WorldWideScience

Sample records for nonaqueous battery quarterly

  1. A High-Current, Stable Nonaqueous Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Duan, Wentao; Huang, Jinhua; Zhang, Lu; Li, Bin; Reed, David; Xu, Wu; Sprenkle, Vincent; Wang, Wei

    2016-10-14

    Nonaqueous redox flow batteries are promising in pursuit of high-energy storage systems owing to the broad voltage window, but currently are facing key challenges such as poor cycling stability and lack of suitable membranes. Here we report a new nonaqueous all-organic flow chemistry that demonstrates an outstanding cell cycling stability primarily because of high chemical persistency of the organic radical redox species and their good compatibility with the supporting electrolyte. A feasibility study shows that Daramic® and Celgard® porous separators can lead to high cell conductivity in flow cells thus producing remarkable cell efficiency and material utilization even at high current operations. This result suggests that the thickness and pore size are the key performance-determining factors for porous separators. With the greatly improved flow cell performance, this new flow system largely addresses the above mentioned challenges and the findings may greatly expedite the development of durable nonaqueous flow batteries.

  2. Carbon dioxide assist for non-aqueous sodium–oxygen batteries

    KAUST Repository

    Das, Shyamal K.; Xu, Shaomao; Archer, Lynden A.

    2013-01-01

    We report a novel non-aqueous Na-air battery that utilizes a gas mixture of CO2 and O2. The battery exhibits a high specific energy of 6500-7000 Whkg- 1 (based on the carbon mass) over a range of CO2 feed compositions. The energy density achieved

  3. Prediction of the theoretical capacity of non-aqueous lithium-air batteries

    International Nuclear Information System (INIS)

    Tan, Peng; Wei, Zhaohuan; Shyy, W.; Zhao, T.S.

    2013-01-01

    Highlights: • The theoretical capacity of non-aqueous lithium-air batteries is predicted. • Key battery design parameters are defined and considered. • The theoretical battery capacity is about 10% of the lithium capacity. • The battery mass and volume changes after discharge are also studied. - Abstract: In attempt to realistically assess the high-capacity feature of emerging lithium-air batteries, a model is developed for predicting the theoretical capacity of non-aqueous lithium-air batteries. Unlike previous models that were formulated by assuming that the active materials and electrolyte are perfectly balanced according to the electrochemical reaction, the present model takes account of the fraction of the reaction products (Li 2 O 2 and Li 2 O), the utilization of the onboard lithium metal, the utilization of the void volume of the porous cathode, and the onboard excess electrolyte. Results show that the gravimetric capacity increases from 1033 to 1334 mA h/g when the reaction product varies from pure Li 2 O 2 to pure Li 2 O. It is further demonstrated that the capacity declines drastically from 1080 to 307 mA h/g when the case of full utilization of the onboard lithium is altered to that only 10% of the metal is utilized. Similarly, the capacity declines from 1080 to 144 mA h/g when the case of full occupation of the cathode void volume by the reaction products is varied to that only 10% of the void volume is occupied. In general, the theoretical gravimetric capacity of typical non-aqueous lithium-air batteries falls in the range of 380–450 mA h/g, which is about 10–12% of the gravimetric capacity calculated based on the energy density of the lithium metal. The present model also facilitates the study of the effects of different parameters on the mass and volume change of non-aqueous lithium-air batteries

  4. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Zhang, Lu; Huang, Jinhua; Burrell, Anthony

    2018-05-08

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte comprises a tetrafluorohydroquinone ether compound or a tetrafluorocatechol ether compound.

  5. Non-aqueous electrolytes for lithium ion batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  6. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  7. Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-06-08

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  8. Anthraquinone with tailored structure for a nonaqueous metal-organic redox flow battery.

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-07-07

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of ~82% and a specific discharge energy density similar to those of aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  9. Alkaline and non-aqueous proton-conducting pouch-cell batteries

    Science.gov (United States)

    Young, Kwo-hsiung; Nei, Jean; Meng, Tiejun

    2018-01-02

    Provided are sealed pouch-cell batteries that are alkaline batteries or non-aqueous proton-conducing batteries. A pouch cell includes a flexible housing such as is used for pouch cell construction where the housing is in the form of a pouch, a cathode comprising a cathode active material suitable for use in an alkaline battery, an anode comprising an anode active material suitable for use in an alkaline battery, an electrolyte that is optionally an alkaline or proton-conducting electrolyte, and wherein the pouch does not include or require a safety vent or other gas absorbing or releasing system as the anode active material and the cathode active material do not increase the internal atmospheric pressure any more than 2 psig during cycling. The batteries provided function contrary to the art recognized belief that such battery systems were impossible due to unacceptable gas production during cycling.

  10. DFT Study On Effects of CO2 Contamination in Non-Aqueous Li-Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2013-01-01

    Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials are investig...... and result in an increased battery capacity. However, CO2 contamination on the Li2O2 surface confirms an asymmetric increase in the overpotentials; particularly the charging overvoltage exhibits sustantial increase, which would reduce the efficiency of the Li-air battery.......Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials...

  11. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery.

    Science.gov (United States)

    Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric; Lawrence, Chad; Vijayakumar, M; Henderson, Wesley A; Liu, Tianbiao; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent; Wang, Wei

    2015-07-20

    Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all-organic flow battery based on high concentrations of redox materials, which shows significant, comprehensive improvement in flow battery performance. A mechanistic electron spin resonance study reveals that the choice of supporting electrolytes greatly affects the chemical stability of the charged radical species especially the negative side radical anion, which dominates the cycling stability of these flow cells. This finding not only increases our fundamental understanding of performance degradation in flow batteries using radical-based redox species, but also offers insights toward rational electrolyte optimization for improving the cycling stability of these flow batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Carbon dioxide assist for non-aqueous sodium–oxygen batteries

    KAUST Repository

    Das, Shyamal K.

    2013-02-01

    We report a novel non-aqueous Na-air battery that utilizes a gas mixture of CO2 and O2. The battery exhibits a high specific energy of 6500-7000 Whkg- 1 (based on the carbon mass) over a range of CO2 feed compositions. The energy density achieved is higher, by 200% to 300%, than that obtained in pure oxygen. Ex-situ FTIR and XRD analysis reveal that Na2O2, Na2C2O 4 and Na2CO3 are the principal discharge products. The Na-CO2/O2 and Mg-CO2/O 2 battery platforms provide a promising, new approach for CO 2 capture and generation of electrical energy. © 2012 Elsevier B.V. All rights reserved.

  13. High voltage rechargeable magnesium batteries having a non-aqueous electrolyte

    Science.gov (United States)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E.; Hwang, Jaehee

    2016-03-22

    A rechargable magnesium battery having an non-aqueous electrolyte is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  14. High Performance Redox Flow Batteries: An Analysis of the Upper Performance Limits of Flow Batteries Using Non-aqueous Solvents

    International Nuclear Information System (INIS)

    Sun, C.-N.; Mench, M.M.; Zawodzinski, T.A.

    2017-01-01

    Redox Flow Batteries (RFBs) are a promising technology for grid-scale electrochemical energy storage. In this work, we use a recently achieved high-performance flow battery performance curve as a basis to assess the maximum achievable performance of a RFB employing non-aqueous solutions as active materials. First we show high performance in a vanadium redox flow battery (VRFB), specifically a limiting situation in which the cell losses are ohmic in nature and derive from electrolyte conductance. Based on that case, we analyze the analogous limiting behavior of non-aqueous (NA) systems using a series of calculations assuming similar ohmic losses, scaled by the relative electrolyte resistances, with a higher voltage redox couple assumed for the NA battery. The results indicate that the NA battery performance is limited by the low electrolyte conductivity to a fraction of the performance of the VRFB. Given the narrow window in which the NARFB offers advantages, even for the most generous limiting assumptions related to performance while ignoring the numerous other disadvantageous aspects of these systems, we conclude that this technology is unlikely under present circumstances to provide practical large-scale energy storage solutions.

  15. Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries.

    Science.gov (United States)

    VanGelder, L E; Kosswattaarachchi, A M; Forrestel, P L; Cook, T R; Matson, E M

    2018-02-14

    Non-aqueous redox flow batteries have emerged as promising systems for large-capacity, reversible energy storage, capable of meeting the variable demands of the electrical grid. Here, we investigate the potential for a series of Lindqvist polyoxovanadate-alkoxide (POV-alkoxide) clusters, [V 6 O 7 (OR) 12 ] (R = CH 3 , C 2 H 5 ), to serve as the electroactive species for a symmetric, non-aqueous redox flow battery. We demonstrate that the physical and electrochemical properties of these POV-alkoxides make them suitable for applications in redox flow batteries, as well as the ability for ligand modification at the bridging alkoxide moieties to yield significant improvements in cluster stability during charge-discharge cycling. Indeed, the metal-oxide core remains intact upon deep charge-discharge cycling, enabling extremely high coulombic efficiencies (∼97%) with minimal overpotential losses (∼0.3 V). Furthermore, the bulky POV-alkoxide demonstrates significant resistance to deleterious crossover, which will lead to improved lifetime and efficiency in a redox flow battery.

  16. 1,3-Dioxolane, tetrahydrofuran, acetylacetone and dimethyl sulfoxide as solvents for non-aqueous vanadium acetylacetonate redox-flow-batteries

    International Nuclear Information System (INIS)

    Herr, T.; Noack, J.; Fischer, P.; Tübke, J.

    2013-01-01

    Highlights: • Four solvents were employed in a non-aqueous redox flow battery system. • Coulombic efficiencies of 85.9–98.5% and energy efficiencies of 26.6–43.6% were achieved. • Discharge power density was enhanced up to 0.080 mW cm −2 . • Solubility of V(acac) 3 was increased to 0.8 M compared to the acetonitrile system. -- Abstract: A non-aqueous vanadium acetylacetonate redox flow battery with different organic solvents and tetrabutylammonium hexafluorophosphate has been investigated. Cyclic voltammograms show three redox couples in 1,3-dioxolane, tetrahydrofuran, acetylacetone and two redox couples in dimethyl sulfoxide. Cell potentials between 2.21 and 2.61 V are measured, depending on the solvent used. Impedance Spectroscopy has been used to determine rate limiting step in the non-aqueous redox flow battery. Experiments in a charge–discharge test cell yielded coulombic and energy efficiencies of 85.9–98.5% and 26.6–43.6%, respectively

  17. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries.

    Science.gov (United States)

    Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan; Cosimbescu, Lelia; Liu, Tianbiao; Sprenkle, Vincent; Wang, Wei

    2014-12-03

    A TEMPO-based non-aqueous electrolyte with the TEMPO concentration as high as 2.0 m is demonstrated as a high-energy-density catholyte for redox flow battery applications. With a hybrid anode, Li|TEMPO flow cells using this electrolyte deliver an energy efficiency of ca. 70% and an impressively high energy density of 126 W h L(-1) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries.

    Science.gov (United States)

    Doris, Sean E; Ward, Ashleigh L; Baskin, Artem; Frischmann, Peter D; Gavvalapalli, Nagarjuna; Chénard, Etienne; Sevov, Christo S; Prendergast, David; Moore, Jeffrey S; Helms, Brett A

    2017-02-01

    Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. Here we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the rate of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2  day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. This strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Universality in Nonaqueous Alkali Oxygen Reduction on Metal Surfaces: Implications for Li−O2 and Na−O2 Batteries

    DEFF Research Database (Denmark)

    Krishnamurthy, Dilip; Hansen, Heine Anton; Viswanathan, Venkatasubramanian

    2016-01-01

    Nonaqueous metal−oxygen batteries, particularly lithium−oxygen and sodium−oxygen, have emerged as possible high energy density alternatives to Li-ion batteries that could address the limited driving range issues faced by electric vehicles. Many fundamental questions remain unanswered, including t...

  20. A non-aqueous all-copper redox flow battery with highly soluble active species

    International Nuclear Information System (INIS)

    Li, Yun; Sniekers, Jeroen; Malaquias, João; Li, Xianfeng; Schaltin, Stijn; Stappers, Linda; Binnemans, Koen; Fransaer, Jan; Vankelecom, Ivo F.J.

    2017-01-01

    A metal-based redox pair with acetonitrile as ligand [Cu(MeCN)_4][Tf_2N] is described for use in non-aqueous redox flow battery (RFB). The electrode kinetics of the anode and cathode are studied using cyclic voltammetry. The Cu"2"+/Cu"+ and Cu"+/Cu couples in this system yield a cell potential of 1.24 V. The diffusion coefficient for [Cu(MeCN)_4][Tf_2N] in acetonitrile is estimated to be 6.8 × 10"−"6 cm"2 s"−"1 at room temperature. The copper-acetonitrile complex has a very high solubility of 1.68 M in acetonitrile, the most widely used organic solvent for non-aqueous electrochemical applications. Hence, a maximum theoretical energy density around 28 Wh L"−"1 can be reached with the reported system. The RFB with this electrolyte shows a promising performance, with coulombic efficiencies of 87% and energy efficiencies of 44% (5 mA cm"−"2).

  1. Bi-functional effects of lengthening aliphatic chain of phthalimide-based negative redox couple and its non-aqueous flow battery performance at stack cell

    Science.gov (United States)

    Kim, Hyun-seung; Hwang, Seunghae; Kim, Youngjin; Ryu, Ji Heon; Oh, Seung M.; Kim, Ki Jae

    2018-04-01

    Effects of lengthening an aliphatic chain of a phthalimide-based negative redox couple for non-aqueous flow batteries are examined. The working voltage and solubility of N-butylphthalimide are 0.1 V lower and four times greater (2.0 M) than those of methyl-substituted phthalimide. These enhanced properties are attributed to a lower packing density. Consequently, the energy density of the proposed redox couple is greatly enhanced from butyl substitution. Furthermore, the results of the stack flow cell test with N,N,N',N'-tetramethyl-p-phenylenediamine positive redox couple show advantageous features of this non-aqueous flow battery system: a stable Coulombic efficiency and high working voltage.

  2. Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling.

    Science.gov (United States)

    Milton, Margarita; Cheng, Qian; Yang, Yuan; Nuckolls, Colin; Hernández Sánchez, Raúl; Sisto, Thomas J

    2017-12-13

    This manuscript presents a working redox battery in organic media that possesses remarkable cycling stability. The redox molecules have a solubility over 1 mol electrons/liter, and a cell with 0.4 M electron concentration is demonstrated with steady performance >450 cycles (>74 days). Such a concentration is among the highest values reported in redox flow batteries with organic electrolytes. The average Coulombic efficiency of this cell during cycling is 99.868%. The stability of the cell approaches the level necessary for a long lifetime nonaqueous redox flow battery. For the membrane, we employ a low cost size exclusion cellulose membrane. With this membrane, we couple the preparation of nanoscale macromolecular electrolytes to successfully avoid active material crossover. We show that this cellulose-based membrane can support high voltages in excess of 3 V and extreme temperatures (-20 to 110 °C). These extremes in temperature and voltage are not possible with aqueous systems. Most importantly, the nanoscale macromolecular platforms we present here for our electrolytes can be readily tuned through derivatization to realize the promise of organic redox flow batteries.

  3. Bi-functional effects of lengthening aliphatic chain of phthalimide-based negative redox couple and its non-aqueous flow battery performance at stack cell

    Directory of Open Access Journals (Sweden)

    Hyun-seung Kim

    2018-04-01

    Full Text Available Effects of lengthening an aliphatic chain of a phthalimide-based negative redox couple for non-aqueous flow batteries are examined. The working voltage and solubility of N-butylphthalimide are 0.1 V lower and four times greater (2.0 M than those of methyl-substituted phthalimide. These enhanced properties are attributed to a lower packing density. Consequently, the energy density of the proposed redox couple is greatly enhanced from butyl substitution. Furthermore, the results of the stack flow cell test with N,N,N′,N′-tetramethyl-p-phenylenediamine positive redox couple show advantageous features of this non-aqueous flow battery system: a stable Coulombic efficiency and high working voltage.

  4. Partially Fluorinated Solvent as a co-solvent for the Non-aqueous Electrolyte of Li/air Battery

    Science.gov (United States)

    2010-11-11

    ether ( MFE ) and tris(2,2,2-trifluoroethyl) phosphite (TTFP), respectively, as a co-solvent for the non-aqueous electrolyte of Li–air battery. Results...fluorinated solvents on the discharge performance of Li–air bat- tery. For this purpose, we here selectmethyl nonafluorobutyl ether ( MFE ) and tris...196, (2011) pgs. 2867-2870 14. ABSTRACT In this workwestudy methyl nonafluorobutyl ether ( MFE ) and tris(2,2,2-trifluoroethyl) phosphite (TTFP

  5. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Hendriks, Koen H; Robinson, Sophia G; Braten, Miles N; Sevov, Christo S; Helms, Brett A; Sigman, Matthew S; Minteer, Shelley D; Sanford, Melanie S

    2018-02-28

    Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte solutions must be separated by a membrane in the flow cell. This membrane prevents crossover of the redox active molecules, while simultaneously allowing facile transport of charge-balancing ions. A key unmet challenge for the field is the design of redox-active molecule/membrane pairs that enable effective electrolyte separation while maintaining optimal battery properties. Herein, we demonstrate the development of oligomeric catholytes based on tris(dialkylamino)cyclopropenium (CP) salts that are specifically tailored for pairing with size-exclusion membranes composed of polymers of intrinsic microporosity (PIMs). Systematic studies were conducted to evaluate the impact of oligomer size/structure on properties that are crucial for flow battery performance, including cycling stability, charge capacity, solubility, electron transfer kinetics, and crossover rates. These studies have led to the identification of a CP-derived tetramer in which these properties are all comparable, or significantly improved, relative to the monomeric counterpart. Finally, a proof-of-concept flow battery is demonstrated by pairing this tetrameric catholyte with a PIM membrane. After 6 days of cycling, no crossover is detected, demonstrating the promise of this approach. These studies provide a template for the future design of other redox-active oligomers for this application.

  6. A comparative study on the solubility and stability of p-phenylenediamine-based organic redox couples for non-aqueous flow batteries

    Science.gov (United States)

    Kim, Hyun-seung; Lee, Keon-Joon; Han, Young-Kyu; Ryu, Ji Heon; Oh, Seung M.

    2017-04-01

    A methyl-substituted p-phenylenediamine (PD), N,N,N‧,N‧-tetramethyl-p-phenylenediamine (TMPD), is examined as a positive redox couple with high energy density for non-aqueous Li-flow batteries. Methyl substitution affects the solubility of the redox couple, as the solubility is increased by a factor of ten, to a maximum solubility of 5.0 M in 1.0 M lithium tetrafluoroborate-propylene carbonate supporting electrolyte due to elimination of the hydrogen bonding between the solute molecules. The methyl substitution also enhances the chemical stability of the cation radical and di-cation being generated from PD, as the redox center is shielded by the methyl groups. Furthermore, this organic redox couple demonstrate two-electron redox reactions at 3.2 and 3.8 V (vs. Li/Li+); therefore, the volumetric capacity is twice higher compared to conventional one-electron involved redox couples. In a non-flowing Li/TMPD coin-cell, this organic redox couple demonstrates very stable cycleability as a positive redox couple for non-aqueous flow batteries.

  7. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries

    Science.gov (United States)

    Aetukuri, Nagaphani B.; McCloskey, Bryan D.; García, Jeannette M.; Krupp, Leslie E.; Viswanathan, Venkatasubramanian; Luntz, Alan C.

    2015-01-01

    Given their high theoretical specific energy, lithium-oxygen batteries have received enormous attention as possible alternatives to current state-of-the-art rechargeable Li-ion batteries. However, the maximum discharge capacity in non-aqueous lithium-oxygen batteries is limited to a small fraction of its theoretical value due to the build-up of insulating lithium peroxide (Li2O2), the battery’s primary discharge product. The discharge capacity can be increased if Li2O2 forms as large toroidal particles rather than as a thin conformal layer. Here, we show that trace amounts of electrolyte additives, such as H2O, enhance the formation of Li2O2 toroids and result in significant improvements in capacity. Our experimental observations and a growth model show that the solvating properties of the additives prompt a solution-based mechanism that is responsible for the growth of Li2O2 toroids. We present a general formalism describing an additive’s tendency to trigger the solution process, providing a rational design route for electrolytes that afford larger lithium-oxygen battery capacities.

  8. From battery modeling to battery management

    NARCIS (Netherlands)

    Notten, P.H.L.; Danilov, D.

    2011-01-01

    The principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydride (NiMH), and non-aqueous battery systems, such as the well-known Li-ion. These electronic network models are based on

  9. MnO2-x nanosheets on stainless steel felt as a carbon- and binder-free cathode for non-aqueous lithium-oxygen batteries

    Science.gov (United States)

    Wei, Z. H.; Zhao, T. S.; Zhu, X. B.; Tan, P.

    2016-02-01

    Manganese dioxide (MnO2) has been recognized as an effective catalyst for the oxygen reduction and oxygen evolution reactions in non-aqueous lithium-oxygen batteries. However, a further improvement in battery performance with the MnO2 catalyst is limited by its low electronic conductivity and catalytic activity, which strongly depend on the morphology and composition. In this work, we develop a carbon- and binder-free MnO2-x nanosheets/stainless steel (SS) cathode via a simple and effective electrodeposition-solvothermal route. The created Mn(III) and oxygen vacancy in MnO2-x nanosheets allows an significant increase in the electronic conductivity and catalytic activity. It is experimentally shown that the use of the present nanostructure MnO2-x/SS cathode in a non-aqueous lithium-oxygen battery results in a rechargeable specific capacity of 7300 mAh g-1 at a current density of 200 mA g-1, which is 39% higher than that with the MnO2/SS cathode. In addition, the specific capacities at 400 mA g-1 and 800 mA g-1 reach 5249 mAh g-1 and 2813 mAh g-1, respectively, which are over 30% higher than that with the MnO2/SS cathode. Furthermore, the discharge/charge cycle test shows no degradation for 120 cycles. All the results show that the present nanostructure MnO2-x/SS cathode is a promising candidate for high-performance lithium-oxygen batteries.

  10. Redox active polymers and colloidal particles for flow batteries

    Science.gov (United States)

    Gavvalapalli, Nagarjuna; Moore, Jeffrey S.; Rodriguez-Lopez, Joaquin; Cheng, Kevin; Shen, Mei; Lichtenstein, Timothy

    2018-05-29

    The invention provides a redox flow battery comprising a microporous or nanoporous size-exclusion membrane, wherein one cell of the battery contains a redox-active polymer dissolved in the non-aqueous solvent or a redox-active colloidal particle dispersed in the non-aqueous solvent. The redox flow battery provides enhanced ionic conductivity across the electrolyte separator and reduced redox-active species crossover, thereby improving the performance and enabling widespread utilization. Redox active poly(vinylbenzyl ethylviologen) (RAPs) and redox active colloidal particles (RACs) were prepared and were found to be highly effective redox species. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPs is accessible and the electrolysis products are stable upon cycling. The high concentration attainable (>2.0 M) for RAPs in common non-aqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for non-aqueous redox flow batteries based on size-selectivity.

  11. Enhancing the stability and performance of a battery cathode using a non-aqueous electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Yeol [Division of Engineering, Brown University, Providence, RI 02912 (United States); Sen, Sujat [Department of Chemistry, Brown University, Providence, RI 02912 (United States); Song, Hyun-Kon [Interdisciplinary School of Green Energy and School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Banyeon-ri 100, Ulju-gun, Ulsan 689-798 (Korea); Palmore, G. Tayhas R. [Division of Biology and Medicine, Brown University, Providence, RI 02912 (United States)

    2010-06-15

    For conductive polymers to be considered materials for energy storage, both their electroactivity and stability must be optimized. In this study, a non-aqueous electrolyte (0.2 M LiClO{sub 4} in acetonitrile) was studied for its effect on the charge storage capacity and stability of two materials used in batteries developed in our laboratory, polypyrrole (pPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) doped with 2,2'-azino-bis(3-ethylbenzothiaxoline-6-sulfonic acid (ABTS)). The results are compared to the performance of these materials in an aqueous electrolyte (0.2 M HCl/aq). Loss of ABTS dopant was eliminated principally due to the low solubility of ABTS in acetonitrile, resulting in cathode materials with improved stability in terms of load cycling and performance. (author)

  12. Battery Modeling: A Versatile Tool to Design Advanced Battery Management Systems

    NARCIS (Netherlands)

    Notten, P.H.L.; Danilov, D.L.

    Fundamental physical and (electro) chemical principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydride (NiMH), and non-aqueous battery systems, such as the well-known Li-ion. Refined

  13. 3D Graphene-Ni Foam as an Advanced Electrode for High-Performance Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Lee, Kyubin; Lee, Jungkuk; Kwon, Kyoung Woo; Park, Min-Sik; Hwang, Jin-Ha; Kim, Ki Jae

    2017-07-12

    Electrodes composed of multilayered graphene grown on a metal foam (GMF) were prepared by directly growing multilayer graphene sheets on a three-dimensional (3D) Ni-foam substrate via a self-catalyzing chemical vapor deposition process. The multilayer graphene sheets are successfully grown on the Ni-foam substrate surface, maintaining the unique 3D macroporous structure of the Ni foam. The potential use of GMF electrodes in nonaqueous redox flow batteries (RFBs) is carefully examined using [Co(bpy) 3 ] +/2+ and [Fe(bpy) 3 ] 2+/3+ redox couples. The GMF electrodes display a much improved electrochemical activity and enhanced kinetics toward the [Co(bpy) 3 ] +/2+ (anolyte) and [Fe(bpy) 3 ] 2+/3+ (catholyte) redox couples, compared with the bare Ni metal foam electrodes, suggesting that the 2D graphene sheets having lots of interdomain defects provide sufficient reaction sites and secure electric-conduction pathways. Consequently, a nonaqueous RFB cell assembled with GMF electrodes exhibits high Coulombic and voltage efficiencies of 87.2 and 90.9%, respectively, at the first cycle. This performance can be maintained up to the 50th cycle without significant efficiency loss. Moreover, the importance of a rational electrode design for improving electrochemical performance is addressed.

  14. Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product

    International Nuclear Information System (INIS)

    Tan, Peng; Ni, Meng; Shao, Zongping; Chen, Bin; Kong, Wei

    2017-01-01

    Highlights: •A macroscopic model for Li-O 2 batteries based on LiO 2 is developed. •The electrode and electrolyte properties on discharge behaviors are investigated. •A thin cathode with a large porosity is favorable for a high specific capacity. •A high catalytic activity can lead to a high discharge voltage. •The oxygen solubility has larger impacts on the discharge performance. -- Abstract: It is reported lithium superoxide as the discharge product can largely decrease the charge voltage and enable a high round-trip efficiency of lithium-oxygen (Li-O 2 ) batteries. Here, we conduct a numerical investigation of the discharge behaviors of such batteries with LiO 2 as the discharge product. A mathematical model considering the mass transport and electrochemical reaction processes is first developed, which gives good agreement of the simulated discharge voltage with the experimental data. Then, with this model, the effects of electrode and electrolyte properties on the discharge performance are detailedly investigated. It is found that a thin cathode with a large porosity is favorable for a high specific capacity, and a high catalytic activity can lead to a high discharge voltage. For the cathode with different geometrical properties, it is found that the oxygen solubility and diffusivity have similar impacts on discharge capacities, but the oxygen solubility has a larger impact on energy densities. Besides, the limitations and further developments of the present model are also discussed. The results obtained from this work may give useful guidance for the discharge performance improvements of non-aqueous Li-O 2 batteries, and provide implications for other energy storage systems with solid product formation such as Na-O 2 batteries and Li-S batteries.

  15. Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Nonaqueous Li−Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; García Lastra, Juan Maria; Hummelshøj, Jens S.

    2015-01-01

    The formation and oxidation of the main discharge product in nonaqueous secondary Li−O2 batteries, that is, Li2O2, has been studied intensively, but less attention has been given to the formation of cathode−electrolyte interfaces, which can significantly influence the performance of the Li−O2...... battery. Here we apply density functional theory with the Hubbard U correction (DFT+U) and nonequilibrium Green’s function (NEGF) methods to investigate the role of Li2O2@Li2CO3 interface layers on the ionic and electronic transport properties at the oxygen electrode. We show that, for example, lithium...... vacancies accumulate at the peroxide part of the interface during charge, reducing the coherent electron transport by two to three orders of magnitude compared with pristine Li2O2. During discharge, Li2O2@Li2CO3 interfaces may, however, provide an alternative in-plane channel for fast electron polaron...

  16. Crosslinked anion exchange membranes prepared from poly(phenylene oxide) (PPO) for non-aqueous redox flow batteries

    Science.gov (United States)

    Li, Yun; Sniekers, Jeroen; Malaquias, João C.; Van Goethem, Cedric; Binnemans, Koen; Fransaer, Jan; Vankelecom, Ivo F. J.

    2018-02-01

    A stable and eco-friendly anion-exchange membrane (AEM) was prepared and applied in a non-aqueous all-copper redox flow battery (RFB). The AEM was prepared via a simple procedure, leading to a cross-linked structure containing quaternary ammonium groups without involvement of harmful trimethylamine. A network was thus constructed which ensured both ion transport and solvent resistance. The ion exchange capacity (IEC) of the membrane was tuned from 0.49 to 1.03 meq g-1 by varying the content of the 4, 4‧-bipyridine crosslinking agent. The membrane showed a good anion conductivity and retention of copper ions. As a proof of principle, a RFB single cell with this crosslinked membrane yielded a coulombic efficiency of 89%, a voltage efficiency of 61% and an energy efficiency of 54% at 7.5 mA cm-2.

  17. 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries

    Science.gov (United States)

    Milshtein, Jarrod D.; Barton, John L.; Darling, Robert M.; Brushett, Fikile R.

    2016-09-01

    Nonaqueous redox flow batteries (NAqRFBs) that utilize redox active organic molecules are an emerging energy storage concept with the possibility of meeting grid storage requirements. Sporadic and uneven advances in molecular discovery and development, however, have stymied efforts to quantify the performance characteristics of nonaqueous redox electrolytes and flow cells. A need exists for archetypal redox couples, with well-defined electrochemical properties, high solubility in relevant electrolytes, and broad availability, to serve as probe molecules. This work investigates the 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (AcNH-TEMPO) redox pair for such an application. We report the physicochemical and electrochemical properties of the reduced and oxidized compounds at dilute concentrations for electroanalysis, as well as moderate-to-high concentrations for RFB applications. Changes in conductivity, viscosity, and UV-vis absorbance as a function of state-of-charge are quantified. Cyclic voltammetry investigates the redox potential, reversibility, and diffusion coefficients of dilute solutions, while symmetric flow cell cycling determines the stability of the AcNH-TEMPO redox pair over long experiment times. Finally, single electrolyte flow cell studies demonstrate the utility of this redox couple as a platform chemistry for benchmarking NAqRFB performance.

  18. High-energy redox-flow batteries with hybrid metal foam electrodes.

    Science.gov (United States)

    Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun

    2014-07-09

    A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.

  19. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.

    Science.gov (United States)

    Duan, Wentao; Vemuri, Rama S; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-02-13

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, non-aqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of non-aqueous electrolytes. However, significant technical hurdles exist currently limiting non-aqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we recently reported a non-aqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox material exhibits an ambipolar electrochemical property, and therefore can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry. Moreover, we demonstrated that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC), as cross-validated by electron spin resonance (ESR) measurements. Herein we present a video protocol for the electrochemical evaluation and SOC diagnosis of the PTIO symmetric flow battery. With a detailed description, we experimentally demonstrated the route to achieve such purposes. This protocol aims to spark more interests and insights on the safety and reliability in the field of non-aqueous redox flow batteries.

  20. Feasibility of a Supporting-Salt-Free Nonaqueous Redox Flow Battery Utilizing Ionic Active Materials.

    Science.gov (United States)

    Milshtein, Jarrod D; Fisher, Sydney L; Breault, Tanya M; Thompson, Levi T; Brushett, Fikile R

    2017-05-09

    Nonaqueous redox flow batteries (NAqRFBs) are promising devices for grid-scale energy storage, but high projected prices could limit commercial prospects. One route to reduced prices is to minimize or eliminate the expensive supporting salts typically employed in NAqRFBs. Herein, the feasibility of a flow cell operating in the absence of supporting salt by utilizing ionic active species is demonstrated. These ionic species have high conductivities in acetonitrile (12-19 mS cm -1 ) and cycle at 20 mA cm -2 with energy efficiencies (>75 %) comparable to those of state-of-the-art NAqRFBs employing high concentrations of supporting salt. A chemistry-agnostic techno-economic analysis highlights the possible cost savings of minimizing salt content in a NAqRFB. This work offers the first demonstration of a NAqRFB operating without supporting salt. The associated design principles can guide the development of future active species and could make NAqRFBs competitive with their aqueous counterparts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tuning the Stability of Organic Active Materials for Nonaqueous Redox Flow Batteries via Reversible, Electrochemically Mediated Li + Coordination

    Energy Technology Data Exchange (ETDEWEB)

    Carino, Emily V.; Staszak-Jirkovsky, Jakub; Assary, Rajeev S.; Curtiss, Larry A.; Markovic, Nenad M.; Brushett, Fikile R.

    2016-03-24

    We describe an electrochemically mediated interaction between Li+ and a promising active material for nonaqueous redox flow batteries (RFBs), 1,2,3,4-tetrahydro-6,7-dimethoxy-1,1,4,4-tetramethylnaphthalene (TDT), and the impact of this structural interaction on material stability during voltammetric cycling. TDT could be an advantageous organic positive electrolyte material for nonaqueous RFBs due to its high oxidation potential, 4.21 V vs Li/Li+, and solubility of at least 1.0 M in select electrolytes. Although results from voltammetry suggest TDT displays Nernstian reversibility in many nonaqueous electrolyte solutions, bulk electrolysis reveals significant degradation in all electrolytes studied, the extent of which depends on the electrolyte solution composition. Results of subtractively normalized in situ Fourier transform infrared spectroscopy (SNIFTIRS) confirm that TDT undergoes reversible structural changes during cyclic voltammetry in propylene carbonate and 1,2-dimethoxyethane solutions containing Li+ electrolytes, but irreversible degradation occurs when tetrabutylammonium (TBA+) replaces Li+ as the electrolyte cation in these solutions. By combining the results from SNIFTIRS experiments with calculations from density functional theory, solution-phase active species structure and potential-dependent interactions can be determined. We find that Li+ coordinates to the Lewis basic methoxy groups of neutral TDT and, upon electrochemical oxidation, this complex dissociates into the radical cation TDT•+ and Li+. The improved cycling stability in the presence of Li+ relative to TBA+ suggests that the structural interaction reported herein may be advantageous to the design of energy storage materials based on organic molecules.

  2. Annulated Dialkoxybenzenes as Catholyte Materials for Non-aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution

    International Nuclear Information System (INIS)

    Zhang, Jingjing; Yang, Zheng; Shkrob, Ilya A.; Assary, Rajeev S.

    2017-01-01

    1,4-Dimethoxybenzene derivatives are materials of choice for use as catholytes in nonaqueous redox flow batteries, as they exhibit high open-circuit potentials and excellent electrochemical reversibility. However, chemical stability of these materials in their oxidized form needs to be improved. Disubstitution in the arene ring is used to suppress parasitic reactions of their radical cations, but this does not fully prevent ring-addition reactions. By incorporating bicyclic substitutions and ether chains into the dialkoxybenzenes, a novel catholyte molecule, 9,10-bis(2-methoxyethoxy)-1,2,3,4,5,6,7,8-octahydro-1,4:5, 8-dimethanenoanthracene (BODMA), is obtained and exhibits greater solubility and superior chemical stability in the charged state. As a result, a hybrid flow cell containing BODMA is operated for 150 charge–discharge cycles with minimal loss of capacity.

  3. Communication: The influence of CO2 poisoning on overvoltages and discharge capacity in non-aqueous Li-Air batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Knudsen, Kristian Bastholm; Mýrdal, Jón Steinar Garðarsson

    2014-01-01

    The effects of Li2CO3 like species originating from reactions between CO2 and Li2O2 at the cathode of non-aqueous Li-air batteries were studied by density functional theory (DFT) and galvanostatic charge-discharge measurements. Adsorption energies of CO2 at various nucleation sites on a stepped (1......‾100) Li2O2 surface were determined and even a low concentration of CO2 effectively blocks the step nucleation site and alters the Li2O2 shape due to Li2CO3 formation. Nudged elastic band calculations show that once CO2 is adsorbed on a step valley site, it is effectively unable to diffuse and impacts...

  4. Non-aqueous energy storage devices using graphene nanosheets synthesized by green route

    Directory of Open Access Journals (Sweden)

    Dattakumar Mhamane

    2013-04-01

    Full Text Available In this paper we report the use of triethylene glycol reduced graphene oxide (TRGO as an electrode material for non-aqueous energy storage devices such as supercapacitors and Li-ion batteries. TRGO based non–aqueous symmetric supercapacitor is constructed and shown to deliver maximum energy and power densities of 60.4 Wh kg–1 and 0.15 kW kg–1, respectively. More importantly, symmetric supercapacitor shows an extraordinary cycleability (5000 cycles with over 80% of capacitance retention. In addition, Li-storage properties of TRGO are also evaluated in half-cell configuration (Li/TRGO and shown to deliver a reversible capacity of ∼705 mAh g–1 with good cycleability at constant current density of 37 mA g–1. This result clearly suggests that green-synthesized graphene can be effectively used as a prospective electrode material for non-aqueous energy storage systems such as Li-ion batteries and supercapacitors.

  5. Novel composite membrane coated with a poly(diallyldimethylammonium chloride)/urushi semi-interpenetrating polymer network for non-aqueous redox flow battery application

    Science.gov (United States)

    Cho, Eunhae; Won, Jongok

    2016-12-01

    Novel composite membranes of a semi-interpenetrating network (semi-IPN) coated on the surfaces of a porous Celgard 2400 support are prepared and investigate for application in a non-aqueous redox flow battery (RFB). A natural polymer, urushi, is used for the matrix because of its high mechanical robustness, and poly(diallyldimethylammonium chloride) (PDDA) provides anionic exchange sites. The PDDA/urushi (P/U) semi-IPN film is prepared by the photo polymerization of urushiol in the presence of PDDA. The thin layer composed of the P/U semi-IPN on the porous support provides selectivity while maintaining the ion conductivity. The coulombic and energy efficiencies increase with increasing amounts of PDDA in the P/U semi-IPN layer, and the values reach 69.5% and 42.5%, respectively, for the one containing 40 wt% of PDDA. These values are substantially higher than those of the Neosepta AHA membrane and the Celgard membrane, indicating that the selective layer reduces the crossover of the redox active species through the membrane. This result implies that the formation of composite membranes using semi-IPN selective layers on the dimensionally stable porous membrane enable the successful use of a non-aqueous RFB for future energy storage systems.

  6. Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS

    International Nuclear Information System (INIS)

    Myung, Seung-Taek; Sasaki, Yusuke; Sakurada, Shuhei; Sun, Yang-Kook; Yashiro, Hitoshi

    2009-01-01

    Several metals (Cu, Fe, Al, Ti, and Cr) as current collector for lithium-ion battery were investigated to understand their electrochemical behavior and passivation process in a non-aqueous alkyl carbonate solution containing LiPF 6 salt. From cyclic voltammetric study, it was found that Cu and Fe metals were dissolved into the electrolyte below 4 V vs. Li/Li + . Alternatively, Al and Ti were stable up to 5 V vs. Li/Li + . Their scratched surfaces at 5 V vs. Li/Li + were polarized in a transient mode and it was found that the surfaces were passivated during the polarization test. Formed passive film was composed of two hybrid layers: outer layer by metal (Al and Ti) fluoride and inner by metal oxide, as confirmed by time-of-flight secondary ion mass spectroscopy. Presence of HF in the electrolyte was indispensible to form the metal fluoride layer on the oxide layer. The outer fluoride layer would protect the inner oxide layer and metal substrate from HF attack, bringing about satisfactory corrosion resistance under lithium-ion battery environment.

  7. Investigations of oxygen reduction reactions in non-aqueous electrolytes and the lithium-air battery

    Science.gov (United States)

    O'Laoire, Cormac Micheal

    Unlocking the true energy capabilities of the lithium metal negative electrode in a lithium battery has until now been limited by the low capacity intercalation and conversion reactions at the positive electrodes. This is overcome by removing these electrodes and allowing lithium to react directly with oxygen in the atmosphere forming the Li-air battery. Chapter 2 discusses the intimate role of electrolyte, in particular the role of ion conducting salts on the mechanism and kinetics of oxygen reduction in non-aqueous electrolytes designed for such applications and in determining the reversibility of the electrode reactions. Such fundamental understanding of this high energy density battery is crucial to harnessing its full energy potential. The kinetics and mechanisms of O2 reduction in solutions of hexafluorophosphate salts of the general formula X+ PF6-, where, X = tetra butyl ammonium (TBA), K, Na and Li, in acetonitrile have been studied on glassy carbon electrodes using cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. Our results show that cation choice strongly influences the reduction mechanism of O2. Electrochemical data supports the view that alkali metal oxides formed via electrochemical and chemical reactions passivate the electrode surface inhibiting the kinetics and reversibility of the processes. The O2 reduction mechanisms in the presence of the different cations have been supplemented by kinetic parameters determined from detailed analyses of the CV and RDE data. The organic solvent present in the Li+-conducting electrolyte has a major role on the reversibility of each of the O2 reduction products as found from the work discussed in the next chapter. A fundamental study of the influence of solvents on the oxygen reduction reaction (ORR) in a variety of non-aqueous electrolytes was conducted in chapter 4. In this work special attention was paid to elucidate the mechanism of the oxygen electrode processes in the rechargeable Li

  8. Application of non-aqueous solvents to batteries

    Science.gov (United States)

    Singh, P.

    1984-02-01

    The successful application of organic and aquo-organic solvents in lithium batteries and in zinc bromine batteries is discussed. Results are presented for a comparison of propylene carbonate and 50 percent propylene carbonate/acetonitrile for lithium intercalation cells at 25 C 1 M LiAsF6 as electrolyte and discharge at 2 mA/sq cm. Higher cathode utilization and energy efficiencies are achieved in PC/AN. It was found that the self-discharge problem of the zinc/bromine battery may be overcome by dissolving bromine and bromide salt in water-immiscible dipolar aprotic solvent-proprionitrile (PN). Cells using this PN/H2O two-phase system have an energy efficiency above 75 percent and coulombic efficiency above 85 percent.

  9. Increasing the energy density of the non-aqueous vanadium redox flow battery with new electrolytes; Neue Elektrolyte zur Steigerung der Energiedichte einer nicht-waessrigen Vanadium-Acetylacetonat-Redox-Flow-Batterie

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Tatjana

    2015-07-01

    Redox flow battery (RFB) is a promising energy storage technology which is similar to a polymer electrolyte membrane fuel cell. Currently, this electrochemical energy conversion device is used as a storage system for renewable energies or as uninterruptable power source. All-Vanadium-RFB (VRFB) and Zinc-Bromine-RFB are most well-known types of the aqueous RFB for these applications. But also the non-aqueous RFB is becoming more and more famous, because non-aqueous electrolytes offer wider operating temperature ranges, wider stable potential windows and a potentially higher energy density. However, current research studies show that the solubility of the most used redox active species is not sufficient. Therefore, present study aims to show concepts in order to solve this problem. Vanadium(III)acetylacetonate (V(acac){sub 3}) is used as active species, supported by tetrabutylammonium hexafluorophosphate. In acetonitrile it shows two quasi-reversible redox couples and a cell potential ∝2.2 V. The maximum solubility is ∝0.6 M. In this work other solvents and solvent mixtures were examined with the objective of increasing the solubility of V(acac){sub 3}. In 1,3-dioxolane the solubility was e.g. 0.8 M, dimethyl sulfoxide showed good battery performance with the highest energy efficiency ∝44 %. Acetylacetone is able to regenerate V(acac){sub 3} from the side product that is formed by reaction with water. The new electrolyte solution consisting of acetonitrile, 1,3-dioxolane and dimethyl sulfoxide nearly doubled the solubility of V(acac){sub 3}. In galvanostatic charge-discharge tests, single cell V(acac){sub 3} RFB exhibited energy efficiency between 25-50 % depending an test conditions. Also, the influence of water and oxygen addition an electrolyte was investigated. Finally, experiments with different ambient temperatures show that V(acac){sub 3} RFB is able to operate at temperatures such as 0 C and -25 C.

  10. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wentao; Vemuri, Rama S.; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-01-01

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, nonaqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of nonaqueous electrolytes. However, significant technical hurdles exist currently limiting nonaqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we report a nonaqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox materials exhibits an ambipolar electrochemical property with two reversible redox pairs that are moderately separated by a voltage gap of ~1.7 V. Therefore, PTIO can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry, which affords the advantages such as high effective redox concentrations and low irreversible redox material crossover. The PTIO flow battery shows decent electrochemical cyclability under cyclic voltammetry and flow cell conditions; an improved redox concentration of 0.5 M PTIO and operational current density of 20 mA cm-2 were achieved in flow cell tests. Moreover, we show that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC) as cross-validated by electron spin resonance measurements. This study suggests FTIR can be used as a reliable online SOC sensor to monitor flow battery status and ensure battery operations stringently in a safe SOC range.

  11. Cost-driven materials selection criteria for redox flow battery electrolytes

    Science.gov (United States)

    Dmello, Rylan; Milshtein, Jarrod D.; Brushett, Fikile R.; Smith, Kyle C.

    2016-10-01

    Redox flow batteries show promise for grid-scale energy storage applications but are presently too expensive for widespread adoption. Electrolyte material costs constitute a sizeable fraction of the redox flow battery price. As such, this work develops a techno-economic model for redox flow batteries that accounts for redox-active material, salt, and solvent contributions to the electrolyte cost. Benchmark values for electrolyte constituent costs guide identification of design constraints. Nonaqueous battery design is sensitive to all electrolyte component costs, cell voltage, and area-specific resistance. Design challenges for nonaqueous batteries include minimizing salt content and dropping redox-active species concentration requirements. Aqueous battery design is sensitive to only redox-active material cost and cell voltage, due to low area-specific resistance and supporting electrolyte costs. Increasing cell voltage and decreasing redox-active material cost present major materials selection challenges for aqueous batteries. This work minimizes cost-constraining variables by mapping the battery design space with the techno-economic model, through which we highlight pathways towards low price and moderate concentration. Furthermore, the techno-economic model calculates quantitative iterations of battery designs to achieve the Department of Energy battery price target of 100 per kWh and highlights cost cutting strategies to drive battery prices down further.

  12. Cobalt(II) complexes with azole-pyridine type ligands for non-aqueous redox-flow batteries: Tunable electrochemistry via structural modification

    Science.gov (United States)

    Armstrong, Craig G.; Toghill, Kathryn E.

    2017-05-01

    A single species redox flow battery employing a new class of cobalt(II) complexes with 'tunable' tridentate azole-pyridine type ligands is reported. Four structures were synthesised and their electrochemical, physical and battery characteristics were investigated as a function of successive substitution of the ligand terminal pyridyl donors. The Co(II/I) and Co(III/II) couples are stable and quasi-reversible on gold and glassy carbon electrodes, however redox potentials are tunable allowing the cobalt potential difference to be preferentially increased from 1.07 to 1.91 V via pyridine substitution with weaker σ-donating/π-accepting 3,5-dimethylpyrazole groups. The charge-discharge properties of the system were evaluated using an H-type glass cell and graphite rod electrodes. The complexes delivered high Coulombic efficiencies of 89.7-99.8% and very good voltaic efficiencies of 70.3-81.0%. Consequently, energy efficiencies are high at 63.1-80.8%, marking an improvement on other similar non-aqueous systems. Modification of the ligands also improved solubility from 0.18 M to 0.50 M via pyridyl substitution with 3,5-dimethylpyrazole, though the low solubility of the complexes limits the overall energy capacity to between 2.58 and 12.80 W h L-1. Preliminary flow cell studies in a prototype flow cell are also demonstrated.

  13. Cobalt and Vanadium Trimetaphosphate Polyanions: Synthesis, Characterization, and Electrochemical Evaluation for Non-aqueous Redox-Flow Battery Applications.

    Science.gov (United States)

    Stauber, Julia M; Zhang, Shiyu; Gvozdik, Nataliya; Jiang, Yanfeng; Avena, Laura; Stevenson, Keith J; Cummins, Christopher C

    2018-01-17

    An electrochemical cell consisting of cobalt ([Co II/III (P 3 O 9 ) 2 ] 4-/3- ) and vanadium ([V III/II (P 3 O 9 ) 2 ] 3-/4- ) bistrimetaphosphate complexes as catholyte and anolyte species, respectively, was constructed with a cell voltage of 2.4 V and Coulombic efficiencies >90% for up to 100 total cycles. The [Co(P 3 O 9 ) 2 ] 4- (1) and [V(P 3 O 9 ) 2 ] 3- (2) complexes have favorable properties for flow-battery applications, including reversible redox chemistry, high stability toward electrochemical cycling, and high solubility in MeCN (1.09 ± 0.02 M, [PPN] 4 [1]·2MeCN; 0.77 ± 0.06 M, [PPN] 3 [2]·DME). The [PPN] 4 [1]·2MeCN and [PPN] 3 [2]·DME salts were isolated as crystalline solids in 82 and 68% yields, respectively, and characterized by 31 P NMR, UV/vis, ESI-MS(-), and IR spectroscopy. The [PPN] 4 [1]·2MeCN salt was also structurally characterized, crystallizing in the monoclinic P2 1 /c space group. Treatment of 1 with [(p-BrC 6 H 4 ) 3 N] + allowed for isolation of the one-electron-oxidized spin-crossover (SCO) complex, [Co(P 3 O 9 ) 2 ] 3- (3), which is the active catholyte species generated during cell charging. The success of the 1-2 cell provides a promising entry point to a potential future class of transition-metal metaphosphate-based all-inorganic non-aqueous redox-flow battery electrolytes.

  14. Selective poisoning of Li-air batteries for increased discharge capacity

    DEFF Research Database (Denmark)

    Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2014-01-01

    The main discharge product at the cathode of non-aqueous Li-air batteries is insulating Li2O2 and its poor electronic conduction is a main limiting factor in the battery performance. Here, we apply density functional theory calculations (DFT) to investigate the potential of circumventing...... accessible battery capacity at the expense of a limited increase in the overpotentials....

  15. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries.

    Science.gov (United States)

    Viswanathan, V; Thygesen, K S; Hummelshøj, J S; Nørskov, J K; Girishkumar, G; McCloskey, B D; Luntz, A C

    2011-12-07

    Non-aqueous Li-air or Li-O(2) cells show considerable promise as a very high energy density battery couple. Such cells, however, show sudden death at capacities far below their theoretical capacity and this, among other problems, limits their practicality. In this paper, we show that this sudden death arises from limited charge transport through the growing Li(2)O(2) film to the Li(2)O(2)-electrolyte interface, and this limitation defines a critical film thickness, above which it is not possible to support electrochemistry at the Li(2)O(2)-electrolyte interface. We report both electrochemical experiments using a reversible internal redox couple and a first principles metal-insulator-metal charge transport model to probe the electrical conductivity through Li(2)O(2) films produced during Li-O(2) discharge. Both experiment and theory show a "sudden death" in charge transport when film thickness is ~5 to 10 nm. The theoretical model shows that this occurs when the tunneling current through the film can no longer support the electrochemical current. Thus, engineering charge transport through Li(2)O(2) is a serious challenge if Li-O(2) batteries are ever to reach their potential. © 2011 American Institute of Physics

  16. Charging a Li-O₂ battery using a redox mediator.

    Science.gov (United States)

    Chen, Yuhui; Freunberger, Stefan A; Peng, Zhangquan; Fontaine, Olivier; Bruce, Peter G

    2013-06-01

    The non-aqueous Li-air (O2) battery is receiving intense interest because its theoretical specific energy exceeds that of Li-ion batteries. Recharging the Li-O2 battery depends on oxidizing solid lithium peroxide (Li2O2), which is formed on discharge within the porous cathode. However, transporting charge between Li2O2 particles and the solid electrode surface is at best very difficult and leads to voltage polarization on charging, even at modest rates. This is a significant problem facing the non-aqueous Li-O2 battery. Here we show that incorporation of a redox mediator, tetrathiafulvalene (TTF), enables recharging at rates that are impossible for the cell in the absence of the mediator. On charging, TTF is oxidized to TTF(+) at the cathode surface; TTF(+) in turn oxidizes the solid Li2O2, which results in the regeneration of TTF. The mediator acts as an electron-hole transfer agent that permits efficient oxidation of solid Li2O2. The cell with the mediator demonstrated 100 charge/discharge cycles.

  17. Advancement of technology towards developing Na-ion batteries

    Science.gov (United States)

    Jamesh, Mohammed Ibrahim; Prakash, A. S.

    2018-02-01

    The Na-ion-batteries are considered much attention for the next-generation power-sources due to the high abundance of Na resources that lower the cost and become the alternative for the state of the art Li-ion batteries in future. In this review, the recently reported potential cathode and anode candidates for Na-ion-batteries are identified in-light-of-their high-performance for the development of Na-ion-full-cells. Further, the recent-progress on the Na-ion full-cells including the strategies used to improve the high cycling-performance (stable even up-to 50000 cycles), operating voltage (even ≥ 3.7 V), capacity (>350 mAhg-1 even at 1000 mAg-1 (based-on-mass-of-the-anode)), and energy density (even up-to 400 Whkg-1) are reviewed. In addition, Na-ion-batteries with the electrodes containing reduced graphene oxide, and the recent developments on symmetric Na-ion-batteries are discussed. Further, this paper identifies the promising Na-ion-batteries including the strategies used to assemble full-cell using hard-carbon-anodes, Na3V2(PO4)3 cathodes, and other-electrode-materials. Then, comparison between aqueous and non-aqueous Na-ion-batteries in terms of voltage and energy density has been given. Later, various types of electrolytes used for Na-ion-batteries including aqueous, non-aqueous, ionic-liquids and solid-state electrolytes are discussed. Finally, commercial and technological-developments on Na-ion-batteries are provided. The scientific and engineering knowledge gained on Na-ion-batteries afford conceivable development for practical application in near future.

  18. Efficient Electrolytes for Lithium–Sulfur Batteries

    International Nuclear Information System (INIS)

    Angulakshmi, Natarajan; Stephan, Arul Manuel

    2015-01-01

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polymer, and (iv) glass-ceramic electrolytes. This article presents the properties, advantages, and limitations of each type of electrolytes. Also, the importance of electrolyte additives on the electrochemical performance of Li–S cells is discussed.

  19. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  20. Efficient Electrolytes for Lithium–Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Angulakshmi, Natarajan [Department of Materials Science and Engineering, Politecnico di Torino, Turin (Italy); Stephan, Arul Manuel, E-mail: arulmanuel@gmail.com [Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi (India)

    2015-05-21

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polymer, and (iv) glass-ceramic electrolytes. This article presents the properties, advantages, and limitations of each type of electrolytes. Also, the importance of electrolyte additives on the electrochemical performance of Li–S cells is discussed.

  1. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries.

    Science.gov (United States)

    Hwang, Byunghyun; Park, Min-Sik; Kim, Ketack

    2015-01-01

    Ferrocene and cobaltocene and their derivatives are studied as new redox materials for redox flow cells. Their high reaction rates and moderate solubility are attractive properties for their use as active materials. The cyclability experiments are carried out in a static cell; the results showed that these materials exhibit stable capacity retention and predictable discharge potentials, which agree with the potential values from the cyclic voltammograms. The diffusion coefficients of these materials are 2 to 7 times higher than those of other non-aqueous materials such as vanadium acetylacetonate, iron tris(2,2'-bipyridine) complexes, and an organic benzene derivative. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Investigation of Impedance-Based Parameters in Metal-O2 Batteries for Next Generation of Battery Management Systems

    DEFF Research Database (Denmark)

    Christensen, Andreas Elkjær; Højberg, Jonathan

    2015-01-01

    -of-health of lithium-ion batteries. Applied Energy, 86(9), 1506–1511. doi:10.1016/j.apenergy.2008.11.021 [4] McCloskey, B. D., Garcia, J. M., & Luntz, A. C. (2014). Chemical and Electrochemical Differences in Nonaqueous Li–O 2and Na–O2 Batteries. The Journal of Physical Chemistry Letters, 5(7), 1230–1235. doi:10...... electrolyte. Journal of Power Sources, 272(c), 415–421. doi:10.1016/j.jpowsour.2014.08.056 [Figure]...

  3. Non-aqueous electrolyte for lithium-ion battery

    Science.gov (United States)

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2014-04-15

    The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

  4. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries

    DEFF Research Database (Denmark)

    Viswanathan, V.; Thygesen, Kristian Sommer; Hummelshøj, J.S.

    2011-01-01

    Non-aqueous Li-air or Li-O2 cells show considerable promise as a very high energy density battery couple. Such cells, however, show sudden death at capacities far below their theoretical capacity and this, among other problems, limits their practicality. In this paper, we show that this sudden...... death arises from limited charge transport through the growing Li 2O2 film to the Li2O2-electrolyte interface, and this limitation defines a critical film thickness, above which it is not possible to support electrochemistry at the Li2O 2-electrolyte interface. We report both electrochemical experiments...... using a reversible internal redox couple and a first principles metal-insulator-metal charge transport model to probe the electrical conductivity through Li2O2 films produced during Li-O 2 discharge. Both experiment and theory show a sudden death in charge transport when film thickness is ∼5 to 10 nm...

  5. Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries

    Science.gov (United States)

    Laramie, Sydney M.; Milshtein, Jarrod D.; Breault, Tanya M.; Brushett, Fikile R.; Thompson, Levi T.

    2016-09-01

    Non-aqueous redox flow batteries (NAqRFBs) have recently received considerable attention as promising high energy density, low cost grid-level energy storage technologies. Despite these attractive features, NAqRFBs are still at an early stage of development and innovative design techniques are necessary to improve performance and decrease costs. In this work, we investigate multi-electron transfer, common ion exchange NAqRFBs. Common ion systems decrease the supporting electrolyte requirement, which subsequently improves active material solubility and decreases electrolyte cost. Voltammetric and electrolytic techniques are used to study the electrochemical performance and chemical compatibility of model redox active materials, iron (II) tris(2,2‧-bipyridine) tetrafluoroborate (Fe(bpy)3(BF4)2) and ferrocenylmethyl dimethyl ethyl ammonium tetrafluoroborate (Fc1N112-BF4). These results help disentangle complex cycling behavior observed in flow cell experiments. Further, a simple techno-economic model demonstrates the cost benefits of employing common ion exchange NAqRFBs, afforded by decreasing the salt and solvent contributions to total chemical cost. This study highlights two new concepts, common ion exchange and multi-electron transfer, for NAqRFBs through a demonstration flow cell employing model active species. In addition, the compatibility analysis developed for asymmetric chemistries can apply to other promising species, including organics, metal coordination complexes (MCCs) and mixed MCC/organic systems, enabling the design of low cost NAqRFBs.

  6. Rechargeable lithium/polymer cathode batteries

    Science.gov (United States)

    Osaka, Tetsuya; Nakajima, Toshiki; Shiota, Koh; Owens, Boone B.

    1989-06-01

    Polypyrrole (PPy) and polyaniline (PAn) were investigated for cathode materials of rechargeable lithium batteries. PPy films prepared with PF6(-) anion and/or platinum substrate precoated with nitrile butadiene rubber (NBR) were excellent cathode materials because of rough and/or highly oriented film structure. PAn films were successfully prepared from non-aqueous propylene carbonate solution containing aniline, CF3COOH and lithium perchlorate. Its acidity strongly affects the anion doping-undoping behavior. The PAn cathode prepared in high acidic solution (e.g., 4:1 ratio of acid:aniline) gives the excellent battery performance.

  7. Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries

    Science.gov (United States)

    Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae

    2017-02-01

    Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.

  8. Quantitative Visualization of Salt Concentration Distributions in Lithium-Ion Battery Electrolytes during Battery Operation Using X-ray Phase Imaging.

    Science.gov (United States)

    Takamatsu, Daiko; Yoneyama, Akio; Asari, Yusuke; Hirano, Tatsumi

    2018-02-07

    A fundamental understanding of concentrations of salts in lithium-ion battery electrolytes during battery operation is important for optimal operation and design of lithium-ion batteries. However, there are few techniques that can be used to quantitatively characterize salt concentration distributions in the electrolytes during battery operation. In this paper, we demonstrate that in operando X-ray phase imaging can quantitatively visualize the salt concentration distributions that arise in electrolytes during battery operation. From quantitative evaluation of the concentration distributions at steady states, we obtained the salt diffusivities in electrolytes with different initial salt concentrations. Because of no restriction on samples and high temporal and spatial resolutions, X-ray phase imaging will be a versatile technique for evaluating electrolytes, both aqueous and nonaqueous, of many electrochemical systems.

  9. Lithium ion batteries based on nanoporous silicon

    Science.gov (United States)

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  10. Non-aqueous pigmented inkjet inks

    NARCIS (Netherlands)

    DEROOVER, GEERT; Bernaerts, Katrien; HOOGMARTENS, IVAN

    2009-01-01

    A non-aqueous inkjet ink comprises a benzimidazolone pigment and a polymeric dispersant according to Formula (I): wherein, T represents hydrogen or a polymerization terminating group; Z represents theA non-aqueous inkjet ink comprises a benzimidazolone pigment and a polymeric dispersant according to

  11. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging.

    Science.gov (United States)

    Yu, Mingzhe; Ren, Xiaodi; Ma, Lu; Wu, Yiying

    2014-10-03

    With a high theoretical specific energy, the non-aqueous rechargeable lithium-oxygen battery is a promising next-generation energy storage technique. However, the large charging overpotential remains a challenge due to the difficulty in electrochemically oxidizing the insulating lithium peroxide. Recently, a redox shuttle has been introduced into the electrolyte to chemically oxidize lithium peroxide. Here, we report the use of a triiodide/iodide redox shuttle to couple a built-in dye-sensitized titanium dioxide photoelectrode with the oxygen electrode for the photoassisted charging of a lithium-oxygen battery. On charging under illumination, triiodide ions are generated on the photoelectrode, and subsequently oxidize lithium peroxide. Due to the contribution of the photovoltage, the charging overpotential is greatly reduced. The use of a redox shuttle to couple a photoelectrode and an oxygen electrode offers a unique strategy to address the overpotential issue of non-aqueous lithium-oxygen batteries and also a distinct approach for integrating solar cells and batteries.

  12. All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Friedl, Jochen; Lebedeva, Maria A; Porfyrakis, Kyriakos; Stimming, Ulrich; Chamberlain, Thomas W

    2018-01-10

    Redox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.

  13. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  14. Highly stable bilayer of LiPON and B2O3 added Li1.5Al0.5Ge1.5(PO4) solid electrolytes for non-aqueous rechargeable Li-O2 batteries

    International Nuclear Information System (INIS)

    Jadhav, Harsharaj S.; Kalubarme, Ramchandra S.; Jadhav, Arvind H.; Seo, Jeong Gil

    2016-01-01

    Highlights: • LiPON thin film deposited by RF-sputtering technique. • The effect of deposition temperature on ionic conductivity was investigated. • The LiPON/B-LAGP composite was successfully employed in Li-O 2 battery. • LiPON interlayer enhances stability of B-LAGP in contact with Li-metal. - Abstract: Lithium ion conducting membranes are barely studied, although they are essentially indispensable for building Li-air batteries composed of aqueous and non-aqueous electrolytes for long-term operation. Lithium phosphorous oxynitride (LiPON) thin films were deposited by RF-sputtering technique on B 2 O 3 -added lithium aluminum germanium phosphate (B-LAGP). Compact thin amorphous LiPON layer could act as a protective interlayer for B-LAGP by separating it from Li metal electrode and mitigate the reaction between them. Large electrochemical stability window (0–5 V) of LiPON/B-LAGP solid electrolyte shows promising feasibility for applications in all lithium based batteries. The aprotic Li-O 2 cell with protected lithium electrode configuration employing LiPON/B-LAGP solid electrolyte has exhibited reasonable cycling stability with long-life of 52 cycles at a limited capacity of 1000 mA h g −1 .

  15. “Wine-Dark Sea” in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wentao [Joint Center for Energy Storage Research, Argonne, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Jinhua [Joint Center for Energy Storage Research, Argonne, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Kowalski, Jeffrey A. [Joint Center for Energy Storage Research, Argonne, IL (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Shkrob, Ilya A. [Joint Center for Energy Storage Research, Argonne, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Vijayakumar, M. [Joint Center for Energy Storage Research, Argonne, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walter, Eric [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pan, Baofei [Joint Center for Energy Storage Research, Argonne, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Yang, Zheng [Joint Center for Energy Storage Research, Argonne, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Milshtein, Jarrod D. [Joint Center for Energy Storage Research, Argonne, IL (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Li, Bin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liao, Chen [Joint Center for Energy Storage Research, Argonne, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Zhang, Zhengcheng [Joint Center for Energy Storage Research, Argonne, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Jun [Joint Center for Energy Storage Research, Argonne, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, Jeffery S. [Joint Center for Energy Storage Research, Argonne, IL (United States); Univ. of Illinois Urbana-Champaign, Urbana, IL (United States); Brushett, Fikile R. [Joint Center for Energy Storage Research, Argonne, IL (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Zhang, Lu [Joint Center for Energy Storage Research, Argonne, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Wei, Xiaoliang [Joint Center for Energy Storage Research, Argonne, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-24

    Redox-active organic materials (ROMs) have shown great promise for redox flow battery applications but generally encounter limited cycling efficiency and stability at relevant redox material concentrations in nonaqueous systems. Here we report a new heterocyclic organic anolyte molecule, 2,1,3-benzothiadiazole, that has high solubility, a low redox potential, and fast electrochemical kinetics. Coupling it with a benchmark catholyte ROM, the nonaqueous organic flow battery demonstrated significant improvement in cyclable redox material concentrations and cell efficiencies compared to the state-of-the-art nonaqueous systems. Especially, this system produced exceeding cyclability with relatively stable efficiencies and capacities at high ROM concentrations (>0.5 M), which is ascribed to the highly delocalized charge densities in the radical anions of 2,1,3-benzothiadiazole, leading to good chemical stability. As a result, this material development represents significant progress toward promising next-generation energy storage.

  16. An application of actinide elements for a redox flow battery

    International Nuclear Information System (INIS)

    Shiokawa, Yoshinobu; Yamana, Hajimu; Moriyama, Hirotake

    2000-01-01

    The electrochemical properties of U, Np, Pu and Am were discussed from the viewpoint of cell active materials. From the thermodynamic properties and the kinetics of electrode reactions, it is found that neptunium in the aqueous system can be utilized as an active material of the redox flow battery for the electric power storage. A new neptunium redox battery is proposed in the present article: the galvanic cell is expressed by (-)|Np 3+ , Np 4+ |NpO 2 + , NpO 2 2+ |(+). The neptunium battery is expected to have more excellent charge and discharge performance than the current vanadium battery, whereas the thermodynamic one of the former is comparable to the latter. For the development of a uranium redox battery, the application of the redox reactions in the non-aqueous solvents is essential. (author)

  17. Intrinsic Conductivity in Magnesium-Oxygen Battery Discharge Products: MgO and MgO2

    DEFF Research Database (Denmark)

    Smith, Jeffrey G.; Naruse, Junichi; Hiramatsu, Hidehiko

    2017-01-01

    Nonaqueous magnesium–oxygen (or “Mg-air”) batteries are attractive next generation energy storage devices due to their high theoretical energy densities, projected low cost, and potential for rechargeability. Prior experiments identified magnesium oxide, MgO, and magnesium peroxide, MgO2...

  18. Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes

    Science.gov (United States)

    Lipson, Albert L.; Han, Sang-Don; Kim, Soojeong; Pan, Baofei; Sa, Niya; Liao, Chen; Fister, Timothy T.; Burrell, Anthony K.; Vaughey, John T.; Ingram, Brian J.

    2016-09-01

    New energy storage chemistries based on Mg ions or Ca ions can theoretically improve both the energy density and reduce the costs of batteries. To date there has been limited progress in implementing these systems due to the challenge of finding a high voltage high capacity cathode that is compatible with an electrolyte that can plate and strip the elemental metal. In order to accelerate the discovery of such a system, model systems are needed that alleviate some of the issues of incompatibility. This report demonstrates the ability of nickel hexacyanoferrate to electrochemically intercalate Mg, Ca and Zn ions from a nonaqueous electrolyte. This material has a relatively high insertion potential and low overpotential in the electrolytes used in this study. Furthermore, since it is not an oxide based cathode it should be able to resist attack by corrosive electrolytes such as the chloride containing electrolytes that are often used to plate and strip magnesium. This makes it an excellent cathode for use in developing and understanding the complex electrochemistry of multivalent ion batteries.

  19. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.

    Science.gov (United States)

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-11-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.

  20. High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane

    Science.gov (United States)

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-01-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440

  1. Computational Analysis and Design of New Materials for Metal-Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Hummelshøj, Jens Strabo

    In the last decade, great effort has been paid to the development of next generation batteries. Metal-O2 /Air batteries (Li-, Na-, Mg-, Al-, Fe- and Zn-O2 batteries) in both aqueous and nonaqueous (aprotic) electrolytes have gained much attention. Metal-air batteries have high theoretical specific...... gravimetric energy. In the case of Li-O2, it is comparable to that of gasoline. Thus, Li-O2 batteries could be attractive for electric vehicle manufacturers since the energy storage capacity accessible by commercially available Li-ion technology is too low to solve increasing capacity demands. However......, current Li-O2 batteries suffer from several drawbacks, e.g. dendrite formation, poor rechargeability and low capacity caused by the so-called “sudden death” at its cathode during the discharge process due to insulating discharge products. This thesis is devoted to understand the charge transport...

  2. Progress in electrolytes for rechargeable Li-based batteries and beyond

    Directory of Open Access Journals (Sweden)

    Qi Li

    2016-04-01

    Full Text Available Owing to almost unmatched volumetric energy density, Li-based batteries have dominated the portable electronic industry for the past 20 years. Not only will that continue, but they are also now powering plug-in hybrid electric vehicles and zero-emission vehicles. There is impressive progress in the exploration of electrode materials for lithium-based batteries because the electrodes (mainly the cathode are the limiting factors in terms of overall capacity inside a battery. However, more and more interests have been focused on the electrolytes, which determines the current (power density, the time stability, the reliability of a battery and the formation of solid electrolyte interface. This review will introduce five types of electrolytes for room temperature Li-based batteries including 1 non-aqueous electrolytes, 2 aqueous solutions, 3 ionic liquids, 4 polymer electrolytes, and 5 hybrid electrolytes. Besides, electrolytes beyond lithium-based systems such as sodium-, magnesium-, calcium-, zinc- and aluminum-based batteries will also be briefly discussed. Keywords: Electrolyte, Ionic liquid, Polymer, Hybrid, Battery

  3. Effect of dynamic surface polarization on the oxidative stability of solvents in nonaqueous Li-O 2 batteries

    Science.gov (United States)

    Khetan, Abhishek; Pitsch, Heinz; Viswanathan, Venkatasubramanian

    2017-09-01

    Polarization-induced renormalization of the frontier energy levels of interacting molecules and surfaces can cause significant shifts in the excitation and transport behavior of electrons. This phenomenon is crucial in determining the oxidative stability of nonaqueous electrolytes in high-energy density electrochemical systems such as the Li-O2 battery. On the basis of partially self-consistent first-principles Sc G W0 calculations, we systematically study how the electronic energy levels of four commonly used solvent molecules, namely, dimethylsulfoxide (DMSO), dimethoxyethane (DME), tetrahydrofuran (THF), and acetonitrile (ACN), renormalize when physisorbed on the different stable surfaces of Li2O2 , the main discharge product. Using band level alignment arguments, we propose that the difference between the solvent's highest occupied molecular orbital (HOMO) level and the surface's valence-band maximum (VBM) is a refined metric of oxidative stability. This metric and a previously used descriptor, solvent's gas phase HOMO level, agree quite well for physisorbed cases on pristine surfaces where ACN is oxidatively most stable followed by DME, THF, and DMSO. However, this effect is intrinsically linked to the surface chemistry of the solvent's interaction with the surface states and defects, and depends strongly on their nature. We conclusively show that the propensity of solvent molecules to oxidize will be significantly higher on Li2O2 surfaces with defects as compared to pristine surfaces. This suggests that the oxidative stability of a solvent is dynamic and is a strong function of surface electronic properties. Thus, while gas phase HOMO levels could be used for preliminary solvent candidate screening, a more refined picture of solvent stability requires mapping out the solvent stability as a function of the state of the surface under operating conditions.

  4. International Meeting on Lithium Batteries, Rome, Italy, April 27-29, 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-15

    Topics discussed include the mechanistic aspects of the reactivity of organic electrolytes with lithium, the electrochemistry of a nonaqueous lithium/sulfur cell, chromium oxides as cathodes for lithium cells, and the behavior of various cathode materials for nonaqueous lithium cells. Papers are presented on a reversible graphite-lithium negative electrode for electrochemical generators, on interfacial conduction in lithium iodide containing inert oxides, on the mechanism for ion conduction in alkali metal-polymer complexes, and on Li/SOCl2 cells for high temperature applications. Attention is also given to Raman spectroscopic studies of the structure of electrolytes used in the Li/SOCl2 battery, to surface films on lithium in acetonitrile-sulfur dioxide solutions, and to polarization of the lithium electrode in sulfuryl chloride solutions.

  5. Non-aqueous electrolyte for high voltage rechargeable magnesium batteries

    Science.gov (United States)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E; Hwang, Jaehee

    2015-02-10

    An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  6. Silver manganese oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  7. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  8. Interfacial reactions in lithium batteries

    International Nuclear Information System (INIS)

    Chen, Zonghai; Amine, Khalil; Amine, Rachid; Ma, Zi-Feng

    2017-01-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO 2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented. (topical review)

  9. Interfacial reactions in lithium batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; Amine, Khalil

    2017-08-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented.

  10. The chemistry of nonaqueous solvents v.4 solution phenomena and aprotic solvents

    CERN Document Server

    Lagowski, J J

    1976-01-01

    The Chemistry of Nonaqueous Solvents, Volume IV: Solution Phenomena and Aprotic Solvents focuses on the chemistry of nonaqueous solvents, with emphasis on solution phenomena and aprotic solvents such as tetramethylurea, inorganic acid chlorides, cyclic carbonates, and sulfolane. This book is organized into seven chapters and begins with an overview of the theory of electrical conductivity and elementary experimental considerations, along with some of the interesting research on nonaqueous solvents. It then turns to a discussion on hydrogen bonding phenomena in nonaqueous systems as probed

  11. Estimating the system price of redox flow batteries for grid storage

    Science.gov (United States)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  12. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  13. Non-aqueous nanoporous gold based supercapacitors with high specific energy

    International Nuclear Information System (INIS)

    Hou, Ying; Chen, Luyang; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    In this study, we report that the supercapacitor performance of polypyrrole (PPy) in non-aqueous electrolytes can be dramatically improved by highly conductive nanoporous gold which acts as both the support of active PPy and the current collector of supercapacitors. The excellent electronic conductivity, rich porous structure and large surface area of the nanoporous electrodes give rise to a high specific capacitance and low internal resistance in non-aqueous electrolytes. Combining with a wide working potential window of ~ 2 V, the non-aqueous PPy-based supercapacitors show an extraordinary energy density and power density.

  14. Lithium-ion batteries with intrinsic pulse overcharge protection

    Science.gov (United States)

    Chen, Zonghai; Amine, Khalil

    2013-02-05

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  15. Materials and Systems for Organic Redox Flow Batteries: Status and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Pan, Wenxiao [Department; Duan, Wentao [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Hollas, Aaron [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Yang, Zheng [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Li, Bin [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Nie, Zimin [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Liu, Jun [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Reed, David [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Wang, Wei [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Sprenkle, Vincent [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States

    2017-08-14

    Redox flow batteries are propitious stationary energy storage technologies with exceptional scalability and flexibility to improve the stability, efficiency and sustainability of our power grid. The redox-active materials are the central component to RFBs for achieving high energy density and good cyclability. Traditional inorganic-based materials encounter critical technical and economic limitations such as low solubility, inferior electrochemical activity, and high cost. Redox-active organic materials (ROMs) are promising alternative “green” candidates to push the boundaries of energy storage because of the significant advantages of molecular diversity, structural tailorability, and natural abundance. Here the recent development of a variety of ROM families and associated battery designs in both aqueous and nonaqueous electrolytes are reviewed. Moreover, the critical challenges and potential research opportunities for developing practically relevant organic flow batteries are discussed.

  16. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery.

    Science.gov (United States)

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen

    2015-10-28

    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application.

  17. Influence of solvents on species crossover and capacity decay in non-aqueous vanadium redox flow batteries: Characterization of acetonitrile and 1, 3 dioxolane solvent mixture

    Science.gov (United States)

    Bamgbopa, Musbaudeen O.; Almheiri, Saif

    2017-02-01

    The importance of the choice of solvent in a non-aqueous redox flow battery (NARFB) cannot be overemphasized. Several studies demonstrated the influence of the solvent on electrolyte performance in terms of reaction rates, energy/power densities, and efficiencies. In this work, we investigate capacity decay as a direct consequence of varying reactant crossover rates through membranes in different solvent environments. Specifically, we demonstrate the superiority of an 84/16 vol% acetonitrile/1,3 dioxolane solvent mixture over pure acetonitrile in terms of energy efficiency (up to 89%) and capacity retention for vanadium NARFBs - while incorporating a Nafion 115 membrane. The permeability of Nafion to the vanadium acetylacetonate active species is an order of magnitude lower when pure acetonitrile is replaced by the solvent mixture. A method to estimate relative membrane permeability is formulated from numerical analysis of self-discharge experimental data. Furthermore, tests on a modified Nafion/SiO2 membrane, which generally offered low species permeability, also show that different solvents alter membrane permeability. Elemental and morphological analyses of cycled Nafion and NafionSi membranes in different solvent environments indicate that different crossover rates induced by the choice of solvent during cycling are due to changes in the membrane microstructure, intrinsic permeability, swelling rates, and chemical stability.

  18. NON-AQUEOUS PIGMENTED INKJET INKS

    NARCIS (Netherlands)

    DEROOVER, GEERT; Bernaerts, Katrien; HOOGMARTENS, IVAN

    2010-01-01

    A non-aqueous inkjet ink includes a benzimidazolone pigment and a polymeric dispersant according to Formula (I): wherein, T represents hydrogen or a polymerization terminating group; Z represents the residue of polyethyleneimine having a number-average molecular weight of at least 100; A represents

  19. Towards Synergistic Electrode-Electrolyte Design Principles for Nonaqueous Li-O[Formula: see text] batteries.

    Science.gov (United States)

    Khetan, Abhishek; Krishnamurthy, Dilip; Viswanathan, Venkatasubramanian

    2018-03-20

    One route toward sustainable land and aerial transportation is based on electrified vehicles. To enable electrification in transportation, there is a need for high-energy-density batteries, and this has led to an enormous interest in lithium-oxygen batteries. Several critical challenges remain with respect to realizing a practical lithium-oxygen battery. In this article, we present a detailed overview of theoretical efforts to formulate design principles for identifying stable electrolytes and electrodes with the desired functionality and stability. We discuss design principles relating to electrolytes and the additional stability challenges that arise at the cathode-electrolyte interface. Based on a thermodynamic analysis, we discuss two important requirements for the cathode: the ability to nucleate the desired discharge product, Li[Formula: see text]O[Formula: see text], and the ability to selectively activate only this discharge product while suppressing lithium oxide, the undesired secondary discharge product. We propose preliminary guidelines for determining the chemical stability of the electrode and illustrate the challenge associated with electrode selection using the examples of carbon cathodes and transition metals. We believe that a synergistic design framework for identifying electrolyte-electrode formulations is needed to realize a practical Li-O[Formula: see text] battery.

  20. Non-aqueous pigmented inkjet inks

    NARCIS (Netherlands)

    HOOGMARTENS, IVAN; Bernaerts, Katrien; DEROOVER, GEERT

    2008-01-01

    A non-aqueous inkjet ink comprising C.I. Pigment Yellow 150 and a polymeric dispersant according to Formula (I): wherein, T represents hydrogen or a polymerization terminating group; Z represents the residue of polyethyleneimine having a number-average molecular weight of at least 100; A represents

  1. Cathode architectures for alkali metal / oxygen batteries

    Science.gov (United States)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  2. Long life lithium batteries with stabilized electrodes

    Science.gov (United States)

    Amine, Khalil [Downers Grove, IL; Liu, Jun [Naperville, IL; Vissers, Donald R [Naperville, IL; Lu, Wenquan [Darien, IL

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  3. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    Science.gov (United States)

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-06-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ~3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries.

  4. Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review

    Directory of Open Access Journals (Sweden)

    Shihui Wang

    2016-02-01

    Full Text Available Enormous interest in biocatalysis in non-aqueous phase has recently been triggered due to the merits of good enantioselectivity, reverse thermodynamic equilibrium, and no water-dependent side reactions. It has been demonstrated that enzyme has high activity and stability in non-aqueous media, and the variation of enzyme activity is attributed to its conformational modifications. This review comprehensively addresses the stability and activity of the intact enzymes in various non-aqueous systems, such as organic solvents, ionic liquids, sub-/super-critical fluids and their combined mixtures. It has been revealed that critical factors such as Log P, functional groups and the molecular structures of the solvents define the microenvironment surrounding the enzyme molecule and affect enzyme tertiary and secondary structure, influencing enzyme catalytic properties. Therefore, it is of high importance for biocatalysis in non-aqueous media to elucidate the links between the microenvironment surrounding enzyme surface and its stability and activity. In fact, a better understanding of the correlation between different non-aqueous environments and enzyme structure, stability and activity can contribute to identifying the most suitable reaction medium for a given biotransformation.

  5. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion.

    Science.gov (United States)

    Parker, Joseph F; Chervin, Christopher N; Pala, Irina R; Machler, Meinrad; Burz, Michael F; Long, Jeffrey W; Rolison, Debra R

    2017-04-28

    The next generation of high-performance batteries should include alternative chemistries that are inherently safer to operate than nonaqueous lithium-based batteries. Aqueous zinc-based batteries can answer that challenge because monolithic zinc sponge anodes can be cycled in nickel-zinc alkaline cells hundreds to thousands of times without undergoing passivation or macroscale dendrite formation. We demonstrate that the three-dimensional (3D) zinc form-factor elevates the performance of nickel-zinc alkaline cells in three fields of use: (i) >90% theoretical depth of discharge (DOD Zn ) in primary (single-use) cells, (ii) >100 high-rate cycles at 40% DOD Zn at lithium-ion-commensurate specific energy, and (iii) the tens of thousands of power-demanding duty cycles required for start-stop microhybrid vehicles. Copyright © 2017, American Association for the Advancement of Science.

  6. Assembly of DNA Architectures in a Non-Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Thomas J. Proctor

    2012-08-01

    Full Text Available In the present work, the procedures for the creation of self-assembled DNA nanostructures in aqueous and non-aqueous media are described. DNA-Surfactant complex formation renders the DNA soluble in organic solvents offering an exciting way to bridge the transition of DNA origami materials electronics applications. The DNA retains its structural features, and these unique geometries provide an interesting candidate for future electronics and nanofabrication applications with potential for new properties. The DNA architectures were first assembled under aqueous conditions, and then characterized in solution (using circular dichroism (CD spectroscopy and on the surface (using atomic force microscopy (AFM. Following aqueous assembly, the DNA nanostructures were transitioned to a non-aqueous environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical structure and thermal stability in non-aqueous conditions were confirmed via CD spectroscopy. The formation and characterization of these higher order DNA-surfactant complexes is described in this paper.

  7. Temperature Dependence of the Oxygen Reduction Mechanism in Nonaqueous Li–O 2 Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin [Energy; Xu, Wu [Energy; Zheng, Jianming [Energy; Yan, Pengfei [Environmental; Walter, Eric D. [Environmental; Isern, Nancy [Environmental; Bowden, Mark E. [Environmental; Engelhard, Mark H. [Environmental; Kim, Sun Tai [Energy; Department; Read, Jeffrey [Power; Adams, Brian D. [Energy; Li, Xiaolin [Energy; Cho, Jaephil [Department; Wang, Chongmin [Environmental; Zhang, Ji-Guang [Energy

    2017-10-11

    The temperature dependence of the oxygen reduction mechanism in Li-O2 batteries was investigated using carbon nanotube-based air electrodes and 1,2-dimethoxyethane-based electrolyte within a temperature range of 20C to 40C. It is found that the discharge capacity of the Li-O2 batteries decreases from 7,492 mAh g-1 at 40C to 2,930 mAh g-1 at 0C. However, a sharp increase in capacity was found when the temperature was further decreased and a very high capacity of 17,716 mAh g-1 was observed at 20C at a current density of 0.1 mA cm-2. When the temperature increases from 20C to 40C, the morphologies of the Li2O2 formed varied from ultra-small spherical particles to small flakes and then to large flake-stacked toroids. The lifetime of superoxide and the solution pathway play a dominate role on the battery capacity in the temperature range of -20C to 0C, but the electrochemical kinetics of oxygen reduction and the surface pathway dominate the discharge behavior in the temperature range of 0C to 40C. These findings provide fundamental understanding on the temperature dependence of oxygen reduction process in a Li-O2 battery and will enable a more rational design of Li-O2 batteries.

  8. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 2: January through March 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 2 Milestone was completed on time. The milestone entails an ex situ analysis of the four carbons that have been added to the negative active material of valve-regulated lead-acid (VRLA) batteries for the purposes of this study. The four carbons selected for this study were a graphitic carbon, a carbon black, an activated carbon, and acetylene black. The morphology, crystallinity, and impurity contents of each of the four carbons were analyzed; results were consistent with previous data. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown.

  9. Hydrate-melt electrolytes for high-energy-density aqueous batteries

    Science.gov (United States)

    Yamada, Yuki; Usui, Kenji; Sodeyama, Keitaro; Ko, Seongjae; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-10-01

    Aqueous Li-ion batteries are attracting increasing attention because they are potentially low in cost, safe and environmentally friendly. However, their low energy density (water and the limited selection of suitable negative electrodes, is problematic for their future widespread application. Here, we explore optimized eutectic systems of several organic Li salts and show that a room-temperature hydrate melt of Li salts can be used as a stable aqueous electrolyte in which all water molecules participate in Li+ hydration shells while retaining fluidity. This hydrate-melt electrolyte enables a reversible reaction at a commercial Li4Ti5O12 negative electrode with a low reaction potential (1.55 V versus Li+/Li) and a high capacity (175 mAh g-1). The resultant aqueous Li-ion batteries with high energy density (>130 Wh kg-1) and high voltage (˜2.3-3.1 V) represent significant progress towards performance comparable to that of commercial non-aqueous batteries (with energy densities of ˜150-400 Wh kg-1 and voltages of ˜2.4-3.8 V).

  10. Influence of clay and surfactant content in non-aqueous fluid rheology

    International Nuclear Information System (INIS)

    Guedes, I.C.; Gomes, N.L.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.

    2012-01-01

    The bentonite clay used as viscosity agent in the production of non-aqueous fluids cannot be used without organic treatment for their surfaces to become hydrophobic. These clays are called organophilic clays, and are generally obtained by adding, in an aqueous way, ionic or a nonionic surfactant. Recent studies of the variables involved in the dispersion of bentonite clays and in the process of organophilization, showed their lack of influence. This work aims to study the influence of clay content and surfactants on the rheology of nonaqueous fluids. To this end, the clays were treats and characterized, evidencing the incorporation of the surfactant, and then formulated non-aqueous fluids, following PETROBRAS standards, being possible to verify the influence of clay content and surfactant both from the point of view as the characterizing and rheological behavior. (author)

  11. Characterization of asphaltenes by nonaqueous capillary electrophoresis

    NARCIS (Netherlands)

    Kok, W.T.; Tüdös, A.J.; Grutters, M.; Shepherd, A.G.

    2011-01-01

    Nonaqueous capillary electrophoresis was used for the separation and characterization of asphaltene samples from different sources. For the separation medium (background electrolyte), mixtures of tetrahydrofuran and a high-permittivity organic solvent could be used. The best results were obtained

  12. Application of non-aqueous solvents to batteries. I Physicochemical properties of propionitrile/water two-phase solvent relevant to zinc-bromine batteries

    Science.gov (United States)

    Singh, P.; White, K.; Parker, A. J.

    1983-11-01

    The properties of bromine/propionitrile solution are investigated with a view to its use as an electrolyte in zinc-bromine batteries which use circulating electrolyte. The solution, which forms a two-phase system with water, has higher conductivity than the oils formed by complexation of bromine with organic salts such as N,N-methoxymethyl methylpiperidinium bromide and N,N-ethyl methylmorpholinium bromide. The activity of bromine in the aqueous phase of the bromine-propionitrile/water, two-phase system is very low; thus, coulombic efficiencies greater than 85 percent are achieved. Zinc-bromine batteries containing this solvent system show good charge/discharge characteristics.

  13. Multi-component intermetallic electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  14. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 1: October through December 2010).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 1 Milestone was completed on time. The milestone entails conducting a thorough literature review to establish the current level of understanding of the mechanisms through which carbon additions to the negative active material improve valve-regulated lead-acid (VRLA) batteries. Most studies have entailed phenomenological research observing that the carbon additions prevent/reduce sulfation of the negative electrode; however, no understanding is available to provide insight into why certain carbons are successful while others are not. Impurities were implicated in one recent review of the electrochemical behavior of carbon additions. Four carbon samples have been received from East Penn Manufacturing and impurity contents have been analyzed. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic

  15. DISCHARGE OXIDE STORAGE CAPACITY AND VOLTAGE LOSS IN LI-AIR BATTERY

    International Nuclear Information System (INIS)

    Wang, Yun; Wang, Zhe; Yuan, Hao; Li, Tianqi

    2015-01-01

    Air cathodes, where oxygen reacts with Li ions and electrons with discharge oxide stored in their pore structure, are often considered as the most challenging component in nonaqueous Lithium-air batteries. In non-aqueous electrolytes, discharge oxides are usually insoluble and hence precipitate at local reaction site, raising the oxygen transport resistance in the pore network. Due to their low electric conductivity, their presence causes electrode passivation. This study aims to investigate the air cathode’s performance through analytically obtaining oxygen profiles, modeling electrode passivation, evaluating the transport polarization raised by discharge oxide precipitate, and developing analytical formulas for insoluble Li oxides storage capacity. The variations of cathode quantities, including oxygen content and temperature, are evaluated and related to a single dimensionless parameter — the Damköhler Number (Da). An approximate model is developed to predict discharge voltage loss, along with validation against two sets of experimental data. Air cathode properties, including tortuosity, surface coverage factor and the Da number, and their effects on the cathode’s capacity of storing Li oxides are formulated and discussed.

  16. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Rohan, James F.; Foo, Conrad C.; Pasquariello, David M.

    1999-01-01

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  17. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE energy storage systems program (FY11 Quarter 3: April through June 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-09-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 3 Milestone was completed on time. The milestone entails an ex situ analysis of a control as well as three carbon-containing negative plates in the raw, as cast form as well as after formation. The morphology, porosity, and porosity distribution within each plate was evaluated. In addition, baseline electrochemical measurements were performed on each battery to establish their initial performance. These measurements included capacity, internal resistance, and float current. The results obtained for the electrochemical testing were in agreement with previous evaluations performed at East Penn manufacturing. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated.

  18. A comprehensive review on recent progress in aluminum–air batteries

    Directory of Open Access Journals (Sweden)

    Yisi Liu

    2017-07-01

    Full Text Available The aluminum–air battery is considered to be an attractive candidate as a power source for electric vehicles (EVs because of its high theoretical energy density (8100 Wh kg−1, which is significantly greater than that of the state-of-the-art lithium-ion batteries (LIBs. However, some technical and scientific problems preventing the large-scale development of Al–air batteries have not yet to be resolved. In this review, we present the fundamentals, challenges and the recent advances in Al–air battery technology from aluminum anode, air cathode and electrocatalysts to electrolytes and inhibitors. Firstly, the alloying of aluminum with transition metal elements is reviewed and shown to reduce the self-corrosion of Al and improve battery performance. Additionally for the cathode, extensive studies of electrocatalytic materials for oxygen reduction/evolution including Pt and Pt alloys, nonprecious metal catalysts, and carbonaceous materials at the air cathode are highlighted. Moreover, for the electrolyte, the application of aqueous and nonaqueous electrolytes in Al–air batteries are discussed. Meanwhile, the addition of inhibitors to the electrolyte to enhance electrochemical performance is also explored. Finally, the challenges and future research directions are proposed for the further development of Al–air batteries. Keywords: Aluminum–air battery, Aluminum anode, Air cathode, Oxygen reduction reaction, Electrolytes

  19. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems Program (FY11 Quarter 4: July through September 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-10-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 4 Milestone was completed on time. The milestone entails the initiation of high rate, partial state of charge (HRPSoC) cycling of the carbon enhanced batteries. The morphology, porosity, and porosity distribution within the plates after 1k and 10k cycles were documented, illustrating the changes which take place in the early life of the carbon containing batteries, and as the battery approaches failure due to hard sulfation for the control battery. Longer term cycling on a subset of the received East Penn cells containing different carbons (and a control) continues, and will progress into FY12. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO2) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in a graph. In addition to the aforementioned hybrid device, carbon has

  20. Principles of interactions in non-aqueous electrolyte solutions

    NARCIS (Netherlands)

    Lyklema, J.

    2013-01-01

    In this paper a review is presented on the molecular interactions in non-aqueous media of low dielectric permittivity. Qualitative and quantitative distinctions with aqueous solutions are emphasized. The reviewed themes include dispersion forces, dissociation and association equilibria,

  1. Enabling rechargeable non-aqueous Mg-O2 battery operations with dual redox mediators.

    Science.gov (United States)

    Dong, Qi; Yao, Xiahui; Luo, Jingru; Zhang, Xizi; Hwang, Hajin; Wang, Dunwei

    2016-12-11

    Dual redox mediators (RMs) were introduced for Mg-O 2 batteries. 1,4-Benzoquinone (BQ) facilitates the discharge with an overpotential reduction of 0.3 V. 5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt(ii) (Co(ii)TPP) facilitates the recharge with an overpotential decrease of up to 0.3 V. Importantly, the two redox mediators are compatible in the same DMSO-based electrolyte.

  2. Recent developments in organic redox flow batteries: A critical review

    Science.gov (United States)

    Leung, P.; Shah, A. A.; Sanz, L.; Flox, C.; Morante, J. R.; Xu, Q.; Mohamed, M. R.; Ponce de León, C.; Walsh, F. C.

    2017-08-01

    Redox flow batteries (RFBs) have emerged as prime candidates for energy storage on the medium and large scales, particularly at the grid scale. The demand for versatile energy storage continues to increase as more electrical energy is generated from intermittent renewable sources. A major barrier in the way of broad deployment and deep market penetration is the use of expensive metals as the active species in the electrolytes. The use of organic redox couples in aqueous or non-aqueous electrolytes is a promising approach to reducing the overall cost in long-term, since these materials can be low-cost and abundant. The performance of such redox couples can be tuned by modifying their chemical structure. In recent years, significant developments in organic redox flow batteries has taken place, with the introduction of new groups of highly soluble organic molecules, capable of providing a cell voltage and charge capacity comparable to conventional metal-based systems. This review summarises the fundamental developments and characterization of organic redox flow batteries from both the chemistry and materials perspectives. The latest advances, future challenges and opportunities for further development are discussed.

  3. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    Science.gov (United States)

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; Li, Jinyang; Schwab, Mark J.; Brudvig, Gary W.; Taylor, André D.

    2016-01-01

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage. PMID:27759005

  4. ELECTROCHEMICAL BEHAVIOUR OF METHYLENE BLUE IN NON-AQUEOUS SOLVENTS

    International Nuclear Information System (INIS)

    Caram, J.A.; Suárez, J.F. Martínez; Gennaro, A.M.; Mirífico, M.V.

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • The dye is electro-reduced in two separated monoelectronic charge transfers. • Solvent/supporting electrolyte/acid/base modifies the electrochemical parameters. • A dissociation equilibrium of the dye in non-aqueous solvent is proposed. • The electro-generated and stable dye-radical is also chemically produced in EDA or KOH/DMF. • A new species is reversibly formed in KOH/EtOH or ACN. - Abstract: The electrochemical behaviour of methylene blue in solution of non-aqueous solvents with different supporting electrolytes was studied by cyclic voltammetry. Dye electro-reduction presents two well-defined processes of monoelectronic charge transfer yielding a free radical in the first process and an anion in the second electron transfer. Free radical and anion are long living species in some of the studied media. Effects of supporting electrolyte and solvent on the peak potentials, the peak current functions and the reversibility of the charge transfer processes are reported. A dissociation equilibrium of the dye in solution of non-aqueous solvents and the acid or base added determine markedly the electrochemical responses. In the particular cases of KOH/DMF or EDA basic media the chemical formation of the stable methylene blue radical was detected and it was characterized by EPR spectroscopy. A general reaction scheme is proposed

  5. Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes.

    Science.gov (United States)

    Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing; Li, Bo-Quan; Shen, Xin; Yan, Chong; Huang, Jia-Qi; Zhang, Qiang

    2018-05-04

    Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO 3 ) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiN x O y on a working lithium metal anode with dendrite-free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO 3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first-principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Solvents effects on electrochemical characteristics of graphite fluoride-lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nobuatsu, W.; Hidekazu, T.; Rika, H.; Tsuyoshi, N.

    1982-11-01

    A study was made of the electrochemical characteristics of graphite fluoride-lithium batteries in various non-aqueous solvents. Two types of graphite fluorides (C/sub 2/F) /SUB n/ and (CF) /SUB n/ were used as cathode materials. The discharge characteristics of graphite fluorides were better in dimethylsulfoxide, ..gamma..-butyrolactone, propylene carbonate and sulfolane in that order. The relation between electrod potential of graphite fluoride and solvation energy of lithium ion with each solvent indicates that solvated lithium ion is intercalated into graphite fluoride layers by the electrode reaction. Both the difference in the overpotentials and in the rates of OCV recovery among these solvents further supports the proposed reaction mechanism.

  7. A new approach of the understanding of sulfur dioxide reduction in non-aqueous solvent; Une nouvelle approche de la comprehension de la reduction du dioxyde de soufre en solvant non aqueux

    Energy Technology Data Exchange (ETDEWEB)

    Potteau, E.; Levillain, E.; Lelieur, J.P. [Laboratoire de Spectrochimie Infrarouge et Raman (LASIR, UPR 2631 CNRS) Haute Etudes Industrielles (HEI), 59 - Lille (France)

    1996-12-31

    The study of SO{sub 2} reduction in non-aqueous solvent can help to understand the functioning of Li/SO{sub 2} batteries and to find a simpler way for the synthesis of Li{sub 2}S{sub 2}O{sub 4} dithionite. This paper presents the results of electrochemical studies (cycle volt-amperometry in semi-infinite and thin film diffusion conditions, visible spectro-electrochemistry) and spectroscopic studies (UV, visible and RPE) performed on SO{sub 2} solutions. A mechanism of SO{sub 2} reduction is proposed and discussed. (J.S.) 18 refs.

  8. A new approach of the understanding of sulfur dioxide reduction in non-aqueous solvent; Une nouvelle approche de la comprehension de la reduction du dioxyde de soufre en solvant non aqueux

    Energy Technology Data Exchange (ETDEWEB)

    Potteau, E; Levillain, E; Lelieur, J P [Laboratoire de Spectrochimie Infrarouge et Raman (LASIR, UPR 2631 CNRS) Haute Etudes Industrielles (HEI), 59 - Lille (France)

    1997-12-31

    The study of SO{sub 2} reduction in non-aqueous solvent can help to understand the functioning of Li/SO{sub 2} batteries and to find a simpler way for the synthesis of Li{sub 2}S{sub 2}O{sub 4} dithionite. This paper presents the results of electrochemical studies (cycle volt-amperometry in semi-infinite and thin film diffusion conditions, visible spectro-electrochemistry) and spectroscopic studies (UV, visible and RPE) performed on SO{sub 2} solutions. A mechanism of SO{sub 2} reduction is proposed and discussed. (J.S.) 18 refs.

  9. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes.

    Science.gov (United States)

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-24

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li 2 CO 3 . Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g -1 carbon at 20 μA cm -2 . Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g -1 carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g -1 carbon at 20 μA cm -2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  10. Nonaqueous capillary electrophoresis of dextromethorphan and its metabolites.

    Science.gov (United States)

    Pelcová, Marta; Langmajerová, Monika; Cvingráfová, Eliška; Juřica, Jan; Glatz, Zdeněk

    2014-10-01

    This study deals with the nonaqueous capillary electrophoretic separation of dextromethorphan and its metabolites using a methanolic background electrolyte. The optimization of separation conditions was performed in terms of the resolution of dextromethorphan and dextrorphan and the effect of separation temperature, voltage, and the characteristics of the background electrolyte were studied. Complete separation of all analytes was achieved in 40 mM ammonium acetate dissolved in methanol. Hydrodynamic injection was performed at 3 kPa for 4 s. The separation voltage was 20 kV accompanied by a low electric current. The ultraviolet detection was performed at 214 nm, the temperature of the capillary was 25°C. These conditions enabled the separation of four analytes plus the internal standard within 9 min. Further, the developed method was validated in terms of linearity, sensitivity, and repeatability. Rat liver perfusate samples were subjected to the nonaqueous capillary electrophoretic method to illustrate its applicability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Non-aqueous heavy oil extraction from oil sand

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, George [National Nuclear Security Administration (United States)

    2011-07-01

    The Kansas City plant operated by Honeywell has a long history of working with DOE NNSA on engineering and manufacturing services supporting national security requirements. The plant has developed a non-aqueous method for heavy oil extraction from oil sands. This method is environmentally friendly as it does not use any external body of water, which would normally be contaminated in the conventional method. It is a 2 phase process consisting of terpene, limonene or alpha pinene, and carbon dioxide. The CO2 and terpene phases are both closed loop systems which minimizes material loss. The limonene and alpha pinene are both naturally derived solvents that come from citrus sources or pine trees respectively. Carbon dioxide is an excellent co-solvent with terpene. There is also a possibility for heat loss recovery during the distillation phase. This process produces clean dry sand. Laboratory tests have concluded that this using non-aqueous liquids process works effectively.

  12. Environmental sizing of smartphone batteries

    OpenAIRE

    Flipsen, S.F.J.; Geraedts, J.M.P.; Reinders, A.H.M.E.; Bakker, C.A.; Dafnomilis, I.; Gudadhe, A.

    2012-01-01

    Smartphone use has increased at a phenomenal pace worldwide. In 2011 more smartphones have been sold than desktop pc’s, notebooks, netbooks and tablets together. The total worldwide smartphone sales reached 472 million units in 2011, and 149 million of them were sold in the fourth quarter of 2011. The smartphone is, like almost every other mobile device, powered by batteries, limited in size and therefore capacity, which makes energy management paramount. While global demand and use of mobile...

  13. Quarterly environmental data summary for third quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, Stephen H. [Weldon Spring Site, St. Charles, MO (United States)

    1999-11-05

    A copy of the quarterly Environmental Data Summary (QEDS) for the third quarter of 1999 is enclosed. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the WSSRAP verification group and merged into the data base during the third quarter of 1999. Selected KPA results for on-site total uranium analyses performed during the quarter are also included. Air monitoring data presented are the most recent complete sets of quarterly data.

  14. quarters

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2016-10-01

    Full Text Available Are there many words combining both space and time? A quarter is one of such rare words: it means both a part of the city space and a period of the year. A regular city has parts bordered by four streets. For example, Chita is a city with an absolutely orthogonal historical center. This Utopian city was designed by Decembrists in the depth of Siberian ore-mines (120. The 130 Quarter in Irkutsk is irregular from its inception because of its triangular form. Located between two roads, the forked quarter was initially bordered by flows along the west-east axis – the main direction of the country. That is why it appreciated the gift for the 350 anniversary of its transit existence – a promenade for an unhurried flow of pedestrians. The quarter manages this flow quite well, while overcoming the difficulties of new existence and gathering myths (102. Arousing many expectations, the “Irkutsk’s Quarters” project continues the theme that was begun by the 130 Quarter and involved regeneration, revival and search for Genius Loci and the key to each single quarter (74. Beaded on the trading axis, these shabby and unfriendly quarters full of rubbish should be transformed for the good of inhabitants, guests and the small business. The triptych by Lidin, Rappaport and Nevlyutov is about happiness of urbanship and cities for people, too (58. The City Community Forum was also devoted to the urban theme (114. Going through the last quarter of the year, we hope that Irkutsk will keep to the right policy, so that in the near future the wooden downtown quarters will become its pride, and the design, construction and investment complexes will join in desire to increase the number of comfortable and lively quarters in our city. The Baikal Beam will get one more landmark: the Smart School (22 for Irkutsk’s children, including orphans, will be built in several years on the bank of Chertugeevsky Bay.

  15. Epoxy-silica hybrids by nonaqueous sol-gel process

    Czech Academy of Sciences Publication Activity Database

    Ponyrko, Sergii; Kobera, Libor; Brus, Jiří; Matějka, Libor

    2013-01-01

    Roč. 54, č. 23 (2013), s. 6271-6282 ISSN 0032-3861 R&D Projects: GA ČR GAP108/12/1459 Grant - others:AV ČR(CZ) M200500903 Institutional support: RVO:61389013 Keywords : epoxy-silica hybrid * nonaqueous sol-gel process * gelation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.766, year: 2013

  16. Hierarchical Cr_2O_3@OPC composites with octahedral shape for rechargeable nonaqueous lithium-oxygen batteries

    International Nuclear Information System (INIS)

    Gan, Yongqing; Lai, Yanqing; Zhang, Zhian; Chen, Wei; Du, Ke; Li, Jie

    2016-01-01

    The development of catalyst materials is the most significant issue that hinders the practical applications of Li-O_2 batteries. Herein we show the design and synthesis of the hierarchical chromic oxide-octahedral porous carbon (Cr_2O_3@OPC) composites catalyst with octahedral shape that derived from Cr-based metal-organic frameworks (MIL-101(Cr)) precursor. When applied as cathode catalysts in rechargeable Li-O_2 batteries, the electrode with Cr_2O_3@OPC composites catalyst exhibits a low charge and discharge over-potential, high discharge capacity and excellent cycling stability. What's more, the electrode with Cr_2O_3@OPC composite shows a discharge capacity up to ∼4800 mAh g_(_c_a_t_a_l_y_s_t _+ _c_a_r_b_o_n_)"−"1 at a current density of 0.1 mA cm"−"2, and exhibits a very stable discharge voltage plateau of 2.7 V and a charge voltage plateau of ∼3.9 V. With the addition of Cr_2O_3@OPC composite, the Li-O_2 batteries can obtain good cycle performance over 50 cycles at a fixed capacity of 800 mAh g_(_c_a_t_a_l_y_s_t _+ _c_a_r_b_o_n_)"−"1. These results indicating that the Cr_2O_3@OPC composite derived from MIL-101(Cr) would be a promising catalyst for Li-O_2 batteries. - Highlights: • The Cr_2O_3@C composites were prepared by the pyrolysis of Cr-MIL-101. • The Cr_2O_3@C composites possess octahedral shape consisted of Cr_2O_3@C nanoparticle. • The Cr_2O_3@C composites have mesoporous structure with large specific area. • The Cr_2O_3@C composites have an excellent intrinsic electrocatalytic activity. • The Cr_2O_3@C electrode exhibits great cycling performance.

  17. Redox shuttles for overcharge protection of lithium batteries

    Science.gov (United States)

    Amine, Khalil; Chen, Zonghai; Wang, Qingzheng

    2010-12-14

    The present invention is generally related to electrolytes containing novel redox shuttles for overcharge protection of lithium-ion batteries. The redox shuttles are capable of thousands hours of overcharge tolerance and have a redox potential at about 3-5.5 V vs. Li and particularly about 4.4-4.8 V vs. Li. Accordingly, in one aspect the invention provides electrolytes comprising an alkali metal salt; a polar aprotic solvent; and a redox shuttle additive that is an aromatic compound having at least one aromatic ring with four or more electronegative substituents, two or more oxygen atoms bonded to the aromatic ring, and no hydrogen atoms bonded to the aromatic ring; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  18. Flexible Aqueous Lithium-Ion Battery with High Safety and Large Volumetric Energy Density.

    Science.gov (United States)

    Dong, Xiaoli; Chen, Long; Su, Xiuli; Wang, Yonggang; Xia, Yongyao

    2016-06-20

    A flexible and wearable aqueous lithium-ion battery is introduced based on spinel Li1.1 Mn2 O4 cathode and a carbon-coated NASICON-type LiTi2 (PO4 )3 anode (NASICON=sodium-ion super ionic conductor). Energy densities of 63 Wh kg(-1) or 124 mWh cm(-3) and power densities of 3 275 W kg(-1) or 11.1 W cm(-3) can be obtained, which are seven times larger than the largest reported till now. The full cell can keep its capacity without significant loss under different bending states, which shows excellent flexibility. Furthermore, two such flexible cells in series with an operation voltage of 4 V can be compatible with current nonaqueous Li-ion batteries. Therefore, such a flexible cell can potentially be put into practical applications for wearable electronics. In addition, a self-chargeable unit is realized by integrating a single flexible aqueous Li-ion battery with a commercial flexible solar cell, which may facilitate the long-time outdoor operation of flexible and wearable electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. NABTIT-a computer program for non-aqueous acid-base titration.

    Science.gov (United States)

    Budevsky, O; Zikolova, T; Tencheva, J

    1988-11-01

    A program NABTIT written in BASIC has been developed for the treatment of data (ml/mV) obtained from potentiometric acid-base titrations in non-aqueous solvents. No preliminary information on equilibrium constants is required for the input. The treatment of the data is based on known equations and uses least-squares procedures. The essence of the method is to determine the equivalence volume (V(e)) accurately, and to use the data acquired by adding titrant after V(e) for the pH*-calibration of the non-aqueous potentiometric cell. As a by-product or the calculations, the pK* value of the substance titrated is also obtained, and in some cases the autoprotolysis constant of the medium (pK*(s)). Good agreement between experiment and theory was found in the treatment of data obtained for water and methanol-water mixtures.

  20. Non-aqueous metathesis as a general approach to prepare nanodispersed materials: Case study of scheelites

    International Nuclear Information System (INIS)

    Afanasiev, Pavel

    2015-01-01

    A general approach to the preparation of inorganic nanoparticles is proposed, using metathesis of precursor salts in non-aqueous liquids. Nanoparticles of scheelites AMO 4 (A=Ba, Sr, Ca; M=Mo, W), were obtained with a quantitative yield. Precipitations in formamide, N-methylformamide, propylene carbonate, DMSO and polyols often provide narrow particle size distributions. Advantageous morphology was explained by strong ionic association in non-aqueous solvents, leading to slow nucleation and negligible Ostwald ripening. Mean particle size below 10 nm and high specific surface areas were obtained for several Ca(Sr)Mo(W)O 4 materials, making them promising for applications as adsorbents or catalysts. Zeta-potential of scheelites in aqueous suspensions showed negative values in a wide range of pH. Systematic study of optical properties demonstrated variation of optical gap in the sequences W>Mo and Ba>Sr>Ca. The observed trends were reproduced by DFT calculations. No quantum confinement effect was observed for small particles, though the surface states induce low-energy features in the optical spectra. - Graphical abstract: Scheelites AMO 4 (A=Ca, Sr, Ba; M=Mo, W) were prepared in various non-aqueous liquids with high specific surface areas and narrow size distributions. The optical gap of scheelites changes in the series Canon-aqueous liquids. • Narrow size distributions explained by ionic association in non-aqueous media. • Nanoparticles of less than 10 nm size and highest ever specific surface areas were obtained. • Optical gap of scheelites changes in the series Ca

  1. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  2. A critical overview of non-aqueous capillary electrophoresis. Part II: separation efficiency and analysis time.

    Science.gov (United States)

    Kenndler, Ernst

    2014-03-28

    A survey of the literature on non-aqueous capillary zone electrophoresis leaves one with the impression of a prevailing notion that non-aqueous conditions are principally more favorable than conventional aqueous media. Specifically, the application of organic solvents in capillary zone electrophoresis (CZE) is believed to provide the general advantages of superior separation efficiency, higher applicable electric field strength, and shorter analysis time. These advantages, however, are often claimed without providing any experimental evidence, or based on rather uncritical comparisons of limited sets of arbitrarily selected separation results. Therefore, the performance characteristics of non-aqueous vs. aqueous CZE certainly deserve closer scrutiny. The primary intention of Part II of this review is to give a critical survey of the literature on non-aqueous capillary electrophoresis (NACE) that has emerged over the last five years. Emphasis is mainly placed on those studies that are concerned with the aspects of plate height, plate number, and the crucial mechanisms contributing to zone broadening, both in organic and aqueous conditions. To facilitate a deeper understanding, this treatment covers also the theoretical fundamentals of peak dispersion phenomena arising from wall adsorption; concentration overload (electromigration dispersion); longitudinal diffusion; and thermal gradients. Theoretically achievable plate numbers are discussed, both under limiting (at zero ionic strength) and application-relevant conditions (at finite ionic strength). In addition, the impact of the superimposed electroosmotic flow contributions to overall CZE performance is addressed, both for aqueous and non-aqueous media. It was concluded that for peak dispersion due to wall adsorption and due to concentration overload (electromigration dispersion, leading to peak triangulation) no general conjunction with the solvent can be deduced. This is in contrast to longitudinal diffusion: the

  3. High-performance lithium-ion battery and symmetric supercapacitors based on FeCo₂O₄ nanoflakes electrodes.

    Science.gov (United States)

    Mohamed, Saad Gomaa; Chen, Chih-Jung; Chen, Chih Kai; Hu, Shu-Fen; Liu, Ru-Shi

    2014-12-24

    A successive preparation of FeCo2O4 nanoflakes arrays on nickel foam substrates is achieved by a simple hydrothermal synthesis method. After 170 cycles, a high capacity of 905 mAh g(-1) at 200 mA g(-1) current density and very good rate capabilities are obtained for lithium-ion battery because of the 2D porous structures of the nanoflakes arrays. The distinctive structural features provide the battery with excellent electrochemical performance. The symmetric supercapacitor on nonaqueous electrolyte demonstrates high specific capacitance of 433 F g(-1) at 0.1 A g(-1) and 16.7 F g(-1) at high scan rate of 5 V s(-1) and excellent cyclic performance of 2500 cycles of charge-discharge cycling at 2 A g(-1) current density, revealing excellent long-term cyclability of the electrode even under rapid charge-discharge conditions.

  4. Non-aqueous titration of hydroxamic acids.

    Science.gov (United States)

    Stamey, T W; Christian, R

    1966-01-01

    Benzohydroxamic acid is titrated with 0.1M tetrabutyl-anunonium hydroxide in nine non-aqueous solvents with three different indicating electrodes. The best results are obtained using dimethylformamide as solvent and platinum-platinum electrodes. Four monoprotic and three diprotic hydroxamie acids and iron(III) benzohydroxamate have been successfully titrated with this system. The effect of quantitative additions of carbon dioxide to the titrant on its apparent molarity are found to be dependent on the amount added, the strength and sample size of acid titrated and the solvent used.

  5. Non-aqueous slurries used as thickeners

    Energy Technology Data Exchange (ETDEWEB)

    Hatfield, J C

    1982-04-07

    A non-aqueous slurry is described that is suitable for use as a thickener or viscosifier in oil or gas drilling, fracturing, flow diversion completion or workover fluids. The slurry comprises a water-soluble cellulose ether polymer, a water-insoluble liquid hydrocarbon, a non-ionic surfactant having an HLB of from 7 to 14, and an organo modified clay. There also is described a process for thickening or viscosifying a drilling, fracturing, flow diversion, completion or workover fluid. The use of the slurry prevents bumping during addition to aqueous fluids. (27 claims)

  6. Ion Movement in Polypyrrole/Dodecylbenzenesulphonate Films in aqueous and non-aqueous electrolytes

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen

    2002-01-01

    The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements. Investigati......The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements....... Investigations were carried out using aqueous and non-aqueous electrolytes to study the effect of solvent on the ion movement during redox processes. When PPy films are cycled in aqueous electrolytes transport of both anion and cation occurs during oxidation and reduction. However, when cycled in the nonaqueous...

  7. Novel polymeric systems for lithium-ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-Pietrasanta, F.

    2004-01-01

    The investigation of chemically cross-linked, self-supporting gel-type electrolyte membranes, based on hybrid polyfluorosilicone polymers reinforced with nanosized silica, for lithium-ion battery systems is reported. The polyfluorosilicone materials were selected on the basis of their high chemical and thermal stabilities. The precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional polymer matrices. The latter were undergone to swelling processes in (non-aqueous, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. Several kinds of membranes, based on different types of polyfluorosilicone precursor, were prepared and characterized in terms of swelling behavior, ionic conductivity and electrochemical stability. The properties of the swelled matrices were evaluated as a function of dipping time, temperature, kind of electrolytic solution and cross-linking initiator content

  8. Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology.

    Science.gov (United States)

    Gupta, Anshu; Khare, S K

    2009-01-01

    Solvent-tolerant microbes are a newly emerging class that possesses the unique ability to thrive in the presence of organic solvents. Their enzymes adapted to mediate cellular and metabolic processes in a solvent-rich environment and are logically stable in the presence of organic solvents. Enzyme catalysis in non-aqueous/low-water media is finding increasing applications for the synthesis of industrially important products, namely peptides, esters, and other trans-esterification products. Solvent stability, however, remains a prerequisite for employing enzymes in non-aqueous systems. Enzymes, in general, get inactivated or give very low rates of reaction in non-aqueous media. Thus, early efforts, and even some recent ones, have aimed at stabilization of enzymes in organic media by immobilization, surface modifications, mutagenesis, and protein engineering. Enzymes from solvent-tolerant microbes appear to be the choicest source for studying solvent-stable enzymes because of their unique ability to survive in the presence of a range of organic solvents. These bacteria circumvent the solvent's toxic effects by virtue of various adaptations, e.g. at the level of the cytoplasmic membrane, by degradation and transformation of solvents, and by active excretion of solvents. The recent screening of these exotic microbes has generated some naturally solvent-stable proteases, lipases, cholesterol oxidase, cholesterol esterase, cyclodextrin glucanotransferase, and other important enzymes. The unique properties of these novel biocatalysts have great potential for applications in non-aqueous enzymology for a range of industrial processes.

  9. Understanding LiOH chemistry in a ruthenium-catalyzed Li-O{sub 2} battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Liu, Zigeng; Kim, Gunwoo; Grey, Clare P. [Department of Chemistry, University of Cambridge (United Kingdom); Frith, James T.; Garcia-Araez, Nuria [Department of Chemistry, University of Southampton (United Kingdom)

    2017-12-11

    Non-aqueous Li-O{sub 2} batteries are promising for next-generation energy storage. New battery chemistries based on LiOH, rather than Li{sub 2}O{sub 2}, have been recently reported in systems with added water, one using a soluble additive LiI and the other using solid Ru catalysts. Here, the focus is on the mechanism of Ru-catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements, and mass spectrometry, it is shown that on discharging LiOH forms via a 4 e{sup -} oxygen reduction reaction, the H in LiOH coming solely from added H{sub 2}O and the O from both O{sub 2} and H{sub 2}O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li{sub 2}O{sub 2}, LiOH formation over Ru incurs few side reactions, a critical advantage for developing a long-lived battery. An optimized metal-catalyst-electrolyte couple needs to be sought that aids LiOH oxidation and is stable towards attack by hydroxyl radicals. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.

    Science.gov (United States)

    Zhang, Changkun; Ding, Yu; Zhang, Leyuan; Wang, Xuelan; Zhao, Yu; Zhang, Xiaohong; Yu, Guihua

    2017-06-19

    Nonaqueous redox-flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum-based deep-eutectic-solvent is investigated as an anolyte for redox-flow batteries. The aluminum-based deep-eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li + /Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L -1 and an energy density of 189 Wh L -1 or 165 Wh kg -1 have been achieved when coupled with a I 3 - /I - catholyte. The prototype cell has also been extended to the use of a Br 2 -based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L -1 . The synergy of highly abundant, dendrite-free, multi-electron-reaction aluminum anodes and environmentally benign deep-eutectic-solvent anolytes reveals great potential towards cost-effective, sustainable redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Flexible, Heat-Resistant, and Flame-Retardant Glass Fiber Nonwoven/Glass Platelet Composite Separator for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Ulrich Schadeck

    2018-04-01

    Full Text Available A new type of high-temperature stable and self-supporting composite separator for lithium-ion batteries was developed consisting of custom-made ultrathin micrometer-sized glass platelets embedded in a glass fiber nonwoven together with a water-based sodium alginate binder. The physical and electrochemical properties were investigated and compared to commercial polymer-based separators. Full-cell configuration cycling tests at different current rates were performed using graphite and lithium iron phosphate as electrode materials. The glass separator was high-temperature tested and showed a stability up to at least 600 °C without significant shrinking. Furthermore, it showed an exceptional wettability for non-aqueous electrolytes. The electrochemical performance was excellent compared to commercially available polymer-based separators. The results clearly show that glass platelets integrated into a glass fiber nonwoven performs remarkably well as a separator material in lithium-ion batteries and show high-temperature stability.

  12. Biamperometric analysis of nonaqueous scandium solutions containing lanthanides, lead and thorium

    International Nuclear Information System (INIS)

    Gevorgyan, A.M.; Talipov, Sh.T.; Kostylev, V.S.; Khadeev, V.A.; Nadol'skij, M.Ya.

    1978-01-01

    Investigated was a possibility of direct scandium titration in the presence of large rare earth quantities, and also a possibility of complexonometric scandium and rare earth sum determination at their joint presence in non-aqueous acetic acid solution. The titration was carried out at electrode voltage of 0.95V, background electrolyte concentration of lithium perchlorate being 0.2M. Non-aqueous magnesium complexonate was used as titrating reagent. Th and Pb complexonates are shown to be less stable as compared to Sc complexonate, and consequently, Th and Pb ions must not interfere with biamperometric titration of Sc ion. A method applied to analysis of binary mixture, containing scandium, and a method for model alloy and thortveitite mineral was developed. Well reproducible and precise enough results are obtained in all the cases. Ions of Bi, Cu, Cd, Zn, In, Ga and Ti interfere with determination

  13. (Shippingport Atomic Power Station). Quarterly operating report, fourth quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    At the beginning of the fourth quarter of 1980, the Shippingport Atomic Power Station remained shutdown for the normally planned semiannual maintenance and testing program, initiated September 12, 1980. Operational testing began on November 7. Maximum power was achieved November 28 and was maintained throughout the remainder of the quarter except as noted. The LWBR Core has generated 19,046.07 EFPH from start-up through the end of the quarter. During this quarter, approximately 0.000025 curies of Xe 133 activity were released from the station. During the fourth quarter of 1980, 1081 cubic feet of radioactive solid waste was shipped out of state for burial. These shipments contained 0.037 curies of radioactivity.

  14. Idaho National Laboratory Quarterly Occurrence Analysis 4th Quarter FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System, as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 84 reportable events (29 from the 4th quarter fiscal year 2016 and 55 from the prior three reporting quarters), as well as 39 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (two from this quarter and 37 from the prior three quarters).

  15. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries

    Science.gov (United States)

    Armstrong, A. Robert; Bruce, Peter G.

    1996-06-01

    RECHARGEABLE lithium batteries can store more than twice as much energy per unit weight and volume as other rechargeable batteries1,2. They contain lithium ions in an electrolyte, which shuttle back and forth between, and are intercalated by, the electrode materials. The first commercially successful rechargeable lithium battery3, introduced by the Sony Corporation in 1990, consists of a carbon-based negative electrode, layered LiCoO2 as the positive electrode, and a non-aqueous liquid electrolyte. The high cost and toxicity of cobalt compounds, however, has prompted a search for alternative materials that intercalate lithium ions. One such is LiMn2O4, which has been much studied as a positive electrode material4-7 the cost of manganese is less than 1% of that of cobalt, and it is less toxic. Here we report the synthesis and electrochemical performance of a new material, layered LiMnO2, which is structurally analogous to LiCoO2. The charge capacity of LiMnO2 (~270mAhg-1) compares well with that of both LiCoO2 and LiMn2O4, and preliminary results indicate good stability over repeated charge-discharge cycles.

  16. Quarterly environmental data summary for fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1997 is prepared in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data presented constitute the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the data base during the fourth quarter of 1997. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored in the data base and KPA data are not merged into the regular data base. Significant data, defined as data values that have exceeded defined ``above normal`` level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits and other guidelines. The procedures also establish actions to be taken in response to such data. Data received and verified during the fourth quarter were within a permissible range of variability except for those which are detailed.

  17. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, J. F.

    1980-01-01

    At the beginning of the third quarter of 1980, the Shippingport Atomic Power Station was operating with the 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops in service. During the quarter, the Station was operated for Duquesne Light Company System grid including base load and swing load operation. Twelve (12) planned swing load operations were performed on the LWBR Core this quarter to complete the LWBR operating plan of fifty (50) during this operating phase. The Station was shutdown on September 12 for the Fall 1980 Shutdown and remained in this mode through the end of the quarter. The LWBR Core has generated 18,297.98 EFPH from start-up through the end of the quarter. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. The radioactive liquid waste effluent line to the river remained blanked off to prevent inadvertent radioactive liquid waste discharges. During the quarter, approximately 0.001 curies of Xe 133 activity were released from the station. The radioactivity released from Shippingport Station is far too small to have any measurable effect on the general background environmental radioactivity outside the plant.

  18. Hierarchical Cr{sub 2}O{sub 3}@OPC composites with octahedral shape for rechargeable nonaqueous lithium-oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yongqing; Lai, Yanqing; Zhang, Zhian, E-mail: zhangzhian@csu.edu.cn; Chen, Wei; Du, Ke; Li, Jie

    2016-04-25

    The development of catalyst materials is the most significant issue that hinders the practical applications of Li-O{sub 2} batteries. Herein we show the design and synthesis of the hierarchical chromic oxide-octahedral porous carbon (Cr{sub 2}O{sub 3}@OPC) composites catalyst with octahedral shape that derived from Cr-based metal-organic frameworks (MIL-101(Cr)) precursor. When applied as cathode catalysts in rechargeable Li-O{sub 2} batteries, the electrode with Cr{sub 2}O{sub 3}@OPC composites catalyst exhibits a low charge and discharge over-potential, high discharge capacity and excellent cycling stability. What's more, the electrode with Cr{sub 2}O{sub 3}@OPC composite shows a discharge capacity up to ∼4800 mAh g{sub (catalyst} {sub +} {sub carbon)}{sup −1} at a current density of 0.1 mA cm{sup −2}, and exhibits a very stable discharge voltage plateau of 2.7 V and a charge voltage plateau of ∼3.9 V. With the addition of Cr{sub 2}O{sub 3}@OPC composite, the Li-O{sub 2} batteries can obtain good cycle performance over 50 cycles at a fixed capacity of 800 mAh g{sub (catalyst} {sub +} {sub carbon)}{sup −1}. These results indicating that the Cr{sub 2}O{sub 3}@OPC composite derived from MIL-101(Cr) would be a promising catalyst for Li-O{sub 2} batteries. - Highlights: • The Cr{sub 2}O{sub 3}@C composites were prepared by the pyrolysis of Cr-MIL-101. • The Cr{sub 2}O{sub 3}@C composites possess octahedral shape consisted of Cr{sub 2}O{sub 3}@C nanoparticle. • The Cr{sub 2}O{sub 3}@C composites have mesoporous structure with large specific area. • The Cr{sub 2}O{sub 3}@C composites have an excellent intrinsic electrocatalytic activity. • The Cr{sub 2}O{sub 3}@C electrode exhibits great cycling performance.

  19. Lithium-thionyl chloride battery. Quarterly report no. 1, 1 October-31 December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Dey, A.N.; Bowden, W.; Miller, J.; Witalis, P.

    1979-04-01

    The Li/SOCl/sup 2/ inorganic electrolyte system is the highest energy density system known to date. It consists of a Li anode, a carbon cathode and SOCl/sup 2/, which acts both as a solvent and as a cathode active material. The electrolyte salt that has been used most extensively is LiAlCl/sup 4/, but salts such as Li/sup 2/B/sup 10/Cl/sup 10/ and Li/sup 2/ (OAlC/sup 3/) /sup 2/ have also been used successfully in this system for improving the shelf-life characteristics. The main objective of this program is to develop high-rate Li/SOCl/sup 2/ cells and batteries for various portable applications of the U. S. Army. The cells and batteries must deliver higher energy densities than are presently available and must be safe to handle under U. S. Army field conditions.

  20. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    Science.gov (United States)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-01-01

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608

  1. EMSL Quarterly Highlights Report: FY 2008, 3rd Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-09-16

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  2. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  3. Rapid Synthesis of Gold Nano-Particles Using Pulse Waved Potential in a Non-Aqueous Electrolyte

    Directory of Open Access Journals (Sweden)

    Jang J.G.

    2017-06-01

    Full Text Available Rapid synthesis of gold nanoparticles (AuNPs by pulsed electrodeposition was investigated in the non-aqueous electrolyte, 1-ethyl-3-methyl-imidazoliumbis(trifluoro-methanesulfonylimide ([EMIM]TFSI with gold trichloride (AuCl3. To aid the dissolution of AuCl3, 1-ethyl-3-methyl-imidazolium chloride ([EMIM]Cl was used as a supporting electrolyte in [EMIM]TFSI. Cyclic voltammetry experiments revealed a cathodic reaction corresponding to the reduction of gold at −0.4 V vs. Pt-QRE. To confirm the electrodeposition process, potentiostatic electrodeposition of gold in the non-aqueous electrolyte was conducted at −0.4 V for 1 h at room temperature. To synthesize AuNPs, pulsed electrodeposition was conducted with controlled duty factor, pulse duration, and overpotential. The composition, particle-size distribution, and morphology of the AuNPs were confirmed by field-emission scanning electron microscopy (FE-SEM, energy-dispersive spectroscopy (EDS, and transmission electron microscopy (TEM. The electrodeposited AuNPs were uniformly distributed on the platinum electrode surface without any impurities arising from the non-aqueous electrolyte. The size distribution of AuNPs could be also controlled by the electrodeposition conditions.

  4. Highly ordered and ultra-long carbon nanotube arrays as air cathodes for high-energy-efficiency Li-oxygen batteries

    Science.gov (United States)

    Yu, Ruimin; Fan, Wugang; Guo, Xiangxin; Dong, Shaoming

    2016-02-01

    Carbonaceous air cathodes with rational architecture are vital for the nonaqueous Li-O2 batteries to achieve large energy density, high energy efficiency and long cycle life. In this work, we report the cathodes made of highly ordered and vertically aligned carbon nanotubes grown on permeable Ta foil substrates (VACNTs-Ta) via thermal chemical vapour deposition. The VACNTs-Ta, composed of uniform carbon nanotubes with approximately 240 μm in superficial height, has the super large surface area. Meanwhile, the oriented carbon nanotubes provide extremely outstanding passageways for Li ions and oxygen species. Electrochemistry tests of VACNTs-Ta air cathodes show enhancement in discharge capacity and cycle life compared to those made from short-range oriented and disordered carbon nanotubes. By further combining with the LiI redox mediator that is dissolved in the tetraethylene dimethyl glycol based electrolytes, the batteries exhibit more than 200 cycles at the current density of 200 mA g-1 with a cut-off discharge capacity of 1000 mAh g-1, and their energy efficiencies increase from 50% to 82%. The results here demonstrate the importance of cathode construction for high-energy-efficiency and long-life Li-O2 batteries.

  5. Idaho National Laboratory Quarterly Occurrence Analysis - 3rd Quarter FY-2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (23 from the 3rd Qtr FY-16 and 50 from the prior three reporting quarters), as well as 45 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (16 from this quarter and 29 from the prior three quarters).

  6. Idaho National Laboratory Quarterly Occurrence Analysis - 1st Quarter FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 74 reportable events (16 from the 1st Qtr FY-16 and 58 from the prior three reporting quarters), as well as 35 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (15 from this quarter and 20 from the prior three quarters).

  7. The lightest organic radical cation for charge storage in redox flow batteries.

    Science.gov (United States)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S; Su, Liang; Brushett, Fikile R; Cheng, Lei; Liao, Chen; Ferrandon, Magali S; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K; Curtiss, Larry A; Shkrob, Ilya A; Moore, Jeffrey S; Zhang, Lu

    2016-08-25

    In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a minimalistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. The observed stability trends are rationalized by mechanistic considerations of the reaction pathways.

  8. Relation between separation factor of carbon isotope and chemical reaction of CO2 with amine in nonaqueous solvent

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1989-01-01

    The separation factor for carbon isotope exchange reaction between CO 2 and amine in nonaqueous solvent was related to absorption reaction of CO 2 in a solution. The test solutions were mixtures of primary amine (such as butylamine and tert-butylamine) or secondary amine (such as diethylamine, dipropylamine and dibutylamine) diluted with nonpolar solvent (octane or triethyalmine) or polar solvent (methanol), respectively. The isotope exchange reaction consists of three steps related to chemical reaction of CO 2 in amine and nonaqueous solvent mixture, namely the reaction between CO 2 and carbamic acid, that between CO 2 and amine carbamate, and that between CO 2 and carbamic ion. Above all, the isotope separation factor between CO 2 and carbamic acid had the highest value. The overall separation factor can be higher in amine-nonaqueous solvent mixture where the concentration of carbamic acid becomes higher. (author)

  9. Rheological properties of ceramic nanopowders in aqueous and nonaqueous suspensions

    International Nuclear Information System (INIS)

    Tomaszewski, H.; Loiko, E.M.

    2003-01-01

    The potential for ceramic nanocomposites to offer significantly enhanced mechanical properties is generally known since the first work of Niihara published in 1991. However achieving these properties needs carefully done colloidal processing, because ceramic nanopowders are naturally prone to agglomeration. The work presented here is concerned with the processing of zirconia/alumina nanocomposites via aqueous and alumina silicon carbide nanocomposites via nonaqueous colloidal route. The effect of pH of aqueous alumina and zirconia suspensions on properties of suspension and centrifuged green bodies was studied. A correlation between surface electric charge of grains (zeta potential)and agglomerate size, viscosity of suspension and porosity of green compacts was found. In the case of nonaqueous route alumina and silicon carbide suspensions in iso-propanol were investigated. Electrostatic surface charge of grains was changed by addition of chloroacetic acid and determined indirectly by the mass of powder deposited on electrode during electrophoresis. Different behaviour of SiC nanopowder than of alumina was observed and mechanism of charge creation is proposed on the base of DLVO theory. The effect of grain charge on preventing agglomeration on the silicon carbide powder is presented on micrographs of sintered nanocomposites. (author)

  10. Lithium-thionyl chloride battery. Quarterly report No. 5, 1 November 1979-31 January 1980

    Energy Technology Data Exchange (ETDEWEB)

    Dey, A.N.; Hamilton, N.; Bowden, W.; Witalis, P.; Cubbison, D.

    1980-06-01

    The Li/SOCl2 inorganic electrolyte system is the highest energy density system known to data. It consists of a Li anode, a carbon cathode and SOCl2, which acts both as a solvent and cathode active material. The electrolyte salt that has been used most extensively is LiAlCl4, but salts such as Li2B10Cl10 and Li2O(AlCl3)2 have also been used successfully in this system for improving the shelf life characteristics. The main objective of this program is to develop high rate Li/SOCl2 cells and batteries for portable applications of the U.S. Army. The cells and batteries must deliver higher energy densities than are presently available and must be safe to handle under field conditions.

  11. Modelling the aqueous and nonaqueous interfaces for CO2 electro-reduction over Sn catalysts

    Science.gov (United States)

    Sheng, Tian; Sun, Shi-Gang

    2018-01-01

    In CO2 electroreduction, Sn catalysts with a high overpotential for hydrogen evolution reaction and a high selectivity towards formic acid formation are very attractive. Many efforts have been made for improving the catalytic performance and for understanding the mechanisms. In electrochemistry, the role of solvents for surface reactions was deserved to be investigated, in particular for some nonaqueous solvents. Here, we have modeled the aqueous (water) and nonaqueous (acetonitrile and dichloromethane) for investigation of CO2 electroreduction on Sn surface, by constrained ab initio molecular dynamics simulations and thermodynamic integrations, including a number of explicit solvent molecules in computational models. It was found that CO2 reduction is initiated from formate formation and solvents, in particular, water can effectively facilitate the reaction.

  12. Evaluation of a Non-aqueous Ibuprofen-Phospholipid Complex Formulation in Rats.

    Science.gov (United States)

    Li, Chunhua; Xu, Songlin; Liu, Zhidong; Ding, Lingling; Zhao, Xiaobin; Lee, Robert J

    2016-01-01

    In the present study, a non-aqueous ibuprofen-phospholipid complex was developed to reduce the gastrointestinal (GI) toxicity of ibuprofen. A non-aqueous ibuprofen-phospholipid complex (IBU-PC) was prepared by mixing phosal-35SB and ibuprofen. In vitro release behavior was studied using a dissolution apparatus. Irritation to gastrointestinal (GI) tract and pharmacokinetics of IBU-PC were studied in rats. Rapid release of drug occurred with approximately 85% of ibuprofen released from the composition within the first 30 min. The GI injury in IBU-PC-treated rats was minimal compared to those of Advil Liqui-gels-treated group. There was no significant difference between IBU-PC and Motrin-treated groups. The area under the concentration-time curve (AUC0~24) of IBU-PC and Motrin were 366±115 and 391±105 μg/h/ml, respectively. The relative bioavailability of IBU-PC was 94.2%. IBU-PC can decrease GI adverse reaction induced by ibuprofen. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. A solid-state pH sensor for nonaqueous media including ionic liquids.

    Science.gov (United States)

    Thompson, Brianna C; Winther-Jensen, Orawan; Winther-Jensen, Bjorn; MacFarlane, Douglas R

    2013-04-02

    We describe a solid state electrode structure based on a biologically derived proton-active redox center, riboflavin (RFN). The redox reaction of RFN is a pH-dependent process that requires no water. The electrode was fabricated using our previously described 'stuffing' method to entrap RFN into vapor phase polymerized poly(3,4-ethylenedioxythiophene). The electrode is shown to be capable of measuring the proton activity in the form of an effective pH over a range of different water contents including nonaqueous systems and ionic liquids (ILs). This demonstrates that the entrapment of the redox center facilitates direct electron communication with the polymer. This work provides a miniaturizable system to determine pH (effective) in nonaqueous systems as well as in ionic liquids. The ability to measure pH (effective) is an important step toward the ability to customize ILs with suitable pH (effective) for catalytic reactions and biotechnology applications such as protein preservation.

  14. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes

    International Nuclear Information System (INIS)

    Kim, Byungwoo; Kim, Woong; Chung, Haegeun

    2012-01-01

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ∼75 F g −1 , ∼987 kW kg −1 and ∼27 W h kg −1 , respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (∼158 F g −1 ) and energy density (∼53 W h kg −1 ). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. (paper)

  15. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.

    Science.gov (United States)

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-20

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ~75 F g(-1), ~987 kW kg(-1) and ~27 W h kg(-1), respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (~158 F g(-1)) and energy density (~53 W h kg(-1)). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. © 2012 IOP Publishing Ltd

  16. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes

    Science.gov (United States)

    Kim, Byungwoo; Chung, Haegeun; Kim, Woong

    2012-04-01

    We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ˜75 F g-1, ˜987 kW kg-1 and ˜27 W h kg-1, respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (˜158 F g-1) and energy density (˜53 W h kg-1). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices.

  17. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  18. Environmentally Sustainable Aluminum-Coordinated Poly(tetrahydroxybenzoquinone) as a Promising Cathode for Sodium Ion Batteries.

    Science.gov (United States)

    Kim, Hee Joong; Kim, Youngjin; Shim, Jimin; Jung, Kyung Hwa; Jung, Min Soo; Kim, Hanseul; Lee, Jong-Chan; Lee, Kyu Tae

    2018-01-31

    Na-ion batteries are attractive as an alternative to Li-ion batteries because of their lower cost. Organic compounds have been considered as promising electrode materials due to their environmental friendliness and molecular diversity. Herein, aluminum-coordinated poly(tetrahydroxybenzoquinone) (P(THBQ-Al)), one of the coordination polymers, is introduced for the first time as a promising cathode for Na-ion batteries. P(THBQ-Al) is synthesized through a facile coordination reaction between benzoquinonedihydroxydiolate (C 6 O 6 H 2 2- ) and Al 3+ as ligands and complex metal ions, respectively. Tetrahydroxybenzoquinone is environmentally sustainable, because it can be obtained from natural resources such as orange peels. Benzoquinonedihydroxydiolate also contributes to delivering high reversible capacity, because each benzoquinonedihydroxydiolate unit is capable of two electron reactions through the sodiation of its conjugated carbonyl groups. Electrochemically inactive Al 3+ improves the structural stability of P(THBQ-Al) during cycling because of a lack of a change in its oxidation state. Moreover, P(THBQ-Al) is thermally stable and insoluble in nonaqueous electrolytes. These result in excellent electrochemical performance including a high reversible capacity of 113 mA h g -1 and stable cycle performance with negligible capacity fading over 100 cycles. Moreover, the reaction mechanism of P(THBQ-Al) is clarified through ex situ XPS and IR analyses, in which the reversible sodiation of C═O into C-O-Na is observed.

  19. Short-term energy outlook. Quarterly projections, first quarter 1995

    International Nuclear Information System (INIS)

    1995-02-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). The forecast period for this issue of the Outlook extends from the first quarter of 1995 through the fourth quarter of 1996. Values for the fourth quarter of 1994, however, are preliminary EIA estimates or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the first quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the Short-Term Integrated Forecasting System (STIFS). The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. The EIA model is available on computer tape from the National Technical Information Service

  20. Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Laul, Dharminder; Zhu, Wen; Provencher, Manon; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-01-01

    The growing demands for large-scale energy storage devices have put a spotlight on aqueous sodium-ion batteries, which possess a number of highly desirable features, such as sodium abundance, low cost and safety over organic electrolytes. While lots of cathode materials were reported, only few candidate materials like active carbon and NaTi2(PO4)3 were proposed as anodes. It is a long-standing common knowledge that the low cost, non-toxicity, and highly reversible FePO4·2H2O is known as an attractive cathode material for non-aqueous lithium- and sodium-ion batteries, but we demonstrate for the first time that nano-size non-carbon coated amorphous FePO4·2H2O can be used as the anode for an aqueous sodium-ion battery. Its optimum operating voltage (∼2.75 V vs. Na+/Na) avoids hydrogen evolution. The capacity is as high as 80 mAh/g at a rate of 0.5 C in a three-electrode system. The full cell, using the Na0.44MnO2 as cathode, maintained 90% of the capacity at 300 cycles at a rate of 3 C. The calculations also show that its volume change during the intercalation of Na ions is below 2%. Its low cost, high safety, along with its outstanding electrochemical performance makes amorphous FePO4·2H2O a promising anode material for aqueous sodium-ion batteries.

  1. Novel polymeric systems for lithium ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-PietraSanta, F.

    2005-01-01

    Cross-linked, self-supporting, membranes for lithium ion battery gel electrolytes were obtained by cross-linking a mixture of polyfluorosilicone (PFSi) and polysilicone containing ethylene oxide (EO) units [P(Si-EO)]. The membranes were also reinforced with nanosized silica. The two polymer precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional, polymer matrices. The precursors were dissolved in a common solvent and cross-linked to obtain free-standing PFSi/P(Si-EO):SiO 2 composite films. The latter were undergone to swelling processes in (non-aqueous, aprotic, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. The properties of the swelled PFSi/P(Si-EO):SiO 2 samples were evaluated as a function of the electrolytic solutions and the dipping time. The PFSi/P(Si-EO):SiO 2 membranes exhibited large swelling properties, high ionic conductivity and good electrochemical stability

  2. Idaho National Laboratory Quarterly Occurrence Analysis for the 1st Quarter FY2017

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 82 reportable events (13 from the 1st quarter (Qtr) of fiscal year (FY) 2017 and 68 from the prior three reporting quarters), as well as 31 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (seven from this quarter and 24 from the prior three quarters).

  3. Compatibility of a Conventional Non-aqueous Magnesium Electrolyte with a High Voltage V2O5 Cathode and Mg Anode

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Niya [Argonne National Lab. (ANL), Argonne, IL (United States); Proffit, Danielle L. [Argonne National Lab. (ANL), Argonne, IL (United States); Lipson, Albert L. [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Miao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gautam, Gopalakrishnan Sai [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hahn, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Feng, Zhenxing [Argonne National Lab. (ANL), Argonne, IL (United States); Fister, Timothy T. [Argonne National Lab. (ANL), Argonne, IL (United States); Ren, Yang [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Cheng-Jun [Argonne National Lab. (ANL), Argonne, IL (United States); Vaughey, John T. [Argonne National Lab. (ANL), Argonne, IL (United States); Liao, Chen [Argonne National Lab. (ANL), Argonne, IL (United States); Fenter, Paul A. [Argonne National Lab. (ANL), Argonne, IL (United States); Ceder, Gerbrand [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Zavadil, Kevin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burrell, Anthony K. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-08-01

    A major roadblock for magnesium ion battery development is the availability of an electrolyte that can deposit Mg reversibly and at the same time is compatible with a high voltage cathode. We report a prospective full magnesium cell utilizing a simple, non-aqueous electrolyte composed of high concentration magnesium bis(trifluoromethane sulfonyl)imide in diglyme, which is compatible with a high voltage vanadium pentoxide (V2O5) cathode and a Mg metal anode. For this system, plating and stripping of Mg metal can be achieved with magnesium bis(trifluoromethane sulfonyl)imide in diglyme electrolyte over a wide concentration range, however, reversible insertion of Mg into V2O5 cathode can only be attained at high electrolyte concentrations. Reversible intercalation of Mg into V2O5 is characterized and confirmed by X-ray diffraction, X-ray absorption near edge spectroscopy and energy dispersive spectroscopy.

  4. Structural and silver/vanadium ratio effects on silver vanadium phosphorous oxide solution formation kinetics: impact on battery electrochemistry.

    Science.gov (United States)

    Bock, David C; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S

    2015-01-21

    The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.

  5. Formation of self-assembled quantum dots of iron oxide thin films by spray pyrolysis from non-aqueous medium

    International Nuclear Information System (INIS)

    Desai, J.D.; Pathan, H.M.; Min, Sun-Ki; Jung, Kwang-Deog; Joo, Oh-Shim

    2006-01-01

    Quantum dots (QDs) of iron oxide have been deposited onto ITO coated glass substrates by spray pyrolysis technique, using ferric chloride (FeCl 3 .7H 2 O) in non-aqueous medium as a starting material. The non-aqueous solvents namely methanol, ethanol, propanol, butanol and pentanol were used as solvents. The effect of solvents on the film structure and morphology was studied. The structural, morphological, compositional and optical properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), and optical absorption measurement techniques

  6. Shippingport Atomic Power Station. Quarterly operating report, third quarter 1978

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. D.

    1978-01-01

    A loss of ac power to the station occurred on July 28, 1978 caused by an interaction between Beaver Valley Power Station and Shippingport Atomic Power Station when the main transformer of Unit No. 1 of the Beaver Valley Power Station developed an internal failure and tripped the BVPS. Two environmental studies were continued this quarter. The first involves reduction of main unit condenser chlorination and the second, river intake screen fish impingement sampling. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. During the third quarter of 1978, 874 cubic feet of radioactive solid waste was shipped out of state for burial. At the end of the quarter, the Fall shutdown continued with the plant heated up, the main turbine on turning gear and plant testing in progress prior to Station startup.

  7. Aramid Nanofiber Composites for Energy Storage Applications

    Science.gov (United States)

    Tung, Siu on

    Lithium ion batteries and non-aqueous redox flow batteries represent two of the most important energy storage technologies to efficient electric vehicles and power grid, which are essential to decreasing U.S. dependence on fossil fuels and sustainable economic growth. Many of the developmental roadblocks for these batteries are related to the separator, an electrically insulating layer between the cathode and anode. Lithium dendrite growth has limited the performance and threatened the safety of lithium ion batteries by piercing the separator and causing internal shorts. In non-aqueous redox flow batteries, active material crossover through microporous separators and the general lack of a suitable ion conducting membrane has led to low operating efficiencies and rapid capacity fade. Developing new separators for these batteries involve the combination of different and sometimes seemingly contradictory properties, such as high ionic conductivity, mechanical stability, thermal stability, chemical stability, and selective permeability. In this dissertation, I present work on composites made from Kevlar-drived aramid nanofibers (ANF) through rational design and fabrication techniques. For lithium ion batteries, a dendrite suppressing layer-by-layer composite of ANF and polyethylene oxide is present with goals of high ionic conductivity, improved safety and thermal stability. For non-aqueous redox flow batteries, a nanoporous ANF separator with surface polyelectrolyte modification is used to achieve high coulombic efficiencies and cycle life in practical flow cells. Finally, manufacturability of ANF based separators is addressed through a prototype machine for continuous ANF separator production and a novel separator coated on anode assembly. In combination, these studies serve as a foundation for addressing the challenges in separator engineering for lithium ion batteries and redox flow batteries.

  8. Short-Term Energy Outlook: Quarterly projections. Fourth quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-05

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the fourth quarter of 1993 through the fourth quarter of 1994. Values for the third quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications.

  9. Towards an all-copper redox flow battery based on a copper-containing ionic liquid.

    Science.gov (United States)

    Schaltin, Stijn; Li, Yun; Brooks, Neil R; Sniekers, Jeroen; Vankelecom, Ivo F J; Binnemans, Koen; Fransaer, Jan

    2016-01-07

    The first redox flow battery (RFB), based on the all-copper liquid metal salt [Cu(MeCN)4][Tf2N], is presented. Liquid metal salts (LMS) are a new type of ionic liquid that functions both as solvent and electrolyte. Non-aqueous electrolytes have advantages over water-based solutions, such as a larger electrochemical window and large thermal stability. The proof-of-concept is given that LMSs can be used as the electrolyte in RFBs. The main advantage of [Cu(MeCN)4][Tf2N] is the high copper concentration, and thus high charge and energy densities of 300 kC l(-1) and 75 W h l(-1) respectively, since the copper(i) ions form an integral part of the electrolyte. A Coulombic efficiency up to 85% could be reached.

  10. Short-term energy outlook: Quarterly projections, fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-14

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for printed publication in January, April, July, and October in the Short-Term Energy Outlook. The details of these projections, as well as monthly updates on or about the 6th of each interim month, are available on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The forecast period for this issue of the Outlook extends from the fourth quarter of 1997 through the fourth quarter of 1998. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the fourth quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. 19 tabs.

  11. A knowledge based advisory system for acid/base titrations in non-aqueous solvents

    NARCIS (Netherlands)

    Bos, M.; van der Linden, W.E.

    1996-01-01

    A computer program was developed that could advice on the choice of solvent and titrant for acid/base titrations in nonaqueous media. It is shown that the feasibility of a titration in a given solvent can be calculated from solvent properties and intrinsic acid/base properties of the sample

  12. Nickel foam-supported polyaniline cathode prepared with electrophoresis for improvement of rechargeable Zn battery performance

    Science.gov (United States)

    Xia, Yang; Zhu, Derong; Si, Shihui; Li, Degeng; Wu, Sen

    2015-06-01

    Porous nickel foam is used as a substrate for the development of rechargeable zinc//polyaniline battery, and the cathode electrophoresis of PANI microparticles in non-aqueous solution is applied to the fabrication of Ni foam supported PANI electrode, in which the corrosion of the nickel foam substrate is prohibited. The Ni foam supported PANI cathode with high loading is prepared by PANI electrophoretic deposition, and followed by PANI slurry casting under vacuum filtration. The electrochemical charge storage performance for PANI material is significantly improved by using nickel foam substrate via the electrophoretic interlayer. The specific capacity of the nickel foam-PANI electrode with the electrophoretic layer is higher than the composite electrode without the electrophoretic layer, and the specific capacity of PANI supported by Ni foam reaches up to 183.28 mAh g-1 at the working current of 2.5 mA cm-2. The present electrophoresis deposition method plays the facile procedure for the immobilization of PANI microparticles onto the surface of non-platinum metals, and it becomes feasible to the use of the Ni foam supported PANI composite cathode for the Zn/PANI battery in weak acidic electrolyte.

  13. Sedimentation behaviour and colloidal properties of porous, chemically modified silicas in non-aqueous solvents

    NARCIS (Netherlands)

    Vissers, J.P.C.; Laven, J.; Claessens, H.A.; Cramers, C.A.M.G.; Agterof, W.G.M.

    1997-01-01

    The sedimentation behaviour and colloidal properties of porous, chemically modified silicas dispersed in non-aqueous solvents have been studied. The free settling behaviour of non-aggregated silica suspensions could effectively be described with a modified Stokes equation that takes into account the

  14. Real-Time XRD Studies of Li-O2 Electrochemical Reaction in Nonaqueous Lithium-Oxygen Battery.

    Science.gov (United States)

    Lim, Hyunseob; Yilmaz, Eda; Byon, Hye Ryung

    2012-11-01

    Understanding of electrochemical process in rechargeable Li-O2 battery has suffered from lack of proper analytical tool, especially related to the identification of chemical species and number of electrons involved in the discharge/recharge process. Here we present a simple and straightforward analytical method for simultaneously attaining chemical and quantified information of Li2O2 (discharge product) and byproducts using in situ XRD measurement. By real-time monitoring of solid-state Li2O2 peak area, the accurate efficiency of Li2O2 formation and the number of electrons can be evaluated during full discharge. Furthermore, by observation of sequential area change of Li2O2 peak during recharge, we found nonlinearity of Li2O2 decomposition rate for the first time in ether-based electrolyte.

  15. A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yan Jian; Zhang Jian; Su Yuchang; Zhang Xigui; Xia Baojia

    2010-01-01

    In this paper, we describe how the mechanism of formation of a protective film [the solid electrolyte interphase (or interface) (SEI)] on a graphite electrode for Li-ion batteries was investigated from the novel perspective of precipitation of the final decomposition products that arise from the reduction of a nonaqueous electrolyte solution in contact with the graphite electrode. Within the framework of this new perspective, we can elegantly account for the compositional and structural differences between the basal-plane and edge-plane SEIs and for the origins of the multi-layer structure and the parabolic growth law of the SEIs on both the edge-plane and basal-plane surfaces of the graphite electrode.

  16. Weldon Spring Site Remedial Action Project quarterly environmental data summary (QEDS) for fourth quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    This report contains the Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1998 in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data, except for air monitoring data and site KPA generated data (uranium analyses) were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the fourth quarter of 1998. KPA results for on-site total uranium analyses performed during fourth quarter 1998 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  17. Non-aqueous removal of sodium from reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Welch, F H; Steele, O P [Rockwell International, Atomics International Division, Canoga Park (United States)

    1978-08-01

    Reactor components from sodium-cooled systems. whether radioactive or not, must have the sodium removed before they can be safely handled for 1) disposal, 2) examination and test, or 3) decontamination, repair, and requalification. In the latter two cases, the sodium must be removed in a manner which will not harm the component. and prevent future use. Two methods for sodium removal using non-aqueous techniques have been studied extensively in the U.S.A. in the past few years: the Alcohol Process, which uses a fully denatured ethanol to react away the sodium; and the Evaporative Process, which uses heat and vacuum to evaporate the sodium from the component.

  18. Non-aqueous removal of sodium from reactor components

    International Nuclear Information System (INIS)

    Welch, F.H.; Steele, O.P.

    1978-01-01

    Reactor components from sodium-cooled systems. whether radioactive or not, must have the sodium removed before they can be safely handled for 1) disposal, 2) examination and test, or 3) decontamination, repair, and requalification. In the latter two cases, the sodium must be removed in a manner which will not harm the component. and prevent future use. Two methods for sodium removal using non-aqueous techniques have been studied extensively in the U.S.A. in the past few years: the Alcohol Process, which uses a fully denatured ethanol to react away the sodium; and the Evaporative Process, which uses heat and vacuum to evaporate the sodium from the component

  19. Short-term energy outlook. Quarterly projections, 2nd quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. The forecast period for this issue of the Outlook extends from the second quarter of 1994 through the fourth quarter of 1995. Values for the first quarter of 1994, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available. The historical energy data, compiled into the second quarter 1994 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the STIFS. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. The EIA model is available on computer tape from the National Technical Information Service.

  20. Morphology Engineering of Co3O4 Nanoarrays as Free-Standing Catalysts for Lithium-Oxygen Batteries.

    Science.gov (United States)

    He, Mu; Zhang, Peng; Xu, Shan; Yan, Xingbin

    2016-09-14

    The effective shape-controlled synthesis of Co3O4 nanoarrays on nickel foam substrates has been achieved through a simple hydrothermal strategy. When they served as the binder- and conductive-agent-free porous cathodes for nonaqueous Li-O2 batteries, they sufficiently reflect the favorable catalytic characteristic of Co3O4 and alleviate the problems of serious pore blocking and surface passivation caused by insoluble and insulating discharge products. In particular, Co3O4 rectangular nanosheets exhibit superior electrocatalytic performance comparing with Co3O4 nanowires and hexagonal nanosheets, leading to higher specific capacity and better cycling stability over 54 cycles at 100 mA g(-1), which relate to their good pore structure, large specific surface area, and highly active {112} exposed plane, effectively promoting the mass transport and reversible formation and decomposition of discharge products in the cathode. These comparisons further indicate the morphology effect of nanostructured Co3O4 on their performances as free-standing catalysts for Li-O2 batteries, which also have been proved through the further analysis of discharge products on different shapes of Co3O4 nanoarrays electrodes.

  1. Short-term energy outlook: Quarterly projections, Third quarter 1992

    International Nuclear Information System (INIS)

    1992-08-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The principal users of the Outlook are managers and energy analysts in private industry and government. The forecast period for this issue of the Outlook extends from the third quarter of 1992 through the fourth quarter of 1993. Values for the second quarter of 1992, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding

  2. Short-term energy outlook, quarterly projections, first quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The forecast period for this issue of the Outlook extends from the first quarter of 1998 through the fourth quarter of 1999. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the first quarter 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are adjusted by EIA to reflect EIA assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 24 figs., 19 tabs.

  3. Quarterly coal report, July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks. Coke production consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1997 and aggregated quarterly historical data for 1991 through the second quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. 72 tabs.

  4. Highly Conducting Nanosized Monodispersed Antimony-Doped Tin Oxide Particles Synthesized via Nonaqueous Sol−Gel Procedure

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rasp, M.; Štefanić, G.; Ba, J.; Günther, S.; Rathouský, Jiří; Niederberger, M.; Fattakhova Rohlfing, D.

    2009-01-01

    Roč. 21, č. 21 (2009), s. 5229-5236 ISSN 0897-4756 Institutional research plan: CEZ:AV0Z40400503 Keywords : nanoparticles * nonaqueous Ssl -gel procedure * oxide materials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.368, year: 2009

  5. A solvated electron lithium electrode for secondary batteries

    Science.gov (United States)

    Sammells, A. F.; Semkow, K. W.

    1986-09-01

    Attention is given to a novel method for the achievement of high electro-chemical reversibility in Li-based nonaqueous cells, using a liquid negative electrode that consists of Li dissolved in liquid ammonia as a solvated electron Li electrode. The containment of this liquid negative active material from direct contact to a liquid nonaqueous electrolyte in the positive electrode compartment was realized through the use of a Li-intercalated, electronically conducting ceramic membrane.

  6. Prediction of aqueous and nonaqueous solubilities of chemicals with environmental interest by UNIFAC

    International Nuclear Information System (INIS)

    Kan, A.T.; Tomson, M.B.

    1995-01-01

    This paper is to investigate the accuracy and precision of predicting the aqueous and non-aqueous solubilities of a vast number of chemicals with significant environmental roles using the latest version of UNIFAC group interaction parameters. A few critical measurements to test specific UNIFAC calculations of nonaqueous solubilities are also reported. The chemicals included in the calculation have aqueous solubilities that span eleven orders of magnitude. Good agreement was observed between the UNIFAC predicted and literature reported aqueous solubilities for eleven groups of compounds. Similarly, UNIFAC successfully predicts the co-solvency of PCB in methanol/water solutions. The error between predicted and literature reported aqueous solubilities was larger for three groups of chemicals: long chain alkanes, phthalates, and chlorinated alkenes. The average absolute error in UNIFAC precision of aqueous solubilities is about 0.5 log units, but the average absolute error is only about 0.2 log units for chlorinated aromatic compounds in organic solvents. The application of UNIFAC approach to predict the fate of hydrocarbons and PCBs in soil column flushing, cosolvency and in natural gas pipeline liquids will be discussed

  7. Mass spectrometric detection of proteins in non-aqueous media : the case of prion proteins in biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Douma, M.D.; Kerr, G.M.; Brown, R.S.; Keller, B.O.; Oleschuk, R.D. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry

    2008-08-15

    This paper presented a filtration method for detecting protein traces in non-aqueous media. The extraction technique used a mixture of acetonitrile, non-ionic detergent and water along with filter disks with embedded C{sub 8}-modified silica particles to capture the proteins from non-aqueous samples. The extraction process was then followed by an elution of the protein from the filter disk and direct mass spectrometric detection and tryptic digestion with peptide mapping and MS/MS fragmentation of protein-specific peptides. The method was used to detect prion proteins in spiked biodiesel samples. A tryptic peptide with the sequence YGQGSPGGNR was used for unambiguous identification. Results of the study showed that the method is suitable for the large-scale testing of protein impurities in tallow-based biodiesel production processes. 33 refs., 6 figs.

  8. High-activity MgO-supported CoMo Hydrodesulfurization Catalysts Prepared by Non-aqueous Impregnation

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Gulková, Daniela; Vít, Zdeněk; Zdražil, Miroslav

    2015-01-01

    Roč. 162, JAN 2015 (2015), s. 430-436 ISSN 0926-3373 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : CoMo/MgO * benzothiophene hydrodesulfurization * non-aqueous impregnation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.328, year: 2015

  9. A Novel Protocol to Analyze Short- and Long-Chain Fatty Acids Using Nonaqueous Microchip Capillary Electrophoresis

    Science.gov (United States)

    Cable, M. L.; Stockton, A. M.; Mora, Maria F; Willis, P. A.

    2013-01-01

    We propose a new protocol to identify and quantify both short- and long-chain saturated fatty acids in samples of astrobiological interest using non-aqueous microchip capillary electrophoresis (micronNACE) with laser induced fluorescence (LIF).

  10. Quarterly coal report, April--June 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1997 and aggregated quarterly historical data for 1991 through the first quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  11. DMSO-Li2O2 Interface in the Rechargeable Li-O2 Battery Cathode: Theoretical and Experimental Perspectives on Stability.

    Science.gov (United States)

    Schroeder, Marshall A; Kumar, Nitin; Pearse, Alexander J; Liu, Chanyuan; Lee, Sang Bok; Rubloff, Gary W; Leung, Kevin; Noked, Malachi

    2015-06-03

    One of the greatest obstacles for the realization of the nonaqueous Li-O2 battery is finding a solvent that is chemically and electrochemically stable under cell operating conditions. Dimethyl sulfoxide (DMSO) is an attractive candidate for rechargeable Li-O2 battery studies; however, there is still significant controversy regarding its stability on the Li-O2 cathode surface. We performed multiple experiments (in situ XPS, FTIR, Raman, and XRD) which assess the stability of the DMSO-Li2O2 interface and report perspectives on previously published studies. Our electrochemical experiments show long-term stable cycling of a DMSO-based operating Li-O2 cell with a platinum@carbon nanotube core-shell cathode fabricated via atomic layer deposition, specifically with >45 cycles of 40 h of discharge per cycle. This work is complemented by density functional theory calculations of DMSO degradation pathways on Li2O2. Both experimental and theoretical evidence strongly suggests that DMSO is chemically and electrochemically stable on the surface of Li2O2 under the reported operating conditions.

  12. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    International Nuclear Information System (INIS)

    Guo, Guilue; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu; Yao, Xin

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O 2 batteries. It has been discovered that during discharge, Li 2 O 2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g −1 at a current density of 100 mA g −1 . When they were cycled at a limited capacity of 800 mAh g −1 at current densities of 200 or 400 mA g −1 , these cathodes showed stable charge voltages of ∼3.65 or 3.90 V, corresponding to energy efficiencies of ∼71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O 2 battery cathodes. (paper)

  13. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    Science.gov (United States)

    Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g-1 at a current density of 100 mA g-1. When they were cycled at a limited capacity of 800 mAh g-1 at current densities of 200 or 400 mA g-1, these cathodes showed stable charge voltages of ˜3.65 or 3.90 V, corresponding to energy efficiencies of ˜71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.

  14. 32 CFR 643.127 - Quarters.

    Science.gov (United States)

    2010-07-01

    ... Additional Authority of Commanders § 643.127 Quarters. The assignment and rental of quarters to civilian employees and other nonmilitary personnel will be accomplished in accordance with AR 210-50. Responsibility of the Corps of Engineers for the establishment of rental rates for quarters rented to civilian and...

  15. Quarter 9 Mercury information clearinghouse final report

    Energy Technology Data Exchange (ETDEWEB)

    Laudal, D.L.; Miller, S.; Pflughoeft-Hassett, D.; Ralston, N.; Dunham, G.; Weber, G.

    2005-12-15

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. A total of eight reports were completed and are summarized and updated in this final CEA quarterly report. Selected topics were discussed in detail in each quarterly report. Issues related to mercury from coal-fired utilities include the general areas of measurement, control, policy, and transformations. Specific topics that have been addressed in previous quarterly reports include the following: Quarterly 1 - Sorbent Control Technologies for Mercury Control; Quarterly 2 - Mercury Measurement; Quarterly 3 - Advanced and Developmental Mercury Control Technologies; Quarterly 4 - Prerelease of Mercury from Coal Combustion By-Products; Quarterly 5 - Mercury Fundamentals; Quarterly 6 - Mercury Control Field Demonstrations; Quarterly 7 - Mercury Regulations in the United States: Federal and State; and Quarterly 8 - Commercialization Aspects of Sorbent Injection Technologies in Canada. In this last of nine quarterly reports, an update of these mercury issues is presented that includes a summary of each topic, with recent information pertinent to advances made since the quarterly reports were originally presented. In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. 86 refs., 11 figs., 8 tabs.

  16. Thermometric titration of some monoprotic and diprotic acids in aqueous and non-aqueous media.

    Science.gov (United States)

    Harries, R J

    1968-12-01

    Some mono- and diprotic acids have been titrated thermometrically with strong alkalis in aqueous and non-aqueous media. Thermograms with sharp arrest points were obtained, from which heats of neutralization were measured. Heats of neutralization in the media used were compared and an effect attributable to hydrogen bonding was found.

  17. Quarterly coal report, April--June, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1998 and aggregated quarterly historical data for 1992 through the first quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  18. Quarterly coal report, October--December 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1998 and aggregated quarterly historical data for 1992 through the third quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  19. Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF6 salt

    International Nuclear Information System (INIS)

    Myung, Seung-Taek; Sasaki, Yusuke; Saito, Takamitsu; Sun, Yang-Kook; Yashiro, Hitoshi

    2009-01-01

    Passivation behavior of type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF 6 salt was studied using electrochemical polarization, X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectroscopy (ToF-SIMS). Cathodic polarization to 0 V vs. Li/Li + resulted in most but not complete reduction of the air-formed film from oxides to metal on the stainless steel, as confirmed by XPS. For complete elimination of the air-formed film, the surface of the stainless steel was scratched under anodic polarization conditions. At 3 V vs. Li/Li + where an anodic current peak appeared, only an indistinct layer was recognized on the newly scratched surface, according to ToF-SIMS analysis. Above 4 V vs. Li/Li + , substantial passive films were formed, which were composed of oxides and fluorides of iron and chromium. The origin of oxide was due to water contained in the non-aqueous alkyl carbonate solution, and that of fluorides were the result of the decomposition of electrolytic salt, LiPF 6 , especially at higher potential. The resultant passive films were stable in the non-aqueous alkyl carbonate solution containing LiPF 6 salt.

  20. Asymmetric battery having a semi-solid cathode and high energy density anode

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai

    2017-11-28

    Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.

  1. Idaho National Laboratory Quarterly Performance Analysis - 1st Quarter FY2015

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (27 from the 1St Qtr FY-15 and 46 from the prior three reporting quarters), as well as 38 other issue reports (including nine not reportable events and Significant Category A and B conditions reported during the1st Qtr FY-15) identified at INL during the past 12 months.

  2. The renaissance of non-aqueous uranium chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liddle, Stephen T. [School of Chemistry, University of Nottingham (United Kingdom)

    2015-07-20

    Prior to the year 2000, non-aqueous uranium chemistry mainly involved metallocene and classical alkyl, amide, or alkoxide compounds as well as established carbene, imido, and oxo derivatives. Since then, there has been a resurgence of the area, and dramatic developments of supporting ligands and multiply bonded ligand types, small-molecule activation, and magnetism have been reported. This review (1) introduces the reader to some of the specialist theories of the area, (2) covers all-important starting materials, (3) surveys contemporary ligand classes installed at uranium, including alkyl, aryl, arene, carbene, amide, imide, nitride, alkoxide, aryloxide, and oxo compounds, (4) describes advances in the area of single-molecule magnetism, and (5) summarizes the coordination and activation of small molecules, including carbon monoxide, carbon dioxide, nitric oxide, dinitrogen, white phosphorus, and alkanes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Three-phase flow analysis of dense nonaqueous phase liquid infiltration in horizontally layered porous media

    NARCIS (Netherlands)

    Wipfler, E.L.; Dijke, van M.I.J.; Zee, van der S.E.A.T.M.

    2004-01-01

    We considered dense nonaqueous phase liquid (DNAPL) infiltration into a water-unsaturated porous medium that consists of two horizontal layers, of which the top layer has a lower intrinsic permeability than the bottom layer. DNAPL is the intermediate-wetting fluid with respect to the wetting water

  4. Quarterly coal report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-20

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada.

  5. Quarterly coal report, January--March 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada

  6. Electrochemical reactions of uranyl(VI) complexes in aqueous solution, non-aqueous solvents, and ionic liquids

    International Nuclear Information System (INIS)

    Ikeda, Yasuhisa

    2006-01-01

    Author's recent experimental results on the chemistry of U(V) in aqueous solution, non-aqueous solvents, and ionic solvents by cyclic voltametry are described. The U(V) was produced by electrochemical reduction of uranyl U(VI) ions or complexes such as carbonates, DMF(N, N-dimethylformamide), DMSO(dimethylsulfoxide), acetylacetonato, and other organic polydental ligands. The produced U(V) complexes were studied by spectrophotometry using optical-transmission thin-layer electrode. The U(V) complexes in non-aqueous solvents were found to be rather stable, they undergo ligand-dissociation reaction but not disproportionation reaction. The structure and electronic spectra as well as IR spectra of the complexes were studied. The present method was further developed to study the behavior of U(V) complexes in ionic liquids as molten salts, e.g., alkaline metals chlorides. Thus, the present research contributes to understanding the chemistry of 5fl system. Application to such nuclear technology as spent fuel reprocessing is discussed. (S. Ohno)

  7. On-line stacking techniques for the nonaqueous capillary electrophoretic determination of acrylamide in processed food

    International Nuclear Information System (INIS)

    Tezcan, Filiz; Erim, F. Bedia

    2008-01-01

    In the present study, field amplified sample stacking (FASS) techniques in the nonaqueous capillary electrophoresis method (NACE) were introduced for the on-line concentration of the acrylamide to improve acrylamide detection at 210 nm by diode-array detection. Acetonitrile (ACN) as a nonaqueous solvent permits acrylamide to be protonated through the change of its acid-base chemistry, allowing capillary electrophoretic separation of this compound. Choosing 30 mmol L -1 HClO 4 , 20 mmol L -1 NaClO 4 , 218 mmol L -1 CH 3 COOH in ACN as the separation electrolyte and employing sample stacking methods, the LOD value of acrylamide was decreased to 2.6 ng mL -1 with electrokinetic injection and 4.4 ng mL -1 with hydrodynamic injection. Optimized stacking conditions were applied to the determination of acrylamide in several foodstuffs. The method is simple, rapid, inexpensive, and widely applicable for the determination of acrylamide in food samples

  8. Quarterly report for the electricity market. 2. quarter of 2012; Kvartalsrapport for kraftmarknaden. 2. kvartal 2012

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Finn Erik Ljaastad; Eliston, Anton Jayanand; Vaeringstad, Thomas; Lund, Per Tore Jensen; Magnussen, Ingrid; Langseth, Benedicte; Willumsen, Mats Oeivind; Rasmussen, Kristian; Guren, Ingri

    2012-07-01

    Second quarter of 2012 was cold. Total inflow was 47.0 TWh, 8.8 TWh less than normal. At the end of the quarter, the reservoir level 68.4 percent. It is 1.8 percentage points above normal for time of year and 1.2 percentage points higher than the same time last year. Norway had a power consumption of 28.2 TWh in the second quarter, which is 4.2 percent higher than in the same quarter last year. The last 12 months the consumption have been 125.7 TWh, compared with 128.7 TWh the preceding 12 months. The power production in Norway was 33.3 TWh in the second quarter - an increase of 26.1 percent compared with the same quarter last year. The last 12 months the Norwegian production has been 145.8 TWh, compared with 120.9 TWh the preceding 12 months. The production increase is due to that the last year has been much wetter than the preceding. This has also given high export abroad. In the second quarter Norway had a net export of 5.1 TWh, compared with a net import of 0.6 TWh in the second quarter last year. The good resource gave a low price level in the wholesale market for electricity. On average for the second quarter was the average spot price in West, Southwest and Eastern Norway, 201, 202 and 203 Nok / MWh. In Central and Northern Norway, the average price 218 and 213 Nok/ MWh. (eb)

  9. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.

    Science.gov (United States)

    Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

    2014-03-15

    Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase (14)C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with (14)C-TCE. Transport experiments showed that MnO4(-) alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO4(-), the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP+MnO4(-) improved TCE destruction by ∼16% over MnO4(-) alone (56.5% vs. 40.1%). These results support combining permanganate with SHMP or SHMP and xanthan as a means of treating high concentrations of TCE in low permeable zones. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Joint Force Quarterly. Issue 41, 2nd Quarter, April 2006

    Science.gov (United States)

    2006-04-01

    companies participated, a million more people would be actively looking for threats. Aguas de Amazonas, a subsidiary of Suez Environnement, a...9 Richard B. Myers, “A Word from the Chair- man,” Joint Force Quarterly 37 (2d Quarter 2005), 5. 10 Wald, 26. 11 “Suez— Aguas de Amazonas Water for...humanitarian duties. They have overseen over 130 humani- tarian projects worth in excess of $7.6 million and ranging from a medical center, to potable

  11. Quarterly coal report, January--March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.

    1998-08-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for January through March 1998 and aggregated quarterly historical data for 1992 through the fourth quarter of 1997. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. 58 tabs.

  12. Quarterly coal report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  13. Esophageal lesions following button-battery ingestion in children: Analysis of causes and proposals for preventive measures.

    Science.gov (United States)

    Lahmar, J; Célérier, C; Garabédian, E N; Couloigner, V; Leboulanger, N; Denoyelle, F

    2018-04-01

    To study recent cases of esophageal injury due to button-battery ingestion in children presenting in pediatric ENT emergency departments of the Paris area of France (Île-de-France region), in order to propose appropriate preventive measures. A retrospective descriptive single-center study included all children under 15 years of age, presenting in pediatric ENT emergency departments between January 2008 and April 2014 for button-battery ingestion with esophageal impaction requiring emergency removal. Twenty-two boys and 4 girls, with a median age of 25 months, were included. Twenty-five of the 26 batteries had diameters of 20mm or more. Median esophageal impaction time was 7 hours 30 minutes (range, 2 to 72 hours). The complications rate was 23%. Mean hospital stay cost was €38,751 (range, €5130-119,737). The origin of the battery was known in 23 of the 26 cases: remote control without screw-secured compartment (42.3%), open battery pack (15.4%), children's toy (15.3%), camera (7.7%), watch (1 case) and hearing aid without screw-secured compartment (1 case). Esophageal lesions due to ingestion of button-batteries in children are almost always due to batteries larger than 20mm in diameter, mostly from devices with a poorly protected compartment, or batteries that are not individually packaged. These lesions cause serious complications in a quarter of cases and their management entails high health costs. Legislation requiring screw-secured compartments and individual blisters for batteries could have prevented 69.2% of the ingestions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Quarterly coal report, July--September 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1998 and aggregated quarterly historical data for 1992 through the second quarter of 1998. 58 tabs.

  15. Quarterly report for the electricity market. 2. quarter of 2012; Kvartalsrapport for kraftmarknaden. 2. kvartal 2012

    Energy Technology Data Exchange (ETDEWEB)

    Eliston, Anton Jaynand; Holmqvist, Erik; Lund, Per Tore Jensen; Magnussen, Ingrid; Viggen, Kjerstin Dahl; Willumsen, Mats Oeivind; Guren, Ingrid; Ulriksen, Margit Iren

    2012-07-01

    Fourth quarter of 2011 was unusually mild and wet, resulting in high energy inflow to the Norwegian reservoirs. Total inflow for the year was 149.2 TWh, 26.7 TWh more than normal. This ensured record-high 80.3 percent load factor at the end of the quarter.The stored energy amount in the reservoirs was thus 29.5 TWh greater than at the end of 2010/2011. Norway had a power consumption of 34.1 TWh in the fourth quarter. Compared with the same quarter of 2010, a decrease of 4.2 TWh, which can be connected to the mild weather development. The total Norwegian electricity consumption in 2011 was 125.1 TWh, or 6.9 TWh less than in 2010. Electricity production in the fourth quarter of 2011 was 38.3 GWh, an increase of 3.7 TWh from the same quarter the year before. The production increase were a result of the large volume of water in the system. Power production for the year 2011 was 128.1 TWh, an increase of 3.7 TWh from 2010. Kraft surplus was therefore large, and it was Norwegian net export of 4.2 TWh in the fourth quarter, and 3.0 TWh total for the year. In comparison, in the fourth quarter of 2010 Norwegian net import of 0.8 TWh and 7.5 TWh annually. The good resource combined with the low consumption gave a unusually low price levels in the wholesale market for electricity. On average for fourth quarter, the price of power in the East and South-East Norway Nok 264 / MWh, in western Norway Nok 260 / MWh, in Central Norway Nok 270 / MWh (eb)

  16. Quarterly report for the electricity market. 1. quarter of 2012; Kvartalsrapport for kraftmarknaden. 1. kvartal 2012

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Finn Erik Ljaastad; Eliston, Anton Jaynanand; Guren, Ingri; Homqvist, Erik; Lund, Per Tore Jensen; Magnussen, Ingrid; Rasmussen, Kristian; Ulriksen, Margit Iren

    2012-07-01

    The first quarter of 2012 was unusually mild and wetter than normal. Total inflow was 16.8 TWh, 7.5 TWh more than normal. This ensured a high reservoir levels and at the end of the quarter the filling was 50.5 percent. It is 12.5 percentage points over the normal for the time of year and 32.4 percentage points higher than the same time last year. Norway had a power consumption of 37.5 TWh in the first quarter, which is 2.3 percent less than in the same quarter last year. the past 12 months, consumption has been 124.2 TWh, compared with 129.7 TWh the preceding 12 months. Power production in Norway was 42.3 TWh in the first quarter - an increase of 32.3 percent compared with the same quarter last year. The last 12 months have the Norwegian production been 138.5 TWh compared to 117.7 TWh the the previous 12 months. The production increase is due to milder and wetter weather than normal over the past year. This involvement also high the exports abroad. In the first quarter, Norway had a net export of 4.8 TWh, compared with a net import of 6.4 TWh in the first quarter last year. The good resource, combined with a low consumption gave a low price level in wholesale market for electricity. On average for the fourth quarter was the average spot price in the South and West Norway, Nok 272 and 275 / MWh. In Eastern Norway, the average price of Nok 283 / MWh, while it was Nok 285 / MWh in the Middle and Northern Norway. (Author)

  17. A Robust Oil-in-Oil Emulsion for the Nonaqueous Encapsulation of Hydrophilic Payloads.

    Science.gov (United States)

    Lu, Xiaocun; Katz, Joshua S; Schmitt, Adam K; Moore, Jeffrey S

    2018-03-14

    Compartmentalized structures widely exist in cellular systems (organelles) and perform essential functions in smart composite materials (microcapsules, vasculatures, and micelles) to provide localized functionality and enhance materials' compatibility. An entirely water-free compartmentalization system is of significant value to the materials community as nonaqueous conditions are critical to packaging microcapsules with water-free hydrophilic payloads while avoiding energy-intensive drying steps. Few nonaqueous encapsulation techniques are known, especially when considering just the scalable processes that operate in batch mode. Herein, we report a robust oil-in-oil Pickering emulsion system that is compatible with nonaqueous interfacial reactions as required for encapsulation of hydrophilic payloads. A major conceptual advance of this work is the notion of the partitioning inhibitor-a chemical agent that greatly reduces the payload's distribution between the emulsion's two phases, thus providing appropriate conditions for emulsion-templated interfacial polymerization. As a specific example, an immiscible hydrocarbon-amine pair of liquids is emulsified by the incorporation of guanidinium chloride (GuHCl) as a partitioning inhibitor into the dispersed phase. Polyisobutylene (PIB) is added into the continuous phase as a viscosity modifier for suitable modification of interfacial polymerization kinetics. The combination of GuHCl and PIB is necessary to yield a robust emulsion with stable morphology for 3 weeks. Shell wall formation was accomplished by interfacial polymerization of isocyanates delivered through the continuous phase and polyamines from the droplet core. Diethylenetriamine (DETA)-loaded microcapsules were isolated in good yield, exhibiting high thermal and chemical stabilities with extended shelf-lives even when dispersed into a reactive epoxy resin. The polyamine phase is compatible with a variety of basic and hydrophilic actives, suggesting that this

  18. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    Science.gov (United States)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-01-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629

  19. Nickel - iron battery. Nikkel - jern batteri

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H. A.

    1989-03-15

    A newer type of nickel-iron battery, (SAFT 6v 230 Ah monobloc), which could possibly be used in relation to electrically driven light road vehicles, was tested. The same test methods used for lead batteries were utilized and results compared favourably with those reached during other testings carried out, abroad, on a SAFT nickle-iron battery and a SAB-NIFE nickel-iron battery. Description (in English) of the latter-named tests are included in the publication as is also a presentation of the SAFT battery. Testing showed that this type of battery did not last as long as had been expected, but the density of energy and effect was superior to lead batteries. However energy efficiency was rather poor in comparison to lead batteries and it was concluded that nickel-iron batteries are not suitable for stationary systems where recharging under a constant voltage is necessary. (AB).

  20. Quarterly coal report, January--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1994 and aggregated quarterly historical data for 1986 through the fourth quarter of 1993. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  1. Quarterly coal report, October--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities. This report presents detailed quarterly data for october through December 1997 and aggregated quarterly historical data for 1991 through the third quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data, as specified in Section 202 of the energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  2. Quarterly coal report, January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience,including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1997 and aggregated quarterly historical data for 1991 through the fourth quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  3. Identifying Potential Markets for Behind-the-Meter Battery Energy Storage: A Survey of U.S. Demand Charges

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mullendore, Seth [Clean Energy Group, Montpelier, Vermont

    2017-08-07

    This paper presents the first publicly available comprehensive survey of the magnitude of demand charges for commercial customers across the United States -- a key predictor of the financial performance of behind-the-meter battery storage systems. Notably, the analysis estimates that there are nearly 5 million commercial customers in the United States who can subscribe to retail electricity tariffs that have demand charges in excess of $15 per kilowatt (kW), over a quarter of the 18 million commercial customers in total in the United States. While the economic viability of installing battery energy storage must be determined on a case-by-case basis, high demand charges are often cited as a critical factor in battery project economics. Increasing use of demand charges in utility tariffs and anticipated future declines in storage costs will only serve to unlock additional markets and strengthen existing ones.

  4. Polyfluorinated boron cluster based salts: A new electrolyte for application in nonaqueous asymmetric AC/Li{sub 4}Ti{sub 5}O{sub 12} supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ionica-Bousquet, C.M.; Munoz-Rojas, D.; Palacin, M.R. [Institut de Ciencia de Materials de Barcelona, CSIC, Campus UAB, E-08193 Bellaterra (Spain); Casteel, W.J. Jr.; Pearlstein, R.M.; Kumar, G. Girish; Pez, G.P. [Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, PA 18195 (United States)

    2011-02-01

    Solutions of novel fluorinated lithium dodecaborate (Li{sub 2}B{sub 12}F{sub x}H{sub 12-x}) salts have been evaluated as electrolytes in nonaqueous asymmetric supercapacitors with Li{sub 4}Ti{sub 5}O{sub 12} as negative electrode, and activated carbon (AC) as positive electrode. The results obtained with these new electrolytes were compared with those obtained with cells built using standard 1 M LiPF{sub 6} dissolved in ethylene carbonate and dimethyl carbonate (EC:DMC; 1:1, v/v) as electrolyte. The specific energy, rate capability, and cycling performances of nonaqueous asymmetric cells based on these new electrolyte salts were studied. Cells assembled using the new fluoroborate salts show excellent reversibility, coulombic efficiency, rate capability and improved cyclability when compared with the standard electrolyte. These features confirm the suitability of lithium-fluoro-borate based salts to be used in nonaqueous asymmetric supercapacitors. (author)

  5. 10 CFR 34.29 - Quarterly inventory.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Quarterly inventory. 34.29 Section 34.29 Energy NUCLEAR... RADIOGRAPHIC OPERATIONS Equipment § 34.29 Quarterly inventory. (a) Each licensee shall conduct a quarterly physical inventory to account for all sealed sources and for devices containing depleted uranium received...

  6. Idaho National Laboratory Quarterly Occurrence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).

  7. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.

    Science.gov (United States)

    Ma, Ting; Pan, Zeng; Miao, Licheng; Chen, Chengcheng; Han, Mo; Shang, Zhenfeng; Chen, Jun

    2018-03-12

    Electrochemical energy storage with redox-flow batteries (RFBs) under subzero temperature is of great significance for the use of renewable energy in cold regions. However, RFBs are generally used above 10 °C. Herein we present non-aqueous organic RFBs based on 5,10,15,20-tetraphenylporphyrin (H 2 TPP) as a bipolar redox-active material (anode: [H 2 TPP] 2- /H 2 TPP, cathode: H 2 TPP/[H 2 TPP] 2+ ) and a Y-zeolite-poly(vinylidene fluoride) (Y-PVDF) ion-selective membrane with high ionic conductivity as a separator. The constructed RFBs exhibit a high volumetric capacity of 8.72 Ah L -1 with a high voltage of 2.83 V and excellent cycling stability (capacity retention exceeding 99.98 % per cycle) in the temperature range between 20 and -40 °C. Our study highlights principles for the design of RFBs that operate at low temperatures, thus offering a promising approach to electrochemical energy storage under cold-climate conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Flexible Aqueous Li-Ion Battery with High Energy and Power Densities.

    Science.gov (United States)

    Yang, Chongyin; Ji, Xiao; Fan, Xiulin; Gao, Tao; Suo, Liumin; Wang, Fei; Sun, Wei; Chen, Ji; Chen, Long; Han, Fudong; Miao, Ling; Xu, Kang; Gerasopoulos, Konstantinos; Wang, Chunsheng

    2017-11-01

    A flexible and wearable aqueous symmetrical lithium-ion battery is developed using a single LiVPO 4 F material as both cathode and anode in a "water-in-salt" gel polymer electrolyte. The symmetric lithium-ion chemistry exhibits high energy and power density and long cycle life, due to the formation of a robust solid electrolyte interphase consisting of Li 2 CO 3 -LiF, which enables fast Li-ion transport. Energy densities of 141 Wh kg -1 , power densities of 20 600 W kg -1 , and output voltage of 2.4 V can be delivered during >4000 cycles, which is far superior to reported aqueous energy storage devices at the same power level. Moreover, the full cell shows unprecedented tolerance to mechanical stress such as bending and cutting, where it not only does not catastrophically fail, as most nonaqueous cells would, but also maintains cell performance and continues to operate in ambient environment, a unique feature apparently derived from the high stability of the "water-in-salt" gel polymer electrolyte. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Quarterly financial reports | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Quarterly Financial Report for the period ending 31 December 2011 · Quarterly Financial Report for the period ending 30 September 2011 · Quarterly Financial Report for the period ending 30 June 2011 · Summary of Expense Reductions to Accommodate Budget 2012 Appropriation Reduction (PDF) · What we do · Funding ...

  10. Templated growth of cadmium zinc telluride (CZT) nanowires using pulsed-potentials in hot non-aqueous solution

    International Nuclear Information System (INIS)

    Gandhi, T.; Raja, K.S.; Misra, M.

    2006-01-01

    A single step non-aqueous electrodeposition of cadmium zinc telluride (CZT) nanowires on nanoporous TiO 2 substrate was investigated under pulsed-potential conditions. Propylene carbonate was used as the non-aqueous medium. Cyclic voltammogram studies were carried out to understand the growth mechanism of CZT. EDAX and XRD measurements indicated formation of a compound semiconductor with a stoichiometry of Cd 1-x Zn x Te, where x varied between 0.04 and 0.2. Variation of the pulsed-cathodic potentials could modulate the composition of the CZT. More negative cathodic potentials resulted in increased Zn content. The nanowires showed an electronic band gap of about 1.6 eV. Mott-Schottky analyses indicated p-type semiconductor properties of both as-deposited and annealed CZT materials. Increase in Zn content increased the charge carrier density. Annealing of the deposits resulted in lower charge carrier densities, in the order of 10 15 cm -3

  11. Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeongho; Lee, Minho; Jeon, Hyeon Yeol; Min, Byong Hun; Kim, Jeong Ho [Univ. of Suwon, Hwaseong (Korea, Republic of); Lee, Young Chul [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2016-02-15

    Eco-friendly acrylic resin/clay nanocomposites containing pristine montmorillonite (PM) or modified clays (30B and 25A) were prepared from acrylic and styrenic monomers using non-aqueous dispersion (NAD) polymerization. Effect of nanoclays on physical properties of polymerization product and resulting nanocomposites was investigated. In view of NAD particle stability, addition of nanoclay at the beginning of polymerization is proved to be good. Results of gel fraction, acid value and viscosity of the NAD product showed that nanocomposites containing clay 25A showed better physical properties than the ones with other clays. GPC results exhibit the increase in molecular weight and decrease in polydispersity index for the 25A nanocomposite. Increase in layer distance confirmed from XRD analysis showed good dispersion of 25A in the nanocomposite. Thermal and dynamic mechanical analysis showed that highest glass transition temperature and storage modulus for 25A nanocomposites. These results indicate that 25A nanoclay gives the best properties in the process of non-aqueous dispersion polymerization of acrylic resin/nanoclay nanocomposites.

  12. Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization

    International Nuclear Information System (INIS)

    Kim, Yeongho; Lee, Minho; Jeon, Hyeon Yeol; Min, Byong Hun; Kim, Jeong Ho; Lee, Young Chul

    2016-01-01

    Eco-friendly acrylic resin/clay nanocomposites containing pristine montmorillonite (PM) or modified clays (30B and 25A) were prepared from acrylic and styrenic monomers using non-aqueous dispersion (NAD) polymerization. Effect of nanoclays on physical properties of polymerization product and resulting nanocomposites was investigated. In view of NAD particle stability, addition of nanoclay at the beginning of polymerization is proved to be good. Results of gel fraction, acid value and viscosity of the NAD product showed that nanocomposites containing clay 25A showed better physical properties than the ones with other clays. GPC results exhibit the increase in molecular weight and decrease in polydispersity index for the 25A nanocomposite. Increase in layer distance confirmed from XRD analysis showed good dispersion of 25A in the nanocomposite. Thermal and dynamic mechanical analysis showed that highest glass transition temperature and storage modulus for 25A nanocomposites. These results indicate that 25A nanoclay gives the best properties in the process of non-aqueous dispersion polymerization of acrylic resin/nanoclay nanocomposites

  13. Idaho National Laboratory Quarterly Performance Analysis - 3rd Quarter FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Lisbeth A. Mitchell

    2014-09-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other non-reportable issues identified at INL from July 2013 through June 2014.

  14. Electrochemical deposition of coatings of highly entropic alloys from non-aqueous solutions

    Directory of Open Access Journals (Sweden)

    Jeníček V.

    2016-03-01

    Full Text Available The paper deals with electrochemical deposition of coatings of highly entropic alloys. These relatively new materials have been recently intensively studied. The paper describes the first results of electrochemical coating with highly entropic alloys by deposition from non-aqueous solutions. An electrochemical device was designed and coatings were deposited. The coatings were characterised with electronic microscopy scanning, atomic absorption spectrometry and X-ray diffraction methods and the combination of methods of thermic analysis of differential scanning calorimetry and thermogravimetry.

  15. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery

    Science.gov (United States)

    Yang, Hyeon Sun; Park, Jong Ho; Ra, Ho Won; Jin, Chang-Soo; Yang, Jung Hoon

    2016-09-01

    In a zinc-bromine redox flow battery, a nonaqueous and dense polybromide phase formed because of bromide oxidation in the positive electrolyte during charging. This formation led to complicated two-phase flow on the electrode surface. The polybromide and aqueous phases led to different kinetics of the Br/Br- redox reaction; poor mixing of the two phases caused uneven redox kinetics on the electrode surface. As the Br/Br- redox reaction was coupled with the zinc deposition reaction, the uneven redox reaction on the positive electrode was accompanied by nonuniform zinc deposition and zinc dendrite formation, which degraded battery stability. A single-flow cell was operated at varying electrolyte circulation rates and current densities. Zinc dendrite formation was observed after cell disassembly following charge-discharge testing. In addition, the flow behavior in the positive compartment was observed by using a transparent version of the cell. At low rate of electrolyte circulation, the polybromide phase clearly separated from the aqueous phase and accumulated at the bottom of the flow frame. In the corresponding area on the negative electrode, a large amount of zinc dendrites was observed after charge-discharge testing. Therefore, a minimum circulation rate should be considered to avoid poor mixing of the positive electrolyte.

  16. Idaho National Laboratory Quarterly Performance Analysis - 2nd Quarter FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Lisbeth A. Mitchell

    2014-06-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other deficiency reports (including not reportable events) identified at INL from January 2014 through March 2014.

  17. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate

    International Nuclear Information System (INIS)

    Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

    2014-01-01

    Graphical abstract: - Highlights: • Transport experiments used transmissive and low permeability zones (LPZs). • 14 C-labeled TCE was used to quantify oxidation of DNAPL in LPZs by permanganate. • Stabilization aids prevented MnO 2 rind formation. • DNAPL oxidation improved when xanthan and stabilization aids were used. - Abstract: Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO 4 − ) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase 14 C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO 2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with 14 C-TCE. Transport experiments showed that MnO 4 − alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO 2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO 4 − , the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP + MnO 4 − improved TCE destruction by ∼16% over MnO 4 − alone (56.5% vs. 40.1%). These results support

  18. New Polymer and Liquid Electrolytes for Lithium Batteries

    International Nuclear Information System (INIS)

    McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X.

    1999-01-01

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they don't interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in PEO based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation completing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion completing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF 3 SO 3- . The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2M LiF solutions in DME, an increase in volubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6 x 10 -3 Scm -1 . The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn 2 O 4 cells

  19. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1999

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1999-12-01

    Quarterly reports on the operation of Finnish NPPs describe events and observations relating to nuclear and radiation safety that the Finnish Radiation and Nuclear Safety Authority (STUK) considers safety significant. Safety improvements at the plants are also described. The report includes a summary of the radiation safety of plant personnel and the environment and tabulated data on the plants' production and load factors. All Finnish NPP units were in power operation for the whole second quarter of 1999, with the exception of the annual maintenance outages of the Olkiluoto plant units. The load factor average of the plant units in this quarter was 93.1%. Two events in this quarter were classified Level 1 on the INKS Scale. At Olkiluoto 1, a valve of the containment gas treatment system had been in an incorrect position for almost a month, owing to which the system would not have been available as planned in an accident. At Olkiluoto 2, main circulation pump work was done during the annual maintenance outage and a containment personnel air lock was briefly open in violation of the Technical Specifications. Water leaking out of the reactor in an accident could not have been directed to the emergency cooling system because it would have leaked out from the containment via the open personnel air lock. Other events in this quarter had no bearing on the nuclear or radiation safety of the plant units. The individual doses of NPP personnel and also radioactive releases off-site were well below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  20. Operation of Finnish nuclear power plants. Quarterly report, 3rd quarter 1996

    International Nuclear Information System (INIS)

    Sillanpaeae, T.

    1997-02-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. In the third quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outages of Loviisa plant units and a shutdown at Olkiluoto 1 to identify and repair malfunctions of a high pressure turbine control valve. The load factor average of all plant units was 77.2%. Events in the third quarter of 1996 were classified level 0 on the International Nuclear Event Scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. The names of Teollisuuden Voima Oy's plant units have changed. Olkiluoto 1 and Olkiluoto 2 now replace the names TVO I and TVO II previously used in quarterly reports. (orig.)

  1. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1996

    International Nuclear Information System (INIS)

    Sillanpaeae, T.

    1996-11-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. In the second quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outages of TVO plant units and the Midsummer shutdown at TVO II which was due to low electricity demand, a turbine generator inspection and repairs. The load factor average of all plant units was 88.9 %. Events in the second quarter of 1996 were classified level 0 on the International Nuclear Event Scale (INES)

  2. Third-quarter 1989 electric utility financial results

    International Nuclear Information System (INIS)

    Studness, C.M.

    1990-01-01

    Utility earnings per share before write-offs fell 6.9% in the third quarter of 1989 from the year-earlier level. Write-offs reduced third-quarter earnings of a sample of 83 utilities that account for 95% of investor-owned utility revenue by $792 million, compared with $183 million in the year-earlier quarter. With larger write-offs in 1989 than in 1988, third-quarter earnings per share after write-offs plunged 16.9% from the year-earlier level

  3. Hydrogenated amorphous silicon thin film anode for proton conducting batteries

    Science.gov (United States)

    Meng, Tiejun; Young, Kwo; Beglau, David; Yan, Shuli; Zeng, Peng; Cheng, Mark Ming-Cheng

    2016-01-01

    Hydrogenated amorphous Si (a-Si:H) thin films deposited by chemical vapor deposition were used as anode in a non-conventional nickel metal hydride battery using a proton-conducting ionic liquid based non-aqueous electrolyte instead of alkaline solution for the first time, which showed a high specific discharge capacity of 1418 mAh g-1 for the 38th cycle and retained 707 mAh g-1 after 500 cycles. A maximum discharge capacity of 3635 mAh g-1 was obtained at a lower discharge rate, 510 mA g-1. This electrochemical discharge capacity is equivalent to about 3.8 hydrogen atoms stored in each silicon atom. Cyclic voltammogram showed an improved stability 300 mV below the hydrogen evolution potential. Both Raman spectroscopy and Fourier transform infrared spectroscopy studies showed no difference to the pre-existing covalent Si-H bond after electrochemical cycling and charging, indicating a non-covalent nature of the Si-H bonding contributing to the reversible hydrogen storage of the current material. Another a-Si:H thin film was prepared by an rf-sputtering deposition followed by an ex-situ hydrogenation, which showed a discharge capacity of 2377 mAh g-1.

  4. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases.

    Science.gov (United States)

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.

  5. Basicity comparison for di-substituted 4-nitropyridine derivatives in polar non-aqueous media

    International Nuclear Information System (INIS)

    Gurzynski, Lukasz; Puszko, Aniela; Chmurzynski, Lech

    2007-01-01

    Acid dissociation, as well as cationic homoconjugation equilibria have been studied potentiometrically in systems involving four di-substituted 4-nitropyridines and conjugate cationic acids in the polar non-aqueous solvents - aprotic protophobic acetonitrile (AN) and propylene carbonate (PC), the amphiprotic methanol (MeOH), and in the aprotic protophilic dimethyl sulfoxide (DMSO). The influence of solvent effect on the obtained acidity constants has been discussed. The acidity constants (expressed as pK a values) were compared with those previously determined in another polar protophobic aprotic solvent - acetone (AC), and obtained for the unsubstituted pyridine (Py). A comparison of the acid dissociation constants determined in all media studied has proved that the strength of the cationic acids increases on going from acetonitrile through propylene carbonate, acetone, and methanol to dimethyl sulfoxide. Furthermore, the values of acidity constants in the non-aqueous media have shown that in all the solvents studied they change according to the substituent effects. It has been also found that substituted 4-nitropyridine derivatives studied exhibit no tendency towards cationic homoconjugation in acetonitrile, propylene carbonate, and methanol and dimethyl sulfoxide. Moreover, it has been demonstrated that the acid dissociation constants determined by potentiometric titration method in all the solutions investigated correlate well with the calculated energy parameters of the protonation reactions in the gaseous phase

  6. Basicity comparison for di-substituted 4-nitropyridine derivatives in polar non-aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Gurzynski, Lukasz [Department of General and Inorganic Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Puszko, Aniela [Department of Organic Chemistry, School of Economics, Wroclaw (Poland); Chmurzynski, Lech [Department of General and Inorganic Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)], E-mail: lech@chemik.chem.univ.gda.pl

    2007-12-15

    Acid dissociation, as well as cationic homoconjugation equilibria have been studied potentiometrically in systems involving four di-substituted 4-nitropyridines and conjugate cationic acids in the polar non-aqueous solvents - aprotic protophobic acetonitrile (AN) and propylene carbonate (PC), the amphiprotic methanol (MeOH), and in the aprotic protophilic dimethyl sulfoxide (DMSO). The influence of solvent effect on the obtained acidity constants has been discussed. The acidity constants (expressed as pK{sub a} values) were compared with those previously determined in another polar protophobic aprotic solvent - acetone (AC), and obtained for the unsubstituted pyridine (Py). A comparison of the acid dissociation constants determined in all media studied has proved that the strength of the cationic acids increases on going from acetonitrile through propylene carbonate, acetone, and methanol to dimethyl sulfoxide. Furthermore, the values of acidity constants in the non-aqueous media have shown that in all the solvents studied they change according to the substituent effects. It has been also found that substituted 4-nitropyridine derivatives studied exhibit no tendency towards cationic homoconjugation in acetonitrile, propylene carbonate, and methanol and dimethyl sulfoxide. Moreover, it has been demonstrated that the acid dissociation constants determined by potentiometric titration method in all the solutions investigated correlate well with the calculated energy parameters of the protonation reactions in the gaseous phase.

  7. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1997-12-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which STUK - Radiation and Nuclear Safety Authority considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. The Finnish nuclear power plant units were in power operation in the second quarter of 1997, except for the annual maintenance outages of Olkiluoto plant units and the Midsummer outage at Olkiluoto 2 due to reduced demand for electricity. There were also brief interruptions in power operation at the Olkiluoto plant units due to three reactor scrams. All plant units are undergoing long-term test operation at upgraded reactor power level which has been approved by STUK The load factor average of all plant units was 88.7 %. One event in the second quarter of 1997 was classified level 1 on the INES. The event in question was a scram at Olkiluoto 1 which was caused by erroneous opening of switches. Other events in this quarter were level 0. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  8. Cathodic behaviours of a CrO sub 3 -graphite intercalation compound in non-aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, M.; Miura, T.; Kishi, T. (Keio University, Tokyo (Japan). Faculty of Science)

    1991-08-05

    CrO{sub 3}-graphite intercalation compound (GIC) specimen was prepared by solvent method using acetic acid as a solvent and potassium permanganate as a catalyst, and its cathodic behavior in a lithium cell was studied in non-aqueous solutions (1 mol/dm{sup 3} LiClO{sub 4} in propylene carbonate (PC) or dimethylsulfoxide (DMSO)). Changes in electronic and layered lattice structures induced by cathodic reduction were measured by electron spin resonance method and X-ray diffraction one, respectively. As a result, electrochemical insertion of Li into CrO{sub 3}-GIC proceeded only in DMSO solution where reduction of Cr components was followed by that of graphite units. The amount of discharge electricity for CrO{sub 3}-GIC in DMSO solution was three times as large as that for graphite. Although the effect of non-aqueous solutions on the lithiation reaction was not yet clear fundamentally, it was expected that another electrolyte solutions are probably found out based on this experiments from which Li is inserted into CrO{sub 3}-GIC at higher discharge potentials. 22 refs., 9 figs., 1 tab.

  9. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Brian

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation's family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  10. Nonaqueous electrocatalytic water oxidation by a surface-bound Ru(bda)(L)₂ complex.

    Science.gov (United States)

    Sheridan, Matthew V; Sherman, Benjamin D; Wee, Kyung-Ryang; Marquard, Seth L; Gold, Alexander S; Meyer, Thomas J

    2016-04-21

    The rate of electrocatalytic water oxidation by the heterogeneous water oxidation catalyst [Ru(bda)(4-O(CH2)3P(O3H2)2-pyr)2], , (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate) on metal oxide surfaces is greatly enhanced relative to water as the solvent. In these experiments with propylene carbonate (PC) as the nonaqueous solvent, water is the limiting reagent. Mechanistic studies point to atom proton transfer (APT) as the rate limiting step in water oxidation catalysis.

  11. Quarterly coal report July--September 1996, February 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1996 and aggregated quarterly historical data for 1990 through the second quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. 8 figs., 72 tabs.

  12. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  13. Operation of Finnish nuclear power plants. Quarterly report 3rd, quarter 1995

    International Nuclear Information System (INIS)

    Sillanpaeae, T.

    1996-05-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The Report includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. Except for the annual maintenance outages of Loviisa plant units and for TVO II's brief outage to repair a failed component, Finnish nuclear power plant units were in power operation in the third quarter of 1995. The load factor average of all plant units was 90.4 %. Events in this quarter were level 0 on the INES scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.) (4 figs., 4 tabs.)

  14. Operation of Finnish nuclear power plants. Quarterly report 3rd, quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Sillanpaeae, T [ed.

    1996-05-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The Report includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants` production and load factors. Except for the annual maintenance outages of Loviisa plant units and for TVO II`s brief outage to repair a failed component, Finnish nuclear power plant units were in power operation in the third quarter of 1995. The load factor average of all plant units was 90.4 %. Events in this quarter were level 0 on the INES scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.) (4 figs., 4 tabs.).

  15. Evaluation of nonaqueous processes for nuclear materials

    International Nuclear Information System (INIS)

    Musgrave, B.C.; Grens, J.Z.; Knighton, J.B.; Coops, M.S.

    1983-12-01

    A working group was assigned the task of evaluating the status of nonaqueous processes for nuclear materials and the prospects for successful deployment of these technologies in the future. In the initial evaluation, the study was narrowed to the pyrochemical/pyrometallurgical processes closely related to the processes used for purification of plutonium and its conversion to metal. The status of the chemistry and process hardware were reviewed and the development needs in both chemistry and process equipment technology were evaluated. Finally, the requirements were established for successful deployment of this technology. The status of the technology was evaluated along three lines: (1) first the current applications were examined for completeness, (2) an attempt was made to construct closed-cycle flow sheets for several proposed applications, (3) and finally the status of technical development and future development needs for general applications were reviewed. By using these three evaluations, three different perspectives were constructed that together present a clear picture of how complete the technical development of these processes are

  16. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  17. Idaho National Laboratory Quarterly Performance Analysis for the 2nd Quarter FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of events for the 2nd Qtr FY-15.

  18. Quarterly, Bi-annual and Annual Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Quarterly, Bi-annual and Annual Reports are periodic reports issued for public release. For the deep set fishery these reports are issued quarterly and anually....

  19. Operation of Finnish nuclear power plants. Quarterly report, 3rd quarter 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1998-04-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety that the Radiation and Nuclear Safety Authority of Finland (STUK) considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. The Finnish nuclear power plant units were in power operation in the third quarter of 1997, except for the annual maintenance outages of Loviisa plant units which lasted well over a month in all. There was also a brief interruption in electricity generation at Olkiluoto 1 for repairs and at Olkiluoto 2 due to a disturbance at the turbine plant. All plant units were in long-term test operation at upgraded reactor power level approved by STUK. The load factor average of all plant units was 87.6 %. One event in the third quarter was classified level 1 on the International Nuclear Event Scale (INES). It was noted at Loviisa 2 that one of four pressurized water tanks in the plant unit's emergency cooling system had been inoperable for a year. Other events in this quarter were INES level 0. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  20. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Chokejaroenrat, Chanat, E-mail: chanat@sut.ac.th [Department of Civil Engineering, University of Nebraska, Lincoln, NE 68588-0531 (United States); School of Environmental Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Comfort, Steve, E-mail: scomfort1@unl.edu [School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915 (United States); Sakulthaew, Chainarong, E-mail: cvtcns@ku.ac.th [School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915 (United States); Department of Veterinary Technology, Kasetsart University, Bangkok 10900 (Thailand); Dvorak, Bruce, E-mail: bdvorak1@unl.edu [Department of Civil Engineering, University of Nebraska, Lincoln, NE 68588-0531 (United States)

    2014-03-01

    Graphical abstract: - Highlights: • Transport experiments used transmissive and low permeability zones (LPZs). • {sup 14}C-labeled TCE was used to quantify oxidation of DNAPL in LPZs by permanganate. • Stabilization aids prevented MnO{sub 2} rind formation. • DNAPL oxidation improved when xanthan and stabilization aids were used. - Abstract: Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO{sub 4}{sup −}) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase {sup 14}C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO{sub 2} rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with {sup 14}C-TCE. Transport experiments showed that MnO{sub 4}{sup −} alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO{sub 2} rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO{sub 4}{sup −}, the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP + MnO{sub 4}{sup −} improved TCE destruction by

  1. NST Quarterly

    International Nuclear Information System (INIS)

    1995-01-01

    NST Quarterly reports current development in nuclear science and technology in Malaysia. It keeps readers informed on the progress of research, services, application of nuclear science and technology, and other technical news. It highlights MINT activities and also announces coming events

  2. NST Quarterly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    NST Quarterly reports current development in nuclear science and technology in Malaysia. It keeps readers informed on the progress of research, services, application of nuclear science and technology, and other technical news. It highlights MINT activities and also announces coming events.

  3. Studies on ultrasonic velocity and electrical conductivity of samarium soaps in non-aqueous medium

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Chauhan, M.; Shukla, R.K.

    1990-01-01

    The ultrasonic velocity of solutions of samarium soaps in non-aqueous medium has been measured at a constant temperature and the results have been used to evaluate the various acoustic parameters. The pre-micellar association and the formation of micelles in samarium soap solutions have been determined by conductometric measurements. The molar conductance at infinite dilution, degree of ionisation and ionisation constant have been evaluated. The results show that samarium soaps behave as weak electrolyte in dilute solutions. (Authors)

  4. Operation of Finnish nuclear power plants. Quarterly report 4th quarter, 1994 and annual summary

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1995-05-01

    The Loviisa NPP units were in power operation the whole last quarter, with the exception of a reactor scram at Loviisa 1. The load factor average of all Finnish plant units was 100.2 %. The annual average was 90.0 %. All events in the fourth annual quarter were assigned level 0 (no safety significance) on the international INES scale. Four events in 1994 were classified level 1 (an anomaly). The Finnish Centre for Radiation and Nuclear Safety in December approved Imatran Voima Oy's application to extend the operation of the reactor pressure vessel of Loviisa 2 until the annual maintenance outage of 2010. During this quarter, a batch of spent fuel from Loviisa power plant was transported to Russia. Occupational doses and radioactive releases off-site were below authorised limits. Only such quantities of plant-based radioactive materials were measurable in samples collected around the plants as have no bearing on the radiation exposure of the population. The report includes a summary of all the items described in the Quarterly Reports of 1994. (8 figs., 4 tabs.)

  5. Operation of Finnish nuclear power plants. Quarterly report 4th quarter, 1994 and annual summary

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K [ed.

    1995-05-01

    The Loviisa NPP units were in power operation the whole last quarter, with the exception of a reactor scram at Loviisa 1. The load factor average of all Finnish plant units was 100.2 %. The annual average was 90.0 %. All events in the fourth annual quarter were assigned level 0 (no safety significance) on the international INES scale. Four events in 1994 were classified level 1 (an anomaly). The Finnish Centre for Radiation and Nuclear Safety in December approved Imatran Voima Oy`s application to extend the operation of the reactor pressure vessel of Loviisa 2 until the annual maintenance outage of 2010. During this quarter, a batch of spent fuel from Loviisa power plant was transported to Russia. Occupational doses and radioactive releases off-site were below authorised limits. Only such quantities of plant-based radioactive materials were measurable in samples collected around the plants as have no bearing on the radiation exposure of the population. The report includes a summary of all the items described in the Quarterly Reports of 1994. (8 figs., 4 tabs.).

  6. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  7. Recovery of light nonaqueous-phase liquids without groundwater pumping

    International Nuclear Information System (INIS)

    Markley, D.E.; Prince-Larsen, N.

    1995-01-01

    This paper outlines recovery of light nonaqueous-phase liquids (LNAPL) encountered in the subsurface at a remote natural gas facility. Remediation of LNAPL in the subsurface usually begins with dual pumping of LNAPL and groundwater. However, regulations required that only LNAPL be recovered. Methods were sought for recovering LNAPL from groundwater without pumping groundwater to the surface. Alternative methods of LNAPL recovery, using a variety of skimming pumps, included: LNAPL recovery from large-diameter wells; LNAPL recovery from trenches; LNAPL recovery from small-diameter wells; and vacuum-enhanced recovery of LNAPL while skimming with a belt skimmer. Based on the goals of the site owner and the costs associated with each alternative examined, the recommended method for recovering LNAPL without groundwater pumping was recovery of LNAPL while skimming with a belt skimmer. This paper discusses both the advantages and limitations of this technique

  8. Nickel-hydrogen battery; Nikkeru/suiso batteri

    Energy Technology Data Exchange (ETDEWEB)

    Kuwajima, S. [National Space Development Agency, Tokyo (Japan)

    1996-07-01

    In artificial satellites, electric power is supplied from batteries loaded on them, when sun light can not be rayed on the event of equinoxes. Thus, research and development was started as early as 1970s for light and long-life batteries. Nickel-hydrogen batteries have been used on practical satellites since middle of 1980s. Whereas the cathode reaction of this battery is the same as that of a conventional nickel-cadmium battery, the anode reaction is different in that it involves decomposition and formation of water, generating hydrogen and consuming it. Hydrogen is stored in a state of pressurized gas within the battery vessel. The shape of this vessel is of a bomb, whose size for the one with capacity of 35 Ah is 8cm in diameter and 18cm in length. On a satellite, this one is assembled into a set of 16 ones. National Space Development Agency of Japan has been conducting the evaluation test for nickel-hydrogen batteries in a long term range. It was made clear that the life-determinant factor is related to the inner electrode, not to the vessel. Performance data on long-term endurance of materials to be used have been accumulated also in the agency. 2 figs.

  9. Operation of Finnish nuclear power plants. Quarterly report, 4th quarter 1996

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1997-05-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants's production and load factors. In the fourth quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outage of Loviisa 2 and a shutdown at Olkiluoto 1 to repair a condensate system stop valve. The load factor average of all plant units was 96.5%. Events in the fourth quarter of 1996 were level 0 on the International Nuclear Event Scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  10. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    1995-10-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Fasety improvements at the plants are also described. The report includes a summary of the radiation safety of plant personnel and of the evironment and tabulated data on the plants` production and load factors. Except for the annual maintenance outages of the TVO plant units and for TVO II`s Midsummer outage which was due to low electricity demand, the Finnish nuclear power plants were in power operation during the second quarter of 1995. The load factor average of all four plant units was 91.2 %. Events during the second annual quarter were level 0 on the INES scale. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (4 figs., 4 tabs.).

  11. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  12. Quarterly environmental radiological survey summary: Third quarter 1994--100, 200, 300, and 600 Areas

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1994-11-01

    This report provides a summary of the radiological surveys performed on waste disposal sites located at the Hanford Site. The Third Quarter 1994 survey results and the status of actions required from current and past reports and are summarized below: (1) All the routine environmental radiological surveys scheduled during July, August, and September 1994 were completed except for the D Island vent riser area. The surveys for the 200-W railways, spurs, and sidings were completed during this period after being delayed by equipment problems during the second quarter. (2) No Compliance Assessment Reports (CARs) were issued for sites found out of compliance with standards identified in WHC-CM-7-5, Environmental Compliance. (3) Two Surveillance Compliance/Inspection Reports (SCIRs) were closed during the Third Quarter of 1994. (4) Eleven open SCIRs had not been resolved

  13. Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from Nonaqueous Phase Liquids (NAPLs) into the aqueous phase

    NARCIS (Netherlands)

    Smith, K.E.C.; Thullner, M.; Wick, L.Y.; Harms, H.

    2011-01-01

    The hypothesis that dissolved organic carbon (DOC) enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase above that attributable to dissolved molecular diffusion alone was tested. In controlled experiments, mass transfer rates of

  14. Radiation-induced changes of liposomes and lecithin in non-aqueous media

    International Nuclear Information System (INIS)

    Nakazawa, T.; Nagatsuka, S.; Sakurai, T.

    1981-01-01

    Radiation-induced changes of lipids in non-aqueous media were studied to elucidate the process of radiation damage in biological membranes. The lipid peroxidation progressed linearly with increasing dose and decreasing dose rate of γ-irradiation in soyabean lecithin in chloroform. The fatty acid composition of lecithin also changed, especially in linoleic and linolenic acids. Lower dose rate radiation enhanced these changes in oxic condition. Lipid peroxidation was also shown in lipids extracted from irradiated liposomes or in liposomes prepared from irradiated lecithin in chloroform. The dose-dependent glucose efflux was seen in liposomes prepared from irradiated lecithin in chloroform. These results indicate that the peroxidation of lipid molecules might cause radiation damage to the membrane conformation. (author)

  15. 10 CFR 34.69 - Records of quarterly inventory.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of quarterly inventory. 34.69 Section 34.69 Energy... INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.69 Records of quarterly inventory. (a) Each licensee shall maintain records of the quarterly inventory of sealed sources and of devices...

  16. Lithium Batteries

    Science.gov (United States)

    National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional thin-film lithium batteries for a variety of technological applications. These batteries have high essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for

  17. Mixed Waste Management Facility groundwater monitoring report: Third quarter 1994

    International Nuclear Information System (INIS)

    1994-12-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, radionuclides, volatile organic compounds, and other constituents. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during third quarter 1994. Sixty-four (51%) of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 22 (18%) wells. Chloroethene, 1,1-dichloroethylene, and tetrachloroethylene, elevated in one or more wells during third quarter 1994, also occurred in elevated levels during second quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was elevated in only one well during second quarter 1994, was elevated again during third quarter. Mercury, which was elevated during first quarter 1994, was elevated again in one well. Dichloromethane was elevated in two wells for the first time in several quarters

  18. Quarterly coal report, January--March 1992

    International Nuclear Information System (INIS)

    Young, P.

    1992-01-01

    The United States produced 257 million short tons of coal in the first quarter of 1992. This was the second highest quarterly production level ever recorded. US coal exports in January through March of 1992 were 25 million short tons, the highest first quarter since 1982. The leading destinations for US coal exports were Japan, Italy, France, and the Netherlands, together receiving 46 percent of the total. Coal exports for the first quarter of 1992 were valued at $1 billion, based on an average price of $42.28 per short ton. Steam coal exports totaled 10 million short tons, an increase of 34 percent over the level a year earlier. Metallurgical coal exports amounted to 15 million short tons, about the same as a year earlier. US coal consumption for January through March 1992 was 221 million short tons, 2 million short tons more than a year earlier (Table 45). All sectors but the residential and commercial sector reported increased coal consumption

  19. Observatory of electricity and gas markets, data from the 3. quarter 2004 to the 1. quarter 2013

    International Nuclear Information System (INIS)

    2013-04-01

    This document gathers those published for each quarter since the 3. quarter 2004 and until the 1. quarter 2013. Each of them proposes and comments figures and tables of data regarding the electricity retail market (customer segments, evolution, price on the retail market), the electricity gross market (French market activity and European comparison, prices on the French market and European comparison, import and export volumes, market evolution), the gas retail market (customer segments, evolution, switch rate of providers, price, bill evolution...) and the gas gross market (price formation in France and in Europe, gross market activity in France, highlights)

  20. Nonaqueous phase liquids: Searching for the needle in the haystack

    International Nuclear Information System (INIS)

    Haas, J.W. III; Carrabba, M.M.; Forney, R.W.

    1995-01-01

    Two complementary sensors that can locate and identify Nonaqueous Phase Liquids (NAPLs) such as chlorinated hydrocarbon solvents and fuels in the subsurface have been developed. The sensors are based on Raman and fluorescence spectroscopies and combine down-hole fiber optic probes with up-hole spectrometers. The probes are designed for deployment in cone penetrometers for real-time, in situ detection of contaminants. Near-infrared laser excitation is used with the Raman system to minimize soil fluorescence background. A mercury lamp is employed in the fluorescence probe to overcome the poor UV transmission of optical fibers and to reduce costs relative to laser-based instruments. Response of the fluorescence system to fuels in soil is linear with concentration. Lower detection limits are in the low ppm range for real-time (1 sec) acquisitions

  1. Nigerian Quarterly Journal of Hospital Medicine: Submissions

    African Journals Online (AJOL)

    Nigerian Quarterly Journal of Hospital Medicine: Submissions. Journal Home > About the Journal > Nigerian Quarterly Journal of Hospital Medicine: Submissions. Log in or Register to get access to full text downloads.

  2. Natural gas imports and exports. Second quarter report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the second quarter of 1997 (April through June).

  3. Battery Modeling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However,

  4. Quarterly Financial Report

    International Development Research Centre (IDRC) Digital Library (Canada)

    acray

    2011-06-30

    Jun 30, 2011 ... 2 IDRC QUARTERLY FINANCIAL REPORT JUNE 2011. Consolidated .... spending on capacity-building projects as well as to management's decision to restrict capacity- building ...... The investments in financial institutions.

  5. Operation of Finnish nuclear power plants. Quarterly report, 1st quarter 1998

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1998-11-01

    Quarterly reports on the operation of Finnish NPPs describe events and observations relating to nuclear and radiation safety that the Radiation and Nuclear Safety Authority (STUK) considers safety significant. Safety improvements at the plants are also described. The report includes a summary of the radiation safety of plant personnel and the environment and tabulated data on the plants' production and load factors. The Finnish NPP units were in power operation for the whole first quarter of 1998. All the units were in long-term test operation at uprated power level authorised by STUK. The load factor average of the plant units was 100.8%. An oil leak at Olkiluoto NPP Unit 2 caused an ignition that was promptly extinguished. A subsequent appraisal of the event disclosed deficiencies in the functioning of the plant unit's operating organization and the event was classified INES level 1. Other events in this quarter had no bearing on nuclear or radiation safety. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  6. Weldon Spring Site Remedial Action Project Federal Facilities Agreement: Quarterly environmental data summary for third quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-06

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the third quarter of 1998 is enclosed. The data presented in this letter and attachment constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the third quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Significant data, defined as data values that have exceeded defined above normal Level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal Level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits, and other guidelines. The procedures also establish actions to be taken in the event that above normal data occur.

  7. Interfacial tension-induced transport of nonaqueous phase liquids in model aquifer systems

    International Nuclear Information System (INIS)

    Anderson, M.A.

    1994-01-01

    Nonaqueous phase liquids (NAPLs) such as organic solvents and fuel are common contaminants in soils and groundwater. Spills, leaking underground storage tanks, and improper disposal practices all result in the release and movement of NAPLs through soils. Movement of NAPLs through soil is considered to result from gravity- and /or capillarity-driven immiscible phase flow. Dispersive and convective transport of dissolved components, volatilization, sorption, and degradation are also considered important processes in NAPL contamination. An additional transport mechanism in which NAPLs spread on water surfaces due to differential adhesive and cohesive attractive forces is demonstrated in this study. 22 refs., 5 figs., 1 tab

  8. ER Consolidated Quarterly Report October 2014

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective actions and related Long- Term Stewardship (LTS) activities being implemented by Sandia National Laboratories, New Mexico (SNL/NM) ER for the April, May, and June 2014 quarterly reporting period. Section 2.0 provides the status of ER Operations activities including closure activities for the Mixed Waste Landfill (MWL), project management and site closure, and hydrogeologic characterizations. Section 3.0 provides the status of LTS activities that relate to the Chemical Waste Landfill (CWL) and the associated Corrective Action Management Unit (CAMU). Section 4.0 provides the references noted in Section I of this report.

  9. Occupants' satisfaction on building maintenance of government quarters

    Science.gov (United States)

    Ismail, Nur'Ain; Ali, Siti Noor Asmiza Md; Othman, Nor A'aini; Jaffar, Nooraidawati

    2017-10-01

    The satisfaction level of occupants toward the maintenance is very important to know the occupants comfortable with maintenance that was provided at the government quarters. The objective of the research is to determine the level of occupants satisfaction perceived of the maintenance in government quarter and also the level of quality of the maintenance of the government quarters. Data have been collected by using questionnaire in order to achieve the objective of the research. The questionnaires distributed among the occupants government quarters at Hospital Kota Bharu Kelantan. In the end of the research, the result are expected that to show the results on this satisfaction level of the occupants toward the maintenance at government quarters can be solve and the occupants can live more comfortable and get the good quality for maintenance and facilities in their houses.

  10. Polarographic reduction of Yb/sup +3/ benzoate and salicylate complexes in aqueous-nonaqueous mixtures at D. M. E

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, K; Gupta, K C [Rajasthan Univ., Jaipur (India). Dept. of Chemistry

    1977-01-01

    The reduction of Yb/sup +3/ and Yb/sup +3/-benzoate and salicylate complexes was studied polarographically at constant ionic strength at 25 +- 0.02/sup 0/C in aqueous-nonaqueous mixtures. The reduction was found to be diffusion-controlled, but the electrode process was irreversible in all cases. The kinetic parameters were determined by Koutecky's method.

  11. Fourth-quarter Economic Growth and Time-varying Expected Returns

    DEFF Research Database (Denmark)

    Møller, Stig V.; Rangvid, Jesper

    not predict returns. Fourth-quarter economic growth rates contain considerably more information about expected returns than standard variables used in the literature, are robust to the choice of macro variable, and work in-sample, out-of-sample, and in subsamples. To help explain these results, we show...... that economic growth and growth in consumer confidence are correlated during the fourth quarter, but not during the other quarters: When economic growth is low during the fourth quarter, confidence in the economy is also low such that investors require higher future returns. We discuss rational and behavioral...... reasons why fourth-quarter economic growth, growth in consumer confidence, and expected returns are related....

  12. Quick charge battery

    Energy Technology Data Exchange (ETDEWEB)

    Parise, R.J.

    1998-07-01

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  13. The battery market

    International Nuclear Information System (INIS)

    Deshpande, S.L.

    1991-01-01

    The worldwide battery market is estimated to be $21 billion annually at present. The geographical distribution of this market is shown in this paper. The American (North and South), Western Europe and Africa, and Asian and Australia represent equal markets of $6 billion each. The communist block countries (including Russia and China) are estimated to represent a $3 billion market. Automotive and consumer batteries constitute more than 80% of the world battery market. Industrial batteries make up the rest. Secondary (rechargeable) batteries (automotive, for example) have only 60% share of the world battery consumption. Primary batteries (most toy batteries that are the throw away type) exceed rechargeables by far in units. However, the larger size of rechargeable batteries makes their total value larger despite the small number of units

  14. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Science.gov (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Environmental Restoration Operations: Consolidated Quarterly Report January -March 2017

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective action activities being implemented at Sandia National Laboratories, New Mexico (SNL/NM) during the January, February, and March 2017 quarterly reporting period. Table I-1 lists the Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified for corrective action at SNL/NM. Sections I.2.1 and I.2.2 summarize the work completed during this quarter. Section I.2.1 summarizes the quarterly activities at sites undergoing corrective action field activities. Field activities are conducted at the three groundwater AOCs (Burn Site Groundwater [BSG AOC], Technical Area [TA]-V Groundwater [TAVG AOC], and Tijeras Arroyo Groundwater [TAG AOC]). Section I.2.2 summarizes quarterly activities at sites where the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) issued a certificate of completion and the sites are in the corrective action complete (CAC) regulatory process. Currently, SWMUs 8 and 58, 68, 149, 154, and 502 are in the CAC regulatory process. Corrective action activities are deferred at the Long Sled Track (SWMU 83), the Gun Facilities (SWMU 84), and the Short Sled Track (SWMU 240) because these three sites are active mission facilities. These three active mission sites are located in TA-III. This Sandia National Laboratories, New Mexico Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) fulfills all quarterly reporting requirements set forth in the Resource Conservation and Recovery Act Facility Operating Permit and the Compliance Order on Consent.

  16. Econometric Methods within Romanian Quarterly National Accounts

    Directory of Open Access Journals (Sweden)

    Livia Marineta Drăguşin

    2013-04-01

    Full Text Available The aim of the present paper is to synthesise the main econometric methods (including the mathematical and statistical ones used in the Romanian Quarterly National Accounts compilation, irrespectively of Quarterly Gross Domestic Product (QGDP. These methods are adapted for a fast manner to operatively provide information about the country macroeconomic evolution to interested users. In this context, the mathematical and econometric methods play an important role in obtaining quarterly accounts valued in current prices and in constant prices, in seasonal adjustments and flash estimates of QGDP.

  17. A nonaqueous potentiometric titration study of the dissociation of t-butyl methacrylate-methacrylic acid copolymers.

    Science.gov (United States)

    Nakatani, Kiyoharu; Yamashita, Jun; Sekine, Tomomi; Toriumi, Minoru; Itani, Toshiro

    2003-05-01

    The dissociation of t-butyl methacrylate-methacrylic acid copolymers in dimethyl sulfoxide was analyzed by a nonaqueous potentiometric titration technique. The negative logarithm of the dissociation constant of the monomer unit of a methacrylic acid (MAA) monotonously increased with the increasing degree of dissociation corresponding to the titrant/MAA amount ratio, and was highly influenced by the copolymerization ratio. The results are discussed in terms of the suppression of the dissociation of MAA by a neighboring charged methacrylate anion unit.

  18. 77 FR 51705 - Rescission of Quarterly Financial Reporting Requirements

    Science.gov (United States)

    2012-08-27

    ... No. FMCSA-2012-0020] RIN-2126-AB48 Rescission of Quarterly Financial Reporting Requirements AGENCY...: FMCSA withdraws its June 27, 2012, direct final rule eliminating the quarterly financial reporting... future proposing the elimination of the quarterly financial reporting requirements for Form QFR and Form...

  19. The quarter wave resonator as a superconducting linac element

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brennan, J.M.

    1983-01-01

    The electrical and mechanical properties of quarter wave resonators are derived. A procedure for optimal design of a quarter wave resonator for use in a superconducting heavy ion linac is given. It is concluded that a quarter wave resonator has significant advantages for this application. (orig.)

  20. Battery Safety Basics

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…

  1. United States housing, second quarter 2013

    Science.gov (United States)

    Delton Alderman

    2017-01-01

    The U.S. housing market’s quarter two results were disap¬pointing compared with the first quarter. Although overall expected gains did not materialize, certain sectors improved slightly. Housing under construction, completions, and new and existing home sales exhibited slight increases. Overall permit data declined, and the decrease in starts was due primarily to a...

  2. Trend chart: biogas. Forth quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2017-02-01

    This publication presents the biogas industry situation of continental France and overseas territories during the forth quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  3. Trend chart: biogas. Second quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-08-01

    This publication presents the biogas industry situation of continental France and overseas territories during the Second quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  4. Trend chart: biogas. Third quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-11-01

    This publication presents the biogas industry situation of continental France and overseas territories during the third quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  5. Trend chart: biogas. First quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-05-01

    This publication presents the biogas industry situation of continental France and overseas territories during the first quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  6. Idaho National Laboratory Quarterly Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  7. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1979

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. D.

    1979-01-01

    At the beginning of the third quarter of 1979, the Shippingport Atomic Power Station remained shutdown to complete repairs of the turbine generator hydrogen circulation fan following discovery of a rubbing noise on May 24, 1979. The Station was in a cooldown condition at approximately 180/sup 0/F and 300 psig with a steam bubble in the pressurizer and the reactor coolant pumps in slow speed. The reactor plant cooldown heat exchanger was in service to maintain coolant temperature. The 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops remained in service. All expended PWR Core 2 fuel elements have previously been shipped off-site. The remaining irradiated PWR Core 2 core barrel and miscellaneous refueling tools were in storage under shielding water in the deep pit of the Fuel Handling Building. The LWBR Core has generated 12,111.00 EFPH from startup through the end of the quarter.

  8. Nuclear battery materials and application of nuclear batteries

    International Nuclear Information System (INIS)

    Hao Shaochang; Lu Zhenming; Fu Xiaoming; Liang Tongxiang

    2006-01-01

    Nuclear battery has lots of advantages such as small volume, longevity, environal stability and so on, therefore, it was widely used in aerospace, deep-sea, polar region, heart pacemaker, micro-electromotor and other fields etc. The application of nuclear battery and the development of its materials promote each other. In this paper the development and the latest research progress of nuclear battery materials has been introduced from the view of radioisotope, electric energy conversion and encapsulation. And the current and potential applications of the nuclear battery are also summarized. (authors)

  9. Investigation of Ion-Solvent Interactions in Nonaqueous Electrolytes Using in Situ Liquid SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanyan; Su, Mao; Yu, Xiaofei; Zhou, Yufan; Wang, Jungang; Cao, Ruiguo; Xu, Wu; Wang, Chongmin; Baer, Donald R.; Borodin, Oleg; Xu, Kang; Wang, Yanting; Wang, Xue-Lin; Xu, Zhijie; Wang, Fuyi; Zhu, Zihua

    2018-02-06

    Ion-solvent interactions in non-aqueous electrolytes are of fundamental interest and practical importance, yet debates regarding ion preferential solvation and coordination numbers persist. In this work, in situ liquid SIMS was used to examine ion-solvent interactions in three representative electrolytes, i.e., lithium hexafluorophosphate (LiPF6) at 1.0 M in ethylene carbonate (EC)-dimethyl carbonate (DMC), and lithium bis(fluorosulfonyl)imide (LiFSI) at both low (1.0 M) and high (4.0 M) concentrations in 1,2-dimethoxyethane (DME). In the positive ion mode, solid molecular evidence strongly supports the preferential solvation of Li+ by EC. Besides, from the negative spectra, we also found that PF6- forms association with EC, which has been neglected by previous studies due to the relatively weak interaction. While in both LiFSI in DME electrolytes, no evidence shows that FSI- is associated with DME. Furthermore, strong salt ion cluster signals were observed in the 1.0 M LiPF6 in EC-DMC electrolyte, suggesting that a significant amount of Li+ ions stay in vicinity of anions. In sharp comparison, weak ion cluster signals were detected in dilute LiFSI in DME electrolyte, suggesting most ions are well separated, in agreement with our molecular dynamics (MD) simulation results. These findings indicate that with virtues of little bias on detecting positive and negative ions and the capability of directly analyzing concentrated electrolytes, in situ liquid SIMS is a powerful tool that can provide key evidence for improved understanding on the ion-solvent interactions in non-aqueous electrolytes. Therefore, we anticipate wide applications of in situ liquid SIMS on investigations of various ion-solvent interactions in the near future.

  10. Nondestructive analysis of the gold quarter liras

    International Nuclear Information System (INIS)

    Cakir, C.; Guerol, A.; Demir, L.; Sahin, Y.

    2009-01-01

    In this study, we have prepared seven Au-Cu standards in the concentration range of 18-24 (as carat) for nondestructive control of gold quarter liras. Some calibration curves for quantitative analysis of Au in the gold quarter liras that commercially present in Turkey have been plotted using these standard samples. The characteristic X-rays of Au and Cu emitted from these standard samples and the test sample with known composition are recorded by using a Ge(Li) detector. These calibration curves provide a nondestructive analysis of gold quarter liras with the uncertainties about 1.18%. (author)

  11. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F; Castillo, S; Laberty- Robert, C; Pellizon-Birelli, M [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France); and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  12. Nonaqueous Dispersion Formed by an Emulsion Solvent Evaporation Method Using Block-Random Copolymer Surfactant Synthesized by RAFT Polymerization.

    Science.gov (United States)

    Ezaki, Naofumi; Watanabe, Yoshifumi; Mori, Hideharu

    2015-10-27

    As surfactants for preparation of nonaqueous microcapsule dispersions by the emulsion solvent evaporation method, three copolymers composed of stearyl methacrylate (SMA) and glycidyl methacrylate (GMA) with different monomer sequences (i.e., random, block, and block-random) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Despite having the same comonomer composition, the copolymers exhibited different functionality as surfactants for creating emulsions with respective dispersed and continuous phases consisting of methanol and isoparaffin solvent. The optimal monomer sequence for the surfactant was determined based on the droplet sizes and the stabilities of the emulsions created using these copolymers. The block-random copolymer led to an emulsion with better stability than obtained using the random copolymer and a smaller droplet size than achieved with the block copolymer. Modification of the epoxy group of the GMA unit by diethanolamine (DEA) further decreased the droplet size, leading to higher stability of the emulsion. The DEA-modified block-random copolymer gave rise to nonaqueous microcapsule dispersions after evaporation of methanol from the emulsions containing colored dyes in their dispersed phases. These dispersions exhibited high stability, and the particle sizes were small enough for application to the inkjet printing process.

  13. Study on the influence of storage life expectancy of the Valve Regulated Lead-Acid - VRLA battery; Estudo sobre a influencia da estocagem na expectativa de vida util da bateria chumbo-acida regulada por valvula - VRLA

    Energy Technology Data Exchange (ETDEWEB)

    Soares, A. Pinhel [FURNAS Centrais Eletricas S.A., Rio de Janeiro, RJ (Brazil)], Email: pinhel@furnas.com.br; Rosolem, Maria de F.N.C.; Santos, G.R. dos; Frare, P.T.; Arioli, V.T.; Beck, R.F. [Telecomunicacoes do CPqD, Campinas, SP (Brazil)], Emails: mfatima@cpqd.com.br, glauco@cpqd.com.br, pfrare@cpqd.com.br, varioli@cpqd.com.br, raul@cpqd.com; Soares, L.A., Email: luiz.las@gmail.com

    2009-07-01

    When valve regulated lead-acid (VRLA) batteries are acquired and are not placed in operation immediately and remain stored in open circuit, they can loose autonomy and life. In these cases the current practice recommends, that the batteries receive quarterly recharges, which is often unfeasible. Given this scenario, Furnas by the CPqD, decided to verify the real impact of stockpiling in the expectancy of VRLAs battery life to establish the veracity of practice adopted or establish new procedures. The influences of time, the temperature of the local storage and application of charges are evaluated. It was also studied the application of techniques for measuring the internal resistance battery (conductance and impedance) for degradation monitoring and identification of the need for application of charges. As final products, it was developed novel diagnostic techniques that allow more accurate monitoring of the storage process.

  14. High frequency titration in non-aqueous solvents. Application to HF and UF6

    International Nuclear Information System (INIS)

    Neveu, Claude

    1965-01-01

    In this research thesis, the author first presents the main theoretical notions regarding high frequency titration, notably by studying characteristic curves, i.e. the titration meter indication with respect to conductibility. He reports the use of this method for the study of various reactions in non-aqueous medium: reaction of AlCl 3 with pyridine in acetonitrile, of AlCl 3 with HCl in tetrachloroethane and in nitromethane. He also reports the attempt of application of this method to the titration of HF in presence of UF 6 in CCl 4 as solvent, or by using F acceptors like BF 3 , PF 5 or ClF 3 as reactants [fr

  15. Quarterly environmental radiological survey summary - second quarter 1997 100, 200, 300, and 600 areas

    International Nuclear Information System (INIS)

    McKinney, S.M.; Marks, B.M.

    1997-01-01

    This report provides a summary of the radiological surveys performed in support of near-facility environmental monitoring at the Hanford Site. The Second Quarter 1997 survey results and the status of actions required are summarized below: All of the routine environmental radiological surveys scheduled during April, May, and June 1997, were performed as planned with the exception of UN-216-E-9. This site was not surveyed as stabilization activities were in progress. The sites scheduled for the Environmental Restorations Contractor (ERC) team were switched with those identified for the third quarter as there was a conflict with vegetation management activities

  16. Quarterly coal statistics of OECD countries

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-27

    These quarterly statistics contain data from the fourth quarter 1990 to the fourth quarter 1991. The first set of tables (A1 to A30) show trends in production, trade, stock change and apparent consumption data for OECD countries. Tables B1 to B12 show detailed statistics for some major coal trade flows to and from OECD countries and average value in US dollars. A third set of tables, C1 to C12, show average import values and indices. The trade data have been extracted or derived from national and EEC customs statistics. An introductory section summarizes trends in coal supply and consumption, deliveries to thermal power stations; electricity production and final consumption of coal and tabulates EEC and Japanese steam coal and coking coal imports to major countries.

  17. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developed unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.

  18. Orcas Power and Light Company [fourth quarterly] technical progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    After a year of operating the G-Van, OPALCO concluded that the company transportation needs were not being met by the G-Van. The previous quarterly report mentioned battery problems with the Solectria (No. 51). This problem is one of reduced range and power and has been determined to be caused by one or more individual monoblock failures. The local Solectria representative and Solectria headquarters personnel have been aware of this unsatisfactory condition and are continuing their attempt to solve it. The Solectria and G-Van continue to be used intermittently by company personnel for errands and engineering trips. Generally, the smaller, compact size of the Solectria make it the most preferred by company drivers. Clearly the G-Van is not selected for use because of its size and weight. It is important to note that the driver dissatisfaction is not related to the fact that it is an electric van, but more its lack of maneuverability.

  19. Orcas Power and Light Company [fourth quarterly] technical progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    After a year of operating the G-Van, OPALCO concluded that the company transportation needs were not being met by the G-Van. The previous quarterly report mentioned battery problems with the Solectria (No. 51). This problem is one of reduced range and power and has been determined to be caused by one or more individual monoblock failures. The local Solectria representative and Solectria headquarters personnel have been aware of this unsatisfactory condition and are continuing their attempt to solve it. The Solectria and G-Van continue to be used intermittently by company personnel for errands and engineering trips. Generally, the smaller, compact size of the Solectria make it the most preferred by company drivers. Clearly the G-Van is not selected for use because of its size and weight. It is important to note that the driver dissatisfaction is not related to the fact that it is an electric van, but more its lack of maneuverability.

  20. Low hydrogen containing amorphous carbon films - Growth and electrochemical properties as lithium battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, V.; Masarapu, Charan; Wei, Bingqing [Department of Mechanical Engineering, University of Delaware, 130 Academy Street, Newark, DE 19716 (United States); Karabacak, Tansel [Department of Applied Science, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States); Teki, Ranganath [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2010-04-02

    Amorphous carbon films were deposited successfully on Cu foils by DC magnetron sputtering technique. Electrochemical performance of the film as lithium battery anode was evaluated across Li metal at 0.2 C rate in a non-aqueous electrolyte. The discharge curves showed unusually low irreversible capacity in the first cycle with a reversible capacity of {proportional_to}810 mAh g{sup -1}, which is at least 2 times higher than that of graphitic carbon. For the first time we report here an amorphous carbon showing such a high reversibility in the first cycle, which is very much limited to the graphitic carbon. The deposited films were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and step profilometer for the structural and surface properties. The hydrogen content of the synthesized films was studied using residual gas analysis (RGA). The low hydrogen content and the low specific surface area of the synthesized amorphous carbon film are considered responsible for such a high first cycle columbic efficiency. The growth mechanism and the reasons for enhanced electrochemical performance of the carbon films are discussed. (author)

  1. Low hydrogen containing amorphous carbon films-Growth and electrochemical properties as lithium battery anodes

    Science.gov (United States)

    Subramanian, V.; Karabacak, Tansel; Masarapu, Charan; Teki, Ranganath; Lu, Toh-Ming; Wei, Bingqing

    Amorphous carbon films were deposited successfully on Cu foils by DC magnetron sputtering technique. Electrochemical performance of the film as lithium battery anode was evaluated across Li metal at 0.2 C rate in a non-aqueous electrolyte. The discharge curves showed unusually low irreversible capacity in the first cycle with a reversible capacity of ∼810 mAh g -1, which is at least 2 times higher than that of graphitic carbon. For the first time we report here an amorphous carbon showing such a high reversibility in the first cycle, which is very much limited to the graphitic carbon. The deposited films were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and step profilometer for the structural and surface properties. The hydrogen content of the synthesized films was studied using residual gas analysis (RGA). The low hydrogen content and the low specific surface area of the synthesized amorphous carbon film are considered responsible for such a high first cycle columbic efficiency. The growth mechanism and the reasons for enhanced electrochemical performance of the carbon films are discussed.

  2. Quarterly oil statistics. First quarter 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The aim of this report is to provide rapid, accurate and detailed statistics on oil supply and demand in the OECD area. Main components of the system are: complete balances of production, trade, refinery intake and output, final consumption, stock levels and changes; separate data for crude oil, NGL, feedstocks and nine product groups; separate trade data for main product groups, LPG and naphtha; imports for 41 origins; exports for 29 destinations; marine bunkers and deliveries to international civil aviation by product group; aggregates of quarterly data to annual totals; and natural gas supply and consumption.

  3. Electrochemical behavior of LiV3O8 positive electrode in hybrid Li,Na-ion batteries

    Science.gov (United States)

    Maletti, S.; Sarapulova, A.; Tsirlin, A. A.; Oswald, S.; Fauth, F.; Giebeler, L.; Bramnik, N. N.; Ehrenberg, H.; Mikhailova, D.

    2018-01-01

    Vanadium(V)-containing oxides show superior intercalation properties for alkaline ions, although the performance of the material strongly depends on its surface morphology. In this work, intercalation activity of LiV3O8, prepared by a conventional solid state synthesis, is demonstrated for the first time in non-aqueous Li,Na-ion hybrid batteries with Na as negative electrode, and different Na/Li ratios in the electrolyte. In the pure Na-ion cell, one Na per formula unit of LiV3O8 can be reversibly inserted at room temperature via a two-step process, while further intercalation leads to gradual amorphisation of the material, with a specific capacity of 190 mAhg-1 after 10 cycles in the potential window of 0.8-3.4 V. Hybrid Li,Na-ion batteries feature simultaneous intercalation of Li+ and Na+ cations into LiV3O8, resulting in the formation of a second phase. Depending on the electrolyte composition, this second phase bears structural similarities either to Li0.7Na0.7V3O8 in Na-rich electrolytes, or to Li4V3O8 in Li-rich electrolytes. The chemical diffusion coefficients of Na+ and Li+ in crystalline LiV3O8 are very close, hence explaining the co-intercalation of these cations. As DFT calculations show, once formed, the Li0.7Na0.7V3O8-type structure favors intercalation of Na+, whereas the LiV3O8-type prefers to accommodate Li+ cations.

  4. Aluminum as anode for energy storage and conversion: a review

    Science.gov (United States)

    Li, Qingfeng; Bjerrum, Niels J.

    Aluminum has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer on the aluminum surface is however detrimental to the battery performance, contributing to failure to achieve the reversible potential and causing the delayed activation of the anode. By developing aluminum alloys as anodes and solution additives to electrolytes, a variety of aluminum batteries have been extensively investigated for various applications. From molten salt and other non-aqueous electrolytes, aluminum can be electrodeposited and therefore be suitable for developing rechargable batteries. Considerable efforts have been made to develop secondary aluminum batteries of high power density. In the present paper, these research activities are reviewed, including aqueous electrolyte primary batteries, aluminum-air batteries and molten salt secondary batteries.

  5. Development of technology and equipment for manufacturing fluorides rare-earths via non-aqueous method

    International Nuclear Information System (INIS)

    Chatalov, V.V.; Kozlov, O.I.; Machirev, V.P.; Zvonarev, E.N.

    1998-01-01

    Full text: The works on technology and equipment for rare earths (RE) fluorides are very scarce. Presently RE-fluorides are manufactured by various methods. Conventionally they can be divided into two main groups. The first group comprises methods based on precipitation of fluorides from soluble salts of corresponding metals by fluohydric acid (aqueous methods) with following thermal decomposition of aquatic fluorides obtained until anhydric state is reached. The second group (called dry, gaseous or non-aqueous) comprises methods based on direct fluorizating (by fluorine hydride, fluor or other fluorating agents) have several important advantages compared to the aqueous methods: the fluorides obtained are anhydrous; the operations of fluoride precipitation, washing, decantation, filtration are excluded as well as their drying and calcination. The process of calcination is, as a rule, accompanied by pyrohydrolysis. The products manufactured by precipitation are inferior to those obtained by the non-aqueous technique. The world production practice uses both groups of methods. Nevertheless, the method of gaseous hydrofluorination is preferable. In all non-aqueous processes the initial materials are oxides RE which interact with gaseous fluorine hydride. The initial materials - oxides are obtained by thermal decomposition of carbonates, hydroxides, oxalates and so on. One of the best type of apparatus for thermal decomposition processes is a horizontal ring shaped vibrating apparatus with direct heating. The RE - fluorides is synthesized by way of RE-oxide interacting with hydrogen fluoride at 200-550 deg C in single continuous operation: (RE) 2 O 3 + 6 HF → 2 (RE)F 3 + 3 H 2 0 The apparatus consists of a nickel horizontal two tube screw. Reaction time is varied from 2 to 6 hours; the productivity of reactor is defined by feed screw rotation and initial material bulk density. Hydrogen fluoride was passing the reactor opposite to the solid phase. The degree

  6. 12 CFR 630.40 - Contents of the quarterly report to investors.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Contents of the quarterly report to investors... INVESTORS IN SYSTEMWIDE AND CONSOLIDATED BANK DEBT OBLIGATIONS OF THE FARM CREDIT SYSTEM Quarterly Reports to Investors § 630.40 Contents of the quarterly report to investors. (a) General. The quarterly...

  7. Quarterly fiscal policy

    NARCIS (Netherlands)

    Kendrick, D.A.; Amman, H.M.

    2014-01-01

    Monetary policy is altered once a month. Fiscal policy is altered once a year. As a potential improvement this article examines the use of feedback control rules for fiscal policy that is altered quarterly. Following the work of Blinder and Orszag, modifications are discussed in Congressional

  8. VRLA automotive batteries for stop&go and dual battery systems

    Science.gov (United States)

    May, G. J.; Calasanzio, D.; Aliberti, R.

    The electrical power requirements for vehicles are continuing to increase and evolve. A substantial amount of effort has been directed towards the development of 36/42 V systems as a route to higher power with reduced current levels but high implementation costs have resulted in the introduction of these systems becoming deferred. In the interim, however, alternator power outputs at 14 V are being increased substantially and at the same time the requirements for batteries are becoming more intensive. In particular, stop&go systems and wire-based vehicle systems are resulting in new demands. For stop&go, the engine is stopped each time the vehicle comes to rest and is restarted when the accelerator is pressed again. This results in an onerous duty cycle with many shallow discharge cycles. Flooded lead-acid batteries cannot meet this duty cycle and valve-regulated lead-acid (VRLA) batteries are needed to meet the demands that are applied. For wire-based systems, such as brake-by-wire or steer-by-wire, electrical power has become more critical and although the alternator and battery provide double redundancy, triple redundancy with a small reserve battery is specified. In this case, a small VRLA battery can be used and is optimised for standby service rather than for repeated discharges. The background to these applications is considered and test results under simulated operating conditions are discussed. Good performance can be obtained in batteries adapted for both applications. Battery management is also critical for both applications: in stop&go service, the state-of-charge (SOC) and state-of-health (SOH) need to be monitored to ensure that the vehicle can be restarted; for reserve or back-up batteries, the SOC and SOH are monitored to verify that the battery is always capable of carrying out the duty cycle if required. Practical methods of battery condition monitoring will be described.

  9. The effect of non-aqueous solvents on spectrophotometric analysis of lead (II)

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Bahbouh, M.; Kamuah, M.

    1992-01-01

    The effect of the following non-aqueous solvents: Methanol, Ethanol, Propanol, iso-propanol, dimethylsulfoxide, dimethylformamide and acetonitrile on spectrophotometric analysis of lead (II) was studied. One absorption peak at range 220-340 nm was observed. The values of maximum wave length (λ max ) and maximum molar absorptivity coefficient (ε max ) vary in accordance with the above solvents and the concentration of HC1. the analytical curves, A=f(C Pb 2+ ), for the determination of lead (II) in presence 5 M HC1 (in methanol) and 7 M HC1 (in other solvents) showed linear proportionality over the concentration range 2.5x10 -5 - 2.0x10 -4 M Pb 2+ . (author). 16 Refs., 4 figs., 2 Tabs

  10. Quarterly report for the electricity market; Kvartalsrapport for kraftmarknaden

    Energy Technology Data Exchange (ETDEWEB)

    Eliston, Anton Jaynand; Waeringstad, Thomas; Holmqvist, Erik; Lund Per Tore Jensen; Magnussen, Ingrid; Willumsen, Mats Oivind; Vik, Martin Andreas; Rasmussen, Kristian; Pettersen, Finn Erik Ljaastad; Weir, David Edward; Thorsen, Kjell; Langseth, Benedicte; Skau, Seming Haakon

    2013-02-01

    In the fourth quarter of 2012 the total inflow was 20.4 TWh, 2.8 TWh less than normal and 11.3 TWh less than in the same quarter than in 2011. Meanwhile the weather was slightly colder than normal, which contributed to high production and normalization of reservoir fillings. At the end of the quarter, the reservoir level was 0.8 percentage points below normal for the season, while it was 4.5 percentage points over the beginning of the quarter. At the end of 2012 it was 9.9 percent landfill units lower than the same time in 2011. Norway had a power consumption of 37.2 TWh in the fourth quarter, an increase of 9 percent from last year. In 2012, consumption was 130.0 TWh, an increase of around 5 TWh from 2011. Power production in Norway was 39.2 TWh in the fourth quarter - an increase of 2.4 percent from last year. In 2012, production was 147.9 TWh, compared to 128.1 TWh in 2011. The production increase is due to high reservoir levels at the beginning of 2012, and more than normal inflow. This gave high exports abroad. In the quarter, Norway had a net export of 2 TWh of electricity and was 17.9 TWh in 2012. It is the highest since 2000. The good resource gave a relatively low price level in the wholesale market for electricity. The average spot price in the Norwegian market areas were NOK 268-277 / MWh in the fourth quarter. In 2012 the price was 217-236 NOK/ MWh.(eb)

  11. A Battery Power Bank with Series-Connected Buck–Boost-Type Battery Power Modules

    Directory of Open Access Journals (Sweden)

    Tsung-Hsi Wu

    2017-05-01

    Full Text Available The operation of a battery power bank with series-connected buck–boost-type battery power modules (BPMs was investigated in this study. Each BPM consisted of a battery pack with an associated buck–boost converter for individually controlling battery currents. With a proposed discharging scenario, load voltage regulation with charge equalization among batteries was performed by controlling the battery currents in accordance with their state-of-charges (SOCs estimated by real-time battery-loaded voltages detected under the same operating condition. In addition, the fault tolerance was executed to isolate exhausted or faulty batteries from the battery power bank without interrupting the system operation. Experiments were conducted to verify the effectiveness of the discharging scenario for a laboratory battery power bank with four series buck–boost BPMs.

  12. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    1995-06-01

    During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters

  13. Natural gas imports and exports: First quarter report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Office of Fuels Programs prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This quarter`s focus is market penetration of gas imports into New England. Attachments show the following: % takes to maximum firm contract levels and weighted average per unit price for the long-term importers, volumes and prices of gas purchased by long-term importers and exporters, volumes and prices for gas imported on short-term or spot market basis, and gas exported short-term to Canada and Mexico.

  14. Trend chart: wind power. Third quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2015-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2015: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  15. Trend chart: wind power. Forth quarter 2016

    International Nuclear Information System (INIS)

    Coltier, Yves

    2017-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the forth quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  16. Trend chart: wind power. First quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-05-01

    This publication presents the wind energy situation of continental France and overseas territories during the first quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  17. Trend chart: wind power. Third quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  18. Trend chart: wind power. Second quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-08-01

    This publication presents the wind energy situation of continental France and overseas territories during the second quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  19. Trend chart: wind power. First quarter 2017

    International Nuclear Information System (INIS)

    2017-05-01

    This publication presents the wind energy situation of continental France and overseas territories during the first quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  20. Trend chart: wind power. Forth quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the forth quarter 2015: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  1. Development and validation of alternative methods by non-aqueous acid-base titration and derivative ultraviolet spectrophotometry for quantification of sildenafil in raw material and tablets

    Directory of Open Access Journals (Sweden)

    Taízia Dutra Silva

    2017-04-01

    Full Text Available Sildenafil citrate (SILC is a potent phosphodiesterase-5 inhibitor used for erectile dysfunction and pulmonary hypertension. This study shows two simple, fast and alternative analytical methods for SILC determination by non-aqueous titration and by derivative ultraviolet spectrophotometry (DUS in active pharmaceutical ingredient and/or dosage forms. The quantitation method of SILC active pharmaceutical ingredient by non-aqueous acid-base titration was developed using methanol as solvent and 0.1 mol/L of perchloric acid in acetic acid as titrant. The endpoint was potentiometrically detected. The non-aqueous titration method shows satisfactory repeatability and intermediate precision (RSD 0.70-1.09%. The neutralization reaction occurred in the stoichiometric ratio 1:1 in methanol. The determination of SILC active pharmaceutical ingredient or dosage forms by DUS was developed in the linear range from 10 to 40 µg/mL, in 0.01 mol/L HCl, using the first order zero-peak method at λ 256 nm. The DUS method shows selectivity toward tablets excipients, appropriate linearity (R2 0.9996, trueness (recovery range 98.86-99.30%, repeatability and intermediate precision in three concentration levels (RSD 1.17-1.28%; 1.29-1.71%, respectively. Therefore, the methods developed are excellent alternatives to sophisticated instrumental methods and can be easily applied in any pharmaceutical laboratory routine due to simple and fast executions.

  2. First quarter 2005 sales data

    International Nuclear Information System (INIS)

    2005-04-01

    This press release brings information on the AREVA group sales data. First quarter 2005 sales for the group were 2,496 millions of euros, up 3,6% year-on-year from 2,41 millions. The change in foreign exchange rates between the two periods show a negative impact of 22 millions euros, which is much lower than in the first quarter of 2004. It analyzes also in more details the situation of the front end, the reactors and service division, the back end division, the transmission and distribution division and the connectors division. (A.L.B.)

  3. Battery Aging, Battery Charging and the Kinetic Battery Model : A First Exploration

    NARCIS (Netherlands)

    Jongerden, Marijn R.; Haverkort, Boudewijn R.; Bertrand, Nathalie; Bortolussi, Luca

    2017-01-01

    Rechargeable batteries are omnipresent and will be used more and more, for instance for wearables devices, electric vehicles or domestic energy storage. However, batteries can deliver power only for a limited time span. They slowly degrade with every charge-discharge cycle. This degradation needs to

  4. Parachute Creek Shale Oil Program Environmental Monitoring Program. Quarterly report, fourth quarter, October 1-December 31, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commercial-scale synthetic fuels plants. The Parachute Creek Shale Oil Program is one of four projects awarded financial assistance. The Program agreed to comply with existing environmental monitoring regulations and to develop an Environmental Monitoring Plan (EMP) incorporating supplemental monitoring in the areas of water, air, solid waste, and worker health and safety during the period 1985-1992. These activities are described in a series of quarterly and annual reports. The document contains environmental compliance data collected in the fourth quarter of 1991, contents of reports on compliance data submitted to regulatory agencies, and supplemental analytical results from retorted shale pile runoff water collected following a storm event during the third quarter of 1991

  5. Spiraling Light with Magnetic Metamaterial Quarter-Wave Turbines.

    Science.gov (United States)

    Zeng, Jinwei; Luk, Ting S; Gao, Jie; Yang, Xiaodong

    2017-09-19

    Miniaturized quarter-wave plate devices empower spin to orbital angular momentum conversion and vector polarization formation, which serve as bridges connecting conventional optical beam and structured light. Enabling the manipulability of additional dimensions as the complex polarization and phase of light, quarter-wave plate devices are essential for exploring a plethora of applications based on orbital angular momentum or vector polarization, such as optical sensing, holography, and communication. Here we propose and demonstrate the magnetic metamaterial quarter-wave turbines at visible wavelength to produce radially and azimuthally polarized vector vortices from circularly polarized incident beam. The magnetic metamaterials function excellently as quarter-wave plates at single wavelength and maintain the quarter-wave phase retardation in broadband, while the turbine blades consist of multiple polar sections, each of which contains homogeneously oriented magnetic metamaterial gratings near azimuthal or radial directions to effectively convert circular polarization to linear polarization and induce phase shift under Pancharatnum-Berry's phase principle. The perspective concept of multiple polar sections of magnetic metamaterials can extend to other analogous designs in the strongly coupled nanostructures to accomplish many types of light phase-polarization manipulation and structured light conversion in the desired manner.

  6. EDF - Quarterly Financial Information

    International Nuclear Information System (INIS)

    Trivi, Carole; Boissezon, Carine de; Hidra, Kader

    2014-01-01

    EDF's sales in the first quarter of 2014 were euro 21.2 billion, down 3.9% from the first quarter of 2013. At constant scope and exchange rates, sales were down 4.2% due to mild weather conditions, which impacted sales of electricity in France, gas sales abroad and trading activities in Europe. UK sales were nonetheless sustained by B2B sales due to higher realised wholesale market prices. In Italy, sales growth was driven by an increase in electricity volumes sold. The first quarter of 2014 also saw the strengthening of the Group's financial structure with the second phase of its multi-annual hybrid funding programme (nearly euro 4 billion equivalent) as well as the issue of two 100-year bonds in dollars and sterling aimed at significantly lengthening average debt maturity. 2014 outlook and 2014-2018 vision: - EDF Group has confirmed its financial objectives for 2014; - Group EBITDA excluding Edison: organic growth of at least 3%; - Edison EBITDA: recurring EBITDA target of euro 1 billion and at least euro 600 million in 2014 before effects of gas contract re-negotiations; - Net financial debt / EBITDA: between 2x and 2.5x; - Pay-out ratio of net income excluding non-recurring items post-hybrid: 55% to 65%. The Group has reaffirmed its goal of achieving positive cash flow after dividends, excluding Linky, in 2018

  7. Molecular dynamics investigation of carbon nanotube junctions in non-aqueous solutions

    KAUST Repository

    Gkionis, Konstantinos

    2014-07-23

    The properties of liquids in a confined environment are known to differ from those in the bulk. Extending this knowledge to geometries defined by two metallic layers in contact with the ends of a carbon nanotube is important for describing a large class of nanodevices that operate in non-aqueous environments. Here we report a series of classical molecular dynamics simulations for gold-electrode junctions in acetone, cyclohexane and N,N-dimethylformamide solutions and analyze the structure and the dynamics of the solvents in different regions of the nanojunction. The presence of the nanotube has little effect on the ordering of the solvents along its axis, while in the transversal direction deviations are observed. Importantly, the orientational dynamics of the solvents at the electrode-nanotube interface differ dramatically from that found when only the electrodes are present.

  8. Quarterly report on program cost and schedule: Fourth quarter FY 1988

    International Nuclear Information System (INIS)

    1988-01-01

    Major program milestones completed in the fourth quarter of FY 1988 include completed preliminary draft NWPAA Section 175 Impacts Report, completed Title I ESF design, completed site reclamation in Texas, distributed review draft of the Dry Cask Storage Study, completed draft and final FY 1990 OMB budget, issued FY 1987 Annual Report to Congress, issued four draft Environmental Field Activity Plans, issued draft Environmental Program Overview, and made grant payments to local governments under Section 116 of NWPA, as amended. Major accomplishments during the fourth quarter of FY 1988 are listed. The Water Appropriation Permit Application was filed with the Nevada State Engineer on July 21, 1988. Installation and checkout of the Prototype Engineered Barrier Test equipment in G-tunnel is continuing with an expected early September test initiation data. The Configuration Management Plan was sent to DOE/HQ for approval. The prototype facility for testing the horizontal waste package emplacement configuration was completed in the G-tunnel

  9. Wind/photovoltaic power indicators. Third quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  10. Trend chart: wind power. Second quarter 2017

    International Nuclear Information System (INIS)

    2017-08-01

    This publication presents the wind energy situation of continental France and overseas territories during the second quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  11. Wind/photovoltaic power indicators. Second quarter 2009

    International Nuclear Information System (INIS)

    2009-09-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  12. Trend chart: wind power. Fourth quarter 2017

    International Nuclear Information System (INIS)

    Moreau, Sylvain

    2018-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the fourth quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  13. Wind/photovoltaic power indicators. Second quarter 2011

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  14. Wind/photovoltaic power indicators. First quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  15. Trend chart: wind power. Third quarter 2017

    International Nuclear Information System (INIS)

    2017-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  16. Wind/photovoltaic power indicators. Second quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  17. Wind/photovoltaic power indicators. Fourth quarter 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  18. Wind/photovoltaic power indicators. First quarter 2011

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  19. Wind/photovoltaic power indicators. Third quarter 2009

    International Nuclear Information System (INIS)

    2009-11-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  20. Wind/photovoltaic power indicators. Fourth quarter 2009

    International Nuclear Information System (INIS)

    2010-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  1. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  2. Optimization of the Nonaqueous Capillary Electrophoresis Separation of Metal Ions Using Mixture Design and Response Surface Methods

    OpenAIRE

    DEMİR, Cevdet; YÜCEL, Yasin

    2014-01-01

    Mixture experimental design was used to enhance the separation selectivity of metal ions in nonaqueous capillary electrophoresis. The separation of cations (Ag, Fe, Cr, Mn, Cd, Co, Pb, Ni, Zn and Cu) was achieved using imidazole as UV co-ion for indirect detection. Acetic acid was chosen as an electrolyte because its cathodic electroosmotic flow permits faster separation. The composition of organic solvents is important to achieve the best separation of all metal ions. Simplex latt...

  3. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  4. BATTERIES 2020 – A Joint European Effort towards European Competitive Automotive Batteries

    DEFF Research Database (Denmark)

    Timmermans, J.-M.; Rodriguez-Martinez, L.M.; Omar, N.

    The Integrated Project “Batteries 2020” unites 9 European partners jointly working on the research and development of European competitive automotive batteries. The project aims at increasing lifetime and energy density of large format high-energy lithium-ion batteries towards the goals targeted...... for automotive batteries. Three parallel strategies will be followed in order to achieve those targets: (i) Highly focused materials development; two improved generations of NMC materials will allow the performance, stability and cyclability of state of the art cells to be improved. (ii) Understanding ageing...... of degradation processes. (iii) Reduction of battery cost; a way to reduce costs, increase battery residual value and improve sustainability is to consider second life uses of batteries used in EV. These batteries are still operational and suitable to less restrictive conditions, such as those for stationary...

  5. Quarterly report of the Swedish Nuclear Power Inspectorate. 4th quarter 1984

    International Nuclear Information System (INIS)

    1985-01-01

    During the fourth quarter of 1984 ten power reactors were in operation in Sweden. Two new reactors, Oskarshamn 3 and Forsmark 3, got loading authorization and started the test operation. No serious fault has occurred during the period. (K.A.E.)

  6. New approaches to the design of polymer and liquid electrolytes for lithium batteries

    Science.gov (United States)

    McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X.

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they do not interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference, and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in poly(ethylene oxide) (PEO)-based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation complexing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach, since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion complexing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF 3SO 3-. The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane-based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2 M LiF solutions in DME, an increase in solubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6×10 -3 S cm -1. The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn 2O 4 cells.

  7. Joint Force Quarterly. Issue 64, 1st Quarter 2012

    Science.gov (United States)

    2012-01-01

    ndupress .ndu.edu issue 64, 1 st quarter 2012 / JFQ 43 experienced in cultural relativism belie the great commonality of moral solidarity in...Politics of Civil-Military Relations (Cambridge: Harvard University Press, 1957), 11. 12 Many people equate cultural relativism and moral relativism ...perhaps reluctantly, his muse was Platonic (the concept of the human for strategy to work in our age, it must possess solid moral and political

  8. 75 FR 17462 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2010-04-06

    ... decision may be purchased by contacting the office of Public Assistance, Governmental Affairs, and...-2)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the second quarter 2010 Rail Cost...

  9. Environmental Restoration Operations Consolidated Quarterly Report: July-September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective action activities being implemented at Sandia National Laboratories, New Mexico (SNL/NM) during the July, August, and September 2016 quarterly reporting period. The Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified for corrective action at SNL/NM are listed in Table I-1. Sections I.2.1 and I.2.2 summarize the work completed during this quarter. Section I.2.1 summarizes the quarterly activities at sites undergoing corrective action field activities. Field activities are conducted at the three groundwater AOCs (Burn Site Groundwater [BSG AOC], Technical Area [TA]-V Groundwater [TAVG AOC], and Tijeras Arroyo Groundwater [TAG AOC]). Section I.2.2 summarizes quarterly activities at sites where the New Mexico Environment Department (NMED) issued a certificate of completion and the sites are in the corrective action complete (CAC) regulatory process. Currently, SWMUs 8 and 58, 68, 149, 154, and 502 are in the CAC regulatory process. Corrective action activities are deferred at the Long Sled Track (SWMU 83), the Gun Facilities (SWMU 84), and the Short Sled Track (SWMU 240) because these three sites are active mission facilities. These three active sites are located in TA-III.

  10. Battery Peak Power Shaving Strategy to Prolong Battery Life for Electric Buses

    NARCIS (Netherlands)

    Pham, T.H.; Rosea, B.; Wilkins, S.

    2016-01-01

    This paper presents a battery peak power shaving strategy for battery electric buses. The developed strategy restricts the battery charge/discharge power when the propulsion power demand is high to avoid high deterioration of the battery capacity during operation. Without reducing the propulsion

  11. Wind/photovoltaic power indicators. First quarter 2012

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-06-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  12. Wind/photovoltaic power indicators. Second quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2015-08-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  13. Wind/photovoltaic power indicators. Third quarter 2011

    International Nuclear Information System (INIS)

    Thienard, Helene

    2011-11-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  14. Wind/photovoltaic power indicators. Third quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-11-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  15. Wind/photovoltaic power indicators. Fourth quarter 2012

    International Nuclear Information System (INIS)

    Reynaud, Didier; Thienard, Helene

    2013-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status. (J.S.)

  16. Wind/photovoltaic power indicators. Third quarter 2010

    International Nuclear Information System (INIS)

    Thienard, Helene

    2010-11-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  17. Wind/photovoltaic power indicators. Fourth quarter 2013

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-02-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status

  18. Wind/photovoltaic power indicators. Third quarter 2013

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2013-11-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status

  19. Wind/photovoltaic power indicators. Fourth quarter 2011

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  20. Wind/photovoltaic power indicators. Third quarter 2012

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-11-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  1. Wind/photovoltaic power indicators. First quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-05-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status

  2. Wind/photovoltaic power indicators. Second quarter 2012

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-09-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  3. Wind/photovoltaic power indicators. First quarter 2013

    International Nuclear Information System (INIS)

    Reynaud, Didier; Thienard, Helene

    2013-06-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status. (J.S.)

  4. Wind/photovoltaic power indicators. Forth quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2015-02-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  5. Wind/photovoltaic power indicators. Second quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-08-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  6. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  7. 76 FR 80448 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2011-12-23

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. EP 290 (Sub-No. 5) (2012-1)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the first quarter 2012 rail cost adjustment factor (RCAF...

  8. 76 FR 59483 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2011-09-26

    ... the decision may be purchased by contacting the Office of Public Assistance, Governmental Affairs, and...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the fourth quarter 2011 Rail Cost Adjustment...

  9. Dashboard: biogas for electricity production - Forth quarter 2015

    International Nuclear Information System (INIS)

    Cavaud, Denis; Reynaud, Didier

    2016-02-01

    This publication describes the situation of biogas-based electricity production in France and its evolution over the first quarters of 2015. A map indicates the level of connected power per district. Graphs illustrate the evolution of the number of new connections per quarter since 2009, the evolution of electricity quarterly production since 2011. Tables indicate the number of installations per power level (less than 0.5 MW, between 0.5 and 1.0 MW, more than 1 MW) and per installation type. Regional data are given in terms of number of installations, installed power in December 2015, regional share and evolution

  10. Pathogen group specific risk factors for clinical mastitis, intramammary infection and blind quarters at the herd, cow and quarter level in smallholder dairy farms in Jimma, Ethiopia.

    Science.gov (United States)

    Tolosa, T; Verbeke, J; Ayana, Z; Piepers, S; Supré, K; De Vliegher, S

    2015-07-01

    A cross-sectional study on clinical mastitis, intramammary infection (IMI) and blind quarters was conducted on 50 smallholder dairy farms in Jimma, Ethiopia. A questionnaire was performed, and quarters of 211 cows were sampled and bacteriologically cultured. Risk factors at the herd, cow, and quarter level for clinical mastitis and (pathogen-specific) intramammary infection were studied using multilevel modeling. As well, factors associated with quarters being blind were studied. Eleven percent of the cows and 4% of the quarters had clinical mastitis whereas 85% of the cows and 51% of the quarters were infected. Eighteen percent of the cows had one or more blind quarter(s), whereas 6% of the quarters was blind. Non-aureus staphylococci were the most frequently isolated pathogens in both clinical mastitis cases and IMI. The odds of clinical mastitis was lower in herds where heifers were purchased in the last year [odds ratio (OR) with 95% confidence interval: 0.11 (0.01-0.90)], old cows (>4 years) [OR: 0.45 (0.18-1.14)], and quarters not showing teat injury [OR: 0.23 (0.07-0.77)]. The odds of IMI caused by any pathogen was higher in herds not practicing teat drying before milking (opposed to drying teats with 1 towel per cow) [OR: 1.68 (1.05-2.69)], cows in later lactation (>180 DIM opposed to ≤90 DIM) [OR: 1.81 (1.14-2.88)], cows with a high (>3) body condition score (BCS) [OR: 1.57 (1.06-2.31)], right quarters (opposed to a left quarter position) [OR: 1.47 (1.10-1.98)], and quarters showing teat injury [OR: 2.30 (0.97-5.43)]. Quarters of cows in herds practicing bucket-fed calf feeding (opposed to suckling) had higher odds of IMI caused by Staphylococcus aureus [OR: 6.05 (1.31-27.90)]. Except for BCS, IMI caused by non-aureus staphylococci was associated with the same risk factors as IMI caused by any pathogen. No access to feed and water immediately after milking [OR: 2.41 (1.26-4.60)], higher parity [OR: 3.60 (1.20-10.82)] and tick infestation [OR: 2.42 (1

  11. Technical feasibility for commercialization of lithium ion battery as a substitute dry battery for motorcycle

    Science.gov (United States)

    Kurniyati, Indah; Sutopo, Wahyudi; Zakaria, Roni; Kadir, Evizal Abdul

    2017-11-01

    Dry battery on a motorcycle has a rapid rate of voltage drop, life time is not too long, and a long charging time. These are problems for users of dry battery for motorcycle. When the rate in the voltage decreases, the energy storage in the battery is reduced, then at the age of one to two years of battery will be dead and cannot be used, it makes the user should replace the battery. New technology development of a motorcycle battery is lithium ion battery. Lithium ion battery has a specification that has been tested and possible to replace dry battery. Characteristics of lithium ion battery can answer the question on the dry battery service life, the rate of decrease in voltage and charging time. This paper discusses about the technical feasibility for commercialization of lithium ion battery for motorcycle battery. Our proposed methodology of technical feasibility by using a goldsmith commercialization model of the technical feasibility and reconfirm the technical standard using the national standard of motorcycle battery. The battery has been through all the stages of the technical feasibility of the goldsmith model. Based on the results of the study, lithium ion batteries have the minimum technical requirements to be commercialized and has been confirmed in accordance with the standard motorcycle battery. This paper results that the lithium ion battery is visible to commercialized by the technical aspect.

  12. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration

    KAUST Repository

    Pérez-Manríquez, Liliana

    2015-01-01

    A new approach on the development of cross-linked PAN based thin film composite (TFC) membranes for non-aqueous application is presented in this work. Polypropylene backed neat PAN membranes fabricated by phase inversion process were cross-linked with hydrazine to get excellent solvent stability toward dimethylformamide (DMF). By interfacial polymerization a selective polyamide active layer was coated over the cross-linked PAN using N,N′-diamino piperazine (DAP) and trimesoyl chloride (TMC) as monomers. Permeation and molecular weight cut off (MWCO) experiments using various dyes were done to evaluate the performance of the membranes. Membranes developed by such method show excellent solvent stability toward DMF with a permeance of 1.7 L/m2 h bar and a molecular weight cut-off of less than 600 Da.

  13. Acid-base and coordination properties of Meso-substituted porphyrins in nonaqueous solutions

    Science.gov (United States)

    Pukhovskaya, S. G.; Nam, Dao Tkhe; Fien, Chan Ding; Domanina, E. N.; Ivanova, Yu. B.; Semeikin, A. S.

    2017-09-01

    Acid-base and coordination properties of alkyl and aryl meso-substituted porphyrins are studied spectrophotometrically in nonaqueous solutions. It is found that the nature of the substituent greatly affects the basicity of ligands for porphyrins characterized by a flat structure of macrocycle. The electronic effects of substituents have a much weaker influence on the kinetics of complexing. These effects could be due to the opposite orientation of some factors: an increase in the basicity and stability of the N-H bonds of porphyrin reaction centers. Dissociation constants p K b of the cationic forms of meso-substituted derivatives of porphyrin are measured. The values of p K b are in good agreement with classic concepts of the nature of substituents, particularly those indirectly included in the macrocycle through phenyl buffer rings.

  14. Study into complexing of anhydrous uranyl chloride with organic o-bases in nonaqueous media. Interaction with aliphatic sulfoxides

    Energy Technology Data Exchange (ETDEWEB)

    Kobets, L V; Buchikhin, E P; Klyshevich, R P; Belyachis, G F

    1982-01-01

    The methods of spectrophotometry, conductometry and calorimetry have been used to investigate interaction of uranyl chloride with dimethyl, diamil, dioctyl sulfoxides in the nonaqueous acetone media. Existence of complexes with 1:1, 1:2, 1:3 composition for dimethyl sulfoxide and with 1:1, 1:2 composition for diamil-, dioctyl sulfoxides is revealed. The constants of formation and dissociation of these complexes are calculated; the enthalpies of their formation in acetone are determined.

  15. Study into complexing of anhydrous uranyl chloride with organic o-bases in nonaqueous media. Interaction with aliphatic sulfoxides

    International Nuclear Information System (INIS)

    Kobets, L.V.; Buchikhin, E.P.; Klyshevich, R.P.; Belyachis, G.F.

    1982-01-01

    The methods of spectrophotometry, conductometry and calorimetry have been used to investigate interaction of uranyl chloride with dimethyl, diamil, dioctyl sulfoxides in the nonaqueous acetone media. Existence of complexes with 1:1, 1:2, 1:3 composition for dimethyl sulfoxide and with 1:1, 1:2 composition for diamil-, dioctyl sulfoxides is revealed. The constants of formation and dissociation of these complexes are calculated; the enthalpies of their formation in acetone are determined

  16. 75 FR 35877 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2010-06-23

    ... available on our Web site, http://www.stb.dot.gov . Copies of the decision may be purchased by contacting...-3)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the third quarter 2010 rail cost...

  17. 76 FR 37191 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2011-06-24

    ... our Web site, http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the third quarter 2011 Rail Cost Adjustment...

  18. 75 FR 80895 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2010-12-23

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the first quarter 2011 Rail Cost Adjustment...

  19. 77 FR 37958 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2012-06-25

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the third quarter 2012 rail cost adjustment...

  20. 78 FR 37660 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2013-06-21

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board approves the third quarter 2013 Rail Cost Adjustment Factor...

  1. 78 FR 17764 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2013-03-22

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the second quarter 2013 Rail Cost Adjustment...

  2. 76 FR 16037 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2011-03-22

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the second quarter 2011 Rail Cost Adjustment...

  3. 75 FR 58019 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2010-09-23

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the fourth quarter 2010 Rail Cost Adjustment...

  4. Is the Microdistrict Dead? Long Live the Quarter!

    Directory of Open Access Journals (Sweden)

    Elena Bagina

    2016-10-01

    Full Text Available Social ideas of the 20th century, that had an impact on town-planning concepts, have lost their relevance. We have inherited huge urban territories built up in the form of microdistricts, which do not currently correspond to the idea of safe and decent life. Transition from building microdistricts to quarter site development has become the most radical change in the Russian urban policy. At the same time, there are certain problems of designing modern quarters both in the historical environment and in new territories. Unbuilt sites will likely house hybrids of microdistrict and quarter planning. In the historical centers of cities, building of quarters requires solution of transport problems, provision of pedestrian areas and creation of new architecture of high quality, which never copies buildings of previous epochs. Designing buildings ‘in the styles’, which is typical of the historical center development, does more harm to the cities than brand new architectural decisions of built-in structures.

  5. Evaluation of the point-centred-quarter method of sampling ...

    African Journals Online (AJOL)

    -quarter method.The parameter which was most efficiently sampled was species composition relativedensity) with 90% replicate similarity being achieved with 100 point-centred-quarters. However, this technique cannot be recommended, even ...

  6. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  7. Battery Aging and the Kinetic Battery Model

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2016-01-01

    Batteries are omnipresent, and with the uprise of the electrical vehicles will their use will grow even more. However, the batteries can deliver their required power for a limited time span. They slowly degrade with every charge-discharge cycle. This degradation needs to be taken into account when

  8. 77 FR 58910 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2012-09-24

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the fourth quarter 2012 rail cost adjustment factor (RCAF...

  9. Mechanisms of Degradation and Strategies for the Stabilization of Cathode-Electrolyte Interfaces in Li-Ion Batteries.

    Science.gov (United States)

    Cabana, Jordi; Kwon, Bob Jin; Hu, Linhua

    2018-02-20

    Undesired reactions at the interface between a transition metal oxide cathode and a nonaqueous electrolyte bring about challenges to the performance of Li-ion batteries in the form of compromised durability. These challenges are especially severe in extreme conditions, such as above room temperature or at high potentials. The ongoing push to increase the energy density of Li-ion batteries to break through the existing barriers of application in electric vehicles creates a compelling need to address these inefficiencies. This goal requires a combination of deep knowledge of the mechanisms underpinning reactivity, and the ability to assemble multifunctional electrode systems where different components synergistically extend cycle life by imparting interfacial stability, while maintaining, or even increasing, capacity and potential of operation. The barriers toward energy storage at high density apply equally in Li-ion, the leading technology in the battery market, and in related, emerging concepts for high energy density, such as Na-ion and Mg-ion, because they also conceptually rely on electroactive transition metal oxides. Therefore, their relevance is broad and the quest for solutions inevitable. In this Account, we describe mechanisms of reaction that can degrade the interface between a Li-ion battery electrolyte and the cathode, based on an oxide with transition metals that can reach high formal oxidation states. The focus is placed on cathodes that deliver high capacity and operate at high potential because their development would enable Li-ion battery technologies with high capacity for energy storage. Electrode-electrolyte instabilities will be identified beyond the intrinsic potential windows of stability, by linking them to the electroactive transition metals present at the surface of the electrode. These instabilities result in irreversible transformations at these interfaces, with formation of insulating layers that impede transport or material loss due

  10. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-09-11

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size DATES: The meeting...

  11. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-03-13

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  12. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2012-07-02

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes. DATES: The meeting will...

  13. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-01-31

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  14. ARM Operations Quarterly Report October 1-December 31, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, Jimmy W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-31

    The U.S. Department of Energy requires national user facilities to report time-based operating data. This quarterly report is written to comply with this requirement. This reports on the first quarter facility statistics.

  15. Dashboard: biogas for electricity production - Third quarter 2015

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2015-12-01

    This publication describes the situation of biogas-based electricity production in France and its evolution over the first quarters of 2015. A map indicates the level of connected power per district. Graphs illustrate the evolution of the number of new connections per quarter since 2009, the evolution of electricity quarterly production since 2011. Tables indicate the number of installations per power level (less than 0.5 MW, between 0.5 and 1.0 MW, more than 1 MW) and per installation type. Regional data are given in terms of number of installations, installed power in September 2015 and in December 2015, regional share and evolution

  16. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-02-14

    ... 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size AGENCY: Federal... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA..., Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. DATES: The meeting will be held...

  17. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  18. Batteries 2020 – Lithium - ion battery first and second life ageing, validated battery models, lifetime modelling and ageing assessment of thermal parameters

    DEFF Research Database (Denmark)

    Timmermans, Jean-Marc; Nikolian, Alexandros; De Hoog, Joris

    2016-01-01

    The European Project “Batteries 2020” unites nine partners jointly working on research and the development of competitive European automotive batteries. The project aims at increasing both the energy density and lifetime of large format pouch lithium-ion batteries towards the goals targeted...... vehicle application. These batteries are still operational and suitable to less restrictive conditions, such as those for stationary and renewable energy application. Therefore, possible second life opportunities have been identified and further assessed. In this paper, the main ageing effects of lithium...... ion batteries are explained. Next, an overview of different validated battery models will be discussed. Finally, a methodology for assessing the performance of the battery cells in a second life application is presented....

  19. 76 FR 6180 - First Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-02-03

    ... 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  20. 76 FR 22161 - Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-04-20

    ... Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  1. 76 FR 38741 - Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-07-01

    ... 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  2. 76 FR 54527 - Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-09-01

    ... Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  3. 77 FR 20688 - Seventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-04-05

    ... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size AGENCY: Federal... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA..., Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. DATES: The meeting will be held May...

  4. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  5. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  6. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    Science.gov (United States)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  7. Strain measurement based battery testing

    Science.gov (United States)

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  8. A Desalination Battery

    KAUST Repository

    Pasta, Mauro; Wessells, Colin D.; Cui, Yi; La Mantia, Fabio

    2012-01-01

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  9. A desalination battery.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available. © 2012 American Chemical Society

  10. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  11. Highly-dispersed Ta-oxide catalysts prepared by electrodeposition in a non-aqueous plating bath for polymer electrolyte fuel cell cathodes

    KAUST Repository

    Seo, Jeongsuk; Cha, Dong Kyu; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2012-01-01

    The Ta-oxide cathode catalysts were prepared by electrodeposition in a non-aqueous solution. These catalysts showed excellent catalytic activity and have an onset potential of 0.92 V RHE for the oxygen reduction reaction (ORR). The highly-dispersed Ta species at the nanometer scale on the carbon black was an important contributor to the high activity. © 2012 The Royal Society of Chemistry.

  12. Advanced state prediction of lithium-ion traction batteries in hybrid and battery electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Jadidi, Yasser

    2011-07-01

    Automotive power trains with high energy efficiencies - particularly to be found in battery and hybrid electric vehicles - find increasing attention in the focus of reduction of exhaust emissions and increase of mileage. The underlying concept, the electrification of the power train, is subject to the traction battery and its battery management system since the capability of the battery permits and restricts electric propulsion. Consequently, the overall vehicle efficiency and in particular the operation strategy performance strongly depends on the quality of information about the battery. Besides battery technology, the key challenges are given by both the accurate prediction of battery behaviour and the electrochemical battery degradation that leads to power and capacity fade of the traction battery. This book provides the methodology for development of a battery state monitoring and prediction algorithm for application in a battery management system that accounts for the effects of electrochemical degradation. (orig.)

  13. Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries

    Science.gov (United States)

    Bie, Xiaofei; Kubota, Kei; Hosaka, Tomooki; Chihara, Kuniko; Komaba, Shinichi

    2018-02-01

    Electrochemical performance of Prussian blue analogues (PBAs) as positive electrode materials for non-aqueous Na-ion batteries is known to be highly dependent on their synthesis conditions according to the previous researches. Na-rich PBAs, NaxM[Fe(CN)6]·nH2O where M = Mn, Fe, Co, and Ni, are prepared via precipitation method under the same condition. The structure, chemical composition, morphology, valence of the transition metals, and electrochemical property of these samples are comparatively researched. The PBA with Mn shows large reversible capacity of 126 mAh g-1 in 2.0-4.2 V at a current density of 30 mA g-1 and the highest working voltage owning to high redox potential of Mn2+/3+ in MnN6 and Fe2+/3+ in FeC6. While, the PBA with Ni exhibits the best cyclability and rate performance though only 66 mAh g-1 is delivered. The significant differences in electrochemical behaviors of the PBAs originate from the various properties depending on different transition metals.

  14. Environmental surveillance program. Quarterly progress report, July--September, 1993

    International Nuclear Information System (INIS)

    Walker, D.W.; Hall, L.F.; Downs, J.

    1996-01-01

    This report contains data developed from monitoring site measurements and laboratory analyses of environmental samples that were collected during the period of July-September, 1993. Because some laboratory procedures are lengthy and could adversely affect the desired timeliness of reports, results of some analyses from this time period will be included in the next quarterly report. Quarterly reports, then, will be routine periodic documents that present continually updated information concerning the potential presence of environmental contaminants in the vicinity of the Idaho National Engineering Laboratory (INEL). During the third calendar quarter of 1993, Environmental Surveillance Program (ESP) measurements did not reveal unexpected levels of contaminants in any environmental samples measured or analyzed. Most of the results reported in this document are related to off-site air and ground water measurements. Future reports will include results of monitoring at additional locations and for additional environmental materials. Annual reports from the ESP will contain data generated during the previous four calendar quarters, and will display measurement trends for various combinations of locations, contaminants and environmental media. The annual report will also include more interpretive material and discussions than will normally be found in quarterly reports

  15. Quarterly environmental radiological survey summary - first quarter 1997 100, 200, 300, and 600 areas

    International Nuclear Information System (INIS)

    Mckinney, S.M.

    1997-01-01

    This report provides a summary of the radiological surveys performed in support of near-facility environmental monitoring at the Hanford Site. The First Quarter 1997 survey results and the status of actions required are summarized below: (1) All of the routine environmental radiological surveys scheduled during January, February, and March 1997, were performed as planned. (2) One hundred four environmental radiological surveys were performed during the first quarter 1997, twenty-nine at the active waste sites and seventy-five at the inactive waste sites. Contamination above background levels was found at eight of the active waste sites and seven of the inactive waste sites. Contamination levels as high as >1,000,000 disintegrations per minute (dpm) were reported. Of these contaminated surveys twelve were in Underground Radioactive Material (URM) areas and three were in contamination areas. The contamination found within ten of the URM areas was immediately cleaned up and no further action was required. In the remaining five sites the areas were posted and will require decontamination. Radiological Problem Reports (RPR's) were issued and the sites were turned over to the landlord for further action if required. (3) During the first quarter of 1997, 5.6 hectares (13.8 acres) were stabilized and radiologically down posted from Contamination Area (CA)/Soil Contamination (SC) to URM. (4) During the first quarter of 1997, the size of 216-A-25 Gable Mountain Pond was increased from 30.4 to 34.5 hectares (75.0 to 85.2 acres). This increase in size was due to the correction of the original boundary area by using the advanced technology of a global positioning system (GPS). An area, 1.6 hectares (4.0 acres), east of and adjacent to the 241-S/SX/SY tank farm complex was posted as a contamination/soil contamination area. (5) Five open Surveillance Compliance Inspection Reports (SCIRs) had not been resolved

  16. Biomedical applications of batteries

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Roger [Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Linford, Roger [The Research Office, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Schlindwein, Walkiria [School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom)

    2004-08-31

    An overview is presented of the many ways in which batteries and battery materials are used in medicine and in biomedical studies. These include the use of batteries as power sources for motorised wheelchairs, surgical tools, cardiac pacemakers and defibrillators, dynamic prostheses, sensors and monitors for physiological parameters, neurostimulators, devices for pain relief, and iontophoretic, electroporative and related devices for drug administration. The various types of battery and fuel cell used for this wide range of applications will be considered, together with the potential harmful side effects, including accidental ingestion of batteries and the explosive nature of some of the early cardiac pacemaker battery systems.

  17. Natural gas imports and exports. First quarter report, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the first quarter of 1998 (January through March). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  18. Natural gas imports and exports: Third quarter report, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the third quarter of 1998 (July--September). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent calendar quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  19. Natural gas imports and exports. Fourth quarter report, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the fourth quarter of 1998 (October through December). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  20. Natural gas: Imports and exports third quarter report 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The Office of Fuels Programs prepares quarterly reports summarizing the data provided by companies with authorizations to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This report is for the third quarter of 1993 (July--September). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past twelve months (October 1992--September 1993). Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  1. Natural gas imports and exports. Second quarter report, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepared quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the second quarter of 1998 (April through June). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  2. Quarter Dates Location(s) Purpose Transportation and Travel ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Chantal Taylor

    Transportation and Travel. Accommodation, Meals and Other. Hospitality. Total Expenses. Quarter 1. April 4 to 12. Alexandria, Egypt. Meetings. 15,761.81. 4,596.60. 77.24. 20,435.65. May 22. Toronto, ON. Meeting. May 23 to June 5. Jakarta, Bangkok and Delhi. Meetings. Quarter 2. September 22 to 26. New York, NY.

  3. English Leadership Quarterly, 1993.

    Science.gov (United States)

    Strickland, James, Ed.

    1993-01-01

    These four issues of the English Leadership Quarterly represent those published during 1993. Articles in number 1 deal with parent involvement and participation, and include: "Opening the Doors to Open House" (Jolene A. Borgese); "Parent/Teacher Conferences: Avoiding the Collision Course" (Robert Perrin); "Expanding Human…

  4. 77 FR 38211 - Rescission of Quarterly Financial Reporting Requirements

    Science.gov (United States)

    2012-06-27

    ... No. FMCSA-2012-0020] RIN-2126-AB48 Rescission of Quarterly Financial Reporting Requirements AGENCY..., the Federal Motor Carrier Safety Administration (FMCSA) eliminates the quarterly financial reporting... would be ineffective or unacceptable without a change. III. Background Annual Financial Reporting...

  5. 78 FR 31475 - Rescission of Quarterly Financial Reporting Requirements

    Science.gov (United States)

    2013-05-24

    ... No. FMCSA-2012-0020] RIN-2126-AB48 Rescission of Quarterly Financial Reporting Requirements AGENCY...); request for comments. SUMMARY: FMCSA proposes to eliminate the quarterly financial reporting requirements... person argued that the financial reporting requirements transferred from the Interstate Commerce...

  6. 78 FR 76241 - Rescission of Quarterly Financial Reporting Requirements

    Science.gov (United States)

    2013-12-17

    .... SUMMARY: FMCSA eliminates the quarterly financial reporting requirements for certain for-hire motor... prepare plans for reviewing existing rules. The rule eliminates the quarterly financial reporting... Federal Register (73 FR 3316). Background Annual Financial Reporting Requirements Section 14123 of title...

  7. NST Quarterly - January 1998 issue

    International Nuclear Information System (INIS)

    1998-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in proposal of national networking for biotechnology culture collection centre (NNBCCC)

  8. Fuel management study on quarter core refueling for Ling Ao NPP

    International Nuclear Information System (INIS)

    Zhang Hong; Li Jinggang

    2012-01-01

    The fuel management study on quarter core refueling is introduced for Ling Ao NPP. Starting from the selection of the objective of fuel management for quarter core refueling, the code and method used and the analysis carried out are explained in details to reach the final loading pattern chosen. The start-up physics test results are listed to demonstrate the realized quarter core fuel management. In the end, the advantage and disadvantage after turning to quarter core refueling has been given for the power plant from the fuel management point of view. (authors)

  9. Electric batteries and the environment. Die Batterie und die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F; Hartinger, L; Kiehne, H A; Niklas, H; Schiele, R; Steil, H U

    1987-01-01

    The book deals with the production, use and waste management of batteries (accumulators and primary batteries), with regard to protection of the environment. Legal, technical and medical aspects are shown. There are numerous electro-chemical systems, but only few proved to be really good in practice. Most batteries contain lead, cadmium or mercury and must therefore be eliminated in a way doing no harm to the environment. Large quantities of the above named heavy metals are today already being recovered by means of appropriate procedures. The reduction of these heavy metals in batteries is also described to be a contribution to the protection of the environment. (orig.) With 67 figs.

  10. Department of Veterans Affairs Quarterly Notice to Congress on Data Breaches First Quarter of Fiscal Year 2014 October 1, 2013 through December 31, 2013

    Data.gov (United States)

    Department of Veterans Affairs — This is a quarterly notice to congress containing statistics on data breeches for fiscal year 2014 for the first quarter (2014 October 1, 2013 through December 31,...

  11. HST Replacement Battery Initial Performance

    Science.gov (United States)

    Krol, Stan; Waldo, Greg; Hollandsworth, Roger

    2009-01-01

    The Hubble Space Telescope (HST) original Nickel-Hydrogen (NiH2) batteries were replaced during the Servicing Mission 4 (SM4) after 19 years and one month on orbit.The purpose of this presentation is to highlight the findings from the assessment of the initial sm4 replacement battery performance. The batteries are described, the 0 C capacity is reviewed, descriptions, charts and tables reviewing the State Of Charge (SOC) Performance, the Battery Voltage Performance, the battery impedance, the minimum voltage performance, the thermal performance, the battery current, and the battery system recharge ratio,

  12. Lifetime Improvement by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Schmitt, Jens B.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of their batteries. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to

  13. 77 FR 56253 - Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-09-12

    ... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting will be held...

  14. 77 FR 66084 - Tenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-11-01

    ... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting will be held...

  15. Battery diagnosis and battery monitoring in hybrid electric vehicles; Batteriediagnostik und Batteriemonitoring in Hybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, T.; Kowal, J.; Waag, W.; Gerschler, J.B.; Sauer, D.U. [RWTH Aachen (DE). Inst. fuer Stromrichtertechnik und Elektrische Antriebe (ISEA)

    2007-07-01

    Even in conventional passenger cars the load on the batteries is at its limit due to the increasing number of electrical loads. It is therefore of special importance to know the status and the power capability of the battery at any time. To fulfil these requirements it is necessary that the battery diagnostics has a precise current measurement available in addition to the voltage and temperature measurements. Battery diagnosis is most successful of different algorithms are combined and errors from the measurements and the algorithms are taken actively into account. The general structure of battery diagnosis algorithms can be used for lead-acid, lithium-ion and NiMH batteries. However, the complexity is highest for lead-acid batteries. (orig.)

  16. NST Quarterly - April 1998 issue

    International Nuclear Information System (INIS)

    1998-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in ionizing radiation as an alternative method for sanitization of herbs and spices

  17. Lifetime improvement by battery scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of its battery. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to the

  18. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries

    Science.gov (United States)

    Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk

    2014-06-01

    Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg-1total electrode while also retaining a high energy density of 225 Wh kg-1total electrode, which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices.

  19. 75 FR 63 - Hazardous Materials: Revision to Requirements for the Transportation of Batteries and Battery...

    Science.gov (United States)

    2010-01-04

    ... contained in equipment, fuel cell systems must not charge batteries during transport; (3) For transportation... 2137-AE54 Hazardous Materials: Revision to Requirements for the Transportation of Batteries and Battery... batteries and battery-powered devices. This final rule corrects several errors in the January 14, 2009 final...

  20. Trend chart: photovoltaic solar energy. Forth quarter 2016

    International Nuclear Information System (INIS)

    Coltier, Yves

    2017-02-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  1. Trend chart: photovoltaic solar energy. Third quarter 2016

    International Nuclear Information System (INIS)

    Coltier, Yves

    2016-11-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  2. Trend chart: photovoltaic solar energy. Forth quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-02-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  3. Trend chart: photovoltaic solar energy. First quarter 2017

    International Nuclear Information System (INIS)

    2017-05-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  4. Nonleaking battery terminals.

    Science.gov (United States)

    Snider, W. E.; Nagle, W. J.

    1972-01-01

    Three different terminals were designed for usage in a 40 ampere/hour silver zinc battery which has a 45% KOH by weight electrolyte in a plastic battery case. Life tests, including thermal cycling, electrical charge and discharge for up to three years duration, were conducted on these three different terminal designs. Tests for creep rate and tensile strength were conducted on the polyphenylene oxide plastic battery cases. Some cases were unused and others containing KOH electrolyte were placed on life tests. The design and testing of nonleaking battery terminals for use with a KOH electrolyte in a plastic case are considered.

  5. Quarterly environmental radiological survey summary: 100, 200, 300 and 600 Areas. Fourth quarter 1994

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1995-01-01

    This report provides a summary of the radiological surveys performed on waste disposal sites located at the Hanford Site. The Fourth Quarter 1994 survey results and the status of actions required from current and past reports are summarized

  6. Natural gas imports and exports. First quarter report 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The Office of Fuels Programs Prepares quarterly reports Summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This report is for the first quarter of 1994 (January--March). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past twelve months. Attachment C shows volume and price information for gas imported on a short-term basis. Attachment D shows the gas exported on a short-term basis to Canada and Mexico. During the first three months of 1994, data indicates that gas imports grew by about 14 percent over the level of the first quarter of 1993 (668 vs. 586 Bcf), with Canadian and Algerian imports increasing by 12 and 53 percent, respectively. During the same time period, exports declined by 15 percent (41 vs. 48 Bcf). Exports to Canada increased by 10 percent from the 1993 level (22 vs. 20 Bcf) and exports to Mexico decreased by 64 percent (5 vs. 14 Bcf).

  7. Optimised battery capacity utilisation within battery management systems

    NARCIS (Netherlands)

    Wilkins, S.; Rosca, B. (Bogdan); Jacob, J.; Hoedmaekers, E.

    2015-01-01

    Battery Management Systems (BMSs) play a key role in the performance of both hybrid and fully electric vehicles. Typically, the role of the BMS is to help maintain safety, performance, and overall efficiency of the battery pack. One important aspect of its operation is the estimation of the state of

  8. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, Paulus P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  9. Redox-flow battery of actinide complexes

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Shiokawa, Yoshinobu

    2006-01-01

    Np battery and U battery were developed. We suggested that Np redox-flow battery should be (-)|Np 3+ ,Np 4+ ||NpO 2 + ,NpO 2 2+ |(+), and U battery (-)|[U III T 2 ] - ,[U IV T 2 ] 0 ||[U V O 2 T] - ,[U VI O 2 T] 0 |(+). The electromotive force at 50 % charge of Np and U battery is 1.10 V and 1.04 V, respectively. The energy efficiency of 70 mA/cm 2 of Np and U battery shows 99 % and 98 %, respectively. V redox-flow battery, electrode reactions of An battery, Np battery, U battery and future of U battery are described. The concept of V redox-flow battery, comparison of energy efficiency of Np, U and V battery, oxidation state and ionic species of 3d transition metals and main An, Purbe diagram of Np and U aqueous solution, shift of redox potential of β-diketones by pKa, and specifications of three redox-flow batteries are reported. (S.Y.)

  10. Electricity and gas market observatory. 4. Quarter 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). Since the 1. of July 2007, all customers can choose their gas and electricity suppliers. Content: A - The electricity market: The retail electricity market (Introduction, Customer segments and their respective weight, Status at December 31, 2007, Dynamic analysis: 4. Quarter 2007); The wholesale electricity market (Introduction, Wholesale market activity in France, Prices on the French wholesale market and European comparison, Import and export volumes, Concentration of the French electricity market, Striking fact of the fourth quarter 2007); B - The gas market: The retail gas market (Introduction, Customer segments and their respective weight, Status on December 31. 2007, Dynamic analysis: 4. Quarter 2007); The wholesale gas market (Gas pricing and gas markets in Europe, The wholesale market in France, Striking fact of the fourth quarter 2007); C - Appendices: Electricity and gas market observatories combined glossary, Specific electricity market observatory glossary, Specific gas market observatory glossary

  11. Quarterly 90Sr deposition at world land sites: Appendix A

    International Nuclear Information System (INIS)

    Toonkel, L.E.

    1981-01-01

    The results of quarterly 90 Sr fallout sampling data at 75 sites beginning in 1976 are presented. Of the 75 sites for which data are reported, the monthly collections at 67 sites are composited and analyzed quarterly starting with the July 1976 samples. Data reported for the first half of 1976 at these sites as well as for the whole year at New York City and through June 1977 at the Australian sites, are quarterly results obtained by summing the monthly data. As of July 1977, the Australian sites have changed over to quarterly collection. The collections are made using either high-walled stainless steel pots with exposed areas of 0.076 square meters or plastic funnels with exposed areas of 0.072 square meters to which are attached ion-exchange columns. A few sites which were established as part of a precipitation chemistry network use plastic pots with an area of 0.064 square meters for collection. As an example of deposition patterns in the Northern Hemisphere, the quarterly 90 Sr data for New York City are shown in graph form. Calculated values of concentrations of 90 Sr in precipitation are given in units of pCi of 90 Sr per liter. The precipitation in centimeters and the 90 Sr deposition in millicuries per square kilometer is given for each quarter where data are available

  12. Quarterly 90Sr deposition at world land sites. Appendix A

    International Nuclear Information System (INIS)

    Toonkel, L.E.

    1981-01-01

    The results of quarterly 90 Sr fallout sampling data at 75 sites beginning in 1976 are presented. Of the 75 sites for which data are reported, the monthly collections at 67 sites are composited and analyzed quarterly starting with the July 1976 samples. Data reported for the first half of 1976 at these sites as well as for the whole year at New York City and through June 1977 at the Australian sites, are quarterly results obtained by summing the monthly data. As of July 1977, the Australian sites have changed over to quarterly collection. The collections are made using either high-walled stainless steel pots with exposed areas of 0.076 square meters or plastic funnels with exposed areas of 0.072 square meters to which are attached ion-exchange columns. A few sites which were established as part of a precipitation chemistry network use plastic pots with an area of 0.064 square meters for collection. As an example of deposition patterns in the northern hemisphere, the quarterly 90 Sr data for New York City are shown in graph form. Calculated values of concentrations of 90 Sr in precipitation are given in units of pCi of 90 Sr deposition in millicuries per square kilometer is given for each quarter where data are available

  13. Quarterly environmental radiological survey summary: Second Quarter 1995 100, 200, 300, and 600 Areas

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1995-01-01

    This report provides a summary of the radiological surveys performed in support of the operational environmental monitoring program at the Hanford Site. The Second Quarter 1995 survey results and the status of actions required from current and past reports are summarized

  14. Quarterly environmental radiological survey summary. Fourth quarter, 1995 100, 200, 300, and 600 Areas

    International Nuclear Information System (INIS)

    McKinney, S.M.; Markes, B.M.

    1996-01-01

    This report provides a summary of the radiological surveys performed in support of the operational environmental monitoring program at the Hanford Site. The Fourth Quarter 1995 survey results and the status of actions required from current and past reports are described

  15. Non-Intrusive Battery Health Monitoring

    Directory of Open Access Journals (Sweden)

    Gajewski Laurent

    2017-01-01

    Full Text Available The “Non-intrusive battery health monitoring”, developed by Airbus Defence and Space (ADS in cooperation with the CIRIMAT-CNRS laboratory and supported by CNES, aims at providing a diagnosis of the battery ageing in flight, called State of Health (SOH, using only the post-treatment of the battery telemetries. The battery current and voltage telemetries are used by a signal processing tool on ground to characterize and to model the battery at low frequencies which allows monitoring the evolution of its degradation with great accuracy. The frequential behaviour estimation is based on inherent disturbances on the current during the nominal functioning of the battery. For instance, on-board thermal control or equipment consumption generates random disturbances on battery current around an average current. The battery voltage response to these current random disturbances enables to model the low frequency impedance of the battery by a signal processing tool. The re-created impedance is then compared with the evolution model of the low frequencies impedance as a function of the battery ageing to estimate accurately battery degradation. Hence, this method could be applied to satellites which are already in orbit and whose battery telemetries acquisition system fulfils the constraints determined in the study. This innovative method is an improvement of present state-of-the-art and is important to have a more accurate in-flight knowledge of battery ageing which is crucial for mission and operation planning and also for possible satellite mission extension or deorbitation. This method is patented by Airbus Defence and Space and CNES.

  16. South African Crime Quarterly

    African Journals Online (AJOL)

    South African Crime Quarterly is an inter-disciplinary peer-reviewed journal that promotes professional discourse and the publication of research on the subjects of crime, criminal justice, crime prevention, and related matters including state and non-state responses to crime and violence. South Africa is the primary focus for ...

  17. Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.; Pesaran, A.

    2015-05-04

    Battery second use – putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure – has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g. electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to National Renewable Energy Laboratory (NREL) has developed a methodology and the requisite tools to answer these questions, including NREL’s Battery Lifetime Simulation Tool (BLAST). Herein we introduce these methods and tools, and demonstrate their application. We have found that capacity fade from automotive use has a much larger impact on second use value than resistance growth. Where capacity loss is driven by calendar effects more than cycling effects, average battery temperature during automotive service – which is often driven by climate – is found to be the single factor with the largest effect on remaining value. Installing hardware and software capabilities onboard the vehicle that can both infer remaining battery capacity from in-situ measurements, as well as track average battery temperature over time, will thereby facilitate the second use of automotive batteries.

  18. ?Just-in-Time? Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life

    Energy Technology Data Exchange (ETDEWEB)

    DeVault, Robert C [ORNL

    2009-01-01

    Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle s life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These Just-in-Time methods provide maximum effective battery life while getting virtually the same electricity from the grid.

  19. THERMODYNAMIC PROPERTIES OF NONAQUEOUS SINGLE SALT SOLUTIONS USING THE Q-ELECTROLATTICE EQUATION OF STATE

    Directory of Open Access Journals (Sweden)

    A. Zuber

    2015-09-01

    Full Text Available AbstractThe correlation of thermodynamic properties of nonaqueous electrolyte solutions is relevant to design and operation of many chemical processes, as in fertilizer production and the pharmaceutical industry. In this work, the Q-electrolattice equation of state (EOS is used to model vapor pressure, mean ionic activity coefficient, osmotic coefficient, and liquid density of sixteen methanol and ten ethanol solutions containing single strong 1:1 and 2:1 salts. The Q-electrolattice comprises the lattice-based Mattedi-Tavares-Castier (MTC EOS, the Born term and the explicit MSA term. The model requires two adjustable parameters per ion, namely the ionic diameter and the solvent-ion interaction energy. Predictions of osmotic coefficient at 298.15 K and liquid density at different temperatures are also presented.

  20. A novel green nonaqueous sol-gel process for preparation of partially stabilized zirconia nanopowder

    Directory of Open Access Journals (Sweden)

    Guo Feng

    2017-09-01

    Full Text Available A novel green nonaqueous sol-gel process was developed to prepare 3 mol% Y2O3-doped ZrO2 nanopowder from zirconium oxychloride and without need for washing of the obtained particles. It was shown that highly dispersive nanometer-scale zirconia powder with the particle size of 15–25 nm and BET surface area of 41.2 m2/g can be prepared. The sintering behaviour was also investigated. Density of the translucent body sintered at 1400 °C is 98.7 ± 0.3% of its theoretical density and the surface and cross section areas are dense without holes or other defects. The bending strength of the sintered sample is 928 ± 64 MPa.