WorldWideScience

Sample records for non-woody agricultural biomass

  1. Woody biomass energy potential in 2050

    International Nuclear Information System (INIS)

    Lauri, Pekka; Havlík, Petr; Kindermann, Georg; Forsell, Nicklas; Böttcher, Hannes; Obersteiner, Michael

    2014-01-01

    From a biophysical perspective, woody biomass resources are large enough to cover a substantial share of the world's primary energy consumption in 2050. However, these resources have alternative uses and their accessibility is limited, which tends to decrease their competitiveness with respect to other forms of energy. Hence, the key question of woody biomass use for energy is not the amount of resources, but rather their price. In this study we consider the question from the perspective of energy wood supply curves, which display the available amount of woody biomass for large-scale energy production at various hypothetical energy wood prices. These curves are estimated by the Global Biosphere Management Model (GLOBIOM), which is a global partial equilibrium model of forest and agricultural sectors. The global energy wood supply is estimated to be 0–23 Gm 3 /year (0–165 EJ/year) when energy wood prices vary in a range of 0–30$/GJ (0–216$/m 3 ). If we add household fuelwood to energy wood, then woody biomass could satisfy 2–18% of world primary energy consumption in 2050. If primary forests are excluded from wood supply then the potential decreases up to 25%. - highlights: • We examine woody biomass energy potential by partial equilibrium model of forest and agriculture sectors. • It is possible to satisfy 18% (or 14% if primary forests are excluded) of the world's primary energy consumption in 2050 by woody biomass. • To achieve this would require an extensive subsidy/tax policy and would lead to substantial higher woody biomass prices compared to their current level

  2. Thermo-Analytical and Physico-Chemical Characterization of Woody and Non-Woody Biomass from an Agro-ecological Zone in Nigeria

    Directory of Open Access Journals (Sweden)

    Ayokunle Oluwabusayo Balogun

    2014-07-01

    Full Text Available Woody (Albizia pedicellaris and Terminalia ivorensis and non-woody (guinea corn (Sorghum bicolor glume and stalk biomass resources from Nigeria were subjected to thermo-analytical and physico-chemical analyses to determine their suitability for thermochemical processing. They were found to have comparably high calorific values (between 16.4 and 20.1 MJ kg-1. The woody biomass had very low ash content (0.32%, while the non-woody biomass had relatively high ash content (7.54%. Thermogravimetric analysis (TGA of the test samples showed significant variation in the decomposition behavior of the individual biomasses. Gas chromatography/mass spectrometry (GC/MS of fatty acid methyl esters (FAMEs derivatives indicated the presence of fatty and resin acids in the dichloromethane (CH2Cl2 extracts. Analytical pyrolysis (Py-GC/MS of the samples revealed that the volatiles liberated consisted mostly of acids, alcohols, ketones, phenols, and sugar derivatives. These biomass types were deemed suitable for biofuel applications.

  3. Allometric Models to Predict Aboveground Woody Biomass of Black Locust (Robinia pseudoacacia L. in Short Rotation Coppice in Previous Mining and Agricultural Areas in Germany

    Directory of Open Access Journals (Sweden)

    Christin Carl

    2017-09-01

    Full Text Available Black locust is a drought-resistant tree species with high biomass productivity during juvenility; it is able to thrive on wastelands, such as former brown coal fields and dry agricultural areas. However, research conducted on this species in such areas is limited. This paper aims to provide a basis for predicting tree woody biomass for black locust based on tree, competition, and site variables at 14 sites in northeast Germany that were previously utilized for mining or agriculture. The study areas, which are located in an area covering 320 km × 280 km, are characterized by a variety of climatic and soil conditions. Influential variables, including tree parameters, competition, and climatic parameters were considered. Allometric biomass models were employed. The findings show that the most important parameters are tree and competition variables. Different former land utilizations, such as mining or agriculture, as well as growth by cores or stumps, significantly influenced aboveground woody biomass production. The new biomass models developed as part of this study can be applied to calculate woody biomass production and carbon sequestration of Robinia pseudoacacia L. in short rotation coppices in previous mining and agricultural areas.

  4. Physical, mechanical and hydration kinetics of particleboards manufactured with woody biomass (Cupressus lusitanica, Gmelina arborea, Tectona grandis), agricultural resources, and Tetra Pak packages.

    Science.gov (United States)

    Moya, Róger; Camacho, Diego; Oporto, Gloria S; Soto, Roy F; Mata, Julio S

    2014-02-01

    Lignocellulosic wastes resulting from agricultural activities as well as Tetra Pak residues from urban centres can cause significant levels of pollution. A possible action to minimize this problem is to use them in the production of particleboards. The purpose of this study was to evaluate the physical, mechanical, and hydration properties of particleboards manufactured with the mixture of woody biomass (Cupressus lusitanica, Gmelina arborea, and Tectona grandis) and either agricultural wastes [pineapple leaves (Ananas comosus) and palm residues (Elaeis guineensis)] or Tetra Pak residues (TP). The results show that the particleboards prepared with TP and woody biomass can reduce the swelling and water absorption in up to 40% and 50% compared with particleboards without TP. Also, these particleboards had increased flexure resistance and shear stress (up to 100%) compared with those without TP. On the contrary, particleboards prepared with pineapple leaves in combination with woody biomass showed the lowest mechanical properties, particularly for tensile strength, hardness, glue-line shear, and nail and screw evaluation.

  5. Energy values and estimation of power generation potentials of some non-woody biomass species

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M; Patel, S K [National Institute of Technology, Rourkela (India)

    2008-07-01

    In view of high energy potentials in non-woody biomass species and an increasing interest in their utilization for power generation, an attempt has been made in this study to assess the proximate analysis and energy content of different components of Ocimum canum and Tridax procumbens biomass species (both non-woody), and their impact on power generation and land requirement for energy plantations. The net energy content in Ocimum canum was found to be slightly higher than that in Tridax procumbens. In spite of having higher ash contents, the barks from both the plant species exhibited higher calorific values. The results have shown that approximately 650 and 1,270 hectares of land are required to generate 20,000 kWh/day electricity from Ocimum canum and Tridax procumbens biomass species. Coal samples, obtained from six different local mines, were also examined for their qualities, and the results were compared with those of studied biomass materials. This comparison reveals much higher power output with negligible emission of suspended particulate matters (SPM) from biomass materials.

  6. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    Science.gov (United States)

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Measuring Biomass and Carbon Stock in Resprouting Woody Plants

    Science.gov (United States)

    Matula, Radim; Damborská, Lenka; Nečasová, Monika; Geršl, Milan; Šrámek, Martin

    2015-01-01

    Resprouting multi-stemmed woody plants form an important component of the woody vegetation in many ecosystems, but a clear methodology for reliable measurement of their size and quick, non-destructive estimation of their woody biomass and carbon stock is lacking. Our goal was to find a minimum number of sprouts, i.e., the most easily obtainable, and sprout parameters that should be measured for accurate sprout biomass and carbon stock estimates. Using data for 5 common temperate woody species, we modelled carbon stock and sprout biomass as a function of an increasing number of sprouts in an interaction with different sprout parameters. The mean basal diameter of only two to five of the thickest sprouts and the basal diameter and DBH of the thickest sprouts per stump proved to be accurate estimators for the total sprout biomass of the individual resprouters and the populations of resprouters, respectively. Carbon stock estimates were strongly correlated with biomass estimates, but relative carbon content varied among species. Our study demonstrated that the size of the resprouters can be easily measured, and their biomass and carbon stock estimated; therefore, resprouters can be simply incorporated into studies of woody vegetation. PMID:25719601

  8. Sustainable Biofuels from Forests: Woody Biomass

    Directory of Open Access Journals (Sweden)

    Edwin H. White

    2011-11-01

    Full Text Available The use of woody biomass feedstocks for bioenergy and bioproducts involves multiple sources of material that together create year round supplies. The main sources of woody biomass include residues from wood manufacturing industries, low value trees including logging slash in forests that are currently underutilized and dedicated short-rotation woody crops. Conceptually a ton of woody biomass feedstocks can replace a barrel of oil as the wood is processed (refined through a biorefinery. As oil is refined only part of the barrel is used for liquid fuel, e.g., gasoline, while much of the carbon in oil is refined into higher value chemical products-carbon in woody biomass can be refined into the same value-added products.

  9. LBA-ECO ND-02 Secondary Forest Small Stem, Non-Woody Biomass, Para, Brazil: 1999-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports biomass from small stems and non-woody vegetation measured from 1999 to 2005 in plots of a secondary-growth forest fertilization experiment....

  10. LBA-ECO ND-02 Secondary Forest Small Stem, Non-Woody Biomass, Para, Brazil: 1999-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports biomass from small stems and non-woody vegetation measured from 1999 to 2005 in plots of a secondary-growth forest fertilization...

  11. Closed Loop Short Rotation Woody Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael [CRC Development, LLC, Oakland, CA (United States)

    2012-09-30

    CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded in 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.

  12. Woody biomass logistics [Chapter 14

    Science.gov (United States)

    Robert Keefe; Nathaniel Anderson; John Hogland; Ken Muhlenfeld

    2014-01-01

    The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material is often quite low, sometimes near zero. However, the cost of harvesting, collection, processing, storage, and transportation from the harvest site to end...

  13. A sustainable woody biomass biorefinery.

    Science.gov (United States)

    Liu, Shijie; Lu, Houfang; Hu, Ruofei; Shupe, Alan; Lin, Lu; Liang, Bin

    2012-01-01

    Woody biomass is renewable only if sustainable production is imposed. An optimum and sustainable biomass stand production rate is found to be one with the incremental growth rate at harvest equal to the average overall growth rate. Utilization of woody biomass leads to a sustainable economy. Woody biomass is comprised of at least four components: extractives, hemicellulose, lignin and cellulose. While extractives and hemicellulose are least resistant to chemical and thermal degradation, cellulose is most resistant to chemical, thermal, and biological attack. The difference or heterogeneity in reactivity leads to the recalcitrance of woody biomass at conversion. A selection of processes is presented together as a biorefinery based on incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. A preference is given to a biorefinery absent of pretreatment and detoxification process that produce waste byproducts. While numerous biorefinery approaches are known, a focused review on the integrated studies of water-based biorefinery processes is presented. Hot-water extraction is the first process step to extract value from woody biomass while improving the quality of the remaining solid material. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers, aromatics and acetic acid in the hardwood extract are the major components having the greatest potential value for development. Higher temperature and longer residence time lead to higher mass removal. While high temperature (>200°C) can lead to nearly total dissolution, the amount of sugars present in the extraction liquor decreases rapidly with temperature. Dilute acid hydrolysis of concentrated wood extracts renders the wood extract with monomeric sugars

  14. 48 CFR 1452.237-71 - Utilization of Woody Biomass.

    Science.gov (United States)

    2010-10-01

    ... Biomass. 1452.237-71 Section 1452.237-71 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR... Utilization of Woody Biomass. As prescribed in § 1437.7202, insert the following clause: Utilization of Woody Biomass (MAY 2005) (a) The contractor may remove and utilize woody biomass, if: (1) Project work is...

  15. Woody biomass availability for bioethanol conversion in Mississippi

    International Nuclear Information System (INIS)

    Perez-Verdin, Gustavo; Grebner, Donald L.; Sun, Changyou; Munn, Ian A.; Schultz, Emily B.; Matney, Thomas G.

    2009-01-01

    This study evaluated woody biomass from logging residues, small-diameter trees, mill residues, and urban waste as a feedstock for cellulosic ethanol conversion in Mississippi. The focus on Mississippi was to assess in-state regional variations and provide specific information of biomass estimates for those facilities interested in locating in Mississippi. Supply and cost of four woody biomass sources were derived from Forest Inventory Analysis (FIA) information, a recent forest inventory conducted by the Mississippi Institute for Forest Inventory, and primary production costs. According to our analysis, about 4.0 million dry tons of woody biomass are available for production of up to 1.2 billion liters of ethanol each year in Mississippi. The feedstock consists of 69% logging residues, 21% small-diameter trees, 7% urban waste, and 3% mill residues. Of the total, 3.1 million dry tons (930 million liters of ethanol) can be produced for $34 dry ton -1 or less. Woody biomass from small-diameter trees is more expensive than other sources of biomass. Transportation costs accounted for the majority of total production costs. A sensitivity analysis indicates that the largest impacts in production costs of ethanol come from stumpage price of woody biomass and technological efficiency. These results provide a valuable decision support tool for resource managers and industries in identifying parameters that affect resource magnitude, type, and location of woody biomass feedstocks in Mississippi. (author)

  16. Woody biomass policies and location decisions of the woody bioenergy industry in the southern United States

    International Nuclear Information System (INIS)

    Guo, Zhimei; Hodges, Donald G.; Young, Timothy M.

    2013-01-01

    Woody biomass for bioenergy production has been included in relatively few renewable energy policies since the 1970s. Recently, however, several states have implemented a variety of new woody biomass policies to spur the establishment of new bioenergy industry. Establishing new woody biomass-based facilities in a specific state is affected by a number of factors such as the strength of these new policy incentives, resource availability, business tax climate, and the available labor force. This study employs a conditional logit model (CLM) to explore the effects of woody biomass policies on the siting decisions of new bioenergy projects relative to some of these other state attributes. The CLM results suggest that state government incentives are significantly related to state success in attracting new plants. The results have substantial implications regarding woody biomass policies and the creation of a new bioenergy industry. -- Highlights: •This study explores the effects of state attributes on the siting decisions of new woody bioenergy projects. •Results suggest that state woody biomass policies are significantly related to state success in attracting new plants. •Other factors related to the siting of woody bioenergy facilities include resource availability, taxes, and wage rate

  17. Forest operations and woody biomass logistics to improve efficiency, value, and sustainability

    Science.gov (United States)

    Nathaniel Anderson; Dana Mitchell

    2016-01-01

    This paper reviews the most recent work conducted by scientists and engineers of the Forest Service of the US Department of Agriculture (USDA) in the areas of forest operations and woody biomass logistics, with an emphasis on feedstock supply for emerging bioenergy, biofuels, and bioproducts applications. This work is presented in the context of previous...

  18. Woody biomass for bioenergy and biofuels in the United States -- a briefing paper

    Science.gov (United States)

    Eric M. White

    2010-01-01

    Woody biomass can be used for the generation of heat, electricity, and biofuels. In many cases, the technology for converting woody biomass into energy has been established for decades, but because the price of woody biomass energy has not been competitive with traditional fossil fuels, bioenergy production from woody biomass has not been widely adopted. However,...

  19. Environmental effects of growing short-rotation woody crops on former agricultural lands

    International Nuclear Information System (INIS)

    Tolbert, V.R.; Thornton, F.C.; Joslin, J.D.

    1997-01-01

    Field-scale studies in the Southeast have been addressing the environmental effects of converting agricultural lands to biomass crop production since 1994. Erosion, surface water quality and quantity and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops are being compared. Nutrient cycling, soil physical changes, and crop productivity are also being monitored at the three sites. Maximum sediment losses occurred in the spring and fall. Losses were greater from sweetgum planted without a cover crop than with a cover crop. Nutrient losses of N and P in runoff and subsurface water occurred primarily after spring fertilizer application. These field plot studies are serving as the basis for a water shed study initiated in 1997. Results from the two studies will be used to develop and model nutrient and hydrologic budgets for woody crop plantings to identify potential constraints to sustainable deployment of short-rotation woody crops in the southeastern United States. (author)

  20. Financial and energy analyses of woody biomass plantations

    International Nuclear Information System (INIS)

    Strauss, C.H.

    1991-01-01

    This paper provides an economic analysis of a short rotation woody crop (SRWC) plantation system established the financial and energy costs of woody biomass and related net values for the total system. A production model for commercial-sized Populus plantations was developed from a series of research projects sponsored by the U.S,. Department of Energy's Short Rotation Woody Crops Program. The design was based on hybrid poplar planted on good quality agricultural sites at a density of 2100 cutting ha -1 . Growth was forecast at 16 Mg(OD) ha -1 yr -1 on a six-year rotation cycle. All inputs associated with plantation establishment, annual operations, and land use were identified on a financial and energy cost basis (Strauss et al. 1989). Net values for the system projected a minimum financial profit and a major net energy gain. Financial profit was limited by the high market value of energy inputs as compared to the low market value of the energy output. The net energy gain was attributed to the solar energy captured through photosynthesis. Principal input costs to the overall system, on both a financial and energy basis, were land rent and the harvesting/transportation requirements

  1. On the Assessment of the CO2 Mitigation Potential of Woody Biomass

    Directory of Open Access Journals (Sweden)

    Víctor Codina Gironès

    2018-01-01

    Full Text Available Woody biomass, a renewable energy resource, accumulates solar energy in form of carbon hydrates produced from atmospheric CO2 and H2O. It is, therefore, a means of CO2 mitigation for society as long as the biogenic carbon released to the atmosphere when delivering its energy content by oxidation can be accumulated again during growth of new woody biomass. Even when considering the complete life cycle, usually, only a small amount of fossil CO2 is emitted. However, woody biomass availability is limited by land requirement and, therefore, it is important to maximize its CO2 mitigation potential in the energy system. In this study, we consider woody biomass not only as a source of renewable energy but also as a source of carbon for seasonal storage of solar electricity. A first analysis is carried out based on the mitigation effect of woody biomass usage pathways, which is the avoided fossil CO2 emissions obtained by using one unit of woody biomass to provide energy services, as alternative to fossil fuels. Results show that woody biomass usage pathways can achieve up to 9.55 times the mitigation effect obtained through combustion of woody biomass, which is taken as a reference. Applying energy system modeling and multi-objective optimization techniques, the role of woody biomass technological choices in the energy transition is then analyzed at a country scale. The analysis is applied to Switzerland, demonstrating that the use of woody biomass in gasification–methanation systems, coupled with electrolysers and combined with an intensive deployment of PV panels and efficient technologies, could reduce the natural gas imports to zero. Electrolysers are used to boost synthetic natural gas production by hydrogen injection into the methanation reaction. The hydrogen used is produced when there is excess of solar electricity. The efficient technologies, such as heat pumps and battery electric vehicles, allow increasing the overall efficiency of the

  2. Biomass and carbon attributes of downed woody materials in forests of the United States

    Science.gov (United States)

    C.W. Woodall; B.F. Walters; S.N. Oswalt; G.M. Domke; C. Toney; A.N. Gray

    2013-01-01

    Due to burgeoning interest in the biomass/carbon attributes of forest downed and dead woody materials (DWMs) attributable to its fundamental role in the carbon cycle, stand structure/diversity, bioenergy resources, and fuel loadings, the U.S. Department of Agriculture has conducted a nationwide field-based inventory of DWM. Using the national DWM inventory, attributes...

  3. Spatial modeling of potential woody biomass flow

    Science.gov (United States)

    Woodam Chung; Nathaniel Anderson

    2012-01-01

    The flow of woody biomass to end users is determined by economic factors, especially the amount available across a landscape and delivery costs of bioenergy facilities. The objective of this study develop methodology to quantify landscape-level stocks and potential biomass flows using the currently available spatial database road network analysis tool. We applied this...

  4. Future challenges for woody biomass projections

    NARCIS (Netherlands)

    Schadauer, K.; Barreiro, Susana; Schelhaas, M.; McRoberts, Ronald E.

    2017-01-01

    Many drivers affect woody biomass projections including forest available for wood supply, market behavior, forest ownership, distributions by age and yield classes, forest typologies resulting from different edaphic, climatic conditions, and last but not least, how these factors are incorporated

  5. Woody biomass utilization trends, barriers, and strategies: Perspectives of U.S. Forest Service managers

    Science.gov (United States)

    Shiloh Sundstrom; Max Nielsen-Pincus; Cassandra Moseley; Sarah. McCaffrey

    2012-01-01

    The use of woody biomass is being promoted across the United States as a means of increasing energy independence, mitigating climate change, and reducing the cost of hazardous fuels reduction treatments and forest restoration projects. The opportunities and challenges for woody biomass use on the national forest system are unique. In addition to making woody biomass...

  6. Species composition and diversity of non-forest woody vegetation along roads in the agricultural landscape

    Directory of Open Access Journals (Sweden)

    Tóth Attila

    2016-03-01

    Full Text Available Non-forest woody vegetation represents an important component of green infrastructure in the agricultural landscape, where natural and semi-natural forest cover has only a low land use proportion. This paper focuses on linear woody vegetation structures along roads in the agricultural landscape and analyses them in three study areas in the Nitra Region, Slovakia. We evaluate species composition and diversity, species occurrence frequency or spatial distribution, their structure according to relatively achievable age and origin. For the evaluation of occurrence frequency, a Frequency Factor was proposed and applied. This factor allows a better comparison of different study areas and results in more representative findings. The study areas were divided into sectors based on visual landscape features, which are easily identifiable in the field, such as intersections and curves in roads, and intersections of roads with other features, such as cadastral or land boundaries, watercourses, etc. Based on the species abundance, woody plants present within the sectors were categorised into 1 predominant, 2 complementary and 3 mixed-in species; and with regard to their origin into 1 autochthonous and 2 allochthonous. Further, trees were categorised into 1 long-lived, 2 medium-lived and 3 short-lived tree species. The main finding is that among trees, mainly allochthonous species dominated. Robinia pseudoacacia L. was the predominant tree species in all three study areas. It was up to 4 times more frequent than other predominant tree species. Introduced tree species prevailed also among complementary and mixed-in species. Among shrubs, mainly native species dominated, while non-native species had a significantly lower proportion and spatial distribution. Based on these findings, several measures have been proposed to improve the overall ecological stability, the proportion and spatial distribution of native woody plant species. The recommendations and

  7. Woody biomass and bioenergy potentials in Southeast Asia between 1990 and 2020

    International Nuclear Information System (INIS)

    Sasaki, Nophea; Knorr, Wolfgang; Foster, David R.; Etoh, Hiroko; Ninomiya, Hiroshi; Chay, Sengtha; Sun, Sengxi; Kim, Sophanarith

    2009-01-01

    Forests in Southeast Asia are important sources of timber and other forest products, of local energy for cooking and heading, and potentially as sources of bioenergy. Many of these forests have experienced deforestation and forest degradation over the last few decades. The potential flow of woody biomass for bioenergy from forests is uncertain and needs to be assessed before policy intervention can be successfully implemented in the context of international negotiations on climate change. Using current data, we developed a forest land use model and projected changes in area of natural forests and forest plantations from 1990 to 2020. We also developed biomass change and harvest models to estimate woody biomass availability in the forests under the current management regime. Due to deforestation and logging (including illegal logging), projected annual woody biomass production in natural forests declined from 815.9 million tons (16.3 EJ) in 1990 to 359.3 million tons (7.2 EJ) in 2020. Woody biomass production in forest plantations was estimated at 16.2 million tons yr -1 (0.3 EJ), but was strongly affected by cutting rotation length. Average annual woody biomass production in all forests in Southeast Asia between 1990 and 2020 was estimated at 563.4 million tons (11.3 EJ) yr -1 declining about 1.5% yr -1 . Without incentives to reduce deforestation and forest degradation, and to promote forest rehabilitation and plantations, woody biomass as well as wood production and carbon stocks will continue to decline, putting sustainable development in the region at risk as the majority of the population depend mostly on forest ecosystem services for daily survival. (author)

  8. Biofuel manufacturing from woody biomass: effects of sieve size used in biomass size reduction.

    Science.gov (United States)

    Zhang, Meng; Song, Xiaoxu; Deines, T W; Pei, Z J; Wang, Donghai

    2012-01-01

    Size reduction is the first step for manufacturing biofuels from woody biomass. It is usually performed using milling machines and the particle size is controlled by the size of the sieve installed on a milling machine. There are reported studies about the effects of sieve size on energy consumption in milling of woody biomass. These studies show that energy consumption increased dramatically as sieve size became smaller. However, in these studies, the sugar yield (proportional to biofuel yield) in hydrolysis of the milled woody biomass was not measured. The lack of comprehensive studies about the effects of sieve size on energy consumption in biomass milling and sugar yield in hydrolysis process makes it difficult to decide which sieve size should be selected in order to minimize the energy consumption in size reduction and maximize the sugar yield in hydrolysis. The purpose of this paper is to fill this gap in the literature. In this paper, knife milling of poplar wood was conducted using sieves of three sizes (1, 2, and 4 mm). Results show that, as sieve size increased, energy consumption in knife milling decreased and sugar yield in hydrolysis increased in the tested range of particle sizes.

  9. A non-destructive method for quantifying small-diameter woody biomass in southern pine forests

    Science.gov (United States)

    D. Andrew Scott; Rick Stagg; Morris Smith

    2006-01-01

    Quantifying the impact of silvicultural treatments on woody understory vegetation largely has been accomplished by destructive sampling or through estimates of frequency and coverage. In studies where repeated measures of understory biomass across large areas are needed, destructive sampling and percent cover estimates are not satisfactory. For example, estimates of...

  10. Woody biomass from short rotation energy crops. Chapter 2

    Science.gov (United States)

    R.S., Jr. Zalesny Jr.; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; J.A. Stanturf; T.A. Volk

    2011-01-01

    Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...

  11. Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar

    Science.gov (United States)

    Chen, Qi

    2015-08-01

    Estimating tree aboveground biomass (AGB) and carbon (C) stocks using remote sensing is a critical component for understanding the global C cycle and mitigating climate change. However, the importance of allometry for remote sensing of AGB has not been recognized until recently. The overarching goals of this study are to understand the differences and relationships among three national-scale allometric methods (CRM, Jenkins, and the regional models) of the Forest Inventory and Analysis (FIA) program in the U.S. and to examine the impacts of using alternative allometry on the fitting statistics of remote sensing-based woody AGB models. Airborne lidar data from three study sites in the Pacific Northwest, USA were used to predict woody AGB estimated from the different allometric methods. It was found that the CRM and Jenkins estimates of woody AGB are related via the CRM adjustment factor. In terms of lidar-biomass modeling, CRM had the smallest model errors, while the Jenkins method had the largest ones and the regional method was between. The best model fitting from CRM is attributed to its inclusion of tree height in calculating merchantable stem volume and the strong dependence of non-merchantable stem biomass on merchantable stem biomass. This study also argues that it is important to characterize the allometric model errors for gaining a complete understanding of the remotely-sensed AGB prediction errors.

  12. Topo-edaphic controls over woody plant biomass in South African savannas

    Directory of Open Access Journals (Sweden)

    M. S. Colgan

    2012-05-01

    Full Text Available The distribution of woody biomass in savannas reflects spatial patterns fundamental to ecosystem processes, such as water flow, competition, and herbivory, and is a key contributor to savanna ecosystem services, such as fuelwood supply. While total precipitation sets an upper bound on savanna woody biomass, the extent to which substrate and terrain constrain trees and shrubs below this maximum remains poorly understood, often occluded by local-scale disturbances such as fire and trampling. Here we investigate the role of hillslope topography and soil properties in controlling woody plant aboveground biomass (AGB in Kruger National Park, South Africa. Large-area sampling with airborne Light Detection and Ranging (LiDAR provided a means to average across local-scale disturbances, revealing an unexpectedly linear relationship between AGB and hillslope-position on basalts, where biomass levels were lowest on crests, and linearly increased toward streams (R2 = 0.91. The observed pattern was different on granite substrates, where AGB exhibited a strongly non-linear relationship with hillslope position: AGB was high on crests, decreased midslope, and then increased near stream channels (R2 = 0.87. Overall, we observed 5-to-8-fold lower AGB on clayey, basalt-derived soil than on granites, and we suggest this is due to herbivore-fire interactions rather than lower hydraulic conductivity or clay shrinkage/swelling, as previously hypothesized. By mapping AGB within and outside fire and herbivore exclosures, we found that basalt-derived soils support tenfold higher AGB in the absence of fire and herbivory, suggesting high clay content alone is not a proximal limitation on AGB. Understanding how fire and herbivory contribute to AGB heterogeneity is critical to predicting future savanna carbon storage under a changing climate.

  13. Utilization characteristics and importance of woody biomass resources on the rural-urban fringe in botswana.

    Science.gov (United States)

    Nkambwe, Musisi; Sekhwela, Mogodisheng B M

    2006-02-01

    This article examines the utilization characteristics and importance of woody biomass resources in the rural-urban fringe zones of Botswana. In the literature for Africa, attention has been given to the availability and utilization of biomass in either urban or rural environments, but the rural-urban fringe has been neglected. Within southern Africa, this neglect is not justified; the rural-urban fringe, not getting the full benefits available in urban environments in Botswana, has developed problems in woody biomass availability and utilization that require close attention. In this article, socioeconomic data on the importance of woody biomass in the Batlokwa Tribal Territory, on the rural-urban fringe of Gaborone, Botswana, were collected together with ecologic data that reveal the utilization characteristics and potential for regrowth of woody biomass. The analysis of these results show that local woody biomass is very important in the daily lives of communities in the rural-urban fringe zones and that there is a high level of harvesting. However, there is no effort in planning land use in the tribal territory to either conserve this resource or provide alternatives to its utilization. The future of woody biomass resources in Botswana's rural-urban fringe is uncertain. The investigators recommend that a comprehensive policy for the development of the rural-urban fringe consider the importance of this resource. The neglect of this resource will have far-reaching implications on the livelihoods of residents as well as the environment in this zone.

  14. Processing woody debris biomass for co-milling with pulverized coal

    Science.gov (United States)

    Dana Mitchell; Bob Rummer

    2007-01-01

    The USDA, Forest Service, Forest Products Lab funds several grants each year for the purpose of studying woody biomass utilization. One selected project proposed removing small diameter stems and unmerchantable woody material from National Forest lands and delivering it to a coal-fired power plant in Alabama for energy conversion. The Alabama Power Company...

  15. Modeling Woody Biomass Procurement for Bioenergy Production at the Atikokan Generating Station in Northwestern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Thakur Upadhyay

    2012-12-01

    Full Text Available Efficient procurement and utilization of woody biomass for bioenergy production requires a good understanding of biomass supply chains. In this paper, a dynamic optimization model has been developed and applied to estimate monthly supply and procurement costs of woody biomass required for the Atikokan Generating Station (AGS in northwestern Ontario, based on its monthly electricity production schedule. The decision variables in the model are monthly harvest levels of two types of woody biomass, forest harvest residues and unutilized biomass, from 19,315 forest depletion cells (each 1 km2 for a one year planning horizon. Sixteen scenarios are tested to examine the sensitivity of the cost minimization model to changing economic and technological parameters. Reduction in moisture content and improvement of conversion efficiency showed relatively higher reductions in monthly and total costs of woody biomass feedstock for the AGS. The results of this study help in understanding and designing decision support systems for optimal biomass supply chains under dynamic operational frameworks.

  16. Expedient Prediction of the Fuel Properties of Carbonized Woody Biomass Based on Hue Angle

    Directory of Open Access Journals (Sweden)

    Yuta Saito

    2018-05-01

    Full Text Available Woody biomass co-firing-based power generation can reduce CO2 emissions from pulverized coal boilers. Carbonization of woody biomass increases its calorific value and grindability, thereby improving the co-firing ratio. Carbonized biomass fuel properties depend on moisture, size and shape of feedstock, and carbonization conditions. To produce carbonized biomass with stable fuel properties, the carbonization conditions should be set according to the desired fuel properties. Therefore, we examined color changes accompanying woody biomass carbonization and proposed using them for rapid evaluation of fuel properties. Three types of woody biomasses were carbonized at a test facility with a capacity of 4 tons/day, and the fuel properties of the obtained materials were correlated with their color defined by the L*a*b* model. When fixed carbon, an important fuel property for carbonization, was 25 wt % or less, we observed a strong negative correlation, regardless of the tree species, between the hue angle, hab, and fixed carbon. The hab and fixed carbon were correlated even when the fixed carbon exceeded 25 wt %; however, this correlation was specific to the tree species. These results indicate that carbonized biomass fuel properties such as fixed carbon can be estimated rapidly and easily by measuring hab.

  17. Performance of a pellet boiler fired with agricultural fuels

    International Nuclear Information System (INIS)

    Carvalho, Lara; Wopienka, Elisabeth; Pointner, Christian; Lundgren, Joakim; Verma, Vijay Kumar; Haslinger, Walter; Schmidl, Christoph

    2013-01-01

    Highlights: ► Performance evaluation of a pellet boiler operated with different agricultural fuels. ► Agricultural fuels could be burn in the tested boiler for a certain period of time. ► All the fuels (except straw and Sorghum) satisfied the European legal requirements. ► Boilers for burning agricultural fuels should have a flexible control system. - Abstract: The increasing demand for woody biomass increases the price of this limited resource, motivating the growing interest in using woody materials of lower quality as well as non-woody biomass fuels for heat production in Europe. The challenges in using non-woody biomass as fuels are related to the variability of the chemical composition and in certain fuel properties that may induce problems during combustion. The objective of this work has been to evaluate the technical and environmental performance of a 15 kW pellet boiler when operated with different pelletized biomass fuels, namely straw (Triticum aestivum), Miscanthus (Miscanthus × giganteus), maize (Zea mays), wheat bran, vineyard pruning (from Vitis vinifera), hay, Sorghum (Sorghum bicolor) and wood (from Picea abies) with 5% rye flour. The gaseous and dust emissions as well as the boiler efficiency were investigated and compared with the legal requirements defined in the FprEN 303-5 (final draft of the European standard 303-5). It was found that the boiler control should be improved to better adapt the combustion conditions to the different properties of the agricultural fuels. Additionally, there is a need for a frequent cleaning of the heat exchangers in boilers operated with agricultural fuels to avoid efficiency drops after short term operation. All the agricultural fuels satisfied the legal requirements defined in the FprEN 303-5, with the exception of dust emissions during combustion of straw and Sorghum. Miscanthus and vineyard pruning were the best fuels tested showing comparable emission values to wood combustion

  18. Woody biomass production lags stem-girth increase by over one month in coniferous forests.

    Science.gov (United States)

    Cuny, Henri E; Rathgeber, Cyrille B K; Frank, David; Fonti, Patrick; Mäkinen, Harri; Prislan, Peter; Rossi, Sergio; Del Castillo, Edurne Martinez; Campelo, Filipe; Vavrčík, Hanuš; Camarero, Jesus Julio; Bryukhanova, Marina V; Jyske, Tuula; Gričar, Jožica; Gryc, Vladimír; De Luis, Martin; Vieira, Joana; Čufar, Katarina; Kirdyanov, Alexander V; Oberhuber, Walter; Treml, Vaclav; Huang, Jian-Guo; Li, Xiaoxia; Swidrak, Irene; Deslauriers, Annie; Liang, Eryuan; Nöjd, Pekka; Gruber, Andreas; Nabais, Cristina; Morin, Hubert; Krause, Cornelia; King, Gregory; Fournier, Meriem

    2015-10-26

    Wood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales(3, 4, 5, 6). They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the well-watered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors(7) may shift the phase timing of stem size increase and woody biomass production in the future.

  19. Short rotation woody biomass production as option for the restoration of post-mining areas in lower Lusatia, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, C.; Quinkenstein, A.; Freese, D. [Brandenburg Univ. of Technology, Cottbus (Germany). Soil Protection and Recultivation; Huttl, R.R. [Brandenburg Univ. of Technology, Cottbus (Germany). Soil Protection and Recultivation; GFZ German Research Centre for Geosciences, Potsdam (Germany)

    2010-07-01

    Reclaimed mine sites in the Lusatian lignite-mining district in Germany are characterized by low annual precipitation and marginal soils. As such, crop yield is typically low and conventional land use systems fail in terms of reliable and efficient crop production. The production of woody biomass for bioenergy may be a promising alternative to improve soil fertility and also to enhance the economic value of these post-mining areas. Previous studies have shown that black locust (Robinia pseudoacacia L.) may be a suitable tree species for this purpose. This paper evaluated the ecological and economic benefits of producing woody biomass in short rotation coppices (SRC) and alley cropping systems (ACS) with black locust. The results showed that compared to conventional agriculture, such land use is not very profitable due to high establishment and harvesting costs and the comparatively low prices for wood energy. However, because of the improved microclimate, the crop yield in ACS is higher than in conventional agriculture. The cultivation of black locust resulted in a higher humus accumulation and in a lower harvest-related nutrient export than the cultivation of alfalfa as a typical recultivation crop in this region. It was concluded SRC with black locust is more beneficial than conventional agriculture in terms of improving soil fertility in the degraded post-mining areas of Lower Lusatia.

  20. Woody biomass phytoremediation of contaminated brownfield land

    Energy Technology Data Exchange (ETDEWEB)

    French, Christopher J. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Dickinson, Nicholas M. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)]. E-mail: n.m.dickinson@livjm.ac.uk; Putwain, Philip D. [Ecological Restoration Consultants (ERC), Ness Botanic Gardens, University of Liverpool, Ness, Cheshire CH64 (United Kingdom)

    2006-06-15

    Economic and environmental regeneration of post-industrial landscapes frequently involves some element of re-afforestation or tree planting. We report field trials that evaluate whether woody biomass production is compatible with managing residual trace element contamination in brownfield soils. Large-scale mapping of contamination showed a heterogenous dispersion of metals and arsenic, and highly localised within-site hotspots. Yields of Salix, Populus and Alnus were economically viable, showing that short-rotation coppice has a potentially valuable role in community forestry. Mass balance modelling demonstrated that phytoextraction potentially could reduce contamination hotspots of more mobile elements (Cd and Zn) within a 25-30-year life cycle of the crops. Cd and Zn in stems and foliage of Salix were 4-13 times higher than EDTA-extractable soil concentrations. Lability of other trace elements (As, Pb, Cu, Ni) was not increased 3 years after planting the coppice; woody biomass may provide an effective reduction of exposure (phytostabilisation) to these less mobile contaminants. - Field trials show short-rotation coppice provides effective risk management and remediation solutions to hotspots of residual metal and As contamination of brownfield land.

  1. Woody biomass phytoremediation of contaminated brownfield land

    International Nuclear Information System (INIS)

    French, Christopher J.; Dickinson, Nicholas M.; Putwain, Philip D.

    2006-01-01

    Economic and environmental regeneration of post-industrial landscapes frequently involves some element of re-afforestation or tree planting. We report field trials that evaluate whether woody biomass production is compatible with managing residual trace element contamination in brownfield soils. Large-scale mapping of contamination showed a heterogenous dispersion of metals and arsenic, and highly localised within-site hotspots. Yields of Salix, Populus and Alnus were economically viable, showing that short-rotation coppice has a potentially valuable role in community forestry. Mass balance modelling demonstrated that phytoextraction potentially could reduce contamination hotspots of more mobile elements (Cd and Zn) within a 25-30-year life cycle of the crops. Cd and Zn in stems and foliage of Salix were 4-13 times higher than EDTA-extractable soil concentrations. Lability of other trace elements (As, Pb, Cu, Ni) was not increased 3 years after planting the coppice; woody biomass may provide an effective reduction of exposure (phytostabilisation) to these less mobile contaminants. - Field trials show short-rotation coppice provides effective risk management and remediation solutions to hotspots of residual metal and As contamination of brownfield land

  2. Thermal behavior of the major constituents of some agricultural biomass residues during pyrolysis and combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, S.; Haykiri-Acma, H. [Istanbul Technical Univ., Istanbul (Turkey). Dept. of Chemical Engineering, Chemical and Metallurgical Engineering Faculty

    2006-07-01

    The importance of woody agricultural waste as a renewable energy source was discussed with reference to its low cost, abundance, and carbon dioxide neutrality. Direct combustion of biomass waste fuels is not recommended due to its low density, high moisture content and low calorific energy. Rather, thermal conversion processes such as pyrolysis, gasification or carbonization are preferred for biomass. The performance and the energy recovery potentials of these processes depend on the process conditions as well as the physical and chemical properties of the biomass species. Therefore, the structure and components of biomass must be known. In this study, agricultural biomass samples of almond shell, walnut shell, hazelnut shell, rapeseed, olive residue, and tobacco waste were first analytically treated to remove extractive matter to obtain extractive-free samples. Specific analytic procedures were then applied to biomass samples in order to isolate their individual biomass constituents such as lignin and holocellulose. Untreated biomass samples and their isolated constituents were exposed to non-isothermal pyrolysis and combustion processes in a thermogravimetric analyzer. Pyrolysis experiments were conducted under dynamic nitrogen atmospheres of 40 mL-min, while dynamic dry air atmosphere with the same flow rate was applied in the combustion experiments. The study showed that the pyrolysis and combustion characteristics of the biomass samples differed depending on their properties. Aliphatic and oxygen rich holocellulose and cellulose were found to be the reactive components in biomass. Lignin was more stable during thermal processes. When extractive matter from the biomass samples was removed, pyrolysis at lower temperatures was terminated. 10 refs., 4 tabs., 3 figs.

  3. Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy

    International Nuclear Information System (INIS)

    Chiang, Kung-Yuh; Chien, Kuang-Li; Lu, Cheng-Han

    2012-01-01

    Highlights: ► Biomass with higher volatile matter content has a higher carbon conversion rate. ► Applying the suitable pretreatment techniques that will enhance the bioenergy yield. ► The ratio of H 2 O/fixed carbon is a critical factor for enhancing the energy conversion. -- Abstract: This study investigated the characteristics of 26 varieties of biomass produced from forestry, agriculture, municipality, and industry in Taiwan to test their applicability in thermal conversion technologies and evaluation of enhanced energy efficiency. Understanding the reactivity of the tested biomass, the cluster analysis was also used in this research to classify into characteristics groups of biomass. This research also evaluated the feasibility of energy application of tested biomass by comparing it to the physicochemical properties of various coals used in Taiwan’s power plants. The experimental results indicated that the volatile matter content of the all tested biomass was 60% and above. It can be concluded that the higher carbon conversion rate will occur in the thermal conversion process of all tested biomass. Based on the results of lower heating value (LHV) of MSW and non-hazardous industrial sludge, the LHV was lower than other tested biomass that was between 1000 and 1800 kcal/kg. This is due to the higher moisture content of MSW and sludge that resulted in the lower LHV. Besides, the LHV of other tested biomass and their derived fuels was similar to the tested coal. However, the energy densities of woody and agricultural waste were smaller than that of the coal because the bulky densities of woody and agricultural wastes were low. That is, the energy utilization efficiency of woody and agricultural waste was relatively low. To improve the energy density of tested biomass, appropriate pre-treatment technologies, such as shredding, pelletizing or torrefied technologies can be applied, that will enhance the energy utilization efficiency of all tested biomass.

  4. Modeling and Optimization of Woody Biomass Harvest and Logistics in the Northeastern United States

    Science.gov (United States)

    Hartley, Damon S.

    World energy consumption is at an all-time high and is projected to continue growing for the foreseeable future. Currently, much of the energy that is produced comes from non-renewable fossil energy sources, which includes the burden of increased greenhouse gas emissions and the fear of energy insecurity. Woody biomass is being considered as a material that can be utilized to reduce the burden caused by fossil energy. While the technical capability to convert woody biomass to energy has been known for a long period of time, the cost of the feedstock has been considered too costly to be implemented in a large commercial scale. Increasing the use of woody biomass as an energy source requires that the supply chains are setup in a way that minimizes cost, the locational factors that lead to development are understood, the facilities are located in the most favorable locations and local resource assessments can be made. A mixed integer linear programming model to efficiently configure woody biomass supply chain configurations and optimize the harvest, extraction, transport, storage and preprocessing of the woody biomass resources to provide the lowest possible delivered price. The characteristics of woody biomass, such as spatial distribution and low bulk density, tend to make collection and transport difficult as compared to traditional energy sources. These factors, as well as others, have an adverse effect on the cost of the feedstock. The average delivered cost was found to be between 64.69-98.31 dry Mg for an annual demand of 180,000 dry Mg. The effect of resource availability and required demand was examined to determine the impact that each would have on the total cost. The use of woody biomass for energy has been suggested as a way to improve rural economies through job creation, reduction of energy costs and regional development. This study examined existing wood using bio-energy facilities in the northeastern United States to define the drivers of

  5. Planning woody biomass logistics for energy production: A strategic decision model

    International Nuclear Information System (INIS)

    Frombo, F.; Robba, M.; Minciardi, R.; Sacile, R.; Rosso, F.

    2009-01-01

    One of the key factors on which the sustainable development of modern society should be based is the possibility to take advantage of renewable energies. Biomass resources are one of the most common and widespread resources in the world. Their use to produce energy has many advantages, such as the reduction of greenhouse emissions. This paper describes a GIS-based Environmental Decision Support System (EDSS) to define planning and management strategies for the optimal logistics for energy production from woody biomass, such as forest biomass, agricultural scraps and industrial and urban untreated wood residues. The EDSS is characterized by three main levels: the GIS, the database, and the optimization. The optimization module is divided in three sub-modules to face different kinds of decision problems: strategic planning, tactical planning, and operational management. The aim of this article is to describe the strategic planning level in detail. The decision variables are represented by plant capacity and harvested biomass in a specific forest parcel for each slope class, while the objective function is the sum of the costs related to plant installation and maintenance, biomass transportation and collection, minus the benefits coming from the energy sales at the current market price, including the renewable energy certificates. Moreover, the optimization problem is structured through a set of parameters and equations that are able to encompass different energy conversion technologies (pyrolysis, gasification or combustion) in the system. A case study on the Liguria Region (Savona Province) is presented and results are discussed. (author)

  6. Assessing Extension's Ability to Promote Family Forests as a Woody Biomass Feedstock in the Northeast United States

    Science.gov (United States)

    Germain, Rene' H.; Ghosh, Chandrani

    2013-01-01

    The study reported here surveyed Extension educators' awareness and knowledge of woody biomass energy and assessed their desire and ability to reach out to family forest owners-a critical feedstock source. The results indicate Extension educators are aware of the potential of woody biomass to serve as a renewable source of energy. Respondents…

  7. Input-output analysis of energy requirements for short rotation, intensive culture, woody biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.; Grado, S.C.

    1992-01-01

    A production model for short rotation, intensive culture (SRIC) plantations was developed to determine the energy and financial cost of woody biomass. The model was based on hybrid poplars planted on good quality agricultural sites at a density of 2100 cuttings ha -1 , with average annual growth forecast at 16 metric tonne, oven dry (mg(OD)). Energy and financial analyses showed preharvest cost 4381 megajoules (MJ) Mg -1 (OD) and $16 (US) Mg -1 (OD). Harvesting and transportation requirements increased the total costs 6130 MJ Mg -1 (OD) and $39 Mg -1 (OD) for the delivered material. On an energy cost basis, the principal input was land, whereas on a financial basis, costs were more uniformly distributed among equipment, land, labor, and materials and fuel

  8. Growing stock and woody biomass assessment in Asola-Bhatti Wildlife Sanctuary, Delhi, India.

    Science.gov (United States)

    Kushwaha, S P S; Nandy, S; Gupta, Mohini

    2014-09-01

    Biomass is an important entity to understand the capacity of an ecosystem to sequester and accumulate carbon over time. The present study, done in collaboration with the Delhi Forest Department, focused on the estimation of growing stock and the woody biomass in the so-called lungs of Delhi--the Asola-Bhatti Wildlife Sanctuary in northern Aravalli hills. The satellite-derived vegetation strata were field-inventoried using stratified random sampling procedure. Growing stock was calculated for the individual sample plots using field data and species-specific volume equations. Biomass was estimated from the growing stock and the specific gravity of the wood. Among the four vegetation types, viz. Prosopis juliflora, Anogeissus pendula, forest plantation and the scrub, the P. juliflora was found to be the dominant vegetation in the area, covering 23.43 km(2) of the total area. The study revealed that P. juliflora forest with moderate density had the highest (10.7 m(3)/ha) while A. pendula forest with moderate density had the lowest (3.6 m(3)/ha) mean volume. The mean woody biomass was also found to be maximum in P. juliflora forest with moderate density (10.3 t/ha) and lowest in A. pendula forest with moderate density (3.48 t/ha). The total growing stock was estimated to be 20,772.95 m(3) while total biomass worked out to be 19,366.83 t. A strong correlation was noticed between the normalized difference vegetation index (NDVI) and the growing stock (R(2) = 0.84)/biomass (R(2) = 0.88). The study demonstrated that growing stock and the biomass of the woody vegetation in Asola-Bhatti Wildlife Sanctuary could be estimated with high accuracy using optical remote sensing data.

  9. Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis.

    Science.gov (United States)

    Liu, Shijie

    2010-01-01

    The conversion of biomass to chemicals and energy is imperative to sustaining our way of life as known to us today. Fossil chemical and energy sources are traditionally regarded as wastes from a distant past. Petroleum, natural gas, and coal are not being regenerated in a sustainable manner. However, biomass sources such as algae, grasses, bushes and forests are continuously being replenished. Woody biomass represents the most abundant and available biomass source. Woody biomass is a reliably sustainable source of chemicals and energy that could be replenished at a rate consistent with our needs. The biorefinery is a concept describing the collection of processes used to convert biomass to chemicals and energy. Woody biomass presents more challenges than cereal grains for conversion to platform chemicals due to its stereochemical structures. Woody biomass can be thought of as comprised of at least four components: extractives, hemicellulose, lignin and cellulose. Each of these four components has a different degree of resistance to chemical, thermal and biological degradation. The biorefinery concept proposed at ESF (State University of New York - College of Environmental Science and Forestry) aims at incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. The emphasis of this work is on the kinetics of hot-water extraction, filling the gap in the fundamental understanding, linking engineering developments, and completing the first step in the biorefinery processes. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers and acetic acid in the extract are the major components having the greatest potential value for development. Extraction/hydrolysis involves at least 16 general reactions that could

  10. Resource potential for renewable energy generation from co-firing of woody biomass with coal in the Northern U.S.

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog

    2013-01-01

    Past studies have established measures of co-firing potential at varying spatial scales to assess opportunities for renewable energy generation from woody biomass. This study estimated physical availability, within ecological and public policy constraints, and associated harvesting and delivery costs of woody biomass for co-firing in selected power plants of the...

  11. Modeling population dynamics and woody biomass of Alaska coastal forest

    Science.gov (United States)

    Randy L. Peterson; Jingjing Liang; Tara M. Barrett

    2014-01-01

    Alaska coastal forest, 6.2 million ha in size, has been managed in the past mainly through clearcutting. Declining harvest and dwindling commercial forest resources over the past 2 decades have led to increased interest in management of young-growth stands and utilization of woody biomass for bioenergy. However, existing models to support these new management systems...

  12. Aboveground biomass subdivisions in woody species of the savanna ecosystem project study area, Nylsvley

    CSIR Research Space (South Africa)

    Rutherford, MC

    1979-01-01

    Full Text Available Aboveground peak season biomass is given for 11 woody species in each of five belt transects under study. Mean aerial biomass for all species was 16 273 kg ha, made up of 14 937 kg ha wood, 236 kg ha current season's twigs and 1 100 kg ha leaves...

  13. Transpirational drying and costs for transporting woody biomass - a preliminary review

    Science.gov (United States)

    Bryce J. Stokes; Bryce J. McDonaStokes; Timothy P. McDonald; Tyrone Kelley

    1993-01-01

    High transport costs arc a factor to consider in the use of forest residues for fuel. Costs can be reduced by increasing haul capacities, reducing high moisture contents, and improving trucking efficiency. The literature for transpirational drying and the economics of hauling woody biomass is summarized here. Some additional, unpublished roundwood and chipdrying test...

  14. A proposal for pellet production from residual woody biomass in the island of Majorca (Spain

    Directory of Open Access Journals (Sweden)

    Javier Sánchez

    2015-09-01

    Full Text Available The use of residual biomass for energy purposes is of great interest in isolated areas like Majorca for waste reduction, energy sufficiency and renewable energies development. In addition, densification processes lead to easy-to-automate solid biofuels which additionally have higher energy density. The present study aims at (i the estimation of the potential of residual biomass from woody crops as well as from agri-food and wood industries in Majorca, and (ii the analysis of the optimal location of potential pellet plants by means of a GIS approach (location-allocation analysis and a cost evaluation of the pellets production chain. The residual biomass potential from woody crops in Majorca Island was estimated at 35,874 metric tons dry matter (t DM per year, while the wood and agri-food industries produced annually 21,494 t DM and 2717 t DM, respectively. Thus, there would be enough resource available for the installation of 10 pellet plants of 6400 t·year−1 capacity. These plants were optimally located throughout the island of Mallorca with a maximum threshold distance of 28 km for biomass transport from the production points. Values found for the biomass cost at the pellet plant ranged between 57.1 €·t−1 and 63.4 €·t−1 for biomass transport distance of 10 and 28 km. The cost of pelleting amounted to 56.7 €·t−1; adding the concepts of business fee, pellet transport and profit margin (15%, the total cost of pelleting was estimated at 116.6 €·t−1. The present study provides a proposal for pellet production from residual woody biomass that would supply up to 2.8% of the primary energy consumed by the domestic and services sector in the Balearic Islands.

  15. Economic and policy factors driving adoption of institutional woody biomass heating systems in the United States

    Science.gov (United States)

    Jesse D. Young; Nathaniel M. Anderson; Helen T. Naughton; Katrina Mullan

    2018-01-01

    Abundant stocks of woody biomass that are associated with active forest management can be used as fuel for bioenergy in many applications. Though factors driving large-scale biomass use in industrial settings have been studied extensively, small-scale biomass combustion systems commonly used by institutions for heating have received less attention. A zero inflated...

  16. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes.

    Science.gov (United States)

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-03-30

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes.

  17. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  18. Bench-scale production of liquid fuel from woody biomass via gasification

    Energy Technology Data Exchange (ETDEWEB)

    Hanaoka, Toshiaki; Liu, Yanyong; Matsunaga, Kotetsu; Miyazawa, Tomohisa; Hirata, Satoshi; Sakanishi, Kinya [Biomass Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Suehiro 2-2-2, Hiro, Kure, Hiroshima 737-0197 (Japan)

    2010-08-15

    The bench-scale production of hydrocarbon liquid fuel was achieved from woody biomass via gasification. The daily production capacity of the biomass-to-liquid (BTL) plant used in this study was 7.8 L of hydrocarbon liquid from 48 kg of woody biomass (on a dry basis), corresponding to 0.05 barrels. The BTL process involved the following steps: oxygen-enriched air gasification of the woody biomass, wet and dry gas cleaning, gas compression, carbon dioxide removal, and the Fischer-Tropsch (FT) synthesis reaction. In the gasification step, oxygen-enriched air gasification was carried out using a downdraft fixed-bed gasifier. The content of oxygen, which acts as the gasifying agent, was increased from 21.0 to 56.7 vol%; maximum values of the conversion to gas on a carbon basis and cold gas efficiency-approximately 96 C-mol% and 87.8%, respectively-were obtained at an oxygen content of around 30 vol%. With the increased oxygen content, the concentrations of CO, H{sub 2}, and CO{sub 2} increased from 22.8 to 36.5 vol%, from 16.8 to 28.1 vol%, and from 9.8 to 14.8 vol%, respectively, while that of N{sub 2} decreased from 48.8 to 16.0 vol%. The feed gas for the FT synthesis reaction was obtained by passing the product gas from the gasification step through a scrubber, carbon dioxide removal tower, and desulfurization tower; its composition was 30.8 vol% CO, 25.2 vol% H{sub 2}, 0.9 vol% CO{sub 2}, 2.5 vol% CH{sub 4}, 40.6 vol% N{sub 2}, < 5 ppb H{sub 2}S, and < 5 ppb COS. The hydrocarbon fuel was synthesized in a slurry bed reactor using hexadecane as the solvent and a Co/SiO{sub 2} catalyst. For hydrocarbons with carbon chain lengths of more than 5 carbon atoms (collectively referred to as C{sub 5+}) in the liquid fuel, a selectivity of 87.5% was obtained along with a chain growth probability of 0.84 under the following conditions: 4 MPa, 280 to 340 C, and a ratio of catalyst weight to feed gas rate (W/F) of 9.3 g.h/mol. (author)

  19. Carbon Stock in Integrated Field Laboratory Faculty of Agriculture University of Lampung

    Directory of Open Access Journals (Sweden)

    Irwan Sukri Banuwa

    2016-05-01

    Full Text Available This study aimed to determine the amount of carbon stock and CO2 plant uptake in the Integrated Field Laboratory (IFL Faculty of Agriculture University of Lampung. The research was conducted from April to November 2015. The study was arranged in a completely randomized block design (CRBD, consisting of five land units as treatment with four replications for each treatment. Biomass of woody plants was estimated using allometric equation, biomass of understorey plants was estimated using plant dry weight equation, and organic C content in plants and soils were analyzed using a Walkey and Black method. The results showed that land unit consisting of densely woody plants significantly affects total biomass of woody plants, organic C content in woody plants and total carbon content (above and below ground. The highest amount of woody plant biomass was observed in land unit 5, i.e. 1,196.88 Mg ha-1, and above ground total carbon was 437.19 Mg ha-1. IFL Faculty of Agriculture University of Lampung has a total carbon stock of 2,051.90 Mg and capacity to take up total CO2 of 6,656.88 Mg.

  20. Case studies on sugar production from underutilized woody biomass using sulfite chemistry

    Science.gov (United States)

    J.Y. Zhu; M. Subhosh Chandra; Roland Gleisner; William Gilles; Johnway Gao; Gevan Marrs; Dwight Anderson; John Sessions

    2015-01-01

    We examined two case studies to demonstrate the advantages of sulfite chemistry for pretreating underutilized woody biomass to produce sugars through enzymatic saccharification. In the first case study, we evaluated knot rejects from a magnesium-basedsulfite mill for direct enzymatic sugar production.We found that the sulfite mill rejects are an excellent feedstock for...

  1. Biomass: An overview in the United States of America

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, T. [USDA Soil Conservation Service, Washington, DC (United States); Shapouri, H.

    1993-12-31

    Concerns about the heavy reliance on foreign sources of fossil fuels, environmental impacts of burning fossil fuels, environmental impacts of agricultural activities, the need to find sustainable renewable sources of energy, and the need for a sustainable agricultural resource base have been driving forces for the development of biomass as a source of energy. The development of biomass conversion technologies, of high-yielding herbaceous and short-rotation woody biomass crops, of high-yielding food, feed, and fiber crops, and of livestock with higher levels of feed conversion efficiencies has made the transition from total reliance on fossil fuels to utilization of renewable sources of energy from biomass a reality. A variety of biomass conversion technologies have been developed and tested. Public utilities, private power companies, and the paper industry are interested in applying this technology. Direct burning of biomass and/or cofiring in existing facilities will reduce emissions of greenhouse and other undesirable gases. Legislation has been passed to promote biomass production and utilization for liquid fuels and electricity. Land is available. The production of short-rotation woody crops and perennial grasses provides alternatives to commodity crops to stabilize income in the agricultural sector. The production of biomass crops can also reduce soil erosion, sediment loadings to surface water, and agricultural chemical loadings to ground and surface water; provide wildlife habitat; increase income and employment opportunities in rural areas; and provide a more sustainable agricultural resource base.

  2. 75 FR 76695 - Request for Proposals for 2011 Woody Biomass Utilization Grant Program

    Science.gov (United States)

    2010-12-09

    ... from forest restoration activities, such as wildfire hazardous fuel treatments, insect and disease... INFORMATION: To address the goals of Public Law 110-234, Food, Conservation, and Energy Act of 2008, Rural... are: Promote projects that target and help remove economic and market barriers to using woody biomass...

  3. Comparative study of phloem loading radiotracer techniques for in vivo sucrose translocation in non woody and woody plants

    International Nuclear Information System (INIS)

    Kulkarni, Pranav; Pandey, Manish; Suprasanna Penna; Ramteke, Sahadeo

    2017-01-01

    The application of radioisotopes for analysing the in vivo physiological responses in plants is a well known practical approach for the plant physiologists. Physiological difference in woody and non woody plants necessitates the need for universal way of application of radioisotopes to study in vivo sucrose translocation. In this study, grape vine (Vitis vinifera cv. Thomson seedless) and mustard (Brassica juncea cv. Pusa Bold) plants having active source and sink were used as representative system for woody and non woody plants. In present work we applied different strategies for radio activity loading in both boody and non woody plant viz. phloem loading via cut end, direct injection into phloem and activity incorporation through minor vein of leaves (gaseous CO 2 incorporation)

  4. Woody debris volume depletion through decay: Implications for biomass and carbon accounting

    Science.gov (United States)

    Shawn Fraver; Amy M. Milo; John B. Bradford; Anthony W. D’Amato; Laura Kenefic; Brian J. Palik; Christopher W. Woodall; John Brissette

    2013-01-01

    Woody debris decay rates have recently received much attention because of the need to quantify temporal changes in forest carbon stocks. Published decay rates, available for many species, are commonly used to characterize deadwood biomass and carbon depletion. However, decay rates are often derived from reductions in wood density through time, which when used to model...

  5. Introducing perennial biomass crops into agricultural landscapes to address water quality challenges and provide other environmental services: Integrating perennial bioenergy crops into agricultural landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Cacho, J. F. [Environmental Science Division, Argonne National Laboratory, Lemont IL USA; Negri, M. C. [Environmental Science Division, Argonne National Laboratory, Lemont IL USA; Zumpf, C. R. [Environmental Science Division, Argonne National Laboratory, Lemont IL USA; Campbell, P. [Environmental Science Division, Argonne National Laboratory, Lemont IL USA

    2017-11-29

    The world is faced with a difficult multiple challenge of meeting nutritional, energy, and other basic needs, under a limited land and water budget, of between 9 and 10 billion people in the next three decades, mitigating impacts of climate change, and making agricultural production resilient. More productivity is expected from agricultural lands, but intensification of production could further impact the integrity of our finite surface water and groundwater resources. Integrating perennial bioenergy crops in agricultural lands could provide biomass for biofuel and potential improvements on the sustainability of commodity crop production. This article provides an overview of ways in which research has shown that perennial bioenergy grasses and short rotation woody crops can be incorporated into agricultural production systems with reduced indirect land use change, while increasing water quality benefits. Current challenges and opportunities as well as future directions are also highlighted.

  6. Selecting and optimizing eco-physiological parameters of Biome-BGC to reproduce observed woody and leaf biomass growth of Eucommia ulmoides plantation in China using Dakota optimizer

    Science.gov (United States)

    Miyauchi, T.; Machimura, T.

    2013-12-01

    In the simulation using an ecosystem process model, the adjustment of parameters is indispensable for improving the accuracy of prediction. This procedure, however, requires much time and effort for approaching the simulation results to the measurements on models consisting of various ecosystem processes. In this study, we tried to apply a general purpose optimization tool in the parameter optimization of an ecosystem model, and examined its validity by comparing the simulated and measured biomass growth of a woody plantation. A biometric survey of tree biomass growth was performed in 2009 in an 11-year old Eucommia ulmoides plantation in Henan Province, China. Climate of the site was dry temperate. Leaf, above- and below-ground woody biomass were measured from three cut trees and converted into carbon mass per area by measured carbon contents and stem density. Yearly woody biomass growth of the plantation was calculated according to allometric relationships determined by tree ring analysis of seven cut trees. We used Biome-BGC (Thornton, 2002) to reproduce biomass growth of the plantation. Air temperature and humidity from 1981 to 2010 was used as input climate condition. The plant functional type was deciduous broadleaf, and non-optimizing parameters were left default. 11-year long normal simulations were performed following a spin-up run. In order to select optimizing parameters, we analyzed the sensitivity of leaf, above- and below-ground woody biomass to eco-physiological parameters. Following the selection, optimization of parameters was performed by using the Dakota optimizer. Dakota is an optimizer developed by Sandia National Laboratories for providing a systematic and rapid means to obtain optimal designs using simulation based models. As the object function, we calculated the sum of relative errors between simulated and measured leaf, above- and below-ground woody carbon at each of eleven years. In an alternative run, errors at the last year (at the

  7. Field note: comparative efficacy of a woody evapotranspiration landfill cover following the removal of aboveground biomass.

    Science.gov (United States)

    Schnabel, William; Munk, Jens; Byrd, Amanda

    2015-01-01

    Woody vegetation cultivated for moisture management on evapotranspiration (ET) landfill covers could potentially serve a secondary function as a biomass crop. However, research is required to evaluate the extent to which trees could be harvested from ET covers without significantly impacting their moisture management function. This study investigated the drainage through a six-year-old, primarily poplar/cottonwood ET test cover for a period of one year following the harvest of all woody biomass exceeding a height of 30 cm above ground surface. Results were compared to previously reported drainage observed during the years leading up to the coppice event. In the first year following coppice, the ET cover was found to be 93% effective at redirecting moisture during the spring/summer season, and 95% effective during the subsequent fall/winter season. This was slightly lower than the 95% and 100% efficacy observed in the spring/summer and fall/winter seasons, respectively, during the final measured year prior to coppice. However, the post-coppice efficacy was higher than the efficacy observed during the first three years following establishment of the cover. While additional longer-term studies are recommended, this project demonstrated that woody ET covers could potentially produce harvestable biomass while still effectively managing aerial moisture.

  8. Woody biomass production in a spray irrigation wastewater treatment facility in North Carolina

    International Nuclear Information System (INIS)

    Frederick, D.; Lea, R.; Milosh, R.

    1993-01-01

    Application of municipal wastewater to deciduous tree plantations offers a viable opportunity to dispose of nutrients and pollutants, while protecting water quality. Production of woody biomass for energy or pulp mill furnish, using wastewater if feasible and markets exist in may parts of the world for this biomass. Plantations of sycamore (Platanus occidentalis L.), and sweetgum (Liquidambar styraciflua L.), have been established in Edenton, North Carolina for application of municipal wastewater. Research describing the dry weight biomass following the fifth year of seedling growth is presented along with future estimates for seedling and coppice yields. Ongoing and future work for estimating nutrient assimilation and wastewater renovation are described and discussed

  9. Overview of methods and tools for evaluating future woody biomass availability in European countries

    NARCIS (Netherlands)

    Barreiro, Susana; Schelhaas, Mart Jan; Kändler, Gerald; Antón-Fernández, Clara; Colin, Antoine; Bontemps, Jean Daniel; Alberdi, Iciar; Condés, Sonia; Dumitru, Marius; Ferezliev, Angel; Fischer, Christoph; Gasparini, Patrizia; Gschwantner, Thomas; Kindermann, Georg; Kjartansson, Bjarki; Kovácsevics, Pál; Kucera, Milos; Lundström, Anders; Marin, Gheorghe; Mozgeris, Gintautas; Nord-Larsen, Thomas; Packalen, Tuula; Redmond, John; Sacchelli, Sandro; Sims, Allan; Snorrason, Arnór; Stoyanov, Nickola; Thürig, Esther; Wikberg, Per Erik

    2016-01-01

    Key message: This analysis of the tools and methods currently in use for reporting woody biomass availability in 21 European countries has shown that most countries use, or are developing, National Forest Inventory-oriented models whereas the others use standwise forest inventory--oriented

  10. Woody and non-woody biomass utilisation for fuel and implications ...

    African Journals Online (AJOL)

    Plant biomass is a major source of energy for households in eastern Africa. Unfortunately, the heavy reliance on this form of energy is a threat to forest ecosystems and a recipe for accelerated land resource degradation. Due to the increasing scarcity of traditional fuel wood resources, rural communities have shifted to ...

  11. Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan

    International Nuclear Information System (INIS)

    Tabata, Tomohiro; Okuda, Takaaki

    2012-01-01

    This paper discusses the effectiveness of a woody biomass utilization system that would result in increased net energy production through wood pellet production, along with energy recovery processes as they relate to household energy demand. The direct environmental load of the system, including wood pellet production and utilization processes, was evaluated. Furthermore, the indirect load, including the economic impact of converting the existing fossil-fuel-based energy system into a woody biomass-based system, on the entire society was also evaluated. Gifu Prefecture in Japan was selected for a case study, which included a comparative evaluation of the environmental load and costs both with and without coordination with the wood pellet production process and the waste-to-energy of municipal solid waste process, using the life cycle assessment methodology. If the release of greenhouse gases from the combustion of wood pellets is included in calculations, then burning wood pellets results in unfavorable environmental consequences. However, when the reduced indirect environmental load due to the utilization of wood pellets versus petroleum is included in calculations, then favorable environmental consequences result, with a net reduction of greenhouse gases emissions by 14,060 ton-CO 2eq . -- Highlights: ► We evaluate economic and environmental impact of woody biomass utilization in household. ► Wood pellet utilization for house heating is advantageous to reduce greenhouse gas emissions. ► Reduction effect of greenhouse gas will be canceled out if carbon neutrality were considered. ► Net greenhouse gas emissions considering conversion of an ordinal energy system will be minus. ► Wood pellet utilization is advantageous not only in global warming but also for resource conservation.

  12. Climate mitigation comparison of woody biomass systems with the inclusion of land-use in the reference fossil system

    International Nuclear Information System (INIS)

    Haus, S.; Gustavsson, L.; Sathre, R.

    2014-01-01

    While issues of land-use have been considered in many direct analyses of biomass systems, little attention has heretofore been paid to land-use in reference fossil systems. Here we address this limitation by comparing forest biomass systems to reference fossil systems with explicit consideration of land-use in both systems. We estimate and compare the time profiles of greenhouse gas (GHG) emission and cumulative radiative forcing (CRF) of woody biomass systems and reference fossil systems. A life cycle perspective is used that includes all significant elements of both systems, including GHG emissions along the full material and energy chains. We consider the growth dynamics of forests under different management regimes, as well as energy and material substitution effects of harvested biomass. We determine the annual net emissions of CO 2 , N 2 O and CH 4 for each system over a 240-year period, and then calculate time profiles of CRF as a proxy measurement of climate change impact. The results show greatest potential for climate change mitigation when intensive forest management is applied in the woody biomass system. This methodological framework provides a tool to help determine optimal strategies for managing forests so as to minimize climate change impacts. The inclusion of land-use in the reference system improves the accuracy of quantitative projections of climate benefits of biomass-based systems. - Highlights: • We analyze the dynamics of GHG emissions from woody biomass and fossil systems. • With a life cycle perspective, we account for forest land-use in both systems. • Replacing more carbon intensive fossil fuels gives greater climate benefit. • Increasing the intensity of forest management gives greater climate benefit. • Methodological choices in defining temporal system boundaries are important

  13. Increased electricity production from straw by co-firing with woody biomass; Oekad elproduktion med halm genom sameldning med traedbraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Hedman, Henry; Nordgren, Daniel; Bostroem, Dan; Oehman, Marcus; Padban, Nader

    2011-01-15

    The use of straw in pulverised fuel-fired boiler is great technical challenge, especially when it comes to dealing with problems from slagging and fouling. Introduction of straw in the fuel mix of Swedish boilers will most likely be done by co-firing of woody biomass with straw, and this can provide a means to reduce the (well-documented) problems with fouling and slagging from straw. The project will focus on the faith of alkali metals (K and Na) as well as studies on the slagging and fouling propensity in pulverised fuel-fired boilers when straw is co-fired with woody biomass. A total of 5 different fuel mixtures has been fired in a 150 kW pilot-scale pulverised fuel-fired burner: (i) straw 100 %, (ii) straw/bark 50/50 %, (iii) straw/bark 75/25 % (iv) straw/wood 75/25 % (v) straw/wood 50/50 % (wt-%). The adding of woody biomass to straw has in all of the above-mentioned cases had some positive effect. In general, in all of the ash deposits, an increase in the concentration of Calcium (Ca) has been observed as well as a decrease in the concentrations of Potassium (K) and Silicon (Si). These general trends should be considered as a positive when combustion of straw is considered. Out of all ash deposits collected in the furnace, the characteristics of the bottom ash displayed the largest (positive) change and visual inspections and chemical analysis of the bottom ash showed that the ash had become more porous and contained more Calcium as more woody biomass was introduced in the fuel mix. The deposit build-up rate on the air cooled probes was reduced when more woody biomass was co-fired with straw. The reduction was highest in the trial where 50% woody biomass was used and the most apparent changes in composition could be seen in Calcium (increase) and Potassium (decrease). Danish experiences from introducing straw in pulverised fuel-fired boiler indicate that extra soot-blowers should be considered at the furnace walls and in connection to screen-tubes (if any

  14. FY 2000 Report on survey results. Curtailment of the carbon dioxide emission by effective use of woody biomass system waste; 2000 nendo mokushitsu biomass kei haikibutsu no yuko riyo ni yoru nisanka tanso haishutsu no sakugen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    It is estimated that the woody biomass resources in Japan total 42.70 million t/y on a dry basis (indigenous production: 20.00 million t/y), which corresponds to 18.00 million t/y as oil. This project studies effective utilization of low-quality biomass resources now discarded, e.g., thinning materials and demolition woods, by reference to biomass utilization pursued in European and North American countries. The study activities cover the 3 areas of woody biomass wastes, current status of biomass utilization technologies in the overseas countries, and feasibility of introduction of the utilization technologies, after investigating necessity of abatement of the green-effect gases, current status of energy demands and policies, and woody biomass. Utilization of biomass resources for low-temperature heat purposes, which is the central issue in Japan, is not well established both technologically and politically. Moreover, the biomass resources are not exposed to price competition. Based on these premises, a total of 6 scenarios are proposed to promote utilization of biomass resources, including power/heat co-generation at a wood processing center, and dual firing at existing coal-fired boilers. (NEDO)

  15. Assimilation of repeated woody biomass observations constrains decadal ecosystem carbon cycle uncertainty in aggrading forests

    Science.gov (United States)

    Smallman, T. L.; Exbrayat, J.-F.; Mencuccini, M.; Bloom, A. A.; Williams, M.

    2017-03-01

    Forest carbon sink strengths are governed by plant growth, mineralization of dead organic matter, and disturbance. Across landscapes, remote sensing can provide information about aboveground states of forests and this information can be linked to models to estimate carbon cycling in forests close to steady state. For aggrading forests this approach is more challenging and has not been demonstrated. Here we apply a Bayesian approach, linking a simple model to a range of data, to evaluate their information content, for two aggrading forests. We compare high information content analyses using local observations with retrievals using progressively sparser remotely sensed information (repeated, single, and no woody biomass observations). The net biome productivity of both forests is constrained to be a net sink with litter dynamics at one forest, while at the second forest total dead organic matter estimates are within observational uncertainty. The uncertainty of retrieved ecosystem traits in the repeated biomass analysis is reduced by up to 50% compared to analyses with less biomass information. This study quantifies the importance of repeated woody observations in constraining the dynamics of both wood and dead organic matter, highlighting the benefit of proposed remote sensing missions.

  16. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    Science.gov (United States)

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.

  17. The effect of assessment scale and metric selection on the greenhouse gas benefits of woody biomass

    International Nuclear Information System (INIS)

    Galik, Christopher S.; Abt, Robert C.

    2012-01-01

    Recent attention has focused on the net greenhouse gas (GHG) implications of using woody biomass to produce energy. In particular, a great deal of controversy has erupted over the appropriate manner and scale at which to evaluate these GHG effects. Here, we conduct a comparative assessment of six different assessment scales and four different metric calculation techniques against the backdrop of a common biomass demand scenario. We evaluate the net GHG balance of woody biomass co-firing in existing coal-fired facilities in the state of Virginia, finding that assessment scale and metric calculation technique do in fact strongly influence the net GHG balance yielded by this common scenario. Those assessment scales that do not include possible market effects attributable to increased biomass demand, including changes in forest area, forest management intensity, and traditional industry production, generally produce less-favorable GHG balances than those that do. Given the potential difficulty small operators may have generating or accessing information on the extent of these market effects, however, it is likely that stakeholders and policy makers will need to balance accuracy and comprehensiveness with reporting and administrative simplicity. -- Highlights: ► Greenhouse gas (GHG) effects of co-firing forest biomass with coal are assessed. ► GHG effect of replacing coal with forest biomass linked to scale, analytic approach. ► Not accounting for indirect market effects yields poorer relative GHG balances. ► Accounting systems must balance comprehensiveness with administrative simplicity.

  18. Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Dvorščík, P.; Vávrová, A.; Doušová, O.; Kadochová, Štěpánka; Matějíček, L.

    2015-01-01

    Roč. 84, November (2015), s. 233-239 ISSN 0925-8574 Grant - others:GA ČR(CZ) GAP504/12/1288 Program:GA Institutional support: RVO:60077344 Keywords : aerial photographs * reclaimed sites * succession * tree biomass * woody vegetation cover Subject RIV: EH - Ecology, Behaviour Impact factor: 2.740, year: 2015

  19. Use of financial and economic analyses by federal forest managers for woody biomass removal

    Science.gov (United States)

    Todd A. Morgan; Jason P. Brandt; John D. Baldridge; Dan R. Loeffler

    2011-01-01

    This study was sponsored by the Joint Fire Science Program to understand and enhance the ability of federal land managers to address financial and economic (F&E) aspects of woody biomass removal as a component of fire hazard reduction. Focus groups were conducted with nearly 100 federal land managers throughout the western United States. Several issues and...

  20. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  1. Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis.

    Science.gov (United States)

    Jeya, Marimuthu; Nguyen, Ngoc-Phuong-Thao; Moon, Hee-Jung; Kim, Sang-Hwan; Lee, Jung-Kul

    2010-11-01

    Agaricus arvensis, a newly isolated basidiomycetous fungus, was found to secrete efficient cellulases. The strain produced the highest endoglucanase (EG), cellobiohydrolase (CBH) and beta-glucosidase (BGL) activities of 0.3, 3.2 and 8U/mg-protein, respectively, with rice straw as the carbon source. Saccharification of the woody biomass with A. arvensis cellulase as the enzyme source released a high level of fermentable sugars. Enzymatic hydrolysis of the poplar biomass was optimized using the response surface methodology in order to study the influence of the variables (pH, temperature, cellulases concentration and substrate concentration). The enzyme and substrate concentrations were identified as the limiting factors for the saccharification of poplar wood biomass. A total reducing sugar level of 29g/L (293mg/g-substrate) was obtained at an enzyme concentration of 65FPU/g-substrate after optimization of the hydrolysis parameters. The model validation showed a good agreement between the experimental results and the predicted responses. A. arvensis could be a good candidate for the production of reducing sugars from a cellulosic biomass.

  2. Integrated carbon analysis of biomass production on fallow agricultural land and product substitution in Sweden - Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, Veronika; Eggers, Thies; Gustavsson, Leif [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    An important option in the Swedish context to reduce its net emissions of carbon dioxide (CO{sub 2}) is the increased use of biomass for energy and material substitution. On fallow agricultural land additional production of biomass would be possible. We analyse biomass production systems based on Norway spruce, hybrid poplar and willow hybrids and the use of this biomass to replace fossil energy and energy intensive material systems. The highest biomass production potential is for willow in southern Sweden. Fertilisation management of spruce could shorten the rotation lengths by about 17%. The fertilised production of Norway spruce with use of harvested timber for construction and use of remaining woody biomass for heat and power production gives the largest reductions of carbon emissions per hectare under the assumptions made. The use of willow for heat and power and of fertilised spruce for a wood product mix lead to the highest fossil primary energy savings in our scenarios. Spruce cultivations can achieve considerable carbon emission reductions in the long term, but willow and poplar might be a good option when fossil energy savings and carbon emission reductions should be achieved in the short term.

  3. Extension of apparent devolatilization kinetics from thermally thin to thermally thick particles in zero dimensions for woody biomass

    DEFF Research Database (Denmark)

    Johansen, Joakim M.; Jensen, Peter A.; Glarborg, Peter

    2016-01-01

    This work aims to provide an accurate and simple model, predicting the time dependent devolatilization of woody biomass at conditions (Tgaszero dimensional model is developed from reference calculations with a one...

  4. Transient Catalytic Activity of Calcined Dolomitic Limestone in a Fluidized Bed during Gasification of Woody Biomass.

    Czech Academy of Sciences Publication Activity Database

    Pohořelý, Michael; Jeremiáš, Michal; Skoblia, S.; Beňo, Z.; Šyc, Michal; Svoboda, Karel

    2016-01-01

    Roč. 30, č. 5 (2016), s. 4065-4071 ISSN 0887-0624 R&D Projects: GA ČR GC14-09692J Institutional support: RVO:67985858 Keywords : fluidized- bed gasification * woody biomass * limestone Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.091, year: 2016

  5. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    International Nuclear Information System (INIS)

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Highlights: • Novel optimization-based methodology to integrate renewable energy systems in cities. • Multiperiod model including storage, heat integration and Life Cycle Assessment. • Case study: systematic assessment of deep geothermal and wood conversion pathways. • Identification of novel wood-geothermal hybrid systems leading to higher efficiencies. • Extensive Supplementary Material to ensure full reproducibility of the work. - Abstract: Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and woody biomass in an urban energy system. The city is modeled in its entirety as a multiperiod optimization problem with the total annual cost as an objective, assessing as well the environmental impact with a Life Cycle Assessment approach. For geothermal energy, deep aquifers and Enhanced Geothermal Systems are considered for stand-alone production of heat and electricity, and for cogeneration. For biomass, besides direct combustion and cogeneration, conversion to biofuels by a set of alternative processes (pyrolysis, Fischer-Tropsch synthesis and synthetic natural gas production) is studied. With a scenario-based approach, all pathways are first individually evaluated. Secondly, all possible combinations between geothermal and biomass options are systematically compared, taking into account the possibility of hybrid systems. Results show that integrating these two resources generates configurations featuring both lower costs and environmental impacts. In particular, synergies are found in innovative hybrid systems using

  6. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    OpenAIRE

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and...

  7. Yield prediction of young black locust (Robinia pseudoacacia L. plantations for woody biomass production using allometric relations

    Directory of Open Access Journals (Sweden)

    Christian Böhm

    2013-12-01

    Full Text Available Black locust (Robinia pseudoacacia L. is an increasingly popular tree species for the production of woody biomass for bioenergy generation with short rotation coppices. Due to its potential to produce large amounts of biomass yields even under unfavourable growth conditions, this tree species is especially suitable for marginal sites, such as can be found in the post mining area of NE-Germany. Current research aims to reliably predict the yield potential of black locust short rotation coppices, but suffers from a lack of sufficient exact allometric functions until recently. This is especially true for the early growth years, which are of special importance for short rotation coppices. The objective of this study was to develop allometric equations based on tree height and shoot basal diameter (SBD for estimating yields of young black locust plantations. Therefore, dendrometric data were collected in a two, three, four and fourteen years old black locust short rotation forest located in the reclamation area of an opencast-lignite mining area in the Lower Lusatian region (Germany and used for equation developing. Until measurement, none of the plantations had been harvested. Closed correlations between SBD and tree height were observed, as well as between these parameters and single tree mass. The scattering of single tree masses could be explained slightly better by the SBD than by the tree height. In the year before a harvest an even better prediction probability of woody biomass was obtainable when both parameters were simultaneously interrelated with the single tree mass. The results illustrate that the woody above ground biomass of young black locust plantations can be estimated sufficiently precisely based on the easy determinable parameters tree height and particularly SBD.

  8. Potential and impacts of renewable energy production from agricultural biomass in Canada

    International Nuclear Information System (INIS)

    Liu, Tingting; McConkey, Brian; Huffman, Ted; Smith, Stephen; MacGregor, Bob; Yemshanov, Denys; Kulshreshtha, Suren

    2014-01-01

    Highlights: • This study quantifies the bioenergy production potential in the Canadian agricultural sector. • Two presented scenarios included the mix of market and non-market policy targets and the market-only drivers. • The scenario that used mix of market and policy drivers had the largest impact on the production of bioenergy. • The production of biomass-based ethanol and electricity could cause moderate land use changes up to 0.32 Mha. • Overall, agricultural sector has a considerable potential to generate renewable energy from biomass. - Abstract: Agriculture has the potential to supply considerable amounts of biomass for renewable energy production from dedicated energy crops as well as from crop residues of existing production. Bioenergy production can contribute to the reduction of greenhouse gas (GHG) emissions by using ethanol and biodiesel to displace petroleum-based fuels and through direct burning of biomass to offset coal use for generating electricity. We used the Canadian Economic and Emissions Model for Agriculture to estimate the potential for renewable energy production from biomass, the impacts on agricultural production, land use change and greenhouse gas emissions. We explored two scenarios: the first considers a combination of market incentives and policy mandates (crude oil price of $120 bbl −1 ; carbon offset price of $50 Mg −1 CO 2 equivalent and policy targets of a substitution of 20% of gasoline by biomass-based ethanol; 8% of petroleum diesel by biodiesel and 20% of coal-based electricity by direct biomass combustion), and a second scenario considers only carbon offset market incentives priced at $50 Mg −1 CO 2 equivalent. The results show that under the combination of market incentives and policy mandates scenario, the production of biomass-based ethanol and electricity increases considerably and could potentially cause substantial changes in land use practices. Overall, agriculture has considerable potential to

  9. Energy potential through agricultural biomass using geographical information system - A case study of Punjab

    International Nuclear Information System (INIS)

    Singh, Jagtar; Panesar, B.S.; Sharma, S.K.

    2008-01-01

    Agricultural biomass has immense potential for power production in an Indian state like Punjab. A judicious use of biomass energy could potentially play an important role in mitigating environmental impacts of non-renewable energy sources particularly global warming and acid rain. But the availability of agricultural biomass is spatially scattered. The spatial distribution of this resource and the associate costs of collection and transportation are major bottlenecks for the success of biomass energy conversion facilities. Biomass, being scattered and loose, has huge collection and transportation costs, which can be reduced by properly planning and locating the biomass collection centers for biomass-based power plants. Before planning the collection centers, it is necessary to evaluate the biomass, energy and collection cost of biomass in the field. In this paper, an attempt has been made to evaluate the spatial potential of biomass with geographical information system (GIS) and a mathematical model for collection of biomass in the field has been developed. The total amount of unused agricultural biomass is about 13.73 Mt year -1 . The total power generation capacity from unused biomass is approximately 900 MW. The collection cost in the field up to the carrier unit is US$3.90 t -1 . (author)

  10. Evaluation of biomass quality of selected woody species depending on the soil enrichment practice

    Science.gov (United States)

    Stolarski, Mariusz J.; Krzyżaniak, Michał; Załuski, Dariusz; Niksa, Dariusz

    2018-01-01

    Perennial energy crops are a source of the bio-mass used to generate energy. The aim of this study was to determine the chemical and thermophysical parameters of short rotation woody crops (black locust, poplar and willow), depending on soil enrichment practice (mineral fertilisation, lignin and mycorrhiza), in three- and four-year harvest cycles. In the study, the thermophysical properties and elemental composition of the biomass were determined. All analyses were performed in trip-licate according to the standards. The fresh black locust biomass had the lowest moisture content, which resulted in the best lower heating value (10.16 MJ kg-1, on average) in the four-year harvest cycle. The poplar biomass had the greatest higher heating value, fixed carbon, carbon and ash content, the highest concentrations of which were found in the biomass in which lignin was applied (2.00% d.m.). On the other hand, the willow biomass contained the lowest concentrations of ash and fixed carbon. Soil enrichment significantly differentiated the quality parameters of black locust, poplar and willow. This effect is of particular importance to those who grow and use biomass as a fuel.

  11. Regional Comparative Advantage for Woody Biofuels Production

    Science.gov (United States)

    Timothy M. Young; Donald G. Hodges; Robert C. Abt; Andy J. Hartsell; James H. Perdue

    2009-01-01

    The economic availability of woody biomass for the southeastern United States is summarized in this final report for the U.S. Department of Transportation, Southeastern Sun Grant Center research contract R11-0515-016 as administered by the University of Tennessee. Georeferenced economic supply curves (marginal cost curves) for woody biomass producers’ for the 13...

  12. Evaluating a biomass resource: The TVA region-wide biomass resource assessment model

    Energy Technology Data Exchange (ETDEWEB)

    Downing, M.; Graham, R.L. [Oak Ridge National Lab., TN (United States)

    1993-12-31

    The economic and supply structures of short rotation woody crop (SRWC) markets have not been established. Establishing the likely price and supply of SRWC biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas and coal. In this study we project the cost and supply of short-rotation woody biomass for the TVA region -- a 276 county area that includes all of Tennessee and portions of 10 contiguous states in the southeastern United States. Projected prices and quantities of SRWC are assumed to be a function of the amount and quality of crop and pasture land available in a region, expected SRWC yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curve of SRWC biomass that is projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of SRWC production. Finally, we show the results of sensitivity analysis on the projected cost and supply of SRWC biomass. In particular, we examine the separate impacts of varying SRWC production yields.

  13. Selective enhancement and verification of woody biomass digestibility as a denitrification carbon source.

    Science.gov (United States)

    Hu, Rongting; Zheng, Xilai; Xin, Jia; Sun, Zhaoyue; Zheng, Tianyuan

    2017-11-01

    The denitrification efficiency of woody biomass as carbon source is low because of its poor carbon availability. In this study, representative poplar sawdust was pretreated with lime and peracetic acid to enhance the biomass digestibility to different degrees; sawdust was then mixed with soil to investigate its denitrification efficiency. Under controllable conditions (25-95°C, 12-24h, varying dosages), sawdust digestibility (characterized by reducing sugar yield) was selectively enhanced 1.0-21.8 times over that of the raw sawdust (28.8mgeq.glucoseg -1 dry biomass). This increase was mainly attributed to the removal of lignin from the biomass. As a carbon source, the sawdust (digestibility enhanced by 5.4 times) increased the nitrate removal rate by 4.7 times, without N 2 O emission. However, the sawdust with high digestibility (12.6 or 18.0 times), despite releasing more dissolved organic carbon (DOC), did not exhibit further increase in denitrification efficiency, and emitted N 2 O. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Bamboo: An Overlooked Biomass Resource?

    Energy Technology Data Exchange (ETDEWEB)

    Scurlock, J.M.O.

    2000-02-01

    Bamboo is the common term applied to a broad group (1250 species) of large woody grasses, ranging from 10 cm to 40 m in height. Already in everyday use by about 2.5 billion people, mostly for fiber and food within Asia, bamboo may have potential as a bioenergy or fiber crop for niche markets, although some reports of its high productivity seem to be exaggerated. Literature on bamboo productivity is scarce, with most reports coming from various parts of Asia. There is little evidence overall that bamboo is significantly more productive than many other candidate bioenergy crops, but it shares a number of desirable fuel characteristics with certain other bioenergy feedstocks, such as low ash content and alkali index. Its heating value is lower than many woody biomass feedstocks but higher than most agricultural residues, grasses and straws. Although non-fuel applications of bamboo biomass may be actually more profitable than energy recovery, there may also be potential for co-productio n of bioenergy together with other bamboo processing. A significant drawback is the difficulty of selective breeding, given the lack of knowledge of flowering physiology. Further research is also required on propagation techniques, establishment and stand management, and mechanized harvesting needs to be developed.

  15. Routing of biomass for sustainable agricultural development

    International Nuclear Information System (INIS)

    Suhaimi Masduki; Aini Zakaria

    1998-01-01

    Photosynthetically derived biomass and residues, including waste products from food processing industries are renewable. They accumulate every year in large quantities, causing deterioration to the environment and loss of potentially valuable resources. The conserved energy is potentially convertible; thermodynamically the energy can be tapped into forms which are more amenable for value added agricultural applications or for other higher value products such as chemicals or their feedstocks. The forms and types in which this biomass has to be modified for the intended use depend on the costs or the respective alternatives. Under current situations, where chemical feedstocks are available in abundance at very competitive prices, biomass is obviously more suitably placed in the agro-industrial sector. Recycling of the biomass or residues into the soil as biofertilizers or for some other uses for agricultural applications requires less intense energy inputs for their improvements. Highly efficient biological processes with microorganisms as the primary movers in the production of the desired end products indeed require less capital costs than in most other industrial entities. In this paper, the various processes, which are potentially valuable and economically feasible in the conversion of biomass and residues for several products important in the agricultural sector, are described. Emphasis is given to the approach and the possible permutations of these processes to arrive at the desired good quality products for sustainable agricultural development. (Author)

  16. Pre-damage biomass allocation and not invasiveness predicts tolerance to damage in seedlings of woody species in Hawaii.

    Science.gov (United States)

    Lurie, Matthew H; Barton, Kasey E; Daehler, Curtis C

    2017-12-01

    Plant-herbivore interactions have been predicted to play a fundamental role in plant invasions, although support for this assertion from previous research is mixed. While plants may escape from specialist herbivores in their introduced ranges, herbivory from generalists is common. Tolerance traits may allow non-native plants to mitigate the negative consequences of generalist herbivory that they cannot avoid in their introduced range. Here we address whether tolerance to herbivory, quantified as survival and compensatory growth, is associated with plant invasion success in Hawaii and investigate traits that may enhance tolerance in seedlings, the life stage most susceptible to herbivory. In a greenhouse experiment, we measured seedling tolerance to simulated herbivory through mechanical damage (50% leaf removal) of 16 non-native woody plant species differing in invasion status (invasive vs. non-invasive). Seedlings were grown for 2 weeks following damage and analyzed for biomass to determine whether damaged plants could fully compensate for the lost leaf tissue. Over 99% of all seedlings survived defoliation. Although species varied significantly in their levels of compensation, there was no consistent difference between invasive and non-invasive species. Seedlings of 11 species undercompensated and remained substantially smaller than control seedlings 2 weeks after damage; four species were close to compensating, while one species overcompensated. Across species, compensation was positively associated with an increased investment in potential storage reserves, specifically cotyledons and roots, suggesting that these organs provide resources that help seedlings re-grow following damage. Our results add to a growing consensus that pre-damage growth patterns determine tolerance to damage, even in young seedlings which have relatively low biomass. The lack of higher tolerance in highly invasive species may suggest that invaders overcome herbivory barriers to invasion

  17. Assessment of potential biomass energy production in China towards 2030 and 2050

    OpenAIRE

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources...

  18. Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil.

    Science.gov (United States)

    Bandara, Tharanga; Herath, Indika; Kumarathilaka, Prasanna; Hseu, Zeng-Yei; Ok, Yong Sik; Vithanage, Meththika

    2017-04-01

    Crops grown in metal-rich serpentine soils are vulnerable to phytotoxicity. In this study, Gliricidia sepium (Jacq.) biomass and woody biochar were examined as amendments on heavy metal immobilization in a serpentine soil. Woody biochar was produced by slow pyrolysis of Gliricidia sepium (Jacq.) biomass at 300 and 500 °C. A pot experiment was conducted for 6 weeks with tomato (Lycopersicon esculentum L.) at biochar application rates of 0, 22, 55 and 110 t ha -1 . The CaCl 2 and sequential extractions were adopted to assess metal bioavailability and fractionation. Six weeks after germination, plants cultivated on the control could not survive, while all the plants were grown normally on the soils amended with biochars. The most effective treatment for metal immobilization was BC500-110 as indicated by the immobilization efficiencies for Ni, Mn and Cr that were 68, 92 and 42 %, respectively, compared to the control. Biochar produced at 500 °C and at high application rates immobilized heavy metals significantly. Improvements in plant growth in biochar-amended soil were related to decreasing in metal toxicity as a consequence of metal immobilization through strong sorption due to high surface area and functional groups.

  19. Water-based woody biorefinery.

    Science.gov (United States)

    Amidon, Thomas E; Liu, Shijie

    2009-01-01

    The conversion of biomass into chemicals and energy is essential in order to sustain our present way of life. Fossil fuels are currently the predominant energy source, but fossil deposits are limited and not renewable. Biomass is a reliable potential source of materials, chemicals and energy that can be replenished to keep pace with our needs. A biorefinery is a concept for the collection of processes used to convert biomass into materials, chemicals and energy. The biorefinery is a "catch and release" method for using carbon that is beneficial to both the environment and the economy. In this study, we discuss three elements of a wood-based biorefinery, as proposed by the SUNY College of Environmental Science and Forestry (ESF): hot-water extraction, hydrolysis, and membrane separation/concentration. Hemicelluloses are the most easily separable main component of woody biomass and thus form the bulk of the extracts obtained by hot-water extraction of woody biomass. Hot-water extraction is an important step in the processes of woody biomass and product generation, replacing alternative costly pre-treatment methods. The hydrolysis of hemicelluloses produces 5-carbon sugars (mainly xylose), 6-carbon sugars (mainly glucose and mannose), and acetic acid. The use of nano-filtration membranes is an efficient technology that can be employed to fractionate hot-water extracts and wood hydrolysate. The residual solid mass after hot-water extraction has a higher energy content and contains fewer easily degradable components. This allows for more efficient subsequent processing to convert cellulose and lignin into conventional products.

  20. Land use changes and development of the non-forest woody vegetation in the Danubian Lowland in Slovakia

    Directory of Open Access Journals (Sweden)

    Supuka Ján

    2018-03-01

    Full Text Available The aim of this paper is to assess the changes in the landscape structure of the Žitný Ostrov territory and in the woody species of the non-forest woody vegetation (NFWV over the past 120 years. Within the assessed periods of 1892, 1949, 1969 and 2015, the shares of arable land increased by 17% while the ratio of the built-up areas with gardens increased by 3.7%. At the same time, natural habitats, grassland, waterlogged meadows and wetlands decreased by 26%. These changes, concerning small mosaic plots as well as large cultural blocks, were caused by the intensification of agriculture after 1948. Ecological stability and biodiversity of these areas has decreased. Thereafter 60 windbreaks were planted from 1951–1952 in an area of 30 ha. In total, 37 woody species were planted, of which 22 were alien species. After 25 years (in 1976, 19 of the same windbreaks were surveyed, observing 16 native and 12 alien woody species. During these periods, many rare alien and coniferous species died. In 2015, 13 windbreaks with 39 woody species were identified, both in the tree and the shrubby layer. The downside is that four of the long-time surviving species are invasive trees.

  1. Thermochemical Conversion of Woody Biomass to Fuels and Chemicals Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pendse, Hemant P. [Univ. of Maine, Orono, ME (United States)

    2015-09-30

    Maine and its industries identified more efficient utilization of biomass as a critical economic development issue. In Phase I of this implementation project, a research team was assembled, research equipment was implemented and expertise was demonstrated in pyrolysis, hydrodeoxygenation of pyrolysis oils, catalyst synthesis and characterization, and reaction engineering. Phase II built upon the infrastructure to innovate reaction pathways and process engineering, and integrate new approaches for fuels and chemical production within pulp and paper and other industries within the state. This research cluster brought together chemists, engineers, physicists and students from the University of Maine, Bates College, and Bowdoin College. The project developed collaborations with Oak Ridge National Laboratory and Brookhaven National Laboratory. The specific research projects within this proposal were of critical interest to the DoE - in particular the biomass program within EERE and the catalysis/chemical transformations program within BES. Scientific and Technical Merit highlights of this project included: (1) synthesis and physical characterization of novel size-selective catalyst/supports using engineered mesoporous (1-10 nm diameter pores) materials, (2) advances in fundamental knowledge of novel support/ metal catalyst systems tailored for pyrolysis oil upgrading, (3) a microcalorimetric sensing technique, (4) improved methods for pyrolysis oil characterization, (5) production and characterization of woody biomass-derived pyrolysis oils, (6) development of two new patented bio oil pathways: thermal deoxygenation (TDO) and formate assisted pyrolysis (FASP), and (7) technoeconomics of pyrolysis of Maine forest biomass. This research cluster has provided fundamental knowledge to enable and assess pathways to thermally convert biomass to hydrocarbon fuels and chemicals.

  2. Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review

    Directory of Open Access Journals (Sweden)

    Andreas Brekke

    2011-05-01

    Full Text Available This article reviews and compares assessments of three biodiesel fuels: (1 transesterified lipids, (2 hydrotreated vegetable oils (HVO, and (3 woody biomass-to-liquid (BTL Fischer-Tropsch diesel and selected feedstock options. The article attempts to rank the environmental performance and costs of fuel and feedstock combinations. Due to inter-study differences in goal and study assumptions, the ranking was mostly qualitative and intra-study results are emphasized. Results indicate that HVO made from wastes or by-products such as tall oil, tallow or used cooking oil outperform transesterified lipids and BTL from woody material, both with respect to environmental life cycle impacts and costs. These feedstock options are, however, of limited availability, and to produce larger volumes of biofuels other raw materials must also be used. BTL from woody biomass seems promising with good environmental performance and the ability not to compete with food production. Production of biofuels from agricultural feedstock sources requires much energy and leads to considerable emissions due to agrochemical inputs. Thus, such biodiesel fuels are ranked lowest in this comparison. Production of feedstock is the most important life cycle stage. Avoiding detrimental land use changes and maintaining good agricultural or forestry management practices are the main challenges to ensure that biofuels can be a sustainable option for the future transport sector.

  3. Evaluating a biomass resource: The TVA region-wide biomass resource assessment model

    International Nuclear Information System (INIS)

    Downing, M.; Graham, R.L.

    1993-01-01

    Wood is an alterative fuel for electric power generation at coal-fired plants in the Tennessee Valley Authority (TVA) region. Short rotation wood energy crops (SRWC) could provide a source of this woody biomass. However, the economic and supply structures of SRWC markets have not been established. Establishing the likely price and supply of SRWC biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas and coal. In this study we project the cost and supply of short-rotation woody biomass for the TVA region -- a 276 county area that includes all of Tennessee and portions of 10 contiguous states in the southeastern United States. Projected prices and quantities of SRWC are assumed to be a function of the amount and quality of crop and pasture land available in a region. expected SRWC yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curve of SRWC biomass that is projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of SRWC production. Finally, we show the results of sensitivity analysis on the projected cost and supply of SRWC biomass. In particular, we examine the separate impacts of varying SRWC production yields

  4. EnerGEO biomass pilot

    International Nuclear Information System (INIS)

    Tum, M.; Guenther, K.P.; McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S.; Biberacher, M.

    2013-01-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  5. EnerGEO biomass pilot

    Energy Technology Data Exchange (ETDEWEB)

    Tum, M.; Guenther, K.P. [German Aerospace Center (DLR), Wessling (Germany). German Remote Sensing Data Center (DFD); McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S. [International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Biberacher, M. [Research Studios Austria AG (RSA), Salzburg (Austria)

    2013-07-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  6. Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass

    International Nuclear Information System (INIS)

    Yao, Zhiyi; Li, Wangliang; Kan, Xiang; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2017-01-01

    There is a rapid growing interest in using biomass as an alternative source for clean and sustainable energy production. In this work, a hybrid system was developed to combine anaerobic digestion (AD) and gasification for energy recovery from yard waste and woody biomass. The feasibility of the proposed hybrid system was validated experimentally and numerically and the energy efficiency was maximized by varying energy input in the drying process. The experiments were performed in two stages. At the first stage, AD of yard waste was conducted by mixing with anaerobic sludge. At the second stage, co-gasification was added as post-treatment for the AD residue for syngas production. The co-gasification experiments of AD residue and woody biomass were conducted at varying mixing ratios and varying moisture contents of AD residue. Optimal energy efficiency was found to be 70.8% at mixing ratio of 20 wt% AD residue with 30 wt% moisture content. Two kinetic models were then adapted for prediction of biogas produced in AD process and syngas produced in gasification process, respectively. Both experimental and numerical results showed that full utilization of biomass could be realized to produce energy through the combination of these two technologies. - Highlights: • The feasibility of the proposed two-stage hybrid system was validated experimentally and numerically. • The proposed hybrid system could effectively improve the quality of produced gas. • The operating parameters were optimized to improve the overall energy efficiency of the system. • Drying process was found to play an important role in determining overall energy efficiency. • Optimal moisture content of AD residue was investigated for maximizing energy efficiency.

  7. Evaluating ecohydrological theories of woody root distribution in the Kalahari.

    Directory of Open Access Journals (Sweden)

    Abinash Bhattachan

    Full Text Available The contribution of savannas to global carbon storage is poorly understood, in part due to lack of knowledge of the amount of belowground biomass. In these ecosystems, the coexistence of woody and herbaceous life forms is often explained on the basis of belowground interactions among roots. However, the distribution of root biomass in savannas has seldom been investigated, and the dependence of root biomass on rainfall regime remains unclear, particularly for woody plants. Here we investigate patterns of belowground woody biomass along a rainfall gradient in the Kalahari of southern Africa, a region with consistent sandy soils. We test the hypotheses that (1 the root depth increases with mean annual precipitation (root optimality and plant hydrotropism hypothesis, and (2 the root-to-shoot ratio increases with decreasing mean annual rainfall (functional equilibrium hypothesis. Both hypotheses have been previously assessed for herbaceous vegetation using global root data sets. Our data do not support these hypotheses for the case of woody plants in savannas. We find that in the Kalahari, the root profiles of woody plants do not become deeper with increasing mean annual precipitation, whereas the root-to-shoot ratios decrease along a gradient of increasing aridity.

  8. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Science.gov (United States)

    Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko

    2010-12-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.

  9. Biomass valorisation, a new dynamics for French agriculture. Colloquium proceedings

    International Nuclear Information System (INIS)

    2006-04-01

    This document brings together the summary of the presentations given at this colloquium on French agriculture and biomass valorisation and the slides of the available presentations as well. The colloquium started with the opening talk by D. Bussereau (Ministry of agriculture and fisheries) who presented an international overview of biomass activities. The colloquium was divided in two parts with presentations and round-tables: 1 - the post-petroleum era: energy context and raw materials market (P. Chalmin, Cyclope); first round-table on biofuels today and tomorrow; back to the basics (C. Roy); 2 - Biomass and industry: second round-table on cellulose - an oldie promised to a bright future; status of biomass valorisation (M. Pappalardo, ADEME); third round-table: the boom of green chemistry; closing talk by C. Roy. Sixteen presentations (slides) are attached to the document: 1 - Opening talk (D. Bussereau, Ministry of agriculture and fisheries); 2 - Biomass, agriculture, forestry and climate, some basics (C. Roy); 3 - Role of biomass in the fight against climate change and in supplies diversification (M. Pappalardo, Ademe); 4 - The 2005/2006 shock on world markets: energy and raw materials (P. Chalmin, Cyclope); 5 - Actions in the energy domain (A. Chosson, CLCV); 6 - Ethanol production (A. Jeanroy); 7 - The 'biofuels' commitment of PSA Peugeot Citroen car maker (Beatrice Perrier-Maurer, PSA); 8 - Bio-diesel development (Bernard Nicol, Diester Industrie); 9 - First round-table on biofuels today and tomorrow: biofuels and conventional fuels - for an harmonious development of resources and outlets (J.B. Sigaud, Petroleum and Engines School); 10 - Agriculture biomass: source of cellulose (C. Burren, Ungrains, Arvalis); 11 - Electrical and thermal valorisations of biomass (C. Jurczak, MINEFI/DGEMP); 12 - Some elements of thought on new uses of biomass as 'material' (Jacques Sturm, Afocel) 13 - Presentation of Agrice (Agriculture for chemistry and energy) research

  10. Driftless Area Initiative Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Angie [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Bertjens, Steve [Natural Resources Conservation Service, Madison, WI (United States); Lieurance, Mike [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Berguson, Bill [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.; Buchman, Dan [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  11. On the potential of long wavelength imaging radars for mapping vegetation types and woody biomass in tropical rain forests

    Science.gov (United States)

    Rignot, Eric J.; Zimmermann, Reiner; Oren, Ram

    1995-01-01

    In the tropical rain forests of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 100 kg/sq m in old, undisturbed floodplain stands, the P-band polarimetric radar data gathered in June of 1993 by the AIRSAR (Airborne Synthetic Aperture Radar) instrument separate most major vegetation formations and also perform better than expected in estimating woody biomass. The worldwide need for large scale, updated biomass estimates, achieved with a uniformly applied method, as well as reliable maps of land cover, justifies a more in-depth exploration of long wavelength imaging radar applications for tropical forests inventories.

  12. Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis.

    Directory of Open Access Journals (Sweden)

    Pankaj Agrawal

    Full Text Available Lignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plant-based production of these enzymes on large scale offers a cost-effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. β-mannanase catalyzes endo-hydrolysis of the mannan backbone, a major constituent of woody biomass. In this study, the man1 gene encoding β-mannanase was isolated from Trichoderma reesei and expressed via the chloroplast genome. PCR and Southern hybridization analysis confirmed site-specific transgene integration into the tobacco chloroplast genomes and homoplasmy. Transplastomic plants were fertile and set viable seeds. Germination of seeds in the selection medium showed inheritance of transgenes into the progeny without any Mendelian segregation. Expression of endo-β-mannanase for the first time in plants facilitated its characterization for use in enhanced lignocellulosic biomass hydrolysis. Gel diffusion assay for endo-β-mannanase showed the zone of clearance confirming functionality of chloroplast-derived mannanase. Endo-β-mannanase expression levels reached up to 25 units per gram of leaf (fresh weight. Chloroplast-derived mannanase had higher temperature stability (40 °C to 70 °C and wider pH optima (pH 3.0 to 7.0 than E.coli enzyme extracts. Plant crude extracts showed 6-7 fold higher enzyme activity than E.coli extracts due to the formation of disulfide bonds in chloroplasts, thereby facilitating their direct utilization in enzyme cocktails without any purification. Chloroplast-derived mannanase when added to the enzyme cocktail containing a combination of different plant-derived enzymes yielded 20% more glucose equivalents from pinewood than the

  13. Novel micronized woody biomass process for production of cost-effective clean fermentable sugars.

    Science.gov (United States)

    Fu, Yu; Gu, Bon-Jae; Wang, Jinwu; Gao, Johnway; Ganjyal, Girish M; Wolcott, Michael P

    2018-03-29

    Thermo-chemical pretreatments of biomass typically result in environmental impacts from water use and emission. The degradation byproducts in the resulting sugars can be inhibitory to the activities of enzymes and yeasts. The results of this study showed that combining existing commercial comminution technology can reduce total energy consumption with improved saccharification yield while eliminating chemical use. Impact mill was found to be the most efficient milling for size reduction of forest residual chips from ca. 2 mm to a specific value below 100 µm. The further micronization effectively disrupted the recalcitrance of the woody biomass and produced the highly saccharifiable substrates for downstream processing. In addition, extrusion can be integrated into a clean cellulosic sugar process for further fibrillation in place of the conventional mixing processing. The highest energy efficiency was observed on the impact-milled samples with 0.515 kg sugars kWh -1 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Determinants of patchiness of woody vegetation in an African savanna

    NARCIS (Netherlands)

    Veldhuis, Michiel P.; Rozen-Rechels, David; le Roux, Elizabeth; Cromsigt, Joris P.G.M.; Berg, Matheus P.; Olff, Han

    2016-01-01

    How is woody vegetation patchiness affected by rainfall, fire and large herbivore biomass? Can we predict woody patchiness and cover over large-scale environmental gradients? We quantified variation in local patchiness as the lacunarity of woody cover on satellite-derived images. Using Random Forest

  15. Green House Gas Control and Agricultural Biomass for Sustainable Animal Agriculture in Developing Countries

    Directory of Open Access Journals (Sweden)

    J Takahashi

    2010-06-01

    Full Text Available Important green house gases (GHG attributed to animal agriculture are methane (CH4 and nitrous oxide (N2O, though carbon dioxide (CO2 contributes almost half of total greenhouse effect. Rumen CH4 production in an enteric fermentation can be accounted as the biggest anthropogenic source. Some of prebiotics and probiotics have been innovated to mitigate rumen CH4 emission. The possible use of agricultural biomass consisted of non-edible parts of crop plants such as cellulose and hemi cellulose and animal wastes was proposed as a renewable energy and nitrogen sources. The ammonia stripping from digested slurry of animal manure in biogas plant applied three options of nitrogen recycling to mitigate nitrous oxide emission. In the first option of the ammonia stripping, the effect of ammonolysis on feed value of cellulose biomass was evaluated on digestibility, energy metabolism and protein utilization. Saccharification of the NH3 treated cellulose biomass was confirmed in strictly anaerobic incubation with rumen cellulolytic bacteria, Ruminoccous flavefaciens, to produce bio-ethanol as the second option of ammonia stripping. In an attempt of NH3 fuel cell, the reformed hydrogen from the NH3 stripped from 20 liter of digested slurry in thermophilic biogas plant could generate 0.12 W electricity with proton exchange membrane fuel cell (PEM as the third option.

  16. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused...... work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10PJ/year. The added value of fruit trees pruning...... biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost....

  17. Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header

    Energy Technology Data Exchange (ETDEWEB)

    Eisenbies, Mark [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Volk, Timothy [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Abrahamson, Lawrence [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Shuren, Richard [GreenWood Resources, Inc., Portland, OR (United States); Stanton, Brian [GreenWood Resources, Inc., Portland, OR (United States); Posselius, John [Case New Holland, New Holland, PA (United States); McArdle, Matt [Mesa Reduction Engineering and Processing, Inc., Auburn, NY (United States); Karapetyan, Samvel [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Patel, Aayushi [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Shi, Shun [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Zerpa, Jose [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States)

    2014-10-03

    Biomass for biofuels, bioproducts and bioenergy can be sourced from forests, agricultural crops, various residue streams, and dedicated woody or herbaceous crops. Short rotation woody crops (SRWC), like willow and hybrid poplar, are perennial cropping systems that produce a number of environmental and economic development benefits in addition to being a renewable source of biomass that can be produced on marginal land. Both hybrid poplar and willow have several characteristics that make them an ideal feedstock for biofuels, bioproducts, and bioenergy; these include high yields that can be obtained in three to four years, ease of cultivar propagation from dormant cuttings, a broad underutilized genetic base, ease of breeding, ability to resprout after multiple harvests, and feedstock composition similar to other sources of woody biomass. Despite the range of benefits associated with SRWC systems, their deployment has been restricted by high costs, low market acceptance associated with inconsistent chip quality (see below for further explanation), and misperceptions about other feedstock characteristics (see below for further explanation). Harvesting of SRWC is the largest single cost factor (~1/3 of the final delivered cost) in the feedstock supply system. Harvesting is also the second largest input of primary fossil energy in the system after commercial N fertilizer, accounting for about one third of the input. Therefore, improving the efficiency of the harvesting system has the potential to reduce both cost and environmental impact. At the start of this project, we projected that improving the overall efficiency of the harvesting system by 25% would reduce the delivered cost of SRWC by approximately $0.50/MMBtu (or about $7.50/dry ton). This goal was exceeded over the duration of this project, as noted below.

  18. Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world

    NARCIS (Netherlands)

    Liberloo, M.; Calfapietra, C.; Lukac, M.; Godbold, D.; Luos, Z.B.; Polles, A.; Hoosbeek, M.R.; Kull, O.; Marek, M.; Rianes, Chr.; Rubino, M.; Taylors, G.; Scarascia-Mugnozza, G.; Ceulemans, R.

    2006-01-01

    The quickly rising atmospheric carbon dioxide (CO2)-levels, justify the need to explore all carbon (C) sequestration possibilities that might mitigate the current CO2 increase. Here, we report the likely impact of future increases in atmospheric CO2 on woody biomass production of three poplar

  19. Agricultural policies and biomass fuels

    Science.gov (United States)

    Flaim, S.; Hertzmark, D.

    The potentials for biomass energy derived from agricultural products are examined. The production of energy feedstocks from grains is discussed for the example of ethanol production from grain, with consideration given to the beverage process and the wet milling process for obtaining fuel ethanol from grains and sugars, the nonfeedstock costs and energy requirements for ethanol production, the potential net energy gain from ethanol fermentation, the effect of ethanol fuel production on supplies of protein, oils and feed and of ethanol coproducts, net ethanol costs, and alternatives to corn as an ethanol feedstock. Biomass fuel production from crop residues is then considered; the constraints of soil fertility on crop residue removal for energy production are reviewed, residue yields with conventional practices and with reduced tillage are determined, technologies for the direct conversion of cellulose to ethanol and methanol are described, and potential markets for the products of these processes are identified. Implications for agricultural policy of ethanol production from grain and fuel and chemical production from crop residues are also discussed.

  20. Anderson introduces a new biomass baler

    Energy Technology Data Exchange (ETDEWEB)

    D' amour, L.; Lavoie, F. [Anderson Group Co., Chesterville, PQ (Canada)

    2010-07-01

    Canadian-based Anderson Group Company has developed an innovative round baler for harvesting a large variety of woody biomass. The baler was initially developed in 2005 in collaboration with the University Laval and Agriculture and Agri-Food Canada. The third generation BIOBALER{sup TM} is currently built, engineered and commercialized by Anderson. It can produce up to 40 bales/hr in short rotations woody crops such as willow and hybrid poplar. The unit can harvest brushes up to 125 mm in diameter. A standard tractor can pull the BIOBALER in fallow or abandoned land, under power transmission lines, and between planted trees. The patented BIOBALER includes a mulcher head attachment, a choice of long or short swivel tongue, a fixed chamber and an undercarriage frame.

  1. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges.

    Science.gov (United States)

    Paudel, Shukra Raj; Banjara, Sushant Prasad; Choi, Oh Kyung; Park, Ki Young; Kim, Young Mo; Lee, Jae Woo

    2017-12-01

    The anaerobic digestion (AD) of agricultural biomass is an attractive second generation biofuel with potential environmental and economic benefits. Most agricultural biomass contains lignocellulose which requires pretreatment prior to AD. For optimization, the pretreatment methods need to be specific to the characteristics of the biomass feedstock. In this review, cereal residue, fruit and vegetable wastes, grasses and animal manure were selected as the agricultural biomass candidates, and the fundamentals and current state of various pretreatment methods used for AD of these feedstocks were investigated. Several nonconventional methods (electrical, ionic liquid-based chemicals, ruminant biological pretreatment) offer potential as targeted pretreatments of lignocellulosic biomass, but each comes with its own challenges. Pursuing an energy-intensive route, a combined bioethanol-biogas production could be a promising a second biofuel refinery option, further emphasizing the importance of pretreatment when lignocellulosic feedstock is used. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Non-structural carbohydrates in woody plants compared among laboratories

    NARCIS (Netherlands)

    Quentin, Audrey G.; Pinkard, Elizabeth A.; Ryan, Michael G.; Tissue, David T.; Baggett, Scott L.; Adams, Henry D.; Maillard, Pascale; Marchand, Jacqueline; Landhäusser, Simon M.; Lacointe, André; Gibon, Yves; Anderegg, William R.L.; Asao, Shinichi; Atkin, Owen K.; Bonhomme, Marc; Claye, Caroline; Chow, Pak S.; Clément-Vidal, Anne; Davies, Noel W.; Dickman, Turin L.; Dumbur, Rita; Ellsworth, David S.; Falk, Kristen; Galiano, Lucía; Grünzweig, José M.; Hartmann, Henrik; Hoch, Günter; Hood, Sharon; Jones, Joanna E.; Koike, Takayoshi; Kuhlmann, Iris; Lloret, Francisco; Maestro, Melchor; Mansfield, Shawn D.; Martínez-Vilalta, Jordi; Maucourt, Mickael; McDowell, Nathan G.; Moing, Annick; Muller, Bertrand; Nebauer, Sergio G.; Niinemets, Ülo; Palacio, Sara; Piper, Frida; Raveh, Eran; Richter, Andreas; Rolland, Gaëlle; Rosas, Teresa; Joanis, Brigitte Saint; Sala, Anna; Smith, Renee A.; Sterck, Frank; Stinziano, Joseph R.; Tobias, Mari; Unda, Faride; Watanabe, Makoto; Way, Danielle A.; Weerasinghe, Lasantha K.; Wild, Birgit; Wiley, Erin; Woodruff, David R.

    2015-01-01

    Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent

  3. Ecosystem and restoration consequences of invasive woody species removal in Hawaiian lowland wet forest

    Science.gov (United States)

    R. Ostertag; S. Cordell; J. Michaud; T.C. Cole; J.R. Schulten; K.M. Publico; J.H. Enoka

    2009-01-01

    A removal experiment was used to examine the restoration potential of a lowland wet forest in Hawaii, a remnant forest type that has been heavily invaded by non-native species and in which there is very little native species regeneration. All non-native woody and herbaceous biomass (approximately 45% of basal area) was removed in four 100-m² removal plots;...

  4. Perceptions of Agriculture Teachers Regarding Education about Biomass Production in Iowa

    Science.gov (United States)

    Han, Guang; Martin, Robert A.

    2015-01-01

    With the growth of biorenewable energy, biomass production has become an important segment in the agriculture industry (Iowa Energy Center, 2013). A great workforce will be needed for this burgeoning biomass energy industry (Iowa Workforce Development, n. d.). Instructional topics in agricultural education should take the form of problems and…

  5. Conditioning biomass for microbial growth

    Science.gov (United States)

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  6. BAAD: a Biomass And Allometry Database for woody plants

    Energy Technology Data Exchange (ETDEWEB)

    Falster, Daniel; Duursma, Remko; Ishihara, Masae; Barneche, Diego; Fitzjohn, Richard; Varhammar, Angelica; Aiba, Masahiro; Ando, M.; Anten, Niels; Aspinwall, Michael J.; Baltzer, Jennifer; Baraloto, Christopher; Battaglia, Michael; Battles, John; Bond-Lamberty, Benjamin; van Breugel, Michiel; Camac, James; Claveau, Yves; Coll Mir, Llus; Dannoura, Dannoura; Delagrange, Sylvain; Domec, Jean-Cristophe; Fatemi, Farrah; Feng, Wang; Gargaglione, Veronica; Goto, Yoshiaki; Hagihara, Akio; Hall, Jefferson S.; Hamilton, Steve; Harja, Degi; Hiura, Tsutom; Holdaway, Robert; Hutley, L. B.; Ichie, Tomoaki; Jokela, Eric; Kantola, Anu; Kelly, Jeffery W.; Kenzo, Tanaka; King, David A.; Kloeppel, Brian; Kohyama, Takashi; Komiyama, Akira; Laclau, Jean-Paul; Lusk, Christopher; Maguire, Doug; le Maire, Guerric; Makela, Annikki; Markesteijn, Lars; Marshall, John; McCulloh, Kate; Miyata, Itsuo; Mokany, Karen; Mori, Shigeta; Myster, Randall; Nagano, Masahiro; Naidu, Shawna; Nouvellon, Yann; O' Grady, Anthony; O' Hara, Kevin; Ohtsuka, Toshiyuki; Osada, Noriyuki; Osunkoya, Olusegun O.; Luis Peri, Pablo; Petritan, Mary; Poorter, Lourens; Portsmuth, Angelika; Potvin, Catherine; Ransijn, Johannes; Reid, Douglas; Ribeiro, Sabina C.; Roberts, Scott; Rodriguez, Rolando; Saldana-Acosta, Angela; Santa-Regina, Ignacio; Sasa, Kaichiro; Gailia Selaya, Nadezhda; Sillett, Stephen; Sterck, Frank; Takagi, Kentaro; Tange, Takeshi; Tanouchi, Hiroyuki; Tissue, David; Umehara, Tohru; Utsugi, Hajime; Vadeboncoeur, Matthew; Valladares, Fernando; Vanninen, Petteri; Wang, Jian; Wenk, Elizabeth; Williams, Dick; Ximenes, Fabiano de Aquino; Yamaba, Atsushi; Yamada, Toshihiro; Yamakura, Takuo; Yanai, Ruth; York, Robert

    2015-05-07

    Quantifying the amount of mass or energy invested in plant tissues is of fundamental interest across a range of disciplines, including ecology, forestry, ecosystem science, and climate change science (Niklas, 1994; Chave et al. 2005; Falster et al. 2011). The allocation of net primary production into different plant components is an important process affecting the lifetime of carbon in ecosystems, and resource use and productivity by plants (Cannell & Dewar, 1994; Litton et al. 2007; Poorter et al. 2012). While many studies in have destructively harvested woody plants in the name of science, most of these data have only been made available in the form of summary tables or figures included in publications. Until now, the raw data has resided piecemeal on the hard drives of individual scientists spread around the world. Several studies have gathered together the fitted (allometric) equations for separate datasets (Ter-Mikaelian & Korzukhin, 1997; Jenkins et al. 2003; Zianis et al. 2005; Henry et al. 2013), but none have previously attempted to organize and share the raw individual plant data underpinning these equations on a large scale. Gathered together, such data would represent an important resource for the community, meeting a widely recognised need for rich, open data resources to solve ecological problems (Costello et al. 2013; Fady et al. 2014; Harfoot & Roberts, 2014; Costello et al. 2013). We (D.S. Falster and R.A. Duursma, with the help of D.R. Barneche, R.G. FitzJohn and A. Vårhammar) set out to create such a resource, by asking authors directly whether they would be willing to make their raw data files freely available. The response was overwhelming: nearly everyone we contacted was interested to contribute their raw data. Moreover, we were invited to incorporate another compilation led by M. Ishihara and focussing on Japanese literature. As a result, we present BAAD: a Biomass And Allometry Database for woody plants, comprising data collected in 174

  7. Estimation of energy potential of agricultural enterprise biomass

    Directory of Open Access Journals (Sweden)

    Lypchuk Vasyl

    2017-01-01

    Full Text Available Bioenergetics (obtaining of energy from biomass is one of innovative directions in energy branch of Ukraine. Correct and reliable estimation of biomass potential is essential for efficient use of it. The article reveals the issue of estimation of potential of biomass, obtained from byproducts of crop production and animal breeding, which can be used for power supply of agricultural enterprises. The given analysis was carried with application of common methodological fundamentals, revealed in the estimation of production structure of agricultural enterprises, structure of land employment, efficiency of crops growing, indicators of output of main and by-products, as well as normative (standard parameters of power output of energy raw material in relation to the chosen technology of its utilization. Results of the research prove high energy potential of byproducts of crop production and animal breeding at all of the studied enterprises, which should force its practical use.

  8. Modeling of chemical exergy of agricultural biomass using improved general regression neural network

    International Nuclear Information System (INIS)

    Huang, Y.W.; Chen, M.Q.; Li, Y.; Guo, J.

    2016-01-01

    A comprehensive evaluation for energy potential contained in agricultural biomass was a vital step for energy utilization of agricultural biomass. The chemical exergy of typical agricultural biomass was evaluated based on the second law of thermodynamics. The chemical exergy was significantly influenced by C and O elements rather than H element. The standard entropy of the samples also was examined based on their element compositions. Two predicted models of the chemical exergy were developed, which referred to a general regression neural network model based upon the element composition, and a linear model based upon the high heat value. An auto-refinement algorithm was firstly developed to improve the performance of regression neural network model. The developed general regression neural network model with K-fold cross-validation had a better ability for predicting the chemical exergy than the linear model, which had lower predicted errors (±1.5%). - Highlights: • Chemical exergies of agricultural biomass were evaluated based upon fifty samples. • Values for the standard entropy of agricultural biomass samples were calculated. • A linear relationship between chemical exergy and HHV of samples was detected. • An improved GRNN prediction model for the chemical exergy of biomass was developed.

  9. Biomass energy from wood chips: Diesel fuel dependence?

    International Nuclear Information System (INIS)

    Timmons, Dave; Mejia, Cesar Viteri

    2010-01-01

    Most renewable energy sources depend to some extent on use of other, non-renewable sources. In this study we explore use of diesel fuel in producing and transporting woody biomass in the state of New Hampshire, USA. We use two methods to estimate the diesel fuel used in woody biomass production: 1) a calculation based on case studies of diesel consumption in different parts of the wood chip supply chain, and 2) to support extrapolating those results to a regional system, an econometric study of the variation of wood-chip prices with respect to diesel fuel prices. The econometric study relies on an assumption of fixed demand, then assesses variables impacting supply, with a focus on how the price of diesel fuel affects price of biomass supplied. The two methods yield similar results. The econometric study, representing overall regional practices, suggests that a $1.00 per liter increase in diesel fuel price is associated with a $5.59 per Mg increase in the price of wood chips. On an energy basis, the diesel fuel used directly in wood chip production and transportation appears to account for less than 2% of the potential energy in the wood chips. Thus, the dependence of woody biomass energy production on diesel fuel does not appear to be extreme. (author)

  10. Application of Buckmaster Electrolyte Ion Leakage Test to Woody Biofuel Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Thomas F [Forest Concepts, LLC; Dooley, James H [Forest Concepts, LLC

    2014-08-28

    In an earlier ASABE paper, Buckmaster reported that ion conductivity of biomass leachate in aqueous solution was directly correlated with activity access to plant nutrients within the biomass materials for subsequent biological or chemical processing. The Buckmaster test involves placing a sample of the particles in a beaker of constant-temperature deionized water and monitoring the change in electrical conductivity over time. We adapted the Buckmaster method to a range of woody biomass and other cellulosic bioenergy feedstocks. Our experimental results suggest differences of electrolyte leakage between differently processed woody biomass particles may be an indicator of their utility for conversion in bioenergy processes. This simple assay appears to be particularly useful to compare different biomass comminution techniques and particle sizes for biochemical preprocessing.

  11. Improved biomass Injera stove- Mirte

    International Nuclear Information System (INIS)

    Bess, M.; Kenna, J.

    1994-01-01

    The status report of 1994 - 1995 shows as the need to design an improved biomass stove for Injera was recognized. The marketing began in mid-1994 with a Mirte which showed even higher efficiencies in laboratory, using 50 percent less woody biomass than the open fire. By early 1994 several hundreds Mirte stoves had been sold in Addis Ababa at non-subsidized prices. The Mirte is currently produced on a large-scale by building materials companies. 3 figs. 1 tab

  12. Integrated supply chain design for commodity chemicals production via woody biomass fast pyrolysis and upgrading.

    Science.gov (United States)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C

    2014-04-01

    This study investigates the optimal supply chain design for commodity chemicals (BTX, etc.) production via woody biomass fast pyrolysis and hydroprocessing pathway. The locations and capacities of distributed preprocessing hubs and integrated biorefinery facilities are optimized with a mixed integer linear programming model. In this integrated supply chain system, decisions on the biomass chipping methods (roadside chipping vs. facility chipping) are also explored. The economic objective of the supply chain model is to maximize the profit for a 20-year chemicals production system. In addition to the economic objective, the model also incorporates an environmental objective of minimizing life cycle greenhouse gas emissions, analyzing the trade-off between the economic and environmental considerations. The capital cost, operating cost, and revenues for the biorefinery facilities are based on techno-economic analysis, and the proposed approach is illustrated through a case study of Minnesota, with Minneapolis-St. Paul serving as the chemicals distribution hub. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Improving estimation of tree carbon stocks by harvesting aboveground woody biomass within airborne LiDAR flight areas

    Science.gov (United States)

    Colgan, M.; Asner, G. P.; Swemmer, A. M.

    2011-12-01

    The accurate estimation of carbon stored in a tree is essential to accounting for the carbon emissions due to deforestation and degradation. Airborne LiDAR (Light Detection and Ranging) has been successful in estimating aboveground carbon density (ACD) by correlating airborne metrics, such as canopy height, to field-estimated biomass. This latter step is reliant on field allometry which is applied to forest inventory quantities, such as stem diameter and height, to predict the biomass of a given tree stem. Constructing such allometry is expensive, time consuming, and requires destructive sampling. Consequently, the sample sizes used to construct such allometry are often small, and the largest tree sampled is often much smaller than the largest in the forest population. The uncertainty resulting from these sampling errors can lead to severe biases when the allometry is applied to stems larger than those harvested to construct the allometry, which is then subsequently propagated to airborne ACD estimates. The Kruger National Park (KNP) mission of maintaining biodiversity coincides with preserving ecosystem carbon stocks. However, one hurdle to accurately quantifying carbon density in savannas is that small stems are typically harvested to construct woody biomass allometry, yet they are not representative of Kruger's distribution of biomass. Consequently, these equations inadequately capture large tree variation in sapwood/hardwood composition, root/shoot/leaf allocation, branch fall, and stem rot. This study eliminates the "middleman" of field allometry by directly measuring, or harvesting, tree biomass within the extent of airborne LiDAR. This enables comparisons of field and airborne ACD estimates, and also enables creation of new airborne algorithms to estimate biomass at the scale of individual trees. A field campaign was conducted at Pompey Silica Mine 5km outside Kruger National Park, South Africa, in Mar-Aug 2010 to harvest and weigh tree mass. Since

  14. Potential for Coal Power Plants to Co-Fire with Woody Biomass in the U. S. North, 2010-2030: A Technical Document Supporting the Northern Forest Futures Project

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth E. Skog

    2015-01-01

    Future use of woody biomass to produce electric power in the U.S. North can have an important influence on timber production, carbon storage in forests, and net carbon emissions from producing electric power. The Northern Forest Futures Project (NFFP) has provided regional- and state-level projections of standing forest biomass, land-use change, and timber harvest,...

  15. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused...

  16. Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.

    Science.gov (United States)

    Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie

    2008-12-01

    Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.

  17. Spatial Distribution of Biomass and Woody Litter for Bio-Energy in Biscay (Spain

    Directory of Open Access Journals (Sweden)

    Esperanza Mateos

    2018-05-01

    Full Text Available Forest management has been considered a subject of interest, because they act as carbon (C sinks to mitigate CO 2 emissions and also as producers of woody litter (WL for bio-energy. Overall, a sustainably managed system of forests and forest products contributes to carbon mitigation in a positive, stable way. With increasing demand for sustainable production, the need to effectively utilise site-based resources increases. The utilization of WL for bio-energy can help meet the need for renewable energy production. The objective of the present study was to investigate biomass production (including C sequestration from the most representative forestry species (Pinus radiata D. Don and Ecualyptus globulus Labill of Biscay (Spain. Data from the third and fourth Spanish Forest Inventories (NFI3-2005 and NFI4-2011 were used. We also estimated the potential WL produced in the forest activities. Our findings were as follows: Forests of Biscay stored 12.084 Tg of biomass (dry basis, with a mean of 147.34 Mg ha - 1 in 2005 and 14.509 Tg of biomass (dry basis, with a mean of 179.82 Mg ha - 1 in 2011. The total equivalent CO 2 in Biscay’s forests increased by 1.629 Tg year - 1 between 2005 and 2011. The study shows that the energy potential of carbon accumulated in the WL amounted to 1283.2 million MJ year - 1 . These results suggest a considerable potential for energy production.

  18. Sugar and ethanol production from woody biomass via supercritical water hydrolysis in a continuous pilot-scale system using acid catalyst.

    Science.gov (United States)

    Jeong, Hanseob; Park, Yong-Cheol; Seong, Yeong-Je; Lee, Soo Min

    2017-12-01

    The aim of this study were to efficiently produce fermentable sugars by continuous type supercritical water hydrolysis (SCWH) of Quercus mongolica at the pilot scale with varying acid catalyst loading and to use the obtained sugars for ethanol production. The SCWH of biomass was achieved in under one second (380°C, 230bar) using 0.01-0.1% H 2 SO 4 . With 0.05% H 2 SO 4 , 49.8% of sugars, including glucose (16.5% based on biomass) and xylose monomers (10.8%), were liberated from biomass. The hydrolysates were fermented with S. cerevisiae DXSP and D452-2 to estimate ethanol production. To prepare the fermentation medium, the hydrolysates were detoxified using activated charcoal and then concentrated. The ethanol yield of fermentation with S. cerevisiae DXSP was 14.1% (based on biomass). The proposed system has potential for improvement in yield through process optimization. After further development, it is expected to be a competitive alternative to traditional systems for ethanol production from woody biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land: Case of Croatia

    International Nuclear Information System (INIS)

    Pfeifer, Antun; Dominković, Dominik Franjo; Ćosić, Boris; Duić, Neven

    2016-01-01

    Highlights: • Potential of unused agricultural land for biomass and fruit production is assessed. • Technical and energy potential of biomass from SRC and fruit pruning is calculated. • Economic feasibility of CHP plants utilizing biomass from SRC is presented for Croatia. • Sensitivity analysis and recommendations for shift toward feasibility are provided. - Abstract: In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused for food crops, represent significant potential for growing biomass that could be used for energy. This biomass could be used to supply power plants of up to 15 MW_e in accordance with heat demands of the chosen locations. The methodology for regional energy potential assessment was elaborated in previous work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10 PJ/year. The added value of fruit trees pruning biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost.

  20. Economic Potential of Biomass from Unused Agriculture Land for Energy Use

    DEFF Research Database (Denmark)

    Pfeifer, A.; Dominkovic, Dominik Franjo; Ćosić, B.

    2015-01-01

    In this paper the energy potential of biomass from growing short rotation coppice (SRC) on unused agricultural land in the Republic of Croatia was examined. At present, SRC is not completely recognized in Croatian legislative and considerations in energy strategy and action plans. The paper aspires...... to contribute to better understanding of the role SRC can take in national and local energy planning. The methodology is provided for regional analysis of biomass energy potential on unused agricultural land and for assessing the cost of the biomass at the power plant (PP) location considering transport...... plants and appropriate size of seasonal heat storage is discussed for each case study. Case studies have shown the potential for use of previously unused agricultural land to help achieve national targets for renewable energy sources as well as reducing carbon dioxide emissions, help diversify...

  1. Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass.

    Science.gov (United States)

    Kim, Sun Min; Dien, Bruce S; Singh, Vijay

    2016-01-01

    Production of advanced biofuels from woody and herbaceous feedstocks is moving into commercialization. Biomass needs to be pretreated to overcome the physicochemical properties of biomass that hinder enzyme accessibility, impeding the conversion of the plant cell walls to fermentable sugars. Pretreatment also remains one of the most costly unit operations in the process and among the most critical because it is the source of chemicals that inhibit enzymes and microorganisms and largely determines enzyme loading and sugar yields. Pretreatments are categorized into hydrothermal (aqueous)/chemical, physical, and biological pretreatments, and the mechanistic details of which are briefly outlined in this review. To leverage the synergistic effects of different pretreatment methods, conducting two or more pretreatments consecutively has gained attention. Especially, combining hydrothermal/chemical pretreatment and mechanical refining, a type of physical pretreatment, has the potential to be applied to an industrial plant. Here, the effects of the combined pretreatment (combined hydrothermal/chemical pretreatment and mechanical refining) on energy consumption, physical structure, sugar yields, and enzyme dosage are summarized.

  2. Experimental investigations and modeling of devolatilization based on superimposed kinetics of biomass

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Anker Degn

    A non-isothermal one-dimensional model has been developed to describe biomass pyrolysis at fast heating rate (600-104 Ks-1), high temperatures (up to 1500C) and is valid for different biomass particle sizes (< 10 mm). The model was developedto estimate the yields of volatile gas and char. The mod...... the charyield of woody and herbaceous biomass particles using one fixed set of kinetic parameters valid for woody andherbaceous biomass....... relies on the concept applied in fast pyrolysis of cellulose throughthe formation of an intermediate liquid (so called metaplast) which reacts further to char and gas. The kinetics of the fastpyrolysis was described by the Broido-Shafizadeh scheme.The influence of particle size and shape was included...... obtained in the wire mesh and drop tube reactors. Thus, the modelincluding these two parameters provides an acceptable fit of char yield to the experimental data. The present results showedthat the proposed kinetic model for the fast biomass pyrolysis is relatively simple and predicts reasonably accurately...

  3. Engineering developments for small-scale harvest, storage and combustion of woody crops in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Savoie, P.; Ouellet-Plamondon, C.; Morissette, R.; Preto, F. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada)

    2010-07-01

    Although wood remains an important source of energy for cooking and heating in developing countries, it has been largely replaced by fossil fuels, nuclear energy and hydroelectric power in developed countries. Given the need to diversify sources of energy, wood energy is being revitalized in developed countries. This paper reported on a current research program on woody crops at Agriculture and Agri-Food Canada. The research involves the development of a woody crop harvester to collect small size trees in plantations as well as in natural growth. The harvested package is a small round bale that enables natural drying from about 50 per cent moisture at harvest, down to 30 and 20 per cent after 4 to 6 months of storage outside and under shelter, respectively. The combustion value of woody crops averaged 19.4 GJ/t on a dry matter basis with little variation. The woody crops can be pulverized into fine particles, dried artificially to 10 per cent moisture content and processed into pellets for combustion. In a practical trial, more than 7.5 MJ/t DM were needed to produce pellets without providing more energy than coarse wood chips. The rural applications for this biomass include heating community and farm buildings and drying crops. These applications can use locally grown woody crops such as willow, or forest residues such as branches and bark in the form of chips to replace fossil energy sources.

  4. An analysis of the feasibility for increasing woody biomass production from pine plantations in the southern United States

    International Nuclear Information System (INIS)

    Munsell, John F.; Fox, Thomas R.

    2010-01-01

    In the near future, wood from the 130 000 km 2 of pine plantations in the southern United States could provide much of the feedstock for emerging bioenergy industries. Research and operational experience show that total plantation biomass productivity exceeding 22.4 Mg ha -1 y -1 green weight basis with rotations less than 25 years are biologically possible, financially attractive, and environmentally sustainable. These gains become possible when intensively managed forest plantations are treated as agro-ecosystems where both the crop trees and the soil are managed to optimize productivity and value. Intensive management of southern US pine plantations could significantly increase the amount of biomass available to supply bioenergy firms. Results from growth and yield simulations using models and a financial analysis suggest that if the 130 000 km 2 of cutover pine plantations and an additional 20 000 km 2 of planted idle farmland are intensively managed in the most profitable regimes, up to 77.5 Tg green weight basis of woody biomass could be produced annually. However, questions exist about the extent to which intensive management for biomass production can improve financial returns to owners and whether they would adopt these systems. The financial analysis suggests providing biomass for energy from pine plantations on cutover sites is most profitable when intensive management is used to produce a mixture of traditional forest products and biomass for energy. Returns from dedicated biomass plantations on cutover sites and idle farmland will be lower than integrated product plantations unless prices for biomass increase or subsidies are available. (author)

  5. How hedge woody species diversity and habitat change is a function of land use history and recent management in a European agricultural landscape.

    Science.gov (United States)

    McCann, Thomas; Cooper, Alan; Rogers, David; McKenzie, Paul; McErlean, Thomas

    2017-07-01

    European hedged agricultural landscapes provide a range of ecosystem services and are an important component of cultural and biodiversity heritage. This paper investigates the extent of hedges, their woody species diversity (including the influence of historical versus recent hedge origin) and dynamics of change. The rationale is to contribute to an ecological basis for hedge habitat management. Sample sites were allocated based on a multivariate classification of landscape attributes. All field boundaries present in each site were mapped and surveyed in 1998 and 2007. To assess diversity, a list of all woody species was recorded in one standard 30 m linear plot within each hedge. There was a net decrease in hedge habitat extent, mainly as a result of removal, and changes between hedges and other field boundary types due to the development and loss of shrub growth-form. Agricultural intensification, increased rural building, and variation in hedge management practices were the main drivers of change. Hedges surveyed at baseline, which were lost at resurvey, were more species rich than new hedges gained. Hedges coinciding with historical land unit boundaries of likely Early Medieval origin were found to be more species rich. The most frequent woody species in hedges were native, including a high proportion with Fraxinus excelsior, a species under threat from current and emerging plant pests and pathogens. Introduced species were present in circa 30% of hedges. We conclude that since hedge habitat distribution and woody species diversity is a function of ecology and anthropogenic factors, the management of hedges in enclosed agricultural landscapes requires an integrated approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evaluating the economics of biomass energy production in the Watts Bar region

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, R.R.; English, B.C.; Bhat, M.G. [Univ. of Tennessee, Knoxville, TN (United States); Graham, R.L. [Oak Ridge National Lab., TN (United States)

    1993-12-31

    While the commercial potential of biofuel technology is becoming more feasible, it is not clear whether the supply of biomass feedstock will be available in competitive markets. In order to exploit the potential of biomass crops as a reliable source of biofuels, a significant commitment on the part of farmers to convert large amounts of cropland would be required. Dedicated energy crops have to compete with conventional crops which could result in significant interregional shifts in crop production. Those changes could further affect overall agricultural production, food prices, consumer spending, and government spending on farm programs. Evaluating these economic impacts provides important information for the ongoing debate. This research is a case study incorporating an existing power plant. The objective of this project is to evaluate the potential of short rotation woody crops as a fuel source in the Watts Bar facility located in eastern Tennessee. The appraisal includes estimates of environmental impacts as well as of economic feasibility. This is achieved by estimating the amounts of biomass that would be supplied at a predetermined price. By changing prices of biomass at the plant in an incremental fashion, a regional supply curve for biomass is estimated. The model incorporates current agricultural production possibilities in the region along with the proposed short rotation woody crop production activities. In order to adequately model the landscape, several variables are considered. These variables include soil type, crop production, government policy, land use conversion to crop land, and distance from the plant. Environmental issues including erosion, chemical usage, and potential leaching are also incorporated within the modeling framework; however, only estimates on erosion are available in this analysis. Output from the model provides insight on where and what types of land should shift from current land use to biomass production.

  7. Optimal Level of Woody Biomass Co-Firing with Coal Power Plant Considering Advanced Feedstock Logistics System

    Directory of Open Access Journals (Sweden)

    Sangpil Ko

    2018-05-01

    Full Text Available Co-firing from woody biomass feedstock is one of the alternatives toward increased use of renewable feedstock in existing coal power plants. However, the economic level of co-firing at a particular power plant depends on several site-specific factors. Torrefaction has been identified recently as a promising biomass pretreatment option to lead to reduction of the feedstock delivered cost, and thus facilitate an increase in the co-firing ratio. In this study, a mixed integer linear program (MILP is developed to integrate supply chain of co-firing and torrefaction process and find the optimal level of biomass co-firing in terms of minimized transportation and logistics costs, with or without tax credits. A case study of 26 existing coal power plants in three Great Lakes States of the US is used to test the model. The results reveal that torrefaction process can lead to higher levels of co-firing, but without the tax credit, the effect is limited to the low capacity of power plants. The sensitivity analysis shows that co-firing ratio has higher sensitivity to variation in capital and operation costs of torrefaction than to the variation in the transportation and feedstock purchase costs.

  8. Assessment of potential biomass energy production in China towards 2030 and 2050

    Science.gov (United States)

    Zhao, Guangling

    2018-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

  9. Synergistic combination of biomass torrefaction and co-gasification: Reactivity studies.

    Science.gov (United States)

    Zhang, Yan; Geng, Ping; Liu, Rui

    2017-12-01

    Two typical biomass feedstocks obtained from woody wastes and agricultural residues were torrefied or mildly pyrolized in a fixed-bed reactor. Effects of the torrefaction conditions on product distributions, compositional and energetic properties of the solid products, char gasification reactivity, and co-gasification behavior between coal and torrefied solids were systematically investigated. Torrefaction pretreatment produced high quality bio-solids with not only increased energy density, but also concentrated alkali and alkaline earth metals (AAEM). As a consequence of greater retention of catalytic elements in the solid products, the chars derived from torrefied biomass exhibited a faster conversion than those derived from raw biomass during CO 2 gasification. Furthermore, co-gasification of coal/torrefied biomass blends exhibited stronger synergy compared to the coal/raw biomass blends. The results and insights provided by this study filled a gap in understanding synergy during co-gasification of coal and torrefied biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Can lemmings control the expansion of woody plants on tundra?

    Science.gov (United States)

    Oksanen, Lauri; Oksanen, Tarja; Olofsson, Johan; Virtanen, Risto; Hoset, Katrine; Tuomi, Maria; Kyrö, Kukka

    2013-04-01

    The ongoing expansion of woody vegetation in the arctic, due to global warming, creates a positive feed back loop. Increasing abundance of woody plants reduces surface albedo both directly and via speeding up snow melt. Thus a successively greater fraction of incoming solar radiation is absorbed and converted to heat. Browsing mammals - both big and small - can prevent this by consuming woody plants. However, the grazer/browser community of many tundra areas is dominated by brown/Norwegian lemmings (Lemmus spp.) which eat graminoids and mosses and cannot use woody plants as forage. It would seem a priori likely that in such areas, mammalian herbivores speed up the expansion of woody plants by improving the chances of their seedlings to get established. We studied the impact of lemmings on woody plants by constructing lemming proof exclosures within piece high-altitude tundra at Joatkanjávri, northernmost Norway. The exclosures were constructed in 1998, during a period of low lemming densities, in snow-beds, where Norwegian lemmings (L. lemmus) were the only ecologically significant herbivorous mammals. (Reindeer migrate through the area in May, when snow-beds are inaccessible for them; during the fall migration, the area represents a dead end and is therefore avoided.) We chose pairs of maximally similar vegetation patches of 0.5 by 0.5 m and randomly assigned one of each pair to become an exclosure while the other plot was left open. The initial state of the vegetation was documented by the point frequency method. In 2008, after the 2007 lemming outbreak, the same documentation was repeated; thereafter the plots were harvested, the vegetation was sorted to species, oven dried and weighed. Exclusion of lemmings resulted to pronounced increase in community level plant biomass. Evergreen woody plants were especially favored by the exclusion of lemming: their above-ground biomass in exclosures was 14 times as great as their biomass on open reference plots. The

  11. The regional effects of a biomass fuel industry on US agriculture

    International Nuclear Information System (INIS)

    Gallagher, Paul W.

    2014-01-01

    This study looks at the potential competitiveness of the emerging biomass-based biofuel industry in the current economic environment. A simulation model suggests that a mature biomassbased biofuel industry is potentially competitive with gasoline, and capable of filling a significant fraction of motor fuel supplies. However, the existing land policy has a narrow definition of agricultural land for a biomass-based fuel industry. A broader definition of agricultural land suitable for biomass inputs would reduce biofuel processing costs, relieve the food versus fuel conflict, and increase the net gain to fuel consumers, food consumers, and producers of food and fuel. - Highlights: • We look at the potential competitiveness of a mature biomass fuel (BF) industry in the US. • We model a land policy that allows BF-cattle competition for forage, crop residues, and pasture. • We estimate the cost reductions and welfare gains associated with modifying the land use policy

  12. The role of short-rotation woody crops in sustainable development

    International Nuclear Information System (INIS)

    Shepard, J.P.; Tolbert, V.R.

    1996-01-01

    One answer to increase wood production is by increasing management intensity on existing timberland, especially in plantation forests. Another is to convert land currently in agriculture to timberland. Short-rotation woody crops can be used in both cases. But, what are the environmental consequences? Short-rotation woody crops can provide a net improvement in environmental quality at both local and global scales. Conversion of agricultural land to short-rotation woody crops can provide the most environmental quality enhancement by reducing erosion, improving soil quality, decreasing runoff, improving groundwater quality, and providing better wildlife habitat. Forest products companies can use increased production from intensively managed short-rotation woody crop systems to offset decreased yield from the portion of their timberland that is managed less intensively, e.g. streamside management zones and other ecologically sensitive or unique areas. At the global scale, use of short-rotation woody crops for bioenergy is part of the solution to reduce greenhouse gases produced by burning fossil fuels. Incorporating short-rotation woody crops into the agricultural landscape also increases storage of carbon in the soil, thus reducing atmospheric concentrations. In addition, use of wood instead of alternatives such as steel, concrete, and plastics generally consumes less energy and produces less greenhouse gases. Cooperative research can be used to achieve energy, fiber, and environmental goals. This paper will highlight several examples of ongoing cooperative research projects that seek to enhance the environmental aspects of short-rotation woody crop systems. Government, industry, and academia are conducting research to study soil quality, use of mill residuals, nutrients in runoff and groundwater, and wildlife use of short-rotation woody crop systems in order to assure the role of short-rotation crops as a sustainable way of meeting society's needs

  13. Do biomass harvesting guidelines influence herpetofauna following harvests of logging residues for renewable energy?.

    Science.gov (United States)

    Fritts, Sarah; Moorman, Christopher; Grodsky, Steven; Hazel, Dennis; Homyack, Jessica; Farrell, Chris; Castleberry, Steven

    2016-04-01

    Forests are a major supplier of renewable energy; however, gleaning logging residues for use as woody biomass feedstock could negatively alter habitat for species dependent on downed wood. Biomass Harvesting Guidelines (BHGs) recommend retaining a portion of woody biomass on the forest floor following harvest. Despite BHGs being developed to help ensure ecological sustainability, their contribution to biodiversity has not been evaluated experimentally at operational scales. We compared herpetofauanal evenness, diversity, and richness and abundance of Anaxyrus terrestris and Gastrophryne carolinensis among six treatments that varied in volume and spatial arrangement of woody biomass retained after clearcutting loblolly pine (Pinus taeda) plantations in North Carolina, USA (n = 4), 2011-2014 and Georgia (n = 4), USA 2011-2013. Treatments were: (1) biomass harvest with no BHGs, (2) 15% retention with biomass clustered, (3) 15% retention with biomass dispersed, (4) 30% retention with biomass clustered, (5) 30% retention with biomass dispersed, and (6) no biomass harvest. We captured individuals with drift fence arrays and compared evenness, diversity, and richness metrics among treatments with repeated-measure, linear mixed-effects models. We determined predictors of A. terrestris and G. carolinensis abundances using a priori candidate N-mixture models with woody biomass volume, vegetation structure, and groundcover composition as covariates. We had 206 captures of 25 reptile species and 8710 captures of 17 amphibian species during 53690 trap nights. Herpetofauna diversity, evenness, and richness were similar among treatments. A. terrestris abundance was negatively related to volume of retained woody biomass in treatment units in North Carolina in 2013. G. carolinensis abundance was positively related with volume of retained woody debris in treatment units in Georgia in 2012. Other relationships between A. terrestris and G. carolinensis abundances and habitat metrics

  14. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    Science.gov (United States)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  15. The spatial pattern and dominant drivers of woody cover change in Latin America and Caribbean from 2001 to 2010

    Science.gov (United States)

    Clark, M.; Aide, T.; Riner, G.; Redo, D.; Grau, H.; Bonilla-Moheno, M.; Lopez-Carr, D.; Levy, M.

    2011-12-01

    Change in woody vegetation (i.e., forests, shrublands) is a major component of global environmental change: it directly affects biodiversity, the global carbon budget, and ecosystem function. For several decades, remote sensing technology has been used to document deforestation in Latin America and the Caribbean (LAC), although mostly at local to regional scales (e.g., moist forests of the Amazon basin). Most studies have focused on forest loss, some local-scale studies have mapped forest recovery, with contrasting forest dynamics attributed to shifting demographic and socio-economic factors. For example, local population change (rural-urban migration) can stimulate forest recovery on abandoned land, while increasing global food demand may drive regional expansion of mechanized agriculture. However, there are no studies in LAC that simultaneously map both loss and gain in woody vegetation at continental, national, and municipality scales with consistent data sources, methods and accuracy; and thus, we lack a comprehensive assessment of the spatial distribution of woody vegetation change and the relative importance of the multi-scale drivers of this change. We overcame this limitation by producing annual land-cover maps between 2001 and 2010 for each of the >16,000 municipalities in LAC. We focused on mapping municipality-scale trends in three broad classes: woody vegetation, mixed woody/plantations, and agriculture/herbaceous vegetation. Our area estimates show that woody vegetation change during the past decade was dominated by deforestation, or loss (-541,830 km2), particularly in the Amazon basin moist forest and the tropical-subtropical Cerrado and Chaco ecoregions, where large swaths of forest have been transformed to pastures and agricultural lands. Extensive areas (362,431 km2) in LAC also gained woody vegetation, particularly in regions too dry or too steep for modern agriculture, including the desert/xeric shrub biome in NE Brazil and northern Mexico, the

  16. Characterization of fast pyrolysis products generated from several western USA woody species

    Science.gov (United States)

    Jacqueline M. Jarvis; Deborah S. Page-Dumroese; Nathaniel M. Anderson; Yuri Corilo; Ryan P. Rodgers

    2014-01-01

    Woody biomass has the potential to be utilized at an alternative fuel source through its pyrolytic conversion. Here, fast pyrolysis bio-oils derived from several western USA woody species are characterized by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to determine molecular-level composition. The...

  17. Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L. – a case study

    Directory of Open Access Journals (Sweden)

    Christopher Morhart

    2016-02-01

    Full Text Available Background: The global search for new ways to sequester carbon has already reached agricultural lands. Such land constitutes a major potential carbon sink. The production of high value timber within agroforestry systems can facilitate an in-situ carbon storage function. This is followed by a potential long term ex- situ carbon sinkwithin long lasting products such as veneer and furniture. For this purpose wild cherry (Prunus avium L. is an interesting option for middle Europe, yielding high prices on the timber market. Methods: A total number of 39 wild cherry were sampled in 2012 and 2013 to assess the leafless above ground biomass. The complete trees including stem and branches were separated into 1 cm diameter classes. Wood and bark from sub-samples were analysed separately and nutrient content was derived. Models for biomass estimation were constructed for all tree compartments. Results: The smallest diameter classes possess the highest proportion of bark due to smaller cross sectional area. Tree boles with a greater amount of stem wood above 10 cm in diameter will have a more constant bark proportion. Total branch bark proportion also remains relatively constant above d1.3m measurements of 8 cm. A balance is evident between the production of new branches with a low diameter and high bark proportion offset by the thickening and a relative reduction in bark proportion in larger branches. The results show that a single tree with an age of 17 and 18 years can store up to 85 kg of carbon within the aboveground biomass portion, an amount that will increase as the tree matures. Branches display greater nutrient content than stem sections per volume unit which can be attributed to a greater bark proportion. Conclusions: Using the derived models the carbon and the nutrient content of above-ground woody biomass of whole trees can be calculated. Suggested values for carbon with other major and minor nutrients held within relatively immature trees

  18. Backwater development by woody debris

    Science.gov (United States)

    Geertsema, Tjitske; Torfs, Paul; Teuling, Ryan; Hoitink, Ton

    2017-04-01

    Placement of woody debris is a common method for increasing ecological values in river and stream restoration, and is thus widely used in natural environments. Water managers, however, are afraid to introduce wood in channels draining agricultural and urban areas. Upstream, it may create backwater, depending on hydrodynamic characteristics including the obstruction ratio, the Froude number and the surface level gradient. Patches of wood may trigger or counter morphological activity, both laterally, through bank erosion and protection, and vertically, with pool and riffle formation. Also, a permeable construction composed of wood will weather over time. Both morphodynamic activity and weathering cause backwater effects to change in time. The purpose of this study is to quantify the time development of backwater effects caused by woody debris. Hourly water levels gauged upstream and downstream of patches and discharge are collected for five streams in the Netherlands. The water level drop over the woody debris patch relates to discharge in the streams. This relation is characterized by an increasing water level difference for an increasing discharge, up to a maximum. If the discharge increases beyond this level, the water level difference reduces to the value that may represent the situation without woody debris. This reduction depends primarily on the obstruction ratio of the woody debris in the channel cross-section. Morphologic adjustments in the stream and reorientation of the woody material reduce the water level drop over the patches in time. Our results demonstrate that backwater effects can be reduced by optimizing the location where woody debris is placed and manipulating the obstruction ratio. Current efforts are focussed on representing woody debris in a one-dimensional numerical model, aiming to obtain a generic tool to achieve a stream design with woody debris that minimizes backwater.

  19. Simulation and assessment of agricultural biomass supply chain systems

    Directory of Open Access Journals (Sweden)

    D. Pavlou

    2017-05-01

    Full Text Available Agricultural biomass supply chain consists of a number of interacted sequential operations affected by various variables, such as weather conditions, machinery systems, and biomass features. These facts make the process of biomass supply chain as a complex system that requires computational tools, e.g. simulation and mathematical models, for their assessment and analysis. A biomass supply chain simulation model developed on the ExtendSim 8 simulation environment is presented in this paper. A number of sequential operations are applied in order biomass to be mowed, harvested, and transported to a biorefinery facility. Different operational scenarios regarding the travel distance between field and biorefinery facility, number of machines, and capacity of machines are analyzed showing how different parameters affect the processes within biomass supply chain in terms of time and cost. The results shown that parameters such as area of the field, travel distance, number of available machines, capacity of the machines, etc. should be taken into account in order a less time and/ or cost consuming machinery combination to be selected.

  20. Biomass production from the U.S. forest and agriculture sectors in support of a renewable electricity standard

    International Nuclear Information System (INIS)

    White, Eric M.; Latta, Greg; Alig, Ralph J.; Skog, Kenneth E.; Adams, Darius M.

    2013-01-01

    Production of renewable energy from biomass has been promoted as means to improve greenhouse gas balance in energy production, improve energy security, and provide jobs and income. However, uncertainties remain as to how the agriculture and forest sectors might jointly respond to increased demand for bioelectricity feedstocks and the potential environmental consequences of increased biomass production. We use an economic model to examine how the agriculture and forest sectors might combine to respond to increased demands for bioelectricity under simulated future national-level renewable electricity standards. Both sectors are projected to contribute biomass, although energy crops, like switchgrass, produced on agriculture land are projected to be the primary feedstocks. At the highest targets for bioelectricity production, we project increased conversion of forest to agriculture land in support of agriculture biomass production. Although land conversion takes place in response to renewable electricity mandates, we project only minor increases in forest and agriculture emissions. Similarly, crop prices were projected to generally be stable in the face of increased bioelectricity demand and displacement of traditional agriculture crops. - Highlights: ► We model the response of forest and agriculture to increased bioelectricity demand. ► The agriculture sector, through energy crop production, is the key biomass provider. ► Increased land exchange is projected for the highest bioelectricity demands. ► Land exchange from forest to agriculture yield the greatest changes in GHG flux. ► Agriculture and forestry must be accounted for when considering bioenergy policy

  1. CosmoBon, tree research team, for studying utilization of woody plant in space environment

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Baba, Keiichi; Chida, Yukari

    2012-07-01

    We are proposing to raise woody plants in space for several applications and plant science, as Tree research team, TRT. Trees produce excess oxygen, wooden materials for living cabin, and provide biomass for cultivating mushroom and insect as for the space agriculture. Excellent tree shapes which would be deeply related to wood formation improve quality of life under stressful environment in outer space. We have the serious problem about their size. Bonsai is one of the Japanese traditional arts. We have been investigating the tension wood formation under exotic gravitational environment using Bonsai. CosmoBon is the small tree Bonsai for our space experiment. The tension wood formation in CosmoBon was confirmed as the same as that in the natural trees. Our goal is to examine feasibility to grow various species of trees in space as bioresource for space agriculture.

  2. Comparative Analysis of Woody Plants Biomass on the Affected

    African Journals Online (AJOL)

    Nwokem et al.

    stands that were generated from the field using sample quadrats and measuring ... woody plants on the affected and restricted land management practices. F u ll L en .... divided into 6 strata that served as a guide to locate the quadrat samples.

  3. Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock

    NARCIS (Netherlands)

    Vitasari, C.R.; Jurascik, M.; Ptasinski, K.J.

    2011-01-01

    This paper presents an exergy analysis of SNG production via indirect gasification of various biomass feedstock, including virgin (woody) biomass as well as waste biomass (municipal solid waste and sludge). In indirect gasification heat needed for endothermic gasification reactions is produced by

  4. DEVELOPMENT OF THE BOILER FOR COMBUSTION OF AGRICULTURAL BIOMASS BY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Valentina Turanjanin

    2010-01-01

    Full Text Available Republic of Serbia consumes about 15 million tons of equivalent oil per year (Mtoe. At the same time potential of the renewable energy sources is about 3,5 Mtoe/year. Main renewable source is biomass, with its potential of about 2,6 Mtoe/year, and 60% of the total biomass source is of agricultural origin. Mainly, that type of biomass is collected, transported and stored in form of bales. At the same time in one of the largest agricultural companies in Serbia (PKB there are over 2000 ha of soya plantations, and also 4000 t/year of baled soya straw available, none of which being used for energy purposes. Therefore, efforts have been made in the Laboratory for Thermal Engineering and Energy of the "Vinča" Institute to develop a technology for utilizing bales of various sizes and shapes for energy production. Satisfactory test results of the 1 MW experimental facility - low CO levels and stable thermal output - led to the building-up of a 1.5 MW soya straw bales-fired hot water boiler, with cigarette type of combustion, for the purposes of greenhouse and office heating in the PKB. Further more, achieving good results in exploitation of that hot water boiler, the next step is building up the first combined heat and power (electricity production facility (CHP, which will use agricultural biomass as a fuel, in Serbia.

  5. Allocation of biomass resources for minimising energy system greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bentsen, Niclas Scott; Jack, Michael W.; Felby, Claus; Thorsen, Bo Jellesmark

    2014-01-01

    The European Union (EU) energy policy has three targets: supply security, development of a competitive energy sector and environmental sustainability. The EU countries have issued so-called National Renewable Energy Action Plans (NREAP) for increased renewable energy generation. Biomass is stipulated to account for 56% of renewable energy generation by 2020, corresponding to an increase in bioenergy generation from 2.4 × 10 9  GJ in 2005 to 5.7 × 10 9  GJ in 2020. There is uncertainty about the amounts of biomass available in the EU, and import challenges policy targets on supply security and sustainability. We address issues about how, from a technical point of view, the EU may deploy its biomass resources to reduce greenhouse gas (GHG) emissions from energy consumption. We investigate if deployment patterns depend on resource availability and technological development. In situations with adequate biomass availability the analysis suggests that liquid fuel production should be based on agricultural residues. Electricity production should be based on forest residues and other woody biomass and heat production on forest and agricultural residues. Improved conversion technologies implicitly relax the strain on biomass resources and improve supply security. - Highlights: • Optimal allocation of biomass to energy is analysed conceptually for the EU by 2020. • Allocation is influenced not only by GHG performance, also by resource availability. • Surplus biomass could be allocated to electricity generation to reduce GHG emissions

  6. Interactions of woody biofuel feedstock production systems with water resources: considerations for sustainability

    Science.gov (United States)

    Carl C. Trettin; Devendra Amatya; Mark Coleman

    2008-01-01

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and...

  7. THERMO-MECHANICAL PULPING AS A PRETREATMENT FOR AGRICULTURAL BIOMASS FOR BIOCHEMICAL CONVERSION

    Directory of Open Access Journals (Sweden)

    Ronalds W. Gonzalez

    2011-03-01

    Full Text Available The use of thermo-mechanical pulping (TMP, an existing and well known technology in the pulp and paper industry, is proposed as a potential pretreatment pathway of agriculture biomass for monomeric sugar production in preparation for further fermentation into alcohol species. Three agricultural biomass types, corn stover, wheat straw, and sweet sorghum bagasse, were pretreated in a TMP unit under two temperature conditions, 160 ºC and 170 ºC, and hydrolyzed using cellulase at 5, 10, and 20 FPU/g OD biomass. Wheat straw biomass was further pretreated at different conditions including: i soaking with acetic acid, ii longer steaming residence time (15 and 30 min, and iii refined at lower disk gap (0.0508 and 0.1524 mm. Preliminary results showed that carbohydrate conversion increased from 25% to 40% when the TMP temperature was increased from 160 to 170 ºC. Carbohydrate conversion was relatively similar for the three biomasses under the same pretreatment conditions and enzyme loading. Acetic acid soaking and refining at a reduce disk gap increases carbohydrate conversion. Further studies within this technological field to identify optimum process and TMP conditions for pretreatment are suggested.

  8. Technology for biomass feedstock production in southern forests and GHG implications

    Science.gov (United States)

    Bob Rummer; John Klepac; Jason Thompson

    2012-01-01

    Woody biomass production in the South can come from four distinct feedstocks - logging residues, thinnings, understory harvesting, or energywood plantations. A range of new technology has been developed to collect, process and transport biomass and a key element of technology development has been to reduce energy consumption. We examined three different woody feedstock...

  9. Biomass energy production in agriculture: A weighted goal programming analysis

    International Nuclear Information System (INIS)

    Ballarin, A.; Vecchiato, D.; Tempesta, T.; Marangon, F.; Troiano, S.

    2011-01-01

    Energy production from biomasses can be an important resource that, when combined with other green energies such as wind power and solar plants, can contribute to reduce dependency on fossil fuels. The aim of this study is to assess how agriculture could contribute to the production of bio-energy. A multi-period Weighted Goal Programming model (MpWGP) has been applied to identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production under three concurrent constraints: water, labour and soil availability. Alternative scenarios are considered that take into account the effect of climate change and social change. The MpWGP model was tested with data from the Rovigo county area (Italy) over a 15-year time period. Our findings show that trade-off exists between the two optimisation targets considered. Although the optimisation of the first target requires traditional agricultural crops, which are characterised by high revenue and a low production of biomass energy, the latter would be achievable with intensive wood production, namely, high-energy production and low income. Our results also show the importance of the constraints imposed, particularly water availability; water scarcity has an overall negative effect and specifically affects the level of energy production. - Research Highlights: → The aim of this study is to assess how agriculture could contribute to the production of bio-energy. → A multi-period (15-year) Weighted Goal Programming model (MpWGP) has been applied. → We identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production. → Three concurrent constraints have been considered: water, labour and soil availability.→ Water scarcity has an overall negative effect and specifically affects the level of energy production.

  10. Use of light agricultural waste as biomass for energy

    International Nuclear Information System (INIS)

    Kulkarni, P.K.

    1996-01-01

    Along with solar energy light agricultural wastes form an important source of renewable energy. Sugar cane field trash (PACHAT) forms a large source of energy, totally wasted even today. This article covers the thinking on biomass as energy source in India from 1985 till today and describes the important developments. Agricultural waste is a widely distributed source and costly to collect and transport. Hence its mode of use, equipment required became site specific. Equipment for carbonization and gasification of pachat developed by the author are described. Utilisation of agricultural waste is still an open field and challenge to develop and perfect small and large devices directly for thermal use or power generation. (author). 3 refs., 2 figs., 3 tabs

  11. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India.

    Science.gov (United States)

    Gandhi, Durai Sanjay; Sundarapandian, Somaiah

    2017-04-01

    Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among

  12. Woody Species Diversity in Traditional Agroforestry Practices of Dellomenna District, Southeastern Ethiopia: Implication for Maintaining Native Woody Species

    Directory of Open Access Journals (Sweden)

    Abiot Molla

    2015-01-01

    Full Text Available The major impact of humans on forest ecosystems including loss of forest area, habitat fragmentation, and soil degradation leads to losses of biodiversity. These problems can be addressed by integration of agriculture with forests and maintaining the existing forests. This study was initiated to assess woody species diversity of traditional agroforestry practices. Three study sites (Burkitu, Chire, and Erba were selected based on the presence of agroforestry practice. Forty-eight (48 sample quadrants having an area of 20 m × 20 m, 16 sample quadrants in each study site, were systematically laid using four transect lines at different distance. The diversity of woody species was analyzed by using different diversity indices. A total of 55 woody species belonging to 31 families were identified and documented. There were significantly different (P<0.05 among the study Kebeles (peasant associations. Mangifera indica, Entada abyssinica, and Croton macrostachyus were found to have the highest Important Value Index. The results confirmed that traditional agroforestry plays a major role in the conservation of native woody species. However, threats to woody species were observed. Therefore, there is a need to undertake conservation practices before the loss of species.

  13. Forest biomass-based energy

    Science.gov (United States)

    Janaki R. R. Alavalapati; Pankaj Lal; Andres Susaeta; Robert C. Abt; David N. Wear

    2013-01-01

    Key FindingsHarvesting woody biomass for use as bioenergy is projected to range from 170 million to 336 million green tons by 2050, an increase of 54 to 113 percent over current levels.Consumption projections for forest biomass-based energy, which are based on Energy Information Administration projections, have a high level of...

  14. Conflicts between Ecological Farming and Energy Use of Biomass from Agriculture

    DEFF Research Database (Denmark)

    Meyer, Niels I; Nielsen, Vilhjalmur; Christensen, B.T.

    1996-01-01

    Due to the fluctuating nature of several renewable energy sources such as solar, wind and waves, new methodologies are needed for planning of sustainable energy supply systems. As Denmark has no hydro power, biomass plays an important role in this connection. Especially surplus straw and animal...... manure (for biogas) from agriculture. In the official Danish energy plans biomass is supposed to cover more than 20% of the Danish energy demand by year 2030. However, the use of biomass for energy purposes may conflict with the need to maintain soil quality of arable fields. Concerned ecological farmers...

  15. Drivers of Global Vegetation Biomass Trends between 1988 and 2008

    KAUST Repository

    McCabe, Matthew; Liu, Yi; Evans, Jason; De Jeu, Richard; van Dijk, Albert

    2013-01-01

    Vegetation optical depth (VOD) is an indicator of the vegetation water content of both woody and leaf components in terrestrial biomass as derived from passive microwave observations. VOD is distinctly different from products derived from optical remote sensing: it is less prone to saturation in dense canopy; is sensitive to both photosynthetic and non-photosynthetic biomass; is less affected by atmospheric conditions; and is of coarser spatial resolution. Here, VOD retrievals from a series of sensors are blended to produce a time series from 1988 through to 2008, and a global analysis is undertaken to quantify and attribute global VOD trends over the same period. We conduct Mann-Kendall linear trend tests on annual average VOD to identify regions of significant change. Patterns for these regions were evaluated against independent datasets to diagnose the underlying cause of the observed trends. Results indicate that: (1) over grassland and shrubland, VOD patterns correspond strongly to temporal precipitation patterns; (2) over croplands, annual average VOD shows a general increase that corresponds to reported crop yield patterns and can be attributed to a combination of precipitation patterns and agricultural improvement; (3) over humid tropical forest, the spatial pattern of VOD decline agrees well with deforestation patterns identified in previous studies; and (4) over boreal forests, regional VOD declines can be attributed to a combination of fires and logging. We conclude that VOD can be used to estimate and interpret global changes in total above ground vegetation biomass. We expect that this new observationally based remote sensing data source will be of considerable interest to hydrological, agricultural, climate change and carbon cycle studies, and provide new insights into these and related process investigations.

  16. Drivers of Global Vegetation Biomass Trends between 1988 and 2008

    KAUST Repository

    McCabe, Matthew

    2013-12-01

    Vegetation optical depth (VOD) is an indicator of the vegetation water content of both woody and leaf components in terrestrial biomass as derived from passive microwave observations. VOD is distinctly different from products derived from optical remote sensing: it is less prone to saturation in dense canopy; is sensitive to both photosynthetic and non-photosynthetic biomass; is less affected by atmospheric conditions; and is of coarser spatial resolution. Here, VOD retrievals from a series of sensors are blended to produce a time series from 1988 through to 2008, and a global analysis is undertaken to quantify and attribute global VOD trends over the same period. We conduct Mann-Kendall linear trend tests on annual average VOD to identify regions of significant change. Patterns for these regions were evaluated against independent datasets to diagnose the underlying cause of the observed trends. Results indicate that: (1) over grassland and shrubland, VOD patterns correspond strongly to temporal precipitation patterns; (2) over croplands, annual average VOD shows a general increase that corresponds to reported crop yield patterns and can be attributed to a combination of precipitation patterns and agricultural improvement; (3) over humid tropical forest, the spatial pattern of VOD decline agrees well with deforestation patterns identified in previous studies; and (4) over boreal forests, regional VOD declines can be attributed to a combination of fires and logging. We conclude that VOD can be used to estimate and interpret global changes in total above ground vegetation biomass. We expect that this new observationally based remote sensing data source will be of considerable interest to hydrological, agricultural, climate change and carbon cycle studies, and provide new insights into these and related process investigations.

  17. Non-slag co-gasification of biomass and coal in entrained-bed furnace

    Science.gov (United States)

    Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke

    2018-02-01

    Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a

  18. Development of a new steady state zero-dimensional simulation model for woody biomass gasification in a full scale plant

    International Nuclear Information System (INIS)

    Formica, Marco; Frigo, Stefano; Gabbrielli, Roberto

    2016-01-01

    Highlights: • A simulation model with Aspen Plus is created for a full scale biomass gasification plant. • Test results, equipment data and control logics are considered in the simulation model. • The simulation results are in agreement with the experimental data. • The gasifying air temperature affects largely the energy performance of the gasification plant. • Increasing the equivalent ratio implies a strong reduction of the gasification efficiency. - Abstract: A new steady state zero-dimensional simulation model for a full-scale woody biomass gasification plant with fixed-bed downdraft gasifier has been developed using Aspen Plus®. The model includes the technical characteristics of all the components (gasifier, cyclone, exchangers, piping, etc.) of the plant and works in accordance with its actual main control logics. Simulation results accord with those obtained during an extensive experimental activity. After the model validation, the influence of operating parameters such as the equivalent ratio, the biomass moisture content and the gasifying air temperature on syngas composition have been analyzed in order to assess the operative behavior and the energy performance of the experimental plant. By recovering the sensible heat of the syngas at the outlet of the gasifier, it is possible to obtain higher values of the gasifying air temperature and an improvement of the overall gasification performances.

  19. Idaho forest growth response to post-thinning energy biomass removal and complementary soil amendments

    Science.gov (United States)

    Lauren A. Sherman; Deborah S. Page-Dumroese; Mark D. Coleman

    2018-01-01

    Utilization of woody biomass for biofuel can help meet the need for renewable energy production. However, there is a concern biomass removal will deplete soil nutrients, having short- and long-term effects on tree growth. This study aimed to develop short-term indicators to assess the impacts of the first three years after small-diameter woody biomass removal on forest...

  20. Thermogravimetry/mass spectrometry study of woody residues and an herbaceous biomass crop using PCA techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, C.J.; Velo, E.; Puigjaner, L. [Department of Chemical Engineering, ETSEIB, Universitat Politecnica de Catalunya, Avinguda Diagonal 647, G2, E-08028 Barcelona (Spain); Meszaros, E.; Jakab, E. [Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, Budapest 1525 (Hungary)

    2007-10-15

    The devolatilization behaviour of pine and beech wood from carpentry residuals and an herbaceous product from an energy plantation (artichoke thistle) was investigated by thermogravimetry/mass spectrometry (TG/MS). The effect of three pre-treatments, hot-water washing, ethanol extraction and their combination, was also studied. Principal component analysis (PCA) was employed to help in the evaluation of the large data set of results. The characteristics of the thermal decomposition of the herbaceous crop are considerably different from that of the woody biomass samples. The evolution profiles of some characteristic pyrolysis products revealed that the thermal behaviour of wood and thistle is still considerably different after the elimination of some of the inorganic ions and extractive compounds, although the macromolecular components of the samples decompose at similar temperatures. With the help of the PCA calculations, the effect of the different pre-treatments on the production of the main pyrolysis products was evidenced. (author)

  1. Potentials for forest woody biomass production in Serbia

    Directory of Open Access Journals (Sweden)

    Vasiljević Aleksandar Lj.

    2015-01-01

    Full Text Available The paper presents the analysis of possible potentials for the production of forest biomass in Serbia taking into consideration the condition of forests, present organizational and technical capacities as well as the needs and situation on the firewood market. Starting point for the estimation of production potentials for forest biomass is the condition of forests which is analyzed based on the available planning documents on all levels. Potentials for biomass production and use refer to initial periods in the production and use of forest biomass in Serbia.

  2. Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land.

    Science.gov (United States)

    Fortier, Julien; Truax, Benoit; Gagnon, Daniel; Lambert, France

    2015-05-01

    In many temperate agricultural areas, riparian forests have been converted to cultivated land, and only narrow strips of herbaceous vegetation now buffer many farm streams. The afforestation of these riparian zones has the potential to increase carbon (C) storage in agricultural landscapes by creating a new biomass sink for atmospheric CO2. Occurring at the same time, the storage of nitrogen (N) and phosphorus (P) in plant biomass, is an important water quality function that may greatly vary with types of riparian vegetation. The objectives of this study were (1) to compare C, N and P storage in aboveground, belowground and detrital biomass for three types of riparian vegetation cover (9-year-old hybrid poplar buffers, herbaceous buffers and natural woodlots) across four agricultural sites and (2) to determine potential vegetation cover effects on soil nutrient supply rate in the riparian zone. Site level comparisons suggest that 9-year-old poplar buffers have stored 9-31 times more biomass C, 4-10 times more biomass N, and 3-7 times more biomass P than adjacent non managed herbaceous buffers, with the largest differences observed on the more fertile sites. The conversion of these herbaceous buffers to poplar buffers could respectively increase C, N and P storage in biomass by 3.2-11.9 t/ha/yr, 32-124 kg/ha/yr and 3.2-15.6 kg/ha/yr, over 9 years. Soil NO3 and P supply rates during the summer were respectively 57% and 66% lower in poplar buffers than in adjacent herbaceous buffers, potentially reflecting differences in nutrient storage and cycling between the two buffer types. Biomass C ranged 49-160 t/ha in woodlots, 33-110 t/ha in poplar buffers and 3-4 t/ha in herbaceous buffers. Similar biomass C stocks were found in the most productive poplar buffer and three of the four woodlots studied. Given their large and varied biomass C stocks, conservation of older riparian woodlots is equally important for C balance management in farmland. In addition, the

  3. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model. Volume I. Biomass allocation model. Technical progress report for the period ending September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.K.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields K.J.

    1980-01-01

    A biomass allocation model has been developed to show the most profitable combination of biomass feedstocks thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating the most profitable biomass missions from a large number of potential biomass missions. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a portable micro-processor. A User's Manual for the system has been included in Appendix A of the report. The validity of any biomass allocation solution provided by the allocation model is dependent on the accuracy of the data base. The initial data base was constructed from values obtained from the literature, and, consequently, as more current thermochemical conversion processing and manufacturing costs and efficiencies become available, the data base should be revised. Biomass derived fuels included in the data base are the following: medium Btu gas low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil. The market sectors served by the fuels include: residential, electric utility, chemical (industrial), and transportation. Regional/seasonal costs and availabilities and heating values for 61 woody and non-woody biomass species are included. The study has included four regions in the United States which were selected because there was both an availability of biomass and a commercial demand for the derived fuels: Region I: NY, WV, PA; Region II: GA, AL, MS; Region III: IN, IL, IA; and Region IV: OR, WA.

  4. A roadmap for production of sustainable, consistent and reliable electric power from agricultural biomass- An Indian perspective

    International Nuclear Information System (INIS)

    Singh, Jaswinder

    2016-01-01

    The utilization of agricultural biomass for production of electric power can help to reduce the environmental emissions while achieving energy security and sustainable development. This paper presents a methodology for estimating the power production potential of agricultural biomass in a country. Further, the methodology has been applied to develop a roadmap for producing reliable power in India. The present study reveals that about 650 Mt/year of agricultural biomass is generated in India, while about one-third of this has been found to be surplus for energy applications. The cereal crops have major contribution (64.60%) in production of surplus biomass followed by sugarcane (24.60%) and cotton (10.68%). The energy potential of these resources is of the order of 3.72 EJ, which represents a significant proportion of the primary energy consumption in the country. These biomass resources can produce electric power of 23–35 GW depending upon the efficiency of thermal conversion. The delivery of biomass to the plants and selection of appropriate technology have been found as the major issues that need to be resolved carefully. In the end, the study summarizes various technological options for biomass collection and utilization that can be used for producing clean and consistent power supply. - Highlights: •The production of bioelectricity in India is imperative and inevitable. •About one-third of the agricultural biomass is available for power generation. •The power potential of these resources is of the order of 23–31 GW. •The delivery of biomass to plants and technology selection are the key issues. •India should exploit these resources for producing clean and reliable power.

  5. Conflicts on Use of Agricultural Biomass for Energy

    DEFF Research Database (Denmark)

    Meyer, Niels I; Nielsen, Vilhjalmur; Christensen, Bent T.

    1997-01-01

    The use of biomass for energy puposes may conflict with the need to maintain soil quality of arable fields. Concerned ecological farmers claim that crop residues and animal manure should all be returned to the fields with as small a loss in carbon and nutrients content as possible. If a large part...... of Danish agriculture is tranformed into ecological farming, some complicated ecological, technical and systems problems will have to be solved....

  6. Effects on NOx and SO2 Emissions during Co-Firing of Coal With Woody Biomass in Air Staging and Reburning

    Directory of Open Access Journals (Sweden)

    Nihad Hodžić

    2018-02-01

    Full Text Available Co-firing coal with different types of biomass is increasingly being applied in thermal power plants in Europe. The main motive for the use of biomass as the second fuel in coal-fired power plants is the reduction of CO2 emissions, and related financial benefits in accordance with the relevant international regulations and agreements. Likewise, the application of primary measures in the combustion chamber, which also includes air staging and/or reburning, results in a significant reduction in emission of polluting components of flue gases, in particular NOx emissions. In addition to being efficient and their application to new and future thermoblocks is practically unavoidable, their application and existing conventional combustion chamber does not require significant constructional interventions and is therefore relatively inexpensive. In this work results of experimental research of co-firing coals from Middle Bosnian basin with waste woody biomass are presented. Previously formed fuel test matrix is subjected to pulverized combustion under various temperatures and various technical and technological conditions. First of all it refers to the different mass ratio of fuel components in the mixture, the overall coefficient of excess air and to the application of air staging and/or reburning. Analysis of the emissions of components of the flue gases are presented and discussed. The impact of fuel composition and process temperature on the values of the emissions of components of the flue gas is determined. Additionally, it is shown that other primary measures in the combustion chamber are resulting in more or less positive effects in terms of reducing emissions of certain components of the flue gases into the environment. Thus, for example, the emission of NOx of 989 mg/ measured in conventional combustion, with the simultaneous application of air staging and reburning is reduced to 782 mg/, or by about 21%. The effects of the primary measures

  7. Investigation study for technological application of alternative methods for the energy exploitation of biomass/agricultural residues in Northern Greece

    Directory of Open Access Journals (Sweden)

    Zabaniotou Anastasia A.

    2007-01-01

    Full Text Available Biomass energy potential is addressed to be the most promising among the renewable energy sources, due to its spread and availability worldwide. Apart form that, biomass has the unique advantage among the rest of renewable energy sources, to be able to provide solid, liquid, and gaseous fuels that can be stored, transported, and utilized, far away from the point of origin. For the northern region of Macedonia in Greece, biomass utilization is considered to be a major issue, due to the considerably intensive regional agricultural activities. Wood by-products, fruit cores, rice husk and cotton gin waste provide a promising energy source for the region. The energy potential of the available agricultural biomass produced in the region is much enough to cover the 10% of the annual oil consumption utilized for thermal applications. However, the cost of energy utilization of biomass is considerably high due to the high cost of the logistics concerning the collection, transport, and storage of biomass. The available utilization technologies developed, to handle efficiently all different species of biomass, cover a wide technological range. One of the most promising technologies involving thermal treatment of biomass and the production of a gaseous fuel (biogas for industrial heat applications and electricity production, is the thermo chemical conversion. In the present work, an investigation concerning biomass potential for energy production in the region of central Macedonia in Greece, utilizing several locally produced biomass species, is conducted. Emphasis is put on the energy utilization of agricultural by-products and residues. Agricultural sector is of great importance due to the considerably intensive agricultural activities in the region of Central Macedonia. .

  8. Aluminium exclusion and aluminium tolerance in woody plants

    Directory of Open Access Journals (Sweden)

    Ivano eBrunner

    2013-06-01

    Full Text Available The aluminium (Al cation Al3+ is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al3+ conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al3+ from root cells (exclusion mechanisms and those that enable plants to tolerate Al3+ once it has entered the root and shoot symplast (internal tolerance mechanisms. The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al3+ exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al3+ adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils.

  9. Aluminum exclusion and aluminum tolerance in woody plants.

    Science.gov (United States)

    Brunner, Ivano; Sperisen, Christoph

    2013-01-01

    The aluminum (Al) cation Al(3) (+) is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al(3) (+) conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al(3) (+) from root cells (exclusion mechanisms) and those that enable plants to tolerate Al(3) (+) once it has entered the root and shoot symplast (internal tolerance mechanisms). The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al(3) (+) exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al(3) (+) adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils.

  10. ECOLOGICAL AND ECONOMIC CONFLICTS: AGRICULTURAL USE OR CULTIVATION BIOMASS SECOND GENERATION

    Directory of Open Access Journals (Sweden)

    T. Trohlyuk

    2014-06-01

    Full Text Available To negotiate the consequences of agricultural modernization as an example of nature Polissya areas in Ukraine. Studies addressing the conceptual foundations of ecological and economic conflict over agricultural use or cultivation of second generation biomass due to the transformation of land use during the economic reforms in the country. Proposed to solve it through socio-ecological-economic assessment of environmental audit procedure in the context of the strategy of "green" economy.

  11. Woody plants and land use

    International Nuclear Information System (INIS)

    Huxley, P.A.

    1982-01-01

    The importance of woody species in land use systems has recently gained international attention. In addition to the production of food and fuelwood, trees can maintain or improve the fertility status of the soil and conserve both soil and water. The use of multipurpose trees in land use system and the important role of trees in association with other crops is now recognized. The methods of scientifically studying such systems, and of manipulating them to improve their productivity or net utility have not been well developed. This introductory paper documents the role of woody species in agriculture, forestry and agroforestry. It outlines some of the important research needs for such systems and the role which isotopes could play in the research. (author)

  12. analysis of the influence of agricultural and non-agricultural sectors ...

    African Journals Online (AJOL)

    INIAMA

    agricultural GDP led to a 0.243% and 0.743% change in the economy respectively. It means that the economy is inelastic with respect to agricultural and non-agricultural sector performance. The economy is more inelastic with respect to agricultural production than non-agricultural production. In countries where economies ...

  13. Assessment of Aboveground Woody Biomass Dynamics Using Terrestrial Laser Scanner and L-Band ALOS PALSAR Data in South African Savanna

    Directory of Open Access Journals (Sweden)

    Victor Onyango Odipo

    2016-11-01

    Full Text Available The use of optical remote sensing data for savanna vegetation structure mapping is hindered by sparse and heterogeneous distribution of vegetation canopy, leading to near-similar spectral signatures among lifeforms. An additional challenge to optical sensors is the high cloud cover and unpredictable weather conditions. Longwave microwave data, with its low sensitivity to clouds addresses some of these problems, but many space borne studies are still limited by low quality structural reference data. Terrestrial laser scanning (TLS derived canopy cover and height metrics can improve aboveground biomass (AGB prediction at both plot and landscape level. To date, few studies have explored the strength of TLS for vegetation structural mapping, and particularly few focusing on savannas. In this study, we evaluate the potential of high resolution TLS-derived canopy cover and height metrics to estimate plot-level aboveground biomass, and to extrapolate to a landscape-wide biomass estimation using multi-temporal L-band Synthetic Aperture Radar (SAR within a 9 km2 area savanna in Kruger National Park (KNP. We inventoried 42 field plots in the wet season and computed AGB for each plot using site-specific allometry. Canopy cover, canopy height, and their product were regressed with plot-level AGB over the TLS-footprint, while SAR backscatter was used to model dry season biomass for the years 2007, 2008, 2009, and 2010 for the study area. The results from model validation showed a significant linear relationship between TLS-derived predictors with field biomass, p < 0.05 and adjusted R2 ranging between 0.56 for SAR to 0.93 for the TLS-derived canopy cover and height. Log-transformed AGB yielded lower errors with TLS metrics compared with non-transformed AGB. An assessment of the backscatter based on root mean square error (RMSE showed better AGB prediction with cross-polarized (RMSE = 6.6 t/ha as opposed to co-polarized data (RMSE = 6.7 t/ha, attributed to

  14. Biomass production on marginal lands - catalogue of bioenergy crops

    Science.gov (United States)

    Baumgarten, Wibke; Ivanina, Vadym; Hanzhenko, Oleksandr

    2017-04-01

    Marginal lands are the poorest type of land, with various limitations for traditional agriculture. However, they can be used for biomass production for bioenergy based on perennial plants or trees. The main advantage of biomass as an energy source compared to fossil fuels is the positive influence on the global carbon dioxide balance in the atmosphere. During combustion of biofuels, less carbon dioxide is emitted than is absorbed by plants during photosynthesis. Besides, 20 to 30 times less sulphur oxide and 3 to 4 times less ash is formed as compared with coal. Growing bioenergy crops creates additional workplaces in rural areas. Soil and climatic conditions of most European regions are suitable for growing perennial energy crops that are capable of rapid transforming solar energy into energy-intensive biomass. Selcted plants are not demanding for soil fertility, do not require a significant amount of fertilizers and pesticides and can be cultivated, therefore, also on unproductive lands of Europe. They prevent soil erosion, contribute to the preservation and improvement of agroecosystems and provide low-cost biomass. A catalogue of potential bioenergy plants was developed within the EU H2020 project SEEMLA including woody and perennial crops that are allowed to be grown in the territory of the EU and Ukraine. The catalogue lists high-productive woody and perennial crops that are not demanding to the conditions of growing and can guarantee stable high yields of high-energy-capacity biomass on marginal lands of various categories of marginality. Biomass of perennials plants and trees is composed of cellulose, hemicellulose and lignin, which are directly used to produce solid biofuels. Thanks to the well-developed root system of trees and perennial plants, they are better adapted to poor soils and do not require careful maintenance. Therefore, they can be grown on marginal lands. Particular C4 bioenergy crops are well adapted to a lack of moisture and high

  15. 'Underutilised' agricultural land: its definitions, potential use for future biomass production and its environmental implications

    Science.gov (United States)

    Miyake, Saori; Bargiel, Damian

    2017-04-01

    A growing bioeconomy and increased demand for biomass products on food, health, fibre, industrial products and energy require land resources for feedstock production. It has resulted in significant environmental and socio-economic challenges on a global scale. As a result, consideration of such effects of land use change (LUC) from biomass production (particularly for biofuel feedstock) has emerged as an important area of policy and research, and several potential solutions have been proposed to minimise such adverse LUC effects. One of these solutions is the use of lands that are not in production or not suitable for food crop production, such as 'marginal', 'degraded', 'abandoned' and 'surplus' agricultural lands for future biomass production. The terms referring to these lands are usually associated with the potential production of 'marginal crops', which can grow in marginal conditions (e.g. poor soil fertility, low rainfall, drought) without much water and agrochemical inputs. In our research, we referred to these lands as 'underutilised' agricultural land and attempted to define them for our case study areas located in Australia and Central and Eastern Europe (CEE). Our goal is to identify lands that can be used for future biomass production and to evaluate their environmental implications, particularly impacts related to biodiversity, water and soil at a landscape scale. The identification of these lands incorporates remote sensing and spatially explicit approaches. Our findings confirmed that there was no universal or single definition of the term 'underutilised' agricultural land as the definitions significantly vary by country and region depending not only on the biophysical environment but also political, institutional and socio-economic conditions. Moreover, our results highlighted that the environmental implications of production of biomass on 'underutilised' agricultural land for biomass production are highly controversial. Thus land use change

  16. Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds

    Directory of Open Access Journals (Sweden)

    Amelia eElgar

    2014-05-01

    Full Text Available Combating the legacy of deforestation on tropical biodiversity requires the conversion to forest of large areas of established pasture, where barriers to native plant regeneration include competition with pasture grasses and poor propagule supply (seed availability. In addition, initial woody plants that colonise pasture are often invasive non-native species whose ecological roles and management in the context of forest regeneration are contested. In a restoration experiment at two 0.64 ha sites we quantified the response of native woody vegetation recruitment to (1 release from competition with introduced pasture grasses, and (2 local facilitation of frugivore-assisted seed dispersal provided by scattered woody plants and artificial bird perches. Herbicide pasture grass suppression during 20 months caused a significant but modest increase in density of native woody seedlings, together with abundant co-recruitment of the prominent non-native pioneer wild tobacco (Solanum mauritianum. Recruitment of native species was further enhanced by local structure in herbicide-treated areas, being consistently greater under live trees and dead non-native shrubs (herbicide-treated than in open areas, and intermediate under bird perches. Native seedling recruitment comprised 28 species across 0.25 ha sampled but was dominated by two rainforest pioneers (Homalanthus novoguineensis, Polyscias murrayi. These early results are consistent with the expected increase in woody vegetation recruitment in response to release from competitive and dispersive barriers to rainforest regeneration. The findings highlight the need for a pragmatic consideration of the ecological roles of woody weeds and the potential roles of ‘new forests’ more broadly in accelerating succession of humid tropical forest across large areas of retired agricultural land.

  17. Productivity and cost of harvesting a stemwood biomass product from integrated cut-to-length harvest operations in Australian Pinus radiata plantations

    International Nuclear Information System (INIS)

    Walsh, D.; Strandgard, M.

    2014-01-01

    Significant quantities of woody biomass from the tops of trees and larger woody ‘waste’ pieces that fall outside existing sawlog and pulpwood specifications are left on site post final harvest in Australian radiata Pinus radiata (D. Don) (radiata pine) plantations. Woody biomass is a potential product for pulp making or energy generation. Commercial use of woody biomass from radiata pine plantations would add extra value to the Australian plantation estate through improved resource utilisation, and potentially reduced post-harvesting silvicultural costs. This study investigated the productivity and cost impact of the harvest and extraction to roadside of woody biomass in an integrated harvest operation in a typical Australian two machine (harvester/processor and forwarder), cut-to-length, clearfall operation in a mature, thinned radiata pine plantation. The harvest operation yielded 23 GMt/ha (5% of the total yield) of woody biomass (known as ‘fibreplus’), 443 GMt/ha of sawlogs and 28 GMt/ha of pulpwood. The mean quantity of biomass left on site was 128 GMt/ha, mainly consisting of branches and needles, sufficient to minimise nutrient loss and protect the soil from erosion. Woodchips derived from the fibreplus product were suitable for kraft pulp making, (when blended in small amounts with clean de-barked roundwood woodchips), and for energy generation. The method trialed with the fibreplus product being produced did not impact harvesting and processing productivity and costs, but extraction was 14% less productive. Through analysis of the productivities of each phase and development of a cost model the harvest and extraction of the fibreplus product was estimated to increase total unit costs by ∼4.9%. - Highlights: • Study of the productivity and cost impact of producing a woody biomass product. • We compared two scenarios – harvesting with and without the biomass product. • An additional 23 GMt/ha (5% of the total yield) of woody biomass

  18. Study of solid chemical evolution in torrefaction of different biomasses through solid-state "1"3C cross-polarization/magic angle spinning NMR (nuclear magnetic resonance) and TGA (thermogravimetric analysis)

    International Nuclear Information System (INIS)

    Rodriguez Alonso, Elvira; Dupont, Capucine; Heux, Laurent; Da Silva Perez, Denilson; Commandre, Jean-Michel; Gourdon, Christophe

    2016-01-01

    The objective of this work is to compare mass loss and chemical evolution of the solid phase, versus time, during dynamic torrefaction of different types of biomass. For this purpose, two experiments, ThermoGravimetric Analysis and solid-state "1"3C Cross-Polarization/Magic Angle Spinning Nuclear Magnetic Resonance, were run on four representative biomasses. Overall mass loss and chemical evolution of the solid phase were followed, respectively, as a function of temperature and time. Thanks to this coupled information, it was shown that the knowledge of both solid mass loss and chemical evolution is necessary to characterize torrefaction severity. Moreover, biomasses containing higher proportions of xylan lost mass faster than those containing lower proportions. Lignin showed a protecting role towards cellulose, which would lead to a faster degradation of non-woody biomasses in comparison with woody biomasses. Three parameters would have an influence on solid chemical evolution during torrefaction: xylan content in hemicellulose, lignin content in biomass, and cellulose crystallinity. - Highlights: • Torrefaction of four biomasses was studied with TGA and solid-state NMR. • Both solid mass loss and chemical evolution characterize torrefaction severity. • Biomasses containing a higher proportion of xylan lose mass faster. • Lignin shows a stronger protecting role in degradation of woody biomasses. • Xylan, lignin and crystalline cellulose values influence solid chemical evolution.

  19. Impacts of post-harvest slash and live-tree retention on biomass and nutrient stocks in Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    Science.gov (United States)

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.

    2013-01-01

    Globally, there is widespread interest in using forest-derived biomass as a source of bioenergy. While conventional timber harvesting generally removes only merchantable tree boles, harvesting biomass feedstock can remove all forms of woody biomass (i.e., live and dead standing woody vegetation, downed woody debris, and stumps) resulting in a greater loss of biomass and nutrients as well as more severe habitat alteration. To investigate the potential impacts of this practice, this study examined the initial impacts (pre- and post-harvest) of various levels of slash and live-tree retention on biomass and nutrient stocks, including carbon (C), nitrogen (N), calcium (Ca), potassium (K), and phosphorus (P), in Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Treatments examined included three levels of slash retention, whole-tree harvest (WTH), 20% slash retention (20SR), and stem-only harvest (SOH), factored with three levels of green-tree retention, no trees retained (NONE), dispersed retention (DISP), and aggregate retention (AGR). Slash retention was the primary factor affecting post-harvest biomass and nutrient stocks, including woody debris pools. Compared to the unharvested control, stocks of biomass, carbon, and nutrients, including N, Ca, K, and P, in woody debris were higher in all treatments. Stem-only harvests typically contained greater biomass and nutrient stocks than WTH, although biomass and nutrients within 20SR, a level recommended by biomass harvesting guidelines in the US and worldwide, generally did not differ from WTH or SOH. Biomass in smaller-diameter slash material (typically 2.5-22.5 cm in diameter) dominated the woody debris pool following harvest regardless of slash retention level. Trends among treatments in this diameter range were generally similar to those in the total woody debris pool. Specifically, SOH contained significantly greater amounts of biomass than WTH while 20SR was not different from either WTH or

  20. The use of agricultural biomass for energy purposes: EU and national policy

    OpenAIRE

    Sabrina Giuca

    2008-01-01

    The implementation in 2020 of binding national targets for reducing greenhouse gas emissions and use of renewable energy has increased the interest in biomass as a viable alternative to fossil fuels. Thus agriculture acquires a primary role for the reduction of CO2 but raises many issues: CBA, food vs fuel, subsidies, tax measures and investments. After outlining the framework for the exploitation of biomass energy, the analysis carried out on the prospects of development of agroenergy chains...

  1. Effect of Removal of Woody Biomass after Clearcutting and Intercropping Switchgrass (Panicum virgatum with Loblolly Pine (Pinus taeda on Rodent Diversity and Populations

    Directory of Open Access Journals (Sweden)

    Matthew M. Marshall

    2012-01-01

    Full Text Available Plant-based feedstocks have long been considered viable, potential sources for biofuels. However, concerns regarding production effects may outweigh gains like carbon savings. Additional information is needed to understand environmental effects of growing feedstocks, including effects on wildlife communities and populations. We used a randomized and replicated experimental design to examine initial effects of biofuel feedstock treatment options, including removal of woody biomass after clearcutting and intercropping switchgrass (Panicum virgatum, on rodents to 2 years post-treatment in regenerating pine plantations in North Carolina, USA. Rodent community composition did not change with switchgrass production or residual biomass removal treatments. Further, residual biomass removal had no influence on rodent population abundances. However, Peromyscus leucopus was found in the greatest abundance and had the greatest survival in treatments without switchgrass. In contrast, abundance of invasive Mus musculus was greatest in switchgrass treatments. Other native species, such as Sigmodon hispidus, were not influenced by the presence of switchgrass. Our results suggest that planting of switchgrass, but not biomass removal, had species-specific effects on rodents at least 2 years post-planting in an intensively managed southern pine system. Determining ecological mechanisms underlying our observed species associations with switchgrass will be integral for understanding long-term sustainability of biofuels production in southern pine forest.

  2. Automotive fuels from biomass via gasification

    International Nuclear Information System (INIS)

    Zhang, Wennan

    2010-01-01

    There exists already a market of bio-automotive fuels i.e. bioethanol and biodiesel produced from food crops in many countries. From the viewpoint of economics, environment, land use, water use and chemical fertilizer use, however, there is a strong preference for the use of woody biomass and various forest/agricultural residues as the feedstock. Thus, the production of 2nd generation of bio-automotive fuels i.e. synthetic fuels such as methanol, ethanol, DME, FT-diesel, SNG and hydrogen through biomass gasification seems promising. The technology of producing synthetic fuels is well established based on fossil fuels. For biomass, however, it is fairly new and the technology is under development. Starting from the present market of the 1st generation bio-automotive fuels, this paper is trying to review the technology development of the 2nd generation bio-automotive fuels from syngas platform. The production of syngas is emphasized which suggests appropriate gasifier design for a high quality syngas production. A number of bio-automotive fuel demonstration plant will be presented, which gives the state of the art in the development of BTS (biomass to synthetic fuels) technologies. It can be concluded that the 2nd generation bio-automotive fuels are on the way to a breakthrough in the transport markets of industrial countries especially for those countries with a strong forest industry. (author)

  3. Effects of alien woody plant invasion on the birds of Mountain ...

    African Journals Online (AJOL)

    The density, biomass, species richness and composition of birds in plots in two Mountain Fynbos plant-species assemblages (Tall Mixed Fynbos and Restionaceous Tussock Marsh), infested with alien woody plants (mainly Australian Acacia spp.) at the Cape of Good Hope Nature Reserve, South Africa, were compared ...

  4. Combustion, cofiring and emissions characteristics of torrefied biomass in a drop tube reactor

    International Nuclear Information System (INIS)

    Ndibe, Collins; Maier, Jörg; Scheffknecht, Günter

    2015-01-01

    The study investigates cofiring characteristics of torrefied biomass fuels at 50% thermal shares with coals and 100% combustion cases. Experiments were carried out in a 20 kW, electrically heated, drop-tube reactor. Fuels used include a range of torrefied biomass fuels, non-thermally treated white wood pellets, a high volatile bituminous coal and a lignite coal. The reactor was maintained at 1200 °C while the overall stoichiometric ratio was kept constant at 1.15 for all combustion cases. Measurements were performed to evaluate combustion reactivity, emissions and burn-out. Torrefied biomass fuels in comparison to non-thermally treated wood contain a lower amount of volatiles. For the tests performed at a similar particle size distribution, the reduced volatile content did not impact combustion reactivity significantly. Delay in combustion was only observed for test fuel with a lower amount of fine particles. The particle size distribution of the pulverised grinds therefore impacts combustion reactivity more. Sulphur and nitrogen contents of woody biomass fuels are low. Blending woody biomass with coal lowers the emissions of SO 2 mainly as a result of dilution. NO X emissions have a more complex dependency on the nitrogen content. Factors such as volatile content of the fuels, fuel type, furnace and burner configurations also impact the final NO X emissions. In comparison to unstaged combustion, the nitrogen conversion to NO X declined from 34% to 9% for air-staged co-combustion of torrefied biomass and hard coal. For the air-staged mono-combustion cases, nitrogen conversion to NO X declined from between 42% and 48% to about 10%–14%. - Highlights: • Impact of torrefaction on cofiring was studied at high heating rates in a drop tube. • Cofiring of torrefied biomasses at high thermal shares (50% and higher) is feasible. • Particle size impacts biomass combustion reactivity more than torrefaction. • In a drop tube reactor, torrefaction has no negative

  5. 2007 Biomass Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  6. New market potential: Torrefaction of woody biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tumuluru, Jaya Shankar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hess, J. Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-02

    Biomass was the primary source of energy worldwide until a few generations ago, when the energy-density, storability and transportability of fossil fuels enabled one of the most rapid cultural transformations in the history of humankind: the industrial revolution. In just a few hundred years, coal, oil and natural gas have prompted the development of highly efficient, high-volume manufacturing and transportation systems that have become the foundation of the world economy. But over-reliance on fossil resources has also led to environmental and energy security concerns. In addition, one of the greatest advantages of using biomass to replace fossil fuels is reduced greenhouse gas emissions and carbon footprint.

  7. Biomass production and nitrogen dynamics in an integrated aquaculture/agriculture system

    Science.gov (United States)

    Owens, L. P.; Hall, C. R.

    1990-01-01

    A combined aquaculture/agriculture system that brings together the three major components of a Controlled Ecological Life Support System (CELSS) - biomass production, biomass processing, and waste recycling - was developed to evaluate ecological processes and hardware requirements necessary to assess the feasibility of and define design criteria for integration into the Kennedy Space Center (KSC) Breadboard Project. The system consists of a 1 square meter plant growth area, a 500 liter fish culture tank, and computerized monitoring and control hardware. Nutrients in the hydrophonic solution were derived from fish metabolites and fish food leachate. In five months of continuous operation, 27.0 kg of lettuce tops, 39.9 kg of roots and biofilm, and 6.6 kg of fish (wet weights) were produced with 12.7 kg of fish food input. Based on dry weights, a biomass conversion index of 0.52 was achieved. A nitrogen budget was derived to determine partitioning of nitrogen within various compartments of the system. Accumulating nitrogen in the hypoponic solution indicated a need to enlarge the plant growth area, potentially increasing the biomass production and improving the biomass conversion index.

  8. Community biomass handbook volume 4: enterprise development for integrated wood manufacturing

    Science.gov (United States)

    Eini Lowell; D.R. Becker; D. Smith; M. Kauffman; D. Bihn

    2017-01-01

    The Community Biomass Handbook Volume 4: Enterprise Development for Integrated Wood Manufacturing is a guide for creating sustainable business enterprises using small diameter logs and biomass. This fourth volume is a companion to three Community Biomass Handbook volumes: Volume 1: Thermal Wood Energy; Volume 2: Alaska, Where Woody Biomass Can Work; and Volume 3: How...

  9. A tree biomass and carbon estimation system

    Science.gov (United States)

    Emily B. Schultz; Thomas G. Matney; Donald L. Grebner

    2013-01-01

    Appropriate forest management decisions for the developing woody biofuel and carbon credit markets require inventory and growth-and-yield systems reporting component tree dry weight biomass estimates. We have developed an integrated growth-and-yield and biomass/carbon calculator. The objective was to provide Mississippi’s State inventory system with bioenergy economic...

  10. Second biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    This volume provides the proceedings for the Second Biomass Conference of the Americas: Energy, Environment, Agriculture, and Industry which was held August 21-24, 1995. The volume contains copies of full papers as provided by the researchers. Individual papers were separately indexed and abstracted for the database.

  11. Is woody residue part of your plan for sustainable forestry?

    Science.gov (United States)

    Deborah Page-Dumroese

    2010-01-01

    The answer to the title question should be "yes"! Currently, there is a lot of chatter about sustainable forestry and alternative fuels, including conversion of wood to bioenergy. At first glance it may seem like there is a conflict - how can removal of woody biomass be sustainable? Whether you are a small woodlot owner doing sustainable harvesting, looking...

  12. Biomass and biofertilizer production by Sesbania cannabina in alkaline soil

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.L.N.; Gill, H.S. [Central Soil Salinity Research Inst., Haryana (India)

    1995-12-01

    Biomass shortages in developing countries require increased investigation into fast-growing, N-fixing, woody plant species. In field trials in north India, the potential of Sesbania cannabina for production of green leaf manure (biofertilizer) and firewood (woody biomass) was investigated. At 100 days after sowing (DAS), green matter was 21.5 and 9.4 Mg ha{sup -1} in the stem and the leaf. A seeding rate of 15 kg ha{sup -1} producing a population of 10{sup 5} plants per hectare was adequate. Biofertilizer potential was 124.7 N, 5.3 P, 80.7 K and 12.0 S (kg ha{sup -1}), respectively. Nodulation was profuse and effective and N fixed was nearly 122 kg ha{sup -1} at 100 DAS. At maturity, 200 DAS, woody biomass production was 19.2 Mg ha{sup -1} and growing Sesbania until this stage was no more demanding on soil nutrients than growing it for green-matter production. There was a considerable beneficial influence from growing Sesbania on soil C and N status. (Author)

  13. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    Science.gov (United States)

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Contemporary forest harvesting practices, specifically harvesting woody biomass as a source of bioenergy feedstock, may remove more woody debris from a site than conventional harvesting. Woody debris, particularly smaller diameter woody debris, plays a key role in maintaining ecosystem nutrient stores following disturbance. Understanding nutrient concentrations within woody debris is necessary for assessing the long-term nutrient balance consequences of altered woody debris retention, particularly in forests slated for use as bioenergy feedstocks. Nutrient concentrations in downed woody debris of various sizes, decay classes, and species were characterized within one such forest type, Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Nutrient concentrations differed significantly between size and decay classes and generally increased as decay progressed. Fine woody debris (≤ 7.5 cm diameter) had higher nutrient concentrations than coarse woody debris (> 7.5 cm diameter) for all nutrients examined except Na and Mn, and nutrient concentrations varied among species. Concentrations of N, Mn, Al, Fe, and Zn in coarse woody debris increased between one and three orders of magnitude, while K decreased by an order of magnitude with progressing decay. The variations in nutrient concentrations observed here underscore the complexity of woody debris nutrient stores in forested ecosystems and suggest that retaining fine woody debris at harvest may provide a potentially important source of nutrients following intensive removals of bioenergy feedstocks.

  14. Annex 34 : task 1 : analysis of biodiesel options : biomass-derived diesel fuels : final report

    Energy Technology Data Exchange (ETDEWEB)

    McGill, R [Oak Ridge National Laboratory, TN (United States); Aakko-Saksa, P; Nylund, N O [TransEnergy Consulting Ltd., Helsinki (Finland)

    2009-06-15

    Biofuels are derived from woody biomass, non-woody biomass, and organic wastes. The properties of vegetable oil feedstocks can have profound effects on the properties of the finished biodiesel product. However, all biodiesel fuels have beneficial effects on engine emissions. This report discussed the use of biodiesel fuels as replacements for part of the diesel fuel consumed throughout the world. Biodiesel fuels currently being produced from fatty acid esters today were reviewed, as well as some of the more advanced diesel replacement fuels. The report was produced as part of the International Energy Agency (IEA) Advanced Motor Fuels (AMF) Implementing Agreement Annex 34, and was divided into 14 sections: (1) an introduction, (2) biodiesel and biomass, (3) an explanation of biodiesel, (4) properties of finished biodiesel fuels, (5) exhaust emissions of finished biodiesel fuels and blends, (6) life-cycle emissions and energy, (7) international biodiesel (FAME) technical standards and specifications, (8) growth in production and use of biodiesel fuels, (9) biofuel refineries, (10) process technology, (11) development and status of biorefineries, (12) comparison of options to produce biobased diesel fuels, (13) barriers and gaps in knowledge, and (14) references. 113 refs., 37 tabs., 74 figs.

  15. Valuation of community forestry in Ethiopia: A contingent valuation study of rural households

    Energy Technology Data Exchange (ETDEWEB)

    Mekonnen, A.

    1997-11-01

    Over 90 percent of energy consumption in Ethiopia comes from biomass fuels and this pattern is a major cause of land degradation and deforestation in the country. Because of imperfection in or absence of labour and fuel markets, we use a non-separable agricultural household model to examine fuel production and consumption behaviour of a sample of rural households. Fuel production (collection) functions were estimated for each of the two major biomass fuels consumed in our study areas, namely, woody biomass and cow dung. Among household composition variables, the more frequent significance of the number of adult and/or youth females particularly for collection from the commons indicates the importance of females in biomass fuel collection. In the estimation of demand functions for woody biomass and dung, we used virtual (shadow) fuel prices and virtual (shadow) wages as explanatory variables instead of market prices due to non separability. Since we used the cost of time spent to collect a unit of fuel as a measure of virtual fuel prices, significant negative own-price elasticities indicate advantages of forest policies that reduce fuel collection time and possibly make more time available particularly for females for child care, cooking and perhaps agricultural production. The significance of own price elasticities combined with significantly positive effect of number of cattle on dung consumption suggest that fuel choice and mix is significantly influenced by scarcity. This indicates a possibility of policy interventions directed at reducing the relative cost of wood and encouraging increased dung use as fertilizer and hence reduced land degradation. Though estimated income elasticities of demand give indications of increasing viability of such interventions with growth, the absence of evidence of substitutability and the significance of number of cattle in positively affecting consumption of woody biomass indicate the importance of cooking habits and culture 38

  16. Cascading of Biomass. 13 Solutions for a Sustainable Bio-based Economy. Making Better Choices for Use of Biomass Residues, By-products and Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Odegard, I.; Croezen, H.; Bergsma, G.

    2012-08-15

    Smarter and more efficient use of biomass, referred to as cascading, can lead to an almost 30% reduction in European greenhouse gas emissions by 2030 compared with 2010. As the title study makes clear, cascading of woody biomass, agricultural and industrial residues and other waste can make a significant contribution to a greening of the economy. With the thirteen options quantitatively examined annual emissions of between 330 and 400 Mt CO2 can be avoided by making more efficient use of the same volume of biomass as well as by other means. 75% of the potential CO2 gains can be achieved with just four options: (1) bio-ethanol from straw, for use as a chemical feedstock; (2) biogas from manure; (3) biorefining of grass; and (4) optimisation of paper recycling. Some of the options make multiple use of residues, with biomass being used to produce bioplastics that, after several rounds of recycling, are converted to heat and power at the end of their life, for example. In other cases higher-grade applications are envisaged: more efficient use of recyclable paper and wood waste, in both economic and ecological terms, using them as raw materials for new paper and chipboard rather than as an energy source. Finally, by using smart technologies biomass can be converted to multiple products.

  17. Forests: future fibre and fuel values : Woody biomass for energy and materials: resources, markets, carbon flows and sustainability impacts

    NARCIS (Netherlands)

    Sikkema, R.|info:eu-repo/dai/nl/110609913

    2014-01-01

    From energy outlooks, it becomes clear that global bioenergy consumption is expected to grow further; specifically the demand for wood for electricity and heating, together with agricultural biomass for liquid biofuels. The EU has an ambitious and integrated policy in order to address climate change

  18. Acetylation of woody lignocellulose: significance and regulation

    Directory of Open Access Journals (Sweden)

    Prashant Mohan-Anupama Pawar

    2013-05-01

    Full Text Available Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides, is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose towards improved saccharification. In this review we: 1 summarize literature on lignocellulose acetylation in different tree species, 2 present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, 3 describe plant proteins involved in lignocellulose O-acetylation, 4 give examples of microbial enzymes capable to de-acetylate lignocellulose, and 5 discuss prospects for exploiting these enzymes in planta to modify xylan acetylation.

  19. Field results for line intersect distance sampling of coarse woody debris

    Science.gov (United States)

    David L. R. Affleck

    2009-01-01

    A growing recognition of the importance of downed woody materials in forest ecosystem processes and global carbon budgets has sharpened the need for efficient sampling strategies that target this resource. Often the aggregate volume, biomass, or carbon content of the downed wood is of primary interest, making recently developed probability proportional-to-volume...

  20. Biomass torrefaction technology: Techno-economic status and future prospects

    International Nuclear Information System (INIS)

    Batidzirai, B.; Mignot, A.P.R.; Schakel, W.B.; Junginger, H.M.; Faaij, A.P.C.

    2013-01-01

    Torrefaction is a promising bioenergy pre-treatment technology, with potential to make a major contribution to the commodification of biomass. However, there is limited scientific knowledge on the techno-economic performance of torrefaction. This study therefore improves available knowledge on torrefaction by providing detailed insights into state of the art prospects of the commercial utilisation of torrefaction technology over time. Focussing on and based on the current status of the compact moving bed reactor, we identify process performance characteristics such as thermal efficiency and mass yield and discuss their determining factors through analysis of mass and energy balances. This study has shown that woody biomass can be torrefied with a thermal and mass efficiency of 94% and 48% respectively (on a dry ash free basis). For straw, the corresponding theoretical energetic efficiency is 96% and mass efficiency is 65%. In the long term, the technical performance of torrefaction processes is expected to improve and energy efficiencies are expected to be at least 97% as optimal torgas use and efficient heat transfer are realised. Short term production costs for woody biomass TOPs (torrefied pellets) are estimated to be between 3.3 and 4.8 US$/GJ LHV , falling to 2.1–5.1 US$/GJ LHV in the long term. At such cost levels, torrefied pellets would become competitive with traditional pellets. For full commercialisation, torrefaction reactors still require to be optimised. Of importance to torrefaction system performance is the achievement of consistent and homogeneous, fully hydrophobic and stable product, capable of utilising different feedstocks, at desired end-use energy densities. - Highlights: • Woody biomass torrefaction thermal efficiency is 94% and mass efficiency is 48% on a daf basis. • Straw theoretical torrefaction energetic efficiency is 96% and mass efficiency is 65%. • Current woody TOPs production costs are between 3.3 and 4.8 US$/GJ LHV , 50

  1. Biomass or biomess? - a comment on the paper by Anders Lunnan (Agriculture-based biomass energy supply - a survey of economics issues)

    International Nuclear Information System (INIS)

    Bolin, Olof

    1997-01-01

    A response to Lunnan's paper (Energy Policy, Vol. 25, No. 6, 1997), on economic issues surrounding agriculture-based biomass energy supplies is presented. This author argues that, despite Lunnan's gloomy forecasts for the economic prospects of agriculture-based bioenergy, the future of the industry will be decided in the political arena based on agricultural policy. Bioenergy production can best be promoted, it is argued, by reducing farmland prices. Caution is urged in placing too great a financial burden on farmers, however, and consumers of food or energy and tax-payers must share the risk of investment in these new technologies. (UK)

  2. The willingness of farmers to engage with bioenergy and woody biomass production: A regional case study from Cumbria

    International Nuclear Information System (INIS)

    Convery, I.; Robson, D.; Ottitsch, A.; Long, M.

    2012-01-01

    In this paper we explore the willingness of Cumbrian farmers to switch land use from food production to biomass production in a landscape where food production is both heavily subsidised and the area is a centre for tourism. This is against a policy background of a switch of subsidies from food production to environmental benefits, increased concerns about emissions from farming and an increased demand for renewable energy. We identified an awareness of new markets for renewable energy, alongside increasing volatility of other crops (against a background of increasing demand for food). From this, our conclusions are that the main short-term opportunities for increasing biomass production in this region are through intensifying management of existing woodlands. In the medium term, as the financial case for biomass crops becomes more certain, we can envisage a ‘tipping point’ which would favour a switch from marginal agricultural land to biomass. - Highlights: ► Profit motive not driving force. ► Reluctance to change farming methods. ► Logs and chipped wood options.

  3. Relationship among Phosphorus Circulation Activity, Bacterial Biomass, pH, and Mineral Concentration in Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Dinesh Adhikari

    2017-12-01

    Full Text Available Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil’s ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples (R2 = 0.25, and this relationship became significantly stronger at near-neutral pH (6.0–7.3; R2 = 0.67. No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0 or alkaline (pH > 7.3 pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH (R2 = 0.72 and 0.73, respectively, as well as for Ca at alkaline pH (R2 = 0.64. Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.

  4. Woody debris

    Science.gov (United States)

    Donna B. Scheungrab; Carl C. Trettin; Russ Lea; Martin F. Jurgensen

    2000-01-01

    Woody debris can be defined as any dead, woody plant material, including logs, branches, standing dead trees, and root wads. Woody debris is an important part of forest and stream ecosystems because it has a role in carbon budgets and nutrient cycling, is a source of energy for aquatic ecosystems, provides habitat for terrestrial and aquatic organisms, and contributes...

  5. Allometry and partitioning of above- and below-ground biomass in farmed eucalyptus species dominant in Western Kenyan agricultural landscapes

    International Nuclear Information System (INIS)

    Kuyah, Shem; Dietz, Johannes; Muthuri, Catherine; Noordwijk, Meine van; Neufeldt, Henry

    2013-01-01

    Farmers in developing countries are one of the world's largest and most efficient producers of sequestered carbon. However, measuring, monitoring and verifying how much carbon trees in smallholder farms are removing from the atmosphere has remained a great challenge in developing nations. Devising a reliable way for measuring carbon associated with trees in agricultural landscapes is essential for helping smallholder farmers benefit from emerging carbon markets. This study aimed to develop biomass equations specific to dominant eucalyptus species found in agricultural landscapes in Western Kenya. Allometric relationships were developed by regressing diameter at breast height (DBH) alone or DBH in combination with height, wood density or crown area against the biomass of 48 trees destructively sampled from a 100 km 2 site. DBH alone was a significant predictor variable and estimated aboveground biomass (AGB) with over 95% accuracy. The stems, branches and leaves formed up to 74, 22 and 4% of AGB, respectively, while belowground biomass (BGB) of the harvested trees accounted for 21% of the total tree biomass, yielding an overall root-to-shoot ratio (RS) of 0.27, which varied across tree size. Total tree biomass held in live Eucalyptus trees was estimated to be 24.4 ± 0.01 Mg ha −1 , equivalent to 11.7 ± 0.01 Mg of carbon per hectare. The equations presented provide useful tools for estimating tree carbon stocks of Eucalyptus in agricultural landscapes for bio-energy and carbon accounting. These equations can be applied to Eucalyptus in most agricultural systems with similar agro-ecological settings where tree growth parameters would fall within ranges comparable to the sampled population. -- Highlights: ► Equation with DBH alone estimated aboveground biomass with about 95% accuracy. ► Local generic equations overestimated above- and below-ground biomass by 10 and 48%. ► Height, wood density and crown area data did not improve model accuracy. ► Stems

  6. CosmoBon for studying wood formation under exotic gravitational environment for future space agriculture

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Funada, Ryo; Nakamura, Teruko; Hashimoto, Hirofumi; Yamashita, Masamichi; Cosmobon, Jstwg

    We are proposing to raise woody plants in space for several applications and plant science. Japanese flowering cherry tree is one of a candidate for these studies. Mechanism behind sensing gravity and controlling shape of tree has been studied quite extensively. Even molecular mechanism for the response of plant against gravity has been investigated quite intensively for various species, woody plants are left behind. Morphology of woody branch growth is different from that of stem growth in herbs. Morphology in tree is strongly dominated by the secondary xylem formation. Nobody knows the tree shape grown under the space environment. If whole tree could be brought up to space as research materials, it might provide important scientific knowledge. Furthermore, trees produce excess oxygen, wooden materials for living cabin, and provide biomass for cultivating mushroom and insect as for the space agriculture. Excellent tree shapes which would be deeply related to wood formation improve quality of life under stressful environment in outer space. The serious problem would be their size. Bonsai is one of the Japanese traditional arts. We can study secondly xylem formation, wood formation, under exotic gravitational environment using Bonsai. "CosmoBon" is the small tree Bonsai for our space experiment. It has been recognized that the reaction wood in CosmoBon is formed similar to natural trees. Our goal is to examine feasibility to grow various species of trees in space as bioresource for space agriculture.

  7. Woody structure facilitates invasion of woody plants by providing perches for birds.

    Science.gov (United States)

    Prather, Chelse M; Huynh, Andrew; Pennings, Steven C

    2017-10-01

    Woody encroachment threatens prairie ecosystems globally, and thus understanding the mechanisms that facilitate woody encroachment is of critical importance. Coastal tallgrass prairies along the Gulf Coast of the US are currently threatened by the spread of several species of woody plants. We studied a coastal tallgrass prairie in Texas, USA, to determine if existing woody structure increased the supply of seeds from woody plants via dispersal by birds. Specifically, we determined if (i) more seedlings of an invasive tree ( Tridacia sebifera ) are present surrounding a native woody plant ( Myrica cerifera ); (ii) wooden perches increase the quantity of seeds dispersed to a grassland; and (iii) perches alter the composition of the seed rain seasonally in prairie habitats with differing amounts of native and invasive woody vegetation, both underneath and away from artificial wooden perches. More T. sebifera seedlings were found within M. cerifera patches than in graminoid-dominated areas. Although perches did not affect the total number of seeds, perches changed the composition of seed rain to be less dominated by grasses and forbs. Specifically, 20-30 times as many seeds of two invasive species of woody plants were found underneath perches independent of background vegetation, especially during months when seed rain was highest. These results suggest that existing woody structure in a grassland can promote further woody encroachment by enhancing seed dispersal by birds. This finding argues for management to reduce woody plant abundance before exotic plants set seeds and argues against the use of artificial perches as a restoration technique in grasslands threatened by woody species.

  8. Liquid biofuels from blue biomass

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Jensen, Annette Eva; Bangsø Nielsen, Henrik

    2011-01-01

    Marine (blue) biomasses, such as macroalgaes, represent a huge unexploited amount of biomass. With their various chemical compositions, macroalgaes can be a potential substrate for food, feed, biomaterials, pharmaceuticals, health care products and also for bioenergy. Algae use seawater as a growth...... medium, light as energy source and they capture CO2 for the synthesis of new organic material, thus can grow on non-agricultural land, without increasing food prices, or using fresh water. Due to all these advantages in addition to very high biomass yield with high carbohydrate content, macroalgaes can...

  9. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    Science.gov (United States)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  10. Above-ground biomass models for Seabuckthorn (Hippophae salicifolia) in Mustang District, Nepal

    DEFF Research Database (Denmark)

    Rajchal, Rajesh; Meilby, Henrik

    2013-01-01

    weight of fruit and oven-dry weight of wood (stem and branches) and leaves were measured and used as a basis for developing biomass models. Diameters of the trees were measured at 30 cm above ground whereas the heights were measured in terms of the total tree height (m). Among several models tested......, the models suggested for local use were: ln(woody biomass, oven-dry, kg) = -3.083 + 2.436 ln(diameter, cm), ln (fruit biomass, fresh, kg) = -3.237 + 1.346 ln(diameter, cm) and ln(leaf biomass, oven-dry, kg) = -4.013 + 1.403 ln(Diameter, cm) with adjusted coefficients of determination of 0.99, 0.73 and 0.......91 for wood, fruit, and leaves, respectively. The models suggested for a slightly broader range of environmental conditions were: ln (woody biomass, oven-dry, kg) = -3.277 + 0.924 ln(diameter2 × height), ln(Fruit biomass, fresh, kg) = -3.146 + 0.485 ln(diameter2 × height) and ln(leaf biomass, oven-dry, kg...

  11. Developing estimates of potential demand for renewable wood energy products in Alaska

    Science.gov (United States)

    Allen M. Brackley; Valerie A. Barber; Cassie Pinkel

    2010-01-01

    Goal three of the current U.S. Department of Agriculture, Forest Service strategy for improving the use of woody biomass is to help develop and expand markets for woody biomass products. This report is concerned with the existing volumes of renewable wood energy products (RWEP) that are currently used in Alaska and the potential demand for RWEP for residential and...

  12. Evaluating the trade-off between food and timber resulting from the conversion of Miombo forests to agricultural land in Angola using multi-temporal Landsat data.

    Science.gov (United States)

    Schneibel, Anne; Stellmes, Marion; Röder, Achim; Finckh, Manfred; Revermann, Rasmus; Frantz, David; Hill, Joachim

    2016-04-01

    The repopulation of abandoned areas in Angola after 27years of civil war led to a fast and extensive expansion of agricultural fields to meet the rising food demand. Yet, the increase in crop production at the expense of natural resources carries an inherent potential for conflicts since the demand for timber and wood extraction are also supposed to rise. We use the concept of ecosystem services to evaluate the trade-off between food and woody biomass. Our study area is located in central Angola, in the highlands of the upper Okavango catchment. We used Landsat data (spatial resolution: 30×30m) with a bi-temporal and multi-seasonal change detection approach for five time steps between 1989 and 2013 to estimate the conversion area from woodland to agriculture. Overall accuracy is 95%, user's accuracy varies from 89-95% and producer's accuracy ranges between 92-99%. To quantify the trade-off between woody biomass and the amount of food, this information was combined with indicator values and we furthermore assessed biomass regrowth on fallows. Our results reveal a constant rise in agricultural expansion from 1989-2013 with the mean annual deforestation rate increasing from roughly 5300ha up to about 12,000ha. Overall, 5.6% of the forested areas were converted to agriculture, whereas the FAO states a national deforestation rate for Angola of 5% from 1990-2010 (FAO, 2010). In the last time step 961,000t per year of woodland were cleared to potentially produce 1240t per year of maize. Current global agro-economical projections forecast increasing pressure on tropical dry forests from large-scale agriculture schemes (Gasparri et al., 2015; Searchinger and Heimlich, 2015). Our study underlines the importance of considering subsistence-related change processes, which may contribute significantly to negative effects associated with deforestation and degradation of these forest ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Transient catchment hydrology after wildfires in a Mediterranean basin: runoff, sediment and woody debris

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The transient effect of forest fires on runoff, erosion and yield of woody biomass has been investigated by combining the experimental approach with mathematical models of hydrological processes. The case study is the Branega creek in Liguria, Italy, where a forest fire in August 2003 caused substantial changes to soil and vegetation, and left a considerable amount of woody debris on the ground. Immediately after the fire, rainfall simulator experiments in adjacent burned and unburned plots showed the extent to which fire had increased runoff and erosion rates. A distributed hydrological model using the tube-flux approach, calibrated on experimental measurements, has been used to investigate hill slope and channel erosion in a small sub-catchment, 1.5 ha in area, nested in the Branega basin. Simulation runs show that the model accommodates the observed variability of runoff and erosion under disturbed and undisturbed conditions. A model component describing the delivery of wood from hill slopes to the channel in post-fire conditions, validated against local survey data, showed that the removal and transport of woody biomass can be reproduced using an integrated hydrological approach. Hence, transient complexity after wildfires can be addressed by such an approach with empirically determined physically-based parameters.

  14. Energy potential of fruit tree pruned biomass in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Bilandzija, N.; Voca, N.; Kricka, T.; Martin, A.; Jurisic, V.

    2012-11-01

    The world's most developed countries and the European Union (EU) deem that the renewable energy sources should partly substitute fossil fuels and become a bridge to the utilization of other energy sources of the future. This paper will present the possibility of using pruned biomass from fruit cultivars. It will also present the calculation of potential energy from the mentioned raw materials in order to determine the extent of replacement of non-renewable sources with these types of renewable energy. One of the results of the intensive fruit-growing process, in post pruning stage, is large amount of pruned biomass waste. Based on the calculated biomass (kg ha{sup 1}) from intensively grown woody fruit crops that are most grown in Croatia (apple, pear, apricots, peach and nectarine, sweet cherry, sour cherry, prune, walnut, hazelnut, almond, fig, grapevine, and olive) and the analysis of combustible (carbon 45.55-49.28%, hydrogen 5.91-6.83%, and sulphur 0.18-0.21%) and non-combustible matters (oxygen 43.34-46.6%, nitrogen 0.54-1.05%, moisture 3.65-8.83%, ashes 1.52-5.39%) with impact of lowering the biomass heating value (15.602-17.727 MJ kg{sup 1}), the energy potential of the pruned fruit biomass is calculated at 4.21 PJ. (Author) 31 refs.

  15. EB and EUV lithography using inedible cellulose-based biomass resist material

    Science.gov (United States)

    Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2016-03-01

    The validity of our approach of inedible cellulose-based resist material derived from woody biomass has been confirmed experimentally for the use of pure water in organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques of eco-conscious electron beam (EB) and extreme-ultraviolet (EUV) lithography. The water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB and EUV lithography was developed for environmental affair, safety, easiness of handling, and health of the working people. The inedible cellulose-based biomass resist material was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB and EUV sensitive groups. The 50-100 nm line and space width, and little footing profiles of cellulose-based biomass resist material on hardmask and layer were resolved at the doses of 10-30 μC/cm2. The eco-conscious lithography techniques was referred to as green EB and EUV lithography using inedible cellulose-based biomass resist material.

  16. Forestry-based biomass economic and financial information and tools: An annotated bibliography

    Science.gov (United States)

    Dan Loeffler; Jason Brandt; Todd Morgan; Greg Jones

    2010-01-01

    This annotated bibliography is a synthesis of information products available to land managers in the western United States regarding economic and financial aspects of forestry-based woody biomass removal, a component of fire hazard and/or fuel reduction treatments. This publication contains over 200 forestry-based biomass papers, financial models, sources of biomass...

  17. Issues surrounding biomass energy use in non-OECD countries

    International Nuclear Information System (INIS)

    Diouf, M. Mines and Industry.

    1997-01-01

    The problem of energy-supply of Senegal is described by the Minister of Energy of Senegal. The destruction and degradation of forests in Senegal is a major risk because of the high demographic growth, the extensive agriculture and poverty. New policies are required that guarantee a sustainable energy supply to populations, and conserve the fragile environment. The biomass issue is to be incorporated into an overall development policy that effectively combines strategies relating to forestry, agriculture, rearing and resource management but also to population, poverty elimination, urban development and decentralization. (K.A.)

  18. Effects of competition and herbivory over woody seedling growth in a temperate woodland trump the effects of elevated CO2.

    Science.gov (United States)

    Collins, L; Boer, M M; de Dios, V Resco; Power, S A; Bendall, E R; Hasegawa, S; Hueso, R Ochoa; Nevado, J Piñeiro; Bradstock, R A

    2018-04-27

    A trend of increasing woody plant density, or woody thickening, has been observed across grassland and woodland ecosystems globally. It has been proposed that increasing atmospheric [CO 2 ] is a major driver of broad scale woody thickening, though few field-based experiments have tested this hypothesis. Our study utilises a Free Air CO 2 Enrichment experiment to examine the effect of elevated [CO 2 ] (eCO 2 ) on three mechanisms that can cause woody thickening, namely (i) woody plant recruitment, (ii) seedling growth, and (iii) post-disturbance resprouting. The study took place in a eucalypt-dominated temperate grassy woodland. Annual assessments show that juvenile woody plant recruitment occurred over the first 3 years of CO 2 fumigation, though eCO 2 did not affect rates of recruitment. Manipulative experiments were established to examine the effect of eCO 2 on above-ground seedling growth using transplanted Eucalyptus tereticornis (Myrtaceae) and Hakea sericea (Proteaceae) seedlings. There was no positive effect of eCO 2 on biomass of either species following 12 months of exposure to treatments. Lignotubers (i.e., resprouting organs) of harvested E. tereticornis seedlings that were retained in situ for an additional year were used to examine resprouting response. The likelihood of resprouting and biomass of resprouts increased with lignotuber volume, which was not itself affected by eCO 2 . The presence of herbaceous competitors and defoliation by invertebrates and pathogens were found to greatly reduce growth and/or resprouting response of seedlings. Our findings do not support the hypothesis that future increases in atmospheric [CO 2 ] will, by itself, promote woody plant recruitment in eucalypt-dominated temperate grassy woodlands.

  19. High-biomass C4 grasses-Filling the yield gap.

    Science.gov (United States)

    Mullet, John E

    2017-08-01

    A significant increase in agricultural productivity will be required by 2050 to meet the needs of an expanding and rapidly developing world population, without allocating more land and water resources to agriculture, and despite slowing rates of grain yield improvement. This review examines the proposition that high-biomass C 4 grasses could help fill the yield gap. High-biomass C 4 grasses exhibit high yield due to C 4 photosynthesis, long growth duration, and efficient capture and utilization of light, water, and nutrients. These C 4 grasses exhibit high levels of drought tolerance during their long vegetative growth phase ideal for crops grown in water-limited regions of agricultural production. The stems of some high-biomass C 4 grasses can accumulate high levels of non-structural carbohydrates that could be engineered to enhance biomass yield and utility as feedstocks for animals and biofuels production. The regulatory pathway that delays flowering of high-biomass C 4 grasses in long days has been elucidated enabling production and deployment of hybrids. Crop and landscape-scale modeling predict that utilization of high-biomass C 4 grass crops on land and in regions where water resources limit grain crop yield could increase agricultural productivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. 40 CFR 161.55 - Agricultural vs. non-agricultural pesticides.

    Science.gov (United States)

    2010-07-01

    ... pesticides. 161.55 Section 161.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES General Provisions § 161.55 Agricultural vs. non-agricultural pesticides. Section 25(a)(1) of FIFRA instructs the...

  1. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass.

    Science.gov (United States)

    Alofs, Karen M; Fowler, Norma L

    2013-03-01

    Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent

  2. Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis

    NARCIS (Netherlands)

    van der Heijden, H.H.J.L.; Ptasinski, K.J.

    2012-01-01

    In this paper an exergy analysis of thermochemical ethanol production from biomass is presented. This process combines a steam-blown indirect biomass gasification of woody feedstock, with a subsequent conversion of produced syngas into ethanol. The production process involves several process

  3. Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products.

    Science.gov (United States)

    Pierobon, Francesca; Eastin, Ivan L; Ganguly, Indroneil

    2018-01-01

    Bio-jet fuels are emerging as a valuable alternative to petroleum-based fuels for their potential for reducing greenhouse gas emissions and fossil fuel dependence. In this study, residual woody biomass from slash piles in the U.S. Pacific Northwest is used as a feedstock to produce iso-paraffinic kerosene, through the production of sugar and subsequent patented proprietary fermentation and upgrading. To enhance the economic viability and reduce the environmental impacts of iso-paraffinic kerosene, two co-products, activated carbon and lignosulfonate, are simultaneously produced within the same bio-refinery. A cradle-to-grave life cycle assessment (LCA) is performed for the residual woody biomass-based bio-jet fuel and compared against the cradle-to-grave LCA of petroleum-based jet fuel. This paper also discusses the differences in the environmental impacts of the residual biomass-based bio-jet fuel using two different approaches, mass allocation and system expansion, to partition the impacts between the bio-fuel and the co-products, which are produced in the bio-refinery. The environmental assessment of biomass-based bio-jet fuel reveals an improvement along most critical environmental criteria, as compared to its petroleum-based counterpart. However, the results present significant differences in the environmental impact of biomass-based bio-jet fuel, based on the partitioning method adopted. The mass allocation approach shows a greater improvement along most of the environmental criteria, as compared to the system expansion approach. However, independent of the partitioning approach, the results of this study reveal that more than the EISA mandated 60% reduction in the global warming potential could be achieved by substituting petroleum-based jet fuel with residual woody biomass-based jet fuel. Converting residual woody biomass from slash piles into bio-jet fuel presents the additional benefit of avoiding the impacts of slash pile burning in the forest, which

  4. A review on advances of torrefaction technologies for biomass processing

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Bimal; Sule, Idris; Dutta, Animesh [University of Guelph, School of Engineering, Guelph, ON (Canada)

    2012-12-15

    Torrefaction is a thermochemical pretreatment process at 200-300 C in an inert condition which transforms biomass into a relatively superior handling, milling, co-firing and clean renewable energy into solid biofuel. This increases the energy density, water resistance and grindability of biomass and makes it safe from biological degradation which ultimately makes easy and economical on transportation and storing of the torrefied products. Torrefied biomass is considered as improved version than the current wood pellet products and an environmentally friendly future alternative for coal. Torrefaction carries devolatilisation, depolymerization and carbonization of lignocellulose components and generates a brown to black solid biomass as a productive output with water, organics, lipids, alkalis, SiO{sub 2}, CO{sub 2}, CO and CH{sub 4}. During this process, 70 % of the mass is retained as a solid product, and retains 90 % of the initial energy content. The torrefied product is then shaped into pellets or briquettes that pack much more energy density than regular wood pellets. These properties minimize on the difference in combustion characteristics between biomass and coal that bring a huge possibility of direct firing of biomass in an existing coal-fired plant. Researchers are trying to find a solution to fire/co-fire torrefied biomass instead of coal in an existing coal-fired based boiler with minimum modifications and expenditures. Currently available torrefied technologies are basically designed and tested for woody biomass so further research is required to address on utilization of the agricultural biomass with technically and economically viable. This review covers the torrefaction technologies, its' applications, current status and future recommendations for further study. (orig.)

  5. Tropical Africa: Land use, biomass, and carbon estimates for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. [Environmental Protection Agency, Corvallis, OR (United States). Western Ecology Division; Gaston, G. [Environmental Protection Agency, Corvallis, OR (United States). National Research Council; Daniels, R.C. [ed.] [Oak Ridge National Lab., TN (United States)

    1996-06-01

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s land surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  6. Carbon Stocks of Fine Woody Debris in Coppice Oak Forests at Different Development Stages

    Directory of Open Access Journals (Sweden)

    Ender Makineci

    2017-06-01

    Full Text Available Dead woody debris is a significant component of the carbon cycle in forest ecosystems. This study was conducted in coppice-originated oak forests to determine carbon stocks of dead woody debris in addition to carbon stocks of different ecosystem compartments from the same area and forests which were formerly elucidated. Weight and carbon stocks of woody debris were determined with recent samplings and compared among development stages (diameter at breast height (DBH, D1.3m, namely small-diameter forests (SDF = 0–8 cm, medium diameter forests (MDF = 8–20 cm, and large-diameter forests (LDF = 20–36 cm. Total woody debris was collected in samplings; as bilateral diameters of all woody debris parts were less than 10 cm, all woody parts were in the “fine woody debris (FWD” class. The carbon concentrations of FWD were about 48% for all stages. Mass (0.78–4.92 Mg·ha−1 and carbon stocks (0.38–2.39 Mg·ha−1 of FWD were significantly (p > 0.05 different among development stages. FWD carbon stocks were observed to have significant correlation with D1.3m, age, basal area, and carbon stocks of aboveground biomass (Spearman rank correlation coefficients; 0.757, 0.735, 0.709, and 0.694, respectively. The most important effects on carbon budgets of fine woody debris were determined to be coppice management and intensive utilization. Also, national forestry management, treatments of traditional former coppice, and conversion to high forest were emphasized as having substantial effects.

  7. Charcoal from biomass residues of a Cryptomeria plantation and analysis of its carbon fixation benefit in Taiwan

    International Nuclear Information System (INIS)

    Lin, Yu-Jen; Hwang, Gwo-Shyong

    2009-01-01

    Charcoal production as an age-old industry not only supplies fuel in developing countries, in recent decades, it has also become a means of supplying new multifunctional materials for environmental improvement and agricultural applications in developed countries. These include air dehumidification and deodorization, water purification, and soil improvement due to charcoal's excellent adsorption capacity. Paradoxically, charcoal production might also help curb greenhouse gas emissions. In this study, we made charcoal from discarded branches and tops of wood from a Cryptomeria plantation after thinning using a still-operational earthen kiln. Woody biomass was used as the carbonization fuel. The effect of carbonization on carbon fixation was calculated and its benefits evaluated. The results showed that the recovered fixed carbon reached 33.2%, i.e., one-third of the biomass residual carbon was conserved as charcoal which if left on the forest ground would decompose and turn into carbon dioxide, and based on a net profit of US$1.13 kg -1 for charcoal, an annual net profit of US$14,665 could be realized. Charcoaling thus appears to be a feasible alternative to promote reutilization of woody resides which would not only reduce greenhouse gas emissions, but also provide potential benefits to regional economies in developing countries.

  8. [Rapid determination of componential contents and calorific value of selected agricultural biomass feedstocks using spectroscopic technology].

    Science.gov (United States)

    Sheng, Kui-Chuan; Shen, Ying-Ying; Yang, Hai-Qing; Wang, Wen-Jin; Luo, Wei-Qiang

    2012-10-01

    Rapid determination of biomass feedstock properties is of value for the production of biomass densification briquetting fuel with high quality. In the present study, visible and near-infrared (Vis-NIR) spectroscopy was employed to build prediction models of componential contents, i. e. moisture, ash, volatile matter and fixed-carbon, and calorific value of three selected species of agricultural biomass feedstock, i. e. pine wood, cedar wood, and cotton stalk. The partial least squares (PLS) cross validation results showed that compared with original reflection spectra, PLS regression models developed for first derivative spectra produced higher prediction accuracy with coefficients of determination (R2) of 0.97, 0.94 and 0.90, and residual prediction deviation (RPD) of 6.57, 4.00 and 3.01 for ash, volatile matter and moisture, respectively. Good prediction accuracy was achieved with R2 of 0.85 and RPD of 2.55 for fixed carbon, and R2 of 0.87 and RPD of 2.73 for calorific value. It is concluded that the Vis-NIR spectroscopy is promising as an alternative of traditional proximate analysis for rapid determination of componential contents and calorific value of agricultural biomass feedstock

  9. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    Wiltsee, G.A. Jr.; Easterly, J.; Vence, T.

    1993-12-01

    In this report, the Electric Power Research Institute (EPRI) intends to help utility companies evaluate biomass and wastes for power generation. These fuels may be alternatives or supplements to fossil fuels in three applications: (1) utility boiler coining; (2) dedicated combustion/energy recovery plants; and 3) dedicated gasification/combined cycle plants. The report summarizes data on biomass and waste properties, and evaluates the cost and performance of fuel preparation and power generation technologies. The primary biomass and waste resources evaluated are: (1) wood wastes (from forests, mills, construction/demolition, and orchards) and short rotation woody crops; (2) agricultural wastes (from fields, animals, and processing) and herbaceous energy crops; and (3) consumer or industrial wastes (e.g., municipal solid waste, scrap tires, sewage sludge, auto shredder waste). The major fuel types studied in detail are wood, municipal solid waste, and scrap tires. The key products of the project include the BIOPOWER model of biomass/waste-fired power plant performance and cost. Key conclusions of the evaluation are: (1) significant biomass and waste fuel resources are available; (2) biomass power technology cannot currently compete with natural gas-fired combined cycle technology; (3) coining biomass and waste fuels with coal in utility and industrial boilers is the most efficient, lowest cost, and lowest risk method of energy recovery from residual materials; (4) better biomass and waste fuel production and conversion technology must be developed, with the help of coordinated government energy and environmental policies and incentives; and (5) community partnerships can enhance the chances for success of a project

  10. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets.

    Science.gov (United States)

    Zomer, Robert J; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-07-20

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

  11. Catalytic conversion of nonfood woody biomass solids to organic liquids

    NARCIS (Netherlands)

    Barta, Katalin; Ford, Peter C

    CONSPECTUS: This Account outlines recent efforts in our laboratories addressing a fundamental challenge of sustainability chemistry, the effective utilization of biomass for production of chemicals and fuels. Efficient methods for converting renewable biomass solids to chemicals and liquid fuels

  12. Biomass sector review for the Carbon Trust

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-26

    The review drew on an extensive number of sources, including a detailed literature survey, in-house references, questionnaires and interviews with trade associations, industry participants and industry observers. The policy observations that were drawn from the review, together with the results of the analysis itself, were subject to a detailed peer review with leading industry participants, observers and academics. The purpose of this document, is to place the results of this analysis in the public domain and to ensure that it is available to those interested in developing the biomass sector in the UK. Screening of the available biomass resource in the UK highlighted four key biomass fuels: forestry crops, dry agricultural residue, waste wood arid woody energy crops. The four fuels could have a material impact on UK energy supply when used for heat and power. Currently they have the potential to supply up to an additional. 41TWh/yr or about 1.5% of UK energy supply. In the future this could rise to c.80TWh/yr, mainly through expansion in the supply of woody energy crops and/or dry agricultural residue. If available resources are used for biofuels the level of potential carbon saving decreases significantly compared with providing heat or electricity due to lower conversion efficiency. Consequently, biofuels are not covered in depth in this report. Although the UK has a considerable amount of biomass resource, gaining access to it is not always viable for developers and end-users as the UK. currently has a relatively undeveloped biomass fuel supply infrastructure. Just as biomass can be drawn from a number or sources, it can be converted to useful energy through a number of processes and delivered to a variety of markets. Our screening of biomass conversion processes demonstrated that currently combustion represents the best area of focus. Combustion is a proven, established conversion process and the lowest cost option available today. Co-firing was not analysed

  13. Optimization of Charcoal Production Process from Woody Biomass Waste: Effect of Ni-Containing Catalysts on Pyrolysis Vapors

    Directory of Open Access Journals (Sweden)

    Jon Solar

    2018-05-01

    Full Text Available Woody biomass waste (Pinus radiata coming from forestry activities has been pyrolyzed with the aim of obtaining charcoal and, at the same time, a hydrogen-rich gas fraction. The pyrolysis has been carried out in a laboratory scale continuous screw reactor, where carbonization takes place, connected to a vapor treatment reactor, at which the carbonization vapors are thermo-catalytically treated. Different peak temperatures have been studied in the carbonization process (500–900 °C, while the presence of different Ni-containing catalysts in the vapor treatment has been analyzed. Low temperature pyrolysis produces high liquid and solid yields, however, increasing the temperature progressively up to 900 °C drastically increases gas yield. The amount of nickel affects the vapors treatment phase, enhancing even further the production of interesting products such as hydrogen and reducing the generated liquids to very low yields. The gases obtained at very high temperatures (700–900 °C in the presence of Ni-containing catalysts are rich in H2 and CO, which makes them valuable for energy production, as hydrogen source, producer gas or reducing agent.

  14. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa

    DEFF Research Database (Denmark)

    Brandt, Martin Stefan; Rasmussen, Kjeld; Peñuelas, Josep

    2017-01-01

    The rapidly growing human population in sub-Saharan Africa generates increasing demand for agricultural land and forest products, which presumably leads to deforestation. Conversely, a greening of African drylands has been reported, but this has been difficult to associate with changes in woody...... an increase in woody cover largely in drylands, and 11% had a decrease (2,150,000 km2), mostly in humid zones. Increases in woody cover were associated with low population growth, and were driven by increases in CO2 in the humid zones and by increases in precipitation in drylands, whereas decreases in woody...... cover were associated with high population growth. The spatially distinct pattern of these opposing trends reflects, first, the natural response of vegetation to precipitation and atmospheric CO2, and second, deforestation in humid areas, minor in size but important for ecosystem services...

  15. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

    2011-08-01

    -diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result

  16. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa.

    Science.gov (United States)

    Brandt, Martin; Rasmussen, Kjeld; Peñuelas, Josep; Tian, Feng; Schurgers, Guy; Verger, Aleixandre; Mertz, Ole; Palmer, John R B; Fensholt, Rasmus

    2017-03-06

    The rapidly growing human population in sub-Saharan Africa generates increasing demand for agricultural land and forest products, which presumably leads to deforestation. Conversely, a greening of African drylands has been reported, but this has been difficult to associate with changes in woody vegetation. There is thus an incomplete understanding of how woody vegetation responds to socio-economic and environmental change. Here we used a passive microwave Earth observation data set to document two different trends in land area with woody cover for 1992-2011: 36% of the land area (6,870,000 km 2 ) had an increase in woody cover largely in drylands, and 11% had a decrease (2,150,000 km 2 ), mostly in humid zones. Increases in woody cover were associated with low population growth, and were driven by increases in CO 2 in the humid zones and by increases in precipitation in drylands, whereas decreases in woody cover were associated with high population growth. The spatially distinct pattern of these opposing trends reflects, first, the natural response of vegetation to precipitation and atmospheric CO 2 , and second, deforestation in humid areas, minor in size but important for ecosystem services, such as biodiversity and carbon stocks. This nuanced picture of changes in woody cover challenges widely held views of a general and ongoing reduction of the woody vegetation in Africa.

  17. Potential of Agricultural Biomass: Comparative Review of Selected EU Regions and Region of Vojvodina

    Directory of Open Access Journals (Sweden)

    Odavić Petrana

    2017-07-01

    Full Text Available Owing to the fact that the EU is committed to reducing greenhouse gas emissions by 20% below 1990 levels by 2020, and having in mind their high dependence on import of oil and oil derivatives, which, in turn, causes instability of power supply, increasing attention is being paid to renewable energy sources. Given the ongoing pre-accession process of the Republic of Serbia in relation to the EU, in order to determine the capacity of the country to increase the share of energy use from renewable sources, in this paper clustering of selected regions in the EU-28 has been carried out, after which a comparative analysis of regions was performed in terms of potential of agricultural biomass, for the purpose of generating energy. The aim of this study is to determine the level of the region of Vojvodina in relation to ten selected EU regions, based on parameters that affect the potential for using renewable energy sources, primarily residues from agriculture. By applying the K-means method, Borda count method and comparative analysis, and based on empirical data, results show that the region of Vojvodina takes a significant fifth place. Its share of agricultural land ranks it as the first, whereas production of cereals and the total number of farms larger than 100 ha rank it as the second. It could be concluded that Vojvodina is an agricultural region with large quantities of plant remains, primarily those left over from harvest, which represents a significant potential for energy generation from agricultural biomass.

  18. White Pine Co. Public School System Biomass Conversion Heating Project

    Energy Technology Data Exchange (ETDEWEB)

    Paul Johnson

    2005-11-01

    The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

  19. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models.

    Science.gov (United States)

    Johnson, Michelle O; Galbraith, David; Gloor, Manuel; De Deurwaerder, Hannes; Guimberteau, Matthieu; Rammig, Anja; Thonicke, Kirsten; Verbeeck, Hans; von Randow, Celso; Monteagudo, Abel; Phillips, Oliver L; Brienen, Roel J W; Feldpausch, Ted R; Lopez Gonzalez, Gabriela; Fauset, Sophie; Quesada, Carlos A; Christoffersen, Bradley; Ciais, Philippe; Sampaio, Gilvan; Kruijt, Bart; Meir, Patrick; Moorcroft, Paul; Zhang, Ke; Alvarez-Davila, Esteban; Alves de Oliveira, Atila; Amaral, Ieda; Andrade, Ana; Aragao, Luiz E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Arroyo, Luzmila; Aymard, Gerardo A; Baraloto, Christopher; Barroso, Jocely; Bonal, Damien; Boot, Rene; Camargo, Jose; Chave, Jerome; Cogollo, Alvaro; Cornejo Valverde, Fernando; Lola da Costa, Antonio C; Di Fiore, Anthony; Ferreira, Leandro; Higuchi, Niro; Honorio, Euridice N; Killeen, Tim J; Laurance, Susan G; Laurance, William F; Licona, Juan; Lovejoy, Thomas; Malhi, Yadvinder; Marimon, Bia; Marimon, Ben Hur; Matos, Darley C L; Mendoza, Casimiro; Neill, David A; Pardo, Guido; Peña-Claros, Marielos; Pitman, Nigel C A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Roopsind, Anand; Rudas, Agustin; Salomao, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van der Heijden, Geertje M F; Vasquez, Rodolfo; Guimarães Vieira, Ima Cèlia; Vilanova, Emilio; Vos, Vincent A; Baker, Timothy R

    2016-12-01

    Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  20. Modifying woody plants for efficient conversion to liquid and gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. (Institute of Paper Science and Technology, Atlanta, GA (USA))

    1990-07-01

    The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

  1. GIS-based assessment of the biomass potential from phytoremediation of contaminated agricultural land in the Campine region in Belgium

    International Nuclear Information System (INIS)

    Schreurs, Eloi; Voets, Thomas; Thewys, Theo

    2011-01-01

    Dedicated energy crop cultivation is expected to be the prevalent form of biomass production for reaching renewable energy targets set by the European Union. However, there are some concerns with regard to its sustainability. This study demonstrates how this problem can be evaded by applying phytoremediation, i.e. the use of plants to remove pollutants from moderately contaminated soils. By selecting the appropriate plants a considerable biomass flow is produced without taking in scarce agricultural land, while simultaneously remediating the soil to levels of contamination below threshold values. Since phytoremediation is only applicable within a limited range of soil pollutant concentrations, the outer values of this range have to be determined at first. Subsequently, a Geographic Information System (GIS) is needed to perform further analyses. The contamination in the region is predicted using GIS, after which the agricultural area is determined that can be committed to energy crop cultivation. This way, the biomass potential and the resulting bioenergy potential from phytoremediation can be assessed. In this paper the Campine region in Belgium, a region diffusely contaminated with heavy metals like cadmium (Cd), is examined. It is illustrated that more than 2000 ha of agricultural land hold Cd concentrations exceeding guide values set by the Flemish Government. However, a large majority of these soils can be remediated by phytoremediation within a reasonable time span of 42 years. Concurrently, a significant amount of biomass is supplied for renewable energy production. -- Highlights: → More than 2000 ha of agricultural land have elevated Cd concentrations. → 87% can be remediated within 42 years by phytoremediation. → Annual biomass flow of 19 067 Mg for 21 years.

  2. Catalytic Depolymerization of Lignin and Woody Biomass in Supercritical Ethanol: Influence of Reaction Temperature and Feedstock.

    Science.gov (United States)

    Huang, Xiaoming; Atay, Ceylanpinar; Zhu, Jiadong; Palstra, Sanne W L; Korányi, Tamás I; Boot, Michael D; Hensen, Emiel J M

    2017-11-06

    The one-step ethanolysis approach to upgrade lignin to monomeric aromatics using a CuMgAl mixed oxide catalyst is studied in detail. The influence of reaction temperature (200-420 °C) on the product distribution is investigated. At low temperature (200-250 °C), recondensation is dominant, while char-forming reactions become significant at high reaction temperature (>380 °C). At preferred intermediate temperatures (300-340 °C), char-forming reactions are effectively suppressed by alkylation and Guerbet and esterification reactions. This shifts the reaction toward depolymerization, explaining high monomeric aromatics yield. Carbon-14 dating analysis of the lignin residue revealed that a substantial amount of the carbon in the lignin residue originates from reactions of lignin with ethanol. Recycling tests show that the activity of the regenerated catalyst was strongly decreased due to a loss of basic sites due to hydrolysis of the MgO function and a loss of surface area due to spinel oxide formation of the Cu and Al components. The utility of this one-step approach for upgrading woody biomass was also demonstrated. An important observation is that conversion of the native lignin contained in the lignocellulosic matrix is much easier than the conversion of technical lignin.

  3. Reduction of Biomass Moisture by Crushing/Splitting - A Concept

    Science.gov (United States)

    Paul E. Barnett; Donald L. Sirois; Colin Ashmore

    1986-01-01

    A biomass crusher/splitter concept is presented as a possible n&ant of tsafntainfng rights-of-way (ROW) or harvesting energy wood plantations. The conceptual system would cut, crush, and split small woody biomass leaving it in windrows for drying. A subsequent operation would bale and transport the dried material for use as an energy source. A survey of twenty...

  4. Economic analysis of biomass crop production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.; Kiker, C.F. [University of Florida, Gainesville, FL (United States)

    1997-07-01

    Favorable soil and climate conditions for production of biomass crops in Florida, and a market for their use, provide the essentials for developing a biomass energy system in the State. Recent surveys showed that there is low opportunity cost land available and several high yield herbaceous and woody crops have potential as biomass crops. Comparison of biomass crop yields, farmgate costs, and costs of final products in Florida and other states show that Florida can be considered as one of the best areas for development of biomass energy systems in the United States. This paper presents facts and figures on biomass production and conversion in Florida and addresses issues of concern to the economics of biomass energy in the State. (author)

  5. Economic analysis of biomass crop production in Florida

    International Nuclear Information System (INIS)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.; Kiker, C.F.

    1997-01-01

    Favorable soil and climate conditions for production of biomass crops in Florida, and a market for their use, provide the essentials for developing a biomass energy system in the State. Recent surveys showed that there is low opportunity cost land available and several high yield herbaceous and woody crops have potential as biomass crops. Comparison of biomass crop yields, farmgate costs, and costs of final products in Florida and other states show that Florida can be considered as one of the best areas for development of biomass energy systems in the United States. This paper presents facts and figures on biomass production and conversion in Florida and addresses issues of concern to the economics of biomass energy in the State. (author)

  6. Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lu, Ke-Miao; Lee, Wen-Jhy; Liu, Shih-Hsien; Lin, Ta-Chang

    2014-01-01

    Highlights: • Non-oxidative and oxidative torrefaction of biomass is studied. • Two fibrous biomasses and two ligneous biomasses are tested. • SEM observations of four biomasses are provided. • Fibrous biomass is more sensitive to O 2 concentration than ligneous biomass. • The performance of non-oxidative torrefaction is better than that of oxidative torrefaction. - Abstract: Oxidative torrefaction is a method to reduce the operating cost of upgrading biomass. To understand the potential of oxidative torrefaction and its impact on the internal structure of biomass, non-oxidative and oxidative torrefaction of two fibrous biomass materials (oil palm fiber and coconut fiber) and two ligneous ones (eucalyptus and Cryptomeria japonica) at 300 °C for 1 h are studied and compared with each other. Scanning electron microscope (SEM) observations are also performed to explore the impact of torrefaction atmosphere on the lignocellulosic structure of biomass. The results indicate that the fibrous biomass is more sensitive to O 2 concentration than the ligneous biomass. In oxidative torrefaction, an increase in O 2 concentration decreases the solid yield. The energy yield is linearly proportional to the solid yield, which is opposite to the behavior of non-oxidative torrefaction. The performance of non-oxidative torrefaction is better than that of oxidative torrefaction. As a whole, ligneous biomass can be torrefied in oxidative environments at lower O 2 concentrations, whereas fibrous biomass is more suitable for non-oxidative torrefaction

  7. Agriculture expansion, wood energy and woody encroachment in the Miombo woodlands: striving towards sustainability in Zambia.

    Science.gov (United States)

    Pelletier, J.

    2017-12-01

    Agricultural expansion is mostly done at the expense of forests and woodlands in the tropics. In Sub-Saharan Africa, forests are also critical as providers of wood energy for domestic consumption with a clear majority of households depending on firewood and charcoal as primary source of energy. Using Zambia as a case study, we look at the link between agricultural expansion, wood energy and the sustainability of forest resources. Zambia has been identified as having one of the highest rates of deforestation in the world, but there is large uncertainty in these estimates. The government of Zambia has identified charcoal production as one of the main of drivers of forest cover loss and is targeting this practice in their national strategy for reducing emissions from deforestation and forest degradation (REDD+). Other assessment however indicate that agricultural expansion is by far the main driver of deforestation and charcoal production is sustainable in Zambia. These competing evaluations call for a better understanding of the drivers of change. Using two national-scale vegetation surveys and remote sensing data, we compare and validate historical forest cover loss estimates to improve their accuracy. We attribute the change and their associated emissions to specific drivers of deforestation. The ecological properties of areas under change are compared to stable areas over time. Our results from national permanent plots indicate a woody encroachment process in Zambia, a potential ecological response to rising CO2 levels. We found that despite large emissions from deforestation, forests and woodlands have been acting as a carbon sink. This research addresses directly the potential feedbacks and responses to competing demands on forests coming from different sectors, including for agriculture and energy, to set the baseline on which to evaluate forest sustainability now and in the future given potentially new ecological conditions. It provides policy relevant

  8. Co-occurring nonnative woody shrubs have additive and non-additive soil legacies.

    Science.gov (United States)

    Kuebbing, Sara E; Patterson, Courtney M; Classen, Aimée T; Simberloff, Daniel

    2016-09-01

    To maximize limited conservation funds and prioritize management projects that are likely to succeed, accurate assessment of invasive nonnative species impacts is essential. A common challenge to prioritization is a limited knowledge of the difference between the impacts of a single nonnative species compared to the impacts of nonnative species when they co-occur, and in particular predicting when impacts of co-occurring nonnative species will be non-additive. Understanding non-additivity is important for management decisions because the management of only one co-occurring invader will not necessarily lead to a predictable reduction in the impact or growth of the other nonnative plant. Nonnative plants are frequently associated with changes in soil biotic and abiotic characteristics, which lead to plant-soil interactions that influence the performance of other species grown in those soils. Whether co-occurring nonnative plants alter soil properties additively or non-additively relative to their effects on soils when they grow in monoculture is rarely addressed. We use a greenhouse plant-soil feedback experiment to test for non-additive soil impacts of two common invasive nonnative woody shrubs, Lonicera maackii and Ligustrum sinense, in deciduous forests of the southeastern United States. We measured the performance of each nonnative shrub, a native herbaceous community, and a nonnative woody vine in soils conditioned by each shrub singly or together in polyculture. Soils conditioned by both nonnative shrubs had non-additive impacts on native and nonnative performance. Root mass of the native herbaceous community was 1.5 times lower and the root mass of the nonnative L. sinense was 1.8 times higher in soils conditioned by both L. maackii and L. sinense than expected based upon growth in soils conditioned by either shrub singly. This result indicates that when these two nonnative shrubs co-occur, their influence on soils disproportionally favors persistence

  9. Upgrading biomass pyrolysis bio-oil to renewable fuels.

    Science.gov (United States)

    2015-01-01

    Fast pyrolysis is a process that can convert woody biomass to a crude bio-oil (pyrolysis oil). However, some of these compounds : contribute to bio-oil shelf life instability and difficulty in refining. Catalytic hydrodeoxygenation (HDO) of the bio-o...

  10. Analysis of potency and development of renewable energy based on agricultural biomass waste in Jambi province

    Science.gov (United States)

    Devita, W. H.; Fauzi, A. M.; Purwanto, Y. A.

    2018-05-01

    Indonesia has the big potency of biomass. The source of biomass energy is scattered all over the country. The big potential in concentrated scale is on the island of Sumatera. Jambi province which is located in Sumatra Island has the potency of biomass energy due to a huge area for estate crop and agriculture. The Indonesian government had issued several policies which put a higher priority on the utilization of renewable energy. This study aimed to identify the conditions and distribution of biomass waste potential in Jambi province. The potential biomass waste in Jambi province was 27,407,183 tons per year which dominated of oil palm residue (46.16%), rice husk and straw (3.52%), replanting rubberwood (50.32%). The total power generated from biomass waste was 129 GWhth per year which is consisted of palm oil residue (56 GWhth per year), rice husk and straw (3.22 GWhth per year), rubberwood (70.56 GWhth per year). Based on the potential of biomass waste, then the province of Jambi could obtain supplies of renewable energy from waste biomass with electricity generated amount to 32.34 GWhe per year.

  11. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Spyridon Achinas

    2016-09-01

    Full Text Available Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be used as fuel with significant characteristics like high octane number, low cetane number and high heat of vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower vapor pressure, miscibility with water, and toxicity to ecosystems. One crucial problem with bioethanol fuel is the availability of raw materials. The supply of feedstocks for bioethanol production can vary season to season and depends on geographic locations. Lignocellulosic biomass, such as forest-based woody materials, agricultural residues and municipal waste, is prominent feedstock for bioethanol cause of its high availability and low cost, even though the commercial production has still not been established. In addition, the supply and the attentive use of microbes render the bioethanol production process highly peculiar. Many conversion technologies and techniques for biomass-based ethanol production are under development and expected to be demonstrated. In this work a technological analysis of the biochemical method that can be used to produce bioethanol is carried out and a review of current trends and issues is conducted.

  12. Carbon in down woody materials of eastern U.S. forests

    Science.gov (United States)

    David C. Chojnacky; Robert A. Mickler; Linda S. Heath

    2003-01-01

    To better manage global carbon storage and other ecosystem processes, there is a need for accessible carbon data on components of down woody materials (DWM) in forests. We examined the feasibility of linking available data on DWM to the U.S. Department of Agriculture (USDA) Forest Inventory Analysis (FIA) database, which covers the nation's forest lands. We...

  13. Remarks on energetic biomass

    International Nuclear Information System (INIS)

    Mathis, Paul; Pelletier, Georges

    2011-01-01

    The authors report a study of energy biomass by considering its three main sources (forest, agriculture and wastes) and three energy needs (heat, fuel for transports, electricity) in the French national context. After having recalled the various uses of biomass (animal feeding, energy production, materials, chemical products), the authors discuss the characteristics of biomass with respect to other energy sources. Then, they analyse and discuss the various energy needs which biomass could satisfy: heat production (in industry, in the residential and office building sector), fuel for transports, electricity production. They assess and discuss the possible biomass production of its three main sources: forest, agriculture, and wastes (household, agricultural and industrial wastes). They also discuss the opportunities for biogas production and for second generation bio-fuel production

  14. Landscape Evolution in South Texas Savannas: Impact of Woody Encroachment on Land-Surface Hydrology

    Science.gov (United States)

    Basant, S.; Wilcox, B. P.

    2017-12-01

    South Texas shrubland savannas have seen extensive woody encroachment over the last century. The ecosystem is largely spread over the coastal sediments typified by subtle elevation differences which are marked by bands of thick vegetation. Together, they form a dendritic pattern of vegetation which resembles a drainage network. We hypothesize that these vegetation shifts from grassland to woodlands began with the woody encroachment of drainage networks first. This was helped mainly by two factors, a) cattle grazing, b) the undulating feature of the landscape, c) periodic high intensity storms every few years resulting in large overland flows. We propose that the overland flows generated by these periodic storms provided a `subsidy' of extra water accounting for the differential rate of biomass production in lowlands. We also propose that with the continued woody encroachment, the extent of redistribution of water has changed in extent, and in scale triggering vegetation dynamics which are more controlled at patch scales. Soil moisture data was collected for over a year using neutron moisture meter for 40 points spread over a micro catchment. Plot scale runoff and interception data was sampled for the same catchment. USGS historical streamflow data from nearby creeks was used to confirm the periodic trend of runoff generation. Control exerted by microtopography of the site was accounted by using DEM at 1m resolution. Soil water storage was found to be consistently higher for uplands with open areas while lower for wooded patches but the upland sites also exhibited variability based on the slope and soil texture. Runoff generated also varied on shrub cover, slope and soil order, but higher for areas with previous records of grazing. Most runoff events were < 2mm except for 2 hurricane events in our records which generated more than 100mm of runoff. This points to the importance the role of rainfall intensity and the scale of runoff redistribution in providing

  15. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    2013-11-01

    Full Text Available We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons.

  16. Woody biomass comminution and sorting - a review of mechanical methods

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Gunnar [Swedish Univ. of Agricultural Sciences, Dept. of Forest Resource Management, Umeaa (Sweden)], e-mail: gunnar.eriksson@slu.se

    2012-11-01

    The increased demand for woody biomass for heat and electricity and biorefineries means that each bio component must be used efficiently. Any increase in raw material supply in the short term is likely to require the use of trees from early thinnings, logging residues and stumps, assortments of low value compared to stemwood. However, sorting of the novel materials into bio components may increase their value considerably. The challenge is to 1) maximise the overall values of the different raw material fractions for different users, 2) minimise costs for raw material extraction, processing, storage and transportation. Comminution of the raw material (e.g. to chips, chunks, flakes and powder) and sorting the bio components (e.g. separating bark from pulp chips and separating alkali-rich needles and shots for combustion and gasification applications) are crucial processes in this optimisation. The purpose of this study has been to make a literature review of principles for comminution and sorting, with an emphasis on mechanical methods suitable outside industries. More efficient comminution methods can be developed when the wood is to a larger extent cut along the fibre direction, and closer to the surface (with less pressure to the sides of the knife). By using coarse comminution (chunking) rather than fine comminution (chipping), productivity at landings can be increased and energy saved, the resulting product will have better storage and drying properties. At terminals, any further comminution (if necessary) could use larger-scale equipment of higher efficiency. Rolls and flails can be used to an increasing extent for removing foliage and twigs, possibly in the terrain (for instance fitted on grapples). Physical parameters used for sorting of the main components of trees include particle size, density and shape (aerodynamic drag and lift), optical and IR properties and X-ray fluorescence. Although methods developed for pulp chip production from whole trees may not

  17. Processing Cost Analysis for Biomass Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  18. Modeling of aerosol formation during biomass combustion in grate furnaces and comparison with measurements

    NARCIS (Netherlands)

    Joeller, M.; Brunner, T.; Obernberger, I.

    2005-01-01

    Results from mathematical modeling of aerosol formation during combustion of woody biomass fuels were compared with results from particle size distribution (PSD) measurements at a pilot-scale biomass combustion unit with moving grate and flame tube boiler. The mathematical model is a plug flow model

  19. Assessing tree and stand biomass: a review with examples and critical comparisons

    Science.gov (United States)

    Bernard R. Parresol

    1999-01-01

    There is considerable interest today in estimating the biomass of trees and forests for both practical forestry issues and scientific purposes. New techniques and procedures are brought together along with the more traditional approaches to estimating woody biomass. General model forms and weighted analysis are reviewed, along with statistics for evaluating and...

  20. Development of a downed woody debris forecasting tool using strategic-scale multiresource forest inventories

    Science.gov (United States)

    Matthew B. Russell; Christopher W. Woodall

    2017-01-01

    The increasing interest in forest biomass for energy or carbon cycle purposes has raised the need for forest resource managers to refine their understanding of downed woody debris (DWD) dynamics. We developed a DWD forecasting tool using field measurements (mean size and stage of stage of decay) for three common forest types across the eastern United States using field...

  1. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  2. CMS: Estimated Deforested Area Biomass, Tropical America, Africa, and Asia, 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides estimates of pre-deforestation aboveground live woody biomass (AGLB) at 30-m resolution for deforested areas of tropical America, tropical...

  3. Linking climate change and downed woody debris decomposition across forests of the eastern United States

    Science.gov (United States)

    M.B. Russell; C.W. Woodall; A.W. D' Amato; S. Fraver; J.B. Bradford

    2014-01-01

    Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Forest carbon (C) is stored through photosynthesis and released via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased...

  4. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.

    Science.gov (United States)

    Biswas, Bijoy; Pandey, Nidhi; Bisht, Yashasvi; Singh, Rawel; Kumar, Jitendra; Bhaskar, Thallada

    2017-08-01

    Pyrolysis studies on conventional biomass were carried out in fixed bed reactor at different temperatures 300, 350, 400 and 450°C. Agricultural residues such as corn cob, wheat straw, rice straw and rice husk showed that the optimum temperatures for these residues are 450, 400, 400 and 450°C respectively. The maximum bio-oil yield in case of corn cob, wheat straw, rice straw and rice husk are 47.3, 36.7, 28.4 and 38.1wt% respectively. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. All bio-oils contents were mainly composed of oxygenated hydrocarbons. The higher area percentages of phenolic compounds were observed in the corn cob bio-oil than other bio-oils. From FT-IR and 1 H NMR spectra showed a high percentage of aliphatic functional groups for all bio-oils and distribution of products is different due to differences in the composition of agricultural biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Quantification and mapping of the supply of and demand for carbon storage and sequestration service in woody biomass and soil to mitigate climate change in the socio-ecological environment.

    Science.gov (United States)

    Sahle, Mesfin; Saito, Osamu; Fürst, Christine; Yeshitela, Kumelachew

    2018-05-15

    In this study, the supply of and demand for carbon storage and sequestration of woody biomass in the socio-ecological environment of the Wabe River catchment in Gurage Mountains, Ethiopia, were estimated. This information was subsequently integrated into a map that showed the balance between supply capacities and demand in a spatially explicit manner to inform planners and decision makers on methods used to manage local climate change. Field data for wood biomass and soil were collected, satellite images for land use and land cover (LULC) were classified, and secondary data from statistics and studies for estimation were obtained. Carbon storage, the rate of carbon sequestration and the rate of greenhouse gas (GHG) emissions from diverse sources at different LULCs, was estimated accordingly by several methods. Even though a large amount of carbon was stored in the catchment, the current yearly sequestration was less than the CO 2 -eq. GHG emissions. Forest and Enset-based agroforestry emissions exhibited the highest amount of woody biomass, and cereal crop and wetland exhibited the highest decrease in soil carbon sequestration. CO 2 -eq. GHG emissions are mainly caused by livestock, nitrogenous fertilizer consumption, and urban activities. The net negative emissions were estimated for the LULC classes of cereal crop, grazing land, and urban areas. In conclusion, without any high-emission industries, GHG emissions can be greater than the regulatory capacity of ecosystems in the socio-ecological environment. This quantification approach can provide information to policy and decision makers to enable them to tackle climate change at the root level. Thus, measures to decrease emission levels and enhance the sequestration capacity are crucial to mitigate the globally delivered service in a specific area. Further studies on the effects of land use alternatives on net emissions are recommended to obtain in-depth knowledge on sustainable land use planning. Copyright

  6. Poly generation property of agricultural straw based on biomass pyrolysis/gasification

    International Nuclear Information System (INIS)

    Chen, Yingquan; Zhu, Bo; Chen, Han Ping; Yang, Hai-Ping; Wang, Xian Hua; Zhang, Shihong

    2010-01-01

    Full text: A large mount of agricultural waste generated annually in China. The efficient and clean utilization of these biomass resources is seem to an opportunity not only enhancing the standard of living of peasant but also significantly reducing the emission of greenhouse gas. Poly generation of biomass not only generating gas product with high heat value but also producing bio-char with high quality, is one of the most promising technology for Chinese rural. Currently, fixed bed pyrolysis technology is attracted major concern, however, it resulted a no-continuous and unstable production. In this paper, a novel pyrolysis technology is introduced, and the pyrolysis property of local typical agricultural straw was investigated under variant condition. A pyrolysis gases containing CO, H 2 , CO 2 , CH 4 , and trace of small-molecule hydrocarbon were produced, and the heat value was above 17 MJ/ m 3 . It is sufficient for the requirement of local resident. The tar yield is very low since it condensed on the heated materials in the low temperature zone and was further cracked to a lower molecule gases in the high temperature zone, and the main liquid product is wood vinegar. It contained above 80 % wt of water, 5-12 % wt of acetic acid and some furan and phonetic. The wood charcoal is another important product possessing rather higher benefits than gas product. The heat value of the charcoal is over 27 MJ/ kg and without smoke during combustion, so there is a huge market on the catering industry for the charcoal whose cost is lower than the charcoal form forests woods, simultaneously the char have a good porosity as the BET surface area about 100 m 2 / g, so can be used as a lower cost adsorbent in the environment industry. As the commercialization of biomass poly generation technology, the high value conversion and utilization of wood vinegar and charcoal would bring considerable benefits for consumer. (author)

  7. Putney Basketville Site Biomass CHP Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, Randolph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-10-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, including Putney Paper and Landmark College.

  8. Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work

    Directory of Open Access Journals (Sweden)

    A. Shitu

    2015-07-01

    Full Text Available Agricultural waste biomass generated from agricultural production and food processing industry are abundant, such as durian  peel, mango peel, corn straw, rice bran, corn shell, potato peel and many more. Due to low commercial value, these wastes are disposed in landfill, which if not managed properly may cause environmental problems. Currently, environmental laws and regulations pertaining to the pollution from agricultural waste streams by regulatory agencies are stringent and hence the application of toxic solvents during processing has become public concern. Recent development in valuable materials extraction from the decomposition of agricultural waste by sub-critical water treatment from the published literature was review. Physico-chemical characteristic (reaction temperature, reaction time and solid to liquid ratio of the sub-critical water affecting its yield were also reviewed. The utilization of biomass residue from agriculture, forest wood production and from food and feed processing industry may be an important alternative renewable energy supply. The paper also presents future research on sub-critical water.

  9. Alterations in soil microbial community composition and biomass following agricultural land use change.

    Science.gov (United States)

    Zhang, Qian; Wu, Junjun; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli

    2016-11-04

    The effect of agricultural land use change on soil microbial community composition and biomass remains a widely debated topic. Here, we investigated soil microbial community composition and biomass [e.g., bacteria (B), fungi (F), Arbuscular mycorrhizal fungi (AMF) and Actinomycete (ACT)] using phospholipid fatty acids (PLFAs) analysis, and basal microbial respiration in afforested, cropland and adjacent uncultivated soils in central China. We also investigated soil organic carbon and nitrogen (SOC and SON), labile carbon and nitrogen (LC and LN), recalcitrant carbon and nitrogen (RC and RN), pH, moisture, and temperature. Afforestation averaged higher microbial PLFA biomass compared with cropland and uncultivated soils with higher values in top soils than deep soils. The microbial PLFA biomass was strongly correlated with SON and LC. Higher SOC, SON, LC, LN, moisture and lower pH in afforested soils could be explained approximately 87.3% of total variation of higher total PLFAs. Afforestation also enhanced the F: B ratios compared with cropland. The basal microbial respiration was higher while the basal microbial respiration on a per-unit-PLFA basis was lower in afforested land than adjacent cropland and uncultivated land, suggesting afforestation may increase soil C utilization efficiency and decrease respiration loss in afforested soils.

  10. Results with a bench scale downdraft biomass gasifier for agricultural and forestry residues

    Energy Technology Data Exchange (ETDEWEB)

    Olgun, Hayati [TUBITAK Marmara Research Center, Energy Institute, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Ozdogan, Sibel; Yinesor, Guzide [Marmara University-Goztepe Campus, Faculty of Engineering - Department of Mechanical Engineering, 34722 Kuyubasi Kadikoy Istanbul (Turkey)

    2011-01-15

    A small scale fixed bed downdraft gasifier system to be fed with agricultural and forestry residues has been designed and constructed. The downdraft gasifier has four consecutive reaction zones from the top to the bottom, namely drying, pyrolysis, oxidation and reduction zones. Both the biomass fuel and the gases move in the same direction. A throat has been incorporated into the design to achieve gasification with lower tar production. The experimental system consists of the downdraft gasifier and the gas cleaning unit made up by a cyclone, a scrubber and a filter box. A pilot burner is utilized for initial ignition of the biomass fuel. The product gases are combusted in the flare built up as part of the gasification system. The gasification medium is air. The air to fuel ratio is adjusted to produce a gas with acceptably high heating value and low pollutants. Within this frame, different types of biomass, namely wood chips, barks, olive pomace and hazelnut shells are to be processed. The developed downdraft gasifier appears to handle the investigated biomass sources in a technically and environmentally feasible manner. This paper summarizes selected design related issues along with the results obtained with wood chips and hazelnut shells. (author)

  11. Relationship of coarse woody debris to arthropod Availability for Red-Cockaded Woodpeckers and other bark-foraging birds on loblolly pine boles.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James, L.

    2008-04-01

    Abstract This study determined if short-term removal of coarse woody debris would reduce prey available to red-cockaded woodpeckers (Picoides borealis Vieillot) and other bark-foraging birds at the Savannah River Site in Aiken and Barnwell counties, SC. All coarse woody debris was removed from four 9-ha plots of mature loblolly pine (Pinus taeda L.) in 1997 and again in 1998. We sampled arthropods in coarse woody debris removal and control stands using crawl traps that captured arthropods crawling up tree boles, burlap bands wrapped around trees, and cardboard panels placed on the ground. We captured 27 orders and 172 families of arthropods in crawl traps whereas 20 arthropod orders were observed under burlap bands and cardboard panels. The most abundant insects collected from crawl traps were aphids (Homoptera: Aphididae) and ants (Hymenoptera: Forrnicidae). The greatest biomass was in the wood cockroaches (Blattaria: Blattellidae), caterpillars (Lepidoptera) in the Family Noctuidae, and adult weevils (Coleoptera: Curculionidae). The most common group observed underneath cardboard panels was lsoptera (termites), and the most common taxon under burlap bands was wood cockroaches. Overall, arthropod abundance and biomass captured in crawl traps was similar in control and removal plots. In contrast, we observed more arthropods under burlap bands (mean & SE; 3,021.5 k 348.6, P= 0.03) and cardboard panels (3,537.25 k 432.4, P= 0.04) in plots with coarse woody debris compared with burlap bands (2325 + 171.3) and cardboard panels (2439.75 + 288.9) in plots where coarse woody debris was removed. Regression analyses showed that abundance beneath cardboard panels was positively correlated with abundance beneath burlap bands demonstrating the link between abundance on the ground with that on trees. Our results demonstrate that short-term removal of coarse woody debris from pine forests reduced overall arthropod availability to bark-foraging birds.

  12. Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses.

    Science.gov (United States)

    Zhao, Song; Zhou, Xiehong; Wang, Chuanyi; Jia, Hanzhong

    2017-08-24

    Pyrolysis is potentially an effective treatment of waste oil residues for recovery of petroleum hydrocarbons, and the addition of biomass is expected to improve its dewatering and pyrolysis behavior. In this study, the dewatering and low-temperature co-pyrolysis of oil-containing sludge in the presence of various agricultural biomasses, such as rice husk, walnut shell, sawdust, and apricot shell, were explored. As a result, the water content gradually decreases with the increase of biomass addition within 0-1.0 wt % in original oily sludge. Comparatively, the dewatering efficiency of sludge in the presence of four types of biomasses follows the order of apricot shell > walnut shell > rice husk > sawdust. On the other hand, rice husk and sawdust are relatively more efficient in the recovery of petroleum hydrocarbons compared with walnut shell and apricot shell. The recovery efficiency generally increased with the increase in the biomass content in the range of 0-0.2 wt %, then exhibited a gradually decreasing trend with the increase in the biomass content from 0.2 to 1.0 wt %. The results suggest that optimum amount of biomass plays an important role in the recovery efficiency. In addition, the addition of biomass (such as rice husk) also promotes the formation of C x H y and CO, increasing the calorific value of pyrolysis residue, and controlled the pollution components of the exhaust gas discharged from residue incineration. The present work implies that biomass as addictive holds great potential in the industrial dewatering and pyrolysis of oil-containing sludge.

  13. Measuring and partitioning soil respiration in sharkey shrink-swell clays under plantation grown short-rotation woody crops

    Science.gov (United States)

    Wilson G. Hood; Michael C. Tyree; Dylan N. Dillaway Dillaway; Theodor D. Leininger

    2015-01-01

    The Lower Mississippi Alluvial Valley (LMAV) offers an ecological niche for short-rotation woody crop (SRWC) production by mating marginal agricultural land with optimal growing conditions. Approximately 1.7 million ha within the LMAV consist of Sharkey shrink-swell clays. They are considered marginal in terms of traditional agricultural productivity due to their...

  14. Wood biomass : fuel for wildfires or feedstock for bioenergy ?

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.S. [Miller Dewulf Corp., Studio City, CA (United States)

    2007-07-01

    The clean conversion of woody biomass-to-energy has been touted as an alternative to fossil fuel energy and as a solution to environmental challenges. This presentation discussed the state of forest health in North America with particular reference to the higher incidence of megafires, such as recent fires in Colorado, San Diego, Lake Arrowhead, Lake Tahoe, Zaca, and Okefenokee. Federal authorities have an increased responsibility to preserve old forest stands; sustain and increase biodiversity; protect habitats; fight fires to protect real estate; and, contain and suppress wildfires. It was noted that while healthy forests absorb greenhouse gases (GHGs), burning forests release them. The Colorado Hayman fire alone emitted more carbon dioxide in one day than all the cars in the United States in one week. It was cautioned that unharvested fire residues contribute 300 per cent more GHG during decay. The problem of forest density was also discussed, noting that many forests on public lands have grown dangerously overcrowded due to a century of fire suppression and decades of restricted timber harvesting. A sustainable solution was proposed in which decaying biomass can be harvested in order to pay for forest management. Other solutions involve reforesting to historic models and mechanically thinning vulnerable forests for bioenergy. In California's Eagle Lake Ranger District, there are 8 stand-alone wood fired power plants with 171 MWh generating capacity. In addition, there are 5 small log sawmills with cogeneration facilities. A review of feedstock for bioenergy was also included in this presentation, along with an ethanol feedstock comparison of corn and woody biomass. Technologies to produce biofuels from biomass were also reviewed with reference to traditional conversion using sugar fermentation as well as biochemical enzymatic acid hydrolysis. It was concluded that woody biomass stores abundant energy that can be used to create heat, produce steam and

  15. Long Term Potentials and Costs of RES - Part II: The Role of International Biomass Trade

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.; Junginger, H.M.; Resch, G.; Panzer, C.

    2011-01-01

    This report investigated the impact of international transport on the total cost and greenhouse gas balance of solid woody biomass. For this purpose, a geospatial intermodal biomass transport model was developed in the ArcGIS 10.0 Network Analyst extension. This model has been complemented with data

  16. The contribution of woody plant materials on the several conditions in a space environment

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Katayama, Takeshi

    Woody plant materials have several utilization elements in our habitation environment on earth. The studies of woody plants under a space-environment in the vegetable kingdom have a high contribution to the study of various and exotic environmental responses, too. Woody plants can produce an excess oxygen, woody materials for the living cabin, and provide a biomass by cultivating crops and other species of creatures. Tree material would become to be a tool in closed bio-ecosystems such as an environment in a space. We named the trees used as material for the experiment related to space environments “CosmoBon”, small tree bonsai. Japanese cherry tree, “Sakura”, is famous and lovely tree in Japan. One species of “Sakura”, “Mamezakura, Prunus incisa”, is not only lovely tree species, but also suitable tree for the model tree of our purpose. The species of Prunus incisa is originally grown in volcano environment. That species of Sakura is originally grown on Mt. Fuji aria, oligotrophic place. We will try to build the best utilization usage of woody plant under the space environment by “Mamezakura” as a model tree. Here, we will show the importance of uniformity of materials when we will use the tree materials in a space environment. We will also discuss that tree has a high possibility of utilization under the space environments by using our several results related to this research.

  17. Understory succession in post-agricultural oak plantations

    DEFF Research Database (Denmark)

    Brunet, Jörg; Valtinat, Karin; Mayr, Marian Lajos

    2011-01-01

    The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post-agricultural planta......The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post...... forested stands, which maintained differences in species composition. The development of a shrub layer seemed to imply a competitive advantage for forest specialists compared to generalist species. For successful recovery of a rich understory, we suggest that post-arable plantations should be established......, and woody species. The group of forest specialists may approach the richness of continuously forested sites after 60-80 years in non-fragmented plantations, but many forest species were sensitive to habitat fragmentation. Open-land species richness decreased during succession, while the richness of woody...

  18. Tree Plantation Will not Compensate Natural Woody Vegetation Cover Loss in the Atlantic Department of Southern Benin

    Directory of Open Access Journals (Sweden)

    Toyi, MS.

    2013-01-01

    Full Text Available This study deals with land use and land cover changes for a 33 years period. We assessed these changes for eight land cover classes in the south of Benin by using an integrated multi-temporal analysis using three Landsat images (1972 Landsat MSS, 1986 Landsat TM and 2005 Landsat ETM+. Three scenarios for the future were simulated using a first-order Markovian model based on annual probability matrices. The contribution of tree plantations to compensate forest loss was assessed. The results show a strong loss of forest and savanna, mainly due to increased agricultural land. Natural woody vegetation ("forest", "wooded savanna" and "tree and shrub savanna" will seriously decrease by 2025 due to the expansion of agricultural activities and the increase of settlements. Tree plantations are expected to double by 2025, but they will not compensate for the loss of natural woody vegetation cover. Consequently, we assist to a continuing woody vegetation area decrease. Policies regarding reforestation and forest conservation must be initiated to reverse the currently projected tendencies.

  19. Lidar-derived estimate and uncertainty of carbon sink in successional phases of woody encroachment

    Science.gov (United States)

    Sankey, Temuulen; Shrestha, Rupesh; Sankey, Joel B.; Hardgree, Stuart; Strand, Eva

    2013-01-01

    Woody encroachment is a globally occurring phenomenon that contributes to the global carbon sink. The magnitude of this contribution needs to be estimated at regional and local scales to address uncertainties present in the global- and continental-scale estimates, and guide regional policy and management in balancing restoration activities, including removal of woody plants, with greenhouse gas mitigation goals. The objective of this study was to estimate carbon stored in various successional phases of woody encroachment. Using lidar measurements of individual trees, we present high-resolution estimates of aboveground carbon storage in juniper woodlands. Segmentation analysis of lidar point cloud data identified a total of 60,628 juniper tree crowns across four watersheds. Tree heights, canopy cover, and density derived from lidar were strongly correlated with field measurements of 2613 juniper stems measured in 85 plots (30 × 30 m). Aboveground total biomass of individual trees was estimated using a regression model with lidar-derived height and crown area as predictors (Adj. R2 = 0.76, p 2. Uncertainty in carbon storage estimates was examined with a Monte Carlo approach that addressed major error sources. Ranges predicted with uncertainty analysis in the mean, individual tree, aboveground woody C, and associated standard deviation were 0.35 – 143.6 kg and 0.5 – 1.25 kg, respectively. Later successional phases of woody encroachment had, on average, twice the aboveground carbon relative to earlier phases. Woody encroachment might be more successfully managed and balanced with carbon storage goals by identifying priority areas in earlier phases of encroachment where intensive treatments are most effective.

  20. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    Science.gov (United States)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  1. Effect of biomass on burnouts of Turkish lignites during co-firing

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S. [Istanbul Technical Univ., Chemical and Metallurgical Engineering Faculty, Chemical Engineering Dept., 34469 Maslak, Istanbul (Turkey)

    2009-09-15

    Co-firing of some low quality Turkish lignites with woody shells of sunflower seed was investigated via non-isothermal thermogravimetric analysis method. For this purpose, Yozgat-Sorgun, Erzurum-Askale, Tuncbilek, Gediz, and Afsin-Elbistan lignites were selected, and burnouts of these lignites were compared with those of their blends. Biomass was blended as much as 10 and 20 wt.% of the lignites, and heating was performed up to 900 C at a heating rate of 40 C/min under dry air flow of 40 mL/min. This study revealed that the same biomass species may have different influences on the burnout yields of the lignites. Burnouts of Erzurum-Askale lignite increased at any temperature with the increasing ratio of biomass in the blend, whereas burnout yields of other lignites decreased to some extent. Nevertheless, the blends of Turkish lignites with sunflower seed shell did not behave in very different way, and it can be concluded that they are compatible in terms of burnouts for co-combustion in a combustion system. Although the presence of biomass in the lignite blends caused to some decreases in the final burnouts, the carbon dioxide neutral nature of biomass should be taken into account, and co-combustion is preferable for waste-to-energy-management. (author)

  2. Effect of biomass on burnouts of Turkish lignites during co-firing

    International Nuclear Information System (INIS)

    Haykiri-Acma, H.; Yaman, S.

    2009-01-01

    Co-firing of some low quality Turkish lignites with woody shells of sunflower seed was investigated via non-isothermal thermogravimetric analysis method. For this purpose, Yozgat-Sorgun, Erzurum-Askale, Tuncbilek, Gediz, and Afsin-Elbistan lignites were selected, and burnouts of these lignites were compared with those of their blends. Biomass was blended as much as 10 and 20 wt.% of the lignites, and heating was performed up to 900 deg. C at a heating rate of 40 deg. C/min under dry air flow of 40 mL/min. This study revealed that the same biomass species may have different influences on the burnout yields of the lignites. Burnouts of Erzurum-Askale lignite increased at any temperature with the increasing ratio of biomass in the blend, whereas burnout yields of other lignites decreased to some extent. Nevertheless, the blends of Turkish lignites with sunflower seed shell did not behave in very different way, and it can be concluded that they are compatible in terms of burnouts for co-combustion in a combustion system. Although the presence of biomass in the lignite blends caused to some decreases in the final burnouts, the carbon dioxide neutral nature of biomass should be taken into account, and co-combustion is preferable for waste-to-energy-management.

  3. Challenges and Opportunities for International Trade in Forest Biomass

    NARCIS (Netherlands)

    Lamers, P.; Mai-Moulin, T.; Junginger, H.M.

    2016-01-01

    In an effort to reduce fossil fuel consumption, the use of woody biomass for heat and power generation is growing. Key destination markets will be countries within the European Union, particularly the United Kingdom, the Netherlands, Denmark and Belgium. While demand from Asia (particularly South

  4. Woodiness within the Spermacoceae–Knoxieae alliance (Rubiaceae): retention of the basal woody condition in Rubiaceae or recent innovation?

    Science.gov (United States)

    Lens, Frederic; Groeninckx, Inge; Smets, Erik; Dessein, Steven

    2009-01-01

    Background and Aims The tribe Spermacoceae is essentially a herbaceous Rubiaceae lineage, except for some species that can be described as ‘woody’ herbs, small shrubs to treelets, or lianas. Its sister tribe Knoxieae contains a large number of herbaceous taxa, but the number of woody taxa is higher compared to Spermacoceae. The occurrence of herbaceous and woody species within the same group raises the question whether the woody taxa are derived from herbaceous taxa (i.e. secondary woodiness), or whether woodiness represents the ancestral state (i.e. primary woodiness). Microscopic observations of wood anatomy are combined with an independent molecular phylogeny to answer this question. Methods Observations of wood anatomy of 21 woody Spermacoceae and eight woody Knoxieae species, most of them included in a multi-gene molecular phylogeny, are carried out using light microscopy. Key Results Observations of wood anatomy in Spermacoceae support the molecular hypothesis that all the woody species examined are secondary derived. Well-known wood anatomical characters that demonstrate this shift from the herbaceous to the woody habit are the typically flat or decreasing length vs. age curves for vessel elements, the abundance of square and upright ray cells, or even the (near-) absence of rays. These so-called paedomorphic wood features are also present in the Knoxieae genera Otiophora, Otomeria, Pentas, Pentanisia and Phyllopentas. However, the wood structure of the other Knoxieae genera observed (Carphalea, Dirichletia and Triainolepis) is typical of primarily woody taxa. Conclusions In Spermacoceae, secondary woodiness has evolved numerous times in strikingly different habitats. In Knoxieae, there is a general trend from primary woodiness towards herbaceousness and back to (secondary) woodiness. PMID:19279041

  5. Modeling and analysing storage systems in agricultural biomass supply chain for cellulosic ethanol production

    International Nuclear Information System (INIS)

    Ebadian, Mahmood; Sowlati, Taraneh; Sokhansanj, Shahab; Townley-Smith, Lawrence; Stumborg, Mark

    2013-01-01

    Highlights: ► Studied the agricultural biomass supply chain for cellulosic ethanol production. ► Evaluated the impact of storage systems on different supply chain actors. ► Developed a combined simulation/optimization model to evaluate storage systems. ► Compared two satellite storage systems with roadside storage in terms of costs and emitted CO 2 . ► SS would lead to a more cost-efficient supply chain compared to roadside storage. -- Abstract: In this paper, a combined simulation/optimization model is developed to better understand and evaluate the impact of the storage systems on the costs incurred by each actor in the agricultural biomass supply chain including farmers, hauling contractors and the cellulosic ethanol plant. The optimization model prescribes the optimum number and location of farms and storages. It also determines the supply radius, the number of farms required to secure the annual supply of biomass and also the assignment of farms to storage locations. Given the specific design of the supply chain determined by the optimization model, the simulation model determines the number of required machines for each operation, their daily working schedule and utilization rates, along with the capacities of storages. To evaluate the impact of the storage systems on the delivered costs, three storage systems are molded and compared: roadside storage (RS) system and two satellite storage (SS) systems including SS with fixed hauling distance (SF) and SS with variable hauling distance (SV). In all storage systems, it is assumed the loading equipment is dedicated to storage locations. The obtained results from a real case study provide detailed cost figures for each storage system since the developed model analyses the supply chain on an hourly basis and considers time-dependence and stochasticity of the supply chain. Comparison of the storage systems shows SV would outperform SF and RS by reducing the total delivered cost by 8% and 6%, respectively

  6. Thermogravimetric, Devolatilization Rate, and Differential Scanning Calorimetry Analyses of Biomass of Tropical Plantation Species of Costa Rica Torrefied at Different Temperatures and Times

    Directory of Open Access Journals (Sweden)

    Johanna Gaitán-Álvarez

    2018-03-01

    Full Text Available We evaluated the thermogravimetric and devolatilization rates of hemicellulose and cellulose, and the calorimetric behavior of the torrefied biomass, of five tropical woody species (Cupressus lusitanica, Dipteryx panamensis, Gmelina arborea, Tectona grandis and Vochysia ferruginea, at three temperatures (TT and three torrefaction times (tT using a thermogravimetric analyzer. Through a multivariate analysis of principal components (MAPC, the most appropriate torrefaction conditions for the different types of woody biomass were identified. The thermogravimetric analysis-derivative thermogravimetry (TGA-DTG analysis showed that a higher percentage of the hemicellulose component of the biomass degrades, followed by cellulose, so that the hemicellulose energy of activation (Ea was less than that of cellulose. With an increase in TT and tT, the Ea for hemicellulose decreased but increased for cellulose. The calorimetric analyses showed that hemicellulose is the least stable component in the torrefied biomass under severe torrefaction conditions, and cellulose is more thermally stable in torrefied biomass. From the MAPC results, the best torrefaction conditions for calorimetric analyses were at 200 and 225 °C after 8, 10, and 12 min, for light and middle torrefaction, respectively, for the five woody species.

  7. Numerical simulation of the gasification based biomass cofiring on a 600 MW pulverized coal boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R.; Dong, C.Q.; Yang, Y.P.; Zhang, J.J. [Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, Beijing (China); North China Electric Power Univ., Beijing (China). Key Laboratory of Security and Clean Energy Technology

    2008-07-01

    Biomass cofiring is the practice of supplementing a base fuel with biomass fuels such as wood waste, short rotation woody crops, short rotation herbaceous crops, alfalfa stems, various types of manure, landfill gas and wastewater treatment gas. The practice began in the 1980s and is becoming commonplace in Europe and the United States. The benefits include reduced carbon dioxide emissions and other airborne emissions such as nitrous oxides (NOx), sulphur dioxide and trace metals; potential for reduced fuel cost; and supporting economic development among wood products and agricultural industries in a given service area. However, technical challenges remain when biomass is directly cofired with coal. These include limited percentage of biomass for cofiring; fuel preparation, storage, and delivery; ash deposition and corrosion associated with the high alkali metal and chlorine content in biomass; fly ash utilization; and impacts on the selective catalytic reduction (SCR) system. This study involved a numerical simulation of cofiring coal and biomass gas in a 600 MWe tangential PC boiler using Fluent software. Combustion behaviour and pollutant formation in the conventional combustion and cofiring cases were compared. The study revealed that reduced NOx emissions can be achieved when producer gas is injected from the lowest layer burner. The nitrogen monoxide (NO) removal rate was between 56.64 and 70.37 per cent. In addition, slagging can be reduced because of the lower temperature. It was concluded that the convection heat transfer area should be increased or the proportion of biomass gas should be decreased to achieve higher boiler efficiency. 8 refs., 4 tabs., 8 figs.

  8. Estimates of downed woody debris decay class transitions for forests across the eastern United States

    Science.gov (United States)

    Matthew B. Russell; Christopher W. Woodall; Shawn Fraver; Anthony W. D' Amato

    2013-01-01

    Large-scale inventories of downed woody debris (DWD; downed dead wood of a minimum size) often record decay status by assigning pieces to classes of decay according to their visual/structural attributes (e.g., presence of branches, log shape, and texture and color of wood). DWD decay classes are not only essential for estimating current DWD biomass and carbon stocks,...

  9. Co-occurring nonnative woody shrubs have additive and non-additive soil legacies

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Patterson, Courtney M.; Classen, Aimee Taylor

    2016-01-01

    shrubs, Lonicera maackii and Ligustrum sinense, in deciduous forests of the southeastern United States. We measured the performance of each nonnative shrub, a native herbaceous community, and a nonnative woody vine in soils conditioned by each shrub singly or together in polyculture. Soils conditioned...... by both nonnative shrubs had non-additive impacts on native and nonnative performance. Root mass of the native herbaceous community was 1.5 times lower and the root mass of the nonnative L. sinense was 1.8 times higher in soils conditioned by both L. maackii and L. sinense than expected based upon growth...... in soils conditioned by either shrub singly. This result indicates that when these two nonnative shrubs co-occur, their influence on soils disproportionally favors persistence of the nonnative L. sinense relative to this native herbaceous community, and could provide an explanation of why native species...

  10. Initial effects of quinclorac on the survival and growth of high biomass tree species

    Directory of Open Access Journals (Sweden)

    Joshua P. Adams

    2017-07-01

    Full Text Available Increasingly, short rotation woody crops are being planted for biofuel/biomass production on unused lands or marginal agricultural lands. Many of these plantations occur near agriculture land which is intensively managed including yearly herbicide applications. Herbicide drift from these applications may cause tree stress and decreasing yields impacting potential biomass production. Quinclorac, a rice herbicide, is often cited as a potential source of tree damage and is the focal herbicide of this study. Five planting stocks, including three eastern cottonwood clones, a hybrid poplar clone, and American sycamore, were assessed for herbicide affects and deployed at three sites across south Arkansas. Stocks were exposed to a full rate labeled for rice (3.175 L ha-1, two rates simulating drift (1/100th and 1/10th the full rate, and a no-spray control. Survival of all Populus clones decreased drastically as quinclorac rate increased, while there was little observed effect on American sycamore. Some variability in treatment response among poplars occurred below the full herbicide rate; however, direct spraying a full herbicide rate on poplars resulted in survival rates below 65 percent and negative growth rates due to dieback. Conversely, photosynthetic rates of remaining leaves increased as quinclorac rate increased. Survival and damage scores of American sycamore, regardless of herbicide rate, remained nearly constant.

  11. Biomass production and utilisation. Policy implications for LDCs

    International Nuclear Information System (INIS)

    Davidson, O.

    1997-01-01

    The importance of biomass in the energy sector of LDCs and in Africa in particular is illustrated so as to provide the background to the policy importance on the production and use of this energy source. The main areas for policy attention discussed are: biomass for power generation, biomass use in the transport sector, urban energy supply and the interactions with agricultural policies. The roles of the major institutions the government, private sector institutions, educational institutions and non-governmental organizations are identified. It is concluded that with the necessary policy shift that is being advocated, biomass can contribute to a more equitable supply of high quality and efficient energy services in the future of African countries. (K.A.)

  12. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Science.gov (United States)

    Yang, Fan; Wang, Yong; Chan, Zhulong

    2014-01-01

    The establishment of riparian protection forests in the Three Gorges Reservoir (TGR) is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ). Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides) and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora) might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress and recover well

  13. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available The establishment of riparian protection forests in the Three Gorges Reservoir (TGR is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ. Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress

  14. Monitoring changes in soil carbon resulting from intensive production, a non-traditional agricultural methodology.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P.

    2013-03-01

    New Mexico State University and a group of New Mexico farmers are evaluating an innovative agricultural technique they call Intensive Production (IP). In contrast to conventional agricultural practice, IP uses intercropping, green fallowing, application of soil amendments and soil microbial inocula to sequester carbon as plant biomass, resulting in improved soil quality. Sandia National Laboratories role was to identify a non-invasive, cost effective technology to monitor soil carbon changes. A technological review indicated that Laser Induced Breakdown Spectroscopy (LIBS) best met the farmers objectives. Sandia partnered with Los Alamos National Laboratory (LANL) to analyze farmers test plots using a portable LIBS developed at LANL. Real-time LIBS field sample analysis was conducted and grab samples were collected for laboratory comparison. The field and laboratory results correlated well implying the strong potential for LIBS as an economical field scale analytical tool for analysis of elements such as carbon, nitrogen, and phosphate.

  15. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  16. Biomass of cocoa and sugarcane

    Science.gov (United States)

    Siswanto; Sumanto; Hartati, R. S.; Prastowo, B.

    2017-05-01

    The role of the agricultural sector is very important as the upstream addressing downstream sectors and national energy needs. The agricultural sector itself is also highly dependent on the availability of energy. Evolving from it then it must be policies and strategies for agricultural development Indonesia to forward particularly agriculture as producers as well as users of biomass energy or bioenergy for national development including agriculture balance with agriculture and food production. Exports of biomass unbridled currently include preceded by ignorance, indifference and the lack of scientific data and potential tree industry in the country. This requires adequate scientific supporting data. This study is necessary because currently there are insufficient data on the potential of biomass, including tree biomasanya detailing the benefits of bioenergy, feed and food is very necessary as a basis for future policy. Measurement of the main estate plants biomass such as cocoa and sugarcane be done in 2015. Measurements were also conducted on its lignocellulose content. Tree biomass sugarcane potential measured consist of leaves, stems and roots, with the weight mostly located on the stem. Nevertheless, not all the potential of the stem is a good raw material for bioethanol. For cocoa turned out leaves more prospective because of its adequate hemicellulose content. For sugarcane, leaf buds contain a good indicator of digestion of feed making it more suitable for feed.

  17. Environmental impact of woody biomass use in Botswana - the case of fuelwood

    International Nuclear Information System (INIS)

    Sekhwela, M.B.M.

    1997-01-01

    A review of fuelwood and deforestation in Botswana is presented. Details are given of the AFREPREN biomass research project to evaluate the methods for examining biomass energy sources in Botswana and Rwanda, and the contribution of fuelwood harvesting to deforestation. (UK)

  18. Lidar-derived estimate and uncertainty of carbon sink in successional phases of woody encroachment

    Science.gov (United States)

    Sankey, Temuulen; Shrestha, Rupesh; Sankey, Joel B.; Hardegree, Stuart; Strand, Eva

    2013-07-01

    encroachment is a globally occurring phenomenon that contributes to the global carbon sink. The magnitude of this contribution needs to be estimated at regional and local scales to address uncertainties present in the global- and continental-scale estimates, and guide regional policy and management in balancing restoration activities, including removal of woody plants, with greenhouse gas mitigation goals. The objective of this study was to estimate carbon stored in various successional phases of woody encroachment. Using lidar measurements of individual trees, we present high-resolution estimates of aboveground carbon storage in juniper woodlands. Segmentation analysis of lidar point cloud data identified a total of 60,628 juniper tree crowns across four watersheds. Tree heights, canopy cover, and density derived from lidar were strongly correlated with field measurements of 2613 juniper stems measured in 85 plots (30 × 30 m). Aboveground total biomass of individual trees was estimated using a regression model with lidar-derived height and crown area as predictors (Adj. R2 = 0.76, p < 0.001, RMSE = 0.58 kg). The predicted mean aboveground woody carbon storage for the study area was 677 g/m2. Uncertainty in carbon storage estimates was examined with a Monte Carlo approach that addressed major error sources. Ranges predicted with uncertainty analysis in the mean, individual tree, aboveground woody C, and associated standard deviation were 0.35 - 143.6 kg and 0.5 - 1.25 kg, respectively. Later successional phases of woody encroachment had, on average, twice the aboveground carbon relative to earlier phases. Woody encroachment might be more successfully managed and balanced with carbon storage goals by identifying priority areas in earlier phases of encroachment where intensive treatments are most effective.

  19. Woody debris along an upland chromosequence in boreal Manitoba and its impact on long-term carbon storage

    Energy Technology Data Exchange (ETDEWEB)

    Manies, K. L.; Harden, J. W. [US Geological Survey, Menlo Park, CA (United States); Bond-Lamberty, B. P. [University of Wisconsin, Dept. of Forest Ecology and Management, Madison, WI (United States); O' Neill, K. P. [USDA Agricultural Research Service, Appalachian Farming Systems Research Center, Beaver, WV (United States)

    2005-02-01

    The amount of standing dead and downed woody debris along an upland chromosequence was measured in an effort to investigate the role of fire-killed woody debris as a source of soil carbon in black spruce stands in Manitoba. Based on the measurement data and existing primary production values, a mass balance model was used to assess the potential impact of fire-killed wood on long-term carbon storage at this site. Long-term carbon was represented by the amount of carbon stored in deeper soil organic layers, persisting over millenia. Between 10 and 60 per cent of the deep-soil carbon was estimated to have been derived from wood biomass. The actual amount appears to be most affected by fire return interval, decay rate of wood, the amount of net primary production, and the decay rate of the post-fire carbon pool. Although the model was less sensitive to fire consumption rates and to rates at which standing dead wood becomes woody debris, all model runs clearly established that woody debris plays an important role in long-term carbon storage in this area. 53 refs., 4 tabs., 4 figs.

  20. The role of gap phase processes in the biomass dynamics of tropical forests

    Science.gov (United States)

    Feeley, Kenneth J; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Nur Supardi, M.N; Kassim, Abd Rahman; Tan, Sylvester; Chave, Jérôme

    2007-01-01

    The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four ‘old-growth’ tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr−1) and decreased at HKK (−0.56% yr−1) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget. PMID:17785266

  1. Retrieval of forest biomass for tropical deciduous mixed forest using ALOS PALSAR mosaic imagery and field plot data

    Science.gov (United States)

    Ningthoujam, Ramesh K.; Joshi, P. K.; Roy, P. S.

    2018-07-01

    Tropical forest is an important ecosystem rich in biodiversity and structural complexity with high woody biomass content. Longer wavelength radar data at L-band sensor provides improved forest biomass (AGB) information due to its higher penetration level and sensitivity to canopy structure. The study presents a regression based woody biomass estimation for tropical deciduous mixed forest dominated by Shorea robusta using ALOS PALSAR mosaic (HH, HV) and field data at the lower Himalayan belt of Northern India. For the purpose of understanding the scattering mechanisms at L-band from this forest type, Michigan Microwave Canopy Scattering model (MIMICS-I) was parameterized with field data to simulate backscatter across polarization and incidence range. Regression analysis between field measured forest biomass and L-band backscatter data from PALSAR mosaic show retrieval of woody biomass up to 100 Mg ha-1 with error between 92 and 94 Mg ha-1 and coefficient of determination (r2) between 0.53 and 0.55 for HH and HH + HV polarized channel at 0.25 ha resolution. This positive relationship could be due to strong volume scattering from ground/trunk interaction at HH-polarized while in combination with direct canopy scattering for HV-polarization at ALOS specific incidence angles as predicted by MIMICS-I model. This study has found that L-band SAR data from currently ALOS-1/-2 and upcoming joint NASA-ISRO SAR (NISAR) are suitable for mapping forest biomass ≤100 Mg ha-1 at 25 m resolution in far incidence range in dense deciduous mixed forest of Northern India.

  2. Life-Cycle Energy and GHG Emissions of Forest Biomass Harvest and Transport for Biofuel Production in Michigan

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2015-04-01

    Full Text Available High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  3. Moringa oleifera: a promising agricultural crop and of social inclusion for Brazil and semi-arid regions for the production of energetic biomass (biodiesel and briquettes

    Directory of Open Access Journals (Sweden)

    Pereira Francisco Sávio Gomes

    2018-01-01

    Full Text Available This study describes properties of biomasses of Moringa oleifera Lamarck for energetic applications of production of biodiesel and briquettes. The seeds collected of the mature pods were the initial biomasses used of this plant. The seeds were separated into husks and oilseed grains, from which the oils were extracted by mechanical pressing and by solvent extraction. The crude oil mixed (of pressing and by solvent was degummed, neutralized, washed, dried and characterized. The purified oil was converted into methyl biodiesel in homogeneous alkaline transesterification, which was purified and characterized. The residual peels and pies had their calorific powers measured and compared with classic agricultural residues: firewood, sugarcane bagasse and coconut husks. Moringa culture was compared to soybeans in agricultural and biodiesel production perspectives. The analytical results show that the biomasses of the moringa are favorable as renewable biofuels like biodiesel or briquettes due to the good calorific power and simple and accessible productive technology. The production of briquettes starting from the biomasses of the moringa would be recommended with the uses of the pod husks, seed peels and pies (cakes of extraction of the oil. The agricultural management and the simple productive technologies applied to the moringa are favorable for social inclusion by enabling family agriculture.

  4. Development of an applied black willow tree improvement program for biomass production in the south

    Science.gov (United States)

    Randall J. Rousseau; Emile S. Gardiner; Theodor D. Leininger

    2012-01-01

    The development of rapidly growing biomass woody crops is imperative as the United States strives to meet renewable energy goals. The Department of Energy has indicated that biomass is a prime source for renewable energy for the southern United States. Black Willow (Salix nigra Marsh.) is a potential bioenergy/biofuels crop for dedicated short-...

  5. Biogas - Energy from the agricultural sector

    International Nuclear Information System (INIS)

    Membrez, Y.

    2006-01-01

    Swiss agriculture produces biomass in the form of manure, crop residue or specifically grown biomass energy crops. There are a variety of procedures available to make use of this biomass. The right choice depends on the type of biomass and the energy end-product. For example thermal energy use, power generation or biogenetic fuels require physical, thermo-chemical or biological conversion. The following reports presents an overview of existing technologies, gives details of selected case studies on agricultural biogas production and discusses the importance of agricultural biomass energy use for the attainment of Swiss climate protection targets. (author)

  6. Buffers for biomass production in temperate European agriculture: A review and synthesis on function, ecosystem services and implementation

    OpenAIRE

    Christen, Ben; Dalgaard, Tommy

    2013-01-01

    In addition to their potential for biomass production, buffer strips on agricultural land have been shown to protect surface water quality by reducing erosion and nutrient leaching, and can play a key role in nature and flood protection, and the design of bioenergy landscapes resilient to climate changes, and the environmental pressures from intensive agriculture. Use of conservation buffers by farmers outside of designated schemes is very limited to date, but the increasing demand for bioene...

  7. Sensitivity to zinc of Mediterranean woody species important for restoration.

    Science.gov (United States)

    Disante, Karen B; Fuentes, David; Cortina, Jordi

    2010-04-15

    Heavy metals have increased in natural woodlands and shrublands over the last several decades as a consequence of anthropogenic activities. However, our knowledge of the effects of these elements on woody species is scarce. In this study, we examined the responses of six Mediterranean woody species to increasing levels of zinc in hydroponic culture and discussed the possible implications for the restoration of contaminated sites. The species used, Pinus pinea L., Pinus pinaster Ait., Pinus halepensis Mill., Tetraclinis articulata (Vahl) Mast., Rhamnus alaternus L. and Quercus suber L. represent a climatic gradient from dry sub-humid to semi-arid conditions. Zinc concentrations in shoots ranged from 53 microg g(-1) in Q. suber to 382 microg g(-1) in T. articulata and were well below the levels found in roots. Zinc inhibited root elongation and root biomass and changed the root length distribution per diameter class, but the magnitude of the effects was species-specific. Only P. halepensis and Q. suber showed toxicity symptoms in aboveground parts. Species more characteristic from xeric environments (T. articulata, R. alaternus and P. halepensis) were more sensitive to zinc than species from mesic environments (Q. suber, P. pinaster and P. pinea). According to the Zn responses and bioaccumulation, Q. suber P. pinea and P. halepensis are the best candidates for field trials to test the value of woody species to restore contaminated sites. None of the species tested seemed suitable for phytoremediation. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  9. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  10. Early deterioration of coarse woody debris.

    Energy Technology Data Exchange (ETDEWEB)

    Tainter, Frank, H.; McMinn, James, W.

    1999-02-16

    Tainter, F.H., and J.W. McMinn. 1999. Early deterioration of coarse woody debris. In: Proc. Tenth Bien. South. Silv. Res. Conf. Shreveport, LA, February 16-18, 1999. Pp. 232-237 Abstract - Coarse woody debris (CWD) is an important structural component of southern forest ecosystems. CWD loading may be affected by different decomposition rates on sites of varying quality. Bolts of red oak and loblolly pine were placed on plots at each of three (hydric, mesic. and xerlc) sites at the Savannah River Site and sampled over a I6-week period. Major changes were in moisture content and nonstructural carbohydrate content (total carbohydrates, reducing sugars, and starch) of sapwood. Early changes in nonstructural carbohydrate levels following placement of the bolts were likely due to reallocation of these materials by sapwood parenchyma cells. These carbohydrates later formed pools increasingly metabolized by bacteria and invading fungi. Most prevalent fungi in sapwood were Ceratocysfis spp. in pine and Hypoxy/on spp. in oak. Although pine sapwood became blue stained and oak sapwood exhibited yellow soft decay with black zone lines, estimators of decay (specific gravity, sodium hydroxide solubility, and holocellulose content) were unchanged during the 16-week study period. A small effect of site was detected for starch content of sapwood of both species. Fungal biomass in sapwood of both species, as measured by ergosterol content, was detectable at week zero, increased somewhat by week three and increased significantly by week 16.

  11. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; Gaston, Kevin J; Leake, Jonathan R

    2014-08-01

    Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non-domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non-domestic greenspaces, but was lower than that in garden soil. Three-quarters of surveyed allotment plot holders added manure, 95% composted biomass on-site, and many added organic-based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications . Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small-scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the

  12. Market dynamics of biomass fuel in California

    International Nuclear Information System (INIS)

    Delaney, W.F.; Zane, G.A.

    1991-01-01

    The California market for biomass fuel purchased by independent power producers has grown substantially since 1980. The PURPA legislation that based power purchase rates upon the 'avoided cost' of public utilities resulted in construction of nearly 900 Megawatts of capacity coming online by 1991. Until 1987, most powerplants were co-sited at sawmills and burned sawmill residue. By 1990 the installed capacity of stand-alone powerplants exceeded the capacity co-sited at wood products industry facilities. The 1991 demand for biomass fuel is estimated as 6,400,000 BDT. The 1991 market value of most biomass fuel delivered to powerplants is from $34 to $47 per BDT. Biomass fuel is now obtained from forest chips, agriculture residue and urban wood waste. The proportion of biomass fuel from the wood products industry is expected to decline and non-traditional fuels are expected to increase in availability

  13. Harvest of woody crops with a bio-baler in eight different environments in Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Current, D. [Minnesota Univ., MN (United States); Savoie, P. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada); Hebert, P.L. [Laval Univ., Quebec City, PQ (Canada). Dept. des sols et de genie agroalimentaire; Robert, F.S. [Laval Univ., Quebec City, PQ (Canada). Sols et environnement; Gillitzdr, P.

    2010-07-01

    The biobaler was originally developed for short-rotation willow plantations, but can currently harvest a wide range of woody crops with a basal diameter up to 150 mm. The biobaler is an alternate approach to harvest woody crops as round bales, generally 1.2 m wide by 1.5 m diameter. In addition to harvesting trees, it can improve management of wild brush, forest understory vegetation and encroaching small trees on abandoned land. It allows easy handling, storage and transportation to sites where the biomass can be used for energy use or other applications. This paper reported on a study that was conducted in the fall of 2009 in which a third generation biobaler was used on 8 different sites across Minnesota, notably Waseca, Madelia, Faribault, Afton, Ogilvie, Hinckley, Aurora and Hibbing. A total of 160 bales were harvested from these sites. The average bale mass was 466 kg and average bale density was 296 kg/m{sup 3}. The moisture content averaged 44.9 per cent and the bale dry matter density averaged 163 kg DM/m{sup 3}. The harvested biomass per unit area ranged from 2.49 t/ha on lightly covered land to 55.24 t/ha on densely covered land. The harvested or recovered biomass was 72.3 per cent of the original cottonwood in Madelia; 75.8 per cent of the original oak and maple shrubs in Afton; and 73.5 per cent of the poplar regeneration in Hibbing. The actual harvest rate averaged 17.40 bales/h.

  14. Remediation of cyanide-contaminated industrial sites through woody biomass production

    Science.gov (United States)

    Dimitrova, Tsvetelina; Repmann, Frank; Freese, Dirk

    2017-04-01

    Due to the unfavourable chemical and physical soil quality parameters and the potential presence of contaminants, former industrial sites can hardly be utilized as arable land and can thus be classified as marginal areas. Still, as far as possible, they can effectively be used for the production of alternative energy, including the cultivation of fast growing trees. Apart from being a source of bioenergy, trees might facilitate the stabilization, remedation, contaminant extraction and degradation and, not on the last place, to enhance soil quality improvement on former industrial areas. This process is known as phytoremediation and has successfully been applied on industrial sites of various organic and inorganic contamination. The former manufactured gas plant site ( 2500 m2) "ehemalige Leuchtgasanstalt" Cottbus, contaminated, among others, with iron cyanides undergoes phytoremediation with simultaneous biomass production since 2011. The project "Biomass-Remediation" is fully financed by the German Railways JSC. A dense (23700 stems/ha), mixed cover of willow (Salix caprea), poplar (Populus maximowicii Henry x Populus trichocarpa Torr. et Gray (Hybrid 275)) and black locust (Robinia pseudoaccacia) trees has been planted on the site. Throughout the five years of remediation, a successful long-term stabilization of the site has been achieved as a result of the nearly outright established tree stock and the dense planting. Annual monitoring of the cyanide levels in the leaf tissue of the trees on the site and results from greenhouse experiments indicate the ability of all tree species to extract and transport the cyanide from the soil. Additonally, the greenhouse experiments suggest that the willows might be able, although not to a full extent, to detoxify the contaminant by splitting the CN moiety. The contaminated biomass material might easily be dealt with through regular harvests and subsequent incineration. Phytoremediation with simultaneous biomass production

  15. Modeling of NO and N2O emissions from biomass circulating fluidized bed combustors

    International Nuclear Information System (INIS)

    Liu, H.; Gibbs, B.M.

    2002-01-01

    In order to correctly model biomass combustion in a circulating fluidized bed (CFB) combustor, it is necessary to examine the four main stages in the combustion of biomass particles. These include drying, devolatilization, volatile combustion and char combustion in a CFB combustor. This paper presents a newly developed model for nitric oxide (NO) and nitrous oxide (N 2 O) emissions from biomass-fired CFB combustors. A typical woody biomass of pinewood chips was selected for the model parameters. The drying and devolatilization of biomass particles was modeled with limited rates according to woody biomass fuels. The partition of fuel nitrogen between volatiles and char was chosen for pinewood based on available data from literature. It was assumed that the volatile nitrogen was composed of ammonia (NH 3 ), hydrogen cyanide (HCN) and nitrogen (N 2 ). The model included 25 chemical reactions, of which 20 belonged to global fuel-nitrogen reaction kinetics. A 12 MW CFB boiler was used to apply the model. Results were compared with experimental values as well as data from literature. The reaction between NO and char was found to be the key reaction that determines NO emissions. The catalytic effect of bed materials on the oxidation of NH 3 and the the homogeneous reaction of NH 3 with nitric oxide was also significant. 25 refs., 2 tabs., 5 figs

  16. Potential stocks and increments of woody biomass in the European Union under different management and climate scenarios.

    Science.gov (United States)

    Kindermann, Georg E; Schörghuber, Stefan; Linkosalo, Tapio; Sanchez, Anabel; Rammer, Werner; Seidl, Rupert; Lexer, Manfred J

    2013-02-01

    if they are managed to maximise standing biomass. Incentives which will increase the standing biomass beyond the increment optimal biomass should therefore be avoided. Mechanisms which will maximise increments and sustainable harvests need to be developed to have substantial amounts of wood which can be used as substitution of non sustainable materials.

  17. Meat quality of broiler breast fillets with white striping and woody breast muscle myopathies.

    Science.gov (United States)

    Tijare, V V; Yang, F L; Kuttappan, V A; Alvarado, C Z; Coon, C N; Owens, C M

    2016-09-01

    The global poultry industry has been faced with emerging broiler breast meat quality issues including conditions known as white striping (WS, white striations parallel to muscle fibers) and woody breast (WB, hardness of raw fillet). Experiments were conducted to evaluate effects of WS and WB hardness on meat quality traits in broiler breast fillets. In Exp. 1, birds were processed at approximately 9 wk of age and deboned at 4 h postmortem (PM); in Exp. 2, birds were processed at approximately 6 and 9 wk of age and deboned at 2 h PM. Fillets were categorized as: normal for both white striping and woody breast (NORM); moderate for white striping and mild for woody breast (MILD); severe for white striping and mild for woody breast (WS); severe for woody breast and moderate for white striping (WB); or severe for both white striping and woody breast (BOTH). Sarcomere length, gravimetric fragmentation index, marination uptake, cook loss, and Meullenet-Owens razor shear energy (MORSE) values on non-marinated and marinated fillets were assessed. Sarcomeres tended to be longer (P = 0.07) with increasing severity of WS and WB in both experiments and gravimetric fragmentation index did not differ (P > 0.05) among categories. Marinade uptake decreased (P  0.05) in non-marinated fillets, the marinated BOTH fillets had greater MORSE values (P  0.05) among categories of marinated breasts. At 9 wk, WS and BOTH were higher (P white striping and woody breast, individually or in combination, negatively impact meat quality, especially water holding capacity attributes such as marinade uptake and cook loss. © 2016 Poultry Science Association Inc.

  18. Study of mobilizable agricultural and first fermentation biomass in the PACA region. Methodology and synthesis

    International Nuclear Information System (INIS)

    Charbonnier, Christian; Chailan, Guy; Arnaud, Marie Therese; Bourgade, Beatrice; Bassoleil, Monique; Garcia, Julien; Mouton, Remi; Pourriere, Christine; Gazeau, Gerard

    2009-06-01

    Whereas the PACA region produces less energy than it consumes, this study focusses on the assessment of biomass-based energy production in this region. It aimed at identifying the different agricultural biomass sources which could produce energy, and at assessing, in an objective and realistic way, the valorisation potential of this biomass through combustion or methanization. This assessment was made without compromising existing valorisation activities and while preserving the return to soil of organic materials. Thus, for each considered product, this study aimed at determining whether it has physical-chemical characteristics allowing energy production, which quantity can be mobilised within the region, and at determining technical and possible organisational conditions for its mobilisation. Product sheets are provided. A synthesis proposes a synthetic table, an overview of similar products which can be used for energy production through combustion or methanization, a geographical distribution of these products, an identification of best suitable organisations (collective or individual units), an energy assessment at the regional scale, and an assessment of product availability on the short and medium terms

  19. Supply of wood-based bioenergy sources by means of agro-forestry systems; Bereitstellung von holzartigen Bioenergietraegern durch Agroforstsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Christian; Quinkenstein, Ansgar; Freese, Dirk [Brandenburgische Technische Univ. Cottbus (Germany). Lehrstuhl fuer Bodenschutz und Rekultivierung; Baerwolff, Manuela [Thueringer Landesanstalt fuer Landwirtschaft (Germany)

    2011-07-01

    Because of the initiated energy revolution and the associated increasing demand for woody biomass in Germany, the production of woody crops on agricultural sites is increasingly gaining in importance. In this context, agroforestry systems provide a promising option to cultivate simultaneously fast growing tree species and annual crops on the same field and to produce woody biomass and conventional products at the same time. Agroforestry systems in which hedgerows of fast growing tree species are established on agricultural sites in a regular pattern are called as alley cropping systems (ACS). These can be managed as low input systems and thus provide several ecological benefits. The cultivation of trees results in an enhanced humus accumulation in the soil and affects the quality of surface as well as percolating waters in a positive way. Additionally, ACS alter the microclimatic conditions at the site, from which the conventional crops cultivated in the alleys between the tree stripes benefit. However, from an economic point of view the production of woody crops with ACS is not generally preferable to conventional agriculture. The positive effects of ACS are most pronounced on marginal sites and, consequently, ACS are currently economically unfavorable compared to conventional agriculture on fertile soils. However, on unfertile, dry sites, such as can be found at a large scale in the Lusatian post-mining landscapes, ACS can be an ecologically and economically promising land-use alternative.

  20. Opinions of Forest Managers, Loggers, and Forest Landowners in North Carolina regarding Biomass Harvesting Guidelines

    Directory of Open Access Journals (Sweden)

    Diane Fielding

    2012-01-01

    Full Text Available Woody biomass has been identified as an important renewable energy source capable of offsetting fossil fuel use. The potential environmental impacts associated with using woody biomass for energy have spurred development of biomass harvesting guidelines (BHGs in some states and proposals for BHGs in others. We examined stakeholder opinions about BHGs through 60 semistructured interviews with key participants in the North Carolina, USA, forest business sector—forest managers, loggers, and forest landowners. Respondents generally opposed requirements for new BHGs because guidelines added to best management practices (BMPs. Most respondents believed North Carolina’s current BMPs have been successful and sufficient in protecting forest health; biomass harvesting is only an additional component to harvesting with little or no modification to conventional harvesting operations; and scientific research does not support claims that biomass harvesting negatively impacts soil, water quality, timber productivity, or wildlife habitat. Some respondents recognized possible benefits from the implementation of BHGs, which included reduced site preparation costs and increases in proactive forest management, soil quality, and wildlife habitat. Some scientific literature suggests that biomass harvests may have adverse site impacts that require amelioration. The results suggest BHGs will need to be better justified for practitioners based on the scientific literature or linked to demand from new profitable uses or subsidies to offset stakeholder perceptions that they create unnecessary costs.

  1. Woody Vegetation Composition and Structure in Peri-urban Chongming Island, China

    Science.gov (United States)

    Zhao, Min; Escobedo, Francisco J.; Wang, Ruijing; Zhou, Qiaolan; Lin, Wenpeng; Gao, Jun

    2013-05-01

    Chongming, the world's largest alluvial island, is located within the municipality of Shanghai, China. Recent projects have now linked peri-urban Chongming to Shanghai's urban core and as a result will soon undergo substantial changes from urbanization. We quantitatively analyzed the structure and composition of woody vegetation across subtropical, peri-urban Chongming as a basis for sustainable management of these rapidly urbanizing subtropical ecosystems elsewhere. We used 178 permanent, random plots to statistically and spatially analyze woody plant composition and tree structure across the 1,041 km2 of Chongming. A total of 2,251 woody plants were measured comprising 42 species in 37 genera. We statistically and geospatially analyzed field data according to land uses and modeled air pollution removal by trees. Average tree diameter at breast height, total height, and crown widths on transportation land uses were greater than other land uses. These same values were lowest on forest land use and greater tree cover was associated with areas of increased anthropogenic activity. Less than 20 % of the woody vegetation was exotic and a species richness index was significantly different between land uses due to legacy effects. Composition of agriculture and forest land uses were similar to residential and transportation. Tree cover across Chongming was also estimated to annually remove 1,400 tons of air pollutants. We propose that this integrated and quantitative method can be used in other subtropical, peri-urban areas in developing countries to establish baseline trends for future sustainability objectives and to monitor the effects of urbanization and climate change.

  2. Vegetal and animal biomass; Les biomasses vegetales et animales

    Energy Technology Data Exchange (ETDEWEB)

    Combarnous, M. [Bordeaux-1 Univ., Lab. Energetique et Phenomenes de Transfert, UMR CNRS ENSAM, 33 - Talence (France)

    2005-07-01

    This presentation concerns all types of biomass of the earth and the seas and the relative implicit consumptions. After an evaluation of the food needs of the human being, the author discusses the solar energy conversion, the energetic flux devoted to the agriculture production, the food chain and the biomass. (A.L.B.)

  3. Modeling the influence of potassium content and heating rate on biomass pyrolysis

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Surup, Gerrit; Shapiro, Alexander

    2017-01-01

    This study presents a combined kinetic and particle model that describes the effect of potassium and heating rate during the fast pyrolysis of woody and herbaceous biomass. The model calculates the mass loss rate, over a wide range of operating conditions relevant to suspension firing...

  4. Effect of long-term understory prescribed burning on standing and down dead woody material in dry upland oak forests

    Science.gov (United States)

    Polo, John A.; Hallgren, S.W.; Leslie,, David M.

    2013-01-01

    Dead woody material, long ignored or viewed as a nuisance for forest management, has gained appreciation for its many roles in the forest including wildlife habitat, nutrient storage and cycling, energy for trophic webs, protection of soil, fuel for fire and carbon storage. The growing interest in managing dead woody material has created strong demand for greater understanding of factors controlling amounts and turnover. Prescribed burning, an important management tool, may have strong effects of dead woody material given fire’s capacity to create and consume dead woody material. We determined effects of long-term understory prescribed burning on standing and down woody material in upland oak forests in south-central North America. We hypothesized that as frequency of fire increased in these stands the amount of deadwood would decrease and the fine woody material would decrease more rapidly than coarse woody material. The study was conducted in forests dominated by post oak (Quercus stellata) and blackjack oak (Quercus marilandica) in wildlife management areas where understory prescribed burning had been practiced for over 20 years and the range of burn frequencies was 0 (unburned) fires per decade (FPD) to 4.6 FPD. The amount of deadwood was low compared with more productive forests in southeastern North America. The biomass (24.7 Mg ha-1) and carbon stocks (11.7 Mg ha-1) were distributed among standing dead (22%), coarse woody debris (CWD, dia. > 7.5 cm., 12%), fine woody debris (FWD, dia. prescribed burning influenced the amount and size distribution of standing and down dead woody material. There were two explanations for the lack of a detectable effect. First, a high incidence of severe weather including ice storms and strong winds that produce large amounts of deadwood intermittently in an irregular pattern across the landscape may preclude detecting a strong effect of understory prescribed burning. Second, fire suppression during the first one-half of the

  5. Descriptive sensory analysis of marinated and non-marinated woody breast fillet portions

    Science.gov (United States)

    The woody breast (WB) myopathy influences muscle composition and texture characteristics in broiler breast meat. It is unknown if marination lessens the negative influence of WB on meat quality or if WB effects are uniform throughout the Pectoralis major. The objective of this study was to determi...

  6. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  7. Handbook for inventorying surface fuels and biomass in the Interior West

    Science.gov (United States)

    James K. Brown; Rick D. Oberheu; Cameron M. Johnston

    1982-01-01

    Presents comprehensive procedures for inventorying weight per unit area of living and dead surface vegetation, to facilitate estimation of biomass and appraisal of fuels. Provides instructions for conducting fieldwork and calculating estimates of downed woody material, forest floor litter and duff, herbaceous vegetation, shrubs, and small conifers. Procedures produce...

  8. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna [ed.

    2010-07-01

    From the introduction: The following natural conditions enable agriculture development: surface configuration, climatic conditions including insolation, temperature, rainfalls, winds and frost periods, soil conditions (fertility), water conditions. Water conditions are determined by sum of rainfalls, evaporation quantity and water transpiration by plants. Climatic conditions and soil conditions are decisive factors for agricultural land use. They determine plants selection for crop and expected yield level. Non-natural conditions are also important for agriculture development. The following factors belong to them: labour force, structure of the land ownership, farms size, fertilization, herbicides utilisation, farm mechanisation, education and skills of a farmer, EU and state agricultural policy. EU and Polish agricultural policy is characterized by protectionalism. It means a financial support system and preferential credits with implementation of other means for agricultural market protection. Poland lies in the sphere of clashes between influences of continental climate (with quite dry summers and cold winters) and moderate Atlantic climate. These clashes are reason of unstable conditions for agricultural production. The annual average air temperature varies from 6.0 to 8.8 degrees Celsius. The length of the thermal vegetation period is about 220 days and only in South-West part of Poland exceeds 230 days. The annual sum of rainfall is about 500-600 mm on lowlands, 600-700 mm on highlands and it is above 1000 mm in mountains. Central Poland (Masovia, Great Poland, Kuyavia) belongs to European regions with the smallest rainfall sum which not exceeds 550 mm. Atlantic Ocean significantly influences on Polish climate from west side of Poland and Asia continent from east side of Poland. Rainfall is another significant factor. Western Europe has significantly higher rainfall in comparison with Poland. Polish agriculture is featured by: high amount of smallest farms in

  9. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    From the introduction: The following natural conditions enable agriculture development: surface configuration, climatic conditions including insolation, temperature, rainfalls, winds and frost periods, soil conditions (fertility), water conditions. Water conditions are determined by sum of rainfalls, evaporation quantity and water transpiration by plants. Climatic conditions and soil conditions are decisive factors for agricultural land use. They determine plants selection for crop and expected yield level. Non-natural conditions are also important for agriculture development. The following factors belong to them: labour force, structure of the land ownership, farms size, fertilization, herbicides utilisation, farm mechanisation, education and skills of a farmer, EU and state agricultural policy. EU and Polish agricultural policy is characterized by protectionalism. It means a financial support system and preferential credits with implementation of other means for agricultural market protection. Poland lies in the sphere of clashes between influences of continental climate (with quite dry summers and cold winters) and moderate Atlantic climate. These clashes are reason of unstable conditions for agricultural production. The annual average air temperature varies from 6.0 to 8.8 degrees Celsius. The length of the thermal vegetation period is about 220 days and only in South-West part of Poland exceeds 230 days. The annual sum of rainfall is about 500-600 mm on lowlands, 600-700 mm on highlands and it is above 1000 mm in mountains. Central Poland (Masovia, Great Poland, Kuyavia) belongs to European regions with the smallest rainfall sum which not exceeds 550 mm. Atlantic Ocean significantly influences on Polish climate from west side of Poland and Asia continent from east side of Poland. Rainfall is another significant factor. Western Europe has significantly higher rainfall in comparison with Poland. Polish agriculture is featured by: high amount of smallest farms in

  10. Allometric equations for estimating aboveground biomass for common shrubs in northeastern California

    Science.gov (United States)

    Steve Huff; Martin Ritchie; H. Temesgen

    2017-01-01

    Selected allometric equations and fitting strategies were evaluated for their predictive abilities for estimating above ground biomass for seven species of shrubs common to northeastern California. Size classes for woody biomass were categorized as 1-h fuels (0.1–0.6 cm), 10-h fuels (0.6–2.5 cm), 100-h fuels (2.5–7.6 cm), and 1000-h fuels (greater than 7.7 cm in...

  11. Climatological determinants of woody cover in Africa

    OpenAIRE

    Good, Stephen P.; Caylor, Kelly K.

    2011-01-01

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent....

  12. Understory biomass from southern pine forests as a fuel source

    Energy Technology Data Exchange (ETDEWEB)

    Ku, T.T. [Univ. of Arkansas, Monticello, AR (United States); Baker, J.B. [USDA Forest Service, Monticello, AR (United States)

    1993-12-31

    The energy crisis in the US in the late 1970s led to accelerated research on renewable energy resources. The use of woody biomass, harvested from pine forests in the southern US, as a renewable energy source would not only provide an efficient energy alternative to forest industries, but its use would also reduce understory competition and accelerate growth of overstory crop trees. This study was initiated in the early 1980s to investigate the feasibility and applicability of the use of understory vegetation as a possible energy fuel resource. All woody understory vegetation [<14 cm (<5.5 in) in dbh], on 0.2 ha (0.5 ac) plots that represented a range of stand/site conditions of pine stands located in twelve southern Arkansas counties and two northern Louisiana parishes were characterized, quantified, and harvested. Based on the biomass yield from 720 subplots nested within 40 main plots, the top five dominant species in the understory, based on number and size were: Red maple, red oaks, pines, sweetgum, and winged elm. Some other species occurring, but in smaller proportions, were flowering dogwood, beautyberry, white oaks, black gum, wax myrtle, hickories, persimmon, and ashes. Most of these species are deciduous hardwoods that provide high BTU output upon burning. The average yield of chipped understory biomass was 23.5 T/ha with no difference occurring between summer and winter harvests. A predictive model of understory biomass production was developed using a step-wise multivariate regression analysis. In relation to forest type, high density pine stands produced 53% more understory biomass than high density pine-hardwood stands. The average moisture content of biomass was significantly lower when harvested in winter than when harvested in summer.

  13. Expected international demand for woody and herbaceous feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, Roni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The development of a U.S. bioenergy market and ultimately ‘bioeconomy’ has primarily been investigated with a national focus. Limited attention has been given to the potential impacts of international market developments. The goal of this project is to advance the current State of Technology of a single biorefinery to the global level providing quantitative estimates on how international markets may influence the domestic feedstock supply costs. The scope of the project is limited to feedstock that is currently available and new crops being developed to be used in a future U.S. bioeconomy including herbaceous residues (e.g., corn stover), woody biomass (e.g., pulpwood), and energy crops (e.g., switchgrass). The timeframe is set to the periods of 2022, 2030, and 2040 to align with current policy targets (e.g., the RFS2) and future updates of the Billion Ton data. This particular milestone delivers demand volumes for generic woody and herbaceous feedstocks for the main (net) importing regions along the above timeframes. The regional focus of the study is the European Union (EU), currently the largest demand region for U.S. pellets made from pulpwood and forest residues. The pellets are predominantly used in large-scale power plants (>5MWel) in the United Kingdom (UK), the Netherlands (NL), Belgium (BE), and Denmark (DK).

  14. Biomass yield potential of short-rotation hardwoods in the Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, W A [Kansas State Univ., Manhattan, KS (USA). Dept. of Forestry

    1989-01-01

    Wood for fuel has increased in importance. Its primary use in the world is for energy, increasingly coming from wood wastes and new biomass sources. One solution to the potential problem of using high-quality trees for fuel could be woody biomass grown under a short-rotation intensive culture system. Species, size, age and spacing are factors that affect biomass production of broadleafed trees. Trials of several species grown at close spacing (0.3 m x 0.3 m) and cut at various ages are described and related to the growth and yield of more conventionally spaced plantings on an alluvial site in eastern Kansas. (author).

  15. A steady state model of agricultural waste pyrolysis: A mini review.

    Science.gov (United States)

    Trninić, M; Jovović, A; Stojiljković, D

    2016-09-01

    Agricultural waste is one of the main renewable energy resources available, especially in an agricultural country such as Serbia. Pyrolysis has already been considered as an attractive alternative for disposal of agricultural waste, since the technique can convert this special biomass resource into granular charcoal, non-condensable gases and pyrolysis oils, which could furnish profitable energy and chemical products owing to their high calorific value. In this regard, the development of thermochemical processes requires a good understanding of pyrolysis mechanisms. Experimental and some literature data on the pyrolysis characteristics of corn cob and several other agricultural residues under inert atmosphere were structured and analysed in order to obtain conversion behaviour patterns of agricultural residues during pyrolysis within the temperature range from 300 °C to 1000 °C. Based on experimental and literature data analysis, empirical relationships were derived, including relations between the temperature of the process and yields of charcoal, tar and gas (CO2, CO, H2 and CH4). An analytical semi-empirical model was then used as a tool to analyse the general trends of biomass pyrolysis. Although this semi-empirical model needs further refinement before application to all types of biomass, its prediction capability was in good agreement with results obtained by the literature review. The compact representation could be used in other applications, to conveniently extrapolate and interpolate these results to other temperatures and biomass types. © The Author(s) 2016.

  16. Biomass for the non-food industry, produced by the Cooperative of Vomano (Abruzzo Region): effects on the environment, social and economic

    International Nuclear Information System (INIS)

    Dal Pero Bertini, G.V.; Vignoli, L.; Sabatino, A. di; Catucci, F.

    1992-01-01

    The Cooperative of Vomano, which is taking part in the Integrated Biomass project, has studied the possibility of producing agricultural/forestry biomass destined for industrial conversion. The social and economic impacts of this production, and the positive results are examined. (Author)

  17. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    Science.gov (United States)

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution.

  18. Introduction and domestication of woody plants for sustainable agriculture in desert areas

    Science.gov (United States)

    Shelef, Oren; Soloway, Elaine; Rachmilevitch, Shimon

    2014-05-01

    plantation in arid conditions. 5) Balanites aegyptiaca is potentially a good biomass crop and good feed for grazers as goats. We illuminated differences related to drought tolerance between two distinct ecotypes. Attempts to develope sustainable agriculture based on local species will save resources (water, fertilizers, insecticides and herbicides), keep endangered plant species and enhance vegetation reestablishment.

  19. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System

    Science.gov (United States)

    E. H. Helmer; M. A. Lefsky; D. A. Roberts

    2009-01-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975–2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age...

  20. Internal control in non - agricultural cooperatives

    Directory of Open Access Journals (Sweden)

    Yolanda García Castro

    2014-12-01

    Full Text Available The process of formation of non-agricultural cooperatives in Cuba, has been a step forward for the Cuban economy, provide primary care represents economic sustainability for the country. A necessary tool for achieving quality in the provision of services and products, it represents the audit process. In this sense the present work was aimed in the Council of the Provincial Administration, in order to strengthen the functioning of non-agricultural cooperatives. Theoretical and empirical methods, techniques, surveys and interviews with leaders and workers, aimed to assess the knowledge, applications for the creation of cooperatives, processing, approval, establishment and operation, based on guidelines established in internal control were applied; and descriptive statistics for processing information, which identified the important work that developed the organization, which was able to promote the operation of non-agricultural cooperatives, as well as the tools necessary for the production of income and consequently improve the quality of services. The diagnosis made it possible to identify the point in the process, so disruption to the operation. Undoubtedly, every experiment needs time to mature and gain experience, besides confirming Waste Disposal workers cooperatives and agencies to jump-start this process. Improvement measures were implemented in order to increase the economic efficiency of each process, in response to various guidelines of Economic and Social Policy of the Party and the Revolution, adopted at the Sixth Party Congress and Conference Objectives.

  1. Ecological sustainability of alternative biomass feedstock production for environmental benefits and bioenergy

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Jill A. Zalesny; Edmund O. Bauer

    2007-01-01

    The incorporation of intensive forestry with waste management fills a much-needed niche throughout numerous phytotechnology applications. There is a growing opportunity to incorporate sustainable recycling of waste waters as irrigation and fertilization for alternative biomass feedstock production systems. However, the success of short rotation woody crops is largely...

  2. Modelling sustainable bioenergy potentials from agriculture for Germany and Eastern European countries

    International Nuclear Information System (INIS)

    Simon, Sonja; Wiegmann, Kirsten

    2009-01-01

    This paper presents a model for analyzing the sustainable potential of agricultural biomass for energy production. Available land and residue potentials are assessed up to 2030 for Germany, Poland, the Czech Republic and Hungary. Two scenarios are presented: a ''business as usual'' scenario is compared to a sustainability scenario. The latter implements a comprehensive sustainability strategy, taking also into account non-agricultural land use such as building activity and nature conservation. On the one hand our model quantifies the conflict of objectives between enhanced extensification in agriculture and increased area for nature conservation. On the other hand the synergies in restricting built up area and increased mobilisation of agricultural residues are assessed. Additionally the impact of reduced subsidized agricultural exports from the EU is calculated, also as an indicator for the influence of world food markets on bioenergy potentials. Our results show that the sustainable energy potential from agricultural biomass is strongly restricted for Germany and the Czech Republic compared to their energy demand. But in Poland and Hungary native agricultural biomass provides a much higher potential for energy supply, even if sustainability is comprehensively considered. However, this is strongly influenced by the amount of agricultural exports of each country. For bioenergy from agricultural cultivation to remain a sustainable option in the energy sector, its influence on the food markets must be respected more thoroughly and a comprehensive approach to sustainable development in land use is a prerequisite. (author)

  3. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION:

  4. Long-term above-ground biomass production in a red oak-pecan agroforestry system

    Science.gov (United States)

    Agroforestry systems have widely been recognized for their potential to foster long-term carbon sequestration in woody perennials. This study aims to determine the above-ground biomass in a 16-year-old red oak (Quercus rubra) - pecan (Carya illinoinensis) silvopastoral planting (141 and 53 trees ha-...

  5. A dataset of forest biomass structure for Eurasia.

    Science.gov (United States)

    Schepaschenko, Dmitry; Shvidenko, Anatoly; Usoltsev, Vladimir; Lakyda, Petro; Luo, Yunjian; Vasylyshyn, Roman; Lakyda, Ivan; Myklush, Yuriy; See, Linda; McCallum, Ian; Fritz, Steffen; Kraxner, Florian; Obersteiner, Michael

    2017-05-16

    The most comprehensive dataset of in situ destructive sampling measurements of forest biomass in Eurasia have been compiled from a combination of experiments undertaken by the authors and from scientific publications. Biomass is reported as four components: live trees (stem, bark, branches, foliage, roots); understory (above- and below ground); green forest floor (above- and below ground); and coarse woody debris (snags, logs, dead branches of living trees and dead roots), consisting of 10,351 unique records of sample plots and 9,613 sample trees from ca 1,200 experiments for the period 1930-2014 where there is overlap between these two datasets. The dataset also contains other forest stand parameters such as tree species composition, average age, tree height, growing stock volume, etc., when available. Such a dataset can be used for the development of models of biomass structure, biomass extension factors, change detection in biomass structure, investigations into biodiversity and species distribution and the biodiversity-productivity relationship, as well as the assessment of the carbon pool and its dynamics, among many others.

  6. Fossil energy versus nuclear, wind, solar and agricultural biomass: Insights from an Italian national survey

    International Nuclear Information System (INIS)

    Cicia, Gianni; Cembalo, Luigi; Del Giudice, Teresa; Palladino, Andrea

    2012-01-01

    In Italy there has been considerable political debate around the new energy policy, which is specifically designed to contribute to climate change mitigation. While there is renewed interest in nuclear energy generation, there has been heated debate concerning wind farms that have rapidly expanded and are dramatically changing the landscape in many rural areas. Finally, interest has also increased in biomass as an energy source. However, in this case, a significant part of the population is worried about landscape change and primary crop reduction. In this study we report the results from a nation-wide survey (=504 households) in Italy undertaken during summer 2009. A Latent Class Choice Experiment was used to quantify household preferences over different energy sources. Our results show that Italian households can be split into three segments with homogeneous preferences. The first segment (35% of the population) shows strong preference for wind and solar energy and dislikes both biomass and nuclear. The second (33% of the population) shows moderate preference for solar and wind energy and, as with the first segment, dislikes both nuclear and biomass. The third (32% of the population) shows a strong preference for green energy (solar, wind and biomass) and is very much against nuclear energy. The three segments were also characterized in terms of household socio-economic characteristics. - Highlights: ► We quantify Italian household preferences over different energy sources. ► Results come from a nation-wide survey undertaken during summer 2009. ► Energy sources tested: fossil fuel, nuclear, wind, solar and agricultural biomass. ► A latent class choice experiment was used. ► Italians can be split into three segments with different energy source preferences.

  7. Romania biomass energy. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, M; Easterly, J L; Mark, P E; Keller, A [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  8. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.; Mark, P.E.; Keller, A.

    1995-01-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  9. Renewable energy from vegetation; Les energies renouvelables d'origine vegetale

    Energy Technology Data Exchange (ETDEWEB)

    Sales, C. [Centre francais de cooperation international en recherche agronomique pour le developpement (France)

    2009-07-15

    Currently, vegetation accounts for 3 major types of energy sources, notably woody biomass, starches and vegetable oils. Bio-ethanol and biodiesel is produced from the fermentation of starches, such as sugar cane, beet sugar, sorghum, corn and potatoes. Biofuels can be produced from palm tree oil, coconut oil , soya oil, sunflower oil or any type of vegetable based oil. This article discussed energy efficiency issues and the environmental impact of developing these energies. In general, the lower energy efficiency of the starches can be attributed to the enzymes responsible for the catalysis. The article also reviewed the thermochemistry and energy efficiency regarding second generation fuels. It also discussed the burning of biomass, including woody biomass, forest waste and agricultural waste. 1 ref., 2 figs.

  10. ENERGY CONVERSION FROM WOODY BIOMASS STUFF: POSSIBLE MANUFACTURE OF BRIQUETTED CHARCOAL FROM SAWMILL-GENERATED SAWDUST

    Directory of Open Access Journals (Sweden)

    Han Roliadi

    2006-07-01

    Full Text Available There are three dominant kinds of wood industries in Indonesia which consume huge amount of  wood materials as well as generate considerable amount of  woody waste stuffs, i.e. sawmills, plywood, and pulp/paper. For the two latest industries, their wastes to great extent have been reutilized in the remanufacturing process, or burnt under controlled condition to supplement their energy needs in the corresponding factories, thereby greatly alleviating environmental negative impacts.  However, wastes from sawmills (especially sawdust still often pose a serious environmental threat, since they as of this occasion are merely dumped on sites, discarded to the stream, or merely burnt, hence inflicting dreadful stream as well as air pollutions. One way to remedy those inconveniences is by converting the sawdust into useful product, i.e. briquetted charcoal, as has been experimentally tried. The charcoal was at first prepared by carbonizing the sawdust wastes containing a mixture of the ones altogether from the sawing of seven particular Indonesia's wood species, and afterwards was shaped into the briquette employing various concentrations of starch binder at two levels (3.0 and 5.0 % and also various hydraulic pressures (1.0, 2.5, and 5.0 kg/cm2.  Further, the effect of those variations was examined on the yield and qualities of the resulting briquetted charcoal. The results revealed that the most satisfactory yield and qualities of the briquetted sawdustcharcoal were acquired at 3 % starch binder concentration with 5.0 kg/cm2 hydraulic pressure. As such, the briquette qualities were as follows: density at 0.60 gram/cm3, tensile strength 15.27 kg/cm2, moisture content 2.58 %, volatile matter 23.35 %, ash content 4.10 %, fixed carbon 72.55 %, and calorific value 5,426 cal/gram. Those qualities revealed that the experimented briquetted sawdust charcoal could be conveniently used as biomass-derived fuel.

  11. Evaluation of the Relative Merits of Herbaceous and Woody Crops for Use in Tunable Thermochemical Processing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joon-Hyun [Ceres, Inc., Thousand Oaks, CA (United States); Martinalbo, Ilya [Choren USA, LLC, Houston, TX (United States)

    2011-12-01

    This report summarizes the work and findings of the grant work conducted from January 2009 until September 2011 under the collaboration between Ceres, Inc. and Choren USA, LLC. This DOE-funded project involves a head-to-head comparison of two types of dedicated energy crops in the context of a commercial gasification conversion process. The main goal of the project was to gain a better understanding of the differences in feedstock composition between herbaceous and woody species, and how these differences may impact a commercial gasification process. In this work, switchgrass was employed as a model herbaceous energy crop, and willow as a model short-rotation woody crop. Both crops are species native to the U.S. with significant potential to contribute to U.S. goals for renewable liquid fuel production, as outlined in the DOE Billion Ton Update (http://www1.eere.energy.gov/biomass/billion_ton_update.html, 2011). In some areas of the U.S., switching between woody and herbaceous feedstocks or blending of the two may be necessary to keep a large-scale gasifier operating near capacity year round. Based on laboratory tests and process simulations it has been successfully shown that suitable high yielding switchgrass and willow varieties exist that meet the feedstock specifications for large scale entrained flow biomass gasification. This data provides the foundation for better understanding how to use both materials in thermochemical processes. It has been shown that both switchgrass and willow varieties have comparable ranges of higher heating value, BTU content and indistinguishable hydrogen/carbon ratios. Benefits of switchgrass, and other herbaceous feedstocks, include its low moisture content, which reduce energy inputs and costs for drying feedstock. Compared to the typical feedstock currently being used in the Carbo-V® process, switchgrass has a higher ash content, combined with a lower ash melting temperature. Whether or not this may cause inefficiencies in the

  12. Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Richard D.; Cafferty, Kara G.; Nichol, Corrie; Searcy, Erin M.; Westover, Tyler; Wood, Richard; Bearden, Mark D.; Cabe, James E.; Drennan, Corinne; Jones, Susanne B.; Male, Jonathan L.; Muntean, George G.; Snowden-Swan, Lesley J.; Widder, Sarah H.

    2014-07-22

    This report presents the results of an evaluation of utility-scale biomass cofiring in large pulverized coal power plants. The purpose of this evaluation is to assess the cost and greenhouse gas reduction benefits of substituting relatively high volumes of biomass in coal. Two scenarios for cofiring up to 20% biomass with coal (on a lower heating value basis) are presented; (1) woody biomass in central Alabama where Southern Pine is currently produced for the wood products and paper industries, and (2) purpose-grown switchgrass in the Ohio River Valley. These examples are representative of regions where renewable biomass growth rates are high in correspondence with major U.S. heartland power production. While these scenarios may provide a realistic reference for comparing the relative benefits of using a high volume of biomass for power production, this evaluation is not intended to be an analysis of policies concerning renewable portfolio standards or the optimal use of biomass for energy production in the U.S.

  13. Dynamics of Coarse Woody Debris Characteristics in the Qinling Mountain Forests in China

    Directory of Open Access Journals (Sweden)

    Jie Yuan

    2017-10-01

    Full Text Available Coarse woody debris (CWD is an essential component in defining the structure and function of forest ecosystems. Long-term dynamics of CWD characteristics not only affect the release rates of chemical elements from CWD, but also the species diversity of inhabiting plants, animals, insects, and microorganisms as well as the overall health of ecosystems. However, few quantitative studies have been done on the long-term dynamics of CWD characteristics in forest ecosystems in China. In this study, we conducted nine tree censuses between 1996 and 2016 at the Huoditang Experimental Forest in the Qinling Mountains of China. We quantified forest biomass including CWD and CWD characteristics such as decay states and diameter classes during this period and correlated with stand, site, and climatic variables. The forest biomass was dominated by live tree biomass (88%; followed by CWD mass (6%–10%. Understory biomass contributed only a small portion (1%–4% of the overall biomass. Significant differences in average annual increment of CWD mass were found among forest stands of different species (p < 0.0001. Forest biomass, stand age, forest type, aspect, slope, stand density, annual average temperature, and precipitation were all significantly correlated with CWD mass (p < 0.05, with forest type exhibiting the strongest correlation (r2 = 0.8256. Over time, the annual mass of different CWD characteristics increased linearly from 1996–2016 across all forest types. Our study revealed that forest biomass, including CWD characteristics, varied by forest type. Stand and site characteristics (forest biomass, forest type, aspect, slope and stand density along with temperature and precipitation played a major role in the dynamics of CWD in the studied forest ecosystems.

  14. Hybrid Aspen Response to Shearing in Minnesota: Implications for Biomass Production

    Science.gov (United States)

    Grant M. Domke; Andrew J. David; Anthony W. D' Amato; Alan R. Ek; Gary W. Wycoff

    2011-01-01

    There is great potential for the production of woody biomass feedstocks from hybrid aspen stands; however, little is known about the response of these systems to silvicultural treatments, such as shearing. We sought to address this need by integrating results from more than 20 years of individual tree and yield measurements in hybrid aspen (Populus tremuloides Mich. ×...

  15. Spatial partitioning of water use by herbaceous and woody lifeforms in semiarid woodlands

    International Nuclear Information System (INIS)

    Breshears, D.D.

    1993-01-01

    Ecological studies of soil moisture, plant water uptake, and community composition in semiarid regions have focused on differences with depth in the soil profile, yet there are many reasons to expect that moisture also varies with the presence or absence of woody vegetation. Plant and soil moisture relationships for three dominant species in a semiarid woodland, Bouteloua gracilis, Juniperus monosperma, and Pinus edulis, were studied for 1.5 years. Soil moisture varied by type of plant cover as well as by depth. Plant water potential and conductance differed among species and was related to spatial variability in soil moisture. Water potential for blue grama was most correlated with soil moisture in the 0-15 cm layer of intercanopies; juniper water potential was highly correlated with soil moisture in the 0-15 cm layer beneath tree canopies of either species, and pinyon water potential was only weakly correlated with soil moisture in the 15-30 cm depth interval beneath pinyons. Pinyons had consistently greater maximum conductance rates than junipers, even though pinyon conductance was more sensitive to reductions in soil moisture. The results from this study indicate that horizontal differences in the soil moisture profile associated with type of plant cover may be as important as differences in depth for predicting plant-water relationships. A simple model was hypothesized for predicting community composition of three lifeforms: Herbaceous plants, shallow-rooted woody plants, and deeper-rooted woody plants. Distributions of roots of each lifeform and plant-available water were defined with respect to four soil compartments that distinguish upper vs. lower and canopy vs. intercanopy soil regions. The model predicts that multiple combinations of herbaceous and woody biomass can exist at a site and was qualitatively consistent with field data from a climatic gradient

  16. Advances in induced resistance by natural compounds: towards new options for woody crop protection

    Directory of Open Access Journals (Sweden)

    Eugenio Llorens

    Full Text Available ABSTRACT: The activation of defensive responses of plants is a promising tool for controlling pests in conventional agriculture. Over the last few years, several compounds have been studied to protect crops from pests, without displaying direct toxicity for pathogenic organisms. These compounds have the ability to induce a priming state on the plants that results in resistance (or tolerance against subsequent infection by a pathogen. In terms of molecular response, induced plant defense involves a broad number of physical and biochemical changes such as callose deposition or phenolic compounds, activation of salicylic and/or jasmonic acid pathways or synthesis of defense-related enzymes. Despite the large number of studies performed to ascertain the physiological and biochemical basis of induced resistance, only a few resistance-activating compounds have been studied as a real alternative to classic means of control and the studies geared towards incorporating induced resistance into disease management programs are relatively rare. The incorporation of natural resistance inducer in pest management programs of woody crops, alone or in combination with classical methods, could be a reliable method for reducing the amount of chemical residues in the environment. In this review, we discuss the current knowledge of induced resistance in woody crops, focusing on the mode of action of compounds authorized for conventional agriculture. We conclude by discussing the environmental and economic advantages of applying resistance inducers to conventional agriculture with special emphasis on natural compounds.

  17. Patterns in woody vegetation structure across African savannas

    Science.gov (United States)

    Axelsson, Christoffer R.; Hanan, Niall P.

    2017-07-01

    Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP) modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs), which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality), soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr-1) to the wettest (1200-1400 mm yr-1) end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand content suggesting that maximal

  18. Patterns in woody vegetation structure across African savannas

    Directory of Open Access Journals (Sweden)

    C. R. Axelsson

    2017-07-01

    Full Text Available Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs, which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality, soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr−1 to the wettest (1200–1400 mm yr−1 end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand

  19. Frost resistance in alpine woody plants.

    Science.gov (United States)

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  20. Frost resistance of alpine woody plants

    Directory of Open Access Journals (Sweden)

    Gilbert eNeuner

    2014-12-01

    Full Text Available This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research.Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover.Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate.In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers and fruits and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  1. Importance of biomass energy sources for Turkey

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    Various agricultural residues such as grain dust, crop residues and fruit tree residues are available in Turkey as the sources of biomass energy. Among the biomass energy sources, fuelwood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21% and the techniques for converting it to useful energy are not necessarily sophisticated. Selection of a particular biomass for energy requirements is influenced by its availability, source and transportation cost, competing uses and prevalent fossil fuel prices. Utilization of biomass is a very attractive energy resource, particularly for developing countries since biomass uses local feedstocks and labor. Like many developing countries, Turkey relies on biomass to provide much of its energy requirement. More efficient use of biomass in producing energy, both electrical and thermal, may allow Turkey to reduce petroleum imports, thus affecting its balance of payments dramatically. Turkey has always been one of the major agricultural countries in the world. The importance of agriculture is increasing due to biomass energy being one of the major resources in Turkey. Biomass waste materials can be used in Turkey to provide centralized, medium- and large-scale production of process heat for electricity production. Turkey's first biomass power project is under development in Adana province, at an installed capacity of 45 MW. Two others, at a total capacity of 30 MW, are at the feasibility study stage in Mersin and Tarsus provinces. Electricity production from biomass has been found to be a promising method in the nearest future in Turkey

  2. Opportunities for utilization of non-conventional energy sources for biomass pretreatment.

    Science.gov (United States)

    Singh, Rawel; Krishna, Bhavya B; Kumar, Jitendra; Bhaskar, Thallada

    2016-01-01

    The increasing concerns over the depletion of fossil resources and its associated geo-political issues have driven the entire world to move toward sustainable forms of energy. Pretreatment is the first step in any biochemical conversion process for the production of valuable fuels/chemicals from lignocellulosic biomass to eliminate the lignin and produce fermentable sugars by hydrolysis. Conventional techniques have several limitations which can be addressed by using them in tandem with non-conventional methods for biomass pretreatment. Electron beam and γ (gamma)-irradiation, microwave and ultrasound energies have certain advantages over conventional source of energy and there is an opportunity that these energies can be exploited for biomass pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Conversion and utilisation of biomass from Swedish agriculture; Foeraedling och avsaettning av jordbruksbaserade biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    2007-05-15

    Biomass feedstock from agriculture can be refined and converted into several different energy carriers and utilised for different energy services, such as production of heat, electricity or transportation fuel. The feedstock may be residues and by-products, such as straw and manure, or energy crops cultivated under different conditions depending on variations in regional and local conditions. Similar variations exist in the regional and local conditions for the refining and utilisation of the bioenergy and its by-products. The overall aim of this report is to analyse and describe the technical and physical conditions of different agriculture-based bioenergy systems using the existing infrastructure and potential new systems expected to be developed in the future. To which extent this technical/physical potential will be utilised in the future depends mainly on economic conditions and financial considerations. These aspects are not included in this study. Furthermore, potential possibilities to utilise existing infrastructure within the forest industry are not included. The report starts with an analysis and description of the energy efficiency of different bioenergy systems, from the production of the biomass to the final use of the refined energy carrier, expressed as the amount of heat, electricity or transportation fuel produced per hectare and year. The possibilities to co-produce different energy carries in bio-refineries are also analysed. The next part of the report includes an analysis of the variation in the regional conditions for the conversion and utilisation of the different energy carriers, based on existing infrastructure, for instance, district heating systems, individual heating systems, combined heat and power production, utilisation of by-products as feed in animal production, utilisation of digestion residues as fertilisers, the supply of forest fuels, etc. The report also includes a discussion of the environmental impact of an increased

  4. Climatological determinants of woody cover in Africa.

    Science.gov (United States)

    Good, Stephen P; Caylor, Kelly K

    2011-03-22

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.

  5. Biomass pyrolysis: use of some agricultural wastes for alternative fuel production

    International Nuclear Information System (INIS)

    Kimura, Lygia Maestri; Santos, Larissa Cardoso; Vieira, Paula Fraga; Parreira, Priciane Martins; Henrique, Humberto Molinar

    2009-01-01

    The use of biomass for energy generation has aroused great attention and interest because of the global climate changes, environmental pollution and reduction of availability of fossil energy. This study deals with pyrolysis of four agricultural wastes (sawdust, sugarcane straw, chicken litter and cashew nut shell) in a fixed bed pyrolytic reactor. The yields of char, liquid and gas were quantified at 300, 400, 500, 600 and 700 deg C and the temperature and pressure effects were investigated. Pyrolytic liquids produced were separated into aqueous and oil phases. XRF spectroscopy was used for qualitative and quantitative elemental analysis of the liquids and solids produced at whole temperature range. Calorific value analysis of liquids and solids were also performed for energy content evaluation. Experimental results showed sawdust, sugarcane straw and cashew nut waste have very good potential for using in pyrolysis process for alternative fuel production. (author)

  6. Spatial-temporal management zones for biomass moisture

    DEFF Research Database (Denmark)

    Fountas, S; Bochtis, Dionysis; Sørensen, Claus Aage Grøn

    Biomass handling operations (harvesting, raking, collection, and transportation) are critical operations within the agricultural production system since they constitute the first link in the biomass supply chain, a fact of substantial importance considering the increasingly involvement of biomass...

  7. The biomass

    International Nuclear Information System (INIS)

    Viterbo, J.

    2011-01-01

    Biomass comes mainly from forests and agriculture and is considered as a clean alternative energy that can be valorized as heat, power, bio-fuels and chemical products but its mass production is challenging in terms of adequate technology but also in terms of rethinking the use of lands. Forests can be managed to produce biomass but bio-fuels can also be generated from sea-weeds. Biomass appears very promising but on one hand we have to secure its supplying and assure its economical profitability and on another hand we have to assure a reasonable use of lands and a limited impact on the environment. The contribution of biomass to sustainable development depends on the balance between these 2 ends. (A.C.)

  8. Energy biomass and environment. The French programme

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The main themes of the french program for energy from biomass are presented: agriculture and forest products (short rotation plantations, waste products, etc.), enhancement of the biomass production, mobilization of biomass resources, biomass processing technics (biofuels, combustion processes, biotechnologies); vulgarization for diffusion of technics from laboratories to industry or domestic sectors.

  9. Dynamic variation in sapwood specific conductivity in six woody species

    Science.gov (United States)

    Jean-Christophe Domec; Frederick C. Meinzer; Barbara Lachenbruch; Johann Housset

    2008-01-01

    Our goals were to quantify how non-embolism inducing pressure gradients influence trunk sapwood specific conductivity (ks) and to compare the impacts of constant and varying pressure gradients on ks with KCl and H20 as the perfusion solutions. We studied six woody species (three conifers and three...

  10. Determinants of woody cover in African savannas

    Science.gov (United States)

    Sankaran, M.; Hanan, N.P.; Scholes, Robert J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; Le, Roux X.; Ludwig, F.; Ardo, J.; Banyikwa, F.; Bronn, A.; Bucini, G.; Caylor, K.K.; Coughenour, M.B.; Diouf, A.; Ekaya, W.; Feral, C.J.; February, E.C.; Frost, P.G.H.; Hiernaux, P.; Hrabar, H.; Metzger, K.L.; Prins, H.H.T.; Ringrose, S.; Sea, W.; Tews, J.; Worden, J.; Zambatis, N.

    2005-01-01

    Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties 1-3. The availability of resources (water, nutrients) and disturbance regimes (fire, herbivory) are thought to be important in regulating woody cover1,2,4,5, but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than ???650 mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered 'stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP-controlled upper bound. Above a MAP of ???650 mm, savannas are 'unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances (fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation 6 may considerably affect their distribution and dynamics. ?? 2005 Nature Publishing Group.

  11. The role of constructed wetlands for biomass production within the water-soil-waste nexus.

    Science.gov (United States)

    Avellan, C T; Ardakanian, R; Gremillion, P

    2017-05-01

    The use of constructed wetlands for water pollution control has a long standing tradition in urban, peri-urban, rural, agricultural and mining environments. The capacity of wetland plants to take up nutrients and to filter organic matter has been widely discussed and presented in diverse fora and published in hundreds of articles. In an ever increasingly complex global world, constructed wetlands not only play a role in providing safe sanitation in decentralized settings, shelter for biodiversity, and cleansing of polluted sites, in addition, they produce biomass that can be harvested and used for the production of fodder and fuel. The United Nations University Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES) was established in December 2012 in Dresden, Germany, to assess the trade-offs between and among resources when making sustainable decisions. Against the backdrop of the Water-Energy-Food Nexus, which was introduced as a critical element for the discussions on sustainability at Rio +20, the UNU was mandated to pay critical attention to the interconnections of the underlying resources, namely, water, soil and waste. Biomass for human consumption comes in the form of food for direct use, as fodder for livestock, and as semi-woody biomass for fuelling purposes, be it directly for heating and cooking or for the production of biogas and/or biofuel. Given the universal applicability of constructed wetlands in virtually all settings, from arid to tropical, from relatively high to low nutrient loads, and from a vast variety of pollutants, we postulate that the biomass produced in constructed wetlands can be used more extensively in order to enhance the multi-purpose use of these sites.

  12. Economic impacts of short-rotation woody crops for energy or oriented strand board: a Minnesota case study

    Science.gov (United States)

    William F. Lazarus; Douglas G. Tiffany; Ronald S. Zalesny Jr.; Don E. Riemenschneider

    2011-01-01

    Short-rotation woody crops (SRWC) such as hybrid poplars are becoming increasingly competitive with agriculture on marginal land. The trees can be grown for energy and for traditional uses such as oriented strandboard. Using IMPLAN (Impact Analysis for Planning) software, we modeled the impacts of shifting land use from hay and pasture for cow-calf beef operations to...

  13. Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts.

    Science.gov (United States)

    Schnierda, T; Bauer, F F; Divol, B; van Rensburg, E; Görgens, J F

    2014-05-01

    The impact of different nitrogen and carbon sources on biomass production of the non-Saccharomyces wine yeast species Lachancea thermotolerans, Metschnikowia pulcherrima and Issatchenkia orientalis was assessed. Using a molasses-based medium, yeast extract and corn steep liquor as well as ammonium sulphate and di-ammonium phosphate (DAP) as nitrogen sources were compared in shake-flask cultures. A medium with 20 g l⁻¹ sugar (diluted molasses) and 500 mg l⁻¹ total yeast assimilable nitrogen, from yeast extract, gave the highest biomass concentrations and yields. Invertase pretreatment was required for cultures of M. pulcherrima and I. orientalis, and respective biomass yields of 0.7 and 0.8 g g⁻¹ were achieved in aerobic bioreactor cultures. The absence of ethanol production suggested Crabtree-negative behaviour by these yeasts, whereas Crabtree-positive behaviour by L. thermotolerans resulted in ethanol and biomass concentrations of 5.5 and 11.1 g l⁻¹, respectively. Recent studies demonstrate that non-Saccharomyces yeasts confer positive attributes to the final composition of wine. However, optimal process conditions for their biomass production have not been described, thereby limiting commercial application. In this study, industrial media and methods of yeast cultivation were investigated to develop protocols for biomass production of non-Saccharomyces yeast starter cultures for the wine industry. © 2014 The Society for Applied Microbiology.

  14. Biomass from agriculture in small-scale combined heat and power plants - A comparative life cycle assessment

    International Nuclear Information System (INIS)

    Kimming, M.; Sundberg, C.; Nordberg, A.; Baky, A.; Bernesson, S.; Noren, O.; Hansson, P.-A.

    2011-01-01

    Biomass produced on farm land is a renewable fuel that can prove suitable for small-scale combined heat and power (CHP) plants in rural areas. However, it can still be questioned if biomass-based energy generation is a good environmental choice with regards to the impact on greenhouse gas emissions, and if there are negative consequences of using of agricultural land for other purposes than food production. In this study, a simplified life cycle assessment (LCA) was conducted over four scenarios for supply of the entire demand of power and heat of a rural village. Three of the scenarios are based on utilization of biomass in 100 kW (e) combined heat and power (CHP) systems and the fourth is based on fossil fuel in a large-scale plant. The biomass systems analyzed were based on 1) biogas production with ley as substrate and the biogas combusted in a microturbine, 2) gasification of willow chips and the product gas combusted in an IC-engine and 3) combustion of willow chips for a Stirling engine. The two first scenarios also require a straw boiler. The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option.

  15. Biomass Commercialization Prospects the Next 2 to 5 Years; BIOMASS COLLOQUIES 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hettenhaus, J. R.; Wooley, R.; Wiselogel, A.

    2000-10-12

    A series of four colloquies held in the first quarter of 2000 examined the expected development of biomass commercialization in the next 2 to 5 years. Each colloquy included seven to ten representatives from key industries that can contribute to biomass commercialization and who are in positions to influence the future direction. They represented: Corn Growers, Biomass Suppliers, Plant Science Companies, Process Engineering Companies, Chemical Processors, Agri-pulp Suppliers, Current Ethanol Producers, Agricultural Machinery Manufacturers, and Enzyme Suppliers. Others attending included representatives from the National Renewable Energy Lab., Oak Ridge National Laboratory, the U.S. Department of Energy's Office of Fuels Development, the U.S. Department of Agriculture, environmental groups, grower organizations, and members of the financial and economic development community. The informal discussions resulted in improved awareness of the current state, future possibilit ies, and actions that can accelerate commercialization. Biomass commercialization on a large scale has four common issues: (1) Feedstock availability from growers; (2) Large-scale collection and storage; (3) An economic process; (4) Market demand for the product.

  16. Refinery Upgrading of Hydropyrolysis Oil From Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael [Gas Technology Inst., Des Plaines, IL (United States); Marker, Terry [Gas Technology Inst., Des Plaines, IL (United States); Ortiz-Toral, Pedro [Gas Technology Inst., Des Plaines, IL (United States); Linck, Martin [Gas Technology Inst., Des Plaines, IL (United States); Felix, Larry [Gas Technology Inst., Des Plaines, IL (United States); Wangerow, Jim [Gas Technology Inst., Des Plaines, IL (United States); Swanson, Dan [Gas Technology Inst., Des Plaines, IL (United States); McLeod, Celeste [CRI Catalyst, Houston, TX (United States); Del Paggio, Alan [CRI Catalyst, Houston, TX (United States); Urade, Vikrant [CRI Catalyst, Houston, TX (United States); Rao, Madhusudhan [CRI Catalyst, Houston, TX (United States); Narasimhan, Laxmi [CRI Catalyst, Houston, TX (United States); Gephart, John [Johnson Timber, Hayward, WI (United States); Starr, Jack [Cargill, Wayzata, MN (United States); Hahn, John [Cargill, Wayzata, MN (United States); Stover, Daniel [Cargill, Wayzata, MN (United States); Parrish, Martin [Valero, San Antonio, TX (United States); Maxey, Carl [Valero, San Antonio, TX (United States); Shonnard, David [MTU, Friedrichshafen (Germany); Handler, Robert [MTU, Friedrichshafen (Germany); Fan, Jiquig [MTU, Friedrichshafen (Germany)

    2015-08-31

    Cellulosic and woody biomass can be converted to bio-oils containing less than 10% oxygen by a hydropyrolysis process. Hydropyrolysis is the first step in Gas Technology Institute’s (GTI) integrated Hydropyrolysis and Hydroconversion IH2®. These intermediate bio-oils can then be converted to drop-in hydrocarbon fuels using existing refinery hydrotreating equipment to make hydrocarbon blending components, which are fully compatible with existing fuels. Alternatively, cellulosic or woody biomass can directly be converted into drop-in hydrocarbon fuels containing less than 0.4% oxygen using the IH2 process located adjacent to a refinery or ethanol production facility. Many US oil refineries are actually located near biomass resources and are a logical location for a biomass to transportation fuel conversion process. The goal of this project was to work directly with an oil refinery partner, to determine the most attractive route and location for conversion of biorenewables to drop in fuels in their refinery and ethanol production network. Valero Energy Company, through its subsidiaries, has 12 US oil refineries and 11 ethanol production facilities, making them an ideal partner for this analysis. Valero is also part of a 50- 50 joint venture with Darling Ingredients called Diamond Green Diesel. Diamond Green Diesel’s production capacity is approximately 11,000 barrels per day of renewable diesel. The plant is located adjacent to Valero’s St Charles, Louisiana Refinery and converts recycled animal fats, used cooking oil, and waste corn oil into renewable diesel. This is the largest renewable diesel plant in the U.S. and has successfully operated for over 2 years For this project, 25 liters of hydropyrolysis oil from wood and 25 liters of hydropyrolysis oils from corn stover were produced. The hydropyrolysis oil produced had 4-10% oxygen. Metallurgical testing of hydropyrolysis liquids was completed by Oak Ridge National Laboratories (Oak Ridge) and showed the

  17. Leaf, woody, and root biomass of Populus irrigated with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; D.R. Coyle; R.B. Hall

    2007-01-01

    Poplar (Populus spp.) trees can be utilized for ecological leachate disposal when applied as an irrigation source for managed tree systems. Our objective was to evaluate differences in tree height, diameter, volume, and biomass of leaf, stem, branch, and root tissues of Populus trees after two seasons of irrigation with municipal...

  18. Biomass production potentials in Central and Eastern Europe under different scenarios

    International Nuclear Information System (INIS)

    Dam, J. van; Faaij, A.P.C.; Lewandowski, I.; Fischer, G.

    2007-01-01

    A methodology for the assessment of biomass potentials was developed and applied to Central and Eastern European countries (CEEC). Biomass resources considered are agricultural residues, forestry residues, and wood from surplus forest and biomass from energy crops. Only land that is not needed for food and feed production is considered as available for the production of energy crops. Five scenarios were built to depict the influences of different factors on biomass potentials and costs. Scenarios, with a domination of current level of agricultural production or ecological production systems, show the smallest biomass potentials of 2-5.7 EJ for all CEEC. Highest potentials can reach up to 11.7 EJ (85% from energy crops, 12% from residues and 3% from surplus forest wood) when 44 million ha of agricultural land become available for energy crop production. This potential is, however, only realizable under high input production systems and most advanced production technology, best allocation of crop production over all CEEC and by choosing willow as energy crops. The production of lignocellulosic crops, and willow in particular, best combines high biomass production potentials and low biomass production costs. Production costs for willow biomass range from 1.6 to 8.0 EUR/GJ HHV in the scenario with the highest agricultural productivity and 1.0-4.5 EUR/GJ HHV in the scenario reflecting the current status of agricultural production. Generally the highest biomass production costs are experienced when ecological agriculture is prevailing and on land with lower quality. In most CEEC, the production potentials are larger than the current energy use in the more favourable scenarios. Bulk of the biomass potential can be produced at costs lower than 2 EUR/GJ. High potentials combined with the low cost levels gives CEEC major export opportunities. (author)

  19. Methyl halide emission estimates from domestic biomass burning in Africa

    Science.gov (United States)

    Mead, M. I.; Khan, M. A. H.; White, I. R.; Nickless, G.; Shallcross, D. E.

    Inventories of methyl halide emissions from domestic burning of biomass in Africa, from 1950 to the present day and projected to 2030, have been constructed. By combining emission factors from Andreae and Merlet [2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955-966], the biomass burning estimates from Yevich and Logan [2003. An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochemical Cycles 17(4), 1095, doi:10.1029/2002GB001952] and the population data from the UN population division, the emission of methyl halides from domestic biomass usage in Africa has been estimated. Data from this study suggest that methyl halide emissions from domestic biomass burning have increased by a factor of 4-5 from 1950 to 2005 and based on the expected population growth could double over the next 25 years. This estimated change has a non-negligible impact on the atmospheric budgets of methyl halides.

  20. First biomass conference of the Americas: Energy, environment, agriculture, and industry

    International Nuclear Information System (INIS)

    1993-01-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  1. Experimental tree removal in tallgrass prairie: variable responses of flora and fauna along a woody cover gradient.

    Science.gov (United States)

    Alford, Aaron L; Hellgren, Eric C; Limb, Ryan; Engle, David M

    2012-04-01

    Woody plant encroachment is a worldwide phenomenon in grassland and savanna systems whose consequence is often the development of an alternate woodland state. Theoretically, an alternate state may be associated with changes in system state variables (e.g., species composition) or abiotic parameter shifts (e.g., nutrient availability). When state-variable changes are cumulative, such as in woody plant encroachment, the probability of parameter shifts increases as system feedbacks intensify over time. Using a Before-After Control-Impact (BACI) design, we studied eight pairs of grassland sites undergoing various levels of eastern redcedar (Juniperus virginiana) encroachment to determine whether responses of flora and fauna to experimental redcedar removal differed according to the level of pretreatment redcedar cover. In the first year after removal, herbaceous plant species diversity and evenness, woody plant evenness, and invertebrate family richness increased linearly with pretreatment redcedar cover, whereas increases in small-mammal diversity and evenness were described by logarithmic trends. In contrast, increases in woody plant diversity and total biomass of terrestrial invertebrates were accentuated at levels of higher pretreatment cover. Tree removal also shifted small-mammal species composition toward a more grassland-associated assemblage. During the second year postremoval, increases in herbaceous plant diversity followed a polynomial trend, but increases in most other metrics did not vary along the pretreatment cover gradient. These changes were accompanied by extremely high growing-season precipitation, which may have homogenized floral and faunal responses to removal. Our results demonstrate that tree removal increases important community metrics among grassland flora and fauna within two years, with some responses to removal being strongly influenced by the stage of initial encroachment and modulated by climatic variability. Our results underscore the

  2. Woody invasions of urban trails and the changing face of urban forests in the great plains, USA

    Science.gov (United States)

    Nemec, K.T.; Allen, Craig R.; Alai, A.; Clements, G.; Kessler, A.C.; Kinsell, T.; Major, A.; Stephen, B.J.

    2011-01-01

    Corridors such as roads and trails can facilitate invasions by non-native plant species. The open, disturbed habitat associated with corridors provides favorable growing conditions for many non-native plant species. Bike trails are a corridor system common to many urban areas that have not been studied for their potential role in plant invasions. We sampled five linear segments of urban forest along bike trails in Lincoln, Nebraska to assess the invasion of woody non-native species relative to corridors and to assess the composition of these urban forests. The most abundant plant species were generally native species, but five non-native species were also present: white mulberry (Morus alba), common buckthorn (Rhamnus cathartica), tree-of-heaven (Ailanthus altissima), honeysuckle (Lonicera spp.) and elm (Ulmus spp.). The distribution of two of the woody species sampled, common buckthorn and honeysuckle, significantly decreased with increasing distance from a source patch of vegetation (P = 0.031 and 0.030). These linear habitats are being invaded by non-native tree and shrub species, which may change the structure of these urban forest corridors. If non-native woody plant species become abundant in the future, they may homogenize the plant community and reduce native biodiversity in these areas. ?? 2011 American Midland Naturalist.

  3. Bio energy: Production of Biomass; Produksjon av biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Noreng, Katrina; Indergaard, Mentz; Liodden, Ole Joergen; Hohle, Erik Eid; Sandberg, Eiliv

    2001-07-01

    This is Chapter 2 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Biomass resources in Norway, (2) The foundation - photosynthesis, (3) Biomass from forestry, (4) Biomass from peat lands, (5) Biomass from agriculture and (6) Biomass from lakes and sea. The exposition largely describes the conditions in Norway, where the use of bio energy can be increased from 15 TWh to 35 TWh using available technology. At present, water-borne heating systems are not extensively used in Norway and 30% of the biomass that is cut in the forests remains there as waste. Using this waste for energy generation would not only contribute to reduce the emission of greenhouse gases, but would often lead to improved forest rejuvenation. Use of a few per thousand of the Norwegian peat lands would produce 2 - 3 TWh. According to calculations, along the coast of Norway, there are at least 15 mill tonnes of kelp and sea tangle and these resources can be utilized in a sustainable way.

  4. A comparative analysis of extended water cloud model and backscatter modelling for above-ground biomass assessment in Corbett Tiger Reserve

    Science.gov (United States)

    Kumar, Yogesh; Singh, Sarnam; Chatterjee, R. S.; Trivedi, Mukul

    2016-04-01

    Forest biomass acts as a backbone in regulating the climate by storing carbon within itself. Thus the assessment of forest biomass is crucial in understanding the dynamics of the environment. Traditionally the destructive methods were adopted for the assessment of biomass which were further advanced to the non-destructive methods. The allometric equations developed by destructive methods were further used in non-destructive methods for the assessment, but they were mostly applied for woody/commercial timber species. However now days Remote Sensing data are primarily used for the biomass geospatial pattern assessment. The Optical Remote Sensing data (Landsat8, LISS III, etc.) are being used very successfully for the estimation of above ground biomass (AGB). However optical data is not suitable for all atmospheric/environmental conditions, because it can't penetrate through clouds and haze. Thus Radar data is one of the alternate possible ways to acquire data in all-weather conditions irrespective of weather and light. The paper examines the potential of ALOS PALSAR L-band dual polarisation data for the estimation of AGB in the Corbett Tiger Reserve (CTR) covering an area of 889 km2. The main focus of this study is to explore the accuracy of Polarimetric Scattering Model (Extended Water Cloud Model (EWCM) with respect to Backscatter model in the assessment of AGB. The parameters of the EWCM were estimated using the decomposition components (Raney Decomposition) and the plot level information. The above ground biomass in the CTR ranges from 9.6 t/ha to 322.6 t/ha.

  5. Energetic and economical comparison for biomass fuel

    International Nuclear Information System (INIS)

    Galins, A.; Grundulis, A.; Zihmane, K.

    2003-01-01

    The common agricultural biomass, such as wheat straw, rape straw, wheat small corn, wheat forage, rape oil cakes and other, we can use as fuel for heat production. The biomass application for burning depends on economical situation on agriculture and fuel market. Energetic and economical parameters of agricultural biomass are estimated and compared to wooden grain. As parameters for comparison used the biomass heat value Q (MJ/kg), specific cost per 1 kWh heat production C 0 (Ls/kWh) and the fuel consumption per 1 kWh heat production M 0 (kg/kWh). The rape oil cakes have best heat value (20.82 MJ/kg), but cheapest heat energy we can get from rape straw (0.0046 Ls/kWh). Expenses of heat production for forge wheat corn (0.011 Ls/kWh) are alike to wooden chip (0.0103 Ls/kWh) and wooden grain (0.0122 Ls/kWh) (authors)

  6. Winter habitat occurrence patterns of temperate migrant birds in Belize

    Science.gov (United States)

    Dawson, D.K.; Robbins, C.S.; Sauer, J.R.

    1992-01-01

    We used mist nets and point counts to sample bird populations in 61 sites in Belize during January-March of 1987-1991. Sites were classified as forest, second growth, woody agricultural crops (citrus, mango, cacao, and cashew), or non-woody agricultural crops (rice and sugar cane). We evaluated patterns of occurence of wintering temperate migrant bird species in these habitats. Mist net captures of 22 of 31 migrant species differed significantly among habitats. Of these, 13 species were captured more frequently in the agricultural habitats. American Redstart (Setophaga ruticilla), Black-and-white Warbler (Mniotilta varia), and Magnolia Warbler (Dendroica magnolia) were among the species captured most frequently in woody agricultural habitats; captures of Common Yellowthroat (Geothlypis trichas), Indigo Bunting (Passerina cyanea), and Northern (lcterus galbula) and Orchard orioles (I. spur/anus) were highest in the non-woody agricultural sites. We relate these occurrence patterns to trends in breeding populations in North America. While count data provide a wide picture of winter habitat distribution of migrants, more intensive work is necessary to assess temporal and geographic variation of migrant bird use of agricultural habitats.

  7. Generation of electricity and combustible gas by utilization of agricultural waste in Nara canal area water board

    International Nuclear Information System (INIS)

    Joyo, P.; Memon, F.; Sohag, M.A.

    2005-01-01

    Biomass in an important source of energy, however, it is not fully utilized in Sindh. The various types of biomass normally used for the generation of energy are extensively available in the province. These are forest debris and thinning; residue from wood products industry; agricultural waste; fast-growing trees and crops; wood and wood waste; animal manures and non-hazardous organic portion of municipal solid waste. Since agriculture is pre-dominant in Sindh, it has a large amount of agricultural waste available in most of the areas. Agriculture wastes like rice husk, wheat straw, cotton stalks, and sugarcane bagasse can be utilized to produce gas and afterwards electricity. Pakistan Agricultural Research Council (PARC) has found that at most of the locations of Sindh, agricultural waste is available more than the energy requirements of that particular area. Biomass can also generate electricity (or heat) in one of the several processes, can be used in a piston driven engine, high efficiency gas turbine generator or a fuel cell to produce electricity. Biomass gasifies have gained attention for their efficiency, economy and environment-friendly. The Nara Canal Area Water Board is facing acute problem of electricity in the O and M of its drainage network and running of tube wells. The frequent breakdown and irregular supply of power is badly affecting in the management of drainage system and control of rising water-table, however, it is anticipated that the generation of electricity through biomass can address this acute problem and greatly help in controlling water logging and salinity in Sindh. (author)

  8. Forest biomass and energy-wood potential in the southern United States

    Energy Technology Data Exchange (ETDEWEB)

    Saucier, J.R. [Forestry Sciences Lab., Athens, GA (United States)

    1993-12-31

    Timber resource data were compiled from the most recent USDA Forest Service inventory data for the 12 Southern States from Virginia to Texas. Timber resource inventories traditionally include only trees 5 inches dbh and greater and their volumes to the prevailing merchantable top diameter expressed in cubic feet, board feet, or cords. For this paper, conversion factors were developed to express timber inventories in weight and to expand the inventories to include the crowns of merchantable trees and trees less than 5 inches dbh. By so doing, the total aboveground biomass is estimated for the timberlands in the South. The region contains 185 million acres of timberland. Some 14.6 billion green tons of woody biomass are present on southern timberland -- about 79 tons per acre. When mature stands are harvested, the average acre in the South has 22.2 tons of woody material left in crowns and sapling, and 5.1 tons in cull stems. Thus, an average of 27.3 green tons per acre of potential energy wood are left after conventional harvests. Conversion factors that are presented permit estimates for specific tracts, areas, counties, or states.

  9. Burning characteristics of chemically isolated biomass ingredients

    International Nuclear Information System (INIS)

    Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S.

    2011-01-01

    This study was performed to investigate the burning characteristics of isolated fractions of a biomass species. So, woody shells of hazelnut were chemically treated to obtain the fractions of extractives-free bulk, lignin, and holocellulose. Physical characterization of these fractions were determined by SEM technique, and the burning runs were carried out from ambient to 900 o C applying thermal analysis techniques of TGA, DTG, DTA, and DSC. The non-isothermal model of Borchardt-Daniels was used to DSC data to find the kinetic parameters. Burning properties of each fraction were compared to those of the raw material to describe their effects on burning, and to interpret the synergistic interactions between the fractions in the raw material. It was found that each of the fractions has its own characteristic physical and thermal features. Some of the characteristic points on the thermograms of the fractions could be followed definitely on those of the raw material, while some of them seriously shifted to other temperatures or disappeared as a result of the co-existence of the ingredients. Also, it is concluded that the presence of hemicellulosics and celluloses makes the burning of lignin easier in the raw material compared to the isolated lignin. The activation energies can be arranged in the order of holocellulose < extractives-free biomass < raw material < lignin.

  10. The direct observation of alkali vapor species in biomass combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    French, R J; Dayton, D C; Milne, T A

    1994-01-01

    This report summarizes new data from screening various feedstocks for alkali vapor release under combustion conditions. The successful development of a laboratory flow reactor and molecular beam, mass spectrometer interface is detailed. Its application to several herbaceous and woody feedstocks, as well as a fast-pyrolysis oil, under 800 and 1,100{degrees}C batch combustion, is documented. Chlorine seems to play a large role in the facile mobilization of potassium. Included in the report is a discussion of relevant literature on the alkali problem in combustors and turbines. Highlighted are the phenomena identified in studies on coal and methods that have been applied to alkali speciation. The nature of binding of alkali in coal versus biomass is discussed, together with the implications for the ease of release. Herbaceous species and many agricultural residues appear to pose significant problems in release of alkali species to the vapor at typical combustor temperatures. These problems could be especially acute in direct combustion fired turbines, but may be ameliorated in integrated gasification combined cycles.

  11. Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier

    Science.gov (United States)

    Sweeney, Daniel Joseph

    With the discovery of vast fossil resources, and the subsequent development of the fossil fuel and petrochemical industry, the role of biomass-based products has declined. However, concerns about the finite and decreasing amount of fossil and mineral resources, in addition to health and climate impacts of fossil resource use, have elevated interest in innovative methods for converting renewable biomass resources into products that fit our modern lifestyle. Thermal conversion through gasification is an appealing method for utilizing biomass due to its operability using a wide variety of feedstocks at a wide range of scales, the product has a variety of uses (e.g., transportation fuel production, electricity production, chemicals synthesis), and in many cases, results in significantly lower greenhouse gas emissions. In spite of the advantages of gasification, several technical hurdles have hindered its commercial development. A number of studies have focused on laboratory-scale and atmospheric biomass gasification. However, few studies have reported on pilot-scale, woody biomass gasification under pressurized conditions. The purpose of this research is an assessment of the performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. The 200 kWth fluidized bed gasifier is capable of operation using solid feedstocks at feedrates up to 65 lb/hr, bed temperatures up to 1600°F, and pressures up to 8 atm. Gasifier performance was assessed under various temperatures, pressure, and feedstock (untreated woody biomass, dark and medium torrefied biomass) conditions by measuring product gas yield and composition, residue (e.g., tar and char) production, and mass and energy conversion efficiencies. Elevated temperature and pressure, and feedstock pretreatment were shown to have a significant influence on gasifier operability, tar production, carbon conversion, and process efficiency. High-pressure and temperature gasification of dark torrefied biomass

  12. A better understanding of biomass co-firing by developing an advanced non-spherical particle tracking model

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2004-01-01

    -area-to-volume ratio and thus experiences a totally different motion and reaction as a non-spherical particle. Therefore, an advanced non-spherical particle-tracking model is developed to calculate the motion and reaction of nonspherical biomass particles. The biomass particles are assumed as solid or hollow cylinders......-gradient force. Since the drag and lift forces are both shape factor- and orientation-dependent, coupled particle rotation equations are resolved to update particle orientation. In the reaction of biomass particles, the actual particle surface area available and the average oxygen mass flux at particle surface...

  13. Biodiversity of Soil Microbial Communities Following Woody Plant Invasion of Grassland: An Assessment Using Molecular Methods

    Science.gov (United States)

    Kantola, I. B.; Gentry, T. J.; Filley, T. R.; Boutton, T. W.

    2012-12-01

    Woody plants have encroached into grasslands, savannas, and other grass-dominated ecosystems throughout the world during the last century. This dramatic vegetation change is likely driven by livestock grazing, altered fire frequencies, elevated atmospheric CO2 concentrations, and/or changes in atmospheric deposition patterns. Woody invasion often results in significant changes in ecosystem function, including alterations in above- and belowground primary productivity, soil C, N, and P storage and turnover, and the size and activity of the soil microbial biomass pool. The purpose of this study was to examine the relationships and interactions between plant communities and soil microbial communities in the Rio Grande Plains region of southern Texas where grasslands have been largely replaced by woodlands. Research was conducted along a successional chronosequence representing the stages of woody plant encroachment from open grassland to closed-canopy woodland. To characterize soil microbial community composition, soil samples (0-7.5 cm) were collected in remnant grasslands (representing time 0) and near the centers of woody plant clusters, groves, and drainage woodlands ranging in age from 10 to 130 yrs. Ages of woody plant stands were determined by dendrochronology. Community DNA was extracted from each soil sample with a MoBio PowerMax Soil DNA isolation kit. The DNA concentrations were quantified on a NanoDrop ND-1000 spectrophotometer and diluted to a standard concentration. Pyrosequencing was performed by the Research and Testing Laboratory (Lubbock, TX) according to Roche 454 Titanium chemistry protocols. Samples were amplified with primers 27F and 519R for bacteria, and primers ITS1F and ITS4 for fungi. Sequences were aligned using BioEdit and the RDP Pipeline and analyzed in MOTHUR. Non-metric multidimensional scaling of the operational taxonomic units identified by pyrosequencing revealed that both bacterial and fungal community composition were

  14. Sustainable Liquid Biofuels from Biomass Biorefining (SUNLIBB). Policy Brief No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-01

    The SUNLIBB project is funded under the European Seventh Framework Programme (FP7) within the Energy theme: Second Generation Biofuels -- EU Brazil Coordinated Call. SUNLIBB started on 1 October 2010 for 4 years and collaborates with a parallel project in Brazil, CeProBIO. First generation biofuels -- which are mainly produced from food crops such as grains, sugarcane and vegetable oils -- have triggered one of the most highly contentious debates on the current international sustainability agenda, given their links to energy security, transport, trade, food security, land-use impacts and climate change concerns. Developing second generation biofuels has emerged as a more attractive option, as these are manufactured from inedible sources, such as woody crops, energy grasses, or even agricultural and forestry residues. Residues from sugarcane and biomass from maize, as well as 'whole-crop' miscanthus are all potential raw material (called 'feedstock') for second generation bioethanol production. Because these three plants are all closely related, processing the biomass from these crops raises common technical challenges, which offers the opportunity for breakthroughs in one species to be rapidly exploited in the others. Despite the potential sustainability benefits of second generation bioethanol, the current inefficiency of production makes it economically uncompetitive. Taking up this challenge, the SUNLIBB consortium's multidisciplinary team of scientists -- in cooperation with CeProBIO, the sister project in Brazil -- combines European and Brazilian research strengths so as to open the way for environmentally, socially and economically sustainable second generation bioethanol production.

  15. Sustainable Liquid Biofuels from Biomass Biorefining (SUNLIBB). Policy Brief No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    The SUNLIBB project is funded under the European Seventh Framework Programme (FP7) within the Energy theme: Second Generation Biofuels -- EU Brazil Coordinated Call. SUNLIBB started on 1 October 2010 for 4 years and collaborates with a parallel project in Brazil, CeProBIO. This is the second in a series of policy briefs providing an update on the project. The first brief was issued in March 2012. The project focus is on looking at developing second generation biofuels that hope to improve on issues seen with the first generation options. Second generation biofuels are manufactured from inedible sources, such as woody crops, energy grasses, or even agricultural and forestry residues. Residues from sugarcane and biomass from maize, as well as 'whole-crop' miscanthus are all potential raw material (called 'feedstock') for second generation bioethanol production. Because these three plants are all closely related, processing the biomass from these crops raises common technical challenges, which offers the opportunity for breakthroughs in one species to be rapidly exploited in the others. Despite the potential sustainability benefits of second generation bioethanol, the current inefficiency of production makes it economically uncompetitive. Taking up this challenge, the SUNLIBB consortium's multidisciplinary team of scientists -- in cooperation with CeProBIO, the sister project in Brazil -- combines European and Brazilian research strengths so as to open the way for environmentally, socially and economically sustainable second generation bioethanol production.

  16. Non-Destructive Lichen Biomass Estimation in Northwestern Alaska: A Comparison of Methods

    Science.gov (United States)

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J.

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa “community” samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m−2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska. PMID:25079228

  17. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    Directory of Open Access Journals (Sweden)

    Abbey Rosso

    Full Text Available Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144 at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count, among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4% using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2. Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.

  18. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    Science.gov (United States)

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.

  19. Emission of toxic air pollutants from biomass combustion

    International Nuclear Information System (INIS)

    Houck, J.E.; Barnett, S.G.; Roholt, R.B.; Rock, M.E.

    1991-01-01

    Combustion of biomass for power generation, home heating, process steam generation, and waste disposal constitutes a major source of air pollutants nationwide. Emissions from hog-fueled boilers, demolition wood-fired power plants, municipal waste incinerators, woodstoves, fireplaces, pellet stoves, agricultural burning, and forestry burning have been characterized for a variety of purposes. These have included risk assessment, permitting, emission inventory development, source profiling for receptor modeling, and control technology evaluations. From the results of the source characterization studies a compilation of emission factors for criteria and non-criteria pollutants are presented here. Key among these pollutants are polycyclic aromatic hydrocarbons, priority pollutant metals, carbon monoxide, sulfur dioxide, nitrous oxides, and PM 10 particles. The emission factors from the biomass combustion processes are compared and contrasted with other pollutant sources. In addition, sampling and analysis procedures most appropriate for characterizing emissions from the biomass combustion sources are also discussed

  20. Evaluation of sorption capacity of adjusted woody biomass for pentavalent arsenic

    International Nuclear Information System (INIS)

    Littera, P.

    2009-01-01

    Aim of the present experiment was to evaluate the sorption capacity of wood biomass modified by iron oxyhydroxide. Capacity was assessed in tank experiments. Model solutions of pentavalent arsenic in concentration range of 20 mg L -1 -500 mg L -1 were used. Binder dosing 10 g L -1 was selected, contact time of the binder with solution was 2 hours. (author)

  1. Bioenergy in Australia: An improved approach for estimating spatial availability of biomass resources in the agricultural production zones

    International Nuclear Information System (INIS)

    Herr, Alexander; Dunlop, Michael

    2011-01-01

    Bioenergy production from crops and agricultural residues has a greenhouse gas mitigation potential. However, there is considerable debate about the size of this potential. This is partly due to difficulties in estimating the feedstock resource base accurately and with good spatial resolution. Here we provide two techniques for spatially estimating crop-based bioenergy feedstocks in Australia using regional agricultural statistics and national land use maps. The approach accommodates temporal variability by estimating ranges of feedstock availability and the shifting nature of zones of the highest spatial concentration of feedstocks. The techniques are applicable to biomass production from forestry, agricultural residues or oilseeds, all of which have been proposed as biofuel feedstocks. -- Highlights: → Dasymetric mapping appoach for producing spatial and temporal variation maps in feedstock production.→ Combines land use and crop statistics to produce regionally precise feedstock maps. → Feedstock concentrations and feedstock density maps enable identification of feedstock concentration spatially and comparison of yearly variation in production.

  2. Biomass energy

    International Nuclear Information System (INIS)

    Pasztor, J.; Kristoferson, L.

    1992-01-01

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  3. How Technology Can Improve the Efficiency of Excavator-Based Cable Harvesting for Potential Biomass Extraction—A Woody Productivity Resource and Cost Analysis for Ireland

    Directory of Open Access Journals (Sweden)

    Ger Devlin

    2014-12-01

    Full Text Available Two cable logging systems were reviewed to compare the efficiency of potential biomass extraction from remote forest sites in Ireland based on productive machine hour (PMH and unit cost of operation (€/m3. Three operational scenarios (SC were analysed where SC I was a three man crew operation (choker setter, the carriage operator and unhooking chokers. SC II was a variation of this with a two man crew operation. SC III was operating radio controlled chokers there was a two man crew (choker setter and carriage operator. The study aims to assess how operations in Ireland perform against previous known cable studies to determine whether the cost of timber extraction on remote forest sites inaccessible for mechanised felling, has a future given the increased demand for wood fibre in Ireland, both from the sawmilling industries and the wood for energy sector. The volume per PMH was recorded at 17.97 for SC I, 15.09 for SC II and 20.58 m3 for SC III. The difference in productivity versus SC III remote controlled chokers is 5.49 m3/PMH for SC II crew and 2.61 m3/PMH for SC I. The decrease in total volume extracted from SCs I and II versus SC III was recorded at 15.69 m3 (15% and 32.97 m3 (36% product respectively. In value terms, the unit cost (€/m3 varied from 6.29 (SC I to 6.43 (SC II to 4.57 (SC III. When looking at the production unit costs of normal wood energy supply chains in Ireland, the figures are similar ranging from 3.17 €/m3 to 8.01 €/m3. The value of the end product of course will always determine which market the eventually goes to but given that cable log wood fibre has been unthinned and unmaintained then the biomass sector may be an ever increasing demand point in the search for increased woody biomass given that the unit costs can be competitive with other wood energy supply chains.

  4. A biomass energy flow chart for Kenya

    International Nuclear Information System (INIS)

    Senelwa, K.A.; Hall, D.O.

    1993-01-01

    Terrestrial (above ground) biomass production and its utilization in Kenya was analyzed for the 1980s. Total biomass energy production was estimated at 2574 x 10 6 GJ per year, most of which (86.7%) is produced on land classified as agricultural. Of the total production, agriculture and forrestry operations resulted in the harvesting of 1138 x 10 6 GJ (44.2% of total production), half of which (602 x 10 6 GJ) was harvested for use as fuel. Only 80 x 10 6 GJ was harvested for food and 63 x 10 6 GJ for industrial (agricultural and forestry) plus other miscellaneous purposes. About 85% of Kenya's energy is from biomass, with a per capita consumption of 18.6 GJ (0.44 toe, tonne oil equivalent) compared to less than 0.1 toe of commercial energy. Use of the biomass resource was found to be extensive involving bulk harvesting but with low utilization efficiencies; as a result the overall losses were quite high. Only 534 x 10 6 GJ (46.9% of harvested biomass) was useful energy. 480 x 10 6 GJ was left unused, as residues and dung, all which was either burnt or left to decompose in the fields. 124 x 10 6 GJ was lost during charcoal manufacture. Intensified use of the harvested biomass at higher efficiencies in order to minimize wastes would decrease the stress on the biomass resource base. (Author)

  5. Evaluation of functional substances in the selected food materials for space agriculture

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Kimura, Yasuko; Yamashita, Masamichi; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Ajioka, Reiko

    We have been studying the useful life-support system in closed bio-ecosystem for space agriculture. We have already proposed the several species as food material, such as Nostoc sp. HK-01 and Prunnus sp., cyanobacterium and Japanese cherry tree, respectively. The cyanobacterium, Nostoc sp Hk-01, has high tolerances to several space environment. Furthermore, the woody plant materials have useful utilization elements in our habitation environment. The studies of woody plants under a space-environment in the vegetable kingdom have a high contribution to the study of various and exotic environmental responses, too. We have already found that they can produce the important functional substances for human. Here, we will show the evaluation of functional substances in the selected food materials under the possible conditions for space agriculture after cooking.

  6. Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass.

    Science.gov (United States)

    Yu, Zhiying; Gwak, Ki-Seob; Treasure, Trevor; Jameel, Hasan; Chang, Hou-min; Park, Sunkyu

    2014-07-01

    The impact of lignin-derived inhibition on enzymatic hydrolysis is investigated by using lignins isolated from untreated woods and pretreated wood pulps. A new method, biomass reconstruction, for which isolated lignins are precipitated onto bleached pulps to mimic lignocellulosic biomass, is introduced, for the first time, to decouple the lignin distribution issue from lignin chemistry. Isolated lignins are physically mixed and reconstructed with bleached pulps. Lignins obtained from pretreated woods adsorb two to six times more cellulase than lignins obtained from untreated woods. The higher adsorption of enzymes on lignin correlates with decreased carbohydrate conversion in enzymatic hydrolysis. In addition, the reconstructed softwood substrate has a lower carbohydrate conversion than the reconstructed hardwood substrate. The degree of condensation of lignin increases significantly after pretreatment, especially with softwood lignins. In this study, the degree of condensation of lignin (0.02 to 0.64) and total OH groups in lignin (1.7 to 1.1) have a critical impact on cellulase adsorption (9 to 70%) and enzymatic hydrolysis (83.2 to 58.2%); this may provide insights into the more recalcitrant nature of softwood substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    Science.gov (United States)

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-05

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  8. Energetic characterization of Amazonian biomass; Caracterizacao energetica de biomassas amazonicas

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa Netto, Genesio Batista; Oliveira, Antonio Geraldo de Paula; Coutinho, Hebert Willian Martins; Nogueira, Manoel Fernandes Martins; Rendeiro, Goncalo [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    In order to asses the potentiality of Amazon biomasses to generate power, either to supply electric energy to the grid or as fuel to plants supplying power for off-grid location, data for their proximate analysis must be available. A literature review on the subject indicated a lack of information and data concerning typical Amazon rain forest species. This work aimed to characterize (proximate analysis) 43 Amazon species in order to evaluate the energy resource from woody biomass wastes in Amazon region. Higher heating value, carbon, volatile and ash contents were measured in a dry basis. The measurements were performed obeying the following Brazilian standards, NBR 6923, NBR 8112, NBR 8633, NBR 6922. (author)

  9. Random preferences towards bioenergy environmental externalities: a case study of woody biomass based electricity in the Southern United States

    Science.gov (United States)

    Andres Susaeta; Pankaj Lal; Janaki Alavalapati; Evan Mercer

    2011-01-01

    This paper contrasts alternate methodological approaches of investigating public preferences, the random parameter logit (RPL) where tastes and preferences of respondents are assumed to be heterogeneous and the conditional logit (CL) approach where tastes and preferences remain fixed for individuals. We conducted a choice experiment to assess preferences for woody...

  10. Adoption of agricultural innovations through non-traditional financial ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Adoption of agricultural innovations through non-traditional financial services ... donors, banks, and financial institutions to explore new kinds of financial services to ... enterprises, and others in the production process to connect with markets.

  11. Effects of Biomass Feedstock on the Yield and Reactivity of Soot from Fast Pyrolysis at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter A.; Glarborg, Peter

    This study investigated the effect of feedstock on the yield, nanostructure and reactivity of soot. Woody and herbaceous biomass were pyrolyzed at high heating rates and temperatures of 1250 and 1400°C in a drop tube furnace. The collected solid residues were structurally characterized by electro...

  12. Handbook for inventorying downed woody material

    Science.gov (United States)

    James K. Brown

    1974-01-01

    To facilitate debris management, procedures for inventorying downed woody material are presented. Instructions show how to estimate weights and volumes of downed woody material, fuel depth, and duff depth. Using the planar intersect technique, downed material is inventoried by 0- to 0.25-inch, 0.25- to 1-inch, and 1- to 3-inch diameter classes; and by 1-inch classes...

  13. Global biomass burning: Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    As a significant source of atmospheric gases, biomass burning must be addressed as a major environmental problem. Biomass burning includes burning forests and savanna grasslands for land clearing and conversion, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The editor discusses the history of biomass burning and provides an overview of the individual chapters

  14. Quebec Centre for Biomass Valorization, annual report 1990/91. Centre quebecois de valorisation de la biomasse, rapport annuel 1990/91

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-01

    The Quebec Centre for Biomass Valorization has the objectives of facilitating research pertaining to that subject while relating that research to industrial and community needs, channelling financial resources into biomass research, encouraging industry participation, and supplying information to prospective investigators for carrying out relevant projects. In 1990/91, this organization received an additional mandate from the provincial government to continue its activities. Of 253 projects proposed in 1991, 83 were related to forest biomass, 73 to agricultural biomass, 25 to aquatic biomass, 34 to peat, and 38 to urban wastes. The products to be derived from this biomass are in the alimentary, biological, chemical/material, energy, and decontamination categories. Total disbursements for the approved projects were about $14.6 million. A summary is provided of the previous 5 years of activity in such areas as wood polymers, fermentation, bioherbicides, peat-based substrates, biofiltration, and waste treatment. Objectives for the next five years are also outlined. Key sectors are identified as the valorization of lignocellulosic and agricultural wastes, municipal biomass, and peat materials. Financial statements are also included. 4 figs., 5 tabs.

  15. Information and Communication Technology in Non-agricultural ...

    African Journals Online (AJOL)

    ... problem census results reveal that respondents generally ranked “lack of information on modern job technique/ideas” third only to inadequate capital and high cost of living. It is thus imperative to set up a system that would generate and disseminate non-agricultural information and knowledge for rural transformation by, ...

  16. Production of anti-streptococcal liamocins from agricultural biomass by Aureobasidium pullulans.

    Science.gov (United States)

    Leathers, Timothy D; Price, Neil P J; Manitchotpisit, Pennapa; Bischoff, Kenneth M

    2016-12-01

    Liamocins are unique heavier-than-water "oils" produced by certain strains of the fungus Aureobasidium pullulans. Liamocins have antibacterial activity with specificity for Streptococcus sp. Previous studies reported that liamocin yields were highest from strains of A. pullulans belonging to phylogenetic clades 8, 9, and 11, cultured on medium containing sucrose. In this study, 27 strains from these clades were examined for the first time for production of liamocins from agricultural biomass substrates. Liamocin yields were highest from strains in phylogenetic clade 11, and yields were higher from cultures grown on sucrose than from those grown on pretreated wheat straw. However, when supplementary enzymes (cellulase, β-glucosidase, and xylanase) were added, liamocin production on pretreated wheat straw was equivalent to that on sucrose. Liamocins produced from wheat straw were free of the melanin contamination common in sucrose-grown cultures. Furthermore, MALDI-TOF MS analysis showed that liamocins produced from wheat straw were under-acetylated, resulting in higher proportions of the mannitol A1 and B1 species of liamocin, the latter of which has the highest biological activity against Streptococcus sp.

  17. Technical Note: Linking climate change and downed woody debris decomposition across forests of the eastern United States

    Science.gov (United States)

    Russell, Matthew B.; Woodall, Christopher W.; D'Amato, Anthony W.; Fraver, Shawn; Bradford, John B.

    2014-01-01

    Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Forest carbon (C) is stored through photosynthesis and released via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased temperatures and longer growing seasons associated with projected climate change will increase the decomposition rates (i.e., more rapid C cycling) of downed woody debris (DWD); however, the magnitude of this increase has not been previously addressed. Using DWD measurements collected from a national forest inventory of the eastern United States, we show that the residence time of DWD may decrease (i.e., more rapid decomposition) by as much as 13% over the next 200 years, depending on various future climate change scenarios and forest types. Although existing dynamic global vegetation models account for the decomposition process, they typically do not include the effect of a changing climate on DWD decomposition rates. We expect that an increased understanding of decomposition rates, as presented in this current work, will be needed to adequately quantify the fate of woody detritus in future forests. Furthermore, we hope these results will lead to improved models that incorporate climate change scenarios for depicting future dead wood dynamics in addition to a traditional emphasis on live-tree demographics.

  18. Economics of multifunctional biomass systems

    International Nuclear Information System (INIS)

    Ignaciuk, A.

    2006-01-01

    Chapter 2 focuses on the competition between traditional agricultural production and growing demand for biomass plantations. The aim of this chapter is to investigate the effects of various energy policies, aimed at both reducing the emissions of greenhouse gases (GHG) and increasing the share of bioelectricity, on the production of biomass and agricultural commodities. A partial equilibrium model is developed to illustrate some of the potential impacts of these policies on greenhouse gas emissions, land reallocation and prices of food and electricity. A partial framework is used, because it provides a transparent and consistent structure and enables to concentrate on only the relevant economic sectors (agriculture, biomass, conventional electricity, and bioelectricity). In the model, GHG emissions depend on land use patterns and fossil fuel use. The innovative element of this model is that it integrates two distinct analyses, namely an analysis of substitution mechanisms between energy from biomass and from fossil fuels, and an analysis of the effects of changes in demand for biomass on land use and GHG emissions. Chapter 3 deals with the impact of climate policies on land use and land cover change and possible impacts on reestablishment of semi-natural areas, mainly forestry and willow plantations. The aim of this chapter is to investigate the impact of climate policies to reduce greenhouse gas emissions by means of promoting biomass and bioelectricity. In this context, the analysis is performed on how these policies might affect production of agricultural commodities and trade patterns of biomass and bioelectricity. To this purpose, an applied general equilibrium model (AGE) is developed with special attention to biomass and agricultural crops for a small open economy, with an Armington specification for international trade. Chapter 4 focuses on the multiproductivity issues of agriculture, biomass, and forestry sectors resulting in additional production inputs

  19. Integrated firewood production, ensures fuel security for self sustaining Biomass Power Plants reduces agricultural cost and provides livestock production

    International Nuclear Information System (INIS)

    Lim, Andre

    2010-01-01

    Growing concerns on the impact of climate change, constraints on fossil fuel electricity generation and the likelihood of oil depletion is driving unprecedented growth and investment in renewable energy across the world. The consistency of biomass power plants makes them capable of replacing coal and nuclear for base-load. However experience had shown otherwise, climate change reduces yields, uncontrolled approvals for biomass boilers increased demands and at times motivated by greedy farmers have raised price of otherwise a problematic agricultural waste to high secondary income stream forcing disruption to fuel supply to power plants and even their shutting down. The solution is to established secured fuel sources, fortunately in Asia there are several species of trees that are fast growing and have sufficient yields to make their harvesting economically viable for power production. (author)

  20. A Thermogravimetric Study of the Behaviour of Biomass Blends During Combustion

    Directory of Open Access Journals (Sweden)

    Ivo Jiříček

    2012-01-01

    Full Text Available The ignition and combustion behavior of biomass and biomass blends under typical heating conditions were investigated. Thermogravimetric analyses were performed on stalk and woody biomass, alone and blended with various additive weight ratios. The combustion process was enhanced by adding oxygen to the primary air. This led to shorter devolatilization/pyrolysis and char burnout stages, which both took place at lower temperatures than in air alone. The results of the ignition study of stalk biomass show a decrease in ignition temperature as the particle size decreases. This indicates homogeneous ignition, where the volatiles burn in the gas phase, preventing oxygen from reaching the particle surface.The behavior of biomass fuels in the burning process was analyzed, and the effects of heat production and additive type were investigated. Mixing with additives is a method for modifying biofuel and obtaining a more continuous heat release process. Differential scanning calorimetric-thermogravimetric (DSC-TGA analysis revealed that when the additive is added to biomass, the volatilization rate is modified, the heat release is affected, and the combustion residue is reduced at the same final combustion temperature.

  1. The biomass like renewable energy in the future

    International Nuclear Information System (INIS)

    Perez Peces, J.

    1993-01-01

    The energetic contribution of biomass in EC and world figures represents a 14% of the whole demand. For developing countries this figure goes up to 35% and can be a source of employment for manpower decreasing in other sectors. At European level the CEC are promoting research areas through JOULE and LEBEN programs. Current European policy with big subsidies for intensive agricultural production has penalized forest and biomass production. Reforestation and biomass energetics crops are going to be a new strategy with 20 million Ha of agricultural soil transformed and between 10 and 20 million ha of marginal soil transformed. Biomass will be promoted keeping in mind environmental benefits like compost production for soil conditioning. A review of the different biomass sources and treatment techniques (bioconversion, thermal conversion and biodigestion), as well as environmental aspects are given

  2. Woody plant encroachment effect on soil organic carbon dynamics: results from a latitudinal gradient in Italy

    Science.gov (United States)

    Pellis, Guido; Chiti, Tommaso; Moscatelli, Maria Cristina; Marinari, Sara; Papale, Dario

    2016-04-01

    Woody plant encroachment into pastures and grasslands represents a significant land cover change phenomenon, with a considerable impact on carbon dynamics at an ecosystem level. It was estimated that 7.64% of the Southern Europe land was subject to that process between 1950 to 2010. As a result of woody encroachment, changes in vegetation composition can produce substantial changes to the soil organic carbon (SOC) cycle. Despite the numerous papers published on land-use change, an evaluation of the IPCC terrestrial carbon pools changes occurring during woody encroachment on abandoned pastures and grasslands is still lacking, particularly for the Italian territory. Therefore, the aim of this study was to investigate the role of woody encroachment on carbon sequestration over abandoned pastures and grasslands in Alpine and Apennine ecosystems, with a particular focus on the SOC. We applied a chronosequence approach to seven selected sites located along a latitudinal gradient in Italy. Each chronosequence consisted of a pasture currently managed, three sites abandoned at different times in the past and, finally, a mature forest stand representing the last phase of the succession. The European Commission sampling protocols to certify SOC changes was adopted to estimate the variations following woody encroachment. Soil samples were collected at different depths in the topsoil (0-30 cm) and subsoil (30-70 cm), despite the original protocol formulation being limited to the topsoil only. In addition, aboveground living biomass (AGB), dead wood and litter were also measured following international protocols. Considering all C pools together, woody plant encroachment leads to a progressive C stock accumulation in all the chronosequences. The total C stock of mature forest stands ranges from 1.78±0.11 times (Eastern Alps) to 2.48±0.31 times (central Apennine) the initial value on pastures. Unsurprisingly, the C stocks of AGB, dead wood and litter all increase during the

  3. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands.

    Science.gov (United States)

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of "nurse plants" an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  4. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.

    Science.gov (United States)

    Tinwala, Farha; Mohanty, Pravakar; Parmar, Snehal; Patel, Anant; Pant, Kamal K

    2015-01-01

    Pyrolysis of woody biomass, agro-residues and seed was carried out at 500 ± 10 °C in a fixed bed pyrolyser. Bio-oil yield was found varying from 20.5% to 47.5%, whereas the biochar and pyrolysis gas ranged from 27.5% to 40% and 24.5% to 40.5%, respectively. Pyrolysis gas was measured for flame temperature along with CO, CO2, H2, CH4 and other gases composition. HHV of biochar (29.4 MJ/kg) and pyrolitic gas (8.6 MJ/kg) of woody biomass was higher analogous to sub-bituminous coal and steam gasification based producer gas respectively, whereas HHV of bio-oil obtained from seed (25.6 MJ/kg) was significantly more than husks, shells and straws. TGA-DTG studies showed the husks as potential source for the pyrolysis. Bio-oils as a major by-product of intermediate pyrolysis have several applications like substitute of furnace oil, extraction of fine chemicals, whereas biochar as a soil amendment for enhancing soil fertility and gases for thermal application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Comparative study of different waste biomass for energy application.

    Science.gov (United States)

    Motghare, Kalyani A; Rathod, Ajit P; Wasewar, Kailas L; Labhsetwar, Nitin K

    2016-01-01

    Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and

  6. Biomass burning in Africa: As assessment of annually burned biomass

    International Nuclear Information System (INIS)

    Delmas, R.A.; Loudjani, P.; Podaire, A.; Menaut, J.C.

    1991-01-01

    It is now established that biomass burning is the dominant phenomenon that controls the atmospheric chemistry in the tropics. Africa is certainly the continent where biomass burning under various aspects and processes is the greatest. Three different types of burnings have to be considered-bush fires in savanna zones which mainly affect herbaceous flora, forest fires due to forestation for shifting agriculture or colonization of new lands, and the use of wood as fuel. The net release of carbon resulting from deforestation is assumed to be responsible for about 20% of the CO 2 increase in the atmosphere because the burning of forests corresponds to a destorage of carbon from the biospheric reservoir. The amount of reactive of greenhouse gases emitted by biomass burning is directly proportional, through individual emission factors, to the biomass actually burned. This chapter evaluates the biomass annually burned on the African continent as a result of the three main burning processes previously mentioned

  7. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010)

    Science.gov (United States)

    Balch, Jennifer K.; Nagy, R. Chelsea; Archibald, Sally; Moritz, Max A.; Williamson, Grant J.

    2016-01-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997–2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216509

  8. Biomass crops in the agroecosystem. Its benefits agroecological; La biomasa de los cultivos en el oecosistema. Sus beneficios agroecológicos

    Energy Technology Data Exchange (ETDEWEB)

    Martínez Romero, Anirebis [Reserva Científica del departamento de Fitotecnia, Instituto Nacional de Ciencias Agrícolas (INCA), gaveta postal 1, San José de las Lajas, Mayabeque (Cuba); Leyva Galán, Angel [Investigador Titular del departamento de Fitotecnia, Instituto Nacional de Ciencias Agrícolas(INCA), gaveta postal 1, San José de las Lajas, Mayabeque, (Cuba)

    2014-07-01

    Biomass is the result of the transformation of solar energy into chemical energy. The man throughout history has used not only for food but also for feeding their animals. The progress of science promoted agricultural development based on the green revolution, which only promotes the production of either food or feed, marginalizing the importance of biomass as enriching the soil resources available inputs needed to replace their fertility natural. At present the production and preservation of any crop biomass becomes transcendent importance, because it also contributes to environmental protection through carbon sequestration. This study aimed to show the importance of providing non-food biomass generally for humans to use it not only as animal feed but also as a natural resource rich soil. Research in Cuba on the subject is poor, even though today is very important to find alternatives to deepen in the production of biomass in relation to the environment. Finally, we present preliminary results on the production of biomass from agricultural biodiversity present in production scenarios, while reflecting on the important question for future research. (author)

  9. Transfer of Virtual Water of Woody Forest Products from China

    Directory of Open Access Journals (Sweden)

    Kaisheng Luo

    2018-02-01

    Full Text Available Global freshwater resources are under increasing pressure. It is reported that international trade of water-intensive products (the so-called virtual water trade can be used to ease global water pressure. In spite of the significant amount of international trade of woody forest products, virtual water of woody forest products (VWWFP and the corresponding international trade are largely ignored. However, virtual water research has progressed steadily. This study maps VWWFP and statistically analyzes China’s official data for the period 1993–2014. The results show a rapid increase in the trend of VWWFP flow from China, reaching 7.61 × 1012 m3 or 3.48 times annual virtual water trade for agricultural products. The export and import volumes of China are respectively 1.27 × 1012 m3 and 6.34 × 1012 m3 for 1993–2014. China imported a total of 5.07 × 1012 m3 of VWWFP in 1993–2014 to lessen domestic water pressure, which is five times the annual water transfer via China’s South–North Water Transfer project. Asia and Europe account for the highest contribution (50.52% to China’s import. Other contributors include the Russian Federation (16.63%, Indonesia (13.45%, Canada (13.41%, the United States of America (9.60%, Brazil (7.23% and Malaysia (6.33%. China mainly exports VWWFP to Asia (47.68%, North America (23.24%, and Europe (20.01%. The countries which export the highest amount of VWWFP include the United States of America, Japan, Republic of Korea and Canada. Then the countries which import the highest amount of VWWFP include the Russian Federation, Canada, United States of America, and Brazil. The VWWFP flow study shows an obvious geographical distribution that is driven by proximity and traffic since transportation cost of woody forest products could be significant.

  10. Sodium and chloride accumulation in leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    International Nuclear Information System (INIS)

    Zalesny, Jill A.; Zalesny, Ronald S.; Wiese, Adam H.; Sexton, Bart; Hall, Richard B.

    2008-01-01

    The response of Populus to irrigation sources containing elevated levels of sodium (Na + ) and chloride (Cl - ) is poorly understood. We irrigated eight Populus clones with fertilized well water (control) (N, P, K) or municipal solid waste landfill leachate weekly during 2005 and 2006 in Rhinelander, Wisconsin, USA (45.6 deg. N, 89.4 deg. W). During August 2006, we tested for differences in total Na + and Cl - concentration in preplanting and harvest soils, and in leaf, woody (stems + branches), and root tissue. The leachate-irrigated soils at harvest had the greatest Na + and Cl - levels. Genotypes exhibited elevated total tree Cl - concentration and increased biomass (clones NC14104, NM2, NM6), elevated Cl - and decreased biomass (NC14018, NC14106, DM115), or mid levels of Cl - and biomass (NC13460, DN5). Leachate tissue concentrations were 17 (Na + ) and four (Cl - ) times greater than water. Sodium and Cl - levels were greatest in roots and leaves, respectively. - Sodium and chloride supplied via landfill leachate irrigation is accumulated at high concentrations in tissues of Populus

  11. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  12. Harvesting and handling agricultural residues for energy

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, B.M.; Summer, H.R.

    1986-05-01

    Significant progress in understanding the needs for design of agricultural residue collection and handling systems has been made but additional research is required. Recommendations are made for research to (a) integrate residue collection and handling systems into general agricultural practices through the development of multi-use equipment and total harvest systems; (b) improve methods for routine evaluation of agricultural residue resources, possibly through remote sensing and image processing; (c) analyze biomass properties to obtain detailed data relevant to engineering design and analysis; (d) evaluate long-term environmental, social, and agronomic impacts of residue collection; (e) develop improved equipment with higher capacities to reduce residue collection and handling costs, with emphasis on optimal design of complete systems including collection, transportation, processing, storage, and utilization; and (f) produce standard forms of biomass fuels or products to enhance material handling and expand biomass markets through improved reliability and automatic control of biomass conversion and other utilization systems. 118 references.

  13. Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept.

    Science.gov (United States)

    Hull, Claire M; Loveridge, E Joel; Donnison, Iain S; Kelly, Diane E; Kelly, Steven L

    2014-01-01

    Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

  14. Phenotypic Data Collection and Sample Preparation for Genomics of Wood Formation and Cellulosic Biomass Traits in Sunflower: Ames, IA location.

    Energy Technology Data Exchange (ETDEWEB)

    Marek, Laura F.

    2011-06-17

    Three fields were planted in Ames in 2010, two association mapping fields, N3 and A, and a recombinant inbred line field, N13. Phenotype data and images were transferred to UGA to support genetic and genomic analyses of woody biomass-related traits.

  15. Alkaline hemp woody core pulping : impregnation characteristics, kinetic modelling and papermaking qualities

    NARCIS (Netherlands)

    Groot, de B.

    1998-01-01

    The aim of this thesis is to elucidate alkaline processing of hemp woody core, supporting the development and optimization of an efficient and non-polluting pulping process. This study has been a constituent of an integral programme to study fibre hemp.

    It is known that

  16. Biomass power in transition

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.K. [Zurn/NEPCO, Redmond, WA (United States)

    1996-12-31

    Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plant market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.

  17. Non-Destructive, Laser-Based Individual Tree Aboveground Biomass Estimation in a Tropical Rainforest

    Directory of Open Access Journals (Sweden)

    Muhammad Zulkarnain Abd Rahman

    2017-03-01

    Full Text Available Recent methods for detailed and accurate biomass and carbon stock estimation of forests have been driven by advances in remote sensing technology. The conventional approach to biomass estimation heavily relies on the tree species and site-specific allometric equations, which are based on destructive methods. This paper introduces a non-destructive, laser-based approach (terrestrial laser scanner for individual tree aboveground biomass estimation in the Royal Belum forest reserve, Perak, Malaysia. The study area is in the state park, and it is believed to be one of the oldest rainforests in the world. The point clouds generated for 35 forest plots, using the terrestrial laser scanner, were geo-rectified and cleaned to produce separate point clouds for individual trees. The volumes of tree trunks were estimated based on a cylinder model fitted to the point clouds. The biomasses of tree trunks were calculated by multiplying the volume and the species wood density. The biomasses of branches and leaves were also estimated based on the estimated volume and density values. Branch and leaf volumes were estimated based on the fitted point clouds using an alpha-shape approach. The estimated individual biomass and the total above ground biomass were compared with the aboveground biomass (AGB value estimated using existing allometric equations and individual tree census data collected in the field. The results show that the combination of a simple single-tree stem reconstruction and wood density can be used to estimate stem biomass comparable to the results usually obtained through existing allometric equations. However, there are several issues associated with the data and method used for branch and leaf biomass estimations, which need further improvement.

  18. Evaluation of SPOT imagery for the estimation of grassland biomass

    Science.gov (United States)

    Dusseux, P.; Hubert-Moy, L.; Corpetti, T.; Vertès, F.

    2015-06-01

    In many regions, a decrease in grasslands and change in their management, which are associated with agricultural intensification, have been observed in the last half-century. Such changes in agricultural practices have caused negative environmental effects that include water pollution, soil degradation and biodiversity loss. Moreover, climate-driven changes in grassland productivity could have serious consequences for the profitability of agriculture. The aim of this study was to assess the ability of remotely sensed data with high spatial resolution to estimate grassland biomass in agricultural areas. A vegetation index, namely the Normalized Difference Vegetation Index (NDVI), and two biophysical variables, the Leaf Area Index (LAI) and the fraction of Vegetation Cover (fCOVER) were computed using five SPOT images acquired during the growing season. In parallel, ground-based information on grassland growth was collected to calculate biomass values. The analysis of the relationship between the variables derived from the remotely sensed data and the biomass observed in the field shows that LAI outperforms NDVI and fCOVER to estimate biomass (R2 values of 0.68 against 0.30 and 0.50, respectively). The squared Pearson correlation coefficient between observed and estimated biomass using LAI derived from SPOT images reached 0.73. Biomass maps generated from remotely sensed data were then used to estimate grass reserves at the farm scale in the perspective of operational monitoring and forecasting.

  19. Achieving resource sustainability and enhancing economic development through biomass utilization

    Science.gov (United States)

    Jerrold E. Winandy

    2005-01-01

    As the problems associated with sustaining and enhancing the world's forest and agricultural resources compete with the needs of a rapidly increasing and affluent population, the management of our land becomes a much more complex and important issue. One of the most important environmental features of wood and other woody-like fibers is that they are renewable and...

  20. Forest succession in the Upper Rio Negro of Colombia and Venezuela

    International Nuclear Information System (INIS)

    Saldarriaga, J.G.; West, D.C.; Tharp, M.L.

    1986-11-01

    Woody vegetation from 23 forest stands along the Upper Rio Negro of Venezuela and Colombia was sampled in 1982 to examine the hypothesis that the Amazon forest has been largely undisturbed since the Pleistocene, to quantify vegetation development during different stages of succession following agricultural development, and to determine the time required for a successional stand to become a mature forest. The ubiquitousness of charcoal in the tierra firme forest indicated the presence of fire associated with extreme dry periods and human disturbances. Changes in species composition, vegetation structure, and woody biomass were studied on 19 abandoned farms and four mature forest stands. Living and dead biomass for the tress and their components was determined by regression equations developed from measurements of harvested trees. The rate of recovery of floristic composition, structure, and biomass following disturbance is relatively slow. Aboveground dead biomass remained high 14 years after the forest was disturbed by the agricultural practices. The lowest dead biomass is reached 20 years after abandonment, and the largest values are found in mature forests. Data analysis of 80-year-old stands showed that the species composition approached that of a mature forest. Approximately 140 to 200 years was required for an abandoned farm to attain the basal area and biomass values comparable to those of a mature forest. The results of this study indicate that recovery is five to seven times longer in the Upper Rio Negro than it is in other tropical areas in South America

  1. Forest succession in the Upper Rio Negro of Colombia and Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Saldarriaga, J.G.; West, D.C.; Tharp, M.L.

    1986-11-01

    Woody vegetation from 23 forest stands along the Upper Rio Negro of Venezuela and Colombia was sampled in 1982 to examine the hypothesis that the Amazon forest has been largely undisturbed since the Pleistocene, to quantify vegetation development during different stages of succession following agricultural development, and to determine the time required for a successional stand to become a mature forest. The ubiquitousness of charcoal in the tierra firme forest indicated the presence of fire associated with extreme dry periods and human disturbances. Changes in species composition, vegetation structure, and woody biomass were studied on 19 abandoned farms and four mature forest stands. Living and dead biomass for the tress and their components was determined by regression equations developed from measurements of harvested trees. The rate of recovery of floristic composition, structure, and biomass following disturbance is relatively slow. Aboveground dead biomass remained high 14 years after the forest was disturbed by the agricultural practices. The lowest dead biomass is reached 20 years after abandonment, and the largest values are found in mature forests. Data analysis of 80-year-old stands showed that the species composition approached that of a mature forest. Approximately 140 to 200 years was required for an abandoned farm to attain the basal area and biomass values comparable to those of a mature forest. The results of this study indicate that recovery is five to seven times longer in the Upper Rio Negro than it is in other tropical areas in South America.

  2. Renewable energy potential from biomass residues in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Said, N.; Zamorano, M. [Civil Engineering Dept., Univ. of Granada, Campus de Fuentenueva, Granada (Spain); El-Shatoury, S.A. [Botany Dept., Faculty of Sciences, Suez Canal Univ., Ismailia (Egypt)

    2012-11-01

    Egypt has been one of the developing countries following successful programs for the development of renewable energy resources, with special emphasis on solar, wind and biomass. Utilization of biomass as a source of energy is important from energetic as well as environmental viewpoint. Furthermore, Egypt produces millions of biomass waste every year causing pollution and health problems. So, the incorporation of biomass with other renewable energy will increase the impact of solving energy and environmental problem. There is a good potential for the utilization of biomass energy resources in Egypt. Four main types of biomass energy sources are included in this study: agricultural residues, municipal solid wastes, animal wastes and sewage sludge. Analysis of the potential biomass resource quantity and its theoretical energy content has been computed according to literature review. The agriculture crop residue represents the main source of biomass waste with a high considerable amount of the theoretical potential energy in Egypt. Rice straw is considered one of the most important of such residue due to its high amount and its produced energy through different conversion techniques represent a suitable candidate for crop energy production in Egypt.

  3. Time for commercializing non-food biofuel in China

    International Nuclear Information System (INIS)

    Wang, Qiang

    2011-01-01

    The booming automobile in China has added additional pressure on the country that needs to import almost 50% of its oil. Non-food-based biofuel is a viable fuel alternative for cars. China already has the required-foundation to commercialize non-food-based biofuel. Chinese crop straw and stock, energy crop, and woody biomass that could potentially be converted into energy are projected to be 700 million toe (ton of oil equivalent) in the near future. Meanwhile, Chinese food-based ethanol fuel industry ranks as the world's third after United States and Brazil. Several non-food-based ethanol plants are constructed or under constructed, one of which has been licensed. However, more efforts should be directed to commercializing non-food-based biofuel, including industrialized feedstock, strengthening key technology research, supporting private enterprise, and E10 upgrading to E20. The enormous increase in private ownership of car must compel China to commercialize biofuel. (author)

  4. Canada report on bioenergy 2009

    International Nuclear Information System (INIS)

    2009-01-01

    Canada possesses significant forest resources. This paper reviewed Canada's bioenergy potential and market. Biomass in Canada is used to produce heat and power, as well as to produce ethanol and biodiesel. Biomass is also used to produce pyrolysis oil and wood pellets. Biomass resources included woody biomass; annual residue production; hog fuel piles; forest harvest waste and urban wood residues; agricultural residues; and municipal solid wastes. Trends in biomass production and consumption were discussed, and current biomass users were identified. A review of biomass prices was presented, and imports and exports for ethanol, biodiesel, pyrolysis oil, and wood pellets were discussed. Barriers and opportunities for trade were also outlined. 6 tabs., 6 figs. 1 appendix.

  5. Biomass treatment method

    Science.gov (United States)

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  6. Advances in High Throughput Screening of Biomass Recalcitrance (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Turner, G. B.; Decker, S. R.; Tucker, M. P.; Law, C.; Doeppke, C.; Sykes, R. W.; Davis, M. F.; Ziebell, A.

    2012-06-01

    This was a poster displayed at the Symposium. Advances on previous high throughput screening of biomass recalcitrance methods have resulted in improved conversion and replicate precision. Changes in plate reactor metallurgy, improved preparation of control biomass, species-specific pretreatment conditions, and enzymatic hydrolysis parameters have reduced overall coefficients of variation to an average of 6% for sample replicates. These method changes have improved plate-to-plate variation of control biomass recalcitrance and improved confidence in sugar release differences between samples. With smaller errors plant researchers can have a higher degree of assurance more low recalcitrance candidates can be identified. Significant changes in plate reactor, control biomass preparation, pretreatment conditions and enzyme have significantly reduced sample and control replicate variability. Reactor plate metallurgy significantly impacts sugar release aluminum leaching into reaction during pretreatment degrades sugars and inhibits enzyme activity. Removal of starch and extractives significantly decreases control biomass variability. New enzyme formulations give more consistent and higher conversion levels, however required re-optimization for switchgrass. Pretreatment time and temperature (severity) should be adjusted to specific biomass types i.e. woody vs. herbaceous. Desalting of enzyme preps to remove low molecular weight stabilizers and improved conversion levels likely due to water activity impacts on enzyme structure and substrate interactions not attempted here due to need to continually desalt and validate precise enzyme concentration and activity.

  7. Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees.

    Science.gov (United States)

    He, Wei-Ming; Sun, Zhen-Kai

    2016-02-08

    Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints.

  8. Evaluation of the Agricultural Non-point Source Pollution in Chongqing Based on PSR Model

    Institute of Scientific and Technical Information of China (English)

    Hanwen; ZHANG; Xinli; MOU; Hui; XIE; Hong; LU; Xingyun; YAN

    2014-01-01

    Through a series of exploration based on PSR framework model,for the purpose of building a suitable Chongqing agricultural nonpoint source pollution evaluation index system model framework,combined with the presence of Chongqing specific agro-environmental issues,we build a agricultural non-point source pollution assessment index system,and then study the agricultural system pressure,agro-environmental status and human response in total 3 major categories,develope an agricultural non-point source pollution evaluation index consisting of 3 criteria indicators and 19 indicators. As can be seen from the analysis,pressures and responses tend to increase and decrease linearly,state and complex have large fluctuations,and their fluctuations are similar mainly due to the elimination of pressures and impact,increasing the impact for agricultural non-point source pollution.

  9. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    Science.gov (United States)

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  10. The non-agricultural areas of Canada and radioactivity

    International Nuclear Information System (INIS)

    Meyerhof, Dorothy; Marshall, Heather

    1990-01-01

    Approximately 90% of the Canadian land mass is non-agricultural. It is a source of food to native peoples and sport hunters. Although agricultural areas have been extensively monitored for the transfer of radionuclides through the food chain, very little work has been done on radionuclides in the natural environment in Canada. The exceptions are specific problems such as radiocesium in the lichen-caribou food chain in the Arctic and natural radioactivity in the vicinity of uranium mines. A systematic study of natural food chains is being initiated. This paper presents the results of the study so far and proposed future directions. (author)

  11. Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors

    Directory of Open Access Journals (Sweden)

    Xing Yang

    2017-04-01

    Full Text Available Waste residues produced by agricultural and forestry industries can generate energy and are regarded as a promising source of sustainable fuels. Pyrolysis, where waste biomass is heated under low-oxygen conditions, has recently attracted attention as a means to add value to these residues. The material is carbonized and yields a solid product known as biochar. In this study, eight types of biomass were evaluated for their suitability as raw material to produce biochar. Material was pyrolyzed at either 350 °C or 500 °C and changes in ash content, volatile solids, fixed carbon, higher heating value (HHV and yield were assessed. For pyrolysis at 350 °C, significant correlations (p < 0.01 between the biochars’ ash and fixed carbon content and their HHVs were observed. Masson pine wood and Chinese fir wood biochars pyrolyzed at 350 °C and the bamboo sawdust biochar pyrolyzed at 500 °C were suitable for direct use in fuel applications, as reflected by their higher HHVs, higher energy density, greater fixed carbon and lower ash contents. Rice straw was a poor substrate as the resultant biochar contained less than 60% fixed carbon and a relatively low HHV. Of the suitable residues, carbonization via pyrolysis is a promising technology to add value to pecan shells and Miscanthus.

  12. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yanwen; Linville, Jessica L.; Ignacio-de Leon, Patricia Anne A.; Schoene, Robin P.; Urgun-Demirtas, Meltem

    2016-11-01

    This study presents an integrated waste-to-energy process, using two waste streams, sludge generated from the municipal wastewater treatment plants (WWTPs) and biochar generated from the biomass gasification systems, to produce fungible biomethane and nutrient-rich digestate with fertilizer value. Two woody biochar, namely pinewood (PBC) and white oak biochar (WOBC) were used as additives during anaerobic digestion (AD) of WWTP sludge to enhance methane production at mesophilic and thermophilic temperatures. The PBC and WOBC have porous structure, large surface area and desirable chemical properties to be used as AD amendment material to sequester CO2 from biogas in the digester. The biochar-amended digesters achieved average methane content in biogas of up to 92.3% and 79.0%, corresponding to CO2 sequestration by up to 66.2% and 32.4% during mesophilic and thermophilic AD, respectively. Biochar addition enhanced process stability by increasing the alkalinity, but inhibitory effects were observed at high dosage. It also alleviated free ammonia inhibition by up to 10.5%. The biochar-amended digesters generated digestate rich in macro- and micronutrients including K (up to 300 m/L), Ca (up to 750 mg/L), Mg (up to 1800 mg/L) and Fe (up to 390 mg/L), making biochar-amended digestate a potential alternative used as agricultural lime fertilizer.

  13. Growth and foliar nitrogen concentrations of interplanted native woody legumes and pecan

    Science.gov (United States)

    J.W. Van Sambeek; Nadia E. Navarrete-Tindall; Kenneth L. Hunt

    2008-01-01

    The interplanting and underplanting of nodulated nitrogen-fixing plants in tree plantings can increase early growth and foliage nitrogen content of hardwoods, especially black walnut and pecan. Recent studies have demonstrated that some non-nodulated woody legumes may be capable of fixing significant levels of atmospheric nitrogen. The following nine nurse crop...

  14. Biomass for energy. Danish solutions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Information is given on a number of typical and recently established plants of all types and sizes, for converting the main Danish biomass resources (manures, straw and wood derived from agricultural activities and forestry)into energy. Danish biomass resources and energy and environmental policies are described. In Denmark there is a very wide range of technologies for converting biomass into energy, and these are clarified. In addition, performance data from a number of plants fuelled with biomass fuels are presented. The course of further developments within this field is suggested. The text is illustrated with a considerable number of coloured photographs and also with graphs and diagrams. (ARW)

  15. Impact of Different Agricultural Waste Biochars on Maize Biomass and Soil Water Content in a Brazilian Cerrado Arenosol

    Directory of Open Access Journals (Sweden)

    Alicia B. Speratti

    2017-07-01

    Full Text Available Arenosols in the Brazilian Cerrado are increasingly being used for agricultural production, particularly maize. These sandy soils are characterized by low soil organic matter, low available nutrients, and poor water-holding capacity. For this reason, adding biochar as a soil amendment could lead to improved water and nutrient retention. A greenhouse experiment was carried out using twelve biochars derived from four feedstocks (cotton husks, swine manure, eucalyptus sawmill residue, sugarcane filtercake pyrolized at 400, 500 and 600 °C and applied at 5% w/w. The biochars’ effect on maize biomass was examined, along with their contribution to soil physical properties including water retention, electrical conductivity (EC, and grain size distribution. After six weeks, maize plants in soils with eucalyptus and particularly filtercake biochar had higher biomass compared to those in soils with cotton and swine manure biochars. The latter’s low biomass was likely related to excessive salinity. In general, our biochars showed potential for increasing θ in sandy soils compared to the soil alone. Filtercake and eucalyptus biochars may improve soil aeration and water infiltration, while applying cotton and swine manure biochars at levels <5% to avoid high salinity could contribute to improved soil water retention in Cerrado Arenosols.

  16. Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa.

    Science.gov (United States)

    Moore, Sam; Adu-Bredu, Stephen; Duah-Gyamfi, Akwasi; Addo-Danso, Shalom D; Ibrahim, Forzia; Mbou, Armel T; de Grandcourt, Agnès; Valentini, Riccardo; Nicolini, Giacomo; Djagbletey, Gloria; Owusu-Afriyie, Kennedy; Gvozdevaite, Agne; Oliveras, Imma; Ruiz-Jaen, Maria C; Malhi, Yadvinder

    2018-02-01

    Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi-deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%-50% to woody production. Furthermore, we find that (iv) compared with canopy and root growth rates the woody growth rate of these forests is a poor proxy for their overall productivity and that (v) residence time is the primary driver in the productivity-allocation-turnover chain for the observed spatial differences in woody, leaf and root biomass across the rainfall gradient. Through a systematic assessment of forest productivity we demonstrate the importance of directly measuring the main components of above and belowground NPP and encourage the establishment of more permanent carbon intensive monitoring plots across the tropics. © 2017 John Wiley & Sons Ltd.

  17. Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC. [ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation

    Science.gov (United States)

    Hunt, E. R., Jr.; Running, Steven W.

    1992-01-01

    An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.

  18. A spatial model for the economic evaluation of biomass production systems

    International Nuclear Information System (INIS)

    Wei Liu; Phillips, V.D.; Singh, Devindar

    1992-01-01

    A system model for estimating short-rotation, intensive-culture woody biomass production costs, including establishment, maintenance, harvesting, and transport costs, was developed and applied to the island of Kauai. Using data from existing large-plot field trials, biomass yield of the tropical hardwood Eucalyptus saligna was predicted from site-specific factors such as local weather and soil conditions and management strategies. Possible harvesting systems were identified and associated harvesting costs were estimated. The distances from the plantation sites to a bio-conversion plant located at the Lihue sugar mill were calculated based on existing road networks. The delivered cost of biomass on a dollar per dry metric ton (Mg) basis was then calculated using a discounted cash flow method. A geographic information system was interfaced with the biomass system model to access a database and present results in map form. Under the most favorable management strategy modeled, approximately 330 x 10 3 dry Mg year -1 of Eucalyptus saligna could be produced from 12,000 ha at a delivered cost of $25-38 per dry Mg chips. (author)

  19. Estimating the fuel moisture content to control the reciprocating grate furnace firing wet woody biomass

    International Nuclear Information System (INIS)

    Striūgas, N.; Vorotinskienė, L.; Paulauskas, R.; Navakas, R.; Džiugys, A.; Narbutas, L.

    2017-01-01

    Highlights: • Combustion of biomass with varying moisture content might lead to unstable operation of a furnace. • Method for automatic control of a furnace fired with wet biomass was developed. • Fuel moisture is estimated by cost-effective indirect method for predictive control. • Fuel moisture estimation methods and furnace control algorithm were validated in an industrial boiler. - Abstract: In small countries like Lithuania with a widespread district heating system, 5–10 MW moving grate biomass furnaces equipped with water boilers and condensing economisers are widely used. Such systems are designed for firing biomass fuels; however, varying fuel moisture, mostly in the range from 30% to 60%, complicates the automated operation. Without manual adjustment of the grate motion mode and other parameters, unstable operation or even extinction of the furnace is possible. To ensure stable furnace operation with moist fuel, the indirect method to estimate the fuel moisture content was developed based on the heat balance of the flue gas condensing economiser. The developed method was implemented into the automatic control unit of the furnace to estimate the moisture content in the feedstock and predictively adjust the furnace parameters for optimal fuel combustion. The indirect method based on the economiser heat balance was experimentally validated in a 6 MW grate-fired furnace fuelled by biomass with moisture contents of 37, 46, 50, 54 and 60%. The analysis shows that the estimated and manually measured values of the fuel moisture content do not differ by more than 3%. This deviation indicates that the indirect fuel moisture calculation method is sufficiently precise and the calculated moisture content varies proportionally to changes in the thermal capacity of the economiser. By smoothing the data using sliding weighted averaging, the oscillations of the fuel moisture content were identified.

  20. Biomass market introduction. How to overcome the non-technical barriers for a wider use of biomass gasification in Europe. Proceedings of a workshop. Utrecht, November 28. 1997

    International Nuclear Information System (INIS)

    Kaltschmitt, M.; Kwant, K.W.

    1998-03-01

    Bioenergy projects can fail due to technical problems but also due to non-technical barriers. The authors mention the risk of failure, the biomass supply assurance, financing, uncertainty about emission regulations, and acceptance by the public. On the above mentioned background a workshop was organised at 28 November 1997, as a joint activity of Novem and the EU / FAIR Concerted Action Analysis and Co-ordination of the Activities concerning a Gasification of Biomass'. At this workshop important non-technical barriers are identified, ways how to overcome them are analyzed, defined and actions are discussed to be taken on the EU and National level to improve the implementation of biomass gasification projects. Copies of overhead sheets and texts of 14 papers are presented

  1. The toughness of secondary cell wall and woody tissue

    OpenAIRE

    Lucas, P. W.; Tan, H. T. W.; Cheng, P. Y.

    1997-01-01

    The 'across grain' toughness of 51 woods has been determined on thin wet sections using scissors. The moisture content of sections and the varying sharpness of the scissor blades had little effect on the results. In thin sections (less than 0.6mm), toughness rose linearly with section thickness. The intercept toughness at zero thickness, estimated from regression analysis, was proportional to relative density, consistent with values reported for non-woody plant tissues. Extrapolation of the i...

  2. Plot size recommendations for biomass estimation in a midwestern old-growth forest

    Science.gov (United States)

    Martin A. Spetich; George R Parker

    1998-01-01

    The authors examine the relationship between disturbance regime and plot size for woody biomass estimation in a midwestern old-growth deciduous forest from 1926 to 1992. Analysis was done on the core 19.6 ac of a 50.1 ac forest in which every tree 4 in. d.b.h. and greater has been tagged and mapped since 1926. Five windows of time are compared—1926, 1976, 1981, 1986...

  3. DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    Energy Technology Data Exchange (ETDEWEB)

    K. Payette; D. Tillman

    2004-06-01

    During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

  4. Spaceborne Applications of P Band Imaging Radars for Measuring Forest Biomass

    Science.gov (United States)

    Rignot, Eric J.; Zimmermann, Reiner; vanZyl, Jakob J.

    1995-01-01

    In three sites of boreal and temperate forests, P band HH, HV, and VV polarization data combined estimate total aboveground dry woody biomass within 12 to 27% of the values derived from allometric equations, depending on forest complexity. Biomass estimates derived from HV-polarization data only are 2 to 14% less accurate. When the radar operates at circular polarization, the errors exceed 100% over flooded forests, wet or damaged trees and sparse open tall forests because double-bounce reflections of the radar signals yield radar signatures similar to that of tall and massive forests. Circular polarizations, which minimize the effect of Faraday rotation in spaceborne applications, are therefore of limited use for measuring forest biomass. In the tropical rain forest of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 50 kg/sq m in old, undisturbed floodplain stands, the P band horizontal and vertical polarization data combined separate biomass classes in good agreement with forest inventory estimates. The worldwide need for large scale, updated, biomass estimates, achieved with a uniformly applied method, justifies a more in-depth exploration of multi-polarization long wavelength imaging radar applications for tropical forests inventories.

  5. A Technical Review on Biomass Processing: Densification, Preprocessing, Modeling and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Christopher T. Wright

    2010-06-01

    It is now a well-acclaimed fact that burning fossil fuels and deforestation are major contributors to climate change. Biomass from plants can serve as an alternative renewable and carbon-neutral raw material for the production of bioenergy. Low densities of 40–60 kg/m3 for lignocellulosic and 200–400 kg/m3 for woody biomass limits their application for energy purposes. Prior to use in energy applications these materials need to be densified. The densified biomass can have bulk densities over 10 times the raw material helping to significantly reduce technical limitations associated with storage, loading and transportation. Pelleting, briquetting, or extrusion processing are commonly used methods for densification. The aim of the present research is to develop a comprehensive review of biomass processing that includes densification, preprocessing, modeling and optimization. The specific objective include carrying out a technical review on (a) mechanisms of particle bonding during densification; (b) methods of densification including extrusion, briquetting, pelleting, and agglomeration; (c) effects of process and feedstock variables and biomass biochemical composition on the densification (d) effects of preprocessing such as grinding, preheating, steam explosion, and torrefaction on biomass quality and binding characteristics; (e) models for understanding the compression characteristics; and (f) procedures for response surface modeling and optimization.

  6. LANDSAT-4 Science Characterization Early Results. Volume 4: Applications. [agriculture, soils land use, geology, hydrology, wetlands, water quality, biomass identification, and snow mapping

    Science.gov (United States)

    Barker, J. L. (Editor)

    1985-01-01

    The excellent quality of TM data allows researchers to proceed directly with applications analyses, without spending a significant amount of time applying various corrections to the data. The early results derived of TM data are discussed for the following applications: agriculture, land cover/land use, soils, geology, hydrology, wetlands biomass, water quality, and snow.

  7. A generic model for estimating biomass accumulation and greenhouse gas emissions from perennial crops

    Science.gov (United States)

    Ledo, Alicia; Heathcote, Richard; Hastings, Astley; Smith, Pete; Hillier, Jonathan

    2017-04-01

    Agriculture is essential to maintain humankind but is, at the same time, a substantial emitter of greenhouse gas (GHG) emissions. With a rising global population, the need for agriculture to provide secure food and energy supply is one of the main human challenges. At the same time, it is the only sector which has significant potential for negative emissions through the sequestration of carbon and offsetting via supply of feedstock for energy production. Perennial crops accumulate carbon during their lifetime and enhance organic soil carbon increase via root senescence and decomposition. However, inconsistency in accounting for this stored biomass undermines efforts to assess the benefits of such cropping systems when applied at scale. A consequence of this exclusion is that efforts to manage this important carbon stock are neglected. Detailed information on carbon balance is crucial to identify the main processes responsible for greenhouse gas emissions in order to develop strategic mitigation programs. Perennial crops systems represent 30% in area of total global crop systems, a considerable amount to be ignored. Furthermore, they have a major standing both in the bioenergy and global food industries. In this study, we first present a generic model to calculate the carbon balance and GHGs emissions from perennial crops, covering both food and bioenergy crops. The model is composed of two simple process-based sub-models, to cover perennial grasses and other perennial woody plants. The first is a generic individual based sub-model (IBM) covering crops in which the yield is the fruit and the plant biomass is an unharvested residue. Trees, shrubs and climbers fall into this category. The second model is a generic area based sub-model (ABM) covering perennial grasses, in which the harvested part includes some of the plant parts in which the carbon storage is accounted. Most second generation perennial bioenergy crops fall into this category. Both generic sub

  8. Opportunities for renewable biomass in the Dutch province of Zeeland. Background information

    International Nuclear Information System (INIS)

    De Buck, A.; Croezen, H.

    2009-04-01

    The Dutch province of Zeeland is organizing three bio-debates to map economically attractive and renewable biomass opportunities. Participants included industrial businesses, ZLTO, ZMF, Zeeland Seaports, Impuls Zeeland, Hogeschool Zeeland and the University of Ghent. CE Delft is organizing the debates and provides the expertise in this field. In the first debate (Goes, 22 January 2009) the main lines for deployment of biomass in Zeeland were established. One of the conclusions was that there are opportunities for existing industry to implement new technology for large-scale use of (imported) biomass. As for agriculture, there may be opportunities for high-quality chemicals from agricultural crops. Agriculture and industry have opportunities in the short term for better and more high-quality utilization of existing residual flows of biomass. The second and third debate should address concrete opportunities for the industry and agriculture in Zeeland. This report is background information to support the debates. [nl

  9. Overview on the development and utilization of biomass energy in Africa and Asia

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, S D [Biomass Energy Services and Technology Pty. Ltd., Saratoga, New South Wales (Australia)

    1995-12-01

    In developing countries, biomass is the main source of energy for rural communities and industries and is often a source even for urban households. A pressing concern is the rapid rate of deforestation, brought about by two factors: land clearing for agricultural production and for dwellings and the growing demand for biomass as an energy source. The production of agricultural and forest residues has also been increasing. Much of this residue is disposed of by burning it on the fields or is used in highly polluting stoves and furnaces for cooking or other food processing or industrial activities. Air pollution from inefficient combustion of biomass residues is severe in a number of places, leading to increases in eye and lung diseases and in greenhouse gas emissions. In this overview paper, the following information will be provided: Summary of the available data on biomass resources from Africa and Asia and indication of its reliability; Description of the current technologies used to convert biomass to energy; Discussion of the current research and development (R and D) on the efficiency of these technologies; Examination of the barriers impeding the adoption of new, more efficient technologies; Identification and evaluation of the policies and strategies being used to improve the efficiency of biomass as an energy source and to increase resource availability. Biomass will continue to be the main fuel for most households and many rural industries in Asia and Africa for the next 10 years. In many countries, the biomass, especially wood, is being used on an unsustainable basis. A wide range of more efficient and less expensive conversion and production technologies have now been developed and are in use in Africa and Asia. The rates of adoption of these technologies have varied considerably, however, between and within countries of the region. For effective dissemination, governments, non-governmental organizations (NGOs), commercial organizations and end

  10. Overview on the development and utilization of biomass energy in Africa and Asia

    International Nuclear Information System (INIS)

    Joseph, S.D.

    1995-01-01

    In developing countries, biomass is the main source of energy for rural communities and industries and is often a source even for urban households. A pressing concern is the rapid rate of deforestation, brought about by two factors: land clearing for agricultural production and for dwellings and the growing demand for biomass as an energy source. The production of agricultural and forest residues has also been increasing. Much of this residue is disposed of by burning it on the fields or is used in highly polluting stoves and furnaces for cooking or other food processing or industrial activities. Air pollution from inefficient combustion of biomass residues is severe in a number of places, leading to increases in eye and lung diseases and in greenhouse gas emissions. In this overview paper, the following information will be provided: Summary of the available data on biomass resources from Africa and Asia and indication of its reliability; Description of the current technologies used to convert biomass to energy; Discussion of the current research and development (R and D) on the efficiency of these technologies; Examination of the barriers impeding the adoption of new, more efficient technologies; Identification and evaluation of the policies and strategies being used to improve the efficiency of biomass as an energy source and to increase resource availability. Biomass will continue to be the main fuel for most households and many rural industries in Asia and Africa for the next 10 years. In many countries, the biomass, especially wood, is being used on an unsustainable basis. A wide range of more efficient and less expensive conversion and production technologies have now been developed and are in use in Africa and Asia. The rates of adoption of these technologies have varied considerably, however, between and within countries of the region. For effective dissemination, governments, non-governmental organizations (NGOs), commercial organizations and end

  11. Effect of downed woody debris on small mammal anti-predator behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Hinkleman, Travis, M.; Orrock, John, L.; Loeb, Susan, C.

    2011-10-01

    Anti-predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs,but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used givingup densities to quantify the degree to which downed woody debris alters perceived predation risk by small mammals in southeastern pineforests. We placed 14 foraging trays next to large downed woody debris,shrubs, and in open areas for 12 consecutive nights. Moon illumination, a common indicator of predation risk, led to a similar reduction in small mammal foraging in all three microhabitats (open, downed woody debris,and shrub). Small mammals perceived open microhabitats as riskier than shrub microhabitats, with downed woody debris habitats perceived as being of intermediate risk between shrub and open microhabitats. Despite the presumed benefits of the protective cover of downed woody debris, small mammals may perceive downed woody debris as a relatively risky foraging site in southeastern pine forests where the high diversity and abundance of rodent-eating snakes may provide a primary predatory threat.

  12. Rethinking Bioenergy from an Agricultural Perspective

    DEFF Research Database (Denmark)

    Shortall, Orla

    The aim of this project is to explore the social and ethical dimensions of the agricultural production of perennial energy crop and crop residues for energy. Biomass – any living or recently living matter – is being promoted in industrialised countries as part of the transition from fossil fuels...... agriculture including the biorefinery strategy; multifunctional perennial energy crop production on environmentally marginal land; and ecologically integrated multipurpose biomass production through agroforestry production. There is also an argument which cuts across the paradigms and maintains...

  13. Asymptotic Approximations to the Non-Isothermal Distributed Activation Energy Model for Bio-Mass Pyrolysis

    Directory of Open Access Journals (Sweden)

    Dhaundiyal Alok

    2017-12-01

    Full Text Available This paper describes the influence of some parameters significant to biomass pyrolysis on the numerical solutions of the non-isothermal nth order distributed activation energy model (DAEM using the Gamma distribution and discusses the special case for the positive integer value of the scale parameter (λ, i.e. the Erlang distribution. Investigated parameters are the integral upper limit, the frequency factor, the heating rate, the reaction order, and the shape and rate parameters of the Gamma distribution. Influence of these parameters has been considered for the determination of the kinetic parameters of the non-isothermal nth order Gamma distribution from the experimentally derived thermoanalytical data of biomass pyrolysis. Mathematically, the effect of parameters on numerical solution is also used for predicting the behaviour of the unpyrolysized fraction of biomass with respect to temperature. Analysis of the mathematical model is based upon asymptotic expansions, which leads to the systematic methods for efficient way to determine the accurate approximations. The proposed method, therefore, provides a rapid and highly effective way for estimating the kinetic parameters and the distribution of activation energies.

  14. Woody Allen kimpus arhitektuuriga

    Index Scriptorium Estoniae

    2000-01-01

    Woody Allen protesteerib oma uue lühifilmiga kavatsuse vastu ehitada 16-korruseline ärihoone tema New Yorgi kodu lähedale. W. Allen hindab New Yorgi ajaloolisi rajoone, mida näitab ka oma filmides

  15. Increasing biomass resource availability through supply chain analysis

    International Nuclear Information System (INIS)

    Welfle, Andrew; Gilbert, Paul; Thornley, Patricia

    2014-01-01

    Increased inclusion of biomass in energy strategies all over the world means that greater mobilisation of biomass resources will be required to meet demand. Strategies of many EU countries assume the future use of non-EU sourced biomass. An increasing number of studies call for the UK to consider alternative options, principally to better utilise indigenous resources. This research identifies the indigenous biomass resources that demonstrate the greatest promise for the UK bioenergy sector and evaluates the extent that different supply chain drivers influence resource availability. The analysis finds that the UK's resources with greatest primary bioenergy potential are household wastes (>115 TWh by 2050), energy crops (>100 TWh by 2050) and agricultural residues (>80 TWh by 2050). The availability of biomass waste resources was found to demonstrate great promise for the bioenergy sector, although are highly susceptible to influences, most notably by the focus of adopted waste management strategies. Biomass residue resources were found to be the resource category least susceptible to influence, with relatively high near-term availability that is forecast to increase – therefore representing a potentially robust resource for the bioenergy sector. The near-term availability of UK energy crops was found to be much less significant compared to other resource categories. Energy crops represent long-term potential for the bioenergy sector, although achieving higher limits of availability will be dependent on the successful management of key influencing drivers. The research highlights that the availability of indigenous resources is largely influenced by a few key drivers, this contradicting areas of consensus of current UK bioenergy policy. - Highlights: • As global biomass demand increases, focus is placed indigenous resources. • A Biomass Resource Model is applied to analyse UK biomass supply chain dynamics. • Biomass availability is best increased

  16. Forest biodiversity conservation in the context of increasing woody biomass harvests

    International Nuclear Information System (INIS)

    Bouget, Christophe; Gosselin, Frederic; Gosselin, Marion

    2011-01-01

    After describing peculiarities and stakes in forest biodiversity, we discuss the response of biodiversity to potential habitat changes induced by increasing forest biomass harvesting: decrease in old trees and stands, and in forest areas unmanaged for decades, increase in overall felled areas, in forest road density and in habitat fragmentation, deleterious changes in soil conditions and forest ambience, development of short and very short rotation coppices. Positive or negative effects on several components of forest biodiversity (mainly soil fauna and flora, and dead wood associated species) are explored. Needs are highlighted: biodiversity monitoring, adaptive management and context-based recommendations. (authors)

  17. Port Graham Community Building Biomass Heating Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Patrick [Port Graham Village Corporation, Anchorage, AK (United States); Sink, Charles [Chugachmiut, Anchorage, Alaska (United States)

    2015-04-30

    accommodate hot water from the proposed wood-burning GARN Boiler, once installed, and rely on the existing fuel oil-fired hot water heating equipment for backup. The boiler would use an estimated 125 bone dry tons, equivalent to 100 cords, woody biomass feedstock obtained from local lands per year. Project would use local labor as described in the Port Graham Biomass Project, report completed by Chena Power, Inc. and Winters and Associates as part of the in-kind support to the U. S. Department of Energy (DOE) project for work on a project for State of Alaska’s Alaska Energy Authority (AEA). NVPG will likely initiate operations of the biomass boiler system even though several operational variations were studied. Obtaining the fuel source could be done by contractors, PGVC employees, or NVPG employees. Feeding the system would likely be done by NVPG employees. A majority of the buildings heated would be owned by NVPG. The PGVC office would be heated as well as the Old Fire Hall used as a workshop and storage area for North Pacific Rim Housing Authority. One methodology studied to charge for cost of utilizing the community building biomass system would use a percentage of use of hot water generated by the biomass hot water system based on past heating oil usage in relation to all buildings heated by biomass hot water. The method is better described in the Port Graham Biomass Project report. Fuel source agreements have been drafted to enter into agreements with area landowners. One Native allotment owner has asked Chugachmiut Forestry to begin a timber sale process to sell timber off her lands, specifically wind thrown timber that was determined to be of sufficient quantity to supply to the proposed biomass heating system for approximately 5-years. On NVPG’s behalf, Chugachmiut has presented to PGVC three different documents, attached, that could lead to a sale of woody biomass fuel for the project for up to 25-years, the expected life of the project. PGVC has signed a letter

  18. Biomass electric technologies: Status and future development

    International Nuclear Information System (INIS)

    Bain, R.L.; Overend, R.P.

    1992-01-01

    At the present time, there axe approximately 6 gigawatts (GWe) of biomass-based, grid-connected electrical generation capacity in the United States. This capacity is primarily combustion-driven, steam-turbine technology, with the great majority of the plants of a 5-50 megawatt (MW) size and characterized by heat rates of 14,770-17,935 gigajoules per kilowatt-hour (GJ/kWh) (14,000-17,000 Btu/kWh or 18%-24% efficiency), and with installed capital costs of $1,300-$1,500/kW. Cost of electricity for existing plants is in the $0.065-$O.08/kWh range. Feedstocks are mainly waste materials; wood-fired systems account for 88% of the total biomass capacity, followed by agricultural waste (3%), landfill gas (8%), and anaerobic digesters (1%). A significant amount of remote, non-grid-connected, wood-fired capacity also exists in the paper and wood products industry. This chapter discusses biomass power technology status and presents the strategy for the U.S. Department of Energy (DOE) Biomass Power Program for advancing biomass electric technologies to 18 GWe by the year 2010, and to greater than 100 GWe by the year 2030. Future generation systems will be characterized by process efficiencies in the 35%-40% range, by installed capital costs of $770-$900/kW, by a cost of electricity in the $0.04-$O.05/kWh range, and by the use of dedicated fuel-supply systems. Technology options such as integrated gasification/gas-turbine systems, integrated pyrolysis/gas-turbine systems, and innovative direct-combustion systems are discussed, including present status and potential growth. This chapter also presents discussions of the U.S. utility sector and the role of biomass-based systems within the industry, the potential advantages of biomass in comparison to coal, and the potential environmental impact of biomass-based electricity generation

  19. Systemic analysis of production scenarios for bioethanol produced from ligno-cellulosic biomass [abstract

    Directory of Open Access Journals (Sweden)

    Ghysel, F.

    2010-01-01

    Full Text Available Defining alternatives for non-renewable energy sources constitutes a priority to the development of our societies. One of these alternatives is biofuels production starting from energy crops, agricultural wastes, forest products or wastes. In this context, a "second generation" biofuels production, aiming at utilizing the whole plant, including ligno-cellulosic (hemicelluloses, cellulose, lignin fractions (Ogier et al., 1999 that are not used for human food, would allow the reduction of the drawbacks of bioethanol production (Schoeling, 2007. However, numerous technical, economical, ethical and environmental questions are still pending. One of the aims of the BioEtha2 project, directed by the Walloon Agricultural Research Centre, is to define the position of bioethanol produced from ligno-cellulosic biomass among the different renewable energy alternatives that could be developed in Wallonia towards 2020. With this aim, and in order to answer the numerous questions in this field, the project aims at using tools and methods coming from the concept of "forecasting scenarios" (Sebillotte, 2002; Slegten et al., 2007; For-learn, 2008. This concept, based on a contemporary reality, aims to explore different possible scenarios for the future development of alternative sources of energy production. The principle is to evaluate, explore, possible futures of the studied problematic, through the establishment of possible evolution trajectories. We contribute to this prospective through a systemic approach (Vanloqueren, 2007 that allows lightening the existing interactions within the system "ligno-cellulosic biomass chain" without isolating it from its environment. We explain and sketch the two contexts needed to identify primary stakes. The global context includes inter-dependant and auto-regulating fields such as society, politics, technology and economy. These four fields influence each part of the "chain" with specific tools. However, the interest and

  20. Woody crops conference 2013; Agrarholz-Kongress 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Within the Guelzow expert discussions at 19th and 20th February 2013 in Berlin (Federal Republic of Germany) the following lectures were held: (1) Research funding of the BMELV in the field of the production of woody crops (Andreas Schuette); (2) ELKE - Development of extensive concepts of land use for the production of renewable raw materials as possible compensatory measures and substitute measures (Frank Wegener); (3) Knowledge transfer to the realm of practice, experiences of the DLG (Frank Setzer); (4) Results of the tests with fast growing tree species after 18 years of cultivation in Guelzow (Andreas Gurgel); (5) Latest findings on the production of woody crops in Brandenburg (D. Murach); (6) Phytosanitary situation in short-rotation coppices in Germany - Current state of knowledge and prognoses for the future (Christiane Helbig); (7) Evaluation of alternative delivery procedures in short-rotation coppices (Janine Schweier); (8) With a short-rotation coppice shredder through Germany (Wolfram Kudlich); (9) Changes of land-use of traditional crops rotation systems to short-rotation coppices consisting of poplar trees and willow trees, which sites are suitable? - Selected results from the ProLoc association (Martin Hofmann); (10) Cultivation of populus tremula for short-rotation coppices at agricultural areas (Mirko Liesebach); (11) Investigations of the resistance behaviour of newly developed black poplar clones and balsam poplar clones against the poplar leave rust Melampsora larici-populina (Christina Fey-Wagner); (12) A agri-forestry system for ligneous energy production in the organic farming - First results from cultivation experiments in Bavaria (Klaus Wiesinger); (13) Implementation of agri-forestry systems with energy wood in the rural area - the project AgroForstEnergie (Armin Vetter); (14) Impact of agroforestry land utilization on microclimate, soil fertility and quality of water (Christian Boehm).