pair creation quantum entanglement entropy is presented to compute the entanglement between the modes created presented.
Noncommutative Gröbner bases and filtered-graded transfer
Li, Huishi
2002-01-01
This self-contained monograph is the first to feature the intersection of the structure theory of noncommutative associative algebras and the algorithmic aspect of Groebner basis theory. A double filtered-graded transfer of data in using noncommutative Groebner bases leads to effective exploitation of the solutions to several structural-computational problems, e.g., an algorithmic recognition of quadric solvable polynomial algebras, computation of GK-dimension and multiplicity for modules, and elimination of variables in noncommutative setting. All topics included deal with algebras of (q-)differential operators as well as some other operator algebras, enveloping algebras of Lie algebras, typical quantum algebras, and many of their deformations.
Non-commutative Nash inequalities
International Nuclear Information System (INIS)
Kastoryano, Michael; Temme, Kristan
2016-01-01
A set of functional inequalities—called Nash inequalities—are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative L p spaces, where their relationship to Poincaré and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups
Noncommutativity and unitarity violation in gauge boson scattering
International Nuclear Information System (INIS)
Hewett, J. L.; Petriello, F. J.; Rizzo, T. G.
2002-01-01
We examine the unitarity properties of spontaneously broken noncommutative gauge theories. We find that the symmetry breaking mechanism in the noncommutative standard model of Chaichian et al. leads to an unavoidable violation of tree-level unitarity in gauge boson scattering at high energies. We then study a variety of simplified spontaneously broken noncommutative theories and isolate the source of this unitarity violation. Given the group theoretic restrictions endemic to noncommutative model building, we conclude that it is difficult to build a noncommutative standard model under the Weyl-Moyal approach that preserves unitarity
Minimal length uncertainty and generalized non-commutative geometry
International Nuclear Information System (INIS)
Farmany, A.; Abbasi, S.; Darvishi, M.T.; Khani, F.; Naghipour, A.
2009-01-01
A generalized formulation of non-commutative geometry for the Bargmann-Fock space of quantum field theory is presented. The analysis is related to the symmetry of the simplistic space and a minimal length uncertainty.
Is quantum theory a form of statistical mechanics?
Adler, S. L.
2007-05-01
We give a review of the basic themes of my recent book: Adler S L 2004 Quantum Theory as an Emergent Phenomenon (Cambridge: Cambridge University Press). We first give motivations for considering the possibility that quantum mechanics is not exact, but is instead an accurate asymptotic approximation to a deeper level theory. For this deeper level, we propose a non-commutative generalization of classical mechanics, that we call "trace dynamics", and we give a brief survey of how it works, considering for simplicity only the bosonic case. We then discuss the statistical mechanics of trace dynamics and give our argument that with suitable approximations, the Ward identities for trace dynamics imply that ensemble averages in the canonical ensemble correspond to Wightman functions in quantum field theory. Thus, quantum theory emerges as the statistical thermodynamics of trace dynamics. Finally, we argue that Brownian motion corrections to this thermodynamics lead to stochastic corrections to the Schrödinger equation, of the type that have been much studied in the "continuous spontaneous localization" model of objective state vector reduction. In appendices to the talk, we give details of the existence of a conserved operator in trace dynamics that encodes the structure of the canonical algebra, of the derivation of the Ward identities, and of the proof that the stochastically-modified Schrödinger equation leads to state vector reduction with Born rule probabilities.
International Nuclear Information System (INIS)
Khorrami, M.
1995-01-01
A general formulation for discrete-time quantum mechanics, based on Feynman's method in ordinary quantum mechanics, is presented. It is shown that the ambiguities present in ordinary quantum mechanics (due to noncommutativity of the operators), are no longer present here. Then the criteria for the unitarity of the evolution operator are examined. It is shown that the unitarity of the evolution operator puts restrictions on the form of the action, and also implies the existence of a solution for the classical initial-value problem. 13 refs
International Nuclear Information System (INIS)
Luo Shunlong; Li Nan; Cao Xuelian
2009-01-01
The no-broadcasting theorem, first established by Barnum et al. [Phys. Rev. Lett. 76, 2818 (1996)], states that a set of quantum states can be broadcast if and only if it constitutes a commuting family. Quite recently, Piani et al. [Phys. Rev. Lett. 100, 090502 (2008)] showed, by using an ingenious and sophisticated method, that the correlations in a single bipartite state can be locally broadcast if and only if the state is effectively a classical one (i.e., the correlations therein are classical). In this Brief Report, under the condition of nondegenerate spectrum, we provide an alternative and significantly simpler proof of the latter result based on the original no-broadcasting theorem and the monotonicity of the quantum relative entropy. This derivation motivates us to conjecture the equivalence between these two elegant yet formally different no-broadcasting theorems and indicates a subtle and fundamental issue concerning spectral degeneracy which also lies at the heart of the conflict between the von Neumann projection postulate and the Lueders ansatz for quantum measurements. This relation not only offers operational interpretations for commutativity and classicality but also illustrates the basic significance of noncommutativity in characterizing quantumness from the informational perspective.
Nonabelian noncommutative gauge theory via noncommutative extra dimensions
Energy Technology Data Exchange (ETDEWEB)
Jurco, Branislav E-mail: jurco@theorie.physik.uni-muenchen.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de
2001-06-18
The concept of covariant coordinates on noncommutative spaces leads directly to gauge theories with generalized noncommutative gauge fields of the type that arises in string theory with background B-fields. The theory is naturally expressed in terms of cochains in an appropriate cohomology; we discuss how it fits into the framework of projective modules. The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map). As application we show the exact equality of the Dirac-Born-Infeld action with B-field in the commutative setting and its semi-noncommutative cousin in the intermediate picture. Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; an explicit map between abelian and nonabelian gauge fields is given. All constructions are also valid for non-constant B-field, Poisson structure and metric.
Nonabelian noncommutative gauge theory via noncommutative extra dimensions
International Nuclear Information System (INIS)
Jurco, Branislav; Schupp, Peter; Wess, Julius
2001-01-01
The concept of covariant coordinates on noncommutative spaces leads directly to gauge theories with generalized noncommutative gauge fields of the type that arises in string theory with background B-fields. The theory is naturally expressed in terms of cochains in an appropriate cohomology; we discuss how it fits into the framework of projective modules. The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map). As application we show the exact equality of the Dirac-Born-Infeld action with B-field in the commutative setting and its semi-noncommutative cousin in the intermediate picture. Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; an explicit map between abelian and nonabelian gauge fields is given. All constructions are also valid for non-constant B-field, Poisson structure and metric
Seiberg–Witten map and quantum phase effects for neutral Dirac particle on noncommutative plane
Directory of Open Access Journals (Sweden)
Kai Ma
2016-05-01
Full Text Available We provide a new approach to study the noncommutative effects on the neutral Dirac particle with anomalous magnetic or electric dipole moment on the noncommutative plane. The advantages of this approach are demonstrated by investigating the noncommutative corrections on the Aharonov–Casher and He–McKellar–Wilkens effects. This approach is based on the effective U(1 gauge symmetry for the electrodynamics of spin on the two dimensional space. The Seiberg–Witten map for this symmetry is then employed when we study the noncommutative corrections. Because the Seiberg–Witten map preserves the gauge symmetry, the noncommutative corrections can be defined consistently with the ordinary phases. Based on this approach we find the noncommutative corrections on the Aharonov–Casher and He–McKellar–Wilkens phases consist of two terms. The first one depends on the beam particle velocity and consistence with the previous results. However the second term is velocity-independent and then completely new. Therefore our results indicate it is possible to investigate the noncommutative space by using ultra-cold neutron interferometer in which the velocity-dependent term is negligible. Furthermore, both these two terms are proportional to the ratio between the noncommutative parameter θ and the cross section Ae/m of the electrical/magnetic charged line enclosed by the trajectory of beam particles. Therefore the experimental sensitivity can be significantly enhanced by reducing the cross section of the charge line Ae/m.
Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry
2014-01-01
Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...
Non-topological non-commutativity in string theory
International Nuclear Information System (INIS)
Guttenberg, S.; Herbst, M.; Kreuzer, M.; Rashkov, R.
2008-01-01
Quantization of coordinates leads to the non-commutative product of deformation quantization, but is also at the roots of string theory, for which space-time coordinates become the dynamical fields of a two-dimensional conformal quantum field theory. Appositely, open string diagrams provided the inspiration for Kontsevich's solution of the long-standing problem of quantization of Poisson geometry by virtue of his formality theorem. In the context of D-brane physics non-commutativity is not limited, however, to the topological sector. We show that non-commutative effective actions still make sense when associativity is lost and establish a generalized Connes-Flato-Sternheimer condition through second order in a derivative expansion. The measure in general curved backgrounds is naturally provided by the Born-Infeld action and reduces to the symplectic measure in the topological limit, but remains non-singular even for degenerate Poisson structures. Analogous superspace deformations by RR-fields are also discussed. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Adler, Stephen L
2004-01-01
Quantum mechanics is our most successful physical theory. However, it raises conceptual issues that have perplexed physicists and philosophers of science for decades. This 2004 book develops an approach, based on the proposal that quantum theory is not a complete, final theory, but is in fact an emergent phenomenon arising from a deeper level of dynamics. The dynamics at this deeper level are taken to be an extension of classical dynamics to non-commuting matrix variables, with cyclic permutation inside a trace used as the basic calculational tool. With plausible assumptions, quantum theory is shown to emerge as the statistical thermodynamics of this underlying theory, with the canonical commutation/anticommutation relations derived from a generalized equipartition theorem. Brownian motion corrections to this thermodynamics are argued to lead to state vector reduction and to the probabilistic interpretation of quantum theory, making contact with phenomenological proposals for stochastic modifications to Schr�...
Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory
Molina, Mercedes
2016-01-01
Presenting the collaborations of over thirty international experts in the latest developments in pure and applied mathematics, this volume serves as an anthology of research with a common basis in algebra, functional analysis and their applications. Special attention is devoted to non-commutative algebras, non-associative algebras, operator theory and ring and module theory. These themes are relevant in research and development in coding theory, cryptography and quantum mechanics. The topics in this volume were presented at the Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory, held May 23—25, 2014 at Cheikh Anta Diop University in Dakar, Senegal in honor of Professor Amin Kaidi. The workshop was hosted by the university's Laboratory of Algebra, Cryptology, Algebraic Geometry and Applications, in cooperation with the University of Almería and the University of Málaga. Dr. Kaidi's work focuses on non-associative rings and algebras, operator theory and functional analysis, and he...
Noncommutative Geometry in M-Theory and Conformal Field Theory
International Nuclear Information System (INIS)
Morariu, Bogdan
1999-01-01
In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of U q (SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Fun q (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models
Noncommutative Geometry in M-Theory and Conformal Field Theory
Energy Technology Data Exchange (ETDEWEB)
Morariu, Bogdan [Univ. of California, Berkeley, CA (United States)
1999-05-01
In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of U_{q}(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Fun_{q} (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.
The shear viscosity of the non-commutative plasma
International Nuclear Information System (INIS)
Landsteiner, Karl; Mas, Javier
2007-01-01
We compute the shear viscosity of the non-commutative N = 4 super Yang-Mills quantum field theory at strong coupling using the dual supergravity background. Special interest derives from the fact that the background presents an intrinsic anisotropy in space through the distinction of commutative and non-commutative directions. Despite this anisotropy the analysis exhibits the ubiquitous result η/s = 1/4π for two different shear channels. In order to derive this result, we show that the boundary energy momentum tensor must couple to the open string metric. As a byproduct we compute the renormalised holographic energy momentum tensor and show that it coincides with one in the commutative theory
Energy Technology Data Exchange (ETDEWEB)
Lefrancois, M
2005-12-15
In particle physics, the Standard Model describes the interactions between fundamental particles. However, it was not able till now to unify quantum field theory and general relativity. This thesis focuses on two different unification approaches, though they might show some compatibility: topological field theories and quantum mechanics on non-commutative space. Topological field theories have been introduced some twenty years ago and have a very strong link to mathematics: their observables are topological invariants of the manifold they are defined on. In this thesis, we first give interest to topological Yang-Mills. We develop a superspace formalism and give a systematic method for the determination of the observables. This approach allows, once projected on a particular super gauge (of Wess-Zumino type), to recover the existing results but it also gives a generalisation to the case of an unspecified super-gauge. We have then be able to show that the up-to-now known observables correspond to the most general form of the solutions. This superspace formalism can be applied to more complex models; the case of topological gravity is given here in example. Quantum mechanics on noncommutative space provides an extension of the Heisenberg algebra of ordinary quantum mechanics. What differs here is that the components of the position or momentum operators do not commute with each other anymore. This implies to introduce a fundamental length. The second part of this thesis focuses on the description of the commutation algebra. Applications are made to low-dimensional quantum systems (Landau system, harmonic oscillator...) and to supersymmetric systems. (author)
The application of *-products to noncommutative geometry and gauge theory
International Nuclear Information System (INIS)
Sykora, A.
2004-06-01
Due to the singularities arising in quantum field theory and the difficulties in quantizing gravity it is often believed that the description of spacetime by a smooth manifold should be given up at small length scales or high energies. In this work we will replace spacetime by noncommutative structures arising within the framework of deformation quantization. The ordinary product between functions will be replaced by a *-product, an associative product for the space of functions on a manifold. We develop a formalism to realize algebras defined by relations on function spaces. For this purpose we construct the Weyl-ordered *-product and present a method how to calculate *-products with the help of commuting vector fields. Concepts developed in noncommutative differential geometry will be applied to this type of algebras and we construct actions for noncommutative field theories. In the classical limit these noncommutative theories become field theories on manifolds with nonvanishing curvature. It becomes clear that the application of *-products is very fruitful to the solution of noncommutative problems. In the semiclassical limit every *-product is related to a Poisson structure, every derivation of the algebra to a vector field on the manifold. Since in this limit many problems are reduced to a couple of differential equations the *-product representation makes it possible to construct noncommutative spaces corresponding to interesting Riemannian manifolds. Derivations of *-products makes it further possible to extend noncommutative gauge theory in the Seiberg-Witten formalism with covariant derivatives. The resulting noncommutative gauge fields may be interpreted as one forms of a generalization of the exterior algebra of a manifold. For the Formality *-product we prove the existence of the abelian Seiberg-Witten map for derivations of these *-products. We calculate the enveloping algebra valued non abelian Seiberg-Witten map pertubatively up to second order for
Quantum symmetry in quantum theory
International Nuclear Information System (INIS)
Schomerus, V.
1993-02-01
Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry
Emergent Abelian Gauge Fields from Noncommutative Gravity
Directory of Open Access Journals (Sweden)
Allen Stern
2010-02-01
Full Text Available We construct exact solutions to noncommutative gravity following the formulation of Chamseddine and show that they are in general accompanied by Abelian gauge fields which are first order in the noncommutative scale. This provides a mechanism for generating cosmological electromagnetic fields in an expanding space-time background, and also leads to multipole-like fields surrounding black holes. Exact solutions to noncommutative Einstein-Maxwell theory can give rise to first order corrections to the metric tensor, as well as to the electromagnetic fields. This leads to first order shifts in the horizons of charged black holes.
Quantum mechanics model on a Kaehler conifold
International Nuclear Information System (INIS)
Bellucci, Stefano; Nersessian, Armen; Yeranyan, Armen
2004-01-01
We propose an exactly solvable model of the quantum oscillator on the class of Kaehler spaces (with conic singularities), connected with two-dimensional complex projective spaces. Its energy spectrum is nondegenerate in the orbital quantum number, when the space has nonconstant curvature. We reduce the model to a three-dimensional system interacting with the Dirac monopole. Owing to noncommutativity of the reduction and quantization procedures, the Hamiltonian of the reduced system gets nontrivial quantum corrections. We transform the reduced system into a MIC-Kepler-like one and find that quantum corrections arise only in its energy and coupling constant. We present the exact spectrum of the generalized MIC-Kepler system. The one-(complex) dimensional analog of the suggested model is formulated on the Riemann surface over the complex projective plane and could be interpreted as a system with fractional spin
Renormalization group equations and the Lifshitz point in noncommutative Landau-Ginsburg theory
International Nuclear Information System (INIS)
Chen, G.-H.; Wu, Y.-S.
2002-01-01
A one-loop renormalization group (RG) analysis is performed for noncommutative Landau-Ginsburg theory in an arbitrary dimension. We adopt a modern version of the Wilsonian RG approach, in which a shell integration in momentum space bypasses the potential IR singularities due to UV-IR mixing. The momentum-dependent trigonometric factors in interaction vertices, characteristic of noncommutative geometry, are marginal under RG transformations, and their marginality is preserved at one loop. A negative Θ-dependent anomalous dimension is discovered as a novel effect of the UV-IR mixing. We also found a noncommutative Wilson-Fisher (NCWF) fixed point in less than four dimensions. At large noncommutativity, a momentum space instability is induced by quantum fluctuations, and a consequential first-order phase transition is identified together with a Lifshitz point in the phase diagram. In the vicinity of the Lifshitz point, we introduce two critical exponents ν m and β k , whose values are determined to be 1/4 and 1/2, respectively, at mean-field level
Quantum symplectic geometry. 1. The matrix Hamiltonian formalism
International Nuclear Information System (INIS)
Djemai, A.E.F.
1994-07-01
The main purpose of this work is to describe the quantum analogue of the usual classical symplectic geometry and then to formulate the quantum mechanics as a (quantum) non-commutative symplectic geometry. In this first part, we define the quantum symplectic structure in the context of the matrix differential geometry by using the discrete Weyl-Schwinger realization of the Heisenberg group. We also discuss the continuous limit and give an expression of the quantum structure constants. (author). 42 refs
Energy Technology Data Exchange (ETDEWEB)
Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)
2007-11-15
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.
Quantum mechanics in curved space-time and its consequences for the theory on the flat space-time
International Nuclear Information System (INIS)
Tagirov, E.A.
1997-01-01
Thus, the structure is extracted from the initial general-relativistic setting of the quantum theory of the scalar field φ that can be considered as quantum mechanics in V 1,3 in the Schroedinger picture, which includes relativistic corrections not only in the Hamiltonian of the Schroedinger equation but also in the operators of primary observables. In the terms pertaining to these corrections the operators differ from their counterparts resulting from quantization of a classical spinless particle. In general, they do not commute at all and thus the quantum phase space loses the feature that half its coordinates retain a manifold structure, which Biedenharn called 'a miracle of quantization'. This non-commutativity expands up to the exact (in the sense 'non-asymptotic in c -2 ') quantum mechanics of a free motion in the Minkowski space-time if curvilinear coordinates are taken as observables, which are necessary if non-inertial frames of references are considered
Connecting dissipation and noncommutativity: A Bateman system case study
Pal, Sayan Kumar; Nandi, Partha; Chakraborty, Biswajit
2018-06-01
We present an approach to the problem of quantization of the damped harmonic oscillator. To start with, we adopt the standard method of doubling the degrees of freedom of the system (Bateman form) and then, by introducing some new parameters, we get a generalized coupled set of equations from the Bateman form. Using the corresponding time-independent Lagrangian, quantum effects on a pair of Bateman oscillators embedded in an ambient noncommutative space (Moyal plane) are analyzed by using both path integral and canonical quantization schemes within the framework of the Hilbert-Schmidt operator formulation. Our method is distinct from those existing in the literature and where the ambient space was taken to be commutative. Our quantization shows that we end up again with a Bateman system except that the damping factor undergoes renormalization. Strikingly, the corresponding expression shows that the renormalized damping factor can be nonzero even if "bare" one is zero to begin with. In other words, noncommutativity can act as a source of dissipation. Conversely, the noncommutative parameter θ , taken to be a free one now, can be fine tuned to get a vanishing renormalized damping factor. This indicates in some sense a "duality" between dissipation and noncommutativity. Our results match the existing results in the commutative limit.
Non-commutative field theory with twistor-like coordinates
International Nuclear Information System (INIS)
Taylor, Tomasz R.
2007-01-01
We consider quantum field theory in four-dimensional Minkowski spacetime, with the position coordinates represented by twistors instead of the usual world-vectors. Upon imposing canonical commutation relations between twistors and dual twistors, quantum theory of fields described by non-holomorphic functions of twistor variables becomes manifestly non-commutative, with Lorentz symmetry broken by a time-like vector. We discuss the free field propagation and its impact on the short- and long-distance behavior of physical amplitudes in perturbation theory. In the ultraviolet limit, quantum field theories in twistor space are generically less divergent than their commutative counterparts. Furthermore, there is no infrared-ultraviolet mixing problem
Non-Commutative Integration, Zeta Functions and the Haar State for SUq(2)
International Nuclear Information System (INIS)
Matassa, Marco
2015-01-01
We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU q (2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU q (2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU q (2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension
Covariant differential calculus on the quantum hyperplane
International Nuclear Information System (INIS)
Wess, J.
1991-01-01
We develop a differential calculus on the quantum hyperplane covariant with respect to the action of the quantum group GL q (n). This is a concrete example of noncommutative differential geometry. We describe the general constraints for a noncommutative differential calculus and verify that the example given here satisfies all these constraints. We also discuss briefly the integration over the quantum plane. (orig.)
Prime divisors and noncommutative valuation theory
Marubayashi, Hidetoshi
2012-01-01
Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves. But the noncommutative equivalent is mainly applied to finite dimensional skewfields. Recently however, new types of algebras have become popular in modern algebra; Weyl algebras, deformed and quantized algebras, quantum groups and Hopf algebras, etc. The advantage of valuation theory in the commutative case is that it allows effective calculations, bringing the arithmetical properties of the ground field into the picture. This arithmetical nature is also present in the theory of maximal orders in central simple algebras. Firstly, we aim at uniting maximal orders, valuation rings, Dubrovin valuations, etc. in a common theory, the theory of primes of algebras. Secondly, we establish possible applications of the noncommutative arithmetics to interesting classes of algebras, including the extension of central valuations to nice classes of quantized a...
Géométrie non-commutative, théorie de jauge et renormalisation
De Goursac , Axel
2009-01-01
Thèse effectuée en cotutelle au Département de Mathématique de l'Université de Münster (Allemagne); Nowadays, noncommutative geometry is a growing domain of mathematics, which can appear as a promising framework for modern physics. Quantum field theories on "noncommutative spaces" are indeed much investigated, and suffer from a new type of divergence called the ultraviolet-infrared mixing. However, this problem has recently been solved by H. Grosse and R. Wulkenhaar by adding to the action of...
On the classical dynamics of charges in non-commutative QED
International Nuclear Information System (INIS)
Fatollahi, A.H.; Mohammadzadeh, H.
2004-01-01
Following Wong's approach to formulating the classical dynamics of charged particles in non-Abelian gauge theories, we derive the classical equations of motion of a charged particle in U(1) gauge theory on non-commutative space, the so-called non-commutative QED. In the present use of the procedure, it is observed that the definition of the mechanical momenta should be modified. The derived equations of motion manifest the previous statement about the dipole behavior of the charges in non-commutative space. (orig.)
International Nuclear Information System (INIS)
Ioannidou, Theodora; Lechtenfeld, Olaf
2009-01-01
We subject the baby Skyrme model to a Moyal deformation, for unitary or Grassmannian target spaces and without a potential term. In the Abelian case, the radial BPS configurations of the ordinary noncommutative sigma model also solve the baby Skyrme equation of motion. This gives a class of exact analytic noncommutative baby Skyrmions, which have a singular commutative limit but are stable against scaling due to the noncommutativity. We compute their energies, investigate their stability and determine the asymptotic two-Skyrmion interaction.
Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry
Directory of Open Access Journals (Sweden)
Lezama Oswaldo
2017-06-01
Full Text Available In this short paper we study for the skew PBW (Poincar-Birkhoff-Witt extensions some homological properties arising in non-commutative algebraic geometry, namely, Auslander-Gorenstein regularity, Cohen-Macaulayness and strongly noetherianity. Skew PBW extensions include a considerable number of non-commutative rings of polynomial type such that classical PBW extensions, quantum polynomial rings, multiplicative analogue of the Weyl algebra, some Sklyanin algebras, operator algebras, diffusion algebras, quadratic algebras in 3 variables, among many others. Parametrization of the point modules of some examples is also presented.
The Gribov problem in noncommutative QED
Energy Technology Data Exchange (ETDEWEB)
Canfora, Fabrizio [Centro de Estudios Científicos (CECS),Casilla 1469, Valdivia (Chile); Kurkov, Maxim A. [Dipartimento di Matematica, Università di Napoli Federico II,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); CMCC-Universidade Federal do ABC,Santo André, S.P. (Brazil); INFN, Sezione di Napoli,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); Rosa, Luigi; Vitale, Patrizia [Dipartimento di Fisica, Università di Napoli Federico II,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy)
2016-01-04
It is shown that in the noncommutative version of QED (NCQED) Gribov copies induced by the noncommutativity of space-time appear in the Landau gauge. This is a genuine effect of noncommutative geometry which disappears when the noncommutative parameter vanishes.
Relativistic differential-difference momentum operators and noncommutative differential calculus
International Nuclear Information System (INIS)
Mir-Kasimov, R.M.
2011-01-01
Full text: (author)The relativistic kinetic momentum operators are introduced in the framework of the Quantum Mechanics in the relativistic configuration space (RCS). These operators correspond to the half of the non-Euclidean distance in the Lobachevsky momentum space. In terms of kinetic momentum operators the relativistic kinetic energy is separated from the total Hamiltonian. The role of the plane wave (wave function of the motion with definite value of momentum and energy) plays the generation function for the matrix elements of the unitary irreps of Lorentz group (generalized Jacobi polynomials). The kinetic momentum operators are the interior derivatives in the framework of the non-commutative differential calculus over the commutative algebra generated by the coordinate functions over the RCS
Noncommutative generalization of SU(n)-principal fiber bundles: a review
International Nuclear Information System (INIS)
Masson, T
2008-01-01
This is an extended version of a communication made at the international conference 'Noncommutative Geometry and Physics' held at Orsay in april 2007. In this proceeding, we make a review of some noncommutative constructions connected to the ordinary fiber bundle theory. The noncommutative algebra is the endomorphism algebra of a SU(n)-vector bundle, and its differential calculus is based on its Lie algebra of derivations. It is shown that this noncommutative geometry contains some of the most important constructions introduced and used in the theory of connections on vector bundles, in particular, what is needed to introduce gauge models in physics, and it also contains naturally the essential aspects of the Higgs fields and its associated mechanics of mass generation. It permits one also to extend some previous constructions, as for instance symmetric reduction of (here noncommutative) connections. From a mathematical point of view, these geometrico-algebraic considerations highlight some new point on view, in particular we introduce a new construction of the Chern characteristic classes
Non-Commutative Integration, Zeta Functions and the Haar State for SU{sub q}(2)
Energy Technology Data Exchange (ETDEWEB)
Matassa, Marco, E-mail: marco.matassa@gmail.com [SISSA (Italy)
2015-12-15
We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU{sub q}(2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU{sub q}(2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU{sub q}(2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension.
Testing Non-commutative QED, Constructing Non-commutative MHD
Guralnik, Z.; Jackiw, R.; Pi, S. Y.; Polychronakos, A. P.
2001-01-01
The effect of non-commutativity on electromagnetic waves violates Lorentz invariance: in the presence of a background magnetic induction field b, the velocity for propagation transverse to b differs from c, while propagation along b is unchanged. In principle, this allows a test by the Michelson-Morley interference method. We also study non-commutativity in another context, by constructing the theory describing a charged fluid in a strong magnetic field, which forces the fluid particles into ...
Phenomenology of noncommutative field theories
International Nuclear Information System (INIS)
Carone, C D
2006-01-01
Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model
International Nuclear Information System (INIS)
Anon.
1990-01-01
The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum
On nonlocality in quantum physics
International Nuclear Information System (INIS)
Spasskij, B.I.; Moskovskij, A.V.
1984-01-01
The properties of nonlocality of quantum objects are considered on the example of the Aharonov-Bohm, effect Brown-Twiss effect, Einstein-Podolsky-Rosen paradox. These effects demonstrate inherent features of specific integrity in quantum objects. The term ''nonlocality'' is considered as a ''quantum analog'' of the notion of long range. Experiments on checking the Bell inequalities for fulfilment are described. The inequalities permit to solve which of the quantum mechanics interpretations is correct either the Einstein interpretation according to which the quantum system properties exist as elements of physical reality irrespective of their observation, or the Copenhagen one, according to which the microsystem properties described by noncommuting operators do not exist irrespective of measurement means
Semiclassical and quantum motions on the non-commutative plane
International Nuclear Information System (INIS)
Baldiotti, M.C.; Gazeau, J.P.; Gitman, D.M.
2009-01-01
We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a θ-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the 'classical' trajectories is investigated, and we present numerical explorations of some semiclassical quantities.
The standard model on non-commutative space-time
International Nuclear Information System (INIS)
Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M.; Wess, J.
2002-01-01
We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter θ μν . No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in θ μν we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)
Excluding joint probabilities from quantum theory
Allahverdyan, Armen E.; Danageozian, Arshag
2018-03-01
Quantum theory does not provide a unique definition for the joint probability of two noncommuting observables, which is the next important question after the Born's probability for a single observable. Instead, various definitions were suggested, e.g., via quasiprobabilities or via hidden-variable theories. After reviewing open issues of the joint probability, we relate it to quantum imprecise probabilities, which are noncontextual and are consistent with all constraints expected from a quantum probability. We study two noncommuting observables in a two-dimensional Hilbert space and show that there is no precise joint probability that applies for any quantum state and is consistent with imprecise probabilities. This contrasts with theorems by Bell and Kochen-Specker that exclude joint probabilities for more than two noncommuting observables, in Hilbert space with dimension larger than two. If measurement contexts are included into the definition, joint probabilities are not excluded anymore, but they are still constrained by imprecise probabilities.
Quantum group gauge theory on quantum spaces
International Nuclear Information System (INIS)
Brzezinski, T.; Majid, S.
1993-01-01
We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on SU q (2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces). (orig.)
Muon 2 measurements and non-commutative geometry of quantum ...
Indian Academy of Sciences (India)
Abstract. We discuss a completely quantum mechanical treatment of the measurement of the anomalous magnetic moment of the muon. A beam of muons move in a strong uniform magnetic field and a weak focusing electrostatic field. Errors in the classical beam analysis are exposed. In the Dirac quantum beam analysis, ...
Relativistic implications of the quantum phase
International Nuclear Information System (INIS)
Low, Stephen G
2012-01-01
The quantum phase leads to projective representations of symmetry groups in quantum mechanics. The projective representations are equivalent to the unitary representations of the central extension of the group. A celebrated example is Wigner's formulation of special relativistic quantum mechanics as the projective representations of the inhomogeneous Lorentz group. However, Wigner's formulation makes no mention of the Weyl-Heisenberg group and the hermitian representation of its algebra that are the Heisenberg commutation relations fundamental to quantum physics. We put aside the relativistic symmetry and show that the maximal quantum symmetry that leaves the Heisenberg commutation relations invariant is the projective representations of the conformally scaled inhomogeneous symplectic group. The Weyl-Heisenberg group and noncommutative structure arises directly because the quantum phase requires projective representations. We then consider the relativistic implications of the quantum phase that lead to the Born line element and the projective representations of an inhomogeneous unitary group that defines a noninertial quantum theory. (Understanding noninertial quantum mechanics is a prelude to understanding quantum gravity.) The remarkable properties of this symmetry and its limits are studied.
Semiclassical and quantum motions on the non-commutative plane
Energy Technology Data Exchange (ETDEWEB)
Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gazeau, J.P., E-mail: gazeau@apc.univ-paris7.f [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)
2009-10-19
We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a theta-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the 'classical' trajectories is investigated, and we present numerical explorations of some semiclassical quantities.
Noncommutative QED and anomalous dipole moments
International Nuclear Information System (INIS)
Riad, I.F.; Sheikh-Jabbari, M.M.
2000-09-01
We study QED on noncommutative spaces, NCQED. In particular we present the detailed calculation for the noncommutative electron-photon vertex and show that the Ward identity is satisfied. We discuss that in the noncommutative case moving electron will show electric dipole effects. In addition, we work out the electric and magnetic dipole moments up to one loop level. For the magnetic moment we show that noncommutative electron has an intrinsic (spin independent) magnetic moment. (author)
The standard model on non-commutative space-time
Energy Technology Data Exchange (ETDEWEB)
Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M. [Sektion Physik, Universitaet Muenchen (Germany); Wess, J. [Sektion Physik, Universitaet Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)
2002-03-01
We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter {theta}{sup {mu}}{sup {nu}}. No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in {theta}{sup {mu}}{sup {nu}} we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)
Soldering formalism in noncommutative field theory: a brief note
International Nuclear Information System (INIS)
Ghosh, Subir
2004-01-01
In this Letter, I develop the soldering formalism in a new domain--the noncommutative planar field theories. The soldering mechanism fuses two distinct theories showing opposite or complimentary properties of some symmetry, taking into account the interference effects. The above mentioned symmetry is hidden in the composite (or soldered) theory. In the present work it is shown that a pair of noncommutative Maxwell-Chern-Simons theories, having opposite signs in their respective topological terms, can be consistently soldered to yield the Proca model (Maxwell theory with a mass term) with corrections that are at least quadratic in the noncommutativity parameter. We further argue that this model can be thought of as the noncommutative generalization of the Proca theory of ordinary spacetime. It is well known that abelian noncommutative gauge theory bears a close structural similarity with non-abelian gauge theory. This fact is manifested in a non-trivial way if the present Letter is compared with existing literature, where soldering of non-abelian models are discussed. Thus the present work further establishes the robustness of the soldering programme. The subtle role played by gauge invariance (or the lack of it), in the above soldering process, is revealed in an interesting way
Uncommon paths in quantum physics
Kazakov, Konstantin V
2014-01-01
Quantum mechanics is one of the most fascinating, and at the same time most controversial, branches of contemporary science. Disputes have accompanied this science since its birth and have not ceased to this day. Uncommon Paths in Quantum Physics allows the reader to contemplate deeply some ideas and methods that are seldom met in the contemporary literature. Instead of widespread recipes of mathematical physics, based on the solutions of integro-differential equations, the book follows logical and partly intuitional derivations of non-commutative algebra. Readers can directly penetrate the
Approximate quantum Markov chains
Sutter, David
2018-01-01
This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statement about the reconstruction of lost information. The main difficulty in order to understand the behavior of quantum Markov chains arises from the fact that quantum mechanical operators do not commute in general. As a result we start by explaining two techniques of how to deal with non-commuting matrices: the spectral pinching method and complex interpolation theory. Once the reader is familiar with these techniques a novel inequality is presented that extends the celebrated Golden-Thompson inequality to arbitrarily many matrices. This inequality is the key ingredient in understanding approximate quantum Markov chains and it answers a question from matrix analysis that was open since 1973, i.e., if Lieb's triple ma...
Noncommutative products of Euclidean spaces
Dubois-Violette, Michel; Landi, Giovanni
2018-05-01
We present natural families of coordinate algebras on noncommutative products of Euclidean spaces R^{N_1} × _R R^{N_2} . These coordinate algebras are quadratic ones associated with an R -matrix which is involutive and satisfies the Yang-Baxter equations. As a consequence, they enjoy a list of nice properties, being regular of finite global dimension. Notably, we have eight-dimensional noncommutative euclidean spaces R4 × _R R4 . Among these, particularly well behaved ones have deformation parameter u \\in S^2 . Quotients include seven spheres S7_u as well as noncommutative quaternionic tori TH_u = S^3 × _u S^3 . There is invariance for an action of {{SU}}(2) × {{SU}}(2) on the torus TH_u in parallel with the action of U(1) × U(1) on a `complex' noncommutative torus T^2_θ which allows one to construct quaternionic toric noncommutative manifolds. Additional classes of solutions are disjoint from the classical case.
Braided quantum field theories and their symmetries
International Nuclear Information System (INIS)
Sasai, Yuya; Sasakura, Naoki
2007-01-01
Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)
Emergent gravity and noncommutative branes from Yang-Mills matrix models
International Nuclear Information System (INIS)
Steinacker, Harold
2009-01-01
The framework of emergent gravity arising from Yang-Mills matrix models is developed further, for general noncommutative branes embedded in R D . The effective metric on the brane turns out to have a universal form reminiscent of the open string metric, depending on the dynamical Poisson structure and the embedding metric in R D . A covariant form of the tree-level equations of motion is derived, and the Newtonian limit is discussed. This points to the necessity of branes in higher dimensions. The quantization is discussed qualitatively, which singles out the IKKT model as a prime candidate for a quantum theory of gravity coupled to matter. The Planck scale is then identified with the scale of N=4 SUSY breaking. A mechanism for avoiding the cosmological constant problem is exhibited
Vacuum energy from noncommutative models
Mignemi, S.; Samsarov, A.
2018-04-01
The vacuum energy is computed for a scalar field in a noncommutative background in several models of noncommutative geometry. One may expect that the noncommutativity introduces a natural cutoff on the ultraviolet divergences of field theory. Our calculations show however that this depends on the particular model considered: in some cases the divergences are suppressed and the vacuum energy is only logarithmically divergent, in other cases they are stronger than in the commutative theory.
Measurement and the mathematical apparatus of quantum physics
International Nuclear Information System (INIS)
Slavnov, D.A.
2007-01-01
A scheme for constructing quantum mechanics in which the Hilbert space and linear operators are not primary elements on the theory is described. Some variant of the algebraic approach is instead considered. The elements of a noncommutative algebra (observables) and functionals in this algebra serve as the primary components of the theory. Such a scheme allows one to use the formalism of the classical (Kolmogorovian) theory of probability, and to reproduce the mathematical formalism of standard quantum mechanics and to specify borders of its applicability. A brief review of necessary data from the theory of algebras and probability theory is given. The manner is described in which the considered mathematical scheme agrees with the theory of quantum measurements and allows one to avoid quantum paradoxes [ru
Noncommutative CPN and CHN and their physics
International Nuclear Information System (INIS)
Sako, Akifumi; Suzuki, Toshiya; Umetsu, Hiroshi
2013-01-01
We study noncommutative deformation of manifolds by constructing star products. We start from a noncommutative R d and discuss more genaral noncommutative manifolds. In general, star products can not be described in concrete expressions without some exceptions. In this article we introduce new examples of noncommutative manifolds with explicit star products. Karabegov's deformation quantization of CP N and CH N with separation of variables gives explicit calulable star products represented by gamma functions. Using the results of star products between inhomogeneous coordinates, we find creation and anihilation operators and obtain the Fock representation of the noncommutative CP N and CH N .
The realism problem of quantum mechanics in view of the decoherence interpretation
International Nuclear Information System (INIS)
Messer, Joachim August
2007-01-01
Quantum mechanics in the conception, as it is today present, contains - what concerns its conceivable understanding and its interpretation - numerous paradoxa. The best known Copenhagen interpretation is critized and other interpretations, as the many-world interpretation and the modern, today mostly attended decoherence interpretation are put to this describingly on side. Axiomatic explanation attempts, like those from Mackey, Jauch, and Piron are analyzed and the measurement problem discussed from three ways of view: the introduction of a cut by Georg Suessmann, the scaling formalism from Klaus Hepp, and the philosophy from Bernulf Kanitschneider. Especially the critique given by Albert Einstein on the Bohr-Heisenberg Copenhagen interpretation and the completeness of a realistic quantum theory by the EPR thought experiment (called from Einstein, Podolsky, and Rosen) is more detailedly studied and extended to a holomorphic realism, in which the measurement quantities become visible as boundary values of a holomorphic function. This analytic continuation throws a new light on the body-soul parallelism, which exceeds the positions of Platon and Feigl. Beside the decoherence also the superselection rules, which are extensively discussed, are an example for a realistic state reduction - however the nonlocality of realistic quantum mechanics forces to a dualism of Higgs' symmetry breaking with local decoherence in the terrestrial laboratory. The position of a holomorphic barycentric realism is worked out by regress to the quantum field theory of Lehmann, Symanzik, and Zimmermann (LSZ) with its reduction formula. Quantum-cosmological implications, non-commutative geometry, K theory, and background field are also discussed. The newly designed knowledge theory of the holomorphic, barycentric realism - which in the classical limit goes over in a critical realism - forms also a bridge to a deepened humanism, which cannot be constructed from purely classical physics. As
Non-commutative standard model: model building
Chaichian, Masud; Presnajder, P
2003-01-01
A non-commutative version of the usual electro-weak theory is constructed. We discuss how to overcome the two major problems: (1) although we can have non-commutative U(n) (which we denote by U sub * (n)) gauge theory we cannot have non-commutative SU(n) and (2) the charges in non-commutative QED are quantized to just 0,+-1. We show how the latter problem with charge quantization, as well as with the gauge group, can be resolved by taking the U sub * (3) x U sub * (2) x U sub * (1) gauge group and reducing the extra U(1) factors in an appropriate way. Then we proceed with building the non-commutative version of the standard model by specifying the proper representations for the entire particle content of the theory, the gauge bosons, the fermions and Higgs. We also present the full action for the non-commutative standard model (NCSM). In addition, among several peculiar features of our model, we address the inherentCP violation and new neutrino interactions. (orig.)
Noncommutative Blackwell-Ross martingale inequality
Talebi, Ali; Moslehian, Mohammad Sal; Sadeghi, Ghadir
We establish a noncommutative Blackwell-Ross inequality for supermartingales under a suitable condition which generalizes Khan’s work to the noncommutative setting. We then employ it to deduce an Azuma-type inequality.
Noncommutative geometry and twisted conformal symmetry
International Nuclear Information System (INIS)
Matlock, Peter
2005-01-01
The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted coproduct. This allows for the definition of conformal symmetry in a noncommutative background geometry. The twisted coproduct is reviewed for the Poincare algebra and the construction is then extended to the full conformal algebra. The case of Moyal-type noncommutativity of the coordinates is considered. It is demonstrated that conformal invariance need not be viewed as incompatible with noncommutative geometry; the noncommutativity of the coordinates appears as a consequence of the twisting, as has been shown in the literature in the case of the twisted Poincare algebra
Stability and equilibrium in quantum statistical mechanics
International Nuclear Information System (INIS)
Kastler, Daniel.
1975-01-01
A derivation of the Gibbs Ansatz, base of the equilibrium statistical mechanics is provided from a stability requirements, in technical connection with the harmonic analysis of non-commutative dynamical systems. By the same token a relation is established between stability and the positivity of Hamiltonian in the zero temperature case [fr
International Nuclear Information System (INIS)
Pavel Bona
2000-01-01
The work can be considered as an essay on mathematical and conceptual structure of nonrelativistic quantum mechanics which is related here to some other (more general, but also to more special and 'approximative') theories. Quantum mechanics is here primarily reformulated in an equivalent form of a Poisson system on the phase space consisting of density matrices, where the 'observables', as well as 'symmetry generators' are represented by a specific type of real valued (densely defined) functions, namely the usual quantum expectations of corresponding selfjoint operators. It is shown in this paper that inclusion of additional ('nonlinear') symmetry generators (i. e. 'Hamiltonians') into this reformulation of (linear) quantum mechanics leads to a considerable extension of the theory: two kinds of quantum 'mixed states' should be distinguished, and operator - valued functions of density matrices should be used in the role of 'nonlinear observables'. A general framework for physical theories is obtained in this way: By different choices of the sets of 'nonlinear observables' we obtain, as special cases, e.g. classical mechanics on homogeneous spaces of kinematical symmetry groups, standard (linear) quantum mechanics, or nonlinear extensions of quantum mechanics; also various 'quasiclassical approximations' to quantum mechanics are all sub theories of the presented extension of quantum mechanics - a version of the extended quantum mechanics. A general interpretation scheme of extended quantum mechanics extending the usual statistical interpretation of quantum mechanics is also proposed. Eventually, extended quantum mechanics is shown to be (included into) a C * -algebraic (hence linear) quantum theory. Mathematical formulation of these theories is presented. The presentation includes an analysis of problems connected with differentiation on infinite-dimensional manifolds, as well as a solution of some problems connected with the work with only densely defined unbounded
Quantum probability and quantum decision-making.
Yukalov, V I; Sornette, D
2016-01-13
A rigorous general definition of quantum probability is given, which is valid not only for elementary events but also for composite events, for operationally testable measurements as well as for inconclusive measurements, and also for non-commuting observables in addition to commutative observables. Our proposed definition of quantum probability makes it possible to describe quantum measurements and quantum decision-making on the same common mathematical footing. Conditions are formulated for the case when quantum decision theory reduces to its classical counterpart and for the situation where the use of quantum decision theory is necessary. © 2015 The Author(s).
Applications of quantum mechanical techniques to areas outside of quantum mechanics
Khrennikov, Andrei
2018-01-01
This book deals with applications of quantum mechanical techniques to areas outside of quantum mechanics, so-called quantum-like modeling. Research in this area has grown over the last 15 years. But even already more than 50 years ago, the interaction between Physics Nobelist Pauli and the psychologist Carl Jung in the 1950's on seeking to find analogous uses of the complementarity principle from quantum mechanics in psychology needs noting. This book does NOT want to advance that society is quantum mechanical! The macroscopic world is manifestly not quantum mechanical. But this rules not out that one can use concepts and the mathematical apparatus from quantum physics in a macroscopic environment. A mainstay ingredient of quantum mechanics, is 'quantum probability' and this tool has been proven to be useful in the mathematical modelling of decision making. In the most basic experiment of quantum physics, the double slit experiment, it is known (from the works of A. Khrennikov) that the law of total probabi...
Noncommutative instantons via dressing and splitting approaches
International Nuclear Information System (INIS)
Horvath, Zalan; Lechtenfeld, Olaf; Wolf, Martin
2002-01-01
Almost all known instanton solutions in noncommutative Yang-Mills theory have been obtained in the modified ADHM scheme. In this paper we employ two alternative methods for the construction of the self-dual U(2) BPST instanton on a noncommutative euclidean four-dimensional space with self-dual noncommutativity tensor. Firstly, we use the method of dressing transformations, an iterative procedure for generating solutions from a given seed solution, and thereby generalize Belavin's and Zakharov's work to the noncommutative setup. Secondly, we relate the dressing approach with Ward's splitting method based on the twistor construction and rederive the solution in this context. It seems feasible to produce nonsingular noncommutative multi-instantons with these techniques. (author)
Twisted covariant noncommutative self-dual gravity
International Nuclear Information System (INIS)
Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.
2008-01-01
A twisted covariant formulation of noncommutative self-dual gravity is presented. The formulation for constructing twisted noncommutative Yang-Mills theories is used. It is shown that the noncommutative torsion is solved at any order of the θ expansion in terms of the tetrad and some extra fields of the theory. In the process the first order expansion in θ for the Plebanski action is explicitly obtained.
Covariant non-commutative space–time
Directory of Open Access Journals (Sweden)
Jonathan J. Heckman
2015-05-01
Full Text Available We introduce a covariant non-commutative deformation of 3+1-dimensional conformal field theory. The deformation introduces a short-distance scale ℓp, and thus breaks scale invariance, but preserves all space–time isometries. The non-commutative algebra is defined on space–times with non-zero constant curvature, i.e. dS4 or AdS4. The construction makes essential use of the representation of CFT tensor operators as polynomials in an auxiliary polarization tensor. The polarization tensor takes active part in the non-commutative algebra, which for dS4 takes the form of so(5,1, while for AdS4 it assembles into so(4,2. The structure of the non-commutative correlation functions hints that the deformed theory contains gravitational interactions and a Regge-like trajectory of higher spin excitations.
Spin Hall effect on a noncommutative space
International Nuclear Information System (INIS)
Ma Kai; Dulat, Sayipjamal
2011-01-01
We study the spin-orbital interaction and the spin Hall effect of an electron moving on a noncommutative space under the influence of a vector potential A(vector sign). On a noncommutative space, we find that the commutator between the vector potential A(vector sign) and the electric potential V 1 (r(vector sign)) of the lattice induces a new term, which can be treated as an effective electric field, and the spin Hall conductivity obtains some correction. On a noncommutative space, the spin current and spin Hall conductivity have distinct values in different directions, and depend explicitly on the noncommutative parameter. Once this spin Hall conductivity in different directions can be measured experimentally with a high level of accuracy, the data can then be used to impose bounds on the value of the space noncommutativity parameter. We have also defined a new parameter, σ=ρθ (ρ is the electron concentration, θ is the noncommutativity parameter), which can be measured experimentally. Our approach is based on the Foldy-Wouthuysen transformation, which gives a general Hamiltonian of a nonrelativistic electron moving on a noncommutative space.
Noncommutative gauge field theories: A no-go theorem
International Nuclear Information System (INIS)
Chaichian, M.; Tureanu, A.; Presnajder, P.; Sheikh-Jabbari, M.M.
2001-06-01
Studying the mathematical structure of the noncommutative groups in more detail, we prove a no-go theorem for the noncommutative gauge theories. According to this theorem, the closure condition of the gauge algebra implies that: 1) the local noncommutative u(n) algebra only admits the irreducible nxn matrix-representation. Hence the gauge fields, as elements of the algebra, are in nxn matrix form, while the matter fields can only be either in fundamental, adjoint or singlet states; 2) for any gauge group consisting of several simple group factors, the matter fields can transform nontrivially under at most two noncommutative group factors. In other words, the matter fields cannot carry more than two simple noncommutative gauge group charges. This no-go theorem imposes strong restrictions on the construction of the noncommutative version of the Standard Model and in resolving the standing problem of charge quantization in noncommutative QED. (author)
Exact multi-line soliton solutions of noncommutative KP equation
International Nuclear Information System (INIS)
Wang, Ning; Wadati, Miki
2003-01-01
A method of solving noncommutative linear algebraic equations plays a key role in the extension of the ∂-bar -dressing on the noncommutative space-time manifold. In this paper, a solution-generating method of noncommutative linear algebraic equations is proposed. By use of the proposed method, a class of multi-line soliton solutions of noncommutative KP (ncKP) equation is constructed explicitly. The method is expected to be of use for constructions of noncommutative soliton equations. The significance of the noncommutativity of coordinates is investigated. It is found that the noncommutativity of the space-time coordinate has a role to split the spatial waveform of the classical multi-line solitons and reform it to a new configuration. (author)
Ahn, Doyeol
2011-01-01
A clear introduction to quantum mechanics concepts Quantum mechanics has become an essential tool for modern engineering, particularly due to the recent developments in quantum computing as well as the rapid progress in optoelectronic devices. Engineering Quantum Mechanics explains the fundamentals of this exciting field, providing broad coverage of both traditional areas such as semiconductor and laser physics as well as relatively new yet fast-growing areas such as quantum computation and quantum information technology. The book begins with basic quantum mechanics, reviewing measurements and probability, Dirac formulation, the uncertainty principle, harmonic oscillator, angular momentum eigenstates, and perturbation theory. Then, quantum statistical mechanics is explored, from second quantization and density operators to coherent and squeezed states, coherent interactions between atoms and fields, and the Jaynes-Cummings model. From there, the book moves into elementary and modern applications, discussing s...
Scattering theory of space-time non-commutative abelian gauge field theory
International Nuclear Information System (INIS)
Rim, Chaiho; Yee, Jaehyung
2005-01-01
The unitary S-matrix for space-time non-commutative quantum electrodynamics is constructed using the *-time ordering which is needed in the presence of derivative interactions. Based on this S-matrix, we formulate the perturbation theory and present the Feynman rule. We then apply this perturbation analysis to the Compton scattering process to the lowest order and check the gauge invariance of the scattering amplitude at this order.
Space-Time Diffeomorphisms in Noncommutative Gauge Theories
Directory of Open Access Journals (Sweden)
L. Román Juarez
2008-07-01
Full Text Available In previous work [Rosenbaum M. et al., J. Phys. A: Math. Theor. 40 (2007, 10367–10382] we have shown how for canonical parametrized field theories, where space-time is placed on the same footing as the other fields in the theory, the representation of space-time diffeomorphisms provides a very convenient scheme for analyzing the induced twisted deformation of these diffeomorphisms, as a result of the space-time noncommutativity. However, for gauge field theories (and of course also for canonical geometrodynamics where the Poisson brackets of the constraints explicitely depend on the embedding variables, this Poisson algebra cannot be connected directly with a representation of the complete Lie algebra of space-time diffeomorphisms, because not all the field variables turn out to have a dynamical character [Isham C.J., Kuchar K.V., Ann. Physics 164 (1985, 288–315, 316–333]. Nonetheless, such an homomorphic mapping can be recuperated by first modifying the original action and then adding additional constraints in the formalism in order to retrieve the original theory, as shown by Kuchar and Stone for the case of the parametrized Maxwell field in [Kuchar K.V., Stone S.L., Classical Quantum Gravity 4 (1987, 319–328]. Making use of a combination of all of these ideas, we are therefore able to apply our canonical reparametrization approach in order to derive the deformed Lie algebra of the noncommutative space-time diffeomorphisms as well as to consider how gauge transformations act on the twisted algebras of gauge and particle fields. Thus, hopefully, adding clarification on some outstanding issues in the literature concerning the symmetries for gauge theories in noncommutative space-times.
Arithmetic noncommutative geometry
Marcolli, Matilde
2005-01-01
Arithmetic noncommutative geometry denotes the use of ideas and tools from the field of noncommutative geometry, to address questions and reinterpret in a new perspective results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at archimedean places of arithmetic surfaces and varieties. The main reason why noncommutative geometry can be expected to say something about topics of arithmetic interest lies in the fact that it provides the right framework in which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry, such as moduli spaces (of which modular curves are the simplest case) or arithmetic varieties (completed by suitable "fibers at infinity"), by adding boundaries...
Canonical noncommutativity in special and general relativity
Energy Technology Data Exchange (ETDEWEB)
Chryssomalakos, C; Hernandez, H; Okon, E; Vazquez Montejo, P [Instituto de Ciencias Nucleares, Universidad National Autonoma de Mexico, 04510 Mexico, D.F. (Mexico)
2007-05-15
There are two main points that concern us in this short contribution. The first one is the conceptual distinction between a intrinsically noncommuting spacetime, i.e., one where the coordinate functions fail to commute among themselves, on the one hand, and the proposal of noncommuting position operators, on the other. The second point concerns a particular form of position operator noncommutativity, involving the spin of the particle, to which several approaches seem to converge. We also suggest an analysis of the effects of spacetime curvature on position operator noncommutativity.
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Quantum Hamiltonian differential geometry: how does quantization affect space?
International Nuclear Information System (INIS)
Aldrovandi, R.
1993-01-01
Quantum phase space is given a description which entirely parallels the usual presentation of Classical Phase Space. A particular Schwinger unitary operator basis, in which the expansion of each operator is its own Weyl expression, is specially convenient for the purpose. The quantum Hamiltonian structure obtains from the classical structure by the conversion of the classical pointwise product of dynamical quantities into the noncommutative star product of Wigner functions. The main qualitative difference in the general structure is that, in the quantum case, the inverse symplectic matrix is not simply antisymmetric. This difference leads to the presence of braiding in the backstage of Quantum Mechanics. (author)
On the UV renormalizability of noncommutative field theories
International Nuclear Information System (INIS)
Sarkar, Swarnendu
2002-01-01
UV/IR mixing is one of the most important features of noncommutative field theories. As a consequence of this coupling of the UV and IR sectors, the configuration of fields at the zero momentum limit in these theories is a very singular configuration. We show that the renormalization conditions set at a particular momentum configuration with a fixed number of zero momenta, renormalizes the Green's functions for any general momenta only when this configuration has same set of zero momenta. Therefore only when renormalization conditions are set at a point where all the external momenta are nonzero, the quantum theory is renormalizable for all values of nonzero momentum. This arises as a result of different scaling behaviors of Green's functions with respect to the UV cutoff (Λ) for configurations containing different set of zero momenta. We study this in the noncommutative φ 4 theory and analyse similar results for the Gross-Neveu model at one loop level. We next show this general feature using Wilsonian RG of Polchinski in the globally O(N) symmetric scalar theory and prove the renormalizability of the theory to all orders with an infrared cutoff. In the context of spontaneous symmetry breaking (SSB) in noncommutative scalar theory, it is essential to note the different scaling behaviors of Green's functions with respect to Λ for different set of zero momenta configurations. We show that in the broken phase of the theory the Ward identities are satisfied to all orders only when one keeps an infrared regulator by shifting to a nonconstant vacuum. (author)
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
Self Sustained Traversable Wormholes Induced by Gravity’s Rainbow and Noncommutative Geometry
Directory of Open Access Journals (Sweden)
Garattini Remo
2013-09-01
Full Text Available We compare the effects of Noncommutative Geometry and Gravity’s Rainbow on traversable wormholes which are sustained by their own gravitational quantum fluctuations. Fixing the geometry on a well tested model, we find that the final result shows that the wormhole is of the Planckian size. This means that the traversability of the wormhole is in principle, but not in practice.
On conservation laws for models in discrete, noncommutative and fractional differential calculus
International Nuclear Information System (INIS)
Klimek, M.
2001-01-01
We present the general method of derivation the explicit form of conserved currents for equations built within the framework of discrete, noncommutative or fractional differential calculus. The procedure applies to linear models with variable coefficients including also nonlinear potential part. As an example an equation on quantum plane, nonlinear Toda lattice model and homogeneous equation of fractional diffusion in 1+1 dimensions are studied
The non-commutative topology of two-dimensional dirty superconductors
De Nittis, Giuseppe; Schulz-Baldes, Hermann
2018-01-01
Non-commutative analysis tools have successfully been applied to the integer quantum Hall effect, in particular for a proof of the stability of the Hall conductance in an Anderson localization regime and of the bulk-boundary correspondence. In this work, these techniques are implemented to study two-dimensional dirty superconductors described by Bogoliubov-de Gennes Hamiltonians. After a thorough presentation of the basic framework and the topological invariants, Kubo formulas for the thermal, thermoelectric and spin Hall conductance are analyzed together with the corresponding edge currents.
Quantum mechanics on phase space: The hydrogen atom and its Wigner functions
Campos, P.; Martins, M. G. R.; Fernandes, M. C. B.; Vianna, J. D. M.
2018-03-01
Symplectic quantum mechanics (SQM) considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ, to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article the Coulomb potential in three dimensions (3D) is resolved completely by using the phase space Schrödinger equation. The Kustaanheimo-Stiefel(KS) transformation is applied and the Coulomb and harmonic oscillator potentials are connected. In this context we determine the energy levels, the amplitude of probability in phase space and correspondent Wigner quasi-distribution functions of the 3D-hydrogen atom described by Schrödinger equation in phase space.
Fermions in noncommutative emergent gravity
International Nuclear Information System (INIS)
Klammer, D.
2010-01-01
Noncommutative emergent gravity is a novel framework disclosing how gravity is contained naturally in noncommutative gauge theory formulated as a matrix model. It describes a dynamical space-time which itself is a four-dimensional brane embedded in a higher-dimensional space. In noncommutative emergent gravity, the metric is not a fundamental object of the model; rather it is determined by the Poisson structure and by the induced metric of the embedding. In this work the coupling of fermions to these matrix models is studied from the point of view of noncommutative emergent gravity. The matrix Dirac operator as given by the IKKT matrix model defines an appropriate coupling for fermions to an effective gravitational metric of noncommutative four-dimensional spaces that are embedded into a ten-dimensional ambient space. As it turns out this coupling is non-standard due to a spin connection that vanishes in the preferred but unobservable coordinates defined by the model. The purpose of this work is to study the one-loop effective action of this approach. Standard results of the literature cannot be applied due to this special coupling of the fermions. However, integrating out these fields in a nontrivial geometrical background induces indeed the Einstein-Hilbert action of the effective metric, as well as additional terms which couple the noncommutative structure to the Riemann tensor, and a dilaton-like term. It remains to be understood what the effects of these terms are and whether they can be avoided. In a second step, the existence of a duality between noncommutative gauge theory and gravity which explains the phenomenon of UV/IR mixing as a gravitational effect is discussed. We show how the gravitational coupling of fermions can be interpreted as a coupling of fermions to gauge fields, which suffers then from UV/IR mixing. This explanation does not render the model finite but it reveals why some UV/IR mixing remains even in supersymmetric models, except in the N
Weak Quantum Theory: Formal Framework and Selected Applications
International Nuclear Information System (INIS)
Atmanspacher, Harald; Filk, Thomas; Roemer, Hartmann
2006-01-01
Two key concepts of quantum theory, complementarity and entanglement, are considered with respect to their significance in and beyond physics. An axiomatically formalized, weak version of quantum theory, more general than the ordinary quantum theory of physical systems, is described. Its mathematical structure generalizes the algebraic approach to ordinary quantum theory. The crucial formal feature leading to complementarity and entanglement is the non-commutativity of observables.The ordinary Hilbert space quantum mechanics can be recovered by stepwise adding the necessary features. This provides a hierarchy of formal frameworks of decreasing generality and increasing specificity. Two concrete applications, more specific than weak quantum theory and more general than ordinary quantum theory, are discussed: (i) complementarity and entanglement in classical dynamical systems, and (ii) complementarity and entanglement in the bistable perception of ambiguous stimuli
Geometrical aspects of quantum spaces
International Nuclear Information System (INIS)
Ho, P.M.
1996-01-01
Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S 1 2 and the quantum complex projective space CP q (N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S q 2 and CP q (N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP q (N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given
Yang-Feldman formalism on noncommutative Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Doescher, C.
2006-12-15
We examine quantum field theory on noncummutative spacetime. For this we choose an approach which lives explicitly on the noncommutative Minkowski space, namely the Yang-Feldman formalism. Here the ansatz is to try to solve the field equation of the quantum fields. In this setting we first take a look at an additional mass term, and use this to discuss possible IR cutoffs. We find classes of IR cutoffs which indeed yield the expected limit. Furthermore, we look at interacting models, namely the {phi}{sup 3} model in four and six dimensions, the {phi}{sup 4} model and the Wess-Zumino model. For these we calculate dispersion relations. We see that there exist huge differences in the orders of magnitude between logarithmically and quadratically divergent models. Integrals which are made finite by twisting factors are calculated rigorously in the sense of the theory of oscillatory integrals. (orig.)
Cardy-Verlinde Formula of Noncommutative Schwarzschild Black Hole
Directory of Open Access Journals (Sweden)
G. Abbas
2014-01-01
Full Text Available Few years ago, Setare (2006 has investigated the Cardy-Verlinde formula of noncommutative black hole obtained by noncommutativity of coordinates. In this paper, we apply the same procedure to a noncommutative black hole obtained by the coordinate coherent approach. The Cardy-Verlinde formula is entropy formula of conformal field theory in an arbitrary dimension. It relates the entropy of conformal field theory to its total energy and Casimir energy. In this paper, we have calculated the total energy and Casimir energy of noncommutative Schwarzschild black hole and have shown that entropy of noncommutative Schwarzschild black hole horizon can be expressed in terms of Cardy-Verlinde formula.
Duality and braiding in twisted quantum field theory
International Nuclear Information System (INIS)
Riccardi, Mauro; Szabo, Richard J.
2008-01-01
We re-examine various issues surrounding the definition of twisted quantum field theories on flat noncommutative spaces. We propose an interpretation based on nonlocal commutative field redefinitions which clarifies previously observed properties such as the formal equivalence of Green's functions in the noncommutative and commutative theories, causality, and the absence of UV/IR mixing. We use these fields to define the functional integral formulation of twisted quantum field theory. We exploit techniques from braided tensor algebra to argue that the twisted Fock space states of these free fields obey conventional statistics. We support our claims with a detailed analysis of the modifications induced in the presence of background magnetic fields, which induces additional twists by magnetic translation operators and alters the effective noncommutative geometry seen by the twisted quantum fields. When two such field theories are dual to one another, we demonstrate that only our braided physical states are covariant under the duality
Quantum Riemannian geometry of phase space and nonassociativity
Directory of Open Access Journals (Sweden)
Beggs Edwin J.
2017-04-01
Full Text Available Noncommutative or ‘quantum’ differential geometry has emerged in recent years as a process for quantizing not only a classical space into a noncommutative algebra (as familiar in quantum mechanics but also differential forms, bundles and Riemannian structures at this level. The data for the algebra quantisation is a classical Poisson bracket while the data for quantum differential forms is a Poisson-compatible connection. We give an introduction to our recent result whereby further classical data such as classical bundles, metrics etc. all become quantised in a canonical ‘functorial’ way at least to 1st order in deformation theory. The theory imposes compatibility conditions between the classical Riemannian and Poisson structures as well as new physics such as typical nonassociativity of the differential structure at 2nd order. We develop in detail the case of ℂℙn where the commutation relations have the canonical form [wi, w̄j] = iλδij similar to the proposal of Penrose for quantum twistor space. Our work provides a canonical but ultimately nonassociative differential calculus on this algebra and quantises the metric and Levi-Civita connection at lowest order in λ.
International Nuclear Information System (INIS)
Zanardi, Paolo
2001-01-01
The physical resources available to access and manipulate the degrees of freedom of a quantum system define the set A of operationally relevant observables. The algebraic structure of A selects a preferred tensor product structure, i.e., a partition into subsystems. The notion of compoundness for quantum systems is accordingly relativized. Universal control over virtual subsystems can be achieved by using quantum noncommutative holonomies
Supersymmetry on the noncommutative lattice
International Nuclear Information System (INIS)
Nishimura, Jun; Rey, Soo-Jong; Sugino, Fumihiko
2003-01-01
Built upon the proposal of Kaplan et al. (heplat{0206109}), we construct noncommutative lattice gauge theory with manifest supersymmetry. We show that such theory is naturally implementable via orbifold conditions generalizing those used by Kaplan et al. We present the prescription in detail and illustrate it for noncommutative gauge theories latticized partially in two dimensions. We point out a deformation freedom in the defining theory by a complex-parameter, reminiscent of discrete torsion in string theory. We show that, in the continuum limit, the supersymmetry is enhanced only at a particular value of the deformation parameter, determined solely by the size of the noncommutativity. (author)
Some remarks on K_0 of noncommutative tori
Chakraborty, Sayan
2017-01-01
Using Rieffel's construction of projective modules over higher dimensional noncommutative tori, we construct projective modules over some continuous field of C*-algebras whose fibers are noncommutative tori. Using a result of Echterhoff et al., our construction gives generators of K_0 of all noncommutative tori.
Noncommutative induced gauge theories on Moyal spaces
International Nuclear Information System (INIS)
Wallet, J-C
2008-01-01
Noncommutative field theories on Moyal spaces can be conveniently handled within a framework of noncommutative geometry. Several renormalisable matter field theories that are now identified are briefly reviewed. The construction of renormalisable gauge theories on these noncommutative Moyal spaces, which remains so far a challenging problem, is then closely examined. The computation in 4-D of the one-loop effective gauge theory generated from the integration over a scalar field appearing in a renormalisable theory minimally coupled to an external gauge potential is presented. The gauge invariant effective action is found to involve, beyond the expected noncommutative version of the pure Yang-Mills action, additional terms that may be interpreted as the gauge theory counterpart of the harmonic term, which for the noncommutative ψ 4 -theory on Moyal space ensures renormalisability. A class of possible candidates for renormalisable gauge theory actions defined on Moyal space is presented and discussed
Quantumness beyond quantum mechanics
International Nuclear Information System (INIS)
Sanz, Ángel S
2012-01-01
Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).
Quantum opto-mechanics with micromirrors : combining nano-mechanics with quantum optics
International Nuclear Information System (INIS)
Groeblacher, S.
2010-01-01
This work describes more than four years of research on the effects of the radiation-pressure force of light on macroscopic mechanical structures. The basic system studied here is a mechanical oscillator that is highly reflective and part of an optical resonator. It interacts with the optical cavity mode via the radiation-pressure force. Both the dynamics of the mechanical oscillation and the properties of the light field are modified through this interaction. In our experiments we use quantum optical tools (such as homodyning and down-conversion) with the goal of ultimately showing quantum behavior of the mechanical center of mass motion. In this thesis we present several experiments that pave the way towards this goal and when combined should allow the demonstration of the envisioned quantum phenomena, including entanglement, teleportation and Schroeodinger cat states. The study of quantum behavior of truly macroscopic systems is a long outstanding goal, which will help to answer some of the most fundamental questions in quantum physics today: Why is the world around us classical and not quantum? Is there a size- or mass-limit to systems for them to behave according to quantum mechanics? Is quantum theory complete or do we have to extend it to include mechanisms such as decoherence? Can we use the quantum nature of macroscopic objects to, for example, improve the measurement precision of classical apparatuses? The experiments discussed in this thesis include the very first passive radiation-pressure cooling of a mechanical oscillator in a cryogenic optical resonator, as well as the experimental demonstration of radiation-pressure cooling close to the mechanical quantum ground state. Cooling of the mechanical motion is an important pre-condition for observing quantum effects of the mechanical oscillator. In another experiment, we have demonstrated that we are able to enter the strong-coupling regime of the optomechanical system a regime where coherent energy
International Nuclear Information System (INIS)
Rae, A.I.M.
1981-01-01
This book, based on a thirty lecture course given to students at the beginning of their second year, covers the quantum mechanics required by physics undergraduates. Early chapters deal with wave mechanics, including a discussion of the energy states of the hydrogen atom. These are followed by a more formal development of the theory, leading to a discussion of some advanced applications and an introduction to the conceptual problems associated with quantum measurement theory. Emphasis is placed on the fundamentals of quantum mechanics. Problems are included at the end of each chapter. (U.K.)
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
Note on the extended noncommutativity of coordinates
International Nuclear Information System (INIS)
Boulahoual, Amina; Sedra, My. Brahim
2001-04-01
We present in this short note an idea about a possible extension of the standard noncommutative algebra to the formal differential operators framework. In this sense, we develop an analysis and derive an extended noncommutative algebra given by [x a , x b ] * =i(θ+χ) ab where θ ab , is the standard noncommutative parameter and χ ab (x)≡χ ab μ (x)δ μ =1/2(x a θ μ b -x b θ a )δ μ is an antisymmetric non-constant vector-field shown to play the role of the extended deformation parameter. This idea was motivated by the importance of noncommutative geometry framework in the current subject of D-brane and matrix theory physics. (author)
Schürmann, Michael
2008-01-01
This volume contains the revised and completed notes of lectures given at the school "Quantum Potential Theory: Structure and Applications to Physics," held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald from February 26 to March 10, 2007. Quantum potential theory studies noncommutative (or quantum) analogs of classical potential theory. These lectures provide an introduction to this theory, concentrating on probabilistic potential theory and it quantum analogs, i.e. quantum Markov processes and semigroups, quantum random walks, Dirichlet forms on C* and von Neumann algebras, and boundary theory. Applications to quantum physics, in particular the filtering problem in quantum optics, are also presented.
Emergent mechanics, quantum and un-quantum
Ralston, John P.
2013-10-01
There is great interest in quantum mechanics as an "emergent" phenomenon. The program holds that nonobvious patterns and laws can emerge from complicated physical systems operating by more fundamental rules. We find a new approach where quantum mechanics itself should be viewed as an information management tool not derived from physics nor depending on physics. The main accomplishment of quantum-style theory comes in expanding the notion of probability. We construct a map from macroscopic information as data" to quantum probability. The map allows a hidden variable description for quantum states, and efficient use of the helpful tools of quantum mechanics in unlimited circumstances. Quantum dynamics via the time-dependent Shroedinger equation or operator methods actually represents a restricted class of classical Hamiltonian or Lagrangian dynamics, albeit with different numbers of degrees of freedom. We show that under wide circumstances such dynamics emerges from structureless dynamical systems. The uses of the quantum information management tools are illustrated by numerical experiments and practical applications
Laskin, Nick
2018-01-01
Fractional quantum mechanics is a recently emerged and rapidly developing field of quantum physics. This is the first monograph on fundamentals and physical applications of fractional quantum mechanics, written by its founder. The fractional Schrödinger equation and the fractional path integral are new fundamental physical concepts introduced and elaborated in the book. The fractional Schrödinger equation is a manifestation of fractional quantum mechanics. The fractional path integral is a new mathematical tool based on integration over Lévy flights. The fractional path integral method enhances the well-known Feynman path integral framework. Related topics covered in the text include time fractional quantum mechanics, fractional statistical mechanics, fractional classical mechanics and the α-stable Lévy random process. The book is well-suited for theorists, pure and applied mathematicians, solid-state physicists, chemists, and others working with the Schrödinger equation, the path integral technique...
Abelian Toda field theories on the noncommutative plane
Cabrera-Carnero, Iraida
2005-10-01
Generalizations of GL(n) abelian Toda and GL with tilde above(n) abelian affine Toda field theories to the noncommutative plane are constructed. Our proposal relies on the noncommutative extension of a zero-curvature condition satisfied by algebra-valued gauge potentials dependent on the fields. This condition can be expressed as noncommutative Leznov-Saveliev equations which make possible to define the noncommutative generalizations as systems of second order differential equations, with an infinite chain of conserved currents. The actions corresponding to these field theories are also provided. The special cases of GL(2) Liouville and GL with tilde above(2) sinh/sine-Gordon are explicitly studied. It is also shown that from the noncommutative (anti-)self-dual Yang-Mills equations in four dimensions it is possible to obtain by dimensional reduction the equations of motion of the two-dimensional models constructed. This fact supports the validity of the noncommutative version of the Ward conjecture. The relation of our proposal to previous versions of some specific Toda field theories reported in the literature is presented as well.
On noncommutative open string theories
International Nuclear Information System (INIS)
Russo, J.G.; Sheikh-Jabbari, M.M.
2000-08-01
We investigate new compactifications of OM theory giving rise to a 3+1 dimensional open string theory with noncommutative x 0 -x 1 and x 2 -x 3 coordinates. The theory can be directly obtained by starting with a D3 brane with parallel (near critical) electric and magnetic field components, in the presence of a RR scalar field. The magnetic parameter permits to interpolate continuously between the x 0 -x 1 noncommutative open string theory and the x 2 -x 3 spatial noncommutative U(N) super Yang-Mills theory. We discuss SL(2, Z) transformations of this theory. Using the supergravity description of the large N limit, we also compute corrections to the quark-antiquark Coulomb potential arising in the NCOS theory. (author)
Matrix De Rham Complex and Quantum A-infinity algebras
Barannikov, S.
2014-04-01
I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A ∞-algebras, introduced in Barannikov (Modular operads and non-commutative Batalin-Vilkovisky geometry. IMRN, vol. 2007, rnm075. Max Planck Institute for Mathematics 2006-48, 2007), is represented via de Rham differential acting on the supermatrix spaces related with Bernstein-Leites simple associative algebras with odd trace q( N), and gl( N| N). I also show that the matrix Lagrangians from Barannikov (Noncommutative Batalin-Vilkovisky geometry and matrix integrals. Isaac Newton Institute for Mathematical Sciences, Cambridge University, 2006) are represented by equivariantly closed differential forms.
Two-dimensional black holes and non-commutative spaces
International Nuclear Information System (INIS)
Sadeghi, J.
2008-01-01
We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon
Scalar curvature in conformal geometry of Connes-Landi noncommutative manifolds
Liu, Yang
2017-11-01
We first propose a conformal geometry for Connes-Landi noncommutative manifolds and study the associated scalar curvature. The new scalar curvature contains its Riemannian counterpart as the commutative limit. Similar to the results on noncommutative two tori, the quantum part of the curvature consists of actions of the modular derivation through two local curvature functions. Explicit expressions for those functions are obtained for all even dimensions (greater than two). In dimension four, the one variable function shows striking similarity to the analytic functions of the characteristic classes appeared in the Atiyah-Singer local index formula, namely, it is roughly a product of the j-function (which defines the A ˆ -class of a manifold) and an exponential function (which defines the Chern character of a bundle). By performing two different computations for the variation of the Einstein-Hilbert action, we obtain deep internal relations between two local curvature functions. Straightforward verification for those relations gives a strong conceptual confirmation for the whole computational machinery we have developed so far, especially the Mathematica code hidden behind the paper.
Arnlind, Joakim; Holm, Christoffer
2018-01-01
A noncommutative algebra corresponding to the classical catenoid is introduced together with a differential calculus of derivations. We prove that there exists a unique metric and torsion-free connection that is compatible with the complex structure, and the curvature is explicitly calculated. A noncommutative analogue of the fact that the catenoid is a minimal surface is studied by constructing a Laplace operator from the connection and showing that the embedding coordinates are harmonic. Furthermore, an integral is defined and the total curvature is computed. Finally, classes of left and right modules are introduced together with constant curvature connections, and bimodule compatibility conditions are discussed in detail.
Photon defects in noncommutative standard model candidates
International Nuclear Information System (INIS)
Abel, S.A.; Khoze, V.V.
2006-06-01
Restrictions imposed by gauge invariance in noncommutative spaces together with the effects of ultraviolet/infrared mixing lead to strong constraints on possible candidates for a noncommutative extension of the Standard Model. We study a general class of noncommutative models consistent with these restrictions. Specifically we consider models based upon a gauge theory with the gauge group U(N 1 ) x U(N 2 ) x.. x U(N m ) coupled to matter fields transforming in the (anti)-fundamental, bi-fundamental and adjoint representations. We pay particular attention to overall trace-U(1) factors of the gauge group which are affected by the ultraviolet/infrared mixing. Typically, these trace-U(1) gauge fields do not decouple sufficiently fast in the infrared, and lead to sizable Lorentz symmetry violating effects in the low-energy effective theory. In a 4-dimensional theory on a continuous space-time making these effects unobservable would require making the effects of noncommutativity tiny, M NC >> M P . This severely limits the phenomenological prospects of such models. However, adding additional universal extra dimensions the trace-U(1) factors decouple with a power law and the constraint on the noncommutativity scale is weakened considerably. Finally, we briefly mention some interesting properties of the photon that could arise if the noncommutative theory is modified at a high energy scale. (Orig.)
Noncommutative de Sitter and FRW spaces
International Nuclear Information System (INIS)
Burić, Maja; Madore, John
2015-01-01
Several versions of fuzzy four-dimensional de Sitter space are constructed using the noncommutative frame formalism. Although all noncommutative spacetimes which are found have commutative de Sitter metric as a classical limit, the algebras and the differential calculi which define them have many differences, which we derive and discuss
Quantum mechanics with quantum time
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Using a non-canonical Lie structure of classical mechanics a new algebra of quantum mechanical observables is constructed. The new algebra, in addition to the notion of classical time, makes it possible to introduce the notion of quantum time. A new type of uncertainty relation is derived. (author)
Holographic entanglement in a noncommutative gauge theory
International Nuclear Information System (INIS)
Fischler, Willy; Kundu, Arnab; Kundu, Sandipan
2014-01-01
In this article we investigate aspects of entanglement entropy and mutual information in a large-N strongly coupled noncommutative gauge theory, both at zero and at finite temperature. Using the gauge-gravity duality and the Ryu-Takayanagi (RT) prescription, we adopt a scheme for defining spatial regions on such noncommutative geometries and subsequently compute the corresponding entanglement entropy. We observe that for regions which do not lie entirely in the noncommutative plane, the RT-prescription yields sensible results. In order to make sense of the divergence structure of the corresponding entanglement entropy, it is essential to introduce an additional cut-off in the theory. For regions which lie entirely in the noncommutative plane, the corresponding minimal area surfaces can only be defined at this cut-off and they have distinctly peculiar properties
Advanced Visual Quantum Mechanics
Thaller, Bernd
2005-01-01
Advanced Visual Quantum Mechanics is a systematic effort to investigate and to teach quantum mechanics with the aid of computer-generated animations. It is a self-contained textbook that combines selected topics from atomic physics (spherical symmetry, the hydrogen atom, and particles with spin) with an introduction to quantum information theory (qubits, EPR paradox, teleportation, quantum computers). It explores relativistic quantum mechanics and the strange behavior of Dirac equation solutions. A series of appendices covers important topics from perturbation and scattering theory. The book places an emphasis on ideas and concepts, with a fair to moderate amount of mathematical rigor. Though this book stands alone, it can also be paired with Thaller Visual Quantum Mechanics to form a comprehensive course in quantum mechanics. The software for the first book earned the European Academic Software Award 2000 for outstanding innovation in its field.
On the renormalizability of noncommutative U(1) gauge theory-an algebraic approach
International Nuclear Information System (INIS)
Vilar, L C Q; Tedesco, D G; Lemes, V E R; Ventura, O S
2010-01-01
We investigate the quantum effects of the nonlocal gauge invariant operator 1/D 2 F μν * 1/D 2 F μν in the noncommutative U(1) action and its consequences to the infrared sector of the theory. Nonlocal operators of such kind were proposed to solve the infrared problem of the noncommutative gauge theories evading the questions on the explicit breaking of the Lorentz invariance. More recently, a first step in the localization of this operator was accomplished by means of the introduction of an extra tensorial matter field, and the first loop analysis was carried out (Blaschke et al (2009 Eur. Phys. J. C 62 433-43)). We will complete this localization avoiding the introduction of new degrees of freedom beyond those of the original action by using only BRST doublets. This will allow us to conduct a complete BRST algebraic study of the renormalizability of the theory, following Zwanziger's method of localization of nonlocal operators in QFT.
Symmetry and stability of open quantum systems
International Nuclear Information System (INIS)
Scutaru, H.
1979-01-01
The presentation of the thesis involves an introduction and six chapters. Chapter 1 presents notions and results used in the other chpaters. Chapters 2-6 present our results which are focused on two notions: generalized observable and dynamic semigroup. These notions characterize a specific research domain (set up during the last 10 years) which is currently called quantum mechanics of open systems. The two notions (generalized observable and dynamic semigroup) are mathematically correlated. They belong to the set of completely positive linear applications among observable algebras. This fact, associated with that formulation of quantum mechanics according to which it is a special case of quantum mechanics namely, that for which the observable algebra is commutative, help to understand the similar essence of the results presented in chapter 2-6. Thus, the natural mathematical background has been achieved for our results; it is represented by that category whose objects are the observable algebras and whose morphisms are completely positive linear contractions generating unity within unity. These ideas are extensively presented in the introduction. The fact that the relations between classical mechanics and quantum mechanics can be rigorously treated as positive linear applications between classical observable algebras commutative and quantum observable algebras non-commutative, which are automatically fully positive, has been initially shown in our paper. (author)
Quantum mechanics. An introduction
International Nuclear Information System (INIS)
Lesch, H.
2008-01-01
The following topics are dealt with: The way to quantum mechanics starting from thermal radiation and the stability of matter, Heisenberg's uncertainty relation, the impact of quantum mechanics on technology, the description of the big bang by means of quantum mechanics
Fitzpatrick, Richard
2015-01-01
Quantum mechanics was developed during the first few decades of the twentieth century via a series of inspired guesses made by various physicists, including Planck, Einstein, Bohr, Schroedinger, Heisenberg, Pauli, and Dirac. All these scientists were trying to construct a self-consistent theory of microscopic dynamics that was compatible with experimental observations. The purpose of this book is to present quantum mechanics in a clear, concise, and systematic fashion, starting from the fundamental postulates, and developing the theory in as logical manner as possible. Topics covered in the book include the fundamental postulates of quantum mechanics, angular momentum, time-dependent and time-dependent perturbation theory, scattering theory, identical particles, and relativistic electron theory.
From quantum gravity to quantum field theory via noncommutative geometry
International Nuclear Information System (INIS)
Aastrup, Johannes; Grimstrup, Jesper Møller
2014-01-01
A link between canonical quantum gravity and fermionic quantum field theory is established in this paper. From a spectral triple construction, which encodes the kinematics of quantum gravity, we construct semi-classical states which, in a semi-classical limit, give a system of interacting fermions in an ambient gravitational field. The emergent interaction involves flux tubes of the gravitational field. In the additional limit, where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. (paper)
Classicality in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Dreyer, Olaf [Theoretical Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ (United Kingdom)
2007-05-15
In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity.
Classicality in quantum mechanics
International Nuclear Information System (INIS)
Dreyer, Olaf
2007-01-01
In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity
Noncommutative gauge theories and Kontsevich's formality theorem
International Nuclear Information System (INIS)
Jurco, B.; Schupp, P.; Wess, J.
2001-01-01
The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a 'Mini Seiberg-Witten map' that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor
Relativistic quantum mechanics
International Nuclear Information System (INIS)
Ollitrault, J.Y.
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)
Cancellation of soft and collinear divergences in noncommutative QED
International Nuclear Information System (INIS)
Mirza, B.; Zarei, M.
2006-01-01
In this paper, we investigate the behavior of noncommutative IR divergences and will also discuss their cancellation in the physical cross sections. The commutative IR (soft) divergences existing in the nonplanar diagrams will be examined in order to prove an all-order cancellation of these divergences using the Weinberg's method. In noncommutative QED, collinear divergences due to triple photon splitting vertex, were encountered, which are shown to be canceled out by the noncommutative version of KLN theorem. This guarantees that there is no mixing between the Collinear, soft divergences and noncommutative IR divergences
Noncommutative field theory and violation of translation invariance
International Nuclear Information System (INIS)
Bertolami, Orfeu; Guisado, Luis
2003-01-01
Noncommutative field theories with commutator of the coordinates of the form [x μ , x ν ] = i Λ μν ω x ω with nilpotent structure constants are studied and shown that a free quantum field theory is not affected. Invariance under translations is broken and the conservation of energy-momentum is violated, obeying a new law which is expressed by a Poincare-invariant equation. The resulting new kinematics is studied and applied to simple examples and to astrophysical puzzles, such as the observed violation of the GZK cutoff. The λΦ 4 quantum field theory is also considered in this context. In particular, self interaction terms violate the usual conservation of energy-momentum and, hence, the radiative correction to the propagator is altered. The correction to first order in λ is calculated. The usual UV divergent terms are still present, but a new type of term also emerges, which is IR divergent, violates momentum conservation and implies a correction to the dispersion relation. (author)
Reversibility conditions for quantum channels and their applications
Energy Technology Data Exchange (ETDEWEB)
Shirokov, M E [Steklov Mathematical Institute of the Russian Academy of Sciences (Russian Federation)
2013-08-31
Conditions for a quantum channel (noncommutative Markov operator) to be reversible with respect to complete families of quantum states with bounded rank are obtained. A description of all quantum channels reversible with respect to a given (orthogonal or nonorthogonal) complete family of pure states is given. Some applications in quantum information theory are considered. Bibliography: 20 titles.
Noncommutative SO(n) and Sp(n) gauge theories
International Nuclear Information System (INIS)
Bonora, L.; INFN, Sezione di Trieste, Trieste; Schnabl, M.; INFN, Sezione di Trieste, Trieste; Sheikh-Jabbari, M.M.; Tomasiello, A.
2000-08-01
We study the generalization of noncommutative gauge theories to the case of orthogonal and symplectic groups. We find out that this is possible, since we are allowed to define orthogonal and symplectic subgroups of noncommutative unitary gauge transformations even though the gauge potentials and gauge transformations are not valued in the orthogonal and symplectic subalgebras of the Lie algebra of antihermitean matrices. Our construction relies on an antiautomorphism of the basic noncommutative algebra of functions which generalizes the charge conjugation operator of ordinary field theory. We show that the corresponding noncommutative picture from low energy string theory is obtained via orientifold projection in the presence of a non-trivial NSNS B-field. (author)
Accretion onto a noncommutative-inspired Schwarzschild black hole
Gangopadhyay, Sunandan; Paik, Biplab; Mandal, Rituparna
2018-05-01
In this paper, we investigate the problem of ordinary baryonic matter accretion onto the noncommutative (NC) geometry-inspired Schwarzschild black hole. The fundamental equations governing the spherically symmetric steady state matter accretion are deduced. These equations are seen to be modified due to the presence of noncommutativity. The matter accretion rate is computed and is found to increase rapidly with the increase in strength of the NC parameter. The sonic radius reduces while the sound speed at the sonic point increases with the increase in the strength of noncommutativity. The profile of the thermal environment is finally investigated below the sonic radius and at the event horizon and is found to be affected by noncommutativity.
Black-body radiation of noncommutative gauge fields
International Nuclear Information System (INIS)
Fatollahi, Amir H.; Hajirahimi, Maryam
2006-01-01
The black-body radiation is considered in a theory with noncommutative electRomegnetic fields; that is noncommutativity is introduced in field space, rather than in real space. A direct implication of the result on cosmic microwave background map is argued
Mapping spaces and automorphism groups of toric noncommutative spaces
Barnes, Gwendolyn E.; Schenkel, Alexander; Szabo, Richard J.
2017-09-01
We develop a sheaf theory approach to toric noncommutative geometry which allows us to formalize the concept of mapping spaces between two toric noncommutative spaces. As an application, we study the `internalized' automorphism group of a toric noncommutative space and show that its Lie algebra has an elementary description in terms of braided derivations.
Towards Noncommutative Linking Numbers via the Seiberg-Witten Map
Directory of Open Access Journals (Sweden)
H. García-Compeán
2015-01-01
Full Text Available Some geometric and topological implications of noncommutative Wilson loops are explored via the Seiberg-Witten map. In the abelian Chern-Simons theory on a three-dimensional manifold, it is shown that the effect of noncommutativity is the appearance of 6n new knots at the nth order of the Seiberg-Witten expansion. These knots are trivial homology cycles which are Poincaré dual to the higher-order Seiberg-Witten potentials. Moreover the linking number of a standard 1-cycle with the Poincaré dual of the gauge field is shown to be written as an expansion of the linking number of this 1-cycle with the Poincaré dual of the Seiberg-Witten gauge fields. In the process we explicitly compute the noncommutative “Jones-Witten” invariants up to first order in the noncommutative parameter. Finally in order to exhibit a physical example, we apply these ideas explicitly to the Aharonov-Bohm effect. It is explicitly displayed at first order in the noncommutative parameter; we also show the relation to the noncommutative Landau levels.
Quantum mechanics for pedestrians
Pade, Jochen
2014-01-01
This book provides an introduction into the fundamentals of non-relativistic quantum mechanics. In Part 1, the essential principles are developed. Applications and extensions of the formalism can be found in Part 2. The book includes not only material that is presented in traditional textbooks on quantum mechanics, but also discusses in detail current issues such as interaction-free quantum measurements, neutrino oscillations, various topics in the field of quantum information as well as fundamental problems and epistemological questions, such as the measurement problem, entanglement, Bell's inequality, decoherence, and the realism debate. A chapter on current interpretations of quantum mechanics concludes the book. To develop quickly and clearly the main principles of quantum mechanics and its mathematical formulation, there is a systematic change between wave mechanics and algebraic representation in the first chapters. The required mathematical tools are introduced step by step. Moreover, the appendix coll...
Jorgensen, Palle
2017-01-01
The book features new directions in analysis, with an emphasis on Hilbert space, mathematical physics, and stochastic processes. We interpret 'non-commutative analysis' broadly to include representations of non-Abelian groups, and non-Abelian algebras; emphasis on Lie groups and operator algebras (C* algebras and von Neumann algebras.)A second theme is commutative and non-commutative harmonic analysis, spectral theory, operator theory and their applications. The list of topics includes shift invariant spaces, group action in differential geometry, and frame theory (over-complete bases) and their applications to engineering (signal processing and multiplexing), projective multi-resolutions, and free probability algebras.The book serves as an accessible introduction, offering a timeless presentation, attractive and accessible to students, both in mathematics and in neighboring fields.
Quantumness-generating capability of quantum dynamics
Li, Nan; Luo, Shunlong; Mao, Yuanyuan
2018-04-01
We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.
Non-commutativity in polar coordinates
Energy Technology Data Exchange (ETDEWEB)
Edwards, James P. [Universidad Michoacana de San Nicolas de Hidalgo, Ciudad Universitaria, Instituto de Fisica y Matematicas, Morelia, Michoacan (Mexico)
2017-05-15
We reconsider the fundamental commutation relations for non-commutative R{sup 2} described in polar coordinates with non-commutativity parameter θ. Previous analysis found that the natural transition from Cartesian coordinates to the traditional polar system led to a representation of [r, φ] as an everywhere diverging series. In this article we compute the Borel resummation of this series, showing that it can subsequently be extended throughout parameter space and hence provide an interpretation of this commutator. Our analysis provides a complete solution for arbitrary r and θ that reproduces the earlier calculations at lowest order and benefits from being generally applicable to problems in a two-dimensional non-commutative space. We compare our results to previous literature in the (pseudo-)commuting limit, finding a surprising spatial dependence for the coordinate commutator when θ >> r{sup 2}. Finally, we raise some questions for future study in light of this progress. (orig.)
Bell inequalities and experiments on quantum correlations for macroscopic distances
International Nuclear Information System (INIS)
Grib, A.A.
1984-01-01
Recently in different laboratories experiments checking the validity of Bell's inequalities were made. These inequalities give the answer to the qUestion which interpretation of quantum mechanics is correct: either Einstein's interpretation according to which properties of quantum system exist as elements of physical reality independently from their observation or Copenhagen's interpretation due to Bohr and Fock according to which quantUm properties described by noncommuting operators don't exist independently from measurement. Experiments are classified on three groups: Those with optical photons with γ-quanta and with nucleons. The experiments undoubtedly show that Bell's inequalities are not satisfied, so the Copenhagen's interpretation of quantum mehanics and the principle of relativity to the means of measurement of properties of the microsystem give the only non-contradicting-to-experiment description of quantum phenomena
Quantum symmetries of classical spaces
Bhowmick, Jyotishman; Goswami, Debashish; Roy, Subrata Shyam
2009-01-01
We give a general scheme for constructing faithful actions of genuine (noncommutative as $C^*$ algebra) compact quantum groups on classical topological spaces. Using this, we show that: (i) a compact connected classical space can have a faithful action by a genuine compact quantum group, and (ii) there exists a spectral triple on a classical connected compact space for which the quantum group of orientation and volume preserving isometries (in the sense of \\cite{qorient}) is a genuine quantum...
Computational commutative and non-commutative algebraic geometry
Cojocaru, S; Ufnarovski, V
2005-01-01
This publication gives a good insight in the interplay between commutative and non-commutative algebraic geometry. The theoretical and computational aspects are the central theme in this study. The topic is looked at from different perspectives in over 20 lecture reports. It emphasizes the current trends in commutative and non-commutative algebraic geometry and algebra. The contributors to this publication present the most recent and state-of-the-art progresses which reflect the topic discussed in this publication. Both researchers and graduate students will find this book a good source of information on commutative and non-commutative algebraic geometry.
Continual Lie algebras and noncommutative counterparts of exactly solvable models
Zuevsky, A.
2004-01-01
Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.
International Nuclear Information System (INIS)
Landsberg, P.T.
1988-01-01
It is suggested that an oversight occurred in classical mechanics when time-derivatives of observables were treated on the same footing as the undifferentiated observables. Removal of this oversight points in the direction of quantum mechanics. Additional light is thrown on uncertainty relations and on quantum mechanics, as a possible form of a subtle statistical mechanics, by the formulation of a classical uncertainty relation for a very simple model. The existence of universal motion, i.e., of zero-point energy, is lastly made plausible in terms of a gravitational constant which is time-dependent. By these three considerations an attempt is made to link classical and quantum mechanics together more firmly, thus giving a better understanding of the latter
Quantifying Quantum-Mechanical Processes.
Hsieh, Jen-Hsiang; Chen, Shih-Hsuan; Li, Che-Ming
2017-10-19
The act of describing how a physical process changes a system is the basis for understanding observed phenomena. For quantum-mechanical processes in particular, the affect of processes on quantum states profoundly advances our knowledge of the natural world, from understanding counter-intuitive concepts to the development of wholly quantum-mechanical technology. Here, we show that quantum-mechanical processes can be quantified using a generic classical-process model through which any classical strategies of mimicry can be ruled out. We demonstrate the success of this formalism using fundamental processes postulated in quantum mechanics, the dynamics of open quantum systems, quantum-information processing, the fusion of entangled photon pairs, and the energy transfer in a photosynthetic pigment-protein complex. Since our framework does not depend on any specifics of the states being processed, it reveals a new class of correlations in the hierarchy between entanglement and Einstein-Podolsky-Rosen steering and paves the way for the elaboration of a generic method for quantifying physical processes.
Classical Mechanics as Nonlinear Quantum Mechanics
International Nuclear Information System (INIS)
Nikolic, Hrvoje
2007-01-01
All measurable predictions of classical mechanics can be reproduced from a quantum-like interpretation of a nonlinear Schroedinger equation. The key observation leading to classical physics is the fact that a wave function that satisfies a linear equation is real and positive, rather than complex. This has profound implications on the role of the Bohmian classical-like interpretation of linear quantum mechanics, as well as on the possibilities to find a consistent interpretation of arbitrary nonlinear generalizations of quantum mechanics
Renormalisation in Quantum Mechanics, Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.
2001-01-01
We suggest how to construct non-perturbatively a renormalized action in quantum mechanics. We discuss similarties and differences with the standard effective action. We propose that the new quantum action is suitable to define and compute quantum instantons and quantum chaos.
Prologue to super quantum mechanics something is rotten in the state of quantum mechanics
Vaguine, Victor
2012-01-01
Since its foundation more than eight decades ago, quantum mechanics has been plagued by enigmas, mysteries and paradoxes and held hostage by quantum positivism. This fact strongly suggests that something is fundamentally wrong with the quantum mechanics paradigm. The best scientific minds, such as Albert Einstein, Louis de Broglie, David Bohm, Richard Feynman and others have spent years of their professional lives attempting to find resolution to the quantum mechanics predicament, with not much success. A shift of the quantum mechanics paradigm toward a deeper physics theory is long overdue.
Nucleon structure functions in noncommutative space-time
Energy Technology Data Exchange (ETDEWEB)
Rafiei, A.; Rezaei, Z.; Mirjalili, A. [Yazd University, Physics Department, Yazd (Iran, Islamic Republic of)
2017-05-15
In the context of noncommutative space-time we investigate the nucleon structure functions which play an important role in identifying the internal structure of nucleons. We use the corrected vertices and employ new vertices that appear in two approaches of noncommutativity and calculate the proton structure functions in terms of the noncommutative tensor θ{sub μν}. To check our results we plot the nucleon structure function (NSF), F{sub 2}(x), and compare it with experimental data and the results from the GRV, GJR and CT10 parametrization models. We show that with the new vertex that arises the noncommutativity correction will lead to a better consistency between theoretical results and experimental data for the NSF. This consistency will be better for small values of the Bjorken variable x. To indicate and confirm the validity of our calculations we also act conversely. We obtain a lower bound for the numerical values of Λ{sub NC} scale which correspond to recent reports. (orig.)
International Nuclear Information System (INIS)
Vladimirov, V.S.; Volovich, I.V.
1988-01-01
Quantum mechanics above the field of p-adic numbers is constructed. Three formulations of p-adic quantum mechanics are considered: 1) quantum mechanics with complex-valued wave functions and p-adic coordinates and pulses; an approach based on Weyl representation is suggested; 2) the probability (Euclidean) formulation; 3) the secondary quantization representation (Fock representation) with p-adic wave functions
International Nuclear Information System (INIS)
Whitaker, A
2004-01-01
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried's well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. To commence with general discussion of the new book, the authors recognise that the graduate student of today almost certainly has substantial experience of wave mechanics, and is probably familiar with the Dirac formalism. The new edition has been almost entirely rewritten; even at the level of basic text, it is difficult to trace sentences or paragraphs that have moved unscathed from one edition to the next. As well as the new topics, many of the old ones are discussed in much greater depth, and the general organisation is entirely different. As compared with the steady rise in level of the 1966 edition, the level of this book is fairly consistent throughout, and from the perspective of a beginning graduate student, I would estimate, a little tough. To sum up, Gottfried and Yan's book contains a vast amount of knowledge and understanding. The
Testing Nonassociative Quantum Mechanics.
Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut
2015-11-27
The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.
Quantum measurement and quantum gravity: many-worlds or collapse of the wavefunction?
International Nuclear Information System (INIS)
Singh, T P
2009-01-01
At present, there are two possible, and equally plausible, explanations for the physics of quantum measurement. The first explanation, known as the many-worlds interpretation, does not require any modification of quantum mechanics, and asserts that at the time of measurement the Universe splits into many branches, one branch for every possible alternative. The various branches do not interfere with each other because of decoherence, thus providing a picture broadly consistent with the observed Universe. The second explanation, which requires quantum mechanics to be modified from its presently known form, is that at the time of measurement the wavefunction collapses into one of the possible alternatives. The two explanations are mutually exclusive, and up until now, no theoretical reasoning has been put forward to choose one explanation over the other. In this article, we provide an argument which implies that the collapse interpretation is favored over the many-worlds interpretation. Our starting point is the assertion (which we justify) that there ought to exist a reformulation of quantum mechanics which does not refer to a classical spacetime manifold. The need for such a reformulation implies that quantum theory becomes nonlinear on the Planck mass/energy scale. Standard linear quantum mechanics is an approximation to this nonlinear theory, valid at energy scales much smaller than the Planck scale. Using ideas based on noncommutative differential geometry, we develop such a reformulation and derive a nonlinear Schroedinger equation, which can explain collapse of the wavefunction. We also obtain an expression for the lifetime of a quantum superposition. We suggest ideas for an experimental test of this model.
Discrete symmetries (C,P,T) in noncommutative field theories
International Nuclear Information System (INIS)
Sheikh-Jabbari, M.M.
2000-01-01
In this paper we study the invariance of the noncommutative gauge theories tinder C, P and T transformations. For the noncommutative space (when only the spatial part of θ is non-zero) we show that NCQED is Parity invariant. In addition, we show that under charge conjugation the theory on noncommutative R θ 4 is transformed to the theory on R -θ 4 , so NCQED is a CP violating theory. The theory remains invariant under time reversal if, together with proper changes in fields, we also change θ by -θ. Hence altogether NCQED is CPT invariant. Moreover we show that the CPT invariance holds for general noncommutative space-time. (author)
Quantum formalism for classical statistics
Wetterich, C.
2018-06-01
In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.
Construction of non-Abelian gauge theories on noncommutative spaces
International Nuclear Information System (INIS)
Jurco, B.; Schupp, P.; Moeller, L.; Wess, J.; Max-Planck-Inst. fuer Physik, Muenchen; Humboldt-Univ., Berlin; Schraml, S.; Humboldt-Univ., Berlin
2001-01-01
We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories. (orig.)
Construction of non-Abelian gauge theories on noncommutative spaces
Energy Technology Data Exchange (ETDEWEB)
Jurco, B.; Schupp, P. [Sektion Physik, Muenchen Univ. (Germany); Moeller, L.; Wess, J. [Sektion Physik, Muenchen Univ. (Germany); Max-Planck-Inst. fuer Physik, Muenchen (Germany); Humboldt-Univ., Berlin (Germany). Inst. fuer Physik; Schraml, S. [Sektion Physik, Muenchen Univ. (Germany)
2001-06-01
We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories. (orig.)
Ghosh, P K
2014-01-01
Quantum mechanics, designed for advanced undergraduate and graduate students of physics, mathematics and chemistry, provides a concise yet self-contained introduction to the formal framework of quantum mechanics, its application to physical problems and the interpretation of the theory. Starting with a review of some of the necessary mathematics, the basic concepts are carefully developed in the text. After building a general formalism, detailed treatment of the standard material - the harmonic oscillator, the hydrogen atom, angular momentum theory, symmetry transformations, approximation methods, identical particle and many-particle systems, and scattering theory - is presented. The concluding chapter discusses the interpretation of quantum mechanics. Some of the important topics discussed in the book are the rigged Hilbert space, deformation quantization, path integrals, coherent states, geometric phases, decoherene, etc. This book is characterized by clarity and coherence of presentation.
Noncommutative QFT and renormalization
International Nuclear Information System (INIS)
Grosse, H.; Wulkenhaar, R.
2006-01-01
It was a great pleasure for me (Harald Grosse) to be invited to talk at the meeting celebrating the 70th birthday of Prof. Julius Wess. I remember various interactions with Julius during the last years: At the time of my studies at Vienna with Walter Thirring, Julius left already Vienna, I learned from his work on effective chiral Lagrangians. Next we met at various conferences and places like CERN (were I worked with Andre Martin, an old friend of Julius), and we all learned from Julius' and Bruno's creation of supersymmetry, next we realized our common interests in noncommutative quantum field theory and did have an intensive exchange. Julius influenced our perturbative approach to gauge field theories were we used the Seiberg-Witten map after his advice. And finally I lively remember the sad days when during my invitation to Vienna Julius did have the serious heart attack. So we are very happy, that you recovered so well, and we wish you all the best for the forthcoming years. Many happy recurrences. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Introduction to Dubois-Violette's non-commutative differential geometry
International Nuclear Information System (INIS)
Djemai, A.E.F.
1994-07-01
In this work, one presents a detailed review of Dubois-Violette et al. approach to non-commutative differential calculus. The non-commutative differential geometry of matrix algebras and the non-commutative Poisson structures are treated in some details. We also present the analog of the Maxwell's theory and the new models of Yang-Mills-Higgs theories that can be constructed in this framework. In particular, some simple models are compared with the standard model. Finally, we discuss some perspectives and open questions. (author). 32 refs
International Nuclear Information System (INIS)
Omnes, R.
2000-01-01
The author presents the interpretation of quantum mechanics in a simple and direct way. This book may be considered as a complement of specialized books whose aim is to present the mathematical developments of quantum mechanics. As early as the beginning of quantum theory, Bohr, Heisenberg and Pauli proposed the basis of what is today called the interpretation of Copenhagen. This interpretation is still valid but 2 important discoveries have led to renew some aspects of the interpretation of Copenhagen. The first one was the discovery of the decoherence phenomenon which is responsible for the absence of quantum interferences in the macroscopic world. The second discovery was the achievement of the complete derivation of classical physics from quantum physics, it means that the classical determinism fits in the framework of quantum probabilism. A short summary ends each chapter. (A.C.)
An integrable noncommutative version of the sine-Gordon system
International Nuclear Information System (INIS)
Grisaru, Marcus T.; Penati, Silvia
2003-01-01
Using the bicomplex approach we discuss an integrable noncommutative system in two-dimensional Euclidean space. It is described by an equation of motion which reduces to the ordinary sine-Gordon equation when the noncommutation parameter is removed, plus a constraint equation which is nontrivial only in the noncommutative case. The implications of this constraint, which is required by integrability but seems to reduce the space of classical solutions, remain to be understood. We show that the system has an infinite number of conserved currents and we give the general recursive relation for constructing them. For the particular cases of lower spin nontrivial currents we work out the explicit expressions and perform a direct check of their conservation. These currents reduce to the usual sine-Gordon currents in the commutative limit. We find classical 'localized' solutions to first order in the noncommutativity parameter and describe the Backlund transformations for our system. Finally, we comment on the relation of our noncommutative system to the commutative sine-Gordon system
Introduction to quantum mechanics
Phillips, A C
2003-01-01
Introduction to Quantum Mechanics is an introduction to the power and elegance of quantum mechanics. Assuming little in the way of prior knowledge, quantum concepts are carefully and precisely presented, and explored through numerous applications and problems. Some of the more challenging aspects that are essential for a modern appreciation of the subject have been included, but are introduced and developed in the simplest way possible.Undergraduates taking a first course on quantum mechanics will find this text an invaluable introduction to the field and help prepare them for more adv
Dirac, Paul Adrien Maurice
1964-01-01
The author of this concise, brilliant series of lectures on mathematical methods in quantum mechanics was one of the shining intellects in the field, winning a Nobel prize in 1933 for his pioneering work in the quantum mechanics of the atom. Beyond that, he developed the transformation theory of quantum mechanics (which made it possible to calculate the statistical distribution of certain variables), was one of the major authors of the quantum theory of radiation, codiscovered the Fermi-Dirac statistics, and predicted the existence of the positron.The four lectures in this book were delivered
Quantum spaces, central extensions of Lie groups and related quantum field theories
Poulain, Timothé; Wallet, Jean-Christophe
2018-02-01
Quantum spaces with su(2) noncommutativity can be modelled by using a family of SO(3)-equivariant differential *-representations. The quantization maps are determined from the combination of the Wigner theorem for SU(2) with the polar decomposition of the quantized plane waves. A tracial star-product, equivalent to the Kontsevich product for the Poisson manifold dual to su(2) is obtained from a subfamily of differential *-representations. Noncommutative (scalar) field theories free from UV/IR mixing and whose commutative limit coincides with the usual ϕ 4 theory on ℛ3 are presented. A generalization of the construction to semi-simple possibly non simply connected Lie groups based on their central extensions by suitable abelian Lie groups is discussed. Based on a talk presented by Poulain T at the XXVth International Conference on Integrable Systems and Quantum symmetries (ISQS-25), Prague, June 6-10 2017.
Noncommutative GUTs, Standard Model and C,P,T
International Nuclear Information System (INIS)
Aschieri, P.; Jurco, B.; Schupp, P.; Wess, J.
2003-01-01
Noncommutative Yang-Mills theories are sensitive to the choice of the representation that enters in the gauge kinetic term. We constrain this ambiguity by considering grand unified theories. We find that at first order in the noncommutativity parameter θ, SU(5) is not truly a unified theory, while SO(10) has a unique noncommutative generalization. In view of these results we discuss the noncommutative SM theory that is compatible with SO(10) GUT and find that there are no modifications to the SM gauge kinetic term at lowest order in θ. We study in detail the reality, Hermiticity and C,P,T properties of the Seiberg-Witten map and of the resulting effective actions expanded in ordinary fields. We find that in models of GUTs (or compatible with GUTs) right-handed fermions and left-handed ones appear with opposite Seiberg-Witten map
Noncommutative GUTs, Standard Model and C,P,T
Energy Technology Data Exchange (ETDEWEB)
Aschieri, P. E-mail: aschieri@theorie.physik.uni-muenchen.de; Jurco, B. E-mail: jurco@theorie.physik.uni-muenchen.de; Schupp, P. E-mail: p.schupp@iu-bremen.de; Wess, J. E-mail: wess@theorie.physik.uni-muenchen.de
2003-02-17
Noncommutative Yang-Mills theories are sensitive to the choice of the representation that enters in the gauge kinetic term. We constrain this ambiguity by considering grand unified theories. We find that at first order in the noncommutativity parameter {theta}, SU(5) is not truly a unified theory, while SO(10) has a unique noncommutative generalization. In view of these results we discuss the noncommutative SM theory that is compatible with SO(10) GUT and find that there are no modifications to the SM gauge kinetic term at lowest order in {theta}. We study in detail the reality, Hermiticity and C,P,T properties of the Seiberg-Witten map and of the resulting effective actions expanded in ordinary fields. We find that in models of GUTs (or compatible with GUTs) right-handed fermions and left-handed ones appear with opposite Seiberg-Witten map.
International Nuclear Information System (INIS)
Narnhofer, H.; Thirring, W.
1988-01-01
We generalize the classical notion of a K-system to a non-commutative dynamical system by requiring that an invariantly defined memory loss be 100%. We give some examples of quantum K-systems and show that they cannot contain any quasi-periodic subsystem. 13 refs. (Author)
Quantum mechanics the theoretical minimum
Susskind, Leonard
2014-01-01
From the bestselling author of The Theoretical Minimum, an accessible introduction to the math and science of quantum mechanicsQuantum Mechanics is a (second) book for anyone who wants to learn how to think like a physicist. In this follow-up to the bestselling The Theoretical Minimum, physicist Leonard Susskind and data engineer Art Friedman offer a first course in the theory and associated mathematics of the strange world of quantum mechanics. Quantum Mechanics presents Susskind and Friedman’s crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics. An accessible but rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.
Relativistic Quantum Mechanics
International Nuclear Information System (INIS)
Antoine, J-P
2004-01-01
The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic
Black Hole Complementary Principle and Noncommutative Membrane
International Nuclear Information System (INIS)
Wei Ren
2006-01-01
In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.
Quantum mechanics theory and experiment
Beck, Mark
2012-01-01
This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mat...
Noncommutative black-body radiation: Implications on cosmic microwave background
International Nuclear Information System (INIS)
Fatollahi, A.H.; Hajirahimi, M.
2006-01-01
Including loop corrections, black-body radiation in noncommutative space is anisotropic. A direct implication of possible space non-commutativity on the cosmic microwave background map is argued. (authors)
Three-space from quantum mechanics
International Nuclear Information System (INIS)
Chew, G.F.; Stapp, H.P.
1988-01-01
We formulate a discrete quantum-mechanical precursor to spacetime geometry. The objective is to provide the foundation for a quantum mechanics that is rooted exclusively in quantum-mechanical concepts, with all classical features, including the three-dimensional spatial continuum, emerging dynamically
On tea, donuts and non-commutative geometry
Directory of Open Access Journals (Sweden)
Igor V. Nikolaev
2018-03-01
Full Text Available As many will agree, it feels good to complement a cup of tea by a donut or two. This sweet relationship is also a guiding principle of non-commutative geometry known as Serre Theorem. We explain the algebra behind this theorem and prove that elliptic curves are complementary to the so-called non-commutative tori.
The Event Horizon of The Schwarzschild Black Hole in Noncommutative Spaces
Nasseri, Forough
2005-01-01
The event horizon of Schwarzschild black hole is obtained in noncommutative spaces up to the second order of perturbative calculations. Because this type of black hole is non-rotating, to the first order there is no any effect on the event horizon due to the noncommutativity of space. A lower limit for the noncommutativity parameter is also obtained. As a result, the event horizon in noncommutative spaces is less than the event horizon in commutative spaces.
The essentials of quantum mechanics
International Nuclear Information System (INIS)
Omnes, R.
2006-09-01
This book is an introduction to quantum mechanics, the author explains the foundation, interpretation and today limits of this science. The consequences of quantum concepts are reviewed through the lens of recent experimental data. In that way, issues like wave-particle duality, uncertainty principle, decoherence, relationship with classical mechanics or the unicity of reality, issues that were difficult to grasp before, appear now clearer. The book has been divided into 8 chapters: 1) possibility and chance, 2) quantum formalism, 3) fundamental quantum concepts, 4) how to deal with quantum mechanics, 5) decoherence theory, 6) the quantum logic system, 7) the emergence of classical physics, and 8) quantum measurements. (A.C.)
The emerging quantum the physics behind quantum mechanics
Pena, Luis de la; Valdes-Hernandez, Andrea
2014-01-01
This monograph presents the latest findings from a long-term research project intended to identify the physics behind Quantum Mechanics. A fundamental theory for quantum mechanics is constructed from first physical principles, revealing quantization as an emergent phenomenon arising from a deeper stochastic process. As such, it offers the vibrant community working on the foundations of quantum mechanics an alternative contribution open to discussion. The book starts with a critical summary of the main conceptual problems that still beset quantum mechanics. The basic consideration is then introduced that any material system is an open system in permanent contact with the random zero-point radiation field, with which it may reach a state of equilibrium. Working from this basis, a comprehensive and self-consistent theoretical framework is then developed. The pillars of the quantum-mechanical formalism are derived, as well as the radiative corrections of nonrelativistic QED, while revealing the underlying physi...
Supersymmetry and quantum mechanics
International Nuclear Information System (INIS)
Cooper, F.; Sukhatme, U.
1995-01-01
In the past ten years, the ideas of supersymmetry have been profitably applied to many nonrelativistic quantum mechanical problems. In particular, there is now a much deeper understanding of why certain potentials are analytically solvable and an array of powerful new approximation methods for handling potentials which are not exactly solvable. In this report, we review the theoretical formulation of supersymmetric quantum mechanics and discuss many applications. Exactly solvable potentials can be understood in terms of a few basic ideas which include supersymmetric partner potentials, shape invariance and operator transformations. Familiar solvable potentials all have the property of shape invariance. We describe new exactly solvable shape invariant potentials which include the recently discovered self-similar potentials as a special case. The connection between inverse scattering, isospectral potentials and supersymmetric quantum mechanics is discussed and multi-soliton solutions of the KdV equation are constructed. Approximation methods are also discussed within the framework of supersymmetric quantum mechanics and in particular it is shown that a supersymmetry inspired WKB approximation is exact for a class of shape invariant potentials. Supersymmetry ideas give particularly nice results for the tunneling rate in a double well potential and for improving large N expansions. We also discuss the problem of a charged Dirac particle in an external magnetic field and other potentials in terms of supersymmetric quantum mechanics. Finally, we discuss structures more general than supersymmetric quantum mechanics such as parasupersymmetric quantum mechanics in which there is a symmetry between a boson and a para-fermion of order p. ((orig.))
Noncommuting limits of oscillator wave functions
International Nuclear Information System (INIS)
Daboul, J.; Pogosyan, G. S.; Wolf, K. B.
2007-01-01
Quantum harmonic oscillators with spring constants k > 0 plus constant forces f exhibit rescaled and displaced Hermite-Gaussian wave functions, and discrete, lower bound spectra. We examine their limits when (k, f) → (0, 0) along two different paths. When f → 0 and then k → 0, the contraction is standard: the system becomes free with a double continuous, positive spectrum, and the wave functions limit to plane waves of definite parity. On the other hand, when k → 0 first, the contraction path passes through the free-fall system, with a continuous, nondegenerate, unbounded spectrum and displaced Airy wave functions, while parity is lost. The subsequent f → 0 limit of the nonstandard path shows the dc hysteresis phenomenon of noncommuting contractions: the lost parity reappears as an infinitely oscillating superposition of the two limiting solutions that are related by the symmetry
Bananaworld quantum mechanics for primates
Bub, Jeffrey
2016-01-01
What on earth do bananas have to do with quantum mechanics? From a modern perspective, quantum mechanics is about strangely counterintuitive correlations between separated systems, which can be exploited in feats like quantum teleportation, unbreakable cryptographic schemes, and computers with enormously enhanced computing power. Schro?dinger coined the term "entanglement" to describe these bizarre correlations. Bananaworld -- an imaginary island with "entangled" bananas -- brings to life the fascinating discoveries of the new field of quantum information without the mathematical machinery of quantum mechanics. The connection with quantum correlations is fully explained in sections written for the non-physicist reader with a serious interest in understanding the mysteries of the quantum world. The result is a subversive but entertaining book that is accessible and interesting to a wide range of readers, with the novel thesis that quantum mechanics is about the structure of information. What we have discovered...
International Nuclear Information System (INIS)
Basdevant, J.L.
1983-01-01
From important experiment descriptions (sometimes, intentionally simplified), the essential concepts in Quantum Mechanics are first introduced. Wave function notion is described, Schroedinger equation is established, and, after applications rich in physical signification, quantum state and Hilbert space formalism are introduced, which will help to understand many essential phenomena. Then the quantum mechanic general formulation is written and some important consequences are deduced. This formalism is applied to a simple physical problem series (angular momentum, hydrogen atom, etc.) aiming at assimilating the theory operation and its application [fr
Some aspects of noncommutative integrable systems a la Moyal
International Nuclear Information System (INIS)
Dafounansou, O.; El Boukili, A.; Sedra, M.B.
2005-12-01
Besides its various applications in string and D-brane physics, the non commutativity of space (-time) coordinates, based on the *-product, behaves as a more general framework providing more mathematical and physical information about the associated system. Similar to the Gelfand-Dickey framework of pseudo differential operators, the non commutativity a la Moyal applied to physical problems makes the study more systematic. Using these facts, as well as the backgrounds of Moyal momentum algebra introduced in previous works, we look for the important task of studying integrability in the noncommutativity framework. The main focus is on the noncommutative version of the Lax representation of two principal examples: the noncommutative sl 2 KdV equation and the noncommutative version of Burgers systems. Important properties are presented. (author)
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibard, J.; Joffre, M.
2008-01-01
All physics is quantum from elementary particles to stars and to the big-bang via semi-conductors and chemistry. This theory is very subtle and we are not able to explain it without the help of mathematic tools. This book presents the principles of quantum mechanics and describes its mathematical formalism (wave function, Schroedinger equation, quantum operators, spin, Hamiltonians, collisions,..). We find numerous applications in the fields of new technologies (maser, quantum computer, cryptography,..) and in astrophysics. A series of about 90 exercises with their answers is included. This book is based on a physics course at a graduate level. (A.C.)
Moving mirrors and black hole evaporation in noncommutative space-times
International Nuclear Information System (INIS)
Casadio, R.; Cox, P.H.; Harms, B.; Micu, O.
2006-01-01
We study the evaporation of black holes in noncommutative space-times. We do this by calculating the correction to the detector's response function for a moving mirror in terms of the noncommutativity parameter Θ and then extracting the number density as modified by this parameter. We find that allowing space and time to be noncommutative increases the decay rate of a black hole
Conceptual foundations of quantum mechanics
International Nuclear Information System (INIS)
Shimony, A.
1989-01-01
Radical innovation in the quantum mechanical framework such as objective indefiniteness, objective chance, objective probability, potentiality, entanglement and quantum nonlocality are discussed and related to the standard formalism. Examples are given which though problematic in classical mechanics are simply explained with these new concepts. Evidence is presented that the conceptual innovations of quantum mechanics cannot be separated from its predictive power. Proposals for solving ''the reduction of the wave packet'' anomaly are presented. Further radical innovations in quantum mechanics are anticipated. (U.K.)
Quantum mechanics. 2. printing (paperback).
International Nuclear Information System (INIS)
Lipkin, H.J.
1986-01-01
Intended for a first year graduate course in quantum mechanics, this collection of topics can also be considered as a set of self-contained 'monographs for pedestrians' on the Moessbauer effect, many-body quantum mechanics, kaon physics, scattering theory, Feynman diagrams, symmetries and relativistic quantum mechanics. (Auth.)
Frappier, Mélanie
2018-03-01
A century after its inception, quantum mechanics continues to puzzle us with dead-and-alive cats, waves "collapsing" into particles, and "spooky action at a distance." In his first book, What Is Real?, science writer and astrophysicist Adam Becker sets out to explore why the physics community is still arguing today about quantum mechanics's true meaning.
Vector fields and differential operators: noncommutative case
International Nuclear Information System (INIS)
Borowiec, A.
1997-01-01
A notion of Cartan pairs as an analogy of vector fields in the realm of noncommutative geometry has been proposed previously. In this paper an outline is given of the construction of a noncommutative analogy of the algebra of differential operators as well as its (algebraic) Fock space realization. Co-universal vector fields and covariant derivatives will also be discussed
Learning quantum field theory from elementary quantum mechanics
International Nuclear Information System (INIS)
Gosdzinsky, P.; Tarrach, R.
1991-01-01
The study of the Dirac delta potentials in more than one dimension allows the introduction within the framework of elementary quantum mechanics of many of the basic concepts of modern quantum field theory: regularization, renormalization group, asymptotic freedom, dimensional transmutation, triviality, etc. It is also interesting, by itself, as a nonstandard quantum mechanical problem
Non-relativistic quantum mechanics
Puri, Ravinder R
2017-01-01
This book develops and simplifies the concept of quantum mechanics based on the postulates of quantum mechanics. The text discusses the technique of disentangling the exponential of a sum of operators, closed under the operation of commutation, as the product of exponentials to simplify calculations of harmonic oscillator and angular momentum. Based on its singularity structure, the Schrödinger equation for various continuous potentials is solved in terms of the hypergeometric or the confluent hypergeometric functions. The forms of the potentials for which the one-dimensional Schrödinger equation is exactly solvable are derived in detail. The problem of identifying the states of two-level systems which have no classical analogy is addressed by going beyond Bell-like inequalities and separability. The measures of quantumness of mutual information in two two-level systems is also covered in detail. Offers a new approach to learning quantum mechanics based on the history of quantum mechanics and its postu...
On noncommutativity with bifermionic parameter
International Nuclear Information System (INIS)
Acatrinei, Ciprian Sorin
2008-01-01
Recently Gitman and Vassilevich proposed an interesting model of noncommutative (NC) scalar field theory, with a noncommutativity parameter assumed to be the product of two Grassmann variables. They showed in particular that the model possesses a local energy-momentum tensor. Since such a property is quite unusual for a NC model, we provide here an alternative picture, based on an operatorial formulation of NC field theory. It leads to complete locality of the degrees of freedom of the theory, a property in agreement with the termination of the star-product at the second term in its series. (author)
Pair production by a constant external field in noncommutative QED
International Nuclear Information System (INIS)
Chair, N.; Sheikh-Jabbari, M.M.
2000-09-01
In this paper we study QED on the noncommutative space in the constant electro-magnetic field background. Using the explicit solutions of the noncommutative version of Dirac equation in such background, we show that there are well-defined in and out-going asymptotic states and also there is a causal Green's function. We calculate the pair production rate in this case. We show that at tree level noncommutativity will not change the pair production and the threshold electric field. We also calculate the pair production rate considering the first loop corrections. In this case we show that the threshold electric field is decreased by the noncommutativity effects. (author)
Differential Calculus on Quantum Spheres
Welk, Martin
1998-01-01
We study covariant differential calculus on the quantum spheres S_q^2N-1. Two classification results for covariant first order differential calculi are proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including a particular first order calculus obtained by factorization, higher order calculi and a symmetry concept.
On Lipschitzian quantum stochastic differential inclusions
International Nuclear Information System (INIS)
Ekhaguere, G.O.S.
1990-12-01
Quantum stochastic differential inclusions are introduced and studied within the framework of the Hudson-Parthasarathy formulation of quantum stochastic calculus. Results concerning the existence of solutions of a Lipschitzian quantum stochastic differential inclusion and the relationship between the solutions of such an inclusion and those of its convexification are presented. These generalize the Filippov existence theorem and the Filippov-Wazewski Relaxation Theorem for classical differential inclusions to the present noncommutative setting. (author). 9 refs
Quantum mechanics in chemistry
Schatz, George C
2002-01-01
Intended for graduate and advanced undergraduate students, this text explores quantum mechanical techniques from the viewpoint of chemistry and materials science. Dynamics, symmetry, and formalism are emphasized. An initial review of basic concepts from introductory quantum mechanics is followed by chapters examining symmetry, rotations, and angular momentum addition. Chapter 4 introduces the basic formalism of time-dependent quantum mechanics, emphasizing time-dependent perturbation theory and Fermi's golden rule. Chapter 5 sees this formalism applied to the interaction of radiation and matt
Proceedings of quantum field theory, quantum mechanics, and quantum optics
International Nuclear Information System (INIS)
Dodonov, V.V.; Man; ko, V.I.
1991-01-01
This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups
International Nuclear Information System (INIS)
Rovelli, C.
1996-01-01
I suggest that the common unease with taking quantum mechanics as a fundamental description of nature (the open-quotes measurement problemclose quotes) could derive from the use of an incorrect notion, as the unease with the Lorentz transformations before Einstein derived from the notion of observer-independent time. I suggest that this incorrect notion that generates the unease with quantum mechanics is the notion of open-quotes observer-independent stateclose quotes of a system, or open-quotes observer-independent values of physical quantities.close quotes I reformulate the problem of the open-quotes interpretation of quantum mechanicsclose quotes as the problem of deriving the formalism from a set of simple physical postulates. I consider a reformulation of quantum mechanics in terms of information theory. All systems are assumed to be equivalent, there is no observer-observed distinction, and the theory describes only the information that systems have about each other; nevertheless, the theory is complete
Quantum mechanics II advanced topics
Rajasekar, S
2015-01-01
Quantum Mechanics II: Advanced Topics uses more than a decade of research and the authors’ own teaching experience to expound on some of the more advanced topics and current research in quantum mechanics. A follow-up to the authors introductory book Quantum Mechanics I: The Fundamentals, this book begins with a chapter on quantum field theory, and goes on to present basic principles, key features, and applications. It outlines recent quantum technologies and phenomena, and introduces growing topics of interest in quantum mechanics. The authors describe promising applications that include ghost imaging, detection of weak amplitude objects, entangled two-photon microscopy, detection of small displacements, lithography, metrology, and teleportation of optical images. They also present worked-out examples and provide numerous problems at the end of each chapter.
On the Generalized Geometry Origin of Noncommutative Gauge Theory
Jurco, Branislav; Vysoky, Jan
2013-01-01
We discuss noncommutative gauge theory from the generalized geometry point of view. We argue that the equivalence between the commutative and semiclassically noncommutative DBI actions is naturally encoded in the generalized geometry of D-branes.
Quantum Mechanics for Electrical Engineers
Sullivan, Dennis M
2011-01-01
The main topic of this book is quantum mechanics, as the title indicates. It specifically targets those topics within quantum mechanics that are needed to understand modern semiconductor theory. It begins with the motivation for quantum mechanics and why classical physics fails when dealing with very small particles and small dimensions. Two key features make this book different from others on quantum mechanics, even those usually intended for engineers: First, after a brief introduction, much of the development is through Fourier theory, a topic that is at
Newtonian cosmology with a quantum bounce
Energy Technology Data Exchange (ETDEWEB)
Bargueno, P.; Bravo Medina, S.; Nowakowski, M. [Universidad de los Andes, Departamento de Fisica, Bogota (Colombia); Batic, D. [University of West Indies, Department of Mathematics, Kingston 6 (Jamaica)
2016-10-15
It has been known for some time that the cosmological Friedmann equation deduced from general relativity can also be obtained within the Newtonian framework under certain assumptions. We use this result together with quantum corrections to the Newtonian potentials to derive a set a of quantum corrected Friedmann equations. We examine the behavior of the solutions of these modified cosmological equations paying special attention to the sign of the quantum corrections. We find different quantum effects crucially depending on this sign. One such a solution displays a qualitative resemblance to other quantum models like Loop quantum gravity or non-commutative geometry. (orig.)
Supersymmetry in quantum mechanics
Cooper, Fred; Sukhatme, Uday
2001-01-01
This invaluable book provides an elementary description of supersymmetric quantum mechanics which complements the traditional coverage found in the existing quantum mechanics textbooks. It gives physicists a fresh outlook and new ways of handling quantum-mechanical problems, and also leads to improved approximation techniques for dealing with potentials of interest in all branches of physics. The algebraic approach to obtaining eigenstates is elegant and important, and all physicists should become familiar with this. The book has been written in such a way that it can be easily appreciated by
Unusual high-energy phenomenology of Lorentz-invariant noncommutative field theories
International Nuclear Information System (INIS)
Carone, Christopher D.; Kwee, Herry J.
2006-01-01
It has been suggested that one may construct a Lorentz-invariant noncommutative field theory by extending the coordinate algebra to additional, fictitious coordinates that transform nontrivially under the Lorentz group. Integration over these coordinates in the action produces a four-dimensional effective theory with Lorentz invariance intact. Previous applications of this approach, in particular, to a specific construction of noncommutative QED, have been studied only in a low-momentum approximation. Here we discuss Lorentz-invariant field theories in which the relevant physics can be studied without requiring an expansion in the inverse scale of noncommutativity. Qualitatively, we find that tree-level scattering cross sections are dramatically suppressed as the center-of-mass energy exceeds the scale of noncommutativity, that cross sections that are isotropic in the commutative limit can develop a pronounced angular dependence, and that nonrelativistic potentials (for example, the Coloumb potential) become nonsingular at the origin. We consider a number of processes in noncommutative QED that may be studied at a future linear collider. We also give an example of scattering via a four-fermion operator in which the noncommutative modifications of the interaction can unitarize the tree-level amplitude, without requiring any other new physics in the ultraviolet
Classification of digital affine noncommutative geometries
Majid, Shahn; Pachoł, Anna
2018-03-01
It is known that connected translation invariant n-dimensional noncommutative differentials dxi on the algebra k[x1, …, xn] of polynomials in n-variables over a field k are classified by commutative algebras V on the vector space spanned by the coordinates. These data also apply to construct differentials on the Heisenberg algebra "spacetime" with relations [xμ, xν] = λΘμν, where Θ is an antisymmetric matrix, as well as to Lie algebras with pre-Lie algebra structures. We specialise the general theory to the field k =F2 of two elements, in which case translation invariant metrics (i.e., with constant coefficients) are equivalent to making V a Frobenius algebra. We classify all of these and their quantum Levi-Civita bimodule connections for n = 2, 3, with partial results for n = 4. For n = 2, we find 3 inequivalent differential structures admitting 1, 2, and 3 invariant metrics, respectively. For n = 3, we find 6 differential structures admitting 0, 1, 2, 3, 4, 7 invariant metrics, respectively. We give some examples for n = 4 and general n. Surprisingly, not all our geometries for n ≥ 2 have zero quantum Riemann curvature. Quantum gravity is normally seen as a weighted "sum" over all possible metrics but our results are a step towards a deeper approach in which we must also "sum" over differential structures. Over F2 we construct some of our algebras and associated structures by digital gates, opening up the possibility of "digital geometry."
Magnetic operations: a little fuzzy mechanics?
International Nuclear Information System (INIS)
Mielnik, B; RamIrez, A
2011-01-01
We examine the behaviour of charged particles in homogeneous, constant and/or oscillating magnetic fields in the non-relativistic approximation. A special role of the geometric centre of the particle trajectory is elucidated. In the quantum case, it becomes a 'fuzzy point' with non-commuting coordinates, an element of non-commutative geometry that enters into the traditional control problems. We show that its application extends beyond the usually considered time-independent magnetic fields of the quantum Hall effect. Some simple cases of magnetic control by oscillating fields cause the stability maps to differ from the traditional Strutt diagram. The elementary mathematical results help explain the structure of the obtained solutions.
Analogies between classical statistical mechanics and quantum mechanics
International Nuclear Information System (INIS)
Uehara, M.
1986-01-01
Some analogies between nonequilibrium classical statistical mechanics and quantum mechanics, at the level of the Liouville equation and at the kinetic level, are commented on. A theorem, related to the Vlasov equation applied to a plasma, is proved. The theorem presents an analogy with Ehrenfest's theorem of quantum mechanics. An analogy between the plasma kinetic theory and Bohm's quantum theory with 'hidden variables' is also shown. (Author) [pt
Noncommutative Gauge Theory with Covariant Star Product
International Nuclear Information System (INIS)
Zet, G.
2010-01-01
We present a noncommutative gauge theory with covariant star product on a space-time with torsion. In order to obtain the covariant star product one imposes some restrictions on the connection of the space-time. Then, a noncommutative gauge theory is developed applying this product to the case of differential forms. Some comments on the advantages of using a space-time with torsion to describe the gravitational field are also given.
Realization of Cohen-Glashow very special relativity on noncommutative space-time.
Sheikh-Jabbari, M M; Tureanu, A
2008-12-31
We show that the Cohen-Glashow very special relativity (VSR) theory [A. G. Cohen and S. L. Glashow, Phys. Rev. Lett. 97, 021601 (2006)] can be realized as the part of the Poincaré symmetry preserved on a noncommutative Moyal plane with lightlike noncommutativity. Moreover, we show that the three subgroups relevant to VSR can also be realized in the noncommutative space-time setting. For all of these three cases, the noncommutativity parameter theta(mu upsilon) should be lightlike (theta(mu upsilon) theta mu upsilon = 0). We discuss some physical implications of this realization of the Cohen-Glashow VSR.
Spectral analysis of growing graphs a quantum probability point of view
Obata, Nobuaki
2017-01-01
This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs. This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectr...
Open Wilson lines and generalized star product in noncommutative scalar field theories
International Nuclear Information System (INIS)
Kiem, Youngjai; Sato, Haru-Tada; Rey, Soo-Jong; Yee, Jung-Tay
2002-01-01
Open Wilson line operators and a generalized star product have been studied extensively in noncommutative gauge theories. We show that they also show up in noncommutative scalar field theories as universal structures. We first point out that the dipole picture of noncommutative geometry provides an intuitive argument for the robustness of the open Wilson lines and generalized star products therein. We calculate the one-loop effective action of noncommutative scalar field theory with a cubic self-interaction and show explicitly that the generalized star products arise in the nonplanar part. It is shown that, at the low-energy, large noncommutativity limit, the nonplanar part is expressible solely in terms of the scalar open Wilson line operator and descendants
Quantum mechanics with non-negative quantum distribution function
International Nuclear Information System (INIS)
Zorin, A.V.; Sevastianov, L.A.
2010-01-01
Full text: (author)Among numerous approaches to probabilistic interpretation of the conventional quantum mechanics the most close to the N. Bohr idea of the correspondence principle is the D.I. Blokhintzev - Ya.P. Terletsky approach using the quantum distribution function on the coordinate- momentum space. The detailed investigation of this approach has lead to the correspondence rule of V.V. Kuryshkin. Quantum mechanics of Kuryshkin (QMK) embody the program proposed by Yu.M. Shirokov for unifying classical and quantum mechanics in similar mathematical models. QMK develops and enhances Wigner's proposal concerning the calculation of quantum corrections to classical thermodynamic parameters using a phase distribution function. The main result of QMK is the possibility of description by mean of a positively-valued distribution function. This represents an important step towards a completely statistical model of quantum phenomena, compared with the quasi-probabilistic nature of Wigner distribution. Wigner's model does not permit to perform correctly the classical limit in quantum mechanics as well. On the other hand, QMK has a much more complex structure of operators of observables. One of the unsolved problems of QMK is the absence of a priori rules for establishing of auxiliary functions. Nevertheless, while it is impossible to overcome the complex form of operators, we find it quite possible to derive some methods of filing sets of auxiliary functions
Interacting open Wilson lines from noncommutative field theories
International Nuclear Information System (INIS)
Kiem, Youngjai; Lee, Sangmin; Rey, Soo-Jong; Sato, Haru-Tada
2002-01-01
In noncommutative field theories, it is known that the one-loop effective action describes the propagation of noninteracting open Wilson lines, obeying the flying dipole's relation. We show that the two-loop effective action describes the cubic interaction among 'closed string' states created by open Wilson line operators. Taking d-dimensional λ[Φ 3 ] * theory as the simplest setup, we compute the nonplanar contribution at a low-energy and large noncommutativity limit. We find that the contribution is expressible in a remarkably simple cubic interaction involving scalar open Wilson lines only and nothing else. We show that the interaction is purely geometrical and noncommutative in nature, depending only on the size of each open Wilson line
Statistical ensembles in quantum mechanics
International Nuclear Information System (INIS)
Blokhintsev, D.
1976-01-01
The interpretation of quantum mechanics presented in this paper is based on the concept of quantum ensembles. This concept differs essentially from the canonical one by that the interference of the observer into the state of a microscopic system is of no greater importance than in any other field of physics. Owing to this fact, the laws established by quantum mechanics are not of less objective character than the laws governing classical statistical mechanics. The paradoxical nature of some statements of quantum mechanics which result from the interpretation of the wave functions as the observer's notebook greatly stimulated the development of the idea presented. (Auth.)
Cataloglu, Erdat
The purpose of this study was to construct a valid and reliable multiple-choice achievement test to assess students' understanding of core concepts of introductory quantum mechanics. Development of the Quantum Mechanics Visualization Instrument (QMVI) occurred across four successive semesters in 1999--2001. During this time 213 undergraduate and graduate students attending the Pennsylvania State University (PSU) at University Park and Arizona State University (ASU) participated in this development and validation study. Participating students were enrolled in four distinct groups of courses: Modern Physics, Undergraduate Quantum Mechanics, Graduate Quantum Mechanics, and Chemistry Quantum Mechanics. Expert panels of professors of physics experienced in teaching quantum mechanics courses and graduate students in physics and science education established the core content and assisted in the validating of successive versions of the 24-question QMVI. Instrument development was guided by procedures outlined in the Standards for Educational and Psychological Testing (AERA-APA-NCME, 1999). Data gathered in this study provided information used in the development of successive versions of the QMVI. Data gathered in the final phase of administration of the QMVI also provided evidence that the intended score interpretation of the QMVI achievement test is valid and reliable. A moderate positive correlation coefficient of 0.49 was observed between the students' QMVI scores and their confidence levels. Analyses of variance indicated that students' scores in Graduate Quantum Mechanics and Undergraduate Quantum Mechanics courses were significantly higher than the mean scores of students in Modern Physics and Chemistry Quantum Mechanics courses (p important factor for students in acquiring a successful understanding of quantum mechanics.
Investigations on the renormalizability of a non-commutative u(1) gauge theory
International Nuclear Information System (INIS)
Rofner, A.
2009-01-01
When considering very small scales near the Planck-length, or equivalently very high energies (far from being reached by today's particle accelerators), space-time is expected to be quantized. Today, all but one forces governing nature (i.e. gravitation) are described via Quantum Field Theories (short QFTs) and more precisely gauge field theories (GFTs). Their heart is the art of renormalization, which allows to handle the divergences for high internal momenta appearing in the course of the perturbative development of the action in a consistent manner. Over the last years numerous attempts have been made to formulate consistent and renormalizable theories also on non-commutative spaces. Yet, it is the latter that represents a major problem for non-commutative QFTs: generally, the non-commutativity is implemented via the so-called star product, which in the simplest case is given by the Moyal-Weyl product, and which leads to a modification of the interaction terms of the theories by introducing additional phase factors depending on the non-commutative parameter theta. Then, this phase leads to a mixing of high and low energies, which is directly linked to the appearance of a new class of divergences for small momenta. While there exist various traditional renormalization schemes in order to handle uV divergences, their counterparts in the IR sector form a major obstacle in formulating consistent non-commutative QFTs. However, a first way out of this misery could be achieved by Grosse and Wulkenhaar for a scalar model. The idea was to add a suitable term to the action, in their case an oscillator term, leading to a decoupling of the high and low energy sectors. Later, the same philosophy has been followed by Gurau et. al. by adding a 1/p 2 like term to the scalar action. Both models have been shown to be renormalizable, and additionally, the latter model leads to a translation invariant propagator, which implies momentum conservation in all space points. Now, the
Recursive relations for processes with n photons of noncommutative QED
International Nuclear Information System (INIS)
Jafari, Abolfazl
2007-01-01
Recursion relations are derived in the sense of Berends-Giele for the multi-photon processes of noncommutative QED. The relations concern purely photonic processes as well as the processes with two fermions involved, both for arbitrary number of photons at tree level. It is shown that despite of the dependence of noncommutative vertices on momentum, in contrast to momentum-independent color factors of QCD, the recursion relation method can be employed for multi-photon processes of noncommutative QED
Dispersion relations for the self-energy in noncommutative field theories
International Nuclear Information System (INIS)
Brandt, F.T.; Das, Ashok; Frenkel, J.
2002-01-01
We study the IR-UV connection in noncommutative φ 3 theory as well as in noncommutative QED from the point of view of the dispersion relation for self-energy. We show that, although the imaginary part of the self-energy is well behaved as the parameter of noncommutativity vanishes, the real part becomes divergent as a consequence of the high energy behavior of the dispersion integral. Some other interesting features that arise from this analysis are also briefly discussed
Noncommutative gauge theory without Lorentz violation
International Nuclear Information System (INIS)
Carlson, Carl E.; Carone, Christopher D.; Zobin, Nahum
2002-01-01
The most popular noncommutative field theories are characterized by a matrix parameter θ μν that violates Lorentz invariance. We consider the simplest algebra in which the θ parameter is promoted to an operator and Lorentz invariance is preserved. This algebra arises through the contraction of a larger one for which explicit representations are already known. We formulate a star product and construct the gauge-invariant Lagrangian for Lorentz-conserving noncommutative QED. Three-photon vertices are absent in the theory, while a four-photon coupling exists and leads to a distinctive phenomenology
A textbook of quantum mechanics
International Nuclear Information System (INIS)
Mathews, P.M.; Venkatesan, K.
1977-01-01
After briefly surveying the inadequacy of the classical ideas and elementary older quantum theory, the ideas of wave mechanics, the postulates of quantum mechanics, exactly soluble problems, approximation techniques, scattering theory, angular momentum, time dependent problems and the basic ideas of relativistic quantum mechanics are discussed. The book is meant for the Master of Science degree course students of Indian Universities. (M.G.B.)
Fundamentals of Quantum Mechanics
Tang, C. L.
2005-06-01
Quantum mechanics has evolved from a subject of study in pure physics to one with a wide range of applications in many diverse fields. The basic concepts of quantum mechanics are explained in this book in a concise and easy-to-read manner emphasising applications in solid state electronics and modern optics. Following a logical sequence, the book is focused on the key ideas and is conceptually and mathematically self-contained. The fundamental principles of quantum mechanics are illustrated by showing their application to systems such as the hydrogen atom, multi-electron ions and atoms, the formation of simple organic molecules and crystalline solids of practical importance. It leads on from these basic concepts to discuss some of the most important applications in modern semiconductor electronics and optics. Containing many homework problems and worked examples, the book is suitable for senior-level undergraduate and graduate level students in electrical engineering, materials science and applied physics. Clear exposition of quantum mechanics written in a concise and accessible style Precise physical interpretation of the mathematical foundations of quantum mechanics Illustrates the important concepts and results by reference to real-world examples in electronics and optoelectronics Contains homeworks and worked examples, with solutions available for instructors
Moyal noncommutative integrability and the Burgers-KdV mapping
International Nuclear Information System (INIS)
Sedra, M.B.
2005-12-01
The Moyal momentum algebra, is once again used to discuss some important aspects of NC integrable models and 2d conformal field theories. Among the results presented, we set up algebraic structures and makes useful convention notations leading to extract non trivial properties of the Moyal momentum algebra. We study also the Lax pair building mechanism for particular examples namely, the noncommutative KdV and Burgers systems. We show in a crucial step that these two systems are mapped to each other through the following crucial mapping ∂ t 2 → ∂ t 3 ≡ ∂ t 2 ∂ x + α∂ x 3 . This makes a strong constraint on the NC Burgers system which corresponds to linearizing its associated differential equation. From the CFT's point of view, this constraint equation is nothing but the analogue of the conservation law of the conformal current. We believe that the considered mapping might help to bring new insights towards understanding the integrability of noncommutative 2d-systems. (author)
Non-commuting variations in mathematics and physics a survey
Preston, Serge
2016-01-01
This text presents and studies the method of so –called noncommuting variations in Variational Calculus. This method was pioneered by Vito Volterra who noticed that the conventional Euler-Lagrange (EL-) equations are not applicable in Non-Holonomic Mechanics and suggested to modify the basic rule used in Variational Calculus. This book presents a survey of Variational Calculus with non-commutative variations and shows that most basic properties of conventional Euler-Lagrange Equations are, with some modifications, preserved for EL-equations with K-twisted (defined by K)-variations. Most of the book can be understood by readers without strong mathematical preparation (some knowledge of Differential Geometry is necessary). In order to make the text more accessible the definitions and several necessary results in Geometry are presented separately in Appendices I and II Furthermore in Appendix III a short presentation of the Noether Theorem describing the relation between the symmetries of the differential equa...
Noncommutative quantum electrodynamics from Seiberg-Witten maps to all orders in θμν
International Nuclear Information System (INIS)
Zeiner, Joerg
2007-01-01
The basic question which drove our whole work was to find a meaningful noncommutative gauge theory even for the time-like case (θ 0i ≠0). Our model is based on two fundamental assumptions. The first assumption is given by the commutation relations. This led to the Moyal-Weyl star-product which replaces all point-like products between two fields. The second assumption is to assume that the model built this way is not only invariant under the noncommutative gauge transformation but also under the commutative one. We chose a gauge fixed action as the fundamental action of our model. After having constructed the action of the NCQED including the Seiberg-Witten maps we were confronted with the problem of calculating the Seiberg-Witten maps to all orders in θ μν . We could calculate the Seiberg-Witten maps order by order in the gauge field, where each order in the gauge field contains all orders in the noncommutative parameter. We realized that already the simplest Seiberg-Witten map for the gauge field is not unique. We examined this ambiguity, which we could parametrised by an arbitrary function * f . The next step was to derive the Feynman rules for our NCQED. One finds that the propagators remain unchanged so that the free theory is equal to the commutative QED. The fermion-fermion-photon vertex contains not only a phase factor coming from the Moyal-Weyl star-product but also two additional terms which have their origin in the Seiberg-Witten maps. Beside the 3-photon vertex which is already present in NCQED without Seiberg-Witten maps and which has also additional terms coming from the Seiberg-Witten maps, too, one has a contact vertex which couples two fermions with two photons. After having derived all the vertices we calculated the pair annihilation scattering process e + e - →γγ at Born level. We found that the amplitude of the pair annihilation process becomes equal to the amplitude of the NCQED without Seiberg-Witten maps. On the basis of the pair
The non-commutative and discrete spatial structure of a 3D Wigner quantum oscillator
International Nuclear Information System (INIS)
King, R C; Palev, T D; Stoilova, N I; Jeugt, J Van der
2003-01-01
The properties of a non-canonical 3D Wigner quantum oscillator, whose position and momentum operators generate the Lie superalgebra sl(1|3), are further investigated. Within each state space W(p), p = 1, 2, ..., the energy E q , q = 0, 1, 2, 3, takes no more than four different values. If the oscillator is in a stationary state ψ q element of W(p) then measurements of the non-commuting Cartesian coordinates of the particle are such that their allowed values are consistent with it being found at a finite number of sites, called 'nests'. These lie on a sphere centred on the origin of fixed, finite radius ρ q . The nests themselves are at the vertices of a rectangular parallelepiped. In the typical cases (p > 2) the number of nests is 8 for q = 0 and 3, and varies from 8 to 24, depending on the state, for q = 1 and 2. The number of nests is less in the atypical cases (p = 1, 2), but it is never less than 2. In certain states in W(2) (respectively in W(1)) the oscillator is 'polarized' so that all the nests lie on a plane (respectively on a line). The particle cannot be localized in any one of the available nests alone since the coordinates do not commute. The probabilities of measuring particular values of the coordinates are discussed. The mean trajectories and the standard deviations of the coordinates and momenta are computed, and conclusions are drawn about uncertainty relations
Differential Galois obstructions for non-commutative integrability
Energy Technology Data Exchange (ETDEWEB)
Maciejewski, Andrzej J. [Institute of Astronomy, University of Zielona Gora, Podgorna 50, PL-65-246 Zielona Gora (Poland)], E-mail: maciejka@astro.ia.uz.zgora.pl; Przybylska, Maria [Torun Centre for Astronomy, N. Copernicus University, Gagarina 11, PL-87-100 Torun (Poland)], E-mail: mprzyb@astri.uni.torun.pl
2008-08-11
We show that if a holomorphic Hamiltonian system is holomorphically integrable in the non-commutative sense in a neighbourhood of a non-equilibrium phase curve which is located at a regular level of the first integrals, then the identity component of the differential Galois group of the variational equations along the phase curve is Abelian. Thus necessary conditions for the commutative and non-commutative integrability given by the differential Galois approach are the same.
A non-perturbative study of 4d U(1) non-commutative gauge theory - the fate of one-loop instability
International Nuclear Information System (INIS)
Bietenholz, Wolfgang; Nishimura, Jun; Susaki, Yoshiaki; Volkholz, Jan
2006-01-01
Recent perturbative studies show that in 4d non-commutative spaces, the trivial (classically stable) vacuum of gauge theories becomes unstable at the quantum level, unless one introduces sufficiently many fermionic degrees of freedom. This is due to a negative IR-singular term in the one-loop effective potential, which appears as a result of the UV/IR mixing. We study such a system non-perturbatively in the case of pure U(1) gauge theory in four dimensions, where two directions are non-commutative. Monte Carlo simulations are performed after mapping the regularized theory onto a U(N) lattice gauge theory in d = 2. At intermediate coupling strength, we find a phase in which open Wilson lines acquire non-zero vacuum expectation values, which implies the spontaneous breakdown of translational invariance. In this phase, various physical quantities obey clear scaling behaviors in the continuum limit with a fixed non-commutativity parameter θ, which provides evidence for a possible continuum theory. The extent of the dynamically generated space in the non-commutative directions becomes finite in the above limit, and its dependence on θ is evaluated explicitly. We also study the dispersion relation. In the weak coupling symmetric phase, it involves a negative IR-singular term, which is responsible for the observed phase transition. In the broken phase, it reveals the existence of the Nambu-Goldstone mode associated with the spontaneous symmetry breaking
UV/IR mixing and the Goldstone theorem in noncommutative field theory
International Nuclear Information System (INIS)
Ruiz Ruiz, F.
2002-01-01
Noncommutative IR singularities and UV/IR mixing in relation with the Goldstone theorem for complex scalar field theory are investigated. The classical model has two coupling constants, λ 1 and λ 2 , associated to the two noncommutative extensions phi*starphistarphi* starphi and phistarphi*starphistarphi of the interaction term vertical bar phi vertical bar 4 on commutative spacetime. It is shown that the symmetric phase is one-loop renormalizable for all λ 1 and λ 2 compatible with perturbation theory, whereas the broken phase is proved to exist at one loop only if λ 2 =0, a condition required by the Ward identities for global U(1) invariance. Explicit expressions for the noncommutative IR singularities in the 1PI Green functions of both phases are given. They show that UV/IR duality does not hold for any of the phases and that the broken phase is free of quadratic noncommutative IR singularities. More remarkably, the pion selfenergy does not have noncommutative IR singularities at all, which proves essential to formulate the Goldstone theorem at one loop for all values of the spacetime noncommutativity parameter θ
Locality and quantum mechanics.
Unruh, W G
2018-07-13
It is argued that it is best not to think of quantum mechanics as non-local, but rather that it is non-realistic.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Goldman, Iosif Ilich; Geilikman, B T
2006-01-01
This challenging book contains a comprehensive collection of problems in nonrelativistic quantum mechanics of varying degrees of difficulty. It features answers and completely worked-out solutions to each problem. Geared toward advanced undergraduates and graduate students, it provides an ideal adjunct to any textbook in quantum mechanics.
Higher dimensional quantum Hall effect as A-class topological insulator
Energy Technology Data Exchange (ETDEWEB)
Hasebe, Kazuki, E-mail: khasebe@stanford.edu
2014-09-15
We perform a detail study of higher dimensional quantum Hall effects and A-class topological insulators with emphasis on their relations to non-commutative geometry. There are two different formulations of non-commutative geometry for higher dimensional fuzzy spheres: the ordinary commutator formulation and quantum Nambu bracket formulation. Corresponding to these formulations, we introduce two kinds of monopole gauge fields: non-abelian gauge field and antisymmetric tensor gauge field, which respectively realize the non-commutative geometry of fuzzy sphere in the lowest Landau level. We establish connection between the two types of monopole gauge fields through Chern–Simons term, and derive explicit form of tensor monopole gauge fields with higher string-like singularity. The connection between two types of monopole is applied to generalize the concept of flux attachment in quantum Hall effect to A-class topological insulator. We propose tensor type Chern–Simons theory as the effective field theory for membranes in A-class topological insulators. Membranes turn out to be fractionally charged objects and the phase entanglement mediated by tensor gauge field transforms the membrane statistics to be anyonic. The index theorem supports the dimensional hierarchy of A-class topological insulator. Analogies to D-brane physics of string theory are discussed too.
25 Years of Quantum Groups: from Definition to Classification
Directory of Open Access Journals (Sweden)
A. Stolin
2008-01-01
Full Text Available In mathematics and theoretical physics, quantum groups are certain non-commutative, non-cocommutative Hopf algebras, which first appeared in the theory of quantum integrable models and later they were formalized by Drinfeld and Jimbo. In this paper we present a classification scheme for quantum groups, whose classical limit is a polynomial Lie algebra. As a consequence we obtain deformed XXX and XXZ Hamiltonians.
Jauch-Piron property (everywhere!) in the logicoalgebraic foundation of quantum theories
Pták, Pavel
1993-10-01
The Jauch-Piron property of states on a quantum logic is seen to be of considerable importance within the foundation of quantum theories. In this survey we summarize and comment on recent results on the Jauch-Piron property. We also pose a few open problems whose solution may help in further developing quantum theories and noncommutative measure theory.
Quantum mechanics and Bell's inequalities
International Nuclear Information System (INIS)
Jones, R.T.; Adelberger, E.G.
1994-01-01
Santos argues that, if one interprets probabilities as ratios of detected events to copies of the physical system initially prepared, the quantum mechanical predictions for the classic tests of Bell's inequalities do not violate the inequalities. Furthermore, he suggests that quantum mechanical states which do violate the inequalities are not physically realizable. We discuss a physically realizable experiment, meeting his requirements, where quantum mechanics does violate the inequalities
On obtaining classical mechanics from quantum mechanics
International Nuclear Information System (INIS)
Date, Ghanashyam
2007-01-01
Constructing a classical mechanical system associated with a given quantum-mechanical one entails construction of a classical phase space and a corresponding Hamiltonian function from the available quantum structures and a notion of coarser observations. The Hilbert space of any quantum-mechanical system naturally has the structure of an infinite-dimensional symplectic manifold ('quantum phase space'). There is also a systematic, quotienting procedure which imparts a bundle structure to the quantum phase space and extracts a classical phase space as the base space. This works straightforwardly when the Hilbert space carries weakly continuous representation of the Heisenberg group and one recovers the linear classical phase space R 2N . We report on how the procedure also allows extraction of nonlinear classical phase spaces and illustrate it for Hilbert spaces being finite dimensional (spin-j systems), infinite dimensional but separable (particle on a circle) and infinite dimensional but non-separable (polymer quantization). To construct a corresponding classical dynamics, one needs to choose a suitable section and identify an effective Hamiltonian. The effective dynamics mirrors the quantum dynamics provided the section satisfies conditions of semiclassicality and tangentiality
Quantum mechanics by walking 1. Foundations
International Nuclear Information System (INIS)
Pade, Jochen
2012-01-01
Quantum mechanics by walking introduces to the foundations of non-relativistic quantum mechanics. This book applies to studyings of teaching physics as well as all studyings of physics, who look for an appropriate, easy, fresh, and modern approach to the field. In the present first volume the essential principles of quantum mechanics are worked out. in order to be able to develop their mathematical formulation as fastly and clearly as possible, systematically between wave mechanics and algebraic presentation is changed. Beside themes, which are traditionally in textbooks of quantum mechanics, extensively actual aspects like interaction-free quantum measurement, neutrino oscillations, or quantum cryptography are considered as well as fundamental problems and epistemological questions discussed, as they occur in connection with the measurement process. The list of the postulates of quantum mechanics closes this volume; they form the framework for the extensions and applications, which are discussed in the second volume. The required mathematical aids are introduced step by step. In the appendix the most important mathematical tools are compactly collected, so that supplementing literature can be far reachingly abandoned. Furthermore in the appendix supplementing themes are deepened as for instance the Quantum Zeno effect or delayed-choice experiments.
Analytical mechanics for relativity and quantum mechanics
Johns, Oliver Davis
2011-01-01
Analytical Mechanics for Relativity and Quantum Mechanics is an innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. It is intended for use at the introductory graduate level. A distinguishing feature of the book is its integration of special relativity into teaching of classical mechanics. After a thorough review of the traditional theory, Part II of the book introduces extended Lagrangian and Hamiltonian methods that treat time as a transformable coordinate rather than the fixed parameter of Newtonian physics. Advanced topics such as covariant Langrangians and Hamiltonians, canonical transformations, and Hamilton-Jacobi methods are simplified by the use of this extended theory. And the definition of canonical transformation no longer excludes the Lorenz transformation of special relativity. This is also a book for those who study analytical mechanics to prepare for a critical exploration of quantum...
Dirac equation in noncommutative space for hydrogen atom
International Nuclear Information System (INIS)
Adorno, T.C.; Baldiotti, M.C.; Chaichian, M.; Gitman, D.M.; Tureanu, A.
2009-01-01
We consider the energy levels of a hydrogen-like atom in the framework of θ-modified, due to space noncommutativity, Dirac equation with Coulomb field. It is shown that on the noncommutative (NC) space the degeneracy of the levels 2S 1/2 , 2P 1/2 and 2P 3/2 is lifted completely, such that new transition channels are allowed.
On left Hopf algebras within the framework of inhomogeneous quantum groups for particle algebras
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Romo, Suemi [Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico (Mexico)
2012-10-15
We deal with some matters needed to construct concrete left Hopf algebras for inhomogeneous quantum groups produced as noncommutative symmetries of fermionic and bosonic creation/annihilation operators. We find a map for the bidimensional fermionic case, produced as in Manin's [Quantum Groups and Non-commutative Hopf Geometry (CRM Univ. de Montreal, 1988)] seminal work, named preantipode that fulfills all the necessary requirements to be left but not right on the generators of the algebra. Due to the complexity and importance of the full task, we consider our result as an important step that will be extended in the near future.
From wave mechanics to quantum chemistry
International Nuclear Information System (INIS)
Daudel, R.
1996-01-01
The origin of wave mechanics, which is now called quantum mechanics, is evoked. The main stages of the birth of quantum chemistry are related as resulting from the application of quantum mechanics to the study of molecular properties and chemical reactions. (author). 14 refs
Index theory for locally compact noncommutative geometries
Carey, A L; Rennie, A; Sukochev, F A
2014-01-01
Spectral triples for nonunital algebras model locally compact spaces in noncommutative geometry. In the present text, the authors prove the local index formula for spectral triples over nonunital algebras, without the assumption of local units in our algebra. This formula has been successfully used to calculate index pairings in numerous noncommutative examples. The absence of any other effective method of investigating index problems in geometries that are genuinely noncommutative, particularly in the nonunital situation, was a primary motivation for this study and the authors illustrate this point with two examples in the text. In order to understand what is new in their approach in the commutative setting the authors prove an analogue of the Gromov-Lawson relative index formula (for Dirac type operators) for even dimensional manifolds with bounded geometry, without invoking compact supports. For odd dimensional manifolds their index formula appears to be completely new.
Quantum mechanics and quantum information a guide through the quantum world
Fayngold, Moses
2013-01-01
Alongside a thorough definition of the basic concepts and their interrelations, backed by numerous examples, this textbook features a rare discussion of the quantum information theory. It also deals with other important topics hardly found in the literature, including the Robertson-Schrodinger-relation, angle and angular momentum uncertainties, interaction-free measurements, and the limitations of the no-cloning theorem With its interpretations of quantum mechanics and its discussions of quantum computing, this book is poised to become the standard textbook for advanced undergraduate and beginning graduate quantum mechanics courses and as an essential reference for physics students and physics professionals.
Geometric Aspects of Quantum Mechanics and Quantum Entanglement
International Nuclear Information System (INIS)
Chruscinski, Dariusz
2006-01-01
It is shown that the standard non-relativistic Quantum Mechanics gives rise to elegant and rich geometrical structures. The space of quantum states is endowed with nontrivial Fubini-Study metric which is responsible for the 'peculiarities' of the quantum world. We show that there is also intricate connection between geometrical structures and quantum entanglement
Modern logic and quantum mechanics
International Nuclear Information System (INIS)
Garden, R.W.
1984-01-01
The book applies the methods of modern logic and probabilities to ''interpreting'' quantum mechanics. The subject is described and discussed under the chapter headings: classical and quantum mechanics, modern logic, the propositional logic of mechanics, states and measurement in mechanics, the traditional analysis of probabilities, the probabilities of mechanics and the model logic of predictions. (U.K.)
Covariant Noncommutative Field Theory
Energy Technology Data Exchange (ETDEWEB)
Estrada-Jimenez, S [Licenciaturas en Fisica y en Matematicas, Facultad de Ingenieria, Universidad Autonoma de Chiapas Calle 4a Ote. Nte. 1428, Tuxtla Gutierrez, Chiapas (Mexico); Garcia-Compean, H [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico D.F., Mexico and Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Via del Conocimiento 201, Parque de Investigacion e Innovacion Tecnologica (PIIT) Autopista nueva al Aeropuerto km 9.5, Lote 1, Manzana 29, cp. 66600 Apodaca Nuevo Leon (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato P.O. Box E-143, 37150 Leon Gto. (Mexico); Ramirez, C [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)
2008-07-02
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.
Covariant Noncommutative Field Theory
International Nuclear Information System (INIS)
Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.
2008-01-01
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced
International Nuclear Information System (INIS)
Horn, Martin Erik
2014-01-01
It is still a great riddle to me why Wolfgang Pauli and P.A.M. Dirac had not fully grasped the meaning of their own mathematical constructions. They invented magnificent, fantastic and very important mathematical features of modern physics, but they only delivered half of the interpretations of their own inventions. Of course, Pauli matrices and Dirac matrices represent operators, which Pauli and Dirac discussed in length. But this is only part of the true meaning behind them, as the non-commutative ideas of Grassmann, Clifford, Hamilton and Cartan allow a second, very far reaching interpretation of Pauli and Dirac matrices. An introduction to this alternative interpretation will be discussed. Some applications of this view on Pauli and Dirac matrices are given, e.g. a geometric algebra picture of the plane wave solution of the Maxwell equation, a geometric algebra picture of special relativity, a toy model of SU(3) symmetry, and some only very preliminary thoughts about a possible geometric meaning of quantum mechanics
Quantum mechanics a fundamental approach
Wan, K Kong
2018-01-01
The mathematical formalism of quantum theory in terms of vectors and operators in infinite-dimensional complex vector spaces is very abstract. The definitions of many mathematical quantities used do not seem to have an intuitive meaning. This makes it difficult to appreciate the mathematical formalism and hampers the understanding of quantum mechanics. This book provides intuition and motivation to the mathematics of quantum theory, introducing the mathematics in its simplest and familiar form, for instance, with three-dimensional vectors and operators, which can be readily understood. Feeling confident about and comfortable with the mathematics used helps readers appreciate and understand the concepts and formalism of quantum mechanics. Quantum mechanics is presented in six groups of postulates. A chapter is devoted to each group of postulates with a detailed discussion. Systems with superselection rules, and some conceptual issues such as quantum paradoxes and measurement, are also discussed. The book conc...
Logical foundation of quantum mechanics
International Nuclear Information System (INIS)
Stachow, E.W.
1980-01-01
The subject of this article is the reconstruction of quantum mechanics on the basis of a formal language of quantum mechanical propositions. During recent years, research in the foundations of the language of science has given rise to a dialogic semantics that is adequate in the case of a formal language for quantum physics. The system of sequential logic which is comprised by the language is more general than classical logic; it includes the classical system as a special case. Although the system of sequential logic can be founded without reference to the empirical content of quantum physical propositions, it establishes an essential part of the structure of the mathematical formalism used in quantum mechanics. It is the purpose of this paper to demonstrate the connection between the formal language of quantum physics and its representation by mathematical structures in a self-contained way. (author)
Bell's theorem and quantum mechanics
Rosen, Nathan
1994-02-01
Bell showed that assuming locality leads to a disagreement with quantum mechanics. Here the nature of the nonlocality that follows from quantum mechanics is investigated. Note by the Editor—Readers will recognize Professor Rosen, author of this paper, as one of the co-authors of the famous EPR paper, Albert Einstein, Boris Podolsky, and Nathan Rosen, ``Can Quantum-Mechanical Description of Physical Reality be considered Complete?'', Phys. Rev. 47, 770-780 (1935). Robert H. Romer, Editor
Nonlocal quantum field theory and stochastic quantum mechanics
International Nuclear Information System (INIS)
Namsrai, K.
1986-01-01
This volume presents a systematic development of the implications to both quantum mechanics and quantum field theory of the hypothesis of a stochastic structure of space-time. Some applications to elementary particle physics are also considered. Part 1 is concerned with nonlocal quantum field theory and, among other topics, deals with quantized fields, electromagnetic and weak processes, the Schroedinger equation, and functional methods and their applications. Part 2 presents an introduction to stochastic mechanics and many specific problems of interest are discussed. (Auth.)
Dirac equation in noncommutative space for hydrogen atom
Energy Technology Data Exchange (ETDEWEB)
Adorno, T.C., E-mail: tadorno@nonada.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05508-090 Sao Paulo, SP (Brazil); Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05508-090 Sao Paulo, SP (Brazil); Chaichian, M., E-mail: Masud.Chaichian@helsinki.f [Department of Physics, University of Helsinki and Helsinki Institute of Physics, PO Box 64, FIN-00014 Helsinki (Finland); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05508-090 Sao Paulo, SP (Brazil); Tureanu, A., E-mail: Anca.Tureanu@helsinki.f [Department of Physics, University of Helsinki and Helsinki Institute of Physics, PO Box 64, FIN-00014 Helsinki (Finland)
2009-11-30
We consider the energy levels of a hydrogen-like atom in the framework of theta-modified, due to space noncommutativity, Dirac equation with Coulomb field. It is shown that on the noncommutative (NC) space the degeneracy of the levels 2S{sub 1/2}, 2P{sub 1/2} and 2P{sub 3/2} is lifted completely, such that new transition channels are allowed.
Learn Quantum Mechanics with Haskell
Directory of Open Access Journals (Sweden)
Scott N. Walck
2016-11-01
Full Text Available To learn quantum mechanics, one must become adept in the use of various mathematical structures that make up the theory; one must also become familiar with some basic laboratory experiments that the theory is designed to explain. The laboratory ideas are naturally expressed in one language, and the theoretical ideas in another. We present a method for learning quantum mechanics that begins with a laboratory language for the description and simulation of simple but essential laboratory experiments, so that students can gain some intuition about the phenomena that a theory of quantum mechanics needs to explain. Then, in parallel with the introduction of the mathematical framework on which quantum mechanics is based, we introduce a calculational language for describing important mathematical objects and operations, allowing students to do calculations in quantum mechanics, including calculations that cannot be done by hand. Finally, we ask students to use the calculational language to implement a simplified version of the laboratory language, bringing together the theoretical and laboratory ideas.
Emergent quantum mechanics without wavefunctions
Mesa Pascasio, J.; Fussy, S.; Schwabl, H.; Grössing, G.
2016-03-01
We present our model of an Emergent Quantum Mechanics which can be characterized by “realism without pre-determination”. This is illustrated by our analytic description and corresponding computer simulations of Bohmian-like “surreal” trajectories, which are obtained classically, i.e. without the use of any quantum mechanical tool such as wavefunctions. However, these trajectories do not necessarily represent ontological paths of particles but rather mappings of the probability density flux in a hydrodynamical sense. Modelling emergent quantum mechanics in a high-low intesity double slit scenario gives rise to the “quantum sweeper effect” with a characteristic intensity pattern. This phenomenon should be experimentally testable via weak measurement techniques.
Ensembles and Experiments in Classical and Quantum Physics
Neumaier, Arnold
A philosophically consistent axiomatic approach to classical and quantum mechanics is given. The approach realizes a strong formal implementation of Bohr's correspondence principle. In all instances, classical and quantum concepts are fully parallel: the same general theory has a classical realization and a quantum realization. Extending the ''probability via expectation'' approach of Whittle to noncommuting quantities, this paper defines quantities, ensembles, and experiments as mathematical concepts and shows how to model complementarity, uncertainty, probability, nonlocality and dynamics in these terms. The approach carries no connotation of unlimited repeatability; hence it can be applied to unique systems such as the universe. Consistent experiments provide an elegant solution to the reality problem, confirming the insistence of the orthodox Copenhagen interpretation on that there is nothing but ensembles, while avoiding its elusive reality picture. The weak law of large numbers explains the emergence of classical properties for macroscopic systems.
Search for violations of quantum mechanics
International Nuclear Information System (INIS)
Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V.; Srednicki, M.
1984-01-01
The treatment of quantum effects in gravitational fields indicates that pure states may evolve into mixed states, and Hawking has proposed modification of the axioms of field theory which incorporate the corresponding violation of quantum mechanics. In this paper we propose a modified hamiltonian equation of motion for density matrices and use it to interpret upper bounds on the violation of quantum mechanics in different phenomenological situations. We apply our formalism to the K 0 -anti K 0 system and to long baseline neutron interferometry experiments. In both cases we find upper bounds of about 2x10 -21 GeV on contributions to the single particle 'hamiltonian' which violate quantum mechanical coherence. We discuss how these limits might be improved in the future, and consider the relative significance of other successful tests of quantum mechanics. An appendix contains model estimates of the magnitude of effects violating quantum mechanics. (orig.)
Klein-Gordon oscillators in noncommutative phase space
International Nuclear Information System (INIS)
Wang Jianhua
2008-01-01
We study the Klein-Gordon oscillators in non-commutative (NC) phase space. We find that the Klein-Gordon oscillators in NC space and NC phase-space have a similar behaviour to the dynamics of a particle in commutative space moving in a uniform magnetic field. By solving the Klein-Gordon equation in NC phase space, we obtain the energy levels of the Klein-Gordon oscillators, where the additional terms related to the space-space and momentum-momentum non-commutativity are given explicitly. (authors)
A non-perturbative study of 4d U(1) non-commutative gauge theory — the fate of one-loop instability
Bietenholz, Wolfgang; Nishimura, Jun; Susaki, Yoshiaki; Volkholz, Jan
2006-10-01
Recent perturbative studies show that in 4d non-commutative spaces, the trivial (classically stable) vacuum of gauge theories becomes unstable at the quantum level, unless one introduces sufficiently many fermionic degrees of freedom. This is due to a negative IR-singular term in the one-loop effective potential, which appears as a result of the UV/IR mixing. We study such a system non-perturbatively in the case of pure U(1) gauge theory in four dimensions, where two directions are non-commutative. Monte Carlo simulations are performed after mapping the regularized theory onto a U(N) lattice gauge theory in d = 2. At intermediate coupling strength, we find a phase in which open Wilson lines acquire non-zero vacuum expectation values, which implies the spontaneous breakdown of translational invariance. In this phase, various physical quantities obey clear scaling behaviors in the continuum limit with a fixed non-commutativity parameter θ, which provides evidence for a possible continuum theory. The extent of the dynamically generated space in the non-commutative directions becomes finite in the above limit, and its dependence on θ is evaluated explicitly. We also study the dispersion relation. In the weak coupling symmetric phase, it involves a negative IR-singular term, which is responsible for the observed phase transition. In the broken phase, it reveals the existence of the Nambu-Goldstone mode associated with the spontaneous symmetry breaking.
Emerging interpretations of quantum mechanics and recent progress in quantum measurement
International Nuclear Information System (INIS)
Clarke, M L
2014-01-01
The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism). (paper)
Fundamentals of quantum mechanics
House, J E
2017-01-01
Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models-including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom-are clearly and completely presented. Applications of these models to selected “real world” topics are also included. This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest.
Tunneling time in space fractional quantum mechanics
Hasan, Mohammad; Mandal, Bhabani Prasad
2018-02-01
We calculate the time taken by a wave packet to travel through a classically forbidden region of space in space fractional quantum mechanics. We obtain the close form expression of tunneling time from a rectangular barrier by stationary phase method. We show that tunneling time depends upon the width b of the barrier for b → ∞ and therefore Hartman effect doesn't exist in space fractional quantum mechanics. Interestingly we found that the tunneling time monotonically reduces with increasing b. The tunneling time is smaller in space fractional quantum mechanics as compared to the case of standard quantum mechanics. We recover the Hartman effect of standard quantum mechanics as a special case of space fractional quantum mechanics.
Linearization of non-commuting operators in the partition function
International Nuclear Information System (INIS)
Ahmed, M.
1983-06-01
A generalization of the Stratonovich-Hubbard scheme for evaluating the grand canonical partition function is given. The scheme involves linearization of products of non-commuting operators using the functional integral method. The non-commutivity of the operators leads to an additional term which can be absorbed in the single-particle Hamiltonian. (author)
Covariant differential calculus on quantum spheres of odd dimension
International Nuclear Information System (INIS)
Welk, M.
1998-01-01
Covariant differential calculus on the quantum spheres S q 2N-1 is studied. Two classification results for covariant first order differential calculi are proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including first and higher order calculi and a symmetry concept. (author)
Noncommutativity and Duality through the Symplectic Embedding Formalism
Directory of Open Access Journals (Sweden)
Everton M.C. Abreu
2010-07-01
Full Text Available This work is devoted to review the gauge embedding of either commutative and noncommutative (NC theories using the symplectic formalism framework. To sum up the main features of the method, during the process of embedding, the infinitesimal gauge generators of the gauge embedded theory are easily and directly chosen. Among other advantages, this enables a greater control over the final Lagrangian and brings some light on the so-called ''arbitrariness problem''. This alternative embedding formalism also presents a way to obtain a set of dynamically dual equivalent embedded Lagrangian densities which is obtained after a finite number of steps in the iterative symplectic process, oppositely to the result proposed using the BFFT formalism. On the other hand, we will see precisely that the symplectic embedding formalism can be seen as an alternative and an efficient procedure to the standard introduction of the Moyal product in order to produce in a natural way a NC theory. In order to construct a pedagogical explanation of the method to the nonspecialist we exemplify the formalism showing that the massive NC U(1 theory is embedded in a gauge theory using this alternative systematic path based on the symplectic framework. Further, as other applications of the method, we describe exactly how to obtain a Lagrangian description for the NC version of some systems reproducing well known theories. Naming some of them, we use the procedure in the Proca model, the irrotational fluid model and the noncommutative self-dual model in order to obtain dual equivalent actions for these theories. To illustrate the process of noncommutativity introduction we use the chiral oscillator and the nondegenerate mechanics.
A modern approach to quantum mechanics
Townsend, John S
2012-01-01
Using an innovative approach that students find both accessible and exciting, A Modern Approach to Quantum Mechanics, Second Edition lays out the foundations of quantum mechanics through the physics of intrinsic spin. Written to serve as the primary textbook for an upper-division course in quantum mechanics, Townsend's text gives professors and students a refreshing alternative to the old style of teaching, by allowing the basic physics of spin systems to drive the introduction of concepts such as Dirac notation, operators, eigenstates and eigenvalues, time evolution in quantum mechanics, and entanglement. Chapters 6 through 10 cover the more traditional subjects in wave mechanics-the Schrodinger equation in position space, the harmonic oscillator, orbital angular momentum, and central potentials-but they are motivated by the foundations developed in the earlier chapters. Students using this text will perceive wave mechanics as an important aspect of quantum mechanics, but not necessarily the core of the subj...
Progress in post-quantum mechanics
Sarfatti, Jack
2017-05-01
Newton's mechanics in the 17th century increased the lethality of artillery. Thermodynamics in the 19th led to the steam-powered industrial revolution. Maxwell's unification of electricity, magnetism and light gave us electrical power, the telegraph, radio and television. The discovery of quantum mechanics in the 20th century by Planck, Bohr, Einstein, Schrodinger, Heisenberg led to the creation of the atomic and hydrogen bombs as well as computer chips, the world-wide-web and Silicon Valley's multibillion dollar corporations. The lesson is that breakthroughs in fundamental physics, both theoretical and experimental, have always led to profound technological wealth-creating industries and will continue to do so. There is now a new revolution brewing in quantum mechanics that can be divided into three periods. The first quantum revolution was from 1900 to about 1975. The second quantum information/computer revolution was from about 1975 to 2015. (The early part of this story is told by Kaiser in his book, How the Hippies Saved Physics, how a small group of Berkeley/San Francisco physicists triggered that second revolution.) The third quantum revolution is how an extension of quantum mechanics may lead to the understanding of consciousness as a natural physical phenomenon that can emerge in many material substrates, not only in our carbon-based biochemistry. In particular, this new post-quantum mechanics may lead to naturally conscious artificial intelligence in nano-electronic machines, as well as perhaps extending human life spans to hundreds of years and more.
Phase transition and entropy inequality of noncommutative black holes in a new extended phase space
Energy Technology Data Exchange (ETDEWEB)
Miao, Yan-Gang; Xu, Zhen-Ming, E-mail: miaoyg@nankai.edu.cn, E-mail: xuzhenm@mail.nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)
2017-03-01
We analyze the thermodynamics of the noncommutative high-dimensional Schwarzschild-Tangherlini AdS black hole with the non-Gaussian smeared matter distribution by regarding a noncommutative parameter as an independent thermodynamic variable named as the noncommutative pressure . In the new extended phase space that includes this noncommutative pressure and its conjugate variable, we reveal that the noncommutative pressure and the original thermodynamic pressure related to the negative cosmological constant make the opposite effects in the phase transition of the noncommutative black hole, i.e. the former dominates the UV regime while the latter does the IR regime, respectively. In addition, by means of the reverse isoperimetric inequality, we indicate that only the black hole with the Gaussian smeared matter distribution holds the maximum entropy for a given thermodynamic volume among the noncommutative black holes with various matter distributions.
Baecklund transformation of the noncommutative Gelfand-Dickey hierarchy
International Nuclear Information System (INIS)
Zheng Zhong; He Jingsong; Cheng Yi
2004-01-01
We study the Baecklund transformation of the noncommutative Gelfand-Dickey(ncGD) hierarchy. By factorizing its Lax operator into the multiplication form of first order differential operator, the noncommutative modified KdV(ncMKdV) hierarchy and the Miura transformations are defined. Our results show that the ncMKdV equations are invariant under the cyclic permutation, and hence induces the Baecklund transformation of the ncGD hierarchy. (author)
Pseudo-Hermitian Representation of Quantum Mechanics
International Nuclear Information System (INIS)
Mustafazade, A.
2008-01-01
I will outline a formulation of quantum mechanics in which the inner product on the Hilbert space of a quantum system is treated as a degree of freedom. I will outline some of the basic mathematical and conceptual features of the resulting theory and discuss some of its applications. In particular, I will present a quantum mechanical analogue of Einstein's field equations that links the inner product of the Hilbert space and the Hamiltonian of the system and discuss how the resulting theory can be used to address a variety of problems in classical electrodynamics, relativistic quantum mechanics, and quantum computation
Weinberg, Steven
2013-01-01
Nobel Laureate Steven Weinberg combines his exceptional physical insight with his gift for clear exposition to provide a concise introduction to modern quantum mechanics. Ideally suited to a one-year graduate course, this textbook is also a useful reference for researchers. Readers are introduced to the subject through a review of the history of quantum mechanics and an account of classic solutions of the Schrödinger equation, before quantum mechanics is developed in a modern Hilbert space approach. The textbook covers many topics not often found in other books on the subject, including alternatives to the Copenhagen interpretation, Bloch waves and band structure, the Wigner–Eckart theorem, magic numbers, isospin symmetry, the Dirac theory of constrained canonical systems, general scattering theory, the optical theorem, the 'in-in' formalism, the Berry phase, Landau levels, entanglement and quantum computing. Problems are included at the ends of chapters, with solutions available for instructors at www.cam...
Can noncommutativity resolve the Big-Bang singularity?
Maceda, M; Manousselis, P; Zoupanos, George
2004-01-01
A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has noncommutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a noncommutative version of the Kasner metric is constructed which is nonsingular at all scales and becomes commutative at large length scales.
Quantum Mechanical Earth: Where Orbitals Become Orbits
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
Quantum mechanics in Hilbert space
Prugovecki, Eduard
1981-01-01
A critical presentation of the basic mathematics of nonrelativistic quantum mechanics, this text is suitable for courses in functional analysis at the advanced undergraduate and graduate levels. Its readable and self-contained form is accessible even to students without an extensive mathematical background. Applications of basic theorems to quantum mechanics make it of particular interest to mathematicians working in functional analysis and related areas.This text features the rigorous proofs of all the main functional-analytic statements encountered in books on quantum mechanics. It fills the
Measurement theory in quantum mechanics
International Nuclear Information System (INIS)
Klein, G.
1980-01-01
It is assumed that consciousness, memory and liberty (within the limits of the quantum mechanics indeterminism) are fundamental properties of elementary particles. Then, using this assumption it is shown how measurements and observers may be introduced in a natural way in the quantum mechanics theory. There are no longer fundamental differences between macroscopic and microscopic objects, between classical and quantum objects, between observer and object. Thus, discrepancies and paradoxes have disappeared from the conventional quantum mechanics theory. One consequence of the cumulative memory of the particles is that the sum of negentropy plus information is a constant. Using this theory it is also possible to explain the 'paranormal' phenomena and what is their difference from the 'normal' ones [fr
Emergent quantum mechanics without wavefunctions
International Nuclear Information System (INIS)
Pascasio, J Mesa; Fussy, S; Schwabl, H; Grössing, G
2016-01-01
We present our model of an Emergent Quantum Mechanics which can be characterized by “realism without pre-determination”. This is illustrated by our analytic description and corresponding computer simulations of Bohmian-like “surreal” trajectories, which are obtained classically, i.e. without the use of any quantum mechanical tool such as wavefunctions. However, these trajectories do not necessarily represent ontological paths of particles but rather mappings of the probability density flux in a hydrodynamical sense. Modelling emergent quantum mechanics in a high-low intesity double slit scenario gives rise to the “quantum sweeper effect” with a characteristic intensity pattern. This phenomenon should be experimentally testable via weak measurement techniques. (paper)
Principal noncommutative torus bundles
DEFF Research Database (Denmark)
Echterhoff, Siegfried; Nest, Ryszard; Oyono-Oyono, Herve
2008-01-01
of bivariant K-theory (denoted RKK-theory) due to Kasparov. Using earlier results of Echterhoff and Williams, we shall give a complete classification of principal non-commutative torus bundles up to equivariant Morita equivalence. We then study these bundles as topological fibrations (forgetting the group...
Randomness and locality in quantum mechanics
International Nuclear Information System (INIS)
Bub, J.
1976-01-01
This paper considers the problem of representing the statistical states of a quantum mechanical system by measures on a classical probability space. The Kochen and Specker theorem proves the impossibility of embedding the possibility structure of a quantum mechanical system into a Boolean algebra. It is shown that a hidden variable theory involves a Boolean representation which is not an embedding, and that such a representation cannot recover the quantum statistics for sequential probabilities without introducing a randomization process for the hidden variables which is assumed to apply only on measurement. It is suggested that the relation of incompatability is to be understood as a type of stochastic independence, and that the indeterminism of a quantum mechanical system is engendered by the existence of independent families of properties. Thus, the statistical relations reflect the possibility structure of the system: the probabilities are logical. The hidden variable thesis is influenced by the Copenhagen interpretation of quantum mechanics, i.e. by some version of the disturbance theory of measurement. Hence, the significance of the representation problem is missed, and the completeness of quantum mechanics is seen to turn on the possibility of recovering the quantum statistics by a hidden variable scheme which satisfies certain physically motivated conditions, such as locality. Bell's proof that no local hidden variable theory can reproduce the statistical relations of quantum mechanics is considered. (Auth.)
On quantum gravity and the many-worlds interpretation of quantum mechanics
International Nuclear Information System (INIS)
Smolin, L.
1984-01-01
The paper examines the interpretation of quantum mechanics and the quantum theory of gravity. Foundational problems in quantum gravity; the many-worlds interpretation of quantum mechanics; the role of observation in the many-worlds and in the minimal relative state interpretations; and advantages of the many-worlds interpretation; are all discussed. (U.K.)
Maximally causal quantum mechanics
International Nuclear Information System (INIS)
Roy, S.M.
1998-01-01
We present a new causal quantum mechanics in one and two dimensions developed recently at TIFR by this author and V. Singh. In this theory both position and momentum for a system point have Hamiltonian evolution in such a way that the ensemble of system points leads to position and momentum probability densities agreeing exactly with ordinary quantum mechanics. (author)
Noncommutative duality of Gelfand-Naimark and applications in gauge theory and spinc structure
International Nuclear Information System (INIS)
RATSIMBARISON, H.M.
2004-01-01
We use the GN (Gelfand-Naimark) duality and its generalizations in order to describe some physical constructions, our main tool is the categorical formalism. We start with the first GN theorem, a duality between a category of commutative unital C*-algebras and a category of compact Hausdorff spaces, which we interpret as equivalence between classical observables and classical states. Then, we give the GNS construction providing the 'Fock space' in Quantum Field Theory, and which is the constructive proof of the second GN theorem. A particular formulation of this latter, the Serre-Swan theorem introduces vector bundle structure, a new kind of classical states space. And this lead to K-theory, which we show compatible with a noncommutative concept : the Morita equivalence. From these ideas of Noncommutative geometry, we meet two important applications in QFT : Gauge theory and Spin c structure.The first application begin with the origin of gauge theory: it permit to obtain the interaction lagrangian term from the gauge non invariance of the free lagrangian of matter. Thanks to theories of principal bundles, the gauge potential and the gauge transformation are represented by connection and bundle G-automorphism on the identity of a principal bundle over the spacetime manifold. Finally, the Serre-Swan theorem gives the step of Connes's generalization to noncommutative case. In the second application, we show that the construction of Dirac operator lead to the definitions of Clifford algebra and spinor space. A categorical equivalent definition, similar to those of the Grothendieck group, is done. At the end, we make use of the structure of Clifford algebra and the Morita equivalence to reconstruct Plymen's definition of the spin c structure [fr
QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.
Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C
2015-08-28
According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion. Copyright © 2015, American Association for the Advancement of Science.
Open membranes in a constant C-field background and noncommutative boundary strings
International Nuclear Information System (INIS)
Kawamoto, Shoichi; Sasakura, Naoki
2000-01-01
We investigate the dynamics of open membrane boundaries in a constant C-field background. We follow the analysis for open strings in a B-field background, and take some approximations. We find that open membrane boundaries do show noncommutativity in this case by explicit calculations. Membrane boundaries are one dimensional strings, so we face a new type of noncommutativity, that is, noncommutative strings. (author)
Saxon, David S
2012-01-01
Based on lectures for an undergraduate UCLA course in quantum mechanics, this volume focuses on the formulas of quantum mechanics rather than applications. Widely used in both upper-level undergraduate and graduate courses, it offers a broad self-contained survey rather than in-depth treatments.Topics include the dual nature of matter and radiation, state functions and their interpretation, linear momentum, the motion of a free particle, Schrödinger's equation, approximation methods, angular momentum, and many other subjects. In the interests of keeping the mathematics as simple as possible, m
A non-commutative formula for the isotropic magneto-electric response
International Nuclear Information System (INIS)
Leung, Bryan; Prodan, Emil
2013-01-01
A non-commutative formula for the isotropic magneto-electric response of disordered insulators under magnetic fields is derived using the methods of non-commutative geometry. Our result follows from an explicit evaluation of the Ito derivative with respect to the magnetic field of the non-commutative formula for the electric polarization reported in Schulz-Baldes and Teufel (2012 arXiv:1201.4812v1). The quantization, topological invariance and connection to a second Chern number of the magneto-electric response are discussed in the context of three-dimensional, disordered, time-reversal or inversion symmetric topological insulators. (paper)
Contact geometry and quantum mechanics
Herczeg, Gabriel; Waldron, Andrew
2018-06-01
We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental "phase-spacetime". We show that this covariant starting point makes quantization into a purely geometric flatness condition. This makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum mechanics.
Theoretical physics. Quantum mechanics
International Nuclear Information System (INIS)
Rebhan, Eckhard
2008-01-01
From the first in two comprehensive volumes appeared Theoretical Physics of the author by this after Mechanics and Electrodynamics also Quantum mechanics appears as thinner single volume. First the illustrative approach via wave mechanics is reproduced. The more abstract Hilbert-space formulation introduces the author later by postulates, which are because of the preceding wave mechanics sufficiently plausible. All concepts of quantum mechanics, which contradict often to the intuitive understanding formed by macroscopic experiences, are extensively discussed and made by means of many examples as well as problems - in the largest part provided with solutions - understandable. To the interpretation of quantum mechanics an extensive special chapter is dedicated. this book arose from courses on theoretical physics, which the author has held at the Heinrich-Heine University in Duesseldorf, and was in numerous repetitions fitted to the requirement of the studyings. it is so designed that it is also after the study suited as reference book or for the renewing. All problems are very thoroughly and such extensively studied that each step is separately reproducible. About motivation and good understandability is cared much
Quantum mechanics and computation
International Nuclear Information System (INIS)
Cirac Sasturain, J. I.
2000-01-01
We review how some of the basic principles of Quantum Mechanics can be used in the field of computation. In particular, we explain why a quantum computer can perform certain tasks in a much more efficient way than the computers we have available nowadays. We give the requirements for a quantum system to be able to implement a quantum computer and illustrate these requirements in some particular physical situations. (Author) 16 refs
International Nuclear Information System (INIS)
Weinberg, Steven
2015-01-01
Quantum mechanics represents the central revolution of modern natural science and reaches in its importance farely beyond physics. Neither chemistry nor biology on the molecular scale would be understandable without it. Modern information technology from the laptop over the mobile telephone and the flat screen until the supercomputer would be unthinkable without quantum-mechanical effects. It desribes the world on the atomic and subatomic scale and is by this the starting point of our modern worldview. The Nobel-prize carrier Steven Weinberg has done ever among others by his theory of the unification of the weak and the electromagnetic interaction one of the most important contributions to this revolution. In this book he reproduces his personal view of quantum mechanics, which captivates by its strictly logic construction, precise linguistic representation, and mathematical clearness and completeness. This book appeals to studyings of natural sciences, especially of physics. Accompanied is the test by exercise problems, which allow the studying to apply immediately the knowledge, but also test their understanding. Because of its precision and clearness ''Lectures on Quantum Mechanics'' by Weinberg is also essentially suited for the self-study.
Quantum group symmetry of classical and noncommutative geometry
Indian Academy of Sciences (India)
Debashish Goswami
2016-07-01
Jul 1, 2016 ... universal enveloping algebra U(L) of a Lie algebra L, (iv) ... Kustermans defined locally compact quantum groups too. .... There are other versions of quantum isometries formulated by me ..... classical connected spaces when either the space is ..... Etingof-Walton's paper, we have : (i) M0 is open and dense,.
Inhomogeneous Quantum Invariance Group of Multi-Dimensional Multi-parameter Deformed Boson Algebra
International Nuclear Information System (INIS)
Altintas Azmi Ali; Arik Metin; Arikan Ali Serdar; Dil Emre
2012-01-01
We investigate the inhomogeneous invariance quantum group of the d-dimensional d-parameter deformed boson algebra. It is found that the homogeneous part of this quantum group is given by the d-parameter deformed general linear group. We construct the R-matrix which collects all information about the non-commuting structure of the quantum group for the two-dimensional case. (general)
Charged thin-shell gravastars in noncommutative geometry
Energy Technology Data Exchange (ETDEWEB)
Oevguen, Ali [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Eastern Mediterranean University, Physics Department, Famagusta, Northern Cyprus (Turkey); Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Jusufi, Kimet [State University of Tetovo, Physics Department, Tetovo (Macedonia, The Former Yugoslav Republic of); Institute of Physics, Ss. Cyril and Methodius University, Faculty of Natural Sciences and Mathematics, Skopje (Macedonia, The Former Yugoslav Republic of)
2017-08-15
In this paper we construct a charged thin-shell gravastar model within the context of noncommutative geometry. To do so, we choose the interior of the nonsingular de Sitter spacetime with an exterior charged noncommutative solution by cut-and-paste technique and apply the generalized junction conditions. We then investigate the stability of a charged thin-shell gravastar under linear perturbations around the static equilibrium solutions as well as the thermodynamical stability of the charged gravastar. We find the stability regions, by choosing appropriate parameter values, located sufficiently close to the event horizon. (orig.)
The formalisms of quantum mechanics an introduction
David, Francois
2015-01-01
These lecture notes present a concise and introductory, yet as far as possible coherent, view of the main formalizations of quantum mechanics and of quantum field theories, their interrelations and their theoretical foundations. The “standard” formulation of quantum mechanics (involving the Hilbert space of pure states, self-adjoint operators as physical observables, and the probabilistic interpretation given by the Born rule) on one hand, and the path integral and functional integral representations of probabilities amplitudes on the other, are the standard tools used in most applications of quantum theory in physics and chemistry. Yet, other mathematical representations of quantum mechanics sometimes allow better comprehension and justification of quantum theory. This text focuses on two of such representations: the algebraic formulation of quantum mechanics and the “quantum logic” approach. Last but not least, some emphasis will also be put on understanding the relation between quantum physics and ...
Are quantum-mechanical-like models possible, or necessary, outside quantum physics?
International Nuclear Information System (INIS)
Plotnitsky, Arkady
2014-01-01
This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well. (paper)
A quantum Goldman bracket in (2 + 1) quantum gravity
International Nuclear Information System (INIS)
Nelson, J E; Picken, R F
2008-01-01
In the context of quantum gravity for spacetimes of dimension (2 + 1), we describe progress in the construction of a quantum Goldman bracket for intersecting loops on surfaces. Using piecewise linear paths in R 2 (representing loops on the spatial manifold, i.e. the torus) and a quantum connection with noncommuting components, we review how holonomies and Wilson loops for two homotopic paths are related by phases in terms of the signed area between them. Paths rerouted at intersection points with other paths occur on the rhs of the Goldman bracket. To better understand their nature we introduce the concept of integer points inside the parallelogram spanned by two intersecting paths, and show that the rerouted paths must necessarily pass through these integer points
Principles of classical statistical mechanics: A perspective from the notion of complementarity
International Nuclear Information System (INIS)
Velazquez Abad, Luisberis
2012-01-01
Quantum mechanics and classical statistical mechanics are two physical theories that share several analogies in their mathematical apparatus and physical foundations. In particular, classical statistical mechanics is hallmarked by the complementarity between two descriptions that are unified in thermodynamics: (i) the parametrization of the system macrostate in terms of mechanical macroscopic observablesI=(I i ), and (ii) the dynamical description that explains the evolution of a system towards the thermodynamic equilibrium. As expected, such a complementarity is related to the uncertainty relations of classical statistical mechanics ΔI i Δη i ≥k. Here, k is the Boltzmann constant, η i =∂S(I|θ)/∂I i are the restituting generalized forces derived from the entropy S(I|θ) of a closed system, which is found in an equilibrium situation driven by certain control parameters θ=(θ α ). These arguments constitute the central ingredients of a reformulation of classical statistical mechanics from the notion of complementarity. In this new framework, Einstein postulate of classical fluctuation theory dp(I|θ)∼exp[S(I|θ)/k]dI appears as the correspondence principle between classical statistical mechanics and thermodynamics in the limit k→0, while the existence of uncertainty relations can be associated with the non-commuting character of certain operators. - Highlights: ► There exists a direct analogy between quantum and classical statistical mechanics. ► Statistical form of Le Chatellier principle leads to the uncertainty principle. ► Einstein postulate is simply the correspondence principle. ► Complementary quantities are associated with non-commuting operators.
Non-Abelian strategies in quantum penny flip game
Mishima, Hiroaki
2018-01-01
In this paper, we formulate and analyze generalizations of the quantum penny flip game. In the penny flip game, one coin has two states, heads or tails, and two players apply alternating operations on the coin. In the original Meyer game, the first player is allowed to use quantum (i.e., non-commutative) operations, but the second player is still only allowed to use classical (i.e., commutative) operations. In our generalized games, both players are allowed to use non-commutative operations, with the second player being partially restricted in what operators they use. We show that even if the second player is allowed to use "phase-variable" operations, which are non-Abelian in general, the first player still has winning strategies. Furthermore, we show that even when the second player is allowed to choose one from two or more elements of the group U(2), the second player has winning strategies under certain conditions. These results suggest that there is often a method for restoring the quantum state disturbed by another agent.
Rae, Alastair I M
2007-01-01
PREFACESINTRODUCTION The Photoelectric Effect The Compton Effect Line Spectra and Atomic Structure De Broglie Waves Wave-Particle Duality The Rest of This Book THE ONE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Time-Dependent Schrödinger Equation The Time-Independent Schrödinger Equation Boundary ConditionsThe Infinite Square Well The Finite Square Well Quantum Mechanical Tunneling The Harmonic Oscillator THE THREE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Wave Equations Separation in Cartesian Coordinates Separation in Spherical Polar Coordinates The Hydrogenic Atom THE BASIC POSTULATES OF QUANTUM MEC
Quantum mechanics & the big world
Wezel, Jasper van
2007-01-01
Quantum Mechanics is one of the most successful physical theories of the last century. It explains physical phenomena from the smallest to the largest lengthscales. Despite this triumph, quantum mechanics is often perceived as a mysterious theory, involving superposition states that are alien to our
Quantum hall fluid on fuzzy two dimensional sphere
International Nuclear Information System (INIS)
Luo Xudong; Peng Dantao
2004-01-01
After reviewing the Haldane's description about the quantum Hall effect on the fuzzy two-sphere S 2 , authors construct the noncommutative algebra on the fuzzy sphere S 2 and the Moyal structure of the Hilbert space. By constructing noncommutative Chern-Simons theory of the incompressible Hall fluid on the fuzzy sphere and solving the Gaussian constraint with quasiparticle source, authors find the Calogero matrix on S 2 and the complete set of the Laughlin wave function for the lowest Landau level, and this wave function is expressed by the generalized Jack polynomials in terms of spinor coordinates. (author)
Quantum-mechanical computers and uncomputability
International Nuclear Information System (INIS)
Lloyd, S.
1993-01-01
The time evolution operator for any quantum-mechanical computer is diagonalizable, but to obtain the diagonal decomposition of a program state of the computer is as hard as actually performing the computation corresponding to the program. In particular, if a quantum-mechanical system is capable of universal computation, then the diagonal decomposition of program states is uncomputable. As a result, in a universe in which local variables support universal computation, a quantum-mechanical theory for that universe that supplies its spectrum cannot supply the spectral decomposition of the computational variables. A ''theory of everything'' can be simultaneously correct and fundamentally incomplete
Variational principle in quantum mechanics
International Nuclear Information System (INIS)
Popiez, L.
1986-01-01
The variational principle in a standard, path integral formulation of quantum mechanics (as proposed by Dirac and Feynman) appears only in the context of a classical limit n to 0 and manifests itself through the method of abstract stationary phase. Symbolically it means that a probability amplitude averaged over trajectories denotes a classical evolution operator for points in a configuration space. There exists, however, the formulation of quantum dynamics in which variational priniple is one of basic postulates. It is explained that the translation between stochastic and quantum mechanics in this case can be understood as in Nelson's stochastic mechanics
Supersymmetric quantum mechanics: another nontrivial quantum superpotential
International Nuclear Information System (INIS)
Cervero, J.M.
1991-01-01
A nontrivial example of a quantum superpotential in the framework of supersymmetric quantum mechanics is constructed using integrable soliton-like functions. The model is shown to be fully solvable and some consequences regarding the physical properties of the model such as transparence and boundary effects are discussed. (orig.)
Spectral theorem in noncommutative field theories: Jacobi dynamics
International Nuclear Information System (INIS)
Géré, Antoine; Wallet, Jean-Christophe
2015-01-01
Jacobi operators appear as kinetic operators of several classes of noncommutative field theories (NCFT) considered recently. This paper deals with the case of bounded Jacobi operators. A set of tools mainly issued from operator and spectral theory is given in a way applicable to the study of NCFT. As an illustration, this is applied to a gauge-fixed version of the induced gauge theory on the Moyal plane expanded around a symmetric vacuum. The characterization of the spectrum of the kinetic operator is given, showing a behavior somewhat similar to a massless theory. An attempt to characterize the noncommutative geometry related to the gauge fixed action is presented. Using a Dirac operator obtained from the kinetic operator, it is shown that one can construct an even, regular, weakly real spectral triple. This spectral triple does not define a noncommutative metric space for the Connes spectral distance. (paper)
Quantum mechanics in a nutshell
Mahan, Gerald D
2009-01-01
Covering the fundamentals as well as many special topics of current interest, this is the most concise, up-to-date, and accessible graduate-level textbook on quantum mechanics available. Written by Gerald Mahan, a distinguished research physicist and author of an acclaimed textbook on many-particle physics, Quantum Mechanics in a Nutshell is the distillation of many years' teaching experience. Emphasizing the use of quantum mechanics to describe actual quantum systems such as atoms and solids, and rich with interesting applications, the book proceeds from solving for the properties of a single particle in potential; to solving for two particles (the helium atom); to addressing many-particle systems. Applications include electron gas, magnetism, and Bose-Einstein Condensation; examples are carefully chosen and worked; and each chapter has numerous homework problems, many of them original
Recent trials to verify quantum mechanics
International Nuclear Information System (INIS)
Paty, M.
1974-01-01
An account of the experiments which deal with the verification of Quantum Mechanics and the hidden variable problem is made. First, the well-known EPR paradox is recalled which, in spite of its refutation by Bohr, was the starting point of the questionning on the completeness of Quantum Mechanics and of hidden variable theories; and then Bell's theorem, which shows that the two approaches, Quantum Mechanics and hidden variables, can be put in contradiction. Thereafter the various types of experiments which have been carried out on that subject, mostly concerning the correlation measurements between two photons emitted by a quantum system are described. The most recent experimental results are diverging, some of them to confirm and some others to contradict quantum mechanics. A review of these is given; and a discussion is presented about their possible implications [fr
Worldline approach to noncommutative field theory
International Nuclear Information System (INIS)
Bonezzi, R; Corradini, O; Viñas, S A Franchino; Pisani, P A G
2012-01-01
The study of the heat-trace expansion in non-commutative field theory has shown the existence of Moyal non-local Seeley–DeWitt coefficients which are related to the UV/IR mixing and manifest, in some cases, the non-renormalizability of the theory. We show that these models can be studied in a worldline approach implemented in phase space and arrive at a master formula for the n-point contribution to the heat-trace expansion. This formulation could be useful in understanding some open problems in this area, as the heat-trace expansion for the non-commutative torus or the introduction of renormalizing terms in the action, as well as for generalizations to other non-local operators. (paper)
International Nuclear Information System (INIS)
Hueffel, H.
2004-01-01
The new seminar series 'Vienna central European seminar on particle physics and quantum field theory' has been created 2004 and is intended to provide interactions between leading researchers and junior physicists. This year 'Advances in quantum field theory' has been chosen as subject and is centred on field theoretic aspects of string dualities. The lectures mainly focus on these aspects of string dualities. Further lectures regarding supersymmetric gauge theories, quantum gravity and noncommutative field theory are presented. The vast field of research concerning string dualities justifies special attention to their effects on field theory. (author)
Non-commutative gauge Gravity: Second- order Correction and Scalar Particles Creation
International Nuclear Information System (INIS)
Zaim, S.
2009-01-01
A noncommutative gauge theory for a charged scalar field is constructed. The invariance of this model under local Poincare and general coordinate transformations is verified. Using the general modified field equation, a general Klein-Gordon equation up to the second order of the noncommu- tativity parameter is derived. As an application, we choose the Bianchi I universe. Using the Seiberg-Witten maps, the deformed noncommutative metric is obtained and a particle production process is studied. It is shown that the noncommutativity plays the same role as an electric field, gravity and chemical potential.
Fusion Rings for Quantum Groups
DEFF Research Database (Denmark)
Andersen, Henning Haahr; Stroppel, Catharina
2012-01-01
We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from [12] and give a similar description of the sp2n-fusion ring in terms of noncommutative symmetric...
Mayato, R; Egusquiza, I
2002-01-01
The treatment of time in quantum mechanics is still an important and challenging open question in the foundation of the theory. This book describes the problems, and the attempts and achievements in defining, formalizing and measuring different time quantities in quantum theory, such as the parametric (clock) time, tunneling times, decay times, dwell times, delay times, arrival times or jump times. This multiauthored book, written as an introductory guide for the non-initiated as well as a useful source of information for the expert, covers many of the open questions. A brief historical overview is to be found in the introduction. It is followed by 12 chapters devoted to conceptual and theoretical investigations as well as experimental issues in quantum-mechanical time measurements. This unique monograph should attract physicists as well as philosophers of science working in the foundations of quantum physics.
Stochastic incompleteness of quantum mechanics
International Nuclear Information System (INIS)
Suppes, P.; Zanotti, M.
1976-01-01
This article brings out in as conceptually clear terms as possible what seems to be a major incompleteness in the probability theory of particles offered by classical quantum mechanics. The exact nature of this incompleteness is illustrated by consideration of some simple quantum-mechanical examples. In addition, these examples are contrasted with the fundamental assumptions of Brownian motion in classical physics on the one hand, and with a controversey of a deecade ago in mathematical physchology. The central claim is that clasical quantum mechanics is radically incomplete in its probabilistic account of the motion of particles. In the last part of the article the time-dependent joint distribution of position and momentum of the linear harmonic oscillator is derived, and it is shown how the apparently physically paradoxical statistical independence of position and momentum has a natural explanation. The explanation is given within the framework of the non-quantum-mechanical stochastic theory constructed for such oscillators. (Auth.)
Hilbert space and quantum mechanics
Gallone, Franco
2015-01-01
The topics of this book are the mathematical foundations of non-relativistic quantum mechanics and the mathematical theory they require. The main characteristic of the book is that the mathematics is developed assuming familiarity with elementary analysis only. Moreover, all the proofs are carried out in detail. These features make the book easily accessible to readers with only the mathematical training offered by undergraduate education in mathematics or in physics, and also ideal for individual study. The principles of quantum mechanics are discussed with complete mathematical accuracy and an effort is made to always trace them back to the experimental reality that lies at their root. The treatment of quantum mechanics is axiomatic, with definitions followed by propositions proved in a mathematical fashion. No previous knowledge of quantum mechanics is required. This book is designed so that parts of it can be easily used for various courses in mathematics and mathematical physics, as suggested in the Pref...
International Nuclear Information System (INIS)
Yang, C.-D.
2006-01-01
This paper gives a thorough investigation on formulating and solving quantum problems by extended analytical mechanics that extends canonical variables to complex domain. With this complex extension, we show that quantum mechanics becomes a part of analytical mechanics and hence can be treated integrally with classical mechanics. Complex canonical variables are governed by Hamilton equations of motion, which can be derived naturally from Schroedinger equation. Using complex canonical variables, a formal proof of the quantization axiom p → p = -ih∇, which is the kernel in constructing quantum-mechanical systems, becomes a one-line corollary of Hamilton mechanics. The derivation of quantum operators from Hamilton mechanics is coordinate independent and thus allows us to derive quantum operators directly under any coordinate system without transforming back to Cartesian coordinates. Besides deriving quantum operators, we also show that the various prominent quantum effects, such as quantization, tunneling, atomic shell structure, Aharonov-Bohm effect, and spin, all have the root in Hamilton mechanics and can be described entirely by Hamilton equations of motion
On a direct approach to quasideterminant solutions of a noncommutative modified KP equation
International Nuclear Information System (INIS)
Gilson, C R; Nimmo, J J C; Sooman, C M
2008-01-01
A noncommutative version of the modified KP equation and a family of its solutions expressed as quasideterminants are discussed. The origin of these solutions is explained by means of Darboux transformations and the solutions are verified directly. We also verify directly an explicit connection between quasideterminant solutions of the noncommutative mKP equation and the noncommutative KP equation arising from the Miura transformation
International Nuclear Information System (INIS)
Mugur-Schaechter, M.
1993-01-01
In previous works we have established that the spacetime probabilistic organization of the quantum theory is determined by the spacetime characteristics of the operations by which the observer produces the objects to be studied (states of microsystems) and obtains qualifications of these. Guided by this first conclusion, we have then built a general syntax of relativized conceptualization where any description is explicity and systematically referred to the two basic epistemic operations by which the conceptor introduces the object to be qualified and then obtains qualifications of it. Inside this syntax there emerges a general typology of the relativized descriptions. Here we show that with respect to this typology the type of the predictive quantum mechanical descriptions acquires a precise definition. It appears that the quantum mechanical formalism has captured and has expressed directly in a mathematical language the most complex form in which can occur a first descriptional phase that lies universally at the bottom of any chain of conceptualization. The main features of the Hilbert-Dirac algorithms are decoded in terms of the general syntax of relativized conceptualiztion. This renders explicit the semantical contents of the quantum mechanical representations relating each one of these to its mathematical quantum mechanical expression. Basic insufficiencies are thus identified and, correlatively, false problems as well as answers to these, or guides towards the answers. Globally the results obtained provide a basis for the future attempts at a general mathematical representation of the processes of conceptualization
C*-algebras of holonomy-diffeomorphisms and quantum gravity: I
International Nuclear Information System (INIS)
Aastrup, Johannes; Grimstrup, Jesper Møller
2013-01-01
A new approach to a unified theory of quantum gravity based on noncommutative geometry and canonical quantum gravity is presented. The approach is built around a *-algebra generated by local holonomy-diffeomorphisms on a 3-manifold and a quantized Dirac-type operator, the two capturing the kinematics of quantum gravity formulated in terms of Ashtekar variables. We prove that the separable part of the spectrum of the algebra is contained in the space of measurable connections modulo gauge transformations and we give limitations to the non-separable part. The construction of the Dirac-type operator—and thus the application of noncommutative geometry—is motivated by the requirement of diffeomorphism invariance. We conjecture that a semi-finite spectral triple, which is invariant under volume-preserving diffeomorphisms, arises from a GNS construction of a semi-classical state. Key elements of quantum field theory emerge from the construction in a semi-classical limit, as does an almost commutative algebra. Finally, we note that the spectrum of loop quantum gravity emerges from a discretization of our construction. Certain convergence issues are left unresolved. This paper is the first of two where the second paper [1] is concerned with mathematical details and proofs concerning the spectrum of the holonomy-diffeomorphism algebra. (paper)
Dirac-Kahler fermion with noncommutative differential forms on a lattice
International Nuclear Information System (INIS)
Kanamori, I.; Kawamoto, N.
2004-01-01
Noncommutativity between a differential form and a function allows us to define differential operator satisfying Leibniz's rule on a lattice. We propose a new associative Clifford product defined on the lattice by introducing the noncommutative differential forms. We show that this Clifford product naturally leads to the Dirac-Kaehler fermion on the lattice
Noncommutative instantons: a new approach
International Nuclear Information System (INIS)
Schwarz, A.
2001-01-01
We discuss instantons on noncommutative four-dimensional Euclidean space. In the commutative case one can consider instantons directly on Euclidean space, then we should restrict ourselves to the gauge fields that are gauge equivalent to the trivial field at infinity. However, technically it is more convenient to work on the four-dimensional sphere. We will show that the situation in the noncommutative case is quite similar. One can analyze instantons taking as a starting point the algebra of smooth functions vanishing at infinity, but it is convenient to add a unit element to this algebra (this corresponds to a transition to a sphere at the level of topology). Our approach is more rigorous than previous considerations; it seems that it is also simpler and more transparent. In particular, we obtain the ADHM equations in a very simple way. (orig.)
Moessbauer neutrinos in quantum mechanics and quantum field theory
International Nuclear Information System (INIS)
Kopp, Joachim
2009-01-01
We demonstrate the correspondence between quantum mechanical and quantum field theoretical descriptions of Moessbauer neutrino oscillations. First, we compute the combined rate Γ of Moessbauer neutrino emission, propagation, and detection in quantum field theory, treating the neutrino as an internal line of a tree level Feynman diagram. We include explicitly the effect of homogeneous line broadening due to fluctuating electromagnetic fields in the source and detector crystals and show that the resulting formula for Γ is identical to the one obtained previously [1] for the case of inhomogeneous line broadening. We then proceed to a quantum mechanical treatment of Moessbauer neutrinos and show that the oscillation, coherence, and resonance terms from the field theoretical result can be reproduced if the neutrino is described as a superposition of Lorentz-shaped wave packet with appropriately chosen energies and widths. On the other hand, the emission rate and the detection cross section, including localization and Lamb-Moessbauer terms, cannot be predicted in quantum mechanics and have to be put in by hand.
Quantum Mechanics as Classical Physics
Sebens, CT
2015-01-01
Here I explore a novel no-collapse interpretation of quantum mechanics which combines aspects of two familiar and well-developed alternatives, Bohmian mechanics and the many-worlds interpretation. Despite reproducing the empirical predictions of quantum mechanics, the theory looks surprisingly classical. All there is at the fundamental level are particles interacting via Newtonian forces. There is no wave function. However, there are many worlds.
Quantum mechanics for applied physics and engineering
Fromhold, Albert T
2011-01-01
This excellent text, directed to upper-level undergraduates and graduate students in engineering and applied physics, introduces the fundamentals of quantum mechanics, emphasizing those aspects of quantum mechanics and quantum statistics essential to an understanding of solid-state theory. A heavy background in mathematics and physics is not required beyond basic courses in calculus, differential equations, and calculus-based elementary physics.The first three chapters introduce quantum mechanics (using the Schrödinger equations), quantum statistics, and the free-electron theory of metals. Ch
Non-commutative covering spaces and their symmetries
DEFF Research Database (Denmark)
Canlubo, Clarisson
dened and its corresponding Galois theory. Using this and basic concepts from algebraic geometryand spectral theory, we will give a full description of the general structure of non-centralcoverings. Examples of coverings of the rational and irrational non-commutative tori will alsobe studied. Using...... will explain this and relate it to bi-Galois theory.Using the OZ-transform, we will show that non-commutative covering spaces come in pairs.Several categories of covering spaces will be dened and studied. Appealing to Tannaka duality,we will explain how this lead to a notion of an etale fundamental group...
On the energy crisis in noncommutative CP(1) model
International Nuclear Information System (INIS)
Sourrouille, Lucas
2010-01-01
We study the CP(1) system in (2+1)-dimensional noncommutative space with and without Chern-Simons term. Using the Seiberg-Witten map we convert the noncommutative CP(1) system to an action written in terms of the commutative fields. We find that this system presents the same infinite size instanton solution as the commutative Chern-Simons-CP(1) model without a potential term. Based on this result we argue that the BPS equations are compatible with the full variational equations of motion, rejecting the hypothesis of an 'energy crisis'. In addition we examine the noncommutative CP(1) system with a Chern-Simons interaction. In this case we find that when the theory is transformed by the Seiberg-Witten map it also presents the same instanton solution as the commutative Chern-Simons-CP(1) model.
Supergravity couplings to Noncommutative Branes, Open Wilson Lines and Generalised Star Products
International Nuclear Information System (INIS)
Das, S.R.; Trivedi, S.P.
2001-01-01
Noncommutative gauge theories can be constructed from ordinary U(∞) gauge theories in lower dimensions. Using this construction we identify the operators on noncommutative D-branes which couple to linearized supergravity backgrounds, from a knowledge of such couplings to lower dimensional D-branes with no B field. These operators belong to a class of gauge invariant observables involving open Wilson lines. Assuming a DBI form of the coupling we show, to second order in the gauge potential but to all orders of the noncommutativity parameter, that our proposal agrees with the operator obtained in terms of ordinary gauge fields by considering brane actions in backgrounds and then using the Seiberg-Witten map to rewrite this in terms of noncommutative gauge fields. Our result clarify why a certain commutative but non-associative 'generalized star product' appears both in the expansion of the open Wilson line, as well as in string amplitude computations of open string-closed string couplings. We outline how our procedure can be used to obtain operators in the noncommutative theory which are holographically dual to supergravity modes. (author)
Foundations of Quantum Mechanics and Quantum Computation
Aspect, Alain; Leggett, Anthony; Preskill, John; Durt, Thomas; Pironio, Stefano
2013-03-01
I ask the question: What can we infer about the nature and structure of the physical world (a) from experiments already done to test the predictions of quantum mechanics (b) from the assumption that all future experiments will agree with those predictions? I discuss existing and projected experiments related to the two classic paradoxes of quantum mechanics, named respectively for EPR and Schrödinger's Cat, and show in particular that one natural conclusion from both types of experiment implies the abandonment of the concept of macroscopic counterfactual definiteness.
Solvable potentials derived from supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Levai, G.
1994-01-01
The introduction of supersymmetric quantum mechanics has generated renewed interest in solvable problems of non-relativistic quantum mechanics. This approach offers an elegant way to describe different, but isospectral potentials by interpreting the degeneracy of their energy levels in terms of supersymmetry. The original ideas of supersymmetric quantum mechanics have been developed further in many respects in the past ten years, and have been applied to a large variety of physical problems. The purpose of this contribution is to give a survey of supersymmetric quantum mechanics and its applications to solvable quantum mechanical potentials. Its relation to other models describing isospectral potentials is also discussed here briefly, as well as some of its practical applications in various branches of physics. (orig.)
Late time acceleration in a non-commutative model of modified cosmology
Energy Technology Data Exchange (ETDEWEB)
Malekolkalami, B., E-mail: b.malakolkalami@uok.ac.ir [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of); Vakili, B., E-mail: b-vakili@iauc.ac.ir [Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)
2014-12-12
We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.
Late time acceleration in a non-commutative model of modified cosmology
International Nuclear Information System (INIS)
Malekolkalami, B.; Atazadeh, K.; Vakili, B.
2014-01-01
We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution
Stochastic quantum mechanics and quantum spacetime
International Nuclear Information System (INIS)
Prugovecki, E.
1984-01-01
This monograph deals in part with the physical, mathematical and epistemological reasons behind the failure of past theoretical frameworks, including conventional relativistic quantum mechanics, to bring about a conssistent unification of relativity with quantum theory. The assessment of the past record is set in an historical perspective by citing from original sources, some of which might be partly forgotten or are not that well known, but forcefully illustrate the motivations and goals of the foudners of relativity and quantum theory as they set about developing their respetive disciplines. The proposed framework for unification, which constitutes the bulk of this book, embraces classical as well as quantum theories by implementing an epsitemic idea first put forth by M. Born, namely that all deterministic values for measurable quantitites. The framework gives rise to a whole range of yet unresearched problems, whose solutions are bound to shed some light on the relationship between relativity and quantum theories of the most fundamental physical and mathematical leves. (author). refs.; figs.; tabs
Time Asymmetric Quantum Mechanics
Directory of Open Access Journals (Sweden)
Arno R. Bohm
2011-09-01
Full Text Available The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1 for states or the Heisenberg equation (6a for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus and observables (defined by a registration apparatus (detector. If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t_0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.
q-deformation and semidualization in 3D quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Majid, S [School of Mathematical Sciences, Queen Mary, University of London, 327 Mile End Rd, London E1 4NS (United Kingdom); Schroers, B J [Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)], E-mail: s.majid@qmul.ac.uk, E-mail: bernd@ma.hw.ac.uk
2009-10-23
We explore in detail the role in euclidean 3D quantum gravity of quantum Born reciprocity or 'semidualization'. The latter is an algebraic operation defined using quantum group methods that interchanges position and momentum. Using this we are able to clarify the structural relationships between the effective noncommutative geometries that have been discussed in the context of 3D gravity. We show that the spin model based on D(U(su{sub 2})) for quantum gravity without cosmological constant is the semidual of a quantum particle on a 3-sphere, while the bicrossproduct (DSR) model is the semidual of a quantum particle on hyperbolic space. We show further how the different models are all specific limits of q-deformed models with q=e{sup -{Dirac_h}}{sup {radical}}{sup (-{lambda})/m{sub p}}, where m{sub p} is the Planck mass and {lambda} is the cosmological constant, and argue that semidualization interchanges m{sub p} {r_reversible} l{sub c}, where l{sub c} is the cosmological length scale l{sub c}=1/{radical}(|{lambda}|). We investigate the physics of semidualization by studying representation theory. In both the spin model and its semidual we show that irreducible representations have a physical picture as solutions of a respectively noncommutative/curved wave equation. We explain, moreover, that the q-deformed model, at a certain algebraic level, is self-dual under semidualization.
Science Academies' Refresher Course in Quantum Mechanics
Indian Academy of Sciences (India)
IAS Admin
2013-02-28
Feb 28, 2013 ... A Refresher Course in Quantum Mechanics for college/university teachers ... The Course will cover the basic and advanced topics of Quantum ... Module 1:- Principles of Quantum Mechanics (with associated mathematics), ...
Relativistic quantum mechanics; Mecanique quantique relativiste
Energy Technology Data Exchange (ETDEWEB)
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
Facets of contextual realism in quantum mechanics
International Nuclear Information System (INIS)
Pan, Alok Kumar; Home, Dipankar
2011-01-01
In recent times, there is an upsurge of interest in demonstrating the quantum contextuality. In this proceedings, we explore the two different forms of arguments that have been used for showing the contextual character of quantum mechanics. First line of study concerns the violations of the noncontextual realist models by quantum mechanics, where second line of study that is qualitatively distinct from the earlier one, demonstrates the contextuality within the formalism of quantum mechanics.
QUANTUM MECHANICS WITHOUT STATISTICAL POSTULATES
International Nuclear Information System (INIS)
Geiger, G.
2000-01-01
The Bohmian formulation of quantum mechanics describes the measurement process in an intuitive way without a reduction postulate. Due to the chaotic motion of the hidden classical particle all statistical features of quantum mechanics during a sequence of repeated measurements can be derived in the framework of a deterministic single system theory
Quantum mechanics and stochastic mechanics for compatible observables at different times
International Nuclear Information System (INIS)
Correggi, M.; Morchio, G.
2002-01-01
Bohm mechanics and Nelson stochastic mechanics are confronted with quantum mechanics in the presence of noninteracting subsystems. In both cases, it is shown that correlations at different times of compatible position observables on stationary states agree with quantum mechanics only in the case of product wave functions. By appropriate Bell-like inequalities it is shown that no classical theory, in particular no stochastic process, can reproduce the quantum mechanical correlations of position variables of noninteracting systems at different times
The physics of quantum mechanics
Binney, James
2014-01-01
The Physics of Quantum Mechanics aims to give students a good understanding of how quantum mechanics describes the material world. It shows that the theory follows naturally from the use of probability amplitudes to derive probabilities. It stresses that stationary states are unphysical mathematical abstractions that enable us to solve the theory's governing equation, the time-dependent Schroedinger equation. Every opportunity is taken to illustrate the emergence of the familiarclassical, dynamical world through the quantum interference of stationary states. The text stresses the continuity be
Connes, Alain
1994-01-01
This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.Key Features* First full treatment of the subject and its applications* Written by the pioneer of this field* Broad applications in mathemat
The theory of pseudo-differential operators on the noncommutative n-torus
Tao, J.
2018-02-01
The methods of spectral geometry are useful for investigating the metric aspects of noncommutative geometry and in these contexts require extensive use of pseudo-differential operators. In a foundational paper, Connes showed that, by direct analogy with the theory of pseudo-differential operators on finite-dimensional real vector spaces, one may derive a similar pseudo-differential calculus on noncommutative n-tori, and with the development of this calculus came many results concerning the local differential geometry of noncommutative tori for n=2,4, as shown in the groundbreaking paper in which the Gauss-Bonnet theorem on the noncommutative two-torus is proved and later papers. Certain details of the proofs in the original derivation of the calculus were omitted, such as the evaluation of oscillatory integrals, so we make it the objective of this paper to fill in all the details. After reproving in more detail the formula for the symbol of the adjoint of a pseudo-differential operator and the formula for the symbol of a product of two pseudo-differential operators, we extend these results to finitely generated projective right modules over the noncommutative n-torus. Then we define the corresponding analog of Sobolev spaces and prove equivalents of the Sobolev and Rellich lemmas.
Stochastic mechanics and quantum theory
International Nuclear Information System (INIS)
Goldstein, S.
1987-01-01
Stochastic mechanics may be regarded as both generalizing classical mechanics to processes with intrinsic randomness, as well as providing the sort of detailed description of microscopic events declared impossible under the traditional interpretation of quantum mechanics. It avoids the many conceptual difficulties which arise from the assumption that quantum mechanics, i.e., the wave function, provides a complete description of (microscopic) physical reality. Stochastic mechanics presents a unified treatment of the microscopic and macroscopic domains, in which the process of measurement plays no special physical role and which reduces to Newtonian mechanics in the macroscopic limit
Quantum mechanics and precision measurements
International Nuclear Information System (INIS)
Ramsey, N.F.
1995-01-01
The accuracies of measurements of almost all fundamental physical constants have increased by factors of about 10000 during the past 60 years. Although some of the improvements are due to greater care, most are due to new techniques based on quantum mechanics. Although the Heisenberg Uncertainty Principle often limits measurement accuracies, in many cases the validity of quantum mechanics makes possible the vastly improved measurement accuracies. Seven quantum features that have a profound influence on the science of measurements are: 1) Existence of discrete quantum states of energy. 2) Energy conservation in transitions between two states. 3) Electromagnetic radiation of frequency v is quantized with energy hv per quantum. 4) The identity principle. 5) The Heisenberg Uncertainty Principle. 6) Addition of probability amplitudes (not probabilities). 7) Wave and coherent phase phenomena. Of these seven quantum features, only the Heisenberg Uncertainty Principle limits the accuracy of measurements, and its effect is often negligibly small. The other six features make possible much more accurate measurements of quantum systems than with almost all classical systems. These effects are discussed and illustrated
Quantum mechanics a modern development
Ballentine, Leslie E
2015-01-01
Although there are many textbooks that deal with the formal apparatus of quantum mechanics (QM) and its application to standard problems, none take into account the developments in the foundations of the subject which have taken place in the last few decades. There are specialized treatises on various aspects of the foundations of QM, but none that integrate those topics with the standard material. This book aims to remove that unfortunate dichotomy, which has divorced the practical aspects of the subject from the interpretation and broader implications of the theory. In this edition a new chapter on quantum information is added. As the topic is still in a state of rapid development, a comprehensive treatment is not feasible. The emphasis is on the fundamental principles and some key applications, including quantum cryptography, teleportation of states, and quantum computing. The impact of quantum information theory on the foundations of quantum mechanics is discussed. In addition, there are minor revisions ...
Mathematical foundation of quantum mechanics
Parthasarathy, K R
2005-01-01
This is a brief introduction to the mathematical foundations of quantum mechanics based on lectures given by the author to Ph.D.students at the Delhi Centre of the Indian Statistical Institute in order to initiate active research in the emerging field of quantum probability. The material in the first chapter is included in the author's book "An Introduction to Quantum Stochastic Calculus" published by Birkhauser Verlag in 1992 and the permission of the publishers to reprint it here is acknowledged. Apart from quantum probability, an understanding of the role of group representations in the development of quantum mechanics is always a fascinating theme for mathematicians. The first chapter deals with the definitions of states, observables and automorphisms of a quantum system through Gleason's theorem, Hahn-Hellinger theorem and Wigner's theorem. Mackey's imprimitivity theorem and the theorem of inducing representations of groups in stages are proved directly for projective unitary antiunitary representations ...
Quantum mechanics in matrix form
Ludyk, Günter
2018-01-01
This book gives an introduction to quantum mechanics with the matrix method. Heisenberg's matrix mechanics is described in detail. The fundamental equations are derived by algebraic methods using matrix calculus. Only a brief description of Schrödinger's wave mechanics is given (in most books exclusively treated), to show their equivalence to Heisenberg's matrix method. In the first part the historical development of Quantum theory by Planck, Bohr and Sommerfeld is sketched, followed by the ideas and methods of Heisenberg, Born and Jordan. Then Pauli's spin and exclusion principles are treated. Pauli's exclusion principle leads to the structure of atoms. Finally, Dirac´s relativistic quantum mechanics is shortly presented. Matrices and matrix equations are today easy to handle when implementing numerical algorithms using standard software as MAPLE and Mathematica.
Quantum Gross-Pitaevskii Equation
Directory of Open Access Journals (Sweden)
Jutho Haegeman, Damian Draxler, Vid Stojevic, J. Ignacio Cirac, Tobias J. Osborne, Frank Verstraete
2017-07-01
Full Text Available We introduce a non-commutative generalization of the Gross-Pitaevskii equation for one-dimensional quantum gasses and quantum liquids. This generalization is obtained by applying the time-dependent variational principle to the variational manifold of continuous matrix product states. This allows for a full quantum description of many body system ---including entanglement and correlations--- and thus extends significantly beyond the usual mean-field description of the Gross-Pitaevskii equation, which is known to fail for (quasi one-dimensional systems. By linearizing around a stationary solution, we furthermore derive an associated generalization of the Bogoliubov -- de Gennes equations. This framework is applied to compute the steady state response amplitude to a periodic perturbation of the potential.
Emergence of classical theories from quantum mechanics
International Nuclear Information System (INIS)
Hájícek, P
2012-01-01
Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is no such disturbance, one finds a new interpretation of von Neumann's 'first kind of dynamics', and so a new way to a solution of the quantum measurement problem. The present paper gives a very short review of this work.
Quantum mechanics selected topics
Perelomov, Askold Mikhailovich
1998-01-01
It can serve as a good supplement to any quantum mechanics textbook, filling the gap between standard textbooks and higher-level books on the one hand and journal articles on the other. This book provides a detailed treatment of the scattering theory, multidimensional quasi-classical approximation, non-stationary problems for oscillators and the theory of unstable particles. It will be useful for postgraduate students and researchers who wish to find new, interesting information hidden in the depths of non-relativistic quantum mechanics.
Quantum mechanics and its limits
International Nuclear Information System (INIS)
Lamehi-Rachti, M.; Mittig, W.
1977-01-01
Bell has shown (Bell's inequality) that local hidden variable theories lead to predictions in contradiction with quantum mechanics. This has been tested in low energy proton-proton scattering by the simultaneous measurement of the polarisation of the two protons. The results are in agreement with quantum mechanics and thus in contradiction with the inequality of Bell [fr
International Nuclear Information System (INIS)
Gambini, Rodolfo; Porto, Rafael A; Pullin, Jorge
2004-01-01
The use of a relational time in quantum mechanics is a framework in which one promotes to quantum operators all variables in a system, and later chooses one of the variables to operate like a 'clock'. Conditional probabilities are computed for variables of the system to take certain values when the 'clock' specifies a certain time. This framework is attractive in contexts where the assumption of usual quantum mechanics of the existence of an external, perfectly classical clock, appears unnatural, as in quantum cosmology. Until recently, there were problems with such constructions in ordinary quantum mechanics with additional difficulties in the context of constrained theories like general relativity. A scheme we recently introduced to consistently discretize general relativity removed such obstacles. Since the clock is now an object subject to quantum fluctuations, the resulting evolution in time is not exactly unitary and pure states decohere into mixed states. Here we work out in detail the type of decoherence generated, and we find it to be of Lindblad type. This is attractive since it implies that one can have loss of coherence without violating the conservation of energy. We apply the framework to a simple cosmological model to illustrate how a quantitative estimate of the effect could be computed. For most quantum systems it appears to be too small to be observed, although certain macroscopic quantum systems could in the future provide a testing ground for experimental observation
Energy Technology Data Exchange (ETDEWEB)
Zeiner, Joerg
2007-07-03
The basic question which drove our whole work was to find a meaningful noncommutative gauge theory even for the time-like case ({theta}{sup 0i} {ne}0). Our model is based on two fundamental assumptions. The first assumption is given by the commutation relations. This led to the Moyal-Weyl star-product which replaces all point-like products between two fields. The second assumption is to assume that the model built this way is not only invariant under the noncommutative gauge transformation but also under the commutative one. We chose a gauge fixed action as the fundamental action of our model. After having constructed the action of the NCQED including the Seiberg-Witten maps we were confronted with the problem of calculating the Seiberg-Witten maps to all orders in {theta}{sup {mu}}{sup {nu}}. We could calculate the Seiberg-Witten maps order by order in the gauge field, where each order in the gauge field contains all orders in the noncommutative parameter. We realized that already the simplest Seiberg-Witten map for the gauge field is not unique. We examined this ambiguity, which we could parametrised by an arbitrary function *{sub f}. The next step was to derive the Feynman rules for our NCQED. One finds that the propagators remain unchanged so that the free theory is equal to the commutative QED. The fermion-fermion-photon vertex contains not only a phase factor coming from the Moyal-Weyl star-product but also two additional terms which have their origin in the Seiberg-Witten maps. Beside the 3-photon vertex which is already present in NCQED without Seiberg-Witten maps and which has also additional terms coming from the Seiberg-Witten maps, too, one has a contact vertex which couples two fermions with two photons. After having derived all the vertices we calculated the pair annihilation scattering process e{sup +}e{sup -}{yields}{gamma}{gamma} at Born level. We found that the amplitude of the pair annihilation process becomes equal to the amplitude of the NCQED