WorldWideScience

Sample records for non-volatile memory based

  1. EDITORIAL: Non-volatile memory based on nanostructures Non-volatile memory based on nanostructures

    Science.gov (United States)

    Kalinin, Sergei; Yang, J. Joshua; Demming, Anna

    2011-06-01

    Non-volatile memory refers to the crucial ability of computers to store information once the power source has been removed. Traditionally this has been achieved through flash, magnetic computer storage and optical discs, and in the case of very early computers paper tape and punched cards. While computers have advanced considerably from paper and punched card memory devices, there are still limits to current non-volatile memory devices that restrict them to use as secondary storage from which data must be loaded and carefully saved when power is shut off. Denser, faster, low-energy non-volatile memory is highly desired and nanostructures are the critical enabler. This special issue on non-volatile memory based on nanostructures describes some of the new physics and technology that may revolutionise future computers. Phase change random access memory, which exploits the reversible phase change between crystalline and amorphous states, also holds potential for future memory devices. The chalcogenide Ge2Sb2Te5 (GST) is a promising material in this field because it combines a high activation energy for crystallization and a relatively low crystallization temperature, as well as a low melting temperature and low conductivity, which accommodates localized heating. Doping is often used to lower the current required to activate the phase change or 'reset' GST but this often aggravates other problems. Now researchers in Korea report in-depth studies of SiO2-doped GST and identify ways of optimising the material's properties for phase-change random access memory [1]. Resistance switching is an area that has attracted a particularly high level of interest for non-volatile memory technology, and a great deal of research has focused on the potential of TiO2 as a model system in this respect. Researchers at HP labs in the US have made notable progress in this field, and among the work reported in this special issue they describe means to control the switch resistance and show

  2. Non-volatile memory based on the ferroelectric photovoltaic effect

    Science.gov (United States)

    Guo, Rui; You, Lu; Zhou, Yang; Shiuh Lim, Zhi; Zou, Xi; Chen, Lang; Ramesh, R.; Wang, Junling

    2013-01-01

    The quest for a solid state universal memory with high-storage density, high read/write speed, random access and non-volatility has triggered intense research into new materials and novel device architectures. Though the non-volatile memory market is dominated by flash memory now, it has very low operation speed with ~10 μs programming and ~10 ms erasing time. Furthermore, it can only withstand ~105 rewriting cycles, which prevents it from becoming the universal memory. Here we demonstrate that the significant photovoltaic effect of a ferroelectric material, such as BiFeO3 with a band gap in the visible range, can be used to sense the polarization direction non-destructively in a ferroelectric memory. A prototype 16-cell memory based on the cross-bar architecture has been prepared and tested, demonstrating the feasibility of this technique. PMID:23756366

  3. Emerging non-volatile memories

    CERN Document Server

    Hong, Seungbum; Wouters, Dirk

    2014-01-01

    This book is an introduction to the fundamentals of emerging non-volatile memories and provides an overview of future trends in the field. Readers will find coverage of seven important memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), Multiferroic RAM (MFRAM), Phase-Change Memories (PCM), Oxide-based Resistive RAM (RRAM), Probe Storage, and Polymer Memories. Chapters are structured to reflect diffusions and clashes between different topics. Emerging Non-Volatile Memories is an ideal book for graduate students, faculty, and professionals working in the area of non-volatile memory. This book also: Covers key memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), and Multiferroic RAM (MFRAM), among others. Provides an overview of non-volatile memory fundamentals. Broadens readers' understanding of future trends in non-volatile memories.

  4. Non-volatile memories

    CERN Document Server

    Lacaze, Pierre-Camille

    2014-01-01

    Written for scientists, researchers, and engineers, Non-volatile Memories describes the recent research and implementations in relation to the design of a new generation of non-volatile electronic memories. The objective is to replace existing memories (DRAM, SRAM, EEPROM, Flash, etc.) with a universal memory model likely to reach better performances than the current types of memory: extremely high commutation speeds, high implantation densities and retention time of information of about ten years.

  5. A graphene-based non-volatile memory

    Science.gov (United States)

    Loisel, Loïc.; Maurice, Ange; Lebental, Bérengère; Vezzoli, Stefano; Cojocaru, Costel-Sorin; Tay, Beng Kang

    2015-09-01

    We report on the development and characterization of a simple two-terminal non-volatile graphene switch. After an initial electroforming step during which Joule heating leads to the formation of a nano-gap impeding the current flow, the devices can be switched reversibly between two well-separated resistance states. To do so, either voltage sweeps or pulses can be used, with the condition that VSET achieve reversible switching on more than 100 cycles with resistance ratio values of 104. This approach of graphene memory is competitive as compared to other graphene approaches such as redox of graphene oxide, or electro-mechanical switches with suspended graphene. We suggest a switching model based on a planar electro-mechanical switch, whereby electrostatic, elastic and friction forces are competing to switch devices ON and OFF, and the stability in the ON state is achieved by the formation of covalent bonds between the two stretched sides of the graphene, hence bridging the nano-gap. Developing a planar electro-mechanical switch enables to obtain the advantages of electro-mechanical switches while avoiding most of their drawbacks.

  6. Silicon nano crystal-based non-volatile memory devices

    International Nuclear Information System (INIS)

    Ng, C.Y.; Chen, T.P.; Sreeduth, D.; Chen, Q.; Ding, L.; Du, A.

    2006-01-01

    In this work, we have investigated the performance and reliability of a Flash memory based on silicon nanocrystal synthesized with very-low energy ion beams. The devices are fabricated with a conventional CMOS process and the size of the nanocrystal is ∼ 4 nm as determined from TEM measurement. Electrical properties of the devices with a tunnel oxide of either 3 nm or 7 nm are evaluated. The devices exhibit good endurance up to 10 5 W/E cycles even at the high operation temperature of 85 deg. C for both the tunnel oxide thicknesses. For the thicker tunnel oxide (i.e., the 7-nm tunnel oxide), a good retention performance with an extrapolated 10-year memory window of ∼ 0.3 V (or ∼ 20% of charge lose after 10 years) is achieved. However, ∼ 70% of charge loss after 10 years is expected for the thinner tunnel oxide (i.e., the 3-nm tunnel oxide)

  7. Carbon nanomaterials for non-volatile memories

    Science.gov (United States)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  8. A room-temperature non-volatile CNT-based molecular memory cell

    Science.gov (United States)

    Ye, Senbin; Jing, Qingshen; Han, Ray P. S.

    2013-04-01

    Recent experiments with a carbon nanotube (CNT) system confirmed that the innertube can oscillate back-and-forth even under a room-temperature excitation. This demonstration of relative motion suggests that it is now feasible to build a CNT-based molecular memory cell (MC), and the key to bring the concept to reality is the precision control of the moving tube for sustained and reliable read/write (RW) operations. Here, we show that by using a 2-section outertube design, we are able to suitably recalibrate the system energetics and obtain the designed performance characteristics of a MC. Further, the resulting energy modification enables the MC to operate as a non-volatile memory element at room temperatures. Our paper explores a fundamental understanding of a MC and its response at the molecular level to roadmap a novel approach in memory technologies that can be harnessed to overcome the miniaturization limit and memory volatility in memory technologies.

  9. Origami-based tunable truss structures for non-volatile mechanical memory operation.

    Science.gov (United States)

    Yasuda, Hiromi; Tachi, Tomohiro; Lee, Mia; Yang, Jinkyu

    2017-10-17

    Origami has recently received significant interest from the scientific community as a method for designing building blocks to construct metamaterials. However, the primary focus has been placed on their kinematic applications by leveraging the compactness and auxeticity of planar origami platforms. Here, we present volumetric origami cells-specifically triangulated cylindrical origami (TCO)-with tunable stability and stiffness, and demonstrate their feasibility as non-volatile mechanical memory storage devices. We show that a pair of TCO cells can develop a double-well potential to store bit information. What makes this origami-based approach more appealing is the realization of two-bit mechanical memory, in which two pairs of TCO cells are interconnected and one pair acts as a control for the other pair. By assembling TCO-based truss structures, we experimentally verify the tunable nature of the TCO units and demonstrate the operation of purely mechanical one- and two-bit memory storage prototypes.Origami is a popular method to design building blocks for mechanical metamaterials. Here, the authors assemble a volumetric origami-based structure, predict its axial and rotational movements during folding, and demonstrate the operation of mechanical one- and two-bit memory storage.

  10. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications.

    Science.gov (United States)

    Liu, Chunsen; Yan, Xiao; Song, Xiongfei; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2018-04-09

    As conventional circuits based on field-effect transistors are approaching their physical limits due to quantum phenomena, semi-floating gate transistors have emerged as an alternative ultrafast and silicon-compatible technology. Here, we show a quasi-non-volatile memory featuring a semi-floating gate architecture with band-engineered van der Waals heterostructures. This two-dimensional semi-floating gate memory demonstrates 156 times longer refresh time with respect to that of dynamic random access memory and ultrahigh-speed writing operations on nanosecond timescales. The semi-floating gate architecture greatly enhances the writing operation performance and is approximately 10 6 times faster than other memories based on two-dimensional materials. The demonstrated characteristics suggest that the quasi-non-volatile memory has the potential to bridge the gap between volatile and non-volatile memory technologies and decrease the power consumption required for frequent refresh operations, enabling a high-speed and low-power random access memory.

  11. Non-volatile main memory management methods based on a file system.

    Science.gov (United States)

    Oikawa, Shuichi

    2014-01-01

    There are upcoming non-volatile (NV) memory technologies that provide byte addressability and high performance. PCM, MRAM, and STT-RAM are such examples. Such NV memory can be used as storage because of its data persistency without power supply while it can be used as main memory because of its high performance that matches up with DRAM. There are a number of researches that investigated its uses for main memory and storage. They were, however, conducted independently. This paper presents the methods that enables the integration of the main memory and file system management for NV memory. Such integration makes NV memory simultaneously utilized as both main memory and storage. The presented methods use a file system as their basis for the NV memory management. We implemented the proposed methods in the Linux kernel, and performed the evaluation on the QEMU system emulator. The evaluation results show that 1) the proposed methods can perform comparably to the existing DRAM memory allocator and significantly better than the page swapping, 2) their performance is affected by the internal data structures of a file system, and 3) the data structures appropriate for traditional hard disk drives do not always work effectively for byte addressable NV memory. We also performed the evaluation of the effects caused by the longer access latency of NV memory by cycle-accurate full-system simulation. The results show that the effect on page allocation cost is limited if the increase of latency is moderate.

  12. Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices

    Science.gov (United States)

    Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon

    2016-01-01

    Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07377d

  13. Active non-volatile memory post-processing

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Sudarsun; Milojicic, Dejan S.; Talwar, Vanish

    2017-04-11

    A computing node includes an active Non-Volatile Random Access Memory (NVRAM) component which includes memory and a sub-processor component. The memory is to store data chunks received from a processor core, the data chunks comprising metadata indicating a type of post-processing to be performed on data within the data chunks. The sub-processor component is to perform post-processing of said data chunks based on said metadata.

  14. Highly conducting leakage-free electrolyte for SrCoOx-based non-volatile memory device

    Science.gov (United States)

    Katase, Takayoshi; Suzuki, Yuki; Ohta, Hiromichi

    2017-10-01

    The electrochemical switching of SrCoOx-based non-volatile memory with a thin-film-transistor structure was examined by using liquid-leakage-free electrolytes with different conductivities (σ) as the gate insulator. We first examined leakage-free water, which is incorporated in the amorphous (a-) 12CaO.7Al2O3 film with a nanoporous structure (Calcium Aluminate with Nanopore), but the electrochemical oxidation/reduction of the SrCoOx layer required the application of a high gate voltage (Vg) up to 20 V for a very long current-flowing-time (t) ˜40 min, primarily due to the low σ [2.0 × 10-8 S cm-1 at room temperature (RT)] of leakage-free water. We then controlled the σ of the leakage-free electrolyte, infiltrated in the a-NaxTaO3 film with a nanopillar array structure, from 8.0 × 10-8 S cm-1 to 2.5 × 10-6 S cm-1 at RT by changing the x = 0.01-1.0. As the result, the t, required for the metallization of the SrCoOx layer under small Vg = -3 V, becomes two orders of magnitude shorter with increase of the σ of the a-NaxTaO3 leakage-free electrolyte. These results indicate that the ion migration in the leakage-free electrolyte is the rate-determining step for the electrochemical switching, compared to the other electrochemical process, and the high σ of the leakage-free electrolyte is the key factor for the development of the non-volatile SrCoOx-based electro-magnetic phase switching device.

  15. Organic non-volatile memories from ferroelectric phase separated blends

    Science.gov (United States)

    Asadi, Kamal; de Leeuw, Dago; de Boer, Bert; Blom, Paul

    2009-03-01

    Ferroelectric polarisation is an attractive physical property for non-volatile binary switching. The functionality of the targeted memory should be based on resistive switching. Conductivity and ferroelectricity however cannot be tuned independently. The challenge is to develop a storage medium in which the favourable properties of ferroelectrics such as bistability and non-volatility can be combined with the beneficial properties provided by semiconductors such as conductivity and rectification. In this contribution we present an integrated solution by blending semiconducting and ferroelectric polymers into phase separated networks. The polarisation field of the ferroelectric modulates the injection barrier at the semiconductor--metal contact. This combination allows for solution-processed non-volatile memory arrays with a simple cross-bar architecture that can be read-out non-destructively. Based on this general concept a non-volatile, reversible switchable Schottky diode with relatively fast programming time of shorter than 100 microseconds, long information retention time of longer than 10^ days, and high programming cycle endurance with non-destructive read-out is demonstrated.

  16. Channel equalization techniques for non-volatile memristor memories

    KAUST Repository

    Naous, Rawan

    2016-03-16

    Channel coding and information theoretic approaches have been utilized in conventional non-volatile memories to overcome their inherent design limitations of leakage, coupling and refresh rates. However, the continuous scaling and integration constraints set on the current devices directed the attention towards emerging memory technologies as suitable alternatives. Memristive devices are prominent candidates to replace the conventional electronics due to its non-volatility and small feature size. Nonetheless, memristor-based memories still encounter an accuracy limitation throughout the read operation addressed as the sneak path phenomenon. The readout data is corrupted with added distortion that increases significantly the bit error rate and jeopardizes the reliability of the read operation. A novel technique is applied to alleviate this distorting effect where the communication channel model is proposed for the memory array. Noise cancellation principles are applied with the aid of preset pilots to extract channel information and adjust the readout values accordingly. The proposed technique has the virtue of high speed, energy efficiency, and low complexity design while achieving high reliability and error-free decoding.

  17. Channel equalization techniques for non-volatile memristor memories

    KAUST Repository

    Naous, Rawan; Zidan, Mohammed A.; Salem, Ahmed Sultan; Salama, Khaled N.

    2016-01-01

    Channel coding and information theoretic approaches have been utilized in conventional non-volatile memories to overcome their inherent design limitations of leakage, coupling and refresh rates. However, the continuous scaling and integration constraints set on the current devices directed the attention towards emerging memory technologies as suitable alternatives. Memristive devices are prominent candidates to replace the conventional electronics due to its non-volatility and small feature size. Nonetheless, memristor-based memories still encounter an accuracy limitation throughout the read operation addressed as the sneak path phenomenon. The readout data is corrupted with added distortion that increases significantly the bit error rate and jeopardizes the reliability of the read operation. A novel technique is applied to alleviate this distorting effect where the communication channel model is proposed for the memory array. Noise cancellation principles are applied with the aid of preset pilots to extract channel information and adjust the readout values accordingly. The proposed technique has the virtue of high speed, energy efficiency, and low complexity design while achieving high reliability and error-free decoding.

  18. Method for refreshing a non-volatile memory

    Science.gov (United States)

    Riekels, James E.; Schlesinger, Samuel

    2008-11-04

    A non-volatile memory and a method of refreshing a memory are described. The method includes allowing an external system to control refreshing operations within the memory. The memory may generate a refresh request signal and transmit the refresh request signal to the external system. When the external system finds an available time to process the refresh request, the external system acknowledges the refresh request and transmits a refresh acknowledge signal to the memory. The memory may also comprise a page register for reading and rewriting a data state back to the memory. The page register may comprise latches in lieu of supplemental non-volatile storage elements, thereby conserving real estate within the memory.

  19. Bioorganic nanodots for non-volatile memory devices

    International Nuclear Information System (INIS)

    Amdursky, Nadav; Shalev, Gil; Handelman, Amir; Natan, Amir; Rosenwaks, Yossi; Litsyn, Simon; Szwarcman, Daniel; Rosenman, Gil; Roizin, Yakov

    2013-01-01

    In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of ∼2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge storage nanounits in non-volatile memory. For that purpose, we first directly observe the crystallinity of a single PND by electron microscopy. We use these nanocrystalline PNDs units for the formation of a dense monolayer on SiO 2 surface, and study the electron/hole trapping mechanisms and charge retention ability of the monolayer, followed by fabrication of PND-based memory cell device

  20. Bioorganic nanodots for non-volatile memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Amdursky, Nadav; Shalev, Gil; Handelman, Amir; Natan, Amir; Rosenwaks, Yossi [School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Litsyn, Simon; Szwarcman, Daniel; Rosenman, Gil, E-mail: rgil@post.tau.ac.il [School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); StoreDot LTD, 16 Menahem Begin St., Ramat Gan (Israel); Roizin, Yakov [School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); TowerJazz, P.O. Box 619, Migdal HaEmek 23105 (Israel)

    2013-12-01

    In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of ∼2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge storage nanounits in non-volatile memory. For that purpose, we first directly observe the crystallinity of a single PND by electron microscopy. We use these nanocrystalline PNDs units for the formation of a dense monolayer on SiO{sub 2} surface, and study the electron/hole trapping mechanisms and charge retention ability of the monolayer, followed by fabrication of PND-based memory cell device.

  1. High performance non-volatile ferroelectric copolymer memory based on a ZnO nanowire transistor fabricated on a transparent substrate

    International Nuclear Information System (INIS)

    Nedic, Stanko; Welland, Mark; Tea Chun, Young; Chu, Daping; Hong, Woong-Ki

    2014-01-01

    A high performance ferroelectric non-volatile memory device based on a top-gate ZnO nanowire (NW) transistor fabricated on a glass substrate is demonstrated. The ZnO NW channel was spin-coated with a poly (vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer acting as a top-gate dielectric without buffer layer. Electrical conductance modulation and memory hysteresis are achieved by a gate electric field induced reversible electrical polarization switching of the P(VDF-TrFE) thin film. Furthermore, the fabricated device exhibits a memory window of ∼16.5 V, a high drain current on/off ratio of ∼10 5 , a gate leakage current below ∼300 pA, and excellent retention characteristics for over 10 4 s

  2. Non Volatile Flash Memory Radiation Tests

    Science.gov (United States)

    Irom, Farokh; Nguyen, Duc N.; Allen, Greg

    2012-01-01

    Commercial flash memory industry has experienced a fast growth in the recent years, because of their wide spread usage in cell phones, mp3 players and digital cameras. On the other hand, there has been increased interest in the use of high density commercial nonvolatile flash memories in space because of ever increasing data requirements and strict power requirements. Because of flash memories complex structure; they cannot be treated as just simple memories in regards to testing and analysis. It becomes quite challenging to determine how they will respond in radiation environments.

  3. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    Science.gov (United States)

    Di Pendina, G.; Zianbetov, E.; Beigne, E.

    2015-05-01

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  4. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    Energy Technology Data Exchange (ETDEWEB)

    Di Pendina, G., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr; Zianbetov, E., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); Beigne, E., E-mail: gregory.dipendina@cea.fr, E-mail: eldar.zianbetov@cea.fr, E-mail: edith.beigne@cea.fr [Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble (France)

    2015-05-07

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes.

  5. Magnetic Random Access Memory based non-volatile asynchronous Muller cell for ultra-low power autonomous applications

    International Nuclear Information System (INIS)

    Di Pendina, G.; Zianbetov, E.; Beigne, E.

    2015-01-01

    Micro and nano electronic integrated circuit domain is today mainly driven by the advent of the Internet of Things for which the constraints are strong, especially in terms of power consumption and autonomy, not only during the computing phases but also during the standby or idle phases. In such ultra-low power applications, the circuit has to meet new constraints mainly linked to its changing energetic environment: long idle phases, automatic wake up, data back-up when the circuit is sporadically turned off, and ultra-low voltage power supply operation. Such circuits have to be completely autonomous regarding their unstable environment, while remaining in an optimum energetic configuration. Therefore, we propose in this paper the first MRAM-based non-volatile asynchronous Muller cell. This cell has been simulated and characterized in a very advanced 28 nm CMOS fully depleted silicon-on-insulator technology, presenting good power performance results due to an extremely efficient body biasing control together with ultra-wide supply voltage range from 160 mV up to 920 mV. The leakage current can be reduced to 154 pA thanks to reverse body biasing. We also propose an efficient standard CMOS bulk version of this cell in order to be compatible with different fabrication processes

  6. Novel applications of non-volatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Duthie, I

    1982-01-01

    The author reviews briefly the evolution of the programmable memory and the alternative technologies, before discussing the operation of a small EEPROM when used in conjunction with a microprocessor for typical applications. Some applications are reviewed and the opportunities which eeproms can offer for new applications are presented, together with the requirements for artificial intelligence to become a reality.

  7. A radiation-tolerant, low-power non-volatile memory based on silicon nanocrystal quantum dots

    OpenAIRE

    Bell, L. D.; Boer, E.; Ostraat, M.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.; De Blauwe, J.; Green, M. L.

    2001-01-01

    Nanocrystal nonvolatile floating-gate memories are a good candidate for space applications - initial results suggest they are fast, more reliable and consume less power than conventional floating gate memories. In the nanocrystal based NVM device, charge is not stored on a continuous polysilicon layer (so-called floating gate), but instead on a layer of discrete nanocrystals. Charge injection and storage in dense arrays of silicon nanocrystals in SiO_2 is a critical aspect of the performance ...

  8. Use of non-volatile memories for SSC detector readout

    International Nuclear Information System (INIS)

    Fennelly, A.J.; Woosley, J.K.; Johnson, M.B.

    1990-01-01

    Use of non-volatile memory units at the end of each fiber optic bunch/strand would substantially increase information available from experiments by providing a complete event history, in addition to easing real time processing requirements. This may be an alternative to enhancing technology to optical computing techniques. Available and low-risk projected technologies will be surveyed, with costing addressed. Some discussion will be given to covnersion of optical signals, to electronic information, concepts for providing timing pulses to the memory units, and to the magnetoresistive (MRAM) and ferroelectric (FERAM) random access memory technologies that may be utilized in the prototype system

  9. Effect of Ag nanoparticles on resistive switching of polyfluorene-based organic non-volatile memory devices

    International Nuclear Information System (INIS)

    Kim, Tae-Wook; Oh, Seung-Hwan; Choi, Hye-Jung; Wang, Gun-Uk; Kim, Dong-Yu; Hwang, Hyun-Sang; Lee, Tak-Hee

    2010-01-01

    The effects of Ag nanoparticles on the switching behavior of polyfluorene-based organic nonvolatile memory devices were investigated. Polyfluorene-derivatives (WPF-oxy-F) with and without Ag nanoparticles were synthesized, and the presence of Ag nanoparticles in Ag-WPF-oxy-F was identified by transmission electron microscopy and X-ray photoelectron spectroscopy analyses. The Ag-nanoparticles did not significantly affect the basic switching performances, such as the current-voltage characteristics, the distribution of on/off resistance, and the retention. The pulse switching time of Ag-WPF-oxy-F was faster than that of WPF-oxy-F. Ag-WPF-oxy-F memory devices showed an area dependence in the high resistance state, implying that formation of a Ag metallic channel for current conduction.

  10. GaAs metal-oxide-semiconductor based non-volatile flash memory devices with InAs quantum dots as charge storage nodes

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Sk Masiul, E-mail: masiulelt@gmail.com; Chowdhury, Sisir; Sarkar, Krishnendu; Nagabhushan, B.; Banerji, P. [Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Chakraborty, S. [Applied Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Sector-I, Kolkata 700 064 (India); Mukherjee, Rabibrata [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-06-24

    Ultra-thin InP passivated GaAs metal-oxide-semiconductor based non-volatile flash memory devices were fabricated using InAs quantum dots (QDs) as charge storing elements by metal organic chemical vapor deposition technique to study the efficacy of the QDs as charge storage elements. The grown QDs were embedded between two high-k dielectric such as HfO{sub 2} and ZrO{sub 2}, which were used for tunneling and control oxide layers, respectively. The size and density of the QDs were found to be 5 nm and 1.8×10{sup 11} cm{sup −2}, respectively. The device with a structure Metal/ZrO{sub 2}/InAs QDs/HfO{sub 2}/GaAs/Metal shows maximum memory window equivalent to 6.87 V. The device also exhibits low leakage current density of the order of 10{sup −6} A/cm{sup 2} and reasonably good charge retention characteristics. The low value of leakage current in the fabricated memory device is attributed to the Coulomb blockade effect influenced by quantum confinement as well as reduction of interface trap states by ultra-thin InP passivation on GaAs prior to HfO{sub 2} deposition.

  11. Bipolar resistive switching in graphene oxide based metal insulator metal structure for non-volatile memory applications

    Science.gov (United States)

    Singh, Rakesh; Kumar, Ravi; Kumar, Anil; Kashyap, Rajesh; Kumar, Mukesh; Kumar, Dinesh

    2018-05-01

    Graphene oxide based devices have attracted much attention recently because of their possible application in next generation electronic devices. In this study, bipolar resistive switching characteristics of graphene oxide based metal insulator metal structure were investigated for nonvolatile memories. The graphene oxide was prepared by the conventional Hummer's method and deposited on ITO coated glass by spin-coating technique. The dominant mechanism of resistive switching is the formation and rupture of the conductive filament inside the graphene oxide. The conduction mechanism for low and high resistance states are dominated by two mechanism the ohmic conduction and space charge limited current (SCLC) mechanism, respectively. Atomic Force Microscopy, X-ray diffraction, Cyclic-Voltammetry were conducted to observe the morphology, structure and behavior of the material. The fabricated device with Al/GO/ITO structure exhibited reliable bipolar resistive switching with set & reset voltage of -2.3 V and 3V respectively.

  12. Highly Stretchable Non-volatile Nylon Thread Memory

    Science.gov (United States)

    Kang, Ting-Kuo

    2016-04-01

    Integration of electronic elements into textiles, to afford e-textiles, can provide an ideal platform for the development of lightweight, thin, flexible, and stretchable e-textiles. This approach will enable us to meet the demands of the rapidly growing market of wearable-electronics on arbitrary non-conventional substrates. However the actual integration of the e-textiles that undergo mechanical deformations during both assembly and daily wear or satisfy the requirements of the low-end applications, remains a challenge. Resistive memory elements can also be fabricated onto a nylon thread (NT) for e-textile applications. In this study, a simple dip-and-dry process using graphene-PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) ink is proposed for the fabrication of a highly stretchable non-volatile NT memory. The NT memory appears to have typical write-once-read-many-times characteristics. The results show that an ON/OFF ratio of approximately 103 is maintained for a retention time of 106 s. Furthermore, a highly stretchable strain and a long-term digital-storage capability of the ON-OFF-ON states are demonstrated in the NT memory. The actual integration of the knitted NT memories into textiles will enable new design possibilities for low-cost and large-area e-textile memory applications.

  13. Physical principles and current status of emerging non-volatile solid state memories

    Science.gov (United States)

    Wang, L.; Yang, C.-H.; Wen, J.

    2015-07-01

    Today the influence of non-volatile solid-state memories on persons' lives has become more prominent because of their non-volatility, low data latency, and high robustness. As a pioneering technology that is representative of non-volatile solidstate memories, flash memory has recently seen widespread application in many areas ranging from electronic appliances, such as cell phones and digital cameras, to external storage devices such as universal serial bus (USB) memory. Moreover, owing to its large storage capacity, it is expected that in the near future, flash memory will replace hard-disk drives as a dominant technology in the mass storage market, especially because of recently emerging solid-state drives. However, the rapid growth of the global digital data has led to the need for flash memories to have larger storage capacity, thus requiring a further downscaling of the cell size. Such a miniaturization is expected to be extremely difficult because of the well-known scaling limit of flash memories. It is therefore necessary to either explore innovative technologies that can extend the areal density of flash memories beyond the scaling limits, or to vigorously develop alternative non-volatile solid-state memories including ferroelectric random-access memory, magnetoresistive random-access memory, phase-change random-access memory, and resistive random-access memory. In this paper, we review the physical principles of flash memories and their technical challenges that affect our ability to enhance the storage capacity. We then present a detailed discussion of novel technologies that can extend the storage density of flash memories beyond the commonly accepted limits. In each case, we subsequently discuss the physical principles of these new types of non-volatile solid-state memories as well as their respective merits and weakness when utilized for data storage applications. Finally, we predict the future prospects for the aforementioned solid-state memories for

  14. Overview of one transistor type of hybrid organic ferroelectric non-volatile memory

    Institute of Scientific and Technical Information of China (English)

    Young; Tea; Chun; Daping; Chu

    2015-01-01

    Organic ferroelectric memory devices based on field effect transistors that can be configured between two stable states of on and off have been widely researched as the next generation data storage media in recent years.This emerging type of memory devices can lead to a new instrument system as a potential alternative to previous non-volatile memory building blocks in future processing units because of their numerous merits such as cost-effective process,simple structure and freedom in substrate choices.This bi-stable non-volatile memory device of information storage has been investigated using several organic or inorganic semiconductors with organic ferroelectric polymer materials.Recent progresses in this ferroelectric memory field,hybrid system have attracted a lot of attention due to their excellent device performance in comparison with that of all organic systems.In this paper,a general review of this type of ferroelectric non-volatile memory is provided,which include the device structure,organic ferroelectric materials,electrical characteristics and working principles.We also present some snapshots of our previous study on hybrid ferroelectric memories including our recent work based on zinc oxide nanowire channels.

  15. Organic non-volatile memories from ferroelectric phase-separated blends

    Science.gov (United States)

    Asadi, Kamal; de Leeuw, Dago M.; de Boer, Bert; Blom, Paul W. M.

    2008-07-01

    New non-volatile memories are being investigated to keep up with the organic-electronics road map. Ferroelectric polarization is an attractive physical property as the mechanism for non-volatile switching, because the two polarizations can be used as two binary levels. However, in ferroelectric capacitors the read-out of the polarization charge is destructive. The functionality of the targeted memory should be based on resistive switching. In inorganic ferroelectrics conductivity and ferroelectricity cannot be tuned independently. The challenge is to develop a storage medium in which the favourable properties of ferroelectrics such as bistability and non-volatility can be combined with the beneficial properties provided by semiconductors such as conductivity and rectification. Here we present an integrated solution by blending semiconducting and ferroelectric polymers into phase-separated networks. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-metal contact. The combination of ferroelectric bistability with (semi)conductivity and rectification allows for solution-processed non-volatile memory arrays with a simple cross-bar architecture that can be read out non-destructively. The concept of an electrically tunable injection barrier as presented here is general and can be applied to other electronic devices such as light-emitting diodes with an integrated on/off switch.

  16. Future Trend of Non-Volatile Semiconductor Memory and Feasibility Study of BiCS Type Stacked Structure

    OpenAIRE

    渡辺, 重佳

    2009-01-01

    Future trend of non-volatile semiconductor memory—FeRAM, MRAM, PRAM, ReRAM—compared with NAND typeflash memory has been described based on its history, application and performance. In the realistic point of view,FeRAM and MRAM are suitable for embedded memory and main memory, and PRAM and ReRAM are promising candidatesfor main memory and mass-storage memory for multimedia. Furthermore, the feasibility study of aggressiveultra-low-cost high-speed universal non-volatile semiconductor memory has...

  17. A review of emerging non-volatile memory (NVM) technologies and applications

    Science.gov (United States)

    Chen, An

    2016-11-01

    This paper will review emerging non-volatile memory (NVM) technologies, with the focus on phase change memory (PCM), spin-transfer-torque random-access-memory (STTRAM), resistive random-access-memory (RRAM), and ferroelectric field-effect-transistor (FeFET) memory. These promising NVM devices are evaluated in terms of their advantages, challenges, and applications. Their performance is compared based on reported parameters of major industrial test chips. Memory selector devices and cell structures are discussed. Changing market trends toward low power (e.g., mobile, IoT) and data-centric applications create opportunities for emerging NVMs. High-performance and low-cost emerging NVMs may simplify memory hierarchy, introduce non-volatility in logic gates and circuits, reduce system power, and enable novel architectures. Storage-class memory (SCM) based on high-density NVMs could fill the performance and density gap between memory and storage. Some unique characteristics of emerging NVMs can be utilized for novel applications beyond the memory space, e.g., neuromorphic computing, hardware security, etc. In the beyond-CMOS era, emerging NVMs have the potential to fulfill more important functions and enable more efficient, intelligent, and secure computing systems.

  18. Microwave oven fabricated hybrid memristor devices for non-volatile memory storage

    International Nuclear Information System (INIS)

    Verrelli, E; Gray, R J; O’Neill, M; Kemp, N T; Kelly, S M

    2014-01-01

    Novel hybrid non-volatile memories made using an ultra-fast microwave heating method are reported for the first time. The devices, consisting of aligned ZnO nanorods embedded in poly (methyl methacrylate), require no forming step and exhibit reliable and reproducible bipolar resistive switching at low voltages and with low power usage. We attribute these properties to a combination of the high aspect ratio of the nanorods and the polymeric hybrid structure of the device. The extremely easy, fast and low-cost solution based method of fabrication makes possible the simple and quick production of cheap memory cells. (paper)

  19. Rad Hard Non Volatile Memory for FPGA BootLoading, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation-hardened non volatile memory (NVM) is needed to store the golden copy of the image(s) has not kept pace with the advances in FPGAs. Consider that a single...

  20. High-performance non-volatile organic ferroelectric memory on banknotes

    KAUST Repository

    Khan, Yasser; Bhansali, Unnat Sampatraj; Alshareef, Husam N.

    2012-01-01

    High-performance non-volatile polymer ferroelectric memory are fabricated on banknotes using poly(vinylidene fluoride trifluoroethylene). The devices show excellent performance with high remnant polarization, low operating voltages, low leakage

  1. Role of Non-Volatile Memories in Automotive and IoT Markets

    Science.gov (United States)

    2017-03-01

    Standard Manufacturing Supply Long Term Short to Medium Term Density Up to 16MB Up to 2MB IO Configuration Up to x128 Up to x32 Design for Test...Role of Non-Volatile Memories in Automotive and IoT Markets Vipin Tiwari Director, Business Development and Product Marketing SST – A Wholly Own...microcontrollers (MCU) and certainly one of the most challenging elements to master. This paper addresses the role of non-volatile memories for

  2. A Survey of Soft-Error Mitigation Techniques for Non-Volatile Memories

    Directory of Open Access Journals (Sweden)

    Sparsh Mittal

    2017-02-01

    Full Text Available Non-volatile memories (NVMs offer superior density and energy characteristics compared to the conventional memories; however, NVMs suffer from severe reliability issues that can easily eclipse their energy efficiency advantages. In this paper, we survey architectural techniques for improving the soft-error reliability of NVMs, specifically PCM (phase change memory and STT-RAM (spin transfer torque RAM. We focus on soft-errors, such as resistance drift and write disturbance, in PCM and read disturbance and write failures in STT-RAM. By classifying the research works based on key parameters, we highlight their similarities and distinctions. We hope that this survey will underline the crucial importance of addressing NVM reliability for ensuring their system integration and will be useful for researchers, computer architects and processor designers.

  3. Non-volatile memory devices with redox-active diruthenium molecular compound

    International Nuclear Information System (INIS)

    Pookpanratana, S; Zhu, H; Bittle, E G; Richter, C A; Li, Q; Hacker, C A; Natoli, S N; Ren, T

    2016-01-01

    Reduction-oxidation (redox) active molecules hold potential for memory devices due to their many unique properties. We report the use of a novel diruthenium-based redox molecule incorporated into a non-volatile Flash-based memory device architecture. The memory capacitor device structure consists of a Pd/Al 2 O 3 /molecule/SiO 2 /Si structure. The bulky ruthenium redox molecule is attached to the surface by using a ‘click’ reaction and the monolayer structure is characterized by x-ray photoelectron spectroscopy to verify the Ru attachment and molecular density. The ‘click’ reaction is particularly advantageous for memory applications because of (1) ease of chemical design and synthesis, and (2) provides an additional spatial barrier between the oxide/silicon to the diruthenium molecule. Ultraviolet photoelectron spectroscopy data identified the energy of the electronic levels of the surface before and after surface modification. The molecular memory devices display an unsaturated charge storage window attributed to the intrinsic properties of the redox-active molecule. Our findings demonstrate the strengths and challenges with integrating molecular layers within solid-state devices, which will influence the future design of molecular memory devices. (paper)

  4. Low-power non-volatile spintronic memory: STT-RAM and beyond

    International Nuclear Information System (INIS)

    Wang, K L; Alzate, J G; Khalili Amiri, P

    2013-01-01

    The quest for novel low-dissipation devices is one of the most critical for the future of semiconductor technology and nano-systems. The development of a low-power, universal memory will enable a new paradigm of non-volatile computation. Here we consider STT-RAM as one of the emerging candidates for low-power non-volatile memory. We show different configurations for STT memory and demonstrate strategies to optimize key performance parameters such as switching current and energy. The energy and scaling limits of STT-RAM are discussed, leading us to argue that alternative writing mechanisms may be required to achieve ultralow power dissipation, a necessary condition for direct integration with CMOS at the gate level for non-volatile logic purposes. As an example, we discuss the use of the giant spin Hall effect as a possible alternative to induce magnetization reversal in magnetic tunnel junctions using pure spin currents. Further, we concentrate on magnetoelectric effects, where electric fields are used instead of spin-polarized currents to manipulate the nanomagnets, as another candidate solution to address the challenges of energy efficiency and density. The possibility of an electric-field-controlled magnetoelectric RAM as a promising candidate for ultralow-power non-volatile memory is discussed in the light of experimental data demonstrating voltage-induced switching of the magnetization and reorientation of the magnetic easy axis by electric fields in nanomagnets. (paper)

  5. High-performance non-volatile organic ferroelectric memory on banknotes

    KAUST Repository

    Khan, Yasser

    2012-03-21

    High-performance non-volatile polymer ferroelectric memory are fabricated on banknotes using poly(vinylidene fluoride trifluoroethylene). The devices show excellent performance with high remnant polarization, low operating voltages, low leakage, high mobility, and long retention times. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low-temperature process steps for realization of non-volatile memory devices

    NARCIS (Netherlands)

    Brunets, I.; Boogaard, A.; Aarnink, Antonius A.I.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.; Holleman, J.; Schmitz, Jurriaan

    2007-01-01

    In this work, the low-temperature process steps required for the realization of nano-crystal non-volatile memory cells are discussed. An amorphous silicon film, crystallized using a diode pumped solid state green laser irradiating at 532 nm, is proposed as an active layer. The deposition of the

  7. High-performance non-volatile organic ferroelectric memory on banknotes.

    Science.gov (United States)

    Khan, M A; Bhansali, Unnat S; Alshareef, H N

    2012-04-24

    High-performance non-volatile polymer ferroelectric memory are fabricated on banknotes using poly(vinylidene fluoride trifluoroethylene). The devices show excellent performance with high remnant polarization, low operating voltages, low leakage, high mobility, and long retention times. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Overview of radiation effects on emerging non-volatile memory technologies

    Directory of Open Access Journals (Sweden)

    Fetahović Irfan S.

    2017-01-01

    Full Text Available In this paper we give an overview of radiation effects in emergent, non-volatile memory technologies. Investigations into radiation hardness of resistive random access memory, ferroelectric random access memory, magneto-resistive random access memory, and phase change memory are presented in cases where these memory devices were subjected to different types of radiation. The obtained results proved high radiation tolerance of studied devices making them good candidates for application in radiation-intensive environments. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 171007

  9. Improvement of multi-level resistive switching characteristics in solution-processed AlO x -based non-volatile resistive memory using microwave irradiation

    Science.gov (United States)

    Kim, Seung-Tae; Cho, Won-Ju

    2018-01-01

    We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.

  10. High-Speed Non-Volatile Optical Memory: Achievements and Challenges

    Directory of Open Access Journals (Sweden)

    Vadym Zayets

    2017-01-01

    Full Text Available We have proposed, fabricated, and studied a new design of a high-speed optical non-volatile memory. The recoding mechanism of the proposed memory utilizes a magnetization reversal of a nanomagnet by a spin-polarized photocurrent. It was shown experimentally that the operational speed of this memory may be extremely fast above 1 TBit/s. The challenges to realize both a high-speed recording and a high-speed reading are discussed. The memory is compact, integratable, and compatible with present semiconductor technology. If realized, it will advance data processing and computing technology towards a faster operation speed.

  11. A Compute Capable SSD Architecture for Next-Generation Non-volatile Memories

    Energy Technology Data Exchange (ETDEWEB)

    De, Arup [Univ. of California, San Diego, CA (United States)

    2014-01-01

    Existing storage technologies (e.g., disks and ash) are failing to cope with the processor and main memory speed and are limiting the overall perfor- mance of many large scale I/O or data-intensive applications. Emerging fast byte-addressable non-volatile memory (NVM) technologies, such as phase-change memory (PCM), spin-transfer torque memory (STTM) and memristor are very promising and are approaching DRAM-like performance with lower power con- sumption and higher density as process technology scales. These new memories are narrowing down the performance gap between the storage and the main mem- ory and are putting forward challenging problems on existing SSD architecture, I/O interface (e.g, SATA, PCIe) and software. This dissertation addresses those challenges and presents a novel SSD architecture called XSSD. XSSD o oads com- putation in storage to exploit fast NVMs and reduce the redundant data tra c across the I/O bus. XSSD o ers a exible RPC-based programming framework that developers can use for application development on SSD without dealing with the complication of the underlying architecture and communication management. We have built a prototype of XSSD on the BEE3 FPGA prototyping system. We implement various data-intensive applications and achieve speedup and energy ef- ciency of 1.5-8.9 and 1.7-10.27 respectively. This dissertation also compares XSSD with previous work on intelligent storage and intelligent memory. The existing ecosystem and these new enabling technologies make this system more viable than earlier ones.

  12. Reconfigurable Electronics and Non-Volatile Memory Research

    Science.gov (United States)

    2011-10-14

    October 2009. The films were etched off wafer pieces using a blend of sulfuric, nitric and hydrofluoric acids and diluted for analysis. Table 5...interactions. A weak peak is also seen around g = 1.98 which intensifies under light illumination. This peak can be assigned to the charge defects of base...evidence of amorphous/crystalline GST. It is not clear why significantly oxidized devices were capable of switching. Dr. Miotti theorized that

  13. Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory

    Science.gov (United States)

    Ng, Tse Nga; Schwartz, David E.; Lavery, Leah L.; Whiting, Gregory L.; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer

    2012-01-01

    Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic. PMID:22900143

  14. Metal-organic molecular device for non-volatile memory storage

    International Nuclear Information System (INIS)

    Radha, B.; Sagade, Abhay A.; Kulkarni, G. U.

    2014-01-01

    Non-volatile memory devices have been of immense research interest for their use in active memory storage in powered off-state of electronic chips. In literature, various molecules and metal compounds have been investigated in this regard. Molecular memory devices are particularly attractive as they offer the ease of storing multiple memory states in a unique way and also represent ubiquitous choice for miniaturized devices. However, molecules are fragile and thus the device breakdown at nominal voltages during repeated cycles hinders their practical applicability. Here, in this report, a synergetic combination of an organic molecule and an inorganic metal, i.e., a metal-organic complex, namely, palladium hexadecylthiolate is investigated for memory device characteristics. Palladium hexadecylthiolate following partial thermolysis is converted to a molecular nanocomposite of Pd(II), Pd(0), and long chain hydrocarbons, which is shown to exhibit non-volatile memory characteristics with exceptional stability and retention. The devices are all solution-processed and the memory action stems from filament formation across the pre-formed cracks in the nanocomposite film.

  15. Models for Total-Dose Radiation Effects in Non-Volatile Memory

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Philip Montgomery; Wix, Steven D.

    2017-04-01

    The objective of this work is to develop models to predict radiation effects in non- volatile memory: flash memory and ferroelectric RAM. In flash memory experiments have found that the internal high-voltage generators (charge pumps) are the most sensitive to radiation damage. Models are presented for radiation effects in charge pumps that demonstrate the experimental results. Floating gate models are developed for the memory cell in two types of flash memory devices by Intel and Samsung. These models utilize Fowler-Nordheim tunneling and hot electron injection to charge and erase the floating gate. Erase times are calculated from the models and compared with experimental results for different radiation doses. FRAM is less sensitive to radiation than flash memory, but measurements show that above 100 Krad FRAM suffers from a large increase in leakage current. A model for this effect is developed which compares closely with the measurements.

  16. Non-volatile flash memory with discrete bionanodot floating gate assembled by protein template

    International Nuclear Information System (INIS)

    Miura, Atsushi; Yamashita, Ichiro; Uraoka, Yukiharu; Fuyuki, Takashi; Tsukamoto, Rikako; Yoshii, Shigeo

    2008-01-01

    We demonstrated non-volatile flash memory fabrication by utilizing uniformly sized cobalt oxide (Co 3 O 4 ) bionanodot (Co-BND) architecture assembled by a cage-shaped supramolecular protein template. A fabricated high-density Co-BND array was buried in a metal-oxide-semiconductor field-effect-transistor (MOSFET) structure to use as the charge storage node of a floating nanodot gate memory. We observed a clockwise hysteresis in the drain current-gate voltage characteristics of fabricated BND-embedded MOSFETs. Observed hysteresis obviously indicates a memory operation of Co-BND-embedded MOSFETs due to the charge confinement in the embedded BND and successful functioning of embedded BNDs as the charge storage nodes of the non-volatile flash memory. Fabricated Co-BND-embedded MOSFETs showed good memory properties such as wide memory windows, long charge retention and high tolerance to repeated write/erase operations. A new pathway for device fabrication by utilizing the versatile functionality of biomolecules is presented

  17. Design exploration of emerging nano-scale non-volatile memory

    CERN Document Server

    Yu, Hao

    2014-01-01

    This book presents the latest techniques for characterization, modeling and design for nano-scale non-volatile memory (NVM) devices.  Coverage focuses on fundamental NVM device fabrication and characterization, internal state identification of memristic dynamics with physics modeling, NVM circuit design, and hybrid NVM memory system design-space optimization. The authors discuss design methodologies for nano-scale NVM devices from a circuits/systems perspective, including the general foundations for the fundamental memristic dynamics in NVM devices.  Coverage includes physical modeling, as well as the development of a platform to explore novel hybrid CMOS and NVM circuit and system design.   • Offers readers a systematic and comprehensive treatment of emerging nano-scale non-volatile memory (NVM) devices; • Focuses on the internal state of NVM memristic dynamics, novel NVM readout and memory cell circuit design, and hybrid NVM memory system optimization; • Provides both theoretical analysis and pr...

  18. ZnO as dielectric for optically transparent non-volatile memory

    International Nuclear Information System (INIS)

    Salim, N. Tjitra; Aw, K.C.; Gao, W.; Wright, Bryon E.

    2009-01-01

    This paper discusses the application of a DC sputtered ZnO thin film as a dielectric in an optically transparent non-volatile memory. The main motivation for using ZnO as a dielectric is due to its optical transparency and mechanical flexibility. We have established the relationship between the electrical resistivity (ρ) and the activation energy (E a ) of the electron transport in the conduction band of the ZnO film. The ρ of 2 x 10 4 -5 x 10 7 Ω-cm corresponds to E a of 0.36-0.76 eV, respectively. The k-value and optical band-gap for films sputtered with Ar:O 2 ratio of 4:1 are 53 ± 3.6 and 3.23 eV, respectively. In this paper, the basic charge storage element for a non-volatile memory is a triple layer dielectric structure in which a 50 nm thick ZnO film is sandwiched between two layers of methyl silsesquioxane sol-gel dielectric of varying thickness. A pronounced clockwise capacitance-voltage (C-V) hysteresis was observed with a memory window of 6 V. The integration with a solution-processable pentacene, 13,6-N-Sulfinylacetamodipentacene resulted in an optically transparent organic field effect transistor non-volatile memory (OFET-NVM). We have demonstrated that this OFET-NVM can be electrically programmed and erased at low voltage (± 10 V) with a threshold voltage shift of 4.0 V.

  19. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    International Nuclear Information System (INIS)

    Jovanović, B.; Brum, R. M.; Torres, L.

    2014-01-01

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption

  20. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    Energy Technology Data Exchange (ETDEWEB)

    Jovanović, B., E-mail: bojan.jovanovic@lirmm.fr, E-mail: lionel.torres@lirmm.fr; Brum, R. M.; Torres, L. [LIRMM—University of Montpellier 2/UMR CNRS 5506, 161 Rue Ada, 34095 Montpellier (France)

    2014-04-07

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.

  1. Controlled data storage for non-volatile memory cells embedded in nano magnetic logic

    Science.gov (United States)

    Riente, Fabrizio; Ziemys, Grazvydas; Mattersdorfer, Clemens; Boche, Silke; Turvani, Giovanna; Raberg, Wolfgang; Luber, Sebastian; Breitkreutz-v. Gamm, Stephan

    2017-05-01

    Among the beyond-CMOS technologies, perpendicular Nano Magnetic Logic (pNML) is a promising candidate due to its low power consumption, its non-volatility and its monolithic 3D integrability, which makes it possible to integrate memory and logic into the same device by exploiting the interaction of bi-stable nanomagnets with perpendicular magnetic anisotropy. Logic computation and signal synchronization are achieved by focus ion beam irradiation and by pinning domain walls in magnetic notches. However, in realistic circuits, the information storage and their read-out are crucial issues, often ignored in the exploration of beyond-CMOS devices. In this paper we address these issues by experimentally demonstrating a pNML memory element, whose read and write operations can be controlled by two independent pulsed currents. Our results prove the correct behavior of the proposed structure that enables high density memory embedded in the logic plane of 3D-integrated pNML circuits.

  2. A direct metal transfer method for cross-bar type polymer non-volatile memory applications

    International Nuclear Information System (INIS)

    Kim, Tae-Wook; Lee, Kyeongmi; Oh, Seung-Hwan; Wang, Gunuk; Kim, Dong-Yu; Jung, Gun-Young; Lee, Takhee

    2008-01-01

    Polymer non-volatile memory devices in 8 x 8 array cross-bar architecture were fabricated by a non-aqueous direct metal transfer (DMT) method using a two-step thermal treatment. Top electrodes with a linewidth of 2 μm were transferred onto the polymer layer by the DMT method. The switching behaviour of memory devices fabricated by the DMT method was very similar to that of devices fabricated by the conventional shadow mask method. The devices fabricated using the DMT method showed three orders of magnitude of on/off ratio with stable resistance switching, demonstrating that the DMT method can be a simple process to fabricate organic memory array devices

  3. Quasi-unipolar pentacene films embedded with fullerene for non-volatile organic transistor memories

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhee; Lee, Sungpyo; Lee, Moo Hyung; Kang, Moon Sung, E-mail: mskang@ssu.ac.kr [Department of Chemical Engineering, Soongsil University, Seoul 156-743 (Korea, Republic of)

    2015-02-09

    Quasi-unipolar non-volatile organic transistor memory (NOTM) can combine the best characteristics of conventional unipolar and ambipolar NOTMs and, as a result, exhibit improved device performance. Unipolar NOTMs typically exhibit a large signal ratio between the programmed and erased current signals but also require a large voltage to program and erase the memory cells. Meanwhile, an ambipolar NOTM can be programmed and erased at lower voltages, but the resulting signal ratio is small. By embedding a discontinuous n-type fullerene layer within a p-type pentacene film, quasi-unipolar NOTMs are fabricated, of which the signal storage utilizes both electrons and holes while the electrical signal relies on only hole conduction. These devices exhibit superior memory performance relative to both pristine unipolar pentacene devices and ambipolar fullerene/pentacene bilayer devices. The quasi-unipolar NOTM exhibited a larger signal ratio between the programmed and erased states while also reducing the voltage required to program and erase a memory cell. This simple approach should be readily applicable for various combinations of advanced organic semiconductors that have been recently developed and thereby should make a significant impact on organic memory research.

  4. The floating-gate non-volatile semiconductor memory--from invention to the digital age.

    Science.gov (United States)

    Sze, S M

    2012-10-01

    In the past 45 years (from 1967 to 2012), the non-volatile semiconductor memory (NVSM) has emerged from a floating-gate concept to the prime technology driver of the largest industry in the world-the electronics industry. In this paper, we briefly review the historical development of NVSM and project its future trends to the year 2020. In addition, we consider NVSM's wide-range of applications from the digital cellular phone to tablet computer to digital television. As the device dimension is scaled down to the deca-nanometer regime, we expect that many innovations will be made to meet the scaling challenges, and NVSM-inspired technology will continue to enrich and improve our lives for decades to come.

  5. Investigation of High-k Dielectrics and Metal Gate Electrodes for Non-volatile Memory Applications

    Science.gov (United States)

    Jayanti, Srikant

    Due to the increasing demand of non-volatile flash memories in the portable electronics, the device structures need to be scaled down drastically. However, the scalability of traditional floating gate structures beyond 20 nm NAND flash technology node is uncertain. In this regard, the use of metal gates and high-k dielectrics as the gate and interpoly dielectrics respectively, seem to be promising substitutes in order to continue the flash scaling beyond 20nm. Furthermore, research of novel memory structures to overcome the scaling challenges need to be explored. Through this work, the use of high-k dielectrics as IPDs in a memory structure has been studied. For this purpose, IPD process optimization and barrier engineering were explored to determine and improve the memory performance. Specifically, the concept of high-k / low-k barrier engineering was studied in corroboration with simulations. In addition, a novel memory structure comprising a continuous metal floating gate was investigated in combination with high-k blocking oxides. Integration of thin metal FGs and high-k dielectrics into a dual floating gate memory structure to result in both volatile and non-volatile modes of operation has been demonstrated, for plausible application in future unified memory architectures. The electrical characterization was performed on simple MIS/MIM and memory capacitors, fabricated through CMOS compatible processes. Various analytical characterization techniques were done to gain more insight into the material behavior of the layers in the device structure. In the first part of this study, interfacial engineering was investigated by exploring La2O3 as SiO2 scavenging layer. Through the silicate formation, the consumption of low-k SiO2 was controlled and resulted in a significant improvement in dielectric leakage. The performance improvement was also gauged through memory capacitors. In the second part of the study, a novel memory structure consisting of continuous metal FG

  6. Controlled data storage for non-volatile memory cells embedded in nano magnetic logic

    Directory of Open Access Journals (Sweden)

    Fabrizio Riente

    2017-05-01

    Full Text Available Among the beyond-CMOS technologies, perpendicular Nano Magnetic Logic (pNML is a promising candidate due to its low power consumption, its non-volatility and its monolithic 3D integrability, which makes it possible to integrate memory and logic into the same device by exploiting the interaction of bi-stable nanomagnets with perpendicular magnetic anisotropy. Logic computation and signal synchronization are achieved by focus ion beam irradiation and by pinning domain walls in magnetic notches. However, in realistic circuits, the information storage and their read-out are crucial issues, often ignored in the exploration of beyond-CMOS devices. In this paper we address these issues by experimentally demonstrating a pNML memory element, whose read and write operations can be controlled by two independent pulsed currents. Our results prove the correct behavior of the proposed structure that enables high density memory embedded in the logic plane of 3D-integrated pNML circuits.

  7. Process Qualification Strategy for Advances Embedded Non Volatile Memory Technology : The Philips' 0.18um Embedded Flash Case

    NARCIS (Netherlands)

    Tao, Guoqiao; Scarpa, Andrea; van Dijk, Kitty; Kuper, Fred G.

    2003-01-01

    A qualification strategy for advanced embedded non-volatile memory technology has been revealed. This strategy consists of: a thorough understanding of the requirements, extensive use and frequent update of the FMEA (failure mode effect analysis), a qualification plan with excellent coverage of all

  8. Feasibility and limitations of anti-fuses based on bistable non-volatile switches for power electronic applications

    Science.gov (United States)

    Erlbacher, T.; Huerner, A.; Bauer, A. J.; Frey, L.

    2012-09-01

    Anti-fuse devices based on non-volatile memory cells and suitable for power electronic applications are demonstrated for the first time using silicon technology. These devices may be applied as stand alone devices or integrated using standard junction-isolation into application-specific and smart-power integrated circuits. The on-resistance of such devices can be permanently switched by nine orders of magnitude by triggering the anti-fuse with a positive voltage pulse. Extrapolation of measurement data and 2D TCAD process and device simulations indicate that 20 A anti-fuses with 10 mΩ can be reliably fabricated in 0.35 μm technology with a footprint of 2.5 mm2. Moreover, this concept offers distinguished added-values compared to existing mechanical relays, e.g. pre-test, temporary and permanent reset functions, gradual turn-on mode, non-volatility, and extendibility to high voltage capability.

  9. Four-state non-volatile memory in a multiferroic spin filter tunnel junction

    Science.gov (United States)

    Ruan, Jieji; Li, Chen; Yuan, Zhoushen; Wang, Peng; Li, Aidong; Wu, Di

    2016-12-01

    We report a spin filter type multiferroic tunnel junction with a ferromagnetic/ferroelectric bilayer barrier. Memory functions of a spin filter magnetic tunnel junction and a ferroelectric tunnel junction are combined in this single device, producing four non-volatile resistive states that can be read out in a non-destructive manner. This concept is demonstrated in a LaNiO3/Pr0.8Ca0.2MnO3/BaTiO3/La0.7Sr0.3MnO3 all-oxide tunnel junction. The ferromagnetic insulator Pr0.8Ca0.2MnO3 serves as the spin filter and the ferromagnetic metal La0.7Sr0.3MnO3 is the spin analyzer. The ferroelectric polarization reversal in the BaTiO3 barrier switches the tunneling barrier height to produce a tunneling electroresistance. The ferroelectric switching also modulates the spin polarization and the spin filtering efficiency in Pr0.8Ca0.2MnO3.

  10. Electric field mediated non-volatile tuning magnetism in CoPt/PMN-PT heterostructure for magnetoelectric memory devices

    Science.gov (United States)

    Yang, Y. T.; Li, J.; Peng, X. L.; Wang, X. Q.; Wang, D. H.; Cao, Q. Q.; Du, Y. W.

    2016-02-01

    We report a power efficient non-volatile magnetoelectric memory in the CoPt/(011)PMN-PT heterostructure. Two reversible and stable electric field induced coercivity states (i.e., high-HC or low-HC) are obtained due to the strain mediated converse magnetoelectric effect. The reading process of the different coercive field information written by electric fields is demonstrated by using a magnetoresistance read head. This result shows good prospects in the application of novel multiferroic devices.

  11. Novel ferroelectric capacitor for non-volatile memory storage and biomedical tactile sensor applications

    International Nuclear Information System (INIS)

    Liu, Shi Yang; Chua, Lynn; Tan, Kian Chuan; Valavan, S.E.

    2010-01-01

    We report on novel ferroelectric thin film compositions for use in non-volatile memory storage and biomedical tactile sensor applications. The lead zirconate titanate (PZT) composition was modified by lanthanum (La 3+ ) (PLZT) and vanadium (V 5+ ) (PZTV, PLZTV) doping. Hybrid films with PZTV and PLZTV as top layers are also made using seed layers of differing compositions using sol-gel and spin coating methods. La 3+ doping decreased the coercive field, polarization and leakage current, while increasing the relative permittivity. V 5+ doping, while having similar effects, results in an enhanced polarization, with comparable dielectric loss characteristics. Complex doping of both La 3+ and V 5+ in PLZTV, while reducing the polarization relative to PZTV, significantly decreases the coercive field. Hybrid films have a greater uniformity of grain formation than non-hybrid films, thus decreasing the coercive field, leakage current and polarization fatigue while increasing the relative permittivity. Analysis using X-ray diffraction (XRD) verified the retention of the PZT perovskite structure in the novel films. PLZT/PZTV has been identified as an optimal ferroelectric film composition due to its desirable ferroelectric, fatigue and dielectric properties, including the highest observed remnant polarization (P r ) of ∼ 25 μC/cm 2 , saturation polarization (P sat ) of ∼ 58 μC/cm 2 and low coercive field (E c ) of ∼ 60 kV/cm at an applied field of ∼ 1000 kV/cm, as well as a low leakage current density of ∼ 10 -5 A/cm 2 at 500 kV/cm and fatigue resistance of up to ∼ 10 10 switching cycles.

  12. Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues

    Science.gov (United States)

    Noé, Pierre; Vallée, Christophe; Hippert, Françoise; Fillot, Frédéric; Raty, Jean-Yves

    2018-01-01

    Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these

  13. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure

    International Nuclear Information System (INIS)

    Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee

    2009-01-01

    The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 μm 2 to 200 x 200 nm 2 . From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I ON /I OFF ∼10 4 ), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10 000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.

  14. Electrical and ferroelectric properties of RF sputtered PZT/SBN on silicon for non-volatile memory applications

    Science.gov (United States)

    Singh, Prashant; Jha, Rajesh Kumar; Singh, Rajat Kumar; Singh, B. R.

    2018-02-01

    We report the integration of multilayer ferroelectric film deposited by RF magnetron sputtering and explore the electrical characteristics for its application as the gate of ferroelectric field effect transistor for non-volatile memories. PZT (Pb[Zr0.35Ti0.65]O3) and SBN (SrBi2Nb2O9) ferroelectric materials were selected for the stack fabrication due to their large polarization and fatigue free properties respectively. Electrical characterization has been carried out to obtain memory window, leakage current density, PUND and endurance characteristics. Fabricated multilayer ferroelectric film capacitor structure shows large memory window of 17.73 V and leakage current density of the order 10-6 A cm-2 for the voltage sweep of -30 to +30 V. This multilayer gate stack of PZT/SBN shows promising endurance property with no degradation in the remnant polarization for the read/write iteration cycles upto 108.

  15. Effect of AlN layer on the bipolar resistive switching behavior in TiN thin film based ReRAM device for non-volatile memory application

    Science.gov (United States)

    Prakash, Ravi; Kaur, Davinder

    2018-05-01

    The effect of an additional AlN layer in the Cu/TiN/AlN/Pt stack configuration deposited using sputtering has been investigated. The Cu/TiN/AlN/Pt device shows a tristate resistive switching. Multilevel switching is facilitated by ionic and metallic filament formation, and the nature of the filaments formed is confirmed by performing a resistance vs. temperature measurement. Ohmic behaviour and trap controlled space charge limited current (SCLC) conduction mechanisms are confirmed as dominant conduction mechanism at low resistance state (LRS) and high resistance state (HRS). High resistance ratio (102) corresponding to HRS and LRS, good write/erase endurance (105) and non-volatile long retention (105s) are also observed. Higher thermal conductivity of the AlN layer is the main reasons for the enhancement of resistive switching performance in Cu/TiN/AlN/Pt cell. The above result suggests the feasibility of Cu/TiN/AlN/Pt devices for multilevel nonvolatile ReRAM application.

  16. Non-volatile nano-floating gate memory with Pt-Fe{sub 2}O{sub 3} composite nanoparticles and indium gallium zinc oxide channel

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Quanli [Myongji University, Department of Nano Science and Engineering (Korea, Republic of); Lee, Seung Chang; Baek, Yoon-Jae [Myongji University, Department of Materials Science and Engineering (Korea, Republic of); Lee, Hyun Ho [Myongji University, Department of Chemical Engineering (Korea, Republic of); Kang, Chi Jung [Myongji University, Department of Nano Science and Engineering (Korea, Republic of); Kim, Hyun-Mi; Kim, Ki-Bum [Seoul National University, Department of Materials Science and Engineering (Korea, Republic of); Yoon, Tae-Sik, E-mail: tsyoon@mju.ac.kr [Myongji University, Department of Nano Science and Engineering (Korea, Republic of)

    2013-02-15

    Non-volatile nano-floating gate memory characteristics with colloidal Pt-Fe{sub 2}O{sub 3} composite nanoparticles with a mostly core-shell structure and indium gallium zinc oxide channel layer were investigated. The Pt-Fe{sub 2}O{sub 3} nanoparticles were chemically synthesized through the preferential oxidation of Fe and subsequent pileup of Pt into the core in the colloidal solution. The uniformly assembled nanoparticles' layer could be formed with a density of {approx}3 Multiplication-Sign 10{sup 11} cm{sup -2} by a solution-based dip-coating process. The Pt core ({approx}3 nm in diameter) and Fe{sub 2}O{sub 3}-shell ({approx}6 nm in thickness) played the roles of the charge storage node and tunneling barrier, respectively. The device exhibited the hysteresis in current-voltage measurement with a threshold voltage shift of {approx}4.76 V by gate voltage sweeping to +30 V. It also showed the threshold shift of {approx}0.66 V after pulse programming at +20 V for 1 s with retention > {approx}65 % after 10{sup 4} s. These results demonstrate the feasibility of using colloidal nanoparticles with core-shell structure as gate stacks of the charge storage node and tunneling dielectric for low-temperature and solution-based processed non-volatile memory devices.

  17. Unipolar resistive switching in metal oxide/organic semiconductor non-volatile memories as a critical phenomenon

    International Nuclear Information System (INIS)

    Bory, Benjamin F.; Meskers, Stefan C. J.; Rocha, Paulo R. F.; Gomes, Henrique L.; Leeuw, Dago M. de

    2015-01-01

    Diodes incorporating a bilayer of an organic semiconductor and a wide bandgap metal oxide can show unipolar, non-volatile memory behavior after electroforming. The prolonged bias voltage stress induces defects in the metal oxide with an areal density exceeding 10 17  m −2 . We explain the electrical bistability by the coexistence of two thermodynamically stable phases at the interface between an organic semiconductor and metal oxide. One phase contains mainly ionized defects and has a low work function, while the other phase has mainly neutral defects and a high work function. In the diodes, domains of the phase with a low work function constitute current filaments. The phase composition and critical temperature are derived from a 2D Ising model as a function of chemical potential. The model predicts filamentary conduction exhibiting a negative differential resistance and nonvolatile memory behavior. The model is expected to be generally applicable to any bilayer system that shows unipolar resistive switching

  18. Technology breakthroughs in high performance metal-oxide-semiconductor devices for ultra-high density, low power non-volatile memory applications

    Science.gov (United States)

    Hong, Augustin Jinwoo

    Non-volatile memory devices have attracted much attention because data can be retained without power consumption more than a decade. Therefore, non-volatile memory devices are essential to mobile electronic applications. Among state of the art non-volatile memory devices, NAND flash memory has earned the highest attention because of its ultra-high scalability and therefore its ultra-high storage capacity. However, human desire as well as market competition requires not only larger storage capacity but also lower power consumption for longer battery life time. One way to meet this human desire and extend the benefits of NAND flash memory is finding out new materials for storage layer inside the flash memory, which is called floating gate in the state of the art flash memory device. In this dissertation, we study new materials for the floating gate that can lower down the power consumption and increase the storage capacity at the same time. To this end, we employ various materials such as metal nanodot, metal thin film and graphene incorporating complementary-metal-oxide-semiconductor (CMOS) compatible processes. Experimental results show excellent memory effects at relatively low operating voltages. Detailed physics and analysis on experimental results are discussed. These new materials for data storage can be promising candidates for future non-volatile memory application beyond the state of the art flash technologies.

  19. Emerging Non-volatile Memory Technologies Exploration Flow for Processor Architecture

    OpenAIRE

    senni , sophiane; Torres , Lionel; Sassatelli , Gilles; Gamatié , Abdoulaye; Mussard , Bruno

    2015-01-01

    International audience; Most die area of today's systems-on-chips is occupied by memories. Hence, a significant proportion of total power is spent on memory systems. Moreover, since processing elements have to be fed with instructions and data from memories, memory plays a key role for system's performance. As a result, memories are a critical part of future embedded systems. Continuing CMOS scaling leads to manufacturing constraints and power consumption issues for the current three main mem...

  20. The microstructure investigation of GeTi thin film used for non-volatile memory

    International Nuclear Information System (INIS)

    Shen Jie; Liu Bo; Song Zhitang; Xu Cheng; Liang Shuang; Feng Songlin; Chen Bomy

    2008-01-01

    GeTi thin film has been found to have the reversible resistance switching property in our previous work. In this paper, the microstructure of this material with a given composition was investigated. The film was synthesized by magnetron sputtering and treated by the rapid temperature process. The results indicate a coexist status of amorphous and polycrystalline states in the as-deposited GeTi film, and the grains in the film are extremely fine. Furthermore, not until the film annealed at 600 deg. C, can the polycrystalline state be detected by X-ray diffraction. Based on the morphological analysis, the sputtered GeTi has the column growth tendency, and the column structure vanishes with the temperature increasing. The microstructure and thermal property analysis indicate that GeTi does not undergo evident phase change process during the annealing process, which makes the switching mechanism of GeTi different from that of chalcogenide memory material, the most widely used phase change memory material

  1. NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile Main Memory Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seyong [ORNL; Vetter, Jeffrey S [ORNL

    2016-01-01

    Computer architecture experts expect that non-volatile memory (NVM) hierarchies will play a more significant role in future systems including mobile, enterprise, and HPC architectures. With this expectation in mind, we present NVL-C: a novel programming system that facilitates the efficient and correct programming of NVM main memory systems. The NVL-C programming abstraction extends C with a small set of intuitive language features that target NVM main memory, and can be combined directly with traditional C memory model features for DRAM. We have designed these new features to enable compiler analyses and run-time checks that can improve performance and guard against a number of subtle programming errors, which, when left uncorrected, can corrupt NVM-stored data. Moreover, to enable recovery of data across application or system failures, these NVL-C features include a flexible directive for specifying NVM transactions. So that our implementation might be extended to other compiler front ends and languages, the majority of our compiler analyses are implemented in an extended version of LLVM's intermediate representation (LLVM IR). We evaluate NVL-C on a number of applications to show its flexibility, performance, and correctness.

  2. BLACKCOMB2: Hardware-software co-design for non-volatile memory in exascale systems

    Energy Technology Data Exchange (ETDEWEB)

    Mudge, Trevor [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-12-15

    This work was part of a larger project, Blackcomb2, centered at Oak Ridge National Labs (Jeff Vetter PI) to investigate the opportunities for replacing or supplementing DRAM main memory with nonvolatile memory (NVmemory) in Exascale memory systems. The goal was to reduce the energy consumed by in future supercomputer memory systems and to improve their resiliency. Building on the accomplishments of the original Blackcomb Project, funded in 2010, the goal for Blackcomb2 was to identify, evaluate, and optimize the most promising emerging memory technologies, architecture hardware and software technologies, which are essential to provide the necessary memory capacity, performance, resilience, and energy efficiency in Exascale systems. Capacity and energy are the key drivers.

  3. Silicon photonic integrated circuits with electrically programmable non-volatile memory functions.

    Science.gov (United States)

    Song, J-F; Lim, A E-J; Luo, X-S; Fang, Q; Li, C; Jia, L X; Tu, X-G; Huang, Y; Zhou, H-F; Liow, T-Y; Lo, G-Q

    2016-09-19

    Conventional silicon photonic integrated circuits do not normally possess memory functions, which require on-chip power in order to maintain circuit states in tuned or field-configured switching routes. In this context, we present an electrically programmable add/drop microring resonator with a wavelength shift of 426 pm between the ON/OFF states. Electrical pulses are used to control the choice of the state. Our experimental results show a wavelength shift of 2.8 pm/ms and a light intensity variation of ~0.12 dB/ms for a fixed wavelength in the OFF state. Theoretically, our device can accommodate up to 65 states of multi-level memory functions. Such memory functions can be integrated into wavelength division mutiplexing (WDM) filters and applied to optical routers and computing architectures fulfilling large data downloading demands.

  4. Fabrication of Pb (Zr, Ti) O3 Thin Film for Non-Volatile Memory Device Application

    International Nuclear Information System (INIS)

    Mar Lar Win

    2011-12-01

    Ferroelectric lead zirconate titanate powder was composed of mainly the oxides of titanium, zirconium and lead. PZT powder was firstly prepared by thermal synthesis at different Zr/Ti ratios with various sintering temperatures. PZT thin film was fabricated on SiO2/Si substrate by using thermal evaporation method. Physical and elemental analysis were carried out by using SEM, EDX and XRD The ferroelectric properties and the switching behaviour of the PZT thin films were investigated. The ferroelectric properties and switching properties of the PZT thin film (near morphotropic phase boundary sintered at 800 C) could function as a nonvolatile memory.

  5. In-chip optical CD measurements for non-volatile memory devices

    Science.gov (United States)

    Vasconi, Mauro; Kremer, Stephanie; Polli, M.; Severgnini, Ermes; Trovati, Silvia S.

    2006-03-01

    A potential limitation to a wider usage of the scatterometry technique for CD evaluation comes from its requirement of dedicated regular measurement gratings, located in wafer scribe lanes. In fact, the simplification of the original chip layout that is often requested to design these gratings may impact on their printed dimension and shape. Etched gratings might also suffer from micro-loading effects other than in the circuit. For all these reasons, measurements collected therein may not represent the real behavior of the device. On the other hand, memory devices come with large sectors that usually possess the characteristics required for a proper scatterometry evaluation. In particular, for a leading edge flash process this approach is in principle feasible for the most critical process steps. The impact of potential drawbacks, mainly lack of pattern regularity within the tool probe area, is investigated. More, a very large sampling plan on features with equal nominal CD and density spread over the same exposure shot becomes feasible, thus yielding a deeper insight of the overall lithographic process window and a quantitative method to evaluate process equipment performance along time by comparison to acceptance data and/or last preventive maintenance. All the results gathered in the device main array are compared to those collected in standard scatterometry targets, tailored to the characteristics of the considered layers in terms of designed CD, pitch, stack and orientation.

  6. Different importance of the volatile and non-volatile fractions of an olfactory signature for individual social recognition in rats versus mice and short-term versus long-term memory.

    Science.gov (United States)

    Noack, Julia; Richter, Karin; Laube, Gregor; Haghgoo, Hojjat Allah; Veh, Rüdiger W; Engelmann, Mario

    2010-11-01

    When tested in the olfactory cued social recognition/discrimination test, rats and mice differ in their retention of a recognition memory for a previously encountered conspecific juvenile: Rats are able to recognize a given juvenile for approximately 45 min only whereas mice show not only short-term, but also long-term recognition memory (≥ 24 h). Here we modified the social recognition/social discrimination procedure to investigate the neurobiological mechanism(s) underlying the species differences. We presented a conspecific juvenile repeatedly to the experimental subjects and monitored the investigation duration as a measure for recognition. Presentation of only the volatile fraction of the juvenile olfactory signature was sufficient for both short- and long-term recognition in mice but not rats. Applying additional volatile, mono-molecular odours to the "to be recognized" juveniles failed to affect short-term memory in both species, but interfered with long-term recognition in mice. Finally immunocytochemical analysis of c-Fos as a marker for cellular activation, revealed that juvenile exposure stimulated areas involved in the processing of olfactory signals in both the main and the accessory olfactory bulb in mice. In rats, we measured an increased c-Fos synthesis almost exclusively in cells of the accessory olfactory bulb. Our data suggest that the species difference in the retention of social recognition memory is based on differences in the processing of the volatile versus non-volatile fraction of the individuals' olfactory signature. The non-volatile fraction is sufficient for retaining a short-term social memory only. Long-term social memory - as observed in mice - requires a processing of both the volatile and non-volatile fractions of the olfactory signature. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. In search of the next memory inside the circuitry from the oldest to the emerging non-volatile memories

    CERN Document Server

    Campardo, Giovanni

    2017-01-01

    This book provides students and practicing chip designers with an easy-to-follow yet thorough, introductory treatment of the most promising emerging memories under development in the industry. Focusing on the chip designer rather than the end user, this book offers expanded, up-to-date coverage of emerging memories circuit design. After an introduction on the old solid-state memories and the fundamental limitations soon to be encountered, the working principle and main technology issues of each of the considered technologies (PCRAM, MRAM, FeRAM, ReRAM) are reviewed and a range of topics related to design is explored: the array organization, sensing and writing circuitry, programming algorithms and error correction techniques are reviewed comparing the approach followed and the constraints for each of the technologies considered. Finally the issue of radiation effects on memory devices has been briefly treated. Additionally some considerations are entertained about how emerging memories can find a place in the...

  8. The origin of traps and the effect of nitrogen plasma in oxide-nitride-oxide structures for non-volatile memories

    International Nuclear Information System (INIS)

    Kim, W. S.; Kwak, D. W.; Oh, J. S.; Lee, D. W.; Cho, H. Y.

    2010-01-01

    Ultrathin oxide-nitride-oxide (ONO) dielectric stacked layers are fundamental structures of silicon-oxide-nitride-oxide-silicon (SONOS) non-volatile memory devices in which information is known to be stored as charges trapped in silicon nitride. Deep-level transient spectroscopy (DLTS) and a capacitance-voltage (CV) analysis were introduced to observe the trap behavior related to the memory effect in memory devices. The DLTS results verified that the nitride-related traps were a dominant factor in the memory effect. The energy of hole traps was 0.307 eV above the balance band. To improve the memory effects of the non-volatile memory devices with ONO structures, we introduced a nitrogen plasma treatment. After the N-plasma treatment, the flat-band voltage shift (ΔV FB ) was increased by about 1.5 times. The program and the erase (P-E) characteristics were also shown to be better than those for the as-ONO structure. In addition, the retention characteristics were improved by over 2.4 times.

  9. Piezoelectric control of magnetoelectric coupling driven non-volatile memory switching and self cooling effects in FE/FSMA multiferroic heterostructures

    Science.gov (United States)

    Singh, Kirandeep; Kaur, Davinder

    2017-02-01

    The manipulation of magnetic states and materials' spin degree-of-freedom via a control of an electric (E-) field has been recently pursued to develop magnetoelectric (ME) coupling-driven electronic data storage devices with high read/write endurance, fast dynamic response, and low energy dissipation. One major hurdle for this approach is to develop reliable materials which should be compatible with prevailing silicon (Si)-based complementary metal-oxide-semiconductor (CMOS) technology, simultaneously allowing small voltage for the tuning of magnetization switching. In this regard, multiferroic heterostructures where ferromagnetic (FM) and ferroelectric (FE) layers are alternatively grown on conventional Si substrates are promising as the piezoelectric control of magnetization switching is anticipated to be possible by an E-field. In this work, we study the ferromagnetic shape memory alloys based PbZr0.52Ti0.48O3/Ni50Mn35In15 (PZT/Ni-Mn-In) multiferroic heterostructures, and investigate their potential for CMOS compatible non-volatile magnetic data storage applications. We demonstrate the voltage-impulse controlled nonvolatile, reversible, and bistable magnetization switching at room temperature in Si-integrated PZT/Ni-Mn-In thin film multiferroic heterostructures. We also thoroughly unveil the various intriguing features in these materials, such as E-field tuned ME coupling and magnetocaloric effect, shape memory induced ferroelectric modulation, improved fatigue endurance as well as Refrigeration Capacity (RC). This comprehensive study suggests that these novel materials have a great potential for the development of unconventional nanoscale memory and refrigeration devices with self-cooling effect and enhanced refrigeration efficiency, thus providing a new venue for their applications.

  10. Atomic layer-deposited Al–HfO{sub 2}/SiO{sub 2} bi-layers towards 3D charge trapping non-volatile memory

    Energy Technology Data Exchange (ETDEWEB)

    Congedo, Gabriele, E-mail: gabriele.congedo@mdm.imm.cnr.it; Wiemer, Claudia; Lamperti, Alessio; Cianci, Elena; Molle, Alessandro; Volpe, Flavio G.; Spiga, Sabina, E-mail: sabina.spiga@mdm.imm.cnr

    2013-04-30

    A metal/oxide/high-κ dielectric/oxide/silicon (MOHOS) planar charge trapping memory capacitor including SiO{sub 2} as tunnel oxide, Al–HfO{sub 2} as charge trapping layer, SiO{sub 2} as blocking oxide and TaN metal gate was fabricated and characterized as test vehicle in the view of integration into 3D cells. The thin charge trapping layer and blocking oxide were grown by atomic layer deposition, the technique of choice for the implementation of these stacks into 3D structures. The oxide stack shows a good thermal stability for annealing temperature of 900 °C in N{sub 2}, as required for standard complementary metal–oxide–semiconductor processes. MOHOS capacitors can be efficiently programmed and erased under the applied voltages of ± 20 V to ± 12 V. When compared to a benchmark structure including thin Si{sub 3}N{sub 4} as charge trapping layer, the MOHOS cell shows comparable program characteristics, with the further advantage of the equivalent oxide thickness scalability due to the high dielectric constant (κ) value of 32, and an excellent retention even for strong testing conditions. Our results proved that high-κ based oxide structures grown by atomic layer deposition can be of interest for the integration into three dimensionally stacked charge trapping devices. - Highlights: ► Charge trapping device with Al–HfO{sub 2} storage layer is fabricated and characterized. ► Al–HfO{sub 2} and SiO{sub 2} blocking oxides are deposited by atomic layer deposition. ► The oxide stack shows a good thermal stability after annealing at 900 °C. ► The device can be efficiently programmed/erased and retention is excellent. ► The oxide stack could be used for 3D-stacked Flash non-volatile memories.

  11. Non-exponential resistive switching in Ag2S memristors: a key to nanometer-scale non-volatile memory devices.

    Science.gov (United States)

    Gubicza, Agnes; Csontos, Miklós; Halbritter, András; Mihály, György

    2015-03-14

    The dynamics of resistive switchings in nanometer-scale metallic junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Our thorough experimental analysis and numerical simulations revealed that the resistance change upon a switching bias voltage pulse exhibits a strongly non-exponential behaviour yielding markedly different response times at different bias levels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale non-volatile memory cells with stable switching ratios, high endurance as well as fast response to write/erase, and an outstanding stability against read operations at technologically optimal bias and current levels.

  12. Flexible and twistable non-volatile memory cell array with all-organic one diode-one resistor architecture.

    Science.gov (United States)

    Ji, Yongsung; Zeigler, David F; Lee, Dong Su; Choi, Hyejung; Jen, Alex K-Y; Ko, Heung Cho; Kim, Tae-Wook

    2013-01-01

    Flexible organic memory devices are one of the integral components for future flexible organic electronics. However, high-density all-organic memory cell arrays on malleable substrates without cross-talk have not been demonstrated because of difficulties in their fabrication and relatively poor performances to date. Here we demonstrate the first flexible all-organic 64-bit memory cell array possessing one diode-one resistor architectures. Our all-organic one diode-one resistor cell exhibits excellent rewritable switching characteristics, even during and after harsh physical stresses. The write-read-erase-read output sequence of the cells perfectly correspond to the external pulse signal regardless of substrate deformation. The one diode-one resistor cell array is clearly addressed at the specified cells and encoded letters based on the standard ASCII character code. Our study on integrated organic memory cell arrays suggests that the all-organic one diode-one resistor cell architecture is suitable for high-density flexible organic memory applications in the future.

  13. Large scale integration of flexible non-volatile, re-addressable memories using P(VDF-TrFE) and amorphous oxide transistors

    International Nuclear Information System (INIS)

    Gelinck, Gerwin H; Cobb, Brian; Van Breemen, Albert J J M; Myny, Kris

    2015-01-01

    Ferroelectric polymers and amorphous metal oxide semiconductors have emerged as important materials for re-programmable non-volatile memories and high-performance, flexible thin-film transistors, respectively. However, realizing sophisticated transistor memory arrays has proven to be a challenge, and demonstrating reliable writing to and reading from such a large scale memory has thus far not been demonstrated. Here, we report an integration of ferroelectric, P(VDF-TrFE), transistor memory arrays with thin-film circuitry that can address each individual memory element in that array. n-type indium gallium zinc oxide is used as the active channel material in both the memory and logic thin-film transistors. The maximum process temperature is 200 °C, allowing plastic films to be used as substrate material. The technology was scaled up to 150 mm wafer size, and offers good reproducibility, high device yield and low device variation. This forms the basis for successful demonstration of memory arrays, read and write circuitry, and the integration of these. (paper)

  14. Laser Nanosoldering of Golden and Magnetite Particles and its Possible Application in 3D Printing Devices and Four-Valued Non-Volatile Memories

    Directory of Open Access Journals (Sweden)

    Jaworski Jacek

    2015-12-01

    Full Text Available In recent years the 3D printing methods have been developing rapidly. This article presents researches about a new composite consisted of golden and magnetite nanoparticles which could be used for this technique. Preparation of golden nanoparticles by laser ablation and their soldering by laser green light irradiation proceeded in water environment. Magnetite was obtained on chemical way. During experiments it was tested a change of a size of nanoparticles during laser irradiation, surface plasmon resonance, zeta potential. The obtained golden - magnetite composite material was magnetic after laser irradiation. On the end there was considered the application it for 3D printing devices, water filters and four-valued non-volatile memories.

  15. Nanocrystals manufacturing by ultra-low-energy ion-beam-synthesis for non-volatile memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Normand, P. E-mail: p.normand@imel.demokritos.gr; Kapetanakis, E.; Dimitrakis, P.; Skarlatos, D.; Beltsios, K.; Tsoukalas, D.; Bonafos, C.; Ben Assayag, G.; Cherkashin, N.; Claverie, A.; Berg, J.A. van den; Soncini, V.; Agarwal, A.; Ameen, M.; Perego, M.; Fanciulli, M

    2004-02-01

    An overview of recent developments regarding the fabrication and structure of thin silicon dioxide films with embedded nanocrystals through ultra-low-energy ion-beam-synthesis (ULE-IBS) is presented. Advances in fabrication, increased understanding of structure formation processes and ways to control them allow for the fabrication of reproducible and attractive silicon-nanocrystal memory devices for a wide-range of memory applications as herein demonstrated in the case of low-voltage EEPROM-like applications.

  16. Nanocrystals manufacturing by ultra-low-energy ion-beam-synthesis for non-volatile memory applications

    International Nuclear Information System (INIS)

    Normand, P.; Kapetanakis, E.; Dimitrakis, P.; Skarlatos, D.; Beltsios, K.; Tsoukalas, D.; Bonafos, C.; Ben Assayag, G.; Cherkashin, N.; Claverie, A.; Berg, J.A. van den; Soncini, V.; Agarwal, A.; Ameen, M.; Perego, M.; Fanciulli, M.

    2004-01-01

    An overview of recent developments regarding the fabrication and structure of thin silicon dioxide films with embedded nanocrystals through ultra-low-energy ion-beam-synthesis (ULE-IBS) is presented. Advances in fabrication, increased understanding of structure formation processes and ways to control them allow for the fabrication of reproducible and attractive silicon-nanocrystal memory devices for a wide-range of memory applications as herein demonstrated in the case of low-voltage EEPROM-like applications

  17. Radiation-hardened MRAM-based LUT for non-volatile FPGA soft error mitigation with multi-node upset tolerance

    Science.gov (United States)

    Zand, Ramtin; DeMara, Ronald F.

    2017-12-01

    In this paper, we have developed a radiation-hardened non-volatile lookup table (LUT) circuit utilizing spin Hall effect (SHE)-magnetic random access memory (MRAM) devices. The design is motivated by modeling the effect of radiation particles striking hybrid complementary metal oxide semiconductor/spin based circuits, and the resistive behavior of SHE-MRAM devices via established and precise physics equations. The models developed are leveraged in the SPICE circuit simulator to verify the functionality of the proposed design. The proposed hardening technique is based on using feedback transistors, as well as increasing the radiation capacity of the sensitive nodes. Simulation results show that our proposed LUT circuit can achieve multiple node upset (MNU) tolerance with more than 38% and 60% power-delay product improvement as well as 26% and 50% reduction in device count compared to the previous energy-efficient radiation-hardened LUT designs. Finally, we have performed a process variation analysis showing that the MNU immunity of our proposed circuit is realized at the cost of increased susceptibility to transistor and MRAM variations compared to an unprotected LUT design.

  18. Surface directed phase separation of semiconductor ferroelectric polymer blends and their use in non-volatile memories

    NARCIS (Netherlands)

    Breemen, A.J.J.M. van; Zaba, T.; Khikhlovskyi, V.; Michels, J.; Janssen, R.; Kemerink, M.; Gelinck, G.

    2015-01-01

    The polymer phase separation of P(VDF-TrFE):F8BT blends is studied in detail. Its morphology is key to the operation and performance of memory diodes. In this study, it is demonstrated that it is possible to direct the semiconducting domains of a phase-separating mixture of P(VDF-TrFE) and F8BT in a

  19. An overview of Experimental Condensed Matter Physics in Argentina by 2014, and Oxides for Non Volatile Memory Devices: The MeMOSat Project

    Science.gov (United States)

    Levy, Pablo

    2015-03-01

    In the first part of my talk, I will describe the status of the experimental research in Condensed Matter Physics in Argentina, biased towards developments related to micro and nanotechnology. In the second part, I will describe the MeMOSat Project, a consortium aimed at producing non-volatile memory devices to work in aggressive environments, like those found in the aerospace and nuclear industries. Our devices rely on the Resistive Switching mechanism, which produces a permanent but reversible change in the electrical resistance across a metal-insulator-metal structure by means of a pulsed protocol of electrical stimuli. Our project is devoted to the study of Memory Mechanisms in Oxides (MeMO) in order to establish a technological platform that tests the Resistive RAM (ReRAM) technology for aerospace applications. A review of MeMOSat's activities is presented, covering the initial Proof of Concept in ceramic millimeter sized samples; the study of different oxide-metal couples including (LaPr)2/3Ca1/3MnO, La2/3Ca1/3MnO3, YBa2Cu3O7, TiO2, HfO2, MgO and CuO; and recent miniaturized arrays of micrometer sized devices controlled by in-house designed electronics, which were launched with the BugSat01 satellite in June2014 by the argentinian company Satellogic.

  20. Impact of process parameters on the structural and electrical properties of metal/PZT/Al2O3/silicon gate stack for non-volatile memory applications

    Science.gov (United States)

    Singh, Prashant; Jha, Rajesh Kumar; Singh, Rajat Kumar; Singh, B. R.

    2018-02-01

    In this paper, we present the structural and electrical properties of the Al2O3 buffer layer on non-volatile memory behavior using Metal/PZT/Al2O3/Silicon structures. Metal/PZT/Silicon and Metal/Al2O3/Silicon structures were also fabricated and characterized to obtain capacitance and leakage current parameters. Lead zirconate titanate (PZT::35:65) and Al2O3 films were deposited by sputtering on the silicon substrate. Memory window, PUND, endurance, breakdown voltage, effective charges, flat-band voltage and leakage current density parameters were measured and the effects of process parameters on the structural and electrical characteristics were investigated. X-ray data show dominant (110) tetragonal phase of the PZT film, which crystallizes at 500 °C. The sputtered Al2O3 film annealed at different temperatures show dominant (312) orientation and amorphous nature at 425 °C. Multiple angle laser ellipsometric analysis reveals the temperature dependence of PZT film refractive index and extinction coefficient. Electrical characterization shows the maximum memory window of 3.9 V and breakdown voltage of 25 V for the Metal/Ferroelectric/Silicon (MFeS) structures annealed at 500 °C. With 10 nm Al2O3 layer in the Metal/Ferroelectric/Insulator/Silicon (MFeIS) structure, the memory window and breakdown voltage was improved to 7.21 and 35 V, respectively. Such structures show high endurance with no significant reduction polarization charge for upto 2.2 × 109 iteration cycles.

  1. Pulsed ion-beam assisted deposition of Ge nanocrystals on SiO2 for non-volatile memory device

    International Nuclear Information System (INIS)

    Stepina, N.P.; Dvurechenskii, A.V.; Armbrister, V.A.; Kirienko, V.V.; Novikov, P.L.; Kesler, V.G.; Gutakovskii, A.K.; Smagina, Z.V.; Spesivtzev, E.V.

    2008-01-01

    A floating gate memory structure, utilizing Ge nanocrystals (NCs) deposited on tunnel SiO 2 , have been fabricated using pulsed low energy ion-beam induced molecular-beam deposition (MBD) in ultra-high vacuum. The ion-beam action is shown to stimulate the nucleation of Ge NCs when being applied after thin Ge layer deposition. Growth conditions for independent change of NCs size and array density were established allowing to optimize the structure parameters required for memory device. Activation energy E = 0.25 eV was determined from the temperature dependence of NCs array density. Monte Carlo simulation has shown that the process, determining NCs array density, is the surface diffusion. Embedding of the crystalline Ge dots into silicon oxide was carried out by selective oxidation of Si(100)/SiO 2 /Ge(NCs)/poly-Si structure. MOS-capacitor obtained after oxidation showed a hysteresis in its C-V curves attributed to charge retention in the Ge dots

  2. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures

    Science.gov (United States)

    Lee, Myoung-Jae; Lee, Chang Bum; Lee, Dongsoo; Lee, Seung Ryul; Chang, Man; Hur, Ji Hyun; Kim, Young-Bae; Kim, Chang-Jung; Seo, David H.; Seo, Sunae; Chung, U.-In; Yoo, In-Kyeong; Kim, Kinam

    2011-08-01

    Numerous candidates attempting to replace Si-based flash memory have failed for a variety of reasons over the years. Oxide-based resistance memory and the related memristor have succeeded in surpassing the specifications for a number of device requirements. However, a material or device structure that satisfies high-density, switching-speed, endurance, retention and most importantly power-consumption criteria has yet to be announced. In this work we demonstrate a TaOx-based asymmetric passive switching device with which we were able to localize resistance switching and satisfy all aforementioned requirements. In particular, the reduction of switching current drastically reduces power consumption and results in extreme cycling endurances of over 1012. Along with the 10 ns switching times, this allows for possible applications to the working-memory space as well. Furthermore, by combining two such devices each with an intrinsic Schottky barrier we eliminate any need for a discrete transistor or diode in solving issues of stray leakage current paths in high-density crossbar arrays.

  3. Integration of organic based Schottky junctions for crossbar non-volatile memory applications

    DEFF Research Database (Denmark)

    Katsia, E.; Tallarida, G.; Ferrari, S.

    2008-01-01

    Small size Schottky junctions using two different synthesized organic semiconductors (oligophenylene-vinylenes) were integrated by standard UV lithography into crossbar arrays. The proposed integration scheme can be applied to a wide class of organics without affecting material properties. Current...

  4. An ultra-low-power area-efficient non-volatile memory in a 0.18 μm single-poly CMOS process for passive RFID tags

    International Nuclear Information System (INIS)

    Jia Xiaoyun; Feng Peng; Zhang Shengguang; Wu Nanjian; Zhao Baiqin; Liu Su

    2013-01-01

    This paper presents an ultra-low-power area-efficient non-volatile memory (NVM) in a 0.18 μm single-poly standard CMOS process for passive radio frequency identification (RFID) tags. In the memory cell, a novel low-power operation method is proposed to realize bi-directional Fowler—Nordheim tunneling during write operation. Furthermore, the cell is designed with PMOS transistors and coupling capacitors to minimize its area. In order to improve its reliability, the cell consists of double floating gates to store the data, and the 1 kbit NVM was implemented in a 0.18 μm single-poly standard CMOS process. The area of the memory cell and 1 kbit memory array is 96 μm 2 and 0.12 mm 2 , respectively. The measured results indicate that the program/erase voltage ranges from 5 to 6 V The power consumption of the read/write operation is 0.19 μW/0.69 μW at a read/write rate of (268 kb/s)/(3.0 kb/s). (semiconductor integrated circuits)

  5. Observing the amorphous-to-crystalline phase transition in Ge{sub 2}Sb{sub 2}Te{sub 5} non-volatile memory materials from ab initio molecular-dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.H.; Elliott, S.R. [Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge (United Kingdom)

    2012-10-15

    Phase-change memory is a promising candidate for the next generation of non-volatile memory devices. This technology utilizes reversible phase transitions between amorphous and crystalline phases of a recording material, and has been successfully used in rewritable optical data storage, revealing its feasibility. In spite of the importance of understanding the nucleation and growth processes that play a critical role in the phase transition, this understanding is still incomplete. Here, we present observations of the early stages of crystallization in Ge{sub 2}Sb{sub 2}Te{sub 5} materials through ab initio molecular-dynamics simulations. Planar structures, including fourfold rings and planes, play an important role in the formation and growth of crystalline clusters in the amorphous matrix. At the same time, vacancies facilitate crystallization by providing space at the glass-crystalline interface for atomic diffusion, which results in fast crystal growth, as observed in simulations and experiments. The microscopic mechanism of crystallization presented here may deepen our understanding of the phase transition occurring in real devices, providing an opportunity to optimize the memory performance of phase-change materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Analysis of drugs of forensic interest with capillary zone electrophoresis/time-of-flight mass spectrometry based on the use of non-volatile buffers

    Czech Academy of Sciences Publication Activity Database

    Gottardo, R.; Mikšík, Ivan; Aturki, Z.; Sorio, D.; Seri, C.; Fanali, S.; Tagliaro, F.

    2012-01-01

    Roč. 33, č. 4 (2012), s. 599-606 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA203/08/1428 Institutional research plan: CEZ:AV0Z50110509 Keywords : capillary electrophoresis * drugs of abuse * non-volatile buffer * CE-MS Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.261, year: 2012

  7. A New Concept for Non-Volatile Memory: The Electric-Pulse Induced Resistive Change Effect in Colossal Magnetoresistive Thin Films

    Science.gov (United States)

    Liu, S. Q.; Wu, N. J.; Ignatiev, A.

    2001-01-01

    A novel electric pulse-induced resistive change (EPIR) effect has been found in thin film colossal magnetoresistive (CMR) materials, and has shown promise for the development of resistive, nonvolatile memory. The EPIR effect is induced by the application of low voltage (resistance of the thin film sample depending on pulse polarity. The sample resistance change has been shown to be over two orders of magnitude, and is nonvolatile after pulsing. The sample resistance can also be changed through multiple levels - as many as 50 have been shown. Such a device can provide a way for the development of a new kind of nonvolatile multiple-valued memory with high density, fast write/read speed, low power-consumption, and potential high radiation-hardness.

  8. Acoustically assisted spin-transfer-torque switching of nanomagnets: An energy-efficient hybrid writing scheme for non-volatile memory

    International Nuclear Information System (INIS)

    Biswas, Ayan K.; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2013-01-01

    We show that the energy dissipated to write bits in spin-transfer-torque random access memory can be reduced by an order of magnitude if a surface acoustic wave (SAW) is launched underneath the magneto-tunneling junctions (MTJs) storing the bits. The SAW-generated strain rotates the magnetization of every MTJs' soft magnet from the easy towards the hard axis, whereupon passage of a small spin-polarized current through a target MTJ selectively switches it to the desired state with > 99.99% probability at room temperature, thereby writing the bit. The other MTJs return to their original states at the completion of the SAW cycle

  9. Pulsed ion-beam assisted deposition of Ge nanocrystals on SiO{sub 2} for non-volatile memory device

    Energy Technology Data Exchange (ETDEWEB)

    Stepina, N.P. [Institute of Semiconductor Physics, Lavrenteva 13, 630090 Novosibirsk (Russian Federation)], E-mail: nstepina@mail.ru; Dvurechenskii, A.V.; Armbrister, V.A.; Kirienko, V.V.; Novikov, P.L.; Kesler, V.G.; Gutakovskii, A.K.; Smagina, Z.V.; Spesivtzev, E.V. [Institute of Semiconductor Physics, Lavrenteva 13, 630090 Novosibirsk (Russian Federation)

    2008-11-03

    A floating gate memory structure, utilizing Ge nanocrystals (NCs) deposited on tunnel SiO{sub 2}, have been fabricated using pulsed low energy ion-beam induced molecular-beam deposition (MBD) in ultra-high vacuum. The ion-beam action is shown to stimulate the nucleation of Ge NCs when being applied after thin Ge layer deposition. Growth conditions for independent change of NCs size and array density were established allowing to optimize the structure parameters required for memory device. Activation energy E = 0.25 eV was determined from the temperature dependence of NCs array density. Monte Carlo simulation has shown that the process, determining NCs array density, is the surface diffusion. Embedding of the crystalline Ge dots into silicon oxide was carried out by selective oxidation of Si(100)/SiO{sub 2} /Ge(NCs)/poly-Si structure. MOS-capacitor obtained after oxidation showed a hysteresis in its C-V curves attributed to charge retention in the Ge dots.

  10. Phase change materials in non-volatile storage

    OpenAIRE

    Ielmini, Daniele; Lacaita, Andrea L.

    2011-01-01

    After revolutionizing the technology of optical data storage, phase change materials are being adopted in non-volatile semiconductor memories. Their success in electronic storage is mostly due to the unique properties of the amorphous state where carrier transport phenomena and thermally-induced phase change cooperate to enable high-speed, low-voltage operation and stable data retention possible within the same material. This paper reviews the key physical properties that make this phase so s...

  11. Non-volatile resistive switching in the Mott insulator (V1-xCrx)2O3

    Science.gov (United States)

    Querré, M.; Tranchant, J.; Corraze, B.; Cordier, S.; Bouquet, V.; Députier, S.; Guilloux-Viry, M.; Besland, M.-P.; Janod, E.; Cario, L.

    2018-05-01

    The discovery of non-volatile resistive switching in Mott insulators related to an electric-field-induced insulator to metal transition (IMT) has paved the way for their use in a new type of non-volatile memories, the Mott memories. While most of the previous studies were dedicated to uncover the resistive switching mechanism and explore the memory potential of chalcogenide Mott insulators, we present here a comprehensive study of resistive switching in the canonical oxide Mott insulator (V1-xCrx)2O3. Our work demonstrates that this compound undergoes a non-volatile resistive switching under electric field. This resistive switching is induced by a Mott transition at the local scale which creates metallic domains closely related to existing phases of the temperature-pressure phase diagram of (V1-xCrx)2O3. Our work demonstrates also reversible resistive switching in (V1-xCrx)2O3 crystals and thin film devices. Preliminary performances obtained on 880 nm thick layers with 500 nm electrodes show the strong potential of Mott memories based on the Mott insulator (V1-xCrx)2O3.

  12. Analysis of drugs of forensic interest with capillary zone electrophoresis/time-of-flight mass spectrometry based on the use of non-volatile buffers.

    Science.gov (United States)

    Gottardo, Rossella; Mikšík, Ivan; Aturki, Zeineb; Sorio, Daniela; Seri, Catia; Fanali, Salvatore; Tagliaro, Franco

    2012-02-01

    The present work is aimed at investigating the influence of the background electrolyte composition and concentration on the separation efficiency and resolution and mass spectrometric detection of illicit drugs in a capillary zone electrophoresis-electrospray ionization-time of flight mass spectrometry (CZE-ESI-TOF MS) system. The effect of phosphate, borate and Tris buffers on the separation and mass spectrometry response of a mixture of 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, methadone, cocaine, morphine, codeine and 6-monoacetylmorphine was studied, in comparison with a reference ammonium formate separation buffer. Inorganic non-volatile borate and Tris buffers proved hardly suitable for capillary electrophoresis-mass spectrometry (CE-MS) analysis, but quite unexpectedly ammonium phosphate buffers showed good separation and ionization performances for all the analytes tested. Applications of this method to real samples of hair from drug addicts are also provided. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Field-effect transistor memories based on ferroelectric polymers

    Science.gov (United States)

    Zhang, Yujia; Wang, Haiyang; Zhang, Lei; Chen, Xiaomeng; Guo, Yu; Sun, Huabin; Li, Yun

    2017-11-01

    Field-effect transistors based on ferroelectrics have attracted intensive interests, because of their non-volatile data retention, rewritability, and non-destructive read-out. In particular, polymeric materials that possess ferroelectric properties are promising for the fabrications of memory devices with high performance, low cost, and large-area manufacturing, by virtue of their good solubility, low-temperature processability, and good chemical stability. In this review, we discuss the material characteristics of ferroelectric polymers, providing an update on the current development of ferroelectric field-effect transistors (Fe-FETs) in non-volatile memory applications. Program supported partially by the NSFC (Nos. 61574074, 61774080), NSFJS (No. BK20170075), and the Open Partnership Joint Projects of NSFC-JSPS Bilateral Joint Research Projects (No. 61511140098).

  14. Switching speed in resistive random access memories (RRAMS) based on plastic semiconductor

    NARCIS (Netherlands)

    Rocha, P.R.F.; Gomes, H.L.; Kiazadeh, A.; Chen, Qian; Leeuw, de D.M.; Meskers, S.C.J.

    2011-01-01

    This work addresses non-volatile memories based on metal-oxide polymer diodes. We make a thorough investigation into the static and dynamic behavior. Current-voltage characteristics with varying voltage ramp speed demonstrate that the internal capacitive double-layer structure inhibits the switching

  15. Two-dimensional non-volatile programmable p-n junctions

    Science.gov (United States)

    Li, Dong; Chen, Mingyuan; Sun, Zhengzong; Yu, Peng; Liu, Zheng; Ajayan, Pulickel M.; Zhang, Zengxing

    2017-09-01

    Semiconductor p-n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p-n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p-n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe2/hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 104 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p-n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.

  16. Electric Field Tuning Non-volatile Magnetism in Half-Metallic Alloys Co2FeAl/Pb(Mg1/3Nb2/3)O3-PbTiO3 Heterostructure

    Science.gov (United States)

    Dunzhu, Gesang; Wang, Fenglong; Zhou, Cai; Jiang, Changjun

    2018-03-01

    We reported the non-volatile electric field-mediated magnetic properties in the half-metallic Heusler alloy Co2FeAl/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure at room temperature. The remanent magnetization with different applied electric field along [100] and [01-1] directions was achieved, which showed the non-volatile remanent magnetization driven by an electric field. The two giant reversible and stable remanent magnetization states were obtained by applying pulsed electric field. This can be attributed to the piezostrain effect originating from the piezoelectric substrate, which can be used for magnetoelectric-based memory devices.

  17. Organic ferroelectric opto-electronic memories

    NARCIS (Netherlands)

    Asadi, K.; Li, M.; Blom, P.W.M.; Kemerink, M.; Leeuw, D.M. de

    2011-01-01

    Memory is a prerequisite for many electronic devices. Organic non-volatile memory devices based on ferroelectricity are a promising approach towards the development of a low-cost memory technology based on a simple cross-bar array. In this review article we discuss the latest developments in this

  18. Resistive Memory Devices for Radiation Resistant Non-Volatile Memory

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionizing radiation in space can damage electronic equipment, corrupting data and even disabling computers. Radiation resistant (rad hard) strategies must be employed...

  19. Non-volatile polarization switch of magnetic domain wall velocity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.; Stolichnov, I.; Setter, N. [Ceramics Laboratory, EPFL-Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Bernand-Mantel, A.; Schott, Marine; Pizzini, S.; Ranno, L. [University of Grenoble Alpes, Institut Néel, F-38042 Grenoble (France); CNRS, Institut Néel, F-38042 Grenoble (France); Auffret, S.; Gaudin, G. [SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble (France)

    2015-12-21

    Controlled propagation speed of individual magnetic domains in metal channels at the room temperature is obtained via the non-volatile field effect associated with the switchable polarization of P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) ferroelectric polymer. Polarization domains directly written using conducting atomic force microscope probe locally accelerate/decelerate the magnetic domains in the 0.6 nm thick Co film. The change of the magnetic domain wall velocity is consistent with the magnetic anisotropy energy modulation through the polarization upward/downward orientation. Excellent retention is observed. The demonstrated local non-destructive and reversible change of magnetic properties via rewritable patterning of ferroelectric domains could be attractive for exploring the ultimate limit of miniaturization in devices based on ferromagnetic/ferroelectric bilayers.

  20. Low-field Switching Four-state Nonvolatile Memory Based on Multiferroic Tunnel Junctions

    Science.gov (United States)

    Yau, H. M.; Yan, Z. B.; Chan, N. Y.; Au, K.; Wong, C. M.; Leung, C. W.; Zhang, F. Y.; Gao, X. S.; Dai, J. Y.

    2015-08-01

    Multiferroic tunneling junction based four-state non-volatile memories are very promising for future memory industry since this kind of memories hold the advantages of not only the higher density by scaling down memory cell but also the function of magnetically written and electrically reading. In this work, we demonstrate a success of this four-state memory in a material system of NiFe/BaTiO3/La0.7Sr0.3MnO3 with improved memory characteristics such as lower switching field and larger tunneling magnetoresistance (TMR). Ferroelectric switching induced resistive change memory with OFF/ON ratio of 16 and 0.3% TMR effect have been achieved in this multiferroic tunneling structure.

  1. New memory devices based on the proton transfer process

    International Nuclear Information System (INIS)

    Wierzbowska, Małgorzata

    2016-01-01

    Memory devices operating due to the fast proton transfer (PT) process are proposed by the means of first-principles calculations. Writing  information is performed using the electrostatic potential of scanning tunneling microscopy (STM). Reading information is based on the effect of the local magnetization induced at the zigzag graphene nanoribbon (Z-GNR) edge—saturated with oxygen or the hydroxy group—and can be realized with the use of giant magnetoresistance (GMR), a magnetic tunnel junction or spin-transfer torque devices. The energetic barriers for the hop forward and backward processes can be tuned by the distance and potential of the STM tip; this thus enables us to tailor the non-volatile logic states. The proposed system enables very dense packing of the logic cells and could be used in random access and flash memory devices. (paper)

  2. New memory devices based on the proton transfer process

    Science.gov (United States)

    Wierzbowska, Małgorzata

    2016-01-01

    Memory devices operating due to the fast proton transfer (PT) process are proposed by the means of first-principles calculations. Writing information is performed using the electrostatic potential of scanning tunneling microscopy (STM). Reading information is based on the effect of the local magnetization induced at the zigzag graphene nanoribbon (Z-GNR) edge—saturated with oxygen or the hydroxy group—and can be realized with the use of giant magnetoresistance (GMR), a magnetic tunnel junction or spin-transfer torque devices. The energetic barriers for the hop forward and backward processes can be tuned by the distance and potential of the STM tip; this thus enables us to tailor the non-volatile logic states. The proposed system enables very dense packing of the logic cells and could be used in random access and flash memory devices.

  3. Non-volatile MOS RAM cell with capacitor-isolated nodes that are radiation accessible for rendering a non-permanent programmed information in the cell of a non-volatile one

    NARCIS (Netherlands)

    Widdershoven, Franciscus P.; Annema, Anne J.; Storms, Maurits M.N.; Pelgrom, Marcellinus J.M.; Pelgrom, Marcel J M

    2001-01-01

    A non-volatile, random access memory cell comprises first and second inverters each having an output node cross-coupled by cross-coupling means to an input node of the other inverter for forming a MOS RAM cell. The output node of each inverter is selectively connected via the conductor paths of

  4. Inkjet-printing of non-volatile organic resistive devices and crossbar array structures

    Science.gov (United States)

    Sax, Stefan; Nau, Sebastian; Popovic, Karl; Bluemel, Alexander; Klug, Andreas; List-Kratochvil, Emil J. W.

    2015-09-01

    Due to the increasing demand for storage capacity in various electronic gadgets like mobile phones or tablets, new types of non-volatile memory devices have gained a lot of attention over the last few years. Especially multilevel conductance switching elements based on organic semiconductors are of great interest due to their relatively simple device architecture and their small feature size. Since organic semiconductors combine the electronic properties of inorganic materials with the mechanical characteristics of polymers, this class of materials is suitable for solution based large area device preparation techniques. Consequently, inkjet based deposition techniques are highly capable of facing preparation related challenges. By gradually replacing the evaporated electrodes with inkjet printed silver, the preparation related influence onto device performance parameters such as the ON/OFF ratio was investigated with IV measurements and high resolution transmission electron microscopy. Due to the electrode surface roughness the solvent load during the printing of the top electrode as well as organic layer inhomogeneity's the utilization in array applications is hampered. As a prototypical example a 1diode-1resistor element and a 2×2 subarray from 5×5 array matrix were fully characterized demonstrating the versatility of inkjet printing for device preparation.

  5. Air-stable memory array of bistable rectifying diodes based on ferroelectric-semiconductor polymer blends

    Science.gov (United States)

    Kumar, Manasvi; Sharifi Dehsari, Hamed; Anwar, Saleem; Asadi, Kamal

    2018-03-01

    Organic bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers have emerged as promising candidates for non-volatile information storage for low-cost solution processable electronics. One of the bottlenecks impeding upscaling is stability and reliable operation of the array in air. Here, we present a memory array fabricated with an air-stable amine-based semiconducting polymer. Memory diode fabrication and full electrical characterizations were carried out in atmospheric conditions (23 °C and 45% relative humidity). The memory diodes showed on/off ratios greater than 100 and further exhibited robust and stable performance upon continuous write-read-erase-read cycles. Moreover, we demonstrate a 4-bit memory array that is free from cross-talk with a shelf-life of several months. Demonstration of the stability and reliable air operation further strengthens the feasibility of the resistance switching in ferroelectric memory diodes for low-cost applications.

  6. Scientific developments of liquid crystal-based optical memory: a review

    Science.gov (United States)

    Prakash, Jai; Chandran, Achu; Biradar, Ashok M.

    2017-01-01

    The memory behavior in liquid crystals (LCs), although rarely observed, has made very significant headway over the past three decades since their discovery in nematic type LCs. It has gone from a mere scientific curiosity to application in variety of commodities. The memory element formed by numerous LCs have been protected by patents, and some commercialized, and used as compensation to non-volatile memory devices, and as memory in personal computers and digital cameras. They also have the low cost, large area, high speed, and high density memory needed for advanced computers and digital electronics. Short and long duration memory behavior for industrial applications have been obtained from several LC materials, and an LC memory with interesting features and applications has been demonstrated using numerous LCs. However, considerable challenges still exist in searching for highly efficient, stable, and long-lifespan materials and methods so that the development of useful memory devices is possible. This review focuses on the scientific and technological approach of fascinating applications of LC-based memory. We address the introduction, development status, novel design and engineering principles, and parameters of LC memory. We also address how the amalgamation of LCs could bring significant change/improvement in memory effects in the emerging field of nanotechnology, and the application of LC memory as the active component for futuristic and interesting memory devices.

  7. Reconfigurable Electronics and Non-Volatile Memory Research

    Science.gov (United States)

    2015-11-10

    spectrophotometer tool uses film reflectance to calculate film thickness via a set of proprietary algorithms and a developed recipe for material type. The...tool can also be used to collect transmission spectra. Recipes must be developed for each film type (and stack) that is measured. Once the recipe has...Regner, J.K.; Balasubramanian, M; Cook , B.; Li, Y.; Kassayebetre, H. Sharma, A.; Baker, R.J.; Campbell, K.A., “Integration of IC Industry Feature

  8. Multicolour fluorescent memory based on the interaction of hydroxy terphenyls with fluoride anions.

    Science.gov (United States)

    Akamatsu, Masaaki; Mori, Taizo; Okamoto, Ken; Sakai, Hideki; Abe, Masahiko; Hill, Jonathan P; Ariga, Katsuhiko

    2014-12-01

    Memory operations based on variation of a molecule's properties are important because they may lead to device miniaturization to the molecular scale or increasingly complex information processing protocols beyond the binary level. Molecular memory also introduces possibilities related to information-storage security where chemical information (or reagents) might be used as an encryption key, in this case, acidic/basic reagents. Chemical memory that possesses both volatile and non-volatile functionality requires reversible conversion between at least two chemically different stable or quasi-stable states. Here we have developed the phenol-phenoxide equilibrium of phenol fluorophores as a data storage element, which can be used to write or modulate data using chemical reagents. The properties of this system allow data to be stored and erased either in non-volatile or volatile modes. We also demonstrate non-binary switching of states made possible by preparation of  a composite containing the molecular memory elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Embedded Memory Hierarchy Exploration Based on Magnetic Random Access Memory

    Directory of Open Access Journals (Sweden)

    Luís Vitório Cargnini

    2014-08-01

    Full Text Available Static random access memory (SRAM is the most commonly employed semiconductor in the design of on-chip processor memory. However, it is unlikely that the SRAM technology will have a cell size that will continue to scale below 45 nm, due to the leakage current that is caused by the quantum tunneling effect. Magnetic random access memory (MRAM is a candidate technology to replace SRAM, assuming appropriate dimensioning given an operating threshold voltage. The write current of spin transfer torque (STT-MRAM is a known limitation; however, this has been recently mitigated by leveraging perpendicular magnetic tunneling junctions. In this article, we present a comprehensive comparison of spin transfer torque-MRAM (STT-MRAM and SRAM cache set banks. The non-volatility of STT-MRAM allows the definition of new instant on/off policies and leakage current optimizations. Through our experiments, we demonstrate that STT-MRAM is a candidate for the memory hierarchy of embedded systems, due to the higher densities and reduced leakage of MRAM.We demonstrate that adopting STT-MRAM in L1 and L2 caches mitigates the impact of higher write latencies and increased current draw due to the use of MRAM. With the correct system-on-chip (SoC design, we believe that STT-MRAM is a viable alternative to SRAM, which minimizes leakage current and the total power consumed by the SoC.

  10. Supercritical fluid extraction of volatile and non-volatile compounds from Schinus molle L.

    Directory of Open Access Journals (Sweden)

    M. S. T. Barroso

    2011-06-01

    Full Text Available Schinus molle L., also known as pepper tree, has been reported to have antimicrobial, antifungal, anti-inflammatory, antispasmodic, antipyretic, antitumoural and cicatrizing properties. This work studies supercritical fluid extraction (SFE to obtain volatile and non-volatile compounds from the aerial parts of Schinus molle L. and the influence of the process on the composition of the extracts. Experiments were performed in a pilot-scale extractor with a capacity of 1 L at pressures of 9, 10, 12, 15 and 20 MPa at 323.15 K. The volatile compounds were obtained by CO2 supercritical extraction with moderate pressure (9 MPa, whereas the non-volatile compounds were extracted at higher pressure (12 to 20 MPa. The analysis of the essential oil was carried out by GC-MS and the main compounds identified were sabinene, limonene, D-germacrene, bicyclogermacrene, and spathulenol. For the non-volatile extracts, the total phenolic content was determined by the Folin-Ciocalteau method. Moreover, one of the goals of this study was to compare the experimental data with the simulated yields predicted by a mathematical model based on mass transfer. The model used requires three adjustable parameters to predict the experimental extraction yield curves.

  11. Uncorrelated multiple conductive filament nucleation and rupture in ultra-thin high-κ dielectric based resistive random access memory

    KAUST Repository

    Wu, Xing; Li, Kun; Raghavan, Nagarajan; Bosman, Michel; Wang, Qing-Xiao; Cha, Dong Kyu; Zhang, Xixiang; Pey, Kin-Leong

    2011-01-01

    Resistive switching in transition metal oxides could form the basis for next-generation non-volatile memory (NVM). It has been reported that the current in the high-conductivity state of several technologically relevant oxide materials flows through

  12. FPGA-based prototype storage system with phase change memory

    Science.gov (United States)

    Li, Gezi; Chen, Xiaogang; Chen, Bomy; Li, Shunfen; Zhou, Mi; Han, Wenbing; Song, Zhitang

    2016-10-01

    With the ever-increasing amount of data being stored via social media, mobile telephony base stations, and network devices etc. the database systems face severe bandwidth bottlenecks when moving vast amounts of data from storage to the processing nodes. At the same time, Storage Class Memory (SCM) technologies such as Phase Change Memory (PCM) with unique features like fast read access, high density, non-volatility, byte-addressability, positive response to increasing temperature, superior scalability, and zero standby leakage have changed the landscape of modern computing and storage systems. In such a scenario, we present a storage system called FLEET which can off-load partial or whole SQL queries to the storage engine from CPU. FLEET uses an FPGA rather than conventional CPUs to implement the off-load engine due to its highly parallel nature. We have implemented an initial prototype of FLEET with PCM-based storage. The results demonstrate that significant performance and CPU utilization gains can be achieved by pushing selected query processing components inside in PCM-based storage.

  13. Ferroelectric polymer gates for non-volatile field effect control of ferromagnetism in (Ga, Mn)As layers

    International Nuclear Information System (INIS)

    Stolichnov, I; Riester, S W E; Mikheev, E; Setter, N; Rushforth, A W; Edmonds, K W; Campion, R P; Foxon, C T; Gallagher, B L; Jungwirth, T; Trodahl, H J

    2011-01-01

    (Ga, Mn)As and other diluted magnetic semiconductors (DMS) attract a great deal of attention for potential spintronic applications because of the possibility of controlling the magnetic properties via electrical gating. Integration of a ferroelectric gate on the DMS channel adds to the system a non-volatile memory functionality and permits nanopatterning via the polarization domain engineering. This topical review is focused on the multiferroic system, where the ferromagnetism in the (Ga, Mn)As DMS channel is controlled by the non-volatile field effect of the spontaneous polarization. Use of ferroelectric polymer gates in such heterostructures offers a viable alternative to the traditional oxide ferroelectrics generally incompatible with DMS. Here we review the proof-of-concept experiments demonstrating the ferroelectric control of ferromagnetism, analyze the performance issues of the ferroelectric gates and discuss prospects for further development of the ferroelectric/DMS heterostructures toward the multiferroic field effect transistor. (topical review)

  14. Characteristics of a non-volatile liquid propellant in liquid-fed ablative pulsed plasma thrusters

    Science.gov (United States)

    Ling, William Yeong Liang; Schönherr, Tony; Koizumi, Hiroyuki

    2017-02-01

    In the past several decades, the use of electric propulsion in spacecraft has experienced tremendous growth. With the increasing adoption of small satellites in the kilogram range, suitable propulsion systems will be necessary in the near future. Pulsed plasma thrusters (PPTs) were the first form of electric propulsion to be deployed in orbit, and are highly suitable for small satellites due to their inherent simplicity. However, their lifetime is limited by disadvantages such as carbon deposition leading to thruster failure, and complicated feeding systems required due to the conventional use of solid propellants (usually polytetrafluoroethylene (PTFE)). A promising alternative to solid propellants has recently emerged in the form of non-volatile liquids that are stable in vacuum. This study presents a broad comparison of the non-volatile liquid perfluoropolyether (PFPE) and solid PTFE as propellants on a PPT with a common design base. We show that liquid PFPE can be successfully used as a propellant, and exhibits similar plasma discharge properties to conventional solid PTFE, but with a mass bit that is an order of magnitude higher for an identical ablation area. We also demonstrate that the liquid PFPE propellant has exceptional resistance to carbon deposition, completely negating one of the major causes of thruster failure, while solid PTFE exhibited considerable carbon build-up. Energy dispersive X-ray spectroscopy was used to examine the elemental compositions of the surface deposition on the electrodes and the ablation area of the propellant (or PFPE encapsulator). The results show that based on its physical characteristics and behavior, non-volatile liquid PFPE is an extremely promising propellant for use in PPTs, with an extensive scope available for future research and development.

  15. Memory-Based Shallow Parsing

    OpenAIRE

    Sang, Erik F. Tjong Kim

    2002-01-01

    We present memory-based learning approaches to shallow parsing and apply these to five tasks: base noun phrase identification, arbitrary base phrase recognition, clause detection, noun phrase parsing and full parsing. We use feature selection techniques and system combination methods for improving the performance of the memory-based learner. Our approach is evaluated on standard data sets and the results are compared with that of other systems. This reveals that our approach works well for ba...

  16. Organic bistable memory devices based on MoO3 nanoparticle embedded Alq3 structures

    Science.gov (United States)

    Abhijith, T.; Kumar, T. V. Arun; Reddy, V. S.

    2017-03-01

    Organic bistable memory devices were fabricated by embedding a thin layer of molybdenum trioxide (MoO3) between two tris-(8-hydroxyquinoline)aluminum (Alq3) layers. The device exhibited excellent switching characteristics with an ON/OFF current ratio of 1.15 × 103 at a read voltage of 1 V. The device showed repeatable write-erase capability and good stability in both the conductance states. These conductance states are non-volatile in nature and can be obtained by applying appropriate voltage pulses. The effect of MoO3 layer thickness and its location in the Alq3 matrix on characteristics of the memory device was investigated. The field emission scanning electron microscopy (FE-SEM) images of the MoO3 layer revealed the presence of isolated nanoparticles. Based on the experimental results, a mechanism has been proposed for explaining the conductance switching of fabricated devices.

  17. Carbon nanotube network-silicon oxide non-volatile switches.

    Science.gov (United States)

    Liao, Albert D; Araujo, Paulo T; Xu, Runjie; Dresselhaus, Mildred S

    2014-12-08

    The integration of carbon nanotubes with silicon is important for their incorporation into next-generation nano-electronics. Here we demonstrate a non-volatile switch that utilizes carbon nanotube networks to electrically contact a conductive nanocrystal silicon filament in silicon dioxide. We form this device by biasing a nanotube network until it physically breaks in vacuum, creating the conductive silicon filament connected across a small nano-gap. From Raman spectroscopy, we observe coalescence of nanotubes during breakdown, which stabilizes the system to form very small gaps in the network~15 nm. We report that carbon nanotubes themselves are involved in switching the device to a high resistive state. Calculations reveal that this switching event occurs at ~600 °C, the temperature associated with the oxidation of nanotubes. Therefore, we propose that, in switching to a resistive state, the nanotube oxidizes by extracting oxygen from the substrate.

  18. Atmospheric fate of non volatile and ionizable compounds

    DEFF Research Database (Denmark)

    Franco, Antonio; Hauschild, Michael Zwicky; Jolliet, Olivier

    2011-01-01

    , and the parameters describing air–water partitioning (KAW and temperature) and ionization (pKa and pH) are the key parameters determining the potential for long range transport. Wet deposition is an important removal process, but its efficiency is limited, primarily by the duration of the dry period between...... simulations describing the uncertainty of substance and environmental input properties were run to evaluate the impact of atmospheric parameters, ionization and air–water (or air–ice) interface enrichment. The rate of degradation and the concentration of OH radicals, the duration of dry and wet periods...... precipitation events. Given the underlying model assumptions, the presence of clouds contributes to the higher persistence in the troposphere because of the capacity of cloud water to accumulate and transport non-volatile (e.g.2,4-D) and surface-active chemicals (e.g. PFOA). This limits the efficiency of wet...

  19. High-performance and low-power rewritable SiOx 1 kbit one diode-one resistor crossbar memory array.

    Science.gov (United States)

    Wang, Gunuk; Lauchner, Adam C; Lin, Jian; Natelson, Douglas; Palem, Krishna V; Tour, James M

    2013-09-14

    An entire 1-kilobit crossbar device based upon SiOx resistive memories with integrated diodes has been made. The SiOx -based one diode-one resistor device system has promise to satisfy the prerequisite conditions for next generation non-volatile memory applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Location-based prospective memory.

    Science.gov (United States)

    O'Rear, Andrea E; Radvansky, Gabriel A

    2018-02-01

    This study explores location-based prospective memory. People often have to remember to do things when in a particular location, such as buying tissues the next time they are in the supermarket. For event cognition theory, location is important for structuring events. However, because event cognition has not been used to examine prospective memory, the question remains of how multiple events will influence prospective memory performance. In our experiments, people delivered messages from store to store in a virtual shopping mall as an ongoing task. The prospective tasks were to do certain activities in certain stores. For Experiment 1, each trial involved one prospective memory task to be done in a single location at one of three delays. The virtual environment and location cues were effective for prospective memory, and performance was unaffected by delay. For Experiment 2, each trial involved two prospective memory tasks, given in either one or two instruction locations, and to be done in either one or two store locations. There was improved performance when people received instructions from two locations and did both tasks in one location relative to other combinations. This demonstrates that location-based event structure influences how well people perform on prospective memory tasks.

  1. Memory-Based Shallow Parsing

    NARCIS (Netherlands)

    Tjong Kim Sang, E.F.

    2002-01-01

    We present memory-based learning approaches to shallow parsing and apply these to five tasks: base noun phrase identification, arbitrary base phrase recognition, clause detection, noun phrase parsing and full parsing. We use feature selection techniques and system combination methods for improving

  2. Transparent and flexible write-once-read-many (WORM) memory device based on egg albumen

    International Nuclear Information System (INIS)

    Qu, Bo; Lin, Qianru; Wan, Tao; Du, Haiwei; Chen, Nan; Lin, Xi; Chu, Dewei

    2017-01-01

    Egg albumen, as an important protein resource in nature, is an interesting dielectric material exhibiting many fascinating properties for the development of environmentally friendly electronic devices. Taking advantage of their extraordinary transparency and flexibility, this paper presents an innovative preparation approach for albumen thin film based write-once-read-many-times (WORM) memory devices in a simple, cost-effective manner. The fabricated device shows superior data retention properties including non-volatile character (over 10 5 s) and promising great read durability (10 6 times). Furthermore, our results suggested that the electric-field-induced trap-controlled space charge limited current (SCLC) conduction is responsible for the observed resistance switching effect. The present study may likely reveal another pathway towards complete see-through electrical devices. (paper)

  3. Transparent and flexible write-once-read-many (WORM) memory device based on egg albumen

    Science.gov (United States)

    Qu, Bo; Lin, Qianru; Wan, Tao; Du, Haiwei; Chen, Nan; Lin, Xi; Chu, Dewei

    2017-08-01

    Egg albumen, as an important protein resource in nature, is an interesting dielectric material exhibiting many fascinating properties for the development of environmentally friendly electronic devices. Taking advantage of their extraordinary transparency and flexibility, this paper presents an innovative preparation approach for albumen thin film based write-once-read-many-times (WORM) memory devices in a simple, cost-effective manner. The fabricated device shows superior data retention properties including non-volatile character (over 105 s) and promising great read durability (106 times). Furthermore, our results suggested that the electric-field-induced trap-controlled space charge limited current (SCLC) conduction is responsible for the observed resistance switching effect. The present study may likely reveal another pathway towards complete see-through electrical devices.

  4. Transparent Memory For Harsh Electronics

    KAUST Repository

    Ho, C. H.; Duran Retamal, Jose Ramon; Yang, P. K.; Lee, C. P.; Tsai, M. L.; Kang, C. F.; He, Jr-Hau

    2017-01-01

    As a new class of non-volatile memory, resistive random access memory (RRAM) offers not only superior electronic characteristics, but also advanced functionalities, such as transparency and radiation hardness. However, the environmental tolerance

  5. Electrically-controlled nonlinear switching and multi-level storage characteristics in WOx film-based memory cells

    Science.gov (United States)

    Duan, W. J.; Wang, J. B.; Zhong, X. L.

    2018-05-01

    Resistive switching random access memory (RRAM) is considered as a promising candidate for the next generation memory due to its scalability, high integration density and non-volatile storage characteristics. Here, the multiple electrical characteristics in Pt/WOx/Pt cells are investigated. Both of the nonlinear switching and multi-level storage can be achieved by setting different compliance current in the same cell. The correlations among the current, time and temperature are analyzed by using contours and 3D surfaces. The switching mechanism is explained in terms of the formation and rupture of conductive filament which is related to oxygen vacancies. The experimental results show that the non-stoichiometric WOx film-based device offers a feasible way for the applications of oxide-based RRAMs.

  6. Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-04-24

    A flexible version of traditional thin lead zirconium titanate ((Pb1.1Zr0.48Ti0.52O3)-(PZT)) based ferroelectric random access memory (FeRAM) on silicon shows record performance in flexible arena. The thin PZT layer requires lower operational voltages to achieve coercive electric fields, reduces the sol-gel coating cycles required (i.e., more cost-effective), and, fabrication wise, is more suitable for further scaling of lateral dimensions to the nano-scale due to the larger feature size-to-depth aspect ratio (critical for ultra-high density non-volatile memory applications). Utilizing the inverse proportionality between substrate\\'s thickness and its flexibility, traditional PZT based FeRAM on silicon is transformed through a transfer-less manufacturable process into a flexible form that matches organic electronics\\' flexibility while preserving the superior performance of silicon CMOS electronics. Each memory cell in a FeRAM array consists of two main elements; a select/access transistor, and a storage ferroelectric capacitor. Flexible transistors on silicon have already been reported. In this work, we focus on the storage ferroelectric capacitors, and report, for the first time, its performance after transformation into a flexible version, and assess its key memory parameters while bent at 0.5 cm minimum bending radius.

  7. PIYAS-Proceeding to Intelligent Service Oriented Memory Allocation for Flash Based Data Centric Sensor Devices in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sanam Shahla Rizvi

    2009-12-01

    Full Text Available Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS. This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  8. PIYAS-proceeding to intelligent service oriented memory allocation for flash based data centric sensor devices in wireless sensor networks.

    Science.gov (United States)

    Rizvi, Sanam Shahla; Chung, Tae-Sun

    2010-01-01

    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  9. Writing to and reading from a nano-scale crossbar memory based on memristors

    International Nuclear Information System (INIS)

    Vontobel, Pascal O; Robinett, Warren; Kuekes, Philip J; Stewart, Duncan R; Straznicky, Joseph; Stanley Williams, R

    2009-01-01

    We present a design study for a nano-scale crossbar memory system that uses memristors with symmetrical but highly nonlinear current-voltage characteristics as memory elements. The memory is non-volatile since the memristors retain their state when un-powered. In order to address the nano-wires that make up this nano-scale crossbar, we use two coded demultiplexers implemented using mixed-scale crossbars (in which CMOS-wires cross nano-wires and in which the crosspoint junctions have one-time configurable memristors). This memory system does not utilize the kind of devices (diodes or transistors) that are normally used to isolate the memory cell being written to and read from in conventional memories. Instead, special techniques are introduced to perform the writing and the reading operation reliably by taking advantage of the nonlinearity of the type of memristors used. After discussing both writing and reading strategies for our memory system in general, we focus on a 64 x 64 memory array and present simulation results that show the feasibility of these writing and reading procedures. Besides simulating the case where all device parameters assume exactly their nominal value, we also simulate the much more realistic case where the device parameters stray around their nominal value: we observe a degradation in margins, but writing and reading is still feasible. These simulation results are based on a device model for memristors derived from measurements of fabricated devices in nano-scale crossbars using Pt and Ti nano-wires and using oxygen-depleted TiO 2 as the switching material.

  10. Next generation spin torque memories

    CERN Document Server

    Kaushik, Brajesh Kumar; Kulkarni, Anant Aravind; Prajapati, Sanjay

    2017-01-01

    This book offers detailed insights into spin transfer torque (STT) based devices, circuits and memories. Starting with the basic concepts and device physics, it then addresses advanced STT applications and discusses the outlook for this cutting-edge technology. It also describes the architectures, performance parameters, fabrication, and the prospects of STT based devices. Further, moving from the device to the system perspective it presents a non-volatile computing architecture composed of STT based magneto-resistive and all-spin logic devices and demonstrates that efficient STT based magneto-resistive and all-spin logic devices can turn the dream of instant on/off non-volatile computing into reality.

  11. Size distributions of non-volatile particle residuals (Dp<800 nm at a rural site in Germany and relation to air mass origin

    Directory of Open Access Journals (Sweden)

    T. Tuch

    2007-11-01

    Full Text Available Atmospheric aerosol particle size distributions at a continental background site in Eastern Germany were examined for a one-year period. Particles were classified using a twin differential mobility particle sizer in a size range between 3 and 800 nm. As a novelty, every second measurement of this experiment involved the removal of volatile chemical compounds in a thermodenuder at 300°C. This concept allowed to quantify the number size distribution of non-volatile particle cores – primarily associated with elemental carbon, and to compare this to the original non-conditioned size distribution. As a byproduct of the volatility analysis, new particles originating from nucleation inside the thermodenuder can be observed, however, overwhelmingly at diameters below 6 nm. Within the measurement uncertainty, every particle down to particle sizes of 15 nm is concluded to contain a non-volatile core. The volume fraction of non-volatile particulate matter (non-conditioned diameter < 800 nm varied between 10 and 30% and was largely consistent with the experimentally determined mass fraction of elemental carbon. The average size of the non-volatile particle cores was estimated as a function of original non-conditioned size using a summation method, which showed that larger particles (>200 nm contained more non-volatile compounds than smaller particles (<50 nm, thus indicating a significantly different chemical composition. Two alternative air mass classification schemes based on either, synoptic chart analysis (Berliner Wetterkarte or back trajectories showed that the volume and number fraction of non-volatile cores depended less on air mass than the total particle number concentration. In all air masses, the non-volatile size distributions showed a more and a less volatile ("soot" mode, the latter being located at about 50 nm. During unstable conditions and in maritime air masses, smaller values were observed compared to stable or continental conditions

  12. A Memory-based Robot Architecture based on Contextual Information

    OpenAIRE

    Pratama, Ferdian; Mastrogiovanni, Fulvio; Chong, Nak Young

    2014-01-01

    In this paper, we present a preliminary conceptual design for a robot long-term memory architecture based on the notion of context. Contextual information is used to organize the data flow between Working Memory (including Perceptual Memory) and Long-Term Memory components. We discuss the major influence of the notion of context within Episodic Memory on Semantic and Procedural Memory, respectively. We address how the occurrence of specific object-related events in time impacts on the semanti...

  13. Organic Nonvolatile Memory Devices Based on Ferroelectricity

    NARCIS (Netherlands)

    Naber, Ronald C. G.; Asadi, Kamal; Blom, Paul W. M.; de Leeuw, Dago M.; de Boer, Bert

    2010-01-01

    A memory functionality is a prerequisite for many applications of electronic devices. Organic nonvolatile memory devices based on ferroelectricity are a promising approach toward the development of a low-cost memory technology. In this Review Article we discuss the latest developments in this area

  14. Organic nonvolatile memory devices based on ferroelectricity

    NARCIS (Netherlands)

    Naber, R.C.G.; Asadi, K.; Blom, P.W.M.; Leeuw, D.M. de; Boer, B. de

    2010-01-01

    A memory functionality is a prerequisite for many applications of electronic devices. Organic nonvolatile memory devices based on ferroelectricity are a promising approach toward the development of a low-cost memory technology. In this Review Article we discuss the latest developments in this area

  15. Direct observation of conductive filament formation in Alq3 based organic resistive memories

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Y., E-mail: yan.busby@unamur.be; Pireaux, J.-J. [Research Center in the Physics of Matter and Radiation (PMR), Laboratoire Interdisciplinaire de Spectroscopie Electronique (LISE), University of Namur, B-5000 Namur (Belgium); Nau, S.; Sax, S. [NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler Straße 32, A-8160 Weiz (Austria); List-Kratochvil, E. J. W. [NanoTecCenter Weiz Forschungsgesellschaft mbH, Franz-Pichler Straße 32, A-8160 Weiz (Austria); Institute of Solid State Physics, Graz University of Technology, A-8010 Graz (Austria); Novak, J.; Banerjee, R.; Schreiber, F. [Institute of Applied Physics, Eberhard-Karls-Universität Tübingen, D-72076 Tübingen (Germany)

    2015-08-21

    This work explores resistive switching mechanisms in non-volatile organic memory devices based on tris(8-hydroxyquinolie)aluminum (Alq{sub 3}). Advanced characterization tools are applied to investigate metal diffusion in ITO/Alq{sub 3}/Ag memory device stacks leading to conductive filament formation. The morphology of Alq{sub 3}/Ag layers as a function of the metal evaporation conditions is studied by X-ray reflectivity, while depth profile analysis with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry is applied to characterize operational memory elements displaying reliable bistable current-voltage characteristics. 3D images of the distribution of silver inside the organic layer clearly point towards the existence of conductive filaments and allow for the identification of the initial filament formation and inactivation mechanisms during switching of the device. Initial filament formation is suggested to be driven by field assisted diffusion of silver from abundant structures formed during the top electrode evaporation, whereas thermochemical effects lead to local filament inactivation.

  16. Magnetic vortex racetrack memory

    Science.gov (United States)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  17. Enhanced non-volatile and updatable holography using a polymer composite system.

    Science.gov (United States)

    Wu, Pengfei; Sun, Sam Q; Baig, Sarfaraz; Wang, Michael R

    2012-03-12

    Updatable holography is considered as the ultimate technique for true 3D information recording and display. However, there is no practical solution to preserve the required features of both non-volatility and reversibility which conflict with each other when the reading has the same wavelength as the recording. We demonstrate a non-volatile and updatable holographic approach by exploiting new features of molecular transformations in a polymer recording system. In addition, by using a new composite recording film containing photo-reconfigurable liquid-crystal (LC) polymer, the holographic recording is enhanced due to the collective reorientation of LC molecules around the reconfigured polymer chains.

  18. Resistive content addressable memory based in-memory computation architecture

    KAUST Repository

    Salama, Khaled N.; Zidan, Mohammed A.; Kurdahi, Fadi; Eltawil, Ahmed M.

    2016-01-01

    Various examples are provided examples related to resistive content addressable memory (RCAM) based in-memory computation architectures. In one example, a system includes a content addressable memory (CAM) including an array of cells having a memristor based crossbar and an interconnection switch matrix having a gateless memristor array, which is coupled to an output of the CAM. In another example, a method, includes comparing activated bit values stored a key register with corresponding bit values in a row of a CAM, setting a tag bit value to indicate that the activated bit values match the corresponding bit values, and writing masked key bit values to corresponding bit locations in the row of the CAM based on the tag bit value.

  19. Resistive content addressable memory based in-memory computation architecture

    KAUST Repository

    Salama, Khaled N.

    2016-12-08

    Various examples are provided examples related to resistive content addressable memory (RCAM) based in-memory computation architectures. In one example, a system includes a content addressable memory (CAM) including an array of cells having a memristor based crossbar and an interconnection switch matrix having a gateless memristor array, which is coupled to an output of the CAM. In another example, a method, includes comparing activated bit values stored a key register with corresponding bit values in a row of a CAM, setting a tag bit value to indicate that the activated bit values match the corresponding bit values, and writing masked key bit values to corresponding bit locations in the row of the CAM based on the tag bit value.

  20. Logic and memory concepts for all-magnetic computing based on transverse domain walls

    International Nuclear Information System (INIS)

    Vandermeulen, J; Van de Wiele, B; Dupré, L; Van Waeyenberge, B

    2015-01-01

    We introduce a non-volatile digital logic and memory concept in which the binary data is stored in the transverse magnetic domain walls present in in-plane magnetized nanowires with sufficiently small cross sectional dimensions. We assign the digital bit to the two possible orientations of the transverse domain wall. Numerical proofs-of-concept are presented for a NOT-, AND- and OR-gate, a FAN-out as well as a reading and writing device. Contrary to the chirality based vortex domain wall logic gates introduced in Omari and Hayward (2014 Phys. Rev. Appl. 2 044001), the presented concepts remain applicable when miniaturized and are driven by electrical currents, making the technology compatible with the in-plane racetrack memory concept. The individual devices can be easily combined to logic networks working with clock speeds that scale linearly with decreasing design dimensions. This opens opportunities to an all-magnetic computing technology where the digital data is stored and processed under the same magnetic representation. (paper)

  1. WORKSHOP REPORT - CONSIDERATIONS FOR DEVELOPING LEACHING TEST METHODS FOR SEMI- AND NON-VOLATILE ORGANIC COMPOUNDS

    Science.gov (United States)

    The report provides a summary of the information exchange at a workshop on the potential for release of semi- or non-volatile organic constituents at contaminated sites where sub-surface treatment has been used to control migration, and from waste that is disposed or re-used. The...

  2. Studying the fate of non-volatile organic compounds in a commercial plasma air purifier

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Stefan [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland); Seiler, Cornelia; Gerecke, Andreas C. [Swiss Federal Laboratories for Material Science and Technology (EMPA), CH-8600 Dübendorf (Switzerland); Hächler, Herbert [University of Zürich, Institute for Food Safety and Hygiene, National Centre for Enteropathogenic Bacteria and Listeria (NENT), CH-8057 Zürich (Switzerland); Hilbi, Hubert [Ludwig-Maximilians-Universität München Max von Pettenkofer-Institut, D-80336 München (Germany); Frey, Joachim [University of Bern, Institute for Veterinary Bacteriology, CH-3001 Bern (Switzerland); Weidmann, Simon; Meier, Lukas; Berchtold, Christian [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland); Zenobi, Renato, E-mail: zenobi@org.chem.ethz.ch [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland)

    2013-07-15

    Highlights: • Degradation of environmental toxins, a protein, and bioparticles were studied. • A commercial air purifier based on a cold plasma was used. • Passage through the device reduced the concentration of the compounds/particles. • Deposition inside the plasma air purifier was the main removal process. -- Abstract: Degradation of non-volatile organic compounds–environmental toxins (methyltriclosane and phenanthrene), bovine serum albumin, as well as bioparticles (Legionella pneumophila, Bacillus subtilis, and Bacillus anthracis)–in a commercially available plasma air purifier based on a cold plasma was studied in detail, focusing on its efficiency and on the resulting degradation products. This system is capable of handling air flow velocities of up to 3.0 m s{sup −1} (3200 L min{sup −1}), much higher than other plasma-based reactors described in the literature, which generally are limited to air flow rates below 10 L min{sup −1}. Mass balance studies consistently indicated a reduction in concentration of the compounds/particles after passage through the plasma air purifier, 31% for phenanthrene, 17% for methyltriclosane, and 80% for bovine serum albumin. L. pneumophila did not survive passage through the plasma air purifier, and cell counts of aerosolized spores of B. subtilis and B. anthracis were reduced by 26- and 15-fold, depending on whether it was run at 10 Hz or 50 Hz, respectively. However rather than chemical degradation, deposition on the inner surfaces of the plasma air purifier occured. Our interpretation is that putative “degradation” efficiencies were largely due to electrostatic precipitation rather than to decomposition into smaller molecules.

  3. Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China

    Science.gov (United States)

    Cheung, Heidi H. Y.; Tan, Haobo; Xu, Hanbing; Li, Fei; Wu, Cheng; Yu, Jian Z.; Chan, Chak K.

    2016-07-01

    Simultaneous measurements of aerosol volatility and carbonaceous matters were conducted at a suburban site in Guangzhou, China, in February and March 2014 using a volatility tandem differential mobility analyzer (VTDMA) and an organic carbon/elemental carbon (OC / EC) analyzer. Low volatility (LV) particles, with a volatility shrink factor (VSF) at 300 °C exceeding 0.9, contributed 5 % of number concentrations of the 40 nm particles and 11-15 % of the 80-300 nm particles. They were composed of non-volatile material externally mixed with volatile material, and therefore did not evaporate significantly at 300 °C. Non-volatile material mixed internally with the volatile material was referred to as medium volatility (MV, 0.4 transported at low altitudes (below 1500 m) for over 40 h before arrival. Further comparison with the diurnal variations in the mass fractions of EC and the non-volatile OC in PM2.5 suggests that the non-volatile residuals may be related to both EC and non-volatile OC in the afternoon, during which the concentration of aged organics increased. A closure analysis of the total mass of LV and MV residuals and the mass of EC or the sum of EC and non-volatile OC was conducted. It suggests that non-volatile OC, in addition to EC, was one of the components of the non-volatile residuals measured by the VTDMA in this study.

  4. Overcoming thermal noise in non-volatile spin wave logic

    Science.gov (United States)

    Dutta, Sourav; Nikonov, Dmitri; Manipatruni, Sasikanth; Young, Ian; Naeemi, Azad

    Spin waves are propagating disturbances in magnetically ordered materials. To compete as a promising candidate for beyond-CMOS application, the all-magnon based computing system must undergo the essential steps of careful selection of materials and demonstrate robustness with respect to thermal noise/variability. Here, we identify suitable materials and investigate two viable options for translating the theoretical idea of phase-dependent switching of the spin wave detector to a practical realization of a thermally reliable magnonic device by - (a) using the built-in strain in the ME cell, arising from the lattice mismatch and/or thermal expansion coefficient mismatch between the film and the substrate, for compensation of the demagnetization, and (b) using an exchange-spring structure that exhibits a strong exchange-coupling between the ME cell and PMA SWB and provides a modification of the energy landscape of the ME cell magnet. A high switching success and error-free logic functionality can be ensured if the amplitude of the detected spin wave () remains higher than a threshold value of around 6°C and the detected phase falls within the window from 280°C through 0 to 20°C or from 100°C to 200°C with a maximum allowable ϕ range of around 100°C.

  5. Identifying Non-Volatile Data Storage Areas: Unique Notebook Identification Information as Digital Evidence

    Directory of Open Access Journals (Sweden)

    Nikica Budimir

    2007-03-01

    Full Text Available The research reported in this paper introduces new techniques to aid in the identification of recovered notebook computers so they may be returned to the rightful owner. We identify non-volatile data storage areas as a means of facilitating the safe storing of computer identification information. A forensic proof of concept tool has been designed to test the feasibility of several storage locations identified within this work to hold the data needed to uniquely identify a computer. The tool was used to perform the creation and extraction of created information in order to allow the analysis of the non-volatile storage locations as valid storage areas capable of holding and preserving the data created within them.  While the format of the information used to identify the machine itself is important, this research only discusses the insertion, storage and ability to retain such information.

  6. Flash memories economic principles of performance, cost and reliability optimization

    CERN Document Server

    Richter, Detlev

    2014-01-01

    The subject of this book is to introduce a model-based quantitative performance indicator methodology applicable for performance, cost and reliability optimization of non-volatile memories. The complex example of flash memories is used to introduce and apply the methodology. It has been developed by the author based on an industrial 2-bit to 4-bit per cell flash development project. For the first time, design and cost aspects of 3D integration of flash memory are treated in this book. Cell, array, performance and reliability effects of flash memories are introduced and analyzed. Key performance parameters are derived to handle the flash complexity. A performance and array memory model is developed and a set of performance indicators characterizing architecture, cost and durability is defined.   Flash memories are selected to apply the Performance Indicator Methodology to quantify design and technology innovation. A graphical representation based on trend lines is introduced to support a requirement based pr...

  7. Investigation on amorphous InGaZnO based resistive switching memory with low-power, high-speed, high reliability

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yang-Shun [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Liu, Po-Tsun, E-mail: ptliu@mail.nctu.edu.tw [Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Hsu, Ching-Hui [Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China)

    2013-12-31

    Recently, non-volatile memory (NVM) has been widely used in electronic devices. Nowadays, the prevailing NVM is Flash memory. However, it is generally believed that the conventional Flash memory will approach its scaling limit within about a decade. The resistive random access memory (RRAM) is emerging as one of the potential candidates for future memory replacement because of its high storage density, low power consumption as well as simple structure. The purpose of this work is to develop a reliable a-InGaZnO based resistive switching memory. We investigate the resistive switching characteristics of TiN/Ti/IGZO/Pt structure and TiN/IGZO/Pt structure. The device with TiN/Ti/IGZO/Pt structure exhibits stable bipolar resistive switching. The impact of inserting a Ti interlayer is studied by material analyses. The device shows excellent resistive switching properties. For example, the DC sweep endurance can achieve over 1000 times; and the pulse induced switching cycles can reach at least 10,000 times. Furthermore, the impact of different sputtering ambience, the variable temperature measurement, and the conduction mechanisms are also investigated. According to our experiments, we propose a model to explain the resistive switching phenomenon observed in our devices.

  8. Optimizing Memory Usage in L4-Based Microkernel

    OpenAIRE

    Petre Eftime; Lucian Mogoşanu; Mihai Carabaş; Răzvan Deaconescu; Laura Gheorghe; Valentin Gabriel Voiculescu

    2017-01-01

    Memory allocation is a critical aspect of any modern operating system kernel because it must run continuously for long periods of time, therefore memory leaks and inefficiency must be eliminated. This paper presents different memory management algorithms and their aplicability to an L4-based microkernel. We aim to reduce memory usage and increase the performance of allocation and deallocation of memory.

  9. Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines

    International Nuclear Information System (INIS)

    Arbulu, M.; Sampedro, M.C.; Gómez-Caballero, A.; Goicolea, M.A.; Barrio, R.J.

    2015-01-01

    Highlights: • An untargeted metabolomic method for the non-volatile profile of the Graciano wine was developed. • 411 different metabolites in Graciano Vitis vinifera red wine were identified. • 15 compounds could serve to differentiate Graciano and Tempranillo wines. • An enological database (WinMet) with 2080 compounds was constructed. - Abstract: The current study presents a method for comprehensive untargeted metabolomic fingerprinting of the non-volatile profile of the Graciano Vitis vinifera wine variety, using liquid chromatography/electrospray ionization time of flight mass spectrometry (LC–ESI-QTOF). Pre-treatment of samples, chromatographic columns, mobile phases, elution gradients and ionization sources, were evaluated for the extraction of the maximum number of metabolites in red wine. Putative compounds were extracted from the raw data using the extraction algorithm, molecular feature extractor (MFE). For the metabolite identification the WinMet database was designed based on electronic databases and literature research and includes only the putative metabolites reported to be present in oenological matrices. The results from WinMet were compared with those in the METLIN database to evaluate how much the databases overlap for performing identifications. The reproducibility of the analysis was assessed using manual processing following replicate injections of Vitis vinifera cv. Graciano wine spiked with external standards. In the present work, 411 different metabolites in Graciano Vitis vinifera red wine were identified, including primary wine metabolites such as sugars (4%), amino acids (23%), biogenic amines (4%), fatty acids (2%), and organic acids (32%) and secondary metabolites such as phenols (27%) and esters (8%). Significant differences between varieties Tempranillo and Graciano were related to the presence of fifteen specific compounds

  10. Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines

    Energy Technology Data Exchange (ETDEWEB)

    Arbulu, M. [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain); Sampedro, M.C. [Central Service of Analysis, SGIker, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain); Gómez-Caballero, A.; Goicolea, M.A. [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain); Barrio, R.J., E-mail: r.barrio@ehu.es [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain)

    2015-02-09

    Highlights: • An untargeted metabolomic method for the non-volatile profile of the Graciano wine was developed. • 411 different metabolites in Graciano Vitis vinifera red wine were identified. • 15 compounds could serve to differentiate Graciano and Tempranillo wines. • An enological database (WinMet) with 2080 compounds was constructed. - Abstract: The current study presents a method for comprehensive untargeted metabolomic fingerprinting of the non-volatile profile of the Graciano Vitis vinifera wine variety, using liquid chromatography/electrospray ionization time of flight mass spectrometry (LC–ESI-QTOF). Pre-treatment of samples, chromatographic columns, mobile phases, elution gradients and ionization sources, were evaluated for the extraction of the maximum number of metabolites in red wine. Putative compounds were extracted from the raw data using the extraction algorithm, molecular feature extractor (MFE). For the metabolite identification the WinMet database was designed based on electronic databases and literature research and includes only the putative metabolites reported to be present in oenological matrices. The results from WinMet were compared with those in the METLIN database to evaluate how much the databases overlap for performing identifications. The reproducibility of the analysis was assessed using manual processing following replicate injections of Vitis vinifera cv. Graciano wine spiked with external standards. In the present work, 411 different metabolites in Graciano Vitis vinifera red wine were identified, including primary wine metabolites such as sugars (4%), amino acids (23%), biogenic amines (4%), fatty acids (2%), and organic acids (32%) and secondary metabolites such as phenols (27%) and esters (8%). Significant differences between varieties Tempranillo and Graciano were related to the presence of fifteen specific compounds.

  11. Uncorrelated multiple conductive filament nucleation and rupture in ultra-thin high-κ dielectric based resistive random access memory

    KAUST Repository

    Wu, Xing

    2011-08-29

    Resistive switching in transition metal oxides could form the basis for next-generation non-volatile memory (NVM). It has been reported that the current in the high-conductivity state of several technologically relevant oxide materials flows through localized filaments, but these filaments have been characterized only individually, limiting our understanding of the possibility of multiple conductive filaments nucleation and rupture and the correlation kinetics of their evolution. In this study, direct visualization of uncorrelated multiple conductive filaments in ultra-thin HfO2-based high-κ dielectricresistive random access memory (RRAM) device has been achieved by high-resolution transmission electron microscopy (HRTEM), along with electron energy loss spectroscopy(EELS), for nanoscale chemical analysis. The locations of these multiple filaments are found to be spatially uncorrelated. The evolution of these microstructural changes and chemical properties of these filaments will provide a fundamental understanding of the switching mechanism for RRAM in thin oxide films and pave way for the investigation into improving the stability and scalability of switching memory devices.

  12. EqualChance: Addressing Intra-set Write Variation to Increase Lifetime of Non-volatile Caches

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Sparsh [ORNL; Vetter, Jeffrey S [ORNL

    2014-01-01

    To address the limitations of SRAM such as high-leakage and low-density, researchers have explored use of non-volatile memory (NVM) devices, such as ReRAM (resistive RAM) and STT-RAM (spin transfer torque RAM) for designing on-chip caches. A crucial limitation of NVMs, however, is that their write endurance is low and the large intra-set write variation introduced by existing cache management policies may further exacerbate this problem, thereby reducing the cache lifetime significantly. We present EqualChance, a technique to increase cache lifetime by reducing intra-set write variation. EqualChance works by periodically changing the physical cache-block location of a write-intensive data item within a set to achieve wear-leveling. Simulations using workloads from SPEC CPU2006 suite and HPC (high-performance computing) field show that EqualChance improves the cache lifetime by 4.29X. Also, its implementation overhead is small, and it incurs very small performance and energy loss.

  13. Integrating Two-Dimensional Nanomaterials and Molecular Dielectrics for Radiation-Hard Non-Volatile Memory

    Data.gov (United States)

    National Aeronautics and Space Administration — The space radiation environment presents a significant hazard to the critical electronic components used in a variety of space applications. Many such applications...

  14. Living Memorials: Understanding the Social Meanings of Community-Based Memorials to September 11, 2001

    Science.gov (United States)

    Erika S. Svendsen; Lindsay K. Campbell

    2010-01-01

    Living memorials are landscaped spaces created by people to memorialize individuals, places, and events. Hundreds of stewardship groups across the United States of America created living memorials in response to the September 11, 2001 terrorist attacks. This study sought to understand how stewards value, use, and talk about their living, community-based memorials....

  15. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2017-03-06

    WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-volatile Particulate Matter (PM... Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non

  16. Dynamic reconfiguration of van der Waals gaps within GeTe-Sb2Te3 based superlattices

    NARCIS (Netherlands)

    Momand, Jamo; Wang, Ruining; Boschker, Jos E.; Verheijen, Marcel A.; Calarco, Raffaella; Kooi, Bart J.

    2017-01-01

    Phase-change materials based on GeSbTe show unique switchable optoelectronic properties and are an important contender for next-generation non-volatile memories. Moreover, they recently received considerable scientific interest, because it is found that a vacancy ordering process is responsible for

  17. Dynamic reconfiguration of van der Waals gaps within GeTe-Sb2-Te3 based superlattices

    NARCIS (Netherlands)

    Momand, J.; Wang, R.; Boschker, J.E.; Verheijen, M.A.; Calarco, R.; Kooi, B.J.

    2017-01-01

    Phase-change materials based on GeSbTe show unique switchable optoelectronic properties and are an important contender for next-generation non-volatile memories. Moreover, they recently received considerable scientific interest, because it is found that a vacancy ordering process is responsible for

  18. Large non-volatile tuning of magnetism mediated by electric field in Fe–Al/Pb(Mg1/3Nb2/3)O3–PbTiO3 heterostructure

    International Nuclear Information System (INIS)

    Chen, Zhendong; Gao, Cunxu; Wei, Yanping; Zhang, Peng; Wang, Yutian; Zhang, Chao; Ma, Zhikun

    2017-01-01

    Electric-field control of magnetism is now an attractive trend to approach a new kind of fast, low-power-cost memory device. In this work, we report a strong non-volatile electric control of magnetism in an Fe–Al/Pb(Mg 1/3 Nb 2/3 )O 3 –PbTiO 3 heterostructure. In this system, a 90° rotation of the in-plane uniaxial magnetic anisotropy is exhibited during the increase of the external electric field, which means the easy axis turns into a hard axis and the hard axis turns into an easy one. Additionally, a non-volatile switch of the remanence is observed after a sweeping of the electric field from 0 kV cm −1 to  ±  10 kV cm −1 , then back to 0 kV cm −1 . More interestingly, a 20% non-volatile magnetic state tuning driven by individual pulse electric fields is shown in contrast to large tuning up to 120% caused by pulse electric fields with small assistant pulse magnetic fields, which means a 180° reverse of the magnetization. These remarkable behaviors demonstrated in this heterostructure reveal a promising potential application in magnetic memory devices mediated by electric fields. (paper)

  19. Determination of non-volatile radiolytic compounds in ethylene co-vinyl alcohol

    International Nuclear Information System (INIS)

    Kothapalli, A.; Sadler, G.

    2003-01-01

    The use of ionizing radiation on food contact polymers is increasing due to the critical role of the package in holding or containing the irradiated foods [Food Add. Contam. 18(6) (2001) 475]. Irradiation benefits the food if properly applied and the food is pre-packaged prior to irradiation to protect it from subsequent recontamination. The United States Food and Drug Administration (USFDA) has approved the use of ionizing radiation within the dosage range of 0-60 kGy on limited films since the 1960s [USFDA 21CFR 179.45]. The obstacle in the way of approval of additional polymers is that FDA fears that these materials may undergo changes during irradiation producing toxic radiolytic fragments. Ethylene co-vinyl alcohol (EVOH), which is often used in food applications, is not approved by the FDA for pre-packaged irradiated foods. The present work examines the non-volatile radiolytic compounds, which may be formed due to exposure to gamma irradiation at the dosage levels of 3 and 10 kGy versus a non-radiated control. Irradiated EVOH is subjected to extraction with 95:5 ethanol and water (by volume) as the food simulating solvent (FSS) for a period of 10 days at 40 deg. C, which models the amount of radiolytic compound a food would extract in 1 year [USFDA Chemistry Requirement for Food Contact Notification]. The FSS is then analyzed for the presence of non-volatile compounds using advanced liquid chromatographic techniques. The chromatograms obtained from different dosages show that non-volatile radiolytic compounds are not formed in EVOH and it would, therefore be in compliance with safety demands of USFDA [Available at: http://www.cfsan.fda.gov/~dms/opa-guid.htmlref and http://www.access.gpo.gov/nara/cfr/cfr-table-search.htmlpage1

  20. Determination of non-volatile radiolytic compounds in ethylene co-vinyl alcohol

    Science.gov (United States)

    Kothapalli, A.; Sadler, G.

    2003-08-01

    The use of ionizing radiation on food contact polymers is increasing due to the critical role of the package in holding or containing the irradiated foods [Food Add. Contam. 18(6) (2001) 475]. Irradiation benefits the food if properly applied and the food is pre-packaged prior to irradiation to protect it from subsequent recontamination. The United States Food and Drug Administration (USFDA) has approved the use of ionizing radiation within the dosage range of 0-60 kGy on limited films since the 1960s [USFDA 21CFR 179.45]. The obstacle in the way of approval of additional polymers is that FDA fears that these materials may undergo changes during irradiation producing toxic radiolytic fragments. Ethylene co-vinyl alcohol (EVOH), which is often used in food applications, is not approved by the FDA for pre-packaged irradiated foods. The present work examines the non-volatile radiolytic compounds, which may be formed due to exposure to gamma irradiation at the dosage levels of 3 and 10 kGy versus a non-radiated control. Irradiated EVOH is subjected to extraction with 95:5 ethanol and water (by volume) as the food simulating solvent (FSS) for a period of 10 days at 40 °C, which models the amount of radiolytic compound a food would extract in 1 year [USFDA Chemistry Requirement for Food Contact Notification]. The FSS is then analyzed for the presence of non-volatile compounds using advanced liquid chromatographic techniques. The chromatograms obtained from different dosages show that non-volatile radiolytic compounds are not formed in EVOH and it would, therefore be in compliance with safety demands of USFDA [Available at: http://www.cfsan.fda.gov/~dms/opa-guid.html#ref and http://www.access.gpo.gov/nara/cfr/cfr-table-search.html#page1].

  1. Magnetic vortex racetrack memory

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Liwei D.; Jin, Yongmei M., E-mail: ymjin@mtu.edu

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications. - Highlights: • Advance fundamental knowledge of current-driven magnetic vortex phenomena. • Report appealing new magnetic racetrack memory based on current-controlled magnetic vortices in nanowires. • Provide a novel approach to adjust current magnitude for data propagation. • Overcome the limitations of domain wall racetrack memory.

  2. Solution-processed flexible NiO resistive random access memory device

    Science.gov (United States)

    Kim, Soo-Jung; Lee, Heon; Hong, Sung-Hoon

    2018-04-01

    Non-volatile memories (NVMs) using nanocrystals (NCs) as active materials can be applied to soft electronic devices requiring a low-temperature process because NCs do not require a heat treatment process for crystallization. In addition, memory devices can be implemented simply by using a patterning technique using a solution process. In this study, a flexible NiO ReRAM device was fabricated using a simple NC patterning method that controls the capillary force and dewetting of a NiO NC solution at low temperature. The switching behavior of a NiO NC based memory was clearly observed by conductive atomic force microscopy (c-AFM).

  3. All-printed paper-based memory

    KAUST Repository

    He, Jr-Hau; Lin, Chun-Ho; Lien, Der-Hsien

    2016-01-01

    All-printed paper-based substrate memory devices are described which can be prepared by a process that includes coating, using a screen printer, one or more areas of a paper substrate (102) with a conductor material (104), such as a carbon paste

  4. A Complementary Resistive Switch-based Crossbar Array Adder

    OpenAIRE

    Siemon, A.; Menzel, S.; Waser, R.; Linn, E.

    2014-01-01

    Redox-based resistive switching devices (ReRAM) are an emerging class of non-volatile storage elements suited for nanoscale memory applications. In terms of logic operations, ReRAM devices were suggested to be used as programmable interconnects, large-scale look-up tables or for sequential logic operations. However, without additional selector devices these approaches are not suited for use in large scale nanocrossbar memory arrays, which is the preferred architecture for ReRAM devices due to...

  5. Auditory memory can be object based.

    Science.gov (United States)

    Dyson, Benjamin J; Ishfaq, Feraz

    2008-04-01

    Identifying how memories are organized remains a fundamental issue in psychology. Previous work has shown that visual short-term memory is organized according to the object of origin, with participants being better at retrieving multiple pieces of information from the same object than from different objects. However, it is not yet clear whether similar memory structures are employed for other modalities, such as audition. Under analogous conditions in the auditory domain, we found that short-term memories for sound can also be organized according to object, with a same-object advantage being demonstrated for the retrieval of information in an auditory scene defined by two complex sounds overlapping in both space and time. Our results provide support for the notion of an auditory object, in addition to the continued identification of similar processing constraints across visual and auditory domains. The identification of modality-independent organizational principles of memory, such as object-based coding, suggests possible mechanisms by which the human processing system remembers multimodal experiences.

  6. Emerging memory technologies design, architecture, and applications

    CERN Document Server

    2014-01-01

    This book explores the design implications of emerging, non-volatile memory (NVM) technologies on future computer memory hierarchy architecture designs. Since NVM technologies combine the speed of SRAM, the density of DRAM, and the non-volatility of Flash memory, they are very attractive as the basis for future universal memories. This book provides a holistic perspective on the topic, covering modeling, design, architecture and applications. The practical information included in this book will enable designers to exploit emerging memory technologies to improve significantly the performance/power/reliability of future, mainstream integrated circuits. • Provides a comprehensive reference on designing modern circuits with emerging, non-volatile memory technologies, such as MRAM and PCRAM; • Explores new design opportunities offered by emerging memory technologies, from a holistic perspective; • Describes topics in technology, modeling, architecture and applications; • Enables circuit designers to ex...

  7. Synthesis of ZnO nanorods and observation of resistive switching memory in ZnO based polymer nanocomposites

    Science.gov (United States)

    Nair, Manjula G.; Malakar, Meenakshi; Mohapatra, Saumya R.; Chowdhury, Avijit

    2018-05-01

    This research reports the observation of bipolar resistive switching memory in ZnO nanorod based polymer nanocomposites. We synthesized ZnO nanorods by wet-chemical method and characterized them using XRD, UV-VIS spectroscopy and SEM. The synthesized materials have hexagonal ZnO phase with grain size of 24 nm and having strong orientation along (101) direction as observed from XRD. The SEM micrograph confirms the formation of ZnO nanorods with diameter in the range of 10 to 20 nm and length of the order of 1 µm. From optical absorption spectra the band gap is estimated to be 2.42 eV. ZnO nanorods were dispersed in PVDF-HFP polymer matrix to prepare the nanocomposite. This nanocomposite was used as active layer in the devices having sandwich structure of ITO/PVDF-HFP+ZnO nanorods/Al. Bipolar non-volatile memory was observed with ON-OFF resistance ratio of the order of 103 and with a wide voltage window of 2.3V. The switching mechanism could be due to the trapping and de-trapping of electrons by the ZnO nanorods in the nanocomposite during ON and OFF states respectively.

  8. The Development of Time-Based Prospective Memory in Childhood: The Role of Working Memory Updating

    Science.gov (United States)

    Voigt, Babett; Mahy, Caitlin E. V.; Ellis, Judi; Schnitzspahn, Katharina; Krause, Ivonne; Altgassen, Mareike; Kliegel, Matthias

    2014-01-01

    This large-scale study examined the development of time-based prospective memory (PM) across childhood and the roles that working memory updating and time monitoring play in driving age effects in PM performance. One hundred and ninety-seven children aged 5 to 14 years completed a time-based PM task where working memory updating load was…

  9. Analysis of Non-Volatile Chemical Constituents of Menthae Haplocalycis Herba by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Lu-Lu Xu

    2017-10-01

    Full Text Available Menthae Haplocalycis herba, one kind of Chinese edible herbs, has been widely utilized for the clinical use in China for thousands of years. Over the last decades, studies on chemical constituents of Menthae Haplocalycis herba have been widely performed. However, less attention has been paid to non-volatile components which are also responsible for its medical efficacy than the volatile constituents. Therefore, a rapid and sensitive method was developed for the comprehensive identification of the non-volatile constituents in Menthae Haplocalycis herba using ultra-high performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap. Separation was performed with Acquity UPLC® BEH C18 column (2.1 mm × 100 mm, 1.7 μm with 0.2% formic acid aqueous solution and acetonitrile as the mobile phase under gradient conditions. Based on the accurate mass measurement (<5 ppm, MS/MS fragmentation patterns and different chromatographic behaviors, a total of 64 compounds were unambiguously or tentatively characterized, including 30 flavonoids, 20 phenolic acids, 12 terpenoids and two phenylpropanoids. Finally, target isolation of three compounds named Acacetin, Rosmarinic acid and Clemastanin A (first isolated from Menthae Haplocalycis herba were performed based on the obtained results, which further confirmed the deduction of fragmentation patterns and identified the compounds profile in Menthae Haplocalycis herba. Our research firstly systematically elucidated the non-volatile components of Menthae Haplocalycis herba, which laid the foundation for further pharmacological and metabolic studies. Meanwhile, our established method was useful and efficient to screen and identify targeted constituents from traditional Chinese medicine extracts.

  10. Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    H. H. Y. Cheung

    2016-07-01

    Full Text Available Simultaneous measurements of aerosol volatility and carbonaceous matters were conducted at a suburban site in Guangzhou, China, in February and March 2014 using a volatility tandem differential mobility analyzer (VTDMA and an organic carbon/elemental carbon (OC ∕ EC analyzer. Low volatility (LV particles, with a volatility shrink factor (VSF at 300 °C exceeding 0.9, contributed 5 % of number concentrations of the 40 nm particles and 11–15 % of the 80–300 nm particles. They were composed of non-volatile material externally mixed with volatile material, and therefore did not evaporate significantly at 300 °C. Non-volatile material mixed internally with the volatile material was referred to as medium volatility (MV, 0.4  <  VSF  <  0.9 and high volatility (HV, VSF  <  0.4 particles. The MV and HV particles contributed 57–71 % of number concentration for the particles between 40 and 300 nm in size. The average EC and OC concentrations measured by the OC ∕ EC analyzer were 3.4 ± 3.0 and 9.0 ± 6.0 µg m−3, respectively. Non-volatile OC evaporating at 475 °C or above, together with EC, contributed 67 % of the total carbon mass. In spite of the daily maximum and minimum, the diurnal variations in the volume fractions of the volatile material, HV, MV and LV residuals were less than 15 % for the 80–300 nm particles. Back trajectory analysis also suggests that over 90 % of the air masses influencing the sampling site were well aged as they were transported at low altitudes (below 1500 m for over 40 h before arrival. Further comparison with the diurnal variations in the mass fractions of EC and the non-volatile OC in PM2.5 suggests that the non-volatile residuals may be related to both EC and non-volatile OC in the afternoon, during which the concentration of aged organics increased. A closure analysis of the total mass of LV and MV residuals and the mass of EC or the

  11. Transparent Memory For Harsh Electronics

    KAUST Repository

    Ho, C. H.

    2017-03-14

    As a new class of non-volatile memory, resistive random access memory (RRAM) offers not only superior electronic characteristics, but also advanced functionalities, such as transparency and radiation hardness. However, the environmental tolerance of RRAM is material-dependent, and therefore the materials used must be chosen carefully in order to avoid instabilities and performance degradation caused by the detrimental effects arising from environmental gases and ionizing radiation. In this work, we demonstrate that AlN-based RRAM displays excellent performance and environmental stability, with no significant degradation to the resistance ratio over a 100-cycle endurance test. Moreover, transparent RRAM (TRRAM) based on AlN also performs reliably under four different harsh environmental conditions and 2 MeV proton irradiation fluences, ranging from 1011 to 1015 cm-2. These findings not only provide a guideline for TRRAM design, but also demonstrate the promising applicability of AlN TRRAM for future transparent harsh electronics.

  12. Resistive switching effect in the planar structure of all-printed, flexible and rewritable memory device based on advanced 2D nanocomposite of graphene quantum dots and white graphene flakes

    International Nuclear Information System (INIS)

    Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Kim, Sowon; Choi, Kyung Hyun

    2017-01-01

    Pursuit of the most appropriate materials and fabrication methods is essential for developing a reliable, rewritable and flexible memory device. In this study, we have proposed an advanced 2D nanocomposite of white graphene (hBN) flakes embedded with graphene quantum dots (GQDs) as the functional layer of a flexible memory device owing to their unique electrical, chemical and mechanical properties. Unlike the typical sandwich type structure of a memory device, we developed a cost effective planar structure, to simplify device fabrication and prevent sneak current. The entire device fabrication was carried out using printing technology followed by encapsulation in an atomically thin layer of aluminum oxide (Al 2 O 3 ) for protection against environmental humidity. The proposed memory device exhibited attractive bipolar switching characteristics of high switching ratio, large electrical endurance and enhanced lifetime, without any crosstalk between adjacent memory cells. The as-fabricated device showed excellent durability for several bending cycles at various bending diameters without any degradation in bistable resistive states. The memory mechanism was deduced to be conductive filamentary; this was validated by illustrating the temperature dependence of bistable resistive states. Our obtained results pave the way for the execution of promising 2D material based next generation flexible and non-volatile memory (NVM) applications. (paper)

  13. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids

    Directory of Open Access Journals (Sweden)

    Hongbin Lin

    2018-05-01

    Full Text Available Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC. Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln, glutamic acid (Glu, aspartic acid (Asp and asparagines (Asn were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  14. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids.

    Science.gov (United States)

    Lin, Hongbin; Yu, Xiaoyu; Fang, Jiaxing; Lu, Yunhao; Liu, Ping; Xing, Yage; Wang, Qin; Che, Zhenming; He, Qiang

    2018-05-29

    Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  15. Messier: A Detailed NVM-Based DIMM Model for the SST Simulation Framework.

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Amro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Voskuilen, Gwendolyn Renae [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodrigues, Arun F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Simon David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoekstra, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hughes, Clayton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    DRAM technology is the main building block of main memory, however, DRAM scaling is becoming very challenging. The main issues for DRAM scaling are the increasing error rates with each new generation, the geometric and physical constraints of scaling the capacitor part of the DRAM cells, and the high power consumption caused by the continuous need for refreshing cell values. At the same time, emerging Non- Volatile Memory (NVM) technologies, such as Phase-Change Memory (PCM), are emerging as promising replacements for DRAM. NVMs, when compared to current technologies e.g., NAND-based ash, have latencies comparable to DRAM. Additionally, NVMs are non-volatile, which eliminates the need for refresh power and enables persistent memory applications. Finally, NVMs have promising densities and the potential for multi-level cell (MLC) storage.

  16. Memory hierarchy using row-based compression

    Science.gov (United States)

    Loh, Gabriel H.; O'Connor, James M.

    2016-10-25

    A system includes a first memory and a device coupleable to the first memory. The device includes a second memory to cache data from the first memory. The second memory includes a plurality of rows, each row including a corresponding set of compressed data blocks of non-uniform sizes and a corresponding set of tag blocks. Each tag block represents a corresponding compressed data block of the row. The device further includes decompression logic to decompress data blocks accessed from the second memory. The device further includes compression logic to compress data blocks to be stored in the second memory.

  17. Voltage control of metal-insulator transition and non-volatile ferroelastic switching of resistance in VOx/PMN-PT heterostructures.

    Science.gov (United States)

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X

    2014-08-04

    The central challenge in realizing electronics based on strongly correlated electronic states, or 'Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices.

  18. Semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  19. All-printed paper-based memory

    KAUST Repository

    He, Jr-Hau

    2016-06-16

    All-printed paper-based substrate memory devices are described which can be prepared by a process that includes coating, using a screen printer, one or more areas of a paper substrate (102) with a conductor material (104), such as a carbon paste, to form a first electrode, depositing, with an ink jet printer, a layer of resistance switching insulator material (106), such as titanium dioxide, over one or more areas of the conductor material, and depositing, with an ink jet printer, a layer of metal (108), such as silver, over one or more areas of the titanium dioxide to form a second electrode.

  20. Attention-based Memory Selection Recurrent Network for Language Modeling

    OpenAIRE

    Liu, Da-Rong; Chuang, Shun-Po; Lee, Hung-yi

    2016-01-01

    Recurrent neural networks (RNNs) have achieved great success in language modeling. However, since the RNNs have fixed size of memory, their memory cannot store all the information about the words it have seen before in the sentence, and thus the useful long-term information may be ignored when predicting the next words. In this paper, we propose Attention-based Memory Selection Recurrent Network (AMSRN), in which the model can review the information stored in the memory at each previous time ...

  1. Non-Volatile Ferroelectric Switching of Ferromagnetic Resonance in NiFe/PLZT Multiferroic Thin Film Heterostructures (Postprint)

    Science.gov (United States)

    2016-09-01

    deformation potentially leads to fatigue and fracture over time. Moreover, we show that by simply applying voltage pulses, a robust, non-volatile...polarization such as PZT , BiFeO3, or doped HfO2. Our results thus provide a pathway towards ferroelectric switching of magnetism that could be useful for

  2. Dietary exposure to volatile and non-volatile N-nitrosamines from processed meat products in Denmark

    DEFF Research Database (Denmark)

    Herrmann, Susan Strange; Duedahl-Olesen, Lene; Christensen, Tue

    2015-01-01

    the carcinogenicity for the majority of the non-volatile NA (NVNA) remains to be elucidated. Danish adults (15–75 years) and children (4–6 years) consume 20 g and 16 g of processed meat per day (95th percentile), respectively. The consumption is primarily accounted for by sausages, salami, pork flank (spiced...

  3. Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing.

    Science.gov (United States)

    Salvato, Gerardo; Patai, Eva Z; Nobre, Anna C

    2016-01-01

    It is increasingly recognised that spatial contextual long-term memory (LTM) prepares neural activity for guiding visuo-spatial attention in a proactive manner. In the current study, we investigated whether the decline in explicit memory observed in healthy ageing would compromise this mechanism. We compared the behavioural performance of younger and older participants on learning new contextual memories, on orienting visual attention based on these learnt contextual associations, and on explicit recall of contextual memories. We found a striking dissociation between older versus younger participants in the relationship between the ability to retrieve contextual memories versus the ability to use these to guide attention to enhance performance on a target-detection task. Older participants showed significant deficits in the explicit retrieval task, but their behavioural benefits from memory-based orienting of attention were equivalent to those in young participants. Furthermore, memory-based orienting correlated significantly with explicit contextual LTM in younger adults but not in older adults. These results suggest that explicit memory deficits in ageing might not compromise initial perception and encoding of events. Importantly, the results also shed light on the mechanisms of memory-guided attention, suggesting that explicit contextual memories are not necessary. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. A Survey of Phase Change Memory Systems

    Institute of Scientific and Technical Information of China (English)

    夏飞; 蒋德钧; 熊劲; 孙凝晖

    2015-01-01

    As the scaling of applications increases, the demand of main memory capacity increases in order to serve large working set. It is difficult for DRAM (dynamic random access memory) based memory system to satisfy the memory capacity requirement due to its limited scalability and high energy consumption. Compared to DRAM, PCM (phase change memory) has better scalability, lower energy leakage, and non-volatility. PCM memory systems have become a hot topic of academic and industrial research. However, PCM technology has the following three drawbacks: long write latency, limited write endurance, and high write energy, which raises challenges to its adoption in practice. This paper surveys architectural research work to optimize PCM memory systems. First, this paper introduces the background of PCM. Then, it surveys research efforts on PCM memory systems in performance optimization, lifetime improving, and energy saving in detail, respectively. This paper also compares and summarizes these techniques from multiple dimensions. Finally, it concludes these optimization techniques and discusses possible research directions of PCM memory systems in future.

  5. The Development of Time-Based Prospective Memory in Childhood: The Role of Working Memory Updating

    NARCIS (Netherlands)

    Voigt, B.; Mahy, C.E.V.; Ellis, J.; Schnitzspahn, K.M.; Krause, I.; Altgassen, A.M.; Kliegel, M.

    2014-01-01

    This large-scale study examined the development of time-based prospective memory (PM) across childhood and the roles that working memory updating and time monitoring play in driving age effects in PM performance. One hundred and ninety-seven children aged 5 to 14 years completed a time-based PM task

  6. Chemical composition and non-volatile components of three wild edible mushrooms collected from northwest Tunisia

    Directory of Open Access Journals (Sweden)

    ibtissem Kacem Jedidi

    2016-04-01

    Full Text Available In Tunisia, many people collect wild edible mushrooms as pickers for their own consumption. The present work aims at contributing to the determination of the chemical composition, non volatile components content (soluble sugars, free amino acids and minerals and trace elements of three popular Tunisian wild edible mushrooms species collected from the northwest of Tunisia (Agaricus campestris, Boletus edulis and Cantharellus cibarius.All investigated mushrooms revealed that these species are rich sources of proteins (123.70 – 374.10 g kg-1 dry weight (DW and carbohydrates (403.3 – 722.40 g kg-1 DW, and low content of fat (28.2 – 39.9 g kg-1 DW; the highest energetic contribution was guaranteed by C. cibarius (1542.71 kJ / 100 g. A. compestris (33.14 mg/g DW showed the highest concentration of essential amino acids. The composition in individual sugars was also determined, mannitol and trehalose being the most abundant sugars. C. cibarius revealed the highest concentrations of carbohydrates (722.4 g kg-1 DW and A. compestris the lowest concentration (403.3 g kg-1 DW. Potassium (K and sodium (Na are the most abundant minerals in analyzed samples (A. compestris showed the highest concentrations of K and Na, 49141.44 and 9263.886 µg/g DW respectively.

  7. Comparison of non-volatile umami components in chicken soup and chicken enzymatic hydrolysate.

    Science.gov (United States)

    Kong, Yan; Yang, Xiao; Ding, Qi; Zhang, Yu-Yu; Sun, Bao-Guo; Chen, Hai-Tao; Sun, Ying

    2017-12-01

    Umami taste is an important part to the taste of chicken. To isolate and identify non-volatile umami compounds, fractions from chicken soup and hydrolysate were prepared and analyzed. Amino acids were analyzed by amino acid analyzer. Organic acids and nucleotides were determined by ultra-performance liquid chromatography. Separation procedures utilizing ultrafiltration, Sephadex G-15 and reversed-phase high-performance liquid chromatography were used to isolate umami taste peptides. Combined with sensory evaluation and LC-Q-TOF-MS, the amino acid sequences of 12 oligopeptides were determined. The amount of taste compounds was higher in chicken enzymatic hydrolysate than that of chicken soup. Eight oligopeptides from chicken enzymatic hydrolysate were identified, including Ala-Asp, Ala-Met, His-Ser, Val-Glu, Ala-Glu, Asp-Ala-Gly, Glu-Asp and Ala-Glu-Ala. Four oligopeptides from chicken soup were identified, including Val-Thr, Ala-His, Ala-Phe and Thr-Glu. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Discharge characteristics of an ablative pulsed plasma thruster with non-volatile liquid propellant

    Science.gov (United States)

    Ling, William Yeong Liang; Schönherr, Tony; Koizumi, Hiroyuki

    2017-07-01

    Pulsed plasma thrusters (PPTs) are a form of electric spacecraft propulsion. They have an extremely simple structure and are highly suitable for nano/micro-spacecraft with weights in the kilogram range. Such small spacecraft have recently experienced increased growth but still lack suitable efficient propulsion systems. PPTs operate in a pulsed mode (one discharge = one shot) and typically use solid polytetrafluoroethylene (PTFE) as a propellant. However, new non-volatile liquids in the perfluoropolyether (PFPE) family have recently been found to be promising alternatives. A recent study presented results on the physical characteristics of PFPE vs. PTFE, showing that PFPE is superior in terms of physical characteristics such as its resistance to carbon deposition. This letter will examine the electrical discharge characteristics of PFPE vs. PTFE. The results demonstrate that PFPE has excellent shot-to-shot repeatability and a lower discharge resistance when compared with PTFE. Taken together with its physical characteristics, PFPE appears to be a strong contender to PTFE as a PPT propellant.

  9. Investigations concerning the exchange of iodine from non-volatile organic iodine compounds

    International Nuclear Information System (INIS)

    Psarros, N.; Duschner, H.; Molzahn, D.; Schmidt, L.; Heise, S.; Jungclas, H.; Brandt, R.; Patzelt, P.

    1990-10-01

    The iodine produced by nuclear fission is removed during the reprocessing of exhausted nuclear fuel elements by desorption achieving good decontamination factors. Nevertheless the further optimization of the process requires detailed information about the iodine speciation during fuel reprocessing, and about possible reactions. For the study of decomposition reactions of iodo-alcanes, which are built up during the fuel recycling process, we developed a method for the synthesis of labelled iodo-dodecane, which was used as tracer. In order to identify the iodo species in the organic phase of the reprocessing cycle we applied plasma desorption time-of-flight mass spectroscopy. The problem of the volatility of the iodo-compounds in the ultra vacuum of the mass spectrometer was overcome by derivatization of the iodo-alcanes with dithizon, which yielded non-volatile ionic alcyltetrazolium iodides. Beta-spectrometric analysis of the exhaust condensates collected from the organic phase of the WAK reprocessing cycle revealed beside iodine-129 the existence of a low-energetic beta emitter, which has yet to be identified. A literature survey on the topic was also performed. (orig.) With 42 refs., 9 figs [de

  10. Analysis of the build-up of semi and non volatile organic compounds on urban roads.

    Science.gov (United States)

    Mahbub, Parvez; Ayoko, Godwin A; Goonetilleke, Ashantha; Egodawatta, Prasanna

    2011-04-01

    Vehicular traffic in urban areas may adversely affect urban water quality through the build-up of traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) on road surfaces. The characterisation of the build-up processes is the key to developing mitigation measures for the removal of such pollutants from urban stormwater. An in-depth analysis of the build-up of SVOCs and NVOCs was undertaken in the Gold Coast region in Australia. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the SVOC and NVOC build-up under combined traffic scenarios of low, moderate, and high traffic in different land uses. It was found that congestion in the commercial areas and use of lubricants and motor oils in the industrial areas were the main sources of SVOCs and NVOCs on urban roads, respectively. The contribution from residential areas to the build-up of such pollutants was hardly noticeable. It was also revealed through this investigation that the target SVOCs and NVOCs were mainly attached to particulate fractions of 75-300 μm whilst the redistribution of coarse fractions due to vehicle activity mainly occurred in the >300 μm size range. Lastly, under combined traffic scenario, moderate traffic with average daily traffic ranging from 2300 to 5900 and average congestion of 0.47 were found to dominate SVOC and NVOC build-up on roads. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. User Preference-Based Dual-Memory Neural Model With Memory Consolidation Approach.

    Science.gov (United States)

    Nasir, Jauwairia; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan; Nasir, Jauwairia; Yong-Ho Yoo; Deok-Hwa Kim; Jong-Hwan Kim; Nasir, Jauwairia; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan

    2018-06-01

    Memory modeling has been a popular topic of research for improving the performance of autonomous agents in cognition related problems. Apart from learning distinct experiences correctly, significant or recurring experiences are expected to be learned better and be retrieved easier. In order to achieve this objective, this paper proposes a user preference-based dual-memory adaptive resonance theory network model, which makes use of a user preference to encode memories with various strengths and to learn and forget at various rates. Over a period of time, memories undergo a consolidation-like process at a rate proportional to the user preference at the time of encoding and the frequency of recall of a particular memory. Consolidated memories are easier to recall and are more stable. This dual-memory neural model generates distinct episodic memories and a flexible semantic-like memory component. This leads to an enhanced retrieval mechanism of experiences through two routes. The simulation results are presented to evaluate the proposed memory model based on various kinds of cues over a number of trials. The experimental results on Mybot are also presented. The results verify that not only are distinct experiences learned correctly but also that experiences associated with higher user preference and recall frequency are consolidated earlier. Thus, these experiences are recalled more easily relative to the unconsolidated experiences.

  12. Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing.

    OpenAIRE

    Salvato, G; Patai, EZ; Nobre, AC

    2015-01-01

    It is increasingly recognised that spatial contextual long-term memory (LTM) prepares neural activity for guiding visuo-spatial attention in a proactive manner. In the current study, we investigated whether the decline in explicit memory observed in healthy ageing would compromise this mechanism. We compared the behavioural performance of younger and older participants on learning new contextual memories, on orienting visual attention based on these learnt contextual associations, and on expl...

  13. Episodic memories predict adaptive value-based decision-making

    Science.gov (United States)

    Murty, Vishnu; FeldmanHall, Oriel; Hunter, Lindsay E.; Phelps, Elizabeth A; Davachi, Lila

    2016-01-01

    Prior research illustrates that memory can guide value-based decision-making. For example, previous work has implicated both working memory and procedural memory (i.e., reinforcement learning) in guiding choice. However, other types of memories, such as episodic memory, may also influence decision-making. Here we test the role for episodic memory—specifically item versus associative memory—in supporting value-based choice. Participants completed a task where they first learned the value associated with trial unique lotteries. After a short delay, they completed a decision-making task where they could choose to re-engage with previously encountered lotteries, or new never before seen lotteries. Finally, participants completed a surprise memory test for the lotteries and their associated values. Results indicate that participants chose to re-engage more often with lotteries that resulted in high versus low rewards. Critically, participants not only formed detailed, associative memories for the reward values coupled with individual lotteries, but also exhibited adaptive decision-making only when they had intact associative memory. We further found that the relationship between adaptive choice and associative memory generalized to more complex, ecologically valid choice behavior, such as social decision-making. However, individuals more strongly encode experiences of social violations—such as being treated unfairly, suggesting a bias for how individuals form associative memories within social contexts. Together, these findings provide an important integration of episodic memory and decision-making literatures to better understand key mechanisms supporting adaptive behavior. PMID:26999046

  14. Semiconductor-based, large-area, flexible, electronic devices on {110} oriented substrates

    Science.gov (United States)

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110} textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  15. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  16. {100} or 45.degree.-rotated {100}, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100} or 45.degree.-rotated {100} oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  17. Influence of mineral salts upon activity of Trichoderma harzianum non-volatile metabolites on Armillaria spp. rhizomorphs

    Directory of Open Access Journals (Sweden)

    Krystyna Przybył

    2011-01-01

    Full Text Available Effect of non-volatile metabolites of Trichoderma harzianum together with certain salts containing Mg++, Fe+++, Mn++, Cu++, Al+++, Ca++, K++, Na+, PO4--- and SO3--- on the production and length of rhizomorphs of Armillaria borealis, A. gallica and A. ostoyae was studied. In pure medium, T. harzianum exhibited stimulating effect on rhizomorphs of A. borealis (both number and length and A. ostoyae (only initiation. Cu++ salt totaly inhibited the initiation of rhizomorphs of Armillaria borealis, A. gallica and A. ostoyae. Effect of other compounds on the activity of T. harzianum depended on Armillaria species. The majority of chemical compounds tested supressed the activity of non-volatile metabolites of T. harzianum. Evident stimulating effect was observed under influence of sulphate salts consisting Al++ and Fe+++ on the rhizomorph number of A. borealis and A. gallica, respectively.

  18. Volatile and non-volatile compounds in green tea affected in harvesting time and their correlation to consumer preference.

    Science.gov (United States)

    Kim, Youngmok; Lee, Kwang-Geun; Kim, Mina K

    2016-10-01

    Current study was designed to find out how tea harvesting time affects the volatile and non-volatile compounds profiles of green tea. In addition, correlation of instrumental volatile and non-volatile compounds analyses to consumer perception were analyzed. Overall, earlier harvested green tea had stronger antioxidant capacity (~61.0%) due to the polyphenolic compounds from catechin (23,164 mg/L), in comparison to later harvested green teas (11,961 mg/L). However, high catechin content in green tea influenced negatively the consumer likings of green tea, due to high bitterness (27.6%) and astringency (13.4%). Volatile compounds drive consumer liking of green tea products were also identified, that included linalool, 2,3-methyl butanal, 2-heptanone, (E,E)-3,5-Octadien-2-one. Finding from current study are useful for green tea industry as it provide the difference in physiochemical properties of green tea harvested at different intervals.

  19. A memory-based shallow parser for spoken Dutch

    NARCIS (Netherlands)

    Canisius, S.V.M.; van den Bosch, A.; Decadt, B.; Hoste, V.; De Pauw, G.

    2004-01-01

    We describe the development of a Dutch memory-based shallow parser. The availability of large treebanks for Dutch, such as the one provided by the Spoken Dutch Corpus, allows memory-based learners to be trained on examples of shallow parsing taken from the treebank, and act as a shallow parser after

  20. Volatile and non-volatile/semi-volatile compounds and in vitro bioactive properties of Chilean Ulmo (Eucryphia cordifolia Cav.) honey.

    Science.gov (United States)

    Acevedo, Francisca; Torres, Paulina; Oomah, B Dave; de Alencar, Severino Matias; Massarioli, Adna Prado; Martín-Venegas, Raquel; Albarral-Ávila, Vicenta; Burgos-Díaz, César; Ferrer, Ruth; Rubilar, Mónica

    2017-04-01

    Ulmo honey originating from Eucryphia cordifolia tree, known locally in the Araucania region as the Ulmo tree is a natural product with valuable nutritional and medicinal qualities. It has been used in the Mapuche culture to treat infections. This study aimed to identify the volatile and non-volatile/semi-volatile compounds of Ulmo honey and elucidate its in vitro biological properties by evaluating its antioxidant, antibacterial, antiproliferative and hemolytic properties and cytotoxicity in Caco-2 cells. Headspace volatiles of Ulmo honey were isolated by solid-phase microextraction (SPME); non-volatiles/semi-volatiles were obtained by removing all saccharides with acidified water and the compounds were identified by GC/MS analysis. Ulmo honey volatiles consisted of 50 compounds predominated by 20 flavor components. Two of the volatile compounds, lyrame and anethol have never been reported before as honey compounds. The non-volatile/semi-volatile components of Ulmo honey comprised 27 compounds including 13 benzene derivatives accounting 75% of the total peak area. Ulmo honey exhibited weak antioxidant activity but strong antibacterial activity particularly against gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), the main strain involved in wounds and skin infections. At concentrations >0.5%, Ulmo honey reduced Caco-2 cell viability, released lactate dehydrogenase (LDH) and increased reactive oxygen species (ROS) production in a dose dependent manner in the presence of foetal bovine serum (FBS). The wide array of volatile and non-volatile/semi-volatile constituents of Ulmo honey rich in benzene derivatives may partly account for its strong antibacterial and antiproliferative properties important for its therapeutic use. Our results indicate that Ulmo honey can potentially inhibit cancer growth at least partly by modulating oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. An Improved Dissonance Measure Based on Auditory Memory

    DEFF Research Database (Denmark)

    Jensen, Kristoffer; Hjortkjær, Jens

    2012-01-01

    Dissonance is an important feature in music audio analysis. We present here a dissonance model that accounts for the temporal integration of dissonant events in auditory short term memory. We compare the memory-based dissonance extracted from musical audio sequences to the response of human...... listeners. In a number of tests, the memory model predicts listener’s response better than traditional dissonance measures....

  2. Memory Based Machine Intelligence Techniques in VLSI hardware

    OpenAIRE

    James, Alex Pappachen

    2012-01-01

    We briefly introduce the memory based approaches to emulate machine intelligence in VLSI hardware, describing the challenges and advantages. Implementation of artificial intelligence techniques in VLSI hardware is a practical and difficult problem. Deep architectures, hierarchical temporal memories and memory networks are some of the contemporary approaches in this area of research. The techniques attempt to emulate low level intelligence tasks and aim at providing scalable solutions to high ...

  3. Nonvolatile ferroelectric memory based on PbTiO3 gated single-layer MoS2 field-effect transistor

    Science.gov (United States)

    Shin, Hyun Wook; Son, Jong Yeog

    2018-01-01

    We fabricated ferroelectric non-volatile random access memory (FeRAM) based on a field effect transistor (FET) consisting of a monolayer MoS2 channel and a ferroelectric PbTiO3 (PTO) thin film of gate insulator. An epitaxial PTO thin film was deposited on a Nb-doped SrTiO3 (Nb:STO) substrate via pulsed laser deposition. A monolayer MoS2 sheet was exfoliated from a bulk crystal and transferred to the surface of the PTO/Nb:STO. Structural and surface properties of the PTO thin film were characterized by X-ray diffraction and atomic force microscopy, respectively. Raman spectroscopy analysis was performed to identify the single-layer MoS2 sheet on the PTO/Nb:STO. We obtained mobility value (327 cm2/V·s) of the MoS2 channel at room temperature. The MoS2-PTO FeRAM FET showed a wide memory window with 17 kΩ of resistance variation which was attributed to high remnant polarization of the epitaxially grown PTO thin film. According to the fatigue resistance test for the FeRAM FET, however, the resistance states gradually varied during the switching cycles of 109. [Figure not available: see fulltext.

  4. Memory detection 2.0: the first web-based memory detection test.

    Science.gov (United States)

    Kleinberg, Bennett; Verschuere, Bruno

    2015-01-01

    There is accumulating evidence that reaction times (RTs) can be used to detect recognition of critical (e.g., crime) information. A limitation of this research base is its reliance upon small samples (average n = 24), and indications of publication bias. To advance RT-based memory detection, we report upon the development of the first web-based memory detection test. Participants in this research (Study1: n = 255; Study2: n = 262) tried to hide 2 high salient (birthday, country of origin) and 2 low salient (favourite colour, favourite animal) autobiographical details. RTs allowed to detect concealed autobiographical information, and this, as predicted, more successfully so than error rates, and for high salient than for low salient items. While much remains to be learned, memory detection 2.0 seems to offer an interesting new platform to efficiently and validly conduct RT-based memory detection research.

  5. Memory detection 2.0: the first web-based memory detection test.

    Directory of Open Access Journals (Sweden)

    Bennett Kleinberg

    Full Text Available There is accumulating evidence that reaction times (RTs can be used to detect recognition of critical (e.g., crime information. A limitation of this research base is its reliance upon small samples (average n = 24, and indications of publication bias. To advance RT-based memory detection, we report upon the development of the first web-based memory detection test. Participants in this research (Study1: n = 255; Study2: n = 262 tried to hide 2 high salient (birthday, country of origin and 2 low salient (favourite colour, favourite animal autobiographical details. RTs allowed to detect concealed autobiographical information, and this, as predicted, more successfully so than error rates, and for high salient than for low salient items. While much remains to be learned, memory detection 2.0 seems to offer an interesting new platform to efficiently and validly conduct RT-based memory detection research.

  6. Phase change memory

    CERN Document Server

    Qureshi, Moinuddin K

    2011-01-01

    As conventional memory technologies such as DRAM and Flash run into scaling challenges, architects and system designers are forced to look at alternative technologies for building future computer systems. This synthesis lecture begins by listing the requirements for a next generation memory technology and briefly surveys the landscape of novel non-volatile memories. Among these, Phase Change Memory (PCM) is emerging as a leading contender, and the authors discuss the material, device, and circuit advances underlying this exciting technology. The lecture then describes architectural solutions t

  7. FPGA Based Intelligent Co-operative Processor in Memory Architecture

    DEFF Research Database (Denmark)

    Ahmed, Zaki; Sotudeh, Reza; Hussain, Dil Muhammad Akbar

    2011-01-01

    benefits of PIM, a concept of Co-operative Intelligent Memory (CIM) was developed by the intelligent system group of University of Hertfordshire, based on the previously developed Co-operative Pseudo Intelligent Memory (CPIM). This paper provides an overview on previous works (CPIM, CIM) and realization......In a continuing effort to improve computer system performance, Processor-In-Memory (PIM) architecture has emerged as an alternative solution. PIM architecture incorporates computational units and control logic directly on the memory to provide immediate access to the data. To exploit the potential...

  8. Hypergraph-Based Recognition Memory Model for Lifelong Experience

    Science.gov (United States)

    2014-01-01

    Cognitive agents are expected to interact with and adapt to a nonstationary dynamic environment. As an initial process of decision making in a real-world agent interaction, familiarity judgment leads the following processes for intelligence. Familiarity judgment includes knowing previously encoded data as well as completing original patterns from partial information, which are fundamental functions of recognition memory. Although previous computational memory models have attempted to reflect human behavioral properties on the recognition memory, they have been focused on static conditions without considering temporal changes in terms of lifelong learning. To provide temporal adaptability to an agent, in this paper, we suggest a computational model for recognition memory that enables lifelong learning. The proposed model is based on a hypergraph structure, and thus it allows a high-order relationship between contextual nodes and enables incremental learning. Through a simulated experiment, we investigate the optimal conditions of the memory model and validate the consistency of memory performance for lifelong learning. PMID:25371665

  9. A non-destructive crossbar architecture of multi-level memory-based resistor

    Science.gov (United States)

    Sahebkarkhorasani, Seyedmorteza

    Nowadays, researchers are trying to shrink the memory cell in order to increase the capacity of the memory system and reduce the hardware costs. In recent years, there has been a revolution in electronics by using fundamentals of physics to build a new memory for computer application in order to increase the capacity and decrease the power consumption. Increasing the capacity of the memory causes a growth in the chip area. From 1971 to 2012 semiconductor manufacturing process improved from 6mum to 22 mum. In May 2008, S.Williams stated that "it is time to stop shrinking". In his paper, he declared that the process of shrinking memory element has recently become very slow and it is time to use another alternative in order to create memory elements [9]. In this project, we present a new design of a memory array using the new element named Memristor [3]. Memristor is a two-terminal passive electrical element that relates the charge and magnetic flux to each other. The device remained unknown since 1971 when it was discovered by Chua and introduced as the fourth fundamental passive element like capacitor, inductor and resistor [3]. Memristor has a dynamic resistance and it can retain its previous value even after disconnecting the power supply. Due to this interesting behavior of the Memristor, it can be a good replacement for all of the Non-Volatile Memories (NVMs) in the near future. Combination of this newly introduced element with the nanowire crossbar architecture would be a great structure which is called Crossbar Memristor. Some frameworks have recently been introduced in literature that utilized Memristor crossbar array, but there are many challenges to implement the Memristor crossbar array due to fabrication and device limitations. In this work, we proposed a simple design of Memristor crossbar array architecture which uses input feedback in order to preserve its data after each read operation.

  10. Dynamics-based sequential memory: Winnerless competition of patterns

    International Nuclear Information System (INIS)

    Seliger, Philip; Tsimring, Lev S.; Rabinovich, Mikhail I.

    2003-01-01

    We introduce a biologically motivated dynamical principle of sequential memory which is based on winnerless competition (WLC) of event images. This mechanism is implemented in a two-layer neural model of sequential spatial memory. We present the learning dynamics which leads to the formation of a WLC network. After learning, the system is capable of associative retrieval of prerecorded sequences of patterns

  11. A Memory-Based Model of Hick's Law

    Science.gov (United States)

    Schneider, Darryl W.; Anderson, John R.

    2011-01-01

    We propose and evaluate a memory-based model of Hick's law, the approximately linear increase in choice reaction time with the logarithm of set size (the number of stimulus-response alternatives). According to the model, Hick's law reflects a combination of associative interference during retrieval from declarative memory and occasional savings…

  12. The neural bases of orthographic working memory

    Directory of Open Access Journals (Sweden)

    Jeremy Purcell

    2014-04-01

    First, these results reveal a neurotopography of OWM lesion sites that is well-aligned with results from neuroimaging of orthographic working memory in neurally intact participants (Rapp & Dufor, 2011. Second, the dorsal neurotopography of the OWM lesion overlap is clearly distinct from what has been reported for lesions associated with either lexical or sublexical deficits (e.g., Henry, Beeson, Stark, & Rapcsak, 2007; Rapcsak & Beeson, 2004; these have, respectively, been identified with the inferior occipital/temporal and superior temporal/inferior parietal regions. These neurotopographic distinctions support the claims of the computational distinctiveness of long-term vs. working memory operations. The specific lesion loci raise a number of questions to be discussed regarding: (a the selectivity of these regions and associated deficits to orthographic working memory vs. working memory more generally (b the possibility that different lesion sub-regions may correspond to different components of the OWM system.

  13. Effect of neutron and gamma irradiation on magnetic bubble memories

    International Nuclear Information System (INIS)

    Cambou, B.

    1981-06-01

    Many years of research preceeded the introduction of magnetic bubble memories (M.B.M.) into the memory components market. They are used as bulk storage memories principally for their non volatile characteristics under irradiation. A physical and technological description of MBM is given in the first part of the text together with the results of work on their vulnerability when subjected to irradiation. Permanent damage caused by neutrons and gamma radiation on thin magnetic layers is then studied. A theoretical analysis on the stability of bubbles based on the results of pulsed laser experiments is given. The stability of the information stored in a commercially available MBM subjected to neutron and gamma irradiation (MBM - TIB 203 of 92 kBits, Texas) is described in the last part of the text. The vulnerability thresholds determined for the MBM are too high for them to be used in a radioactive environment with an improved electronic control system [fr

  14. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

    Science.gov (United States)

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng

    2018-05-01

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  15. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility

    KAUST Repository

    Caraveo-Frescas, Jesus Alfonso

    2014-06-10

    Here we report for the first time a hybrid p-channel polymer ferroelectric field-effect transistor memory device with record mobility. The memory device, fabricated at 200C on both plastic polyimide and glass substrates, uses ferroelectric polymer P(VDF-TrFE) as the gate dielectric and transparent p-type oxide (SnO) as the active channel layer. A record mobility of 3.3 cm 2V-1s-1, large memory window (~16 V), low read voltages (~-1 V), and excellent retention characteristics up to 5000 sec have been achieved. The mobility achieved in our devices is over 10 times higher than previously reported polymer ferroelectric field-effect transistor memory with p-type channel. This demonstration opens the door for the development of non-volatile memory devices based on dual channel for emerging transparent and flexible electronic devices.

  16. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility

    KAUST Repository

    Caraveo-Frescas, Jesus Alfonso; Khan, M. A.; Alshareef, Husam N.

    2014-01-01

    Here we report for the first time a hybrid p-channel polymer ferroelectric field-effect transistor memory device with record mobility. The memory device, fabricated at 200C on both plastic polyimide and glass substrates, uses ferroelectric polymer P(VDF-TrFE) as the gate dielectric and transparent p-type oxide (SnO) as the active channel layer. A record mobility of 3.3 cm 2V-1s-1, large memory window (~16 V), low read voltages (~-1 V), and excellent retention characteristics up to 5000 sec have been achieved. The mobility achieved in our devices is over 10 times higher than previously reported polymer ferroelectric field-effect transistor memory with p-type channel. This demonstration opens the door for the development of non-volatile memory devices based on dual channel for emerging transparent and flexible electronic devices.

  17. Memory

    Science.gov (United States)

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  18. Neural bases of orthographic long-term memory and working memory in dysgraphia.

    Science.gov (United States)

    Rapp, Brenda; Purcell, Jeremy; Hillis, Argye E; Capasso, Rita; Miceli, Gabriele

    2016-02-01

    Spelling a word involves the retrieval of information about the word's letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Reward associations magnify memory-based biases on perception.

    Science.gov (United States)

    Doallo, Sonia; Patai, Eva Zita; Nobre, Anna Christina

    2013-02-01

    Long-term spatial contextual memories are a rich source of predictions about the likely locations of relevant objects in the environment and should enable tuning of neural processing of unfolding events to optimize perception and action. Of particular importance is whether and how the reward outcome of past events can impact perception. We combined behavioral measures with recordings of brain activity with high temporal resolution to test whether the previous reward outcome associated with a memory could modulate the impact of memory-based biases on perception, and if so, the level(s) at which visual neural processing is biased by reward-associated memory-guided attention. Data showed that past rewards potentiate the effects of spatial memories upon the discrimination of target objects embedded within complex scenes starting from early perceptual stages. We show that a single reward outcome of learning impacts on how we perceive events in our complex environments.

  20. Ti-Ni-based shape memory alloys as smart materials

    International Nuclear Information System (INIS)

    Otsuka, K.; Xu, Y.; Ren, X.

    2003-01-01

    Smart materials consist of three principal materials, ferroelectrics, shape memory alloys (SMA) and electro-active polymers (EAP). Among these SMAs, especially Ti-Ni-based alloys are important, since only they can provide large recoverable strains and high recovery stress. In the present paper the unique characteristics of Ti-Ni-based shape memory alloys are reviewed on an up-to-date basis with the aim of their applications to smart materials and structures. (orig.)

  1. Validation of a colour rendering index based on memory colours

    OpenAIRE

    Smet, Kevin; Jost-Boissard, Sophie; Ryckaert, Wouter; Deconinck, Geert; Hanselaer, Peter

    2010-01-01

    In this paper the performance of a colour rendering index based on memory colours is investigated in comparison with the current CIE Colour Rendering Index, the NIST Colour Quality Scale and visual appreciation results obtained at CNRS at Lyon University for a set of 3000K and 4000K LED light sources. The Pearson and Spearman correlation coefficients between each colour rendering metric and the two sets of visual results were calculated. It was found that the memory colour based colour render...

  2. A Working Memory Test Battery: Java-Based Collection of Seven Working Memory Tasks

    Directory of Open Access Journals (Sweden)

    James M Stone

    2015-06-01

    Full Text Available Working memory is a key construct within cognitive science. It is an important theory in its own right, but the influence of working memory is enriched due to the widespread evidence that measures of its capacity are linked to a variety of functions in wider cognition. To facilitate the active research environment into this topic, we describe seven computer-based tasks that provide estimates of short-term and working memory incorporating both visuospatial and verbal material. The memory span tasks provided are; digit span, matrix span, arrow span, reading span, operation span, rotation span, and symmetry span. These tasks are built to be simple to use, flexible to adapt to the specific needs of the research design, and are open source. All files can be downloaded from the project website http://www.cognitivetools.uk and the source code is available via Github.

  3. Occurence and dietary exposure of volatile and non-volatile N-Nitrosamines in processed meat products

    DEFF Research Database (Denmark)

    Herrmann, Susan Strange; Duedahl-Olesen, Lene; Granby, Kit

    Nitrite and nitrate have for many decades been used for preservation of meat. However, nitrite can react with secondary amines in meat to form N-Nitrosamines (NAs), many of which have been shown to be genotoxic1 . The use of nitrite therefore ought to be limited as much as possible. To maintain...... a high level of consumer protection Denmark obtains National low limits of the nitrite use in meat products. An estimation of the dietary exposure to volatile NAs (VNA) and non-volatile NAs (NVNA) is necessary when performing a risk assessment of the use of nitrite and nitrate for meat preservation....

  4. Light programmable organic transistor memory device based on hybrid dielectric

    Science.gov (United States)

    Ren, Xiaochen; Chan, Paddy K. L.

    2013-09-01

    We have fabricated the transistor memory devices based on SiO2 and polystyrene (PS) hybrid dielectric. The trap states densities with different semiconductors have been investigated and a maximum 160V memory window between programming and erasing is realized. For DNTT based transistor, the trapped electron density is limited by the number of mobile electrons in semiconductor. The charge transport mechanism is verified by light induced Vth shift effect. Furthermore, in order to meet the low operating power requirement of portable electronic devices, we fabricated the organic memory transistor based on AlOx/self-assembly monolayer (SAM)/PS hybrid dielectric, the effective capacitance of hybrid dielectric is 210 nF cm-2 and the transistor can reach saturation state at -3V gate bias. The memory window in transfer I-V curve is around 1V under +/-5V programming and erasing bias.

  5. Efficient Management for Hybrid Memory in Managed Language Runtime

    OpenAIRE

    Wang , Chenxi; Cao , Ting; Zigman , John; Lv , Fang; Zhang , Yunquan; Feng , Xiaobing

    2016-01-01

    Part 1: Memory: Non-Volatile, Solid State Drives, Hybrid Systems; International audience; Hybrid memory, which leverages the benefits of traditional DRAM and emerging memory technologies, is a promising alternative for future main memory design. However popular management policies through memory-access recording and page migration may invoke non-trivial overhead in execution time and hardware space. Nowadays, managed language applications are increasingly dominant in every kind of platform. M...

  6. Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics

    KAUST Repository

    Mao, Duo

    2010-05-01

    The impact of thermal treatment and thickness on the polarization and leakage current of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer thin film capacitors has been studied. The evolution of the film morphology, crystallinity and bonding orientation as a function of annealing temperature and thickness were characterized using multiple techniques. Electrical performance of the devices was correlated with the material properties. It was found that annealing at or slightly above the Curie temperature (Tc) is the optimal temperature for high polarization, smooth surface morphology and low leakage current. Higher annealing temperature (but below the melting temperature Tm) favors larger size β crystallites through molecular chain self-organization, resulting in increased film roughness, and the vertical polarization tends to saturate. Metal-Ferroelectric-Metal (MFM) capacitors consistently achieved Ps, Pr and Vc of 8.5 μC/cm2, 7.4 μC/cm2 and 10.2 V, respectively.

  7. Polarity-Free Resistive Switching Characteristics of CuxO Films for Non-volatile Memory Applications

    International Nuclear Information System (INIS)

    Hang-Bing, Lv; Peng, Zhou; Xiu-Feng, Fu; Ming, Yin; Ya-Li, Song; Li, Tang; Ting-Ao, Tang; Yin-Yin, Lin

    2008-01-01

    Resistive switching characteristics of Cu x O films grown by plasma oxidation process at room temperature are investigated. Both bipolar and unipolar stable resistive switching behaviours are observed and confirmed by repeated current–voltage measurements. It is found that the RESET current is dependent on SET compliance current. The mechanism behind this new phenomenon can be understood in terms of conductive filaments formation/rupture with the contribution of Joule heating

  8. Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics

    KAUST Repository

    Mao, Duo; Quevedo-Ló pez, Manuel Angel Quevedo; Stiegler, Harvey J.; Gnade, Bruce E.; Alshareef, Husam N.

    2010-01-01

    The impact of thermal treatment and thickness on the polarization and leakage current of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer thin film capacitors has been studied. The evolution of the film morphology, crystallinity and bonding orientation as a function of annealing temperature and thickness were characterized using multiple techniques. Electrical performance of the devices was correlated with the material properties. It was found that annealing at or slightly above the Curie temperature (Tc) is the optimal temperature for high polarization, smooth surface morphology and low leakage current. Higher annealing temperature (but below the melting temperature Tm) favors larger size β crystallites through molecular chain self-organization, resulting in increased film roughness, and the vertical polarization tends to saturate. Metal-Ferroelectric-Metal (MFM) capacitors consistently achieved Ps, Pr and Vc of 8.5 μC/cm2, 7.4 μC/cm2 and 10.2 V, respectively.

  9. Memory detection 2.0: The first web-based memory detection test

    NARCIS (Netherlands)

    Kleinberg, B.; Verschuere, B.

    2015-01-01

    There is accumulating evidence that reaction times (RTs) can be used to detect recognition of critical (e.g., crime) information. A limitation of this research base is its reliance upon small samples (average n = 24), and indications of publication bias. To advance RT-based memory detection, we

  10. Memristor-based memory: The sneak paths problem and solutions

    KAUST Repository

    Zidan, Mohammed A.

    2012-10-29

    In this paper, we investigate the read operation of memristor-based memories. We analyze the sneak paths problem and provide a noise margin metric to compare the various solutions proposed in the literature. We also analyze the power consumption associated with these solutions. Moreover, we study the effect of the aspect ratio of the memory array on the sneak paths. Finally, we introduce a new technique for solving the sneak paths problem by gating the memory cell using a three-terminal memistor device.

  11. Memristor-based memory: The sneak paths problem and solutions

    KAUST Repository

    Zidan, Mohammed A.; Fahmy, Hossam A.H.; Hussain, Muhammad Mustafa; Salama, Khaled N.

    2012-01-01

    In this paper, we investigate the read operation of memristor-based memories. We analyze the sneak paths problem and provide a noise margin metric to compare the various solutions proposed in the literature. We also analyze the power consumption associated with these solutions. Moreover, we study the effect of the aspect ratio of the memory array on the sneak paths. Finally, we introduce a new technique for solving the sneak paths problem by gating the memory cell using a three-terminal memistor device.

  12. Attention, Working Memory, and Long-Term Memory in Multimedia Learning: An Integrated Perspective Based on Process Models of Working Memory

    Science.gov (United States)

    Schweppe, Judith; Rummer, Ralf

    2014-01-01

    Cognitive models of multimedia learning such as the Cognitive Theory of Multimedia Learning (Mayer 2009) or the Cognitive Load Theory (Sweller 1999) are based on different cognitive models of working memory (e.g., Baddeley 1986) and long-term memory. The current paper describes a working memory model that has recently gained popularity in basic…

  13. Memory phenomenon in a lanthanum based bulk metallic glass

    International Nuclear Information System (INIS)

    Zhou, Ye; Huang, Wei Min; Zhao, Yong; Ding, Zhen; Li, Yan; Tor, Shu Beng; Liu, Erjia

    2016-01-01

    In this paper, we experimentally investigate two memory phenomena in a lanthanum based bulk metallic glass (BMG). While the temperature memory effect (TME) is not found by differential scanning calorimeter (DSC) test, shape recovery is observed in samples indented at both low and high temperatures. In terms of shape memory related characteristics, this BMG shares some features of shape memory alloys (SMAs) due to its metal nature, and some other features of shape memory polymers (SMPs) owing to its glassy–rubbery transition. The formation of protrusion in the polished sample after heating to super-cooled liquid region (SCLR) indicates that surface tension is not a necessarily positive contributor for shape recovery. Release of internal elastic stress is concluded as the major player. Although the amorphous nature of BMGs enables for storing appreciable amount of internal elastic stress upon deformation, without the presence of cross-linker as in typical SMPs, the shape recovery in BMGs is rather limited. - Highlights: • Experimental investigation of shape recovery in BMG. • Surface tension is not the major reason for shape recovery in BMG. • Release of internal stress is the major contributor for shape recovery. • Comparison of shape memory features of BMG with other shape memory materials.

  14. Memory phenomenon in a lanthanum based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Huang, Wei Min, E-mail: mwmhuang@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Zhao, Yong [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Ding, Zhen [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Li, Yan [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Tor, Shu Beng; Liu, Erjia [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2016-07-05

    In this paper, we experimentally investigate two memory phenomena in a lanthanum based bulk metallic glass (BMG). While the temperature memory effect (TME) is not found by differential scanning calorimeter (DSC) test, shape recovery is observed in samples indented at both low and high temperatures. In terms of shape memory related characteristics, this BMG shares some features of shape memory alloys (SMAs) due to its metal nature, and some other features of shape memory polymers (SMPs) owing to its glassy–rubbery transition. The formation of protrusion in the polished sample after heating to super-cooled liquid region (SCLR) indicates that surface tension is not a necessarily positive contributor for shape recovery. Release of internal elastic stress is concluded as the major player. Although the amorphous nature of BMGs enables for storing appreciable amount of internal elastic stress upon deformation, without the presence of cross-linker as in typical SMPs, the shape recovery in BMGs is rather limited. - Highlights: • Experimental investigation of shape recovery in BMG. • Surface tension is not the major reason for shape recovery in BMG. • Release of internal stress is the major contributor for shape recovery. • Comparison of shape memory features of BMG with other shape memory materials.

  15. Secure Virtualization Environment Based on Advanced Memory Introspection

    Directory of Open Access Journals (Sweden)

    Shuhui Zhang

    2018-01-01

    Full Text Available Most existing virtual machine introspection (VMI technologies analyze the status of a target virtual machine under the assumption that the operating system (OS version and kernel structure information are known at the hypervisor level. In this paper, we propose a model of virtual machine (VM security monitoring based on memory introspection. Using a hardware-based approach to acquire the physical memory of the host machine in real time, the security of the host machine and VM can be diagnosed. Furthermore, a novel approach for VM memory forensics based on the virtual machine control structure (VMCS is put forward. By analyzing the memory of the host machine, the running VMs can be detected and their high-level semantic information can be reconstructed. Then, malicious activity in the VMs can be identified in a timely manner. Moreover, by mutually analyzing the memory content of the host machine and VMs, VM escape may be detected. Compared with previous memory introspection technologies, our solution can automatically reconstruct the comprehensive running state of a target VM without any prior knowledge and is strongly resistant to attacks with high reliability. We developed a prototype system called the VEDefender. Experimental results indicate that our system can handle the VMs of mainstream Linux and Windows OS versions with high efficiency and does not influence the performance of the host machine and VMs.

  16. Novel Shape-Memory Polymer with Two Transition Temperature Based on Two Different Memory Mechanism

    Institute of Scientific and Technical Information of China (English)

    Liu Guoqin; Ding Xiaobing; Cao Yiping; Zheng Zhaohui; Peng Yuxing

    2004-01-01

    As an important kind of intelligent materials, shape-memory materials have been received increasing attention on account of their interesting properties and potential applications in recent years. Particularly, the rise of shape-memory polymers by far surpasses well-known metallic shape-memory alloys in their shape-memory properties. The advantages of polymers compared to other materials are their easier availability and their wide range of mechanical and physical properties. The polymers designed to exhibit a shape-memory effect require two components on the molecular level: crosslinks to determine the permanent shape and switching segments with Ttrans to fix the temporary shape. Up to now almost all papers on shape-memory polymers introduce switching segments with the covalent linking method. On the other hand, only several cases concern non-covalent interaction. However, the research works mentioned above is based on a single Ttrans (i.e., Tm or Tg).Following our previous work, here, we first report a novel kind of polymer consisted of PMMA-PEG semi-interpenetrating polymer networks (semi-IPN), which exhibiting independently two shape memory effects based on Tm and Tg, respectively. This result can also extend the shape memory polymer categories from one Ttrans to two Ttrans, and the combination of Tm and Tg give rise to an extremely excellent shape-memory effect.Two different shape memory behaviors of this material based on two transition temperatures were evaluated by bending test as follows: a straight strip of the specimen was folded at a temperature above Ttrans and kept in this shape. The so-deformed sample was cooled down to a temperature Tlow< Ttrans and the deforming stress were released. When the sample was heated up to the measuring temperature Thigh > Ttrans, it recovered its initial shape. The deformation angle θ f varied as a function of time and the ratio of the recovery was defined as θ f /180. The PMMA-PEG polymer behaved as a hard plastic

  17. Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array

    Directory of Open Access Journals (Sweden)

    Sukru Burc Eryilmaz

    2014-07-01

    Full Text Available Recent advances in neuroscience together with nanoscale electronic device technology have resulted in huge interests in realizing brain-like computing hardwares using emerging nanoscale memory devices as synaptic elements. Although there has been experimental work that demonstrated the operation of nanoscale synaptic element at the single device level, network level studies have been limited to simulations. In this work, we demonstrate, using experiments, array level associative learning using phase change synaptic devices connected in a grid like configuration similar to the organization of the biological brain. Implementing Hebbian learning with phase change memory cells, the synaptic grid was able to store presented patterns and recall missing patterns in an associative brain-like fashion. We found that the system is robust to device variations, and large variations in cell resistance states can be accommodated by increasing the number of training epochs. We illustrated the tradeoff between variation tolerance of the network and the overall energy consumption, and found that energy consumption is decreased significantly for lower variation tolerance.

  18. Sleep Deprivation and Time-Based Prospective Memory.

    Science.gov (United States)

    Esposito, Maria José; Occhionero, Miranda; Cicogna, PierCarla

    2015-11-01

    To evaluate the effect of sleep deprivation on time-based prospective memory performance, that is, realizing delayed intentions at an appropriate time in the future (e.g., to take a medicine in 30 minutes). Between-subjects experimental design. The experimental group underwent 24 h of total sleep deprivation, and the control group had a regular sleep-wake cycle. Participants were tested at 08:00. Laboratory. Fifty healthy young adults (mean age 22 ± 2.1, 31 female). 24 h of total sleep deprivation. Participants were monitored by wrist actigraphy for 3 days before the experimental session. The following cognitive tasks were administered: one time-based prospective memory task and 3 reasoning tasks as ongoing activity. Objective and subjective vigilance was assessed by the psychomotor vigilance task and a visual analog scale, respectively. To measure the time-based prospective memory task we assessed compliance and clock checking behavior (time monitoring). Sleep deprivation negatively affected time-based prospective memory compliance (P sleep deprivation on human behavior, particularly the ability to perform an intended action after a few minutes. Sleep deprivation strongly compromises time-based prospective memory compliance but does not affect time check frequency. Sleep deprivation may impair the mechanism that allows the integration of information related to time monitoring with the prospective intention. © 2015 Associated Professional Sleep Societies, LLC.

  19. Memory-Based Decision-Making with Heuristics: Evidence for a Controlled Activation of Memory Representations

    Science.gov (United States)

    Khader, Patrick H.; Pachur, Thorsten; Meier, Stefanie; Bien, Siegfried; Jost, Kerstin; Rosler, Frank

    2011-01-01

    Many of our daily decisions are memory based, that is, the attribute information about the decision alternatives has to be recalled. Behavioral studies suggest that for such decisions we often use simple strategies (heuristics) that rely on controlled and limited information search. It is assumed that these heuristics simplify decision-making by…

  20. No Evidence for Improved Associative Memory Performance Following Process-Based Associative Memory Training in Older Adults.

    Science.gov (United States)

    Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne

    2016-01-01

    Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults ( M age = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults.

  1. Orbitofrontal Cortex Encodes Memories within Value-Based Schemas and Represents Contexts That Guide Memory Retrieval

    Science.gov (United States)

    Farovik, Anja; Place, Ryan J.; McKenzie, Sam; Porter, Blake; Munro, Catherine E.

    2015-01-01

    There are a substantial number of studies showing that the orbitofrontal cortex links events to reward values, whereas the hippocampus links events to the context in which they occur. Here we asked how the orbitofrontal cortex contributes to memory where context determines the reward values associated with events. After rats learned object–reward associations that differed depending on the spatial context in which the objects were presented, neuronal ensembles in orbitofrontal cortex represented distinct value-based schemas, each composed of a systematic organization of the representations of objects in the contexts and positions where they were associated with reward or nonreward. Orbitofrontal ensembles also represent the different spatial contexts that define the mappings of stimuli to actions that lead to reward or nonreward. These findings, combined with observations on complementary memory representation within the hippocampus, suggest mechanisms through which prefrontal cortex and the hippocampus interact in support of context-guided memory. PMID:26019346

  2. Organisational Memories in Project-Based Companies: An Autopoietic View

    Science.gov (United States)

    Koskinen, Kaj U.

    2010-01-01

    Purpose: The purpose of this paper is to describe project-based companies' knowledge production and memory development with the help of autopoietic epistemology. Design/methodology/approach: The discussion first defines the concept of a project-based company. Then the discussion deals with the two epistemological assumptions, namely cognitivist…

  3. Implicit Schemata and Categories in Memory-Based Language Processing

    Science.gov (United States)

    van den Bosch, Antal; Daelemans, Walter

    2013-01-01

    Memory-based language processing (MBLP) is an approach to language processing based on exemplar storage during learning and analogical reasoning during processing. From a cognitive perspective, the approach is attractive as a model for human language processing because it does not make any assumptions about the way abstractions are shaped, nor any…

  4. Memory-based attention capture when multiple items are maintained in visual working memory.

    Science.gov (United States)

    Hollingworth, Andrew; Beck, Valerie M

    2016-07-01

    Efficient visual search requires that attention is guided strategically to relevant objects, and most theories of visual search implement this function by means of a target template maintained in visual working memory (VWM). However, there is currently debate over the architecture of VWM-based attentional guidance. We contrasted a single-item-template hypothesis with a multiple-item-template hypothesis, which differ in their claims about structural limits on the interaction between VWM representations and perceptual selection. Recent evidence from van Moorselaar, Theeuwes, and Olivers (2014) indicated that memory-based capture during search, an index of VWM guidance, is not observed when memory set size is increased beyond a single item, suggesting that multiple items in VWM do not guide attention. In the present study, we maximized the overlap between multiple colors held in VWM and the colors of distractors in a search array. Reliable capture was observed when 2 colors were held in VWM and both colors were present as distractors, using both the original van Moorselaar et al. singleton-shape search task and a search task that required focal attention to array elements (gap location in outline square stimuli). In the latter task, memory-based capture was consistent with the simultaneous guidance of attention by multiple VWM representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. New approaches to addiction treatment based on learning and memory.

    Science.gov (United States)

    Kiefer, Falk; Dinter, Christina

    2013-01-01

    Preclinical studies suggest that physiological learning processes are similar to changes observed in addicts at the molecular, neuronal, and structural levels. Based on the importance of classical and instrumental conditioning in the development and maintenance of addictive disorders, many have suggested cue-exposure-based extinction training of conditioned, drug-related responses as a potential new treatment of addiction. It may also be possible to facilitate this extinction training with pharmacological compounds that strengthen memory consolidation during cue exposure. Another potential therapeutic intervention would be based on the so-called reconsolidation theory. According to this hypothesis, already-consolidated memories return to a labile state when reactivated, allowing them to undergo another phase of consolidation-reconsolidation, which can be pharmacologically manipulated. These approaches suggest that the extinction of drug-related memories may represent a viable treatment strategy in the future treatment of addiction.

  6. Detecting peripheral-based attacks on the host memory

    CERN Document Server

    Stewin, Patrick

    2015-01-01

    This work addresses stealthy peripheral-based attacks on host computers and presents a new approach to detecting them. Peripherals can be regarded as separate systems that have a dedicated processor and dedicated runtime memory to handle their tasks. The book addresses the problem that peripherals generally communicate with the host via the host’s main memory, storing cryptographic keys, passwords, opened files and other sensitive data in the process – an aspect attackers are quick to exploit.  Here, stealthy malicious software based on isolated micro-controllers is implemented to conduct an attack analysis, the results of which provide the basis for developing a novel runtime detector. The detector reveals stealthy peripheral-based attacks on the host’s main memory by exploiting certain hardware properties, while a permanent and resource-efficient measurement strategy ensures that the detector is also capable of detecting transient attacks, which can otherwise succeed when the applied strategy only me...

  7. Sequence memory based on coherent spin-interaction neural networks.

    Science.gov (United States)

    Xia, Min; Wong, W K; Wang, Zhijie

    2014-12-01

    Sequence information processing, for instance, the sequence memory, plays an important role on many functions of brain. In the workings of the human brain, the steady-state period is alterable. However, in the existing sequence memory models using heteroassociations, the steady-state period cannot be changed in the sequence recall. In this work, a novel neural network model for sequence memory with controllable steady-state period based on coherent spininteraction is proposed. In the proposed model, neurons fire collectively in a phase-coherent manner, which lets a neuron group respond differently to different patterns and also lets different neuron groups respond differently to one pattern. The simulation results demonstrating the performance of the sequence memory are presented. By introducing a new coherent spin-interaction sequence memory model, the steady-state period can be controlled by dimension parameters and the overlap between the input pattern and the stored patterns. The sequence storage capacity is enlarged by coherent spin interaction compared with the existing sequence memory models. Furthermore, the sequence storage capacity has an exponential relationship to the dimension of the neural network.

  8. High frequency electromechanical memory cells based on telescoping carbon nanotubes.

    Science.gov (United States)

    Popov, A M; Lozovik, Y E; Kulish, A S; Bichoutskaia, E

    2010-07-01

    A new method to increase the operational frequency of electromechanical memory cells based on the telescoping motion of multi-walled carbon nanotubes through the selection of the form of the switching voltage pulse is proposed. The relative motion of the walls of carbon nanotubes can be controlled through the shape of the interwall interaction energy surface. This allows the use of the memory cells in nonvolatile or volatile regime, depending on the structure of carbon nanotube. Simulations based on ab initio and semi-empirical calculations of the interwall interaction energies are used to estimate the switching voltage and the operational frequency of volatile cells with the electrodes made of carbon nanotubes. The lifetime of nonvolatile memory cells is also predicted.

  9. Memory-based snowdrift game on a square lattice

    Science.gov (United States)

    Shu, Feng; Liu, Xingwen; Fang, Kai; Chen, Hao

    2018-04-01

    Spatial reciprocity is an effective way widely accepted to facilitate cooperation. In the case of snowdrift game, some researches showed that spatial reciprocity inhibits cooperation for a very wide range of cost-to-benefit ratio r. However, some other researches found that based on the spatial reciprocity, a wider range of r is helpful to achieve a high cooperation level. Thus, how to enlarge the range of r for the purpose of promoting cooperation becomes a hot topic recently. This paper proposes a new memory-based method, in which each individual compares with its own previous payoffs to find out the maximal one as virtual payoff and then randomly compares with one of its neighbours to obtain the optimal strategy according to the given updating rules. It shows the positive effect of spatial reciprocity in the context of memory. Specifically, in this situation, not only the lower ratio can appear a high cooperation level, but also the larger ratio r can emerge a high cooperation level. That is, an expected cooperation level can be achieved simultaneously for small and large r. Furthermore, the scenarios of both constant-size memory and size-varying memory are investigated. An interesting phenomenon is discovered that the cooperation level drops down gradually as the memory size increases.

  10. Nano-scaled chalcogenide-based memories

    International Nuclear Information System (INIS)

    Redaelli, Andrea; Pirovano, Agostino

    2011-01-01

    Today phase change memory (PCM) technology has reached product maturity at 90 and 65 nm nodes, while the 45 nm node is under development and is expected to enter in the market soon. The continuous decrease of the cell size with scaling leads to an effective active area as small as 150 nm 2 and an active volume involved in the phase transformation of about 10 4 nm 3 , thus entering definitively into the nanotechnology world. At this extremely reduced dimension, the reliability of the device must be carefully investigated. In this work we show that the cycling performance of the device is well maintained, not being a problem for either the bipolar transistor or the storage element. The phase transition from the amorphous to the crystalline state is, of course, one of the most interesting phenomena, impacting cell retention capability and device performance. The stochastic nature of nano-nuclei percolation in the amorphous matrix is shown as an important ingredient in the retention of PCM devices. The related dispersion in crystallization times is analyzed through a crystallization Monte Carlo model and a physical insight into nucleation and growth mechanisms is provided.

  11. Fault-tolerant NAND-flash memory module for next-generation scientific instruments

    Science.gov (United States)

    Lange, Tobias; Michel, Holger; Fiethe, Björn; Michalik, Harald; Walter, Dietmar

    2015-10-01

    Remote sensing instruments on today's space missions deliver a high amount of data which is typically evaluated on ground. Especially for deep space missions the telemetry downlink is very limited which creates the need for the scientific evaluation and thereby a reduction of data volume already on-board the spacecraft. A demanding example is the Polarimetric and Helioseismic Imager (PHI) instrument on Solar Orbiter. To enable on-board offline processing for data reduction, the instrument has to be equipped with a high capacity memory module. The module is based on non-volatile NAND-Flash technology, which requires more advanced operation than volatile DRAM. Unlike classical mass memories, the module is integrated into the instrument and allows readback of data for processing. The architecture and safe operation of such kind of memory module is described in the following paper.

  12. Object-based Encoding in Visual Working Memory: Evidence from Memory-driven Attentional Capture.

    Science.gov (United States)

    Gao, Zaifeng; Yu, Shixian; Zhu, Chengfeng; Shui, Rende; Weng, Xuchu; Li, Peng; Shen, Mowei

    2016-03-09

    Visual working memory (VWM) adopts a specific manner of object-based encoding (OBE) to extract perceptual information: Whenever one feature-dimension is selected for entry into VWM, the others are also extracted. Currently most studies revealing OBE probed an 'irrelevant-change distracting effect', where changes of irrelevant-features dramatically affected the performance of the target feature. However, the existence of irrelevant-feature change may affect participants' processing manner, leading to a false-positive result. The current study conducted a strict examination of OBE in VWM, by probing whether irrelevant-features guided the deployment of attention in visual search. The participants memorized an object's colour yet ignored shape and concurrently performed a visual-search task. They searched for a target line among distractor lines, each embedded within a different object. One object in the search display could match the shape, colour, or both dimensions of the memory item, but this object never contained the target line. Relative to a neutral baseline, where there was no match between the memory and search displays, search time was significantly prolonged in all match conditions, regardless of whether the memory item was displayed for 100 or 1000 ms. These results suggest that task-irrelevant shape was extracted into VWM, supporting OBE in VWM.

  13. Protein-Based Three-Dimensional Memories and Associative Processors

    Science.gov (United States)

    Birge, Robert

    2008-03-01

    The field of bioelectronics has benefited from the fact that nature has often solved problems of a similar nature to those which must be solved to create molecular electronic or photonic devices that operate with efficiency and reliability. Retinal proteins show great promise in bioelectronic devices because they operate with high efficiency (˜0.65%), high cyclicity (>10^7), operate over an extended wavelength range (360 -- 630 nm) and can convert light into changes in voltage, pH, absorption or refractive index. This talk will focus on a retinal protein called bacteriorhodopsin, the proton pump of the organism Halobacterium salinarum. Two memories based on this protein will be described. The first is an optical three-dimensional memory. This memory stores information using volume elements (voxels), and provides as much as a thousand-fold improvement in effective capacity over current technology. A unique branching reaction of a variant of bacteriorhodopsin is used to turn each protein into an optically addressed latched AND gate. Although three working prototypes have been developed, a number of cost/performance and architectural issues must be resolved prior to commercialization. The major issue is that the native protein provides a very inefficient branching reaction. Genetic engineering has improved performance by nearly 500-fold, but a further order of magnitude improvement is needed. Protein-based holographic associative memories will also be discussed. The human brain stores and retrieves information via association, and human intelligence is intimately connected to the nature and enormous capacity of this associative search and retrieval process. To a first order approximation, creativity can be viewed as the association of two seemingly disparate concepts to form a totally new construct. Thus, artificial intelligence requires large scale associative memories. Current computer hardware does not provide an optimal environment for creating artificial

  14. Numerical analysis of a polysilicon-based resistive memory device

    KAUST Repository

    Berco, Dan; Chand, Umesh

    2018-01-01

    This study investigates a conductive bridge resistive memory device based on a Cu top electrode, 10-nm polysilicon resistive switching layer and a TiN bottom electrode, by numerical analysis for $$10^{3}$$103 programming and erase simulation cycles

  15. The Visual Memory-Based Memorization Techniques in Piano Education

    Science.gov (United States)

    Yucetoker, Izzet

    2016-01-01

    Problem Statement: Johann Sebastian Bach is one of the leading composers of the baroque period. In addition to his huge contributions in the artistic dimension, he also served greatly in the field of education. This study has been done for determining the impact of visual memory-based memorization practices in the piano education on the visual…

  16. Fe-Mn-Si based shape memory alloys

    International Nuclear Information System (INIS)

    Hsu, T.Y.

    2000-01-01

    Characteristics of martensitic transformation fcc(γ)→hcp(ε) in Fe-Mn-Si based alloys are briefly reviewed. By analyzing the influences of constituents and treatments on shape memory effect (SME) in Fe-Mn-Si, the main factors controlling SME are summarized as austenite strengthening, stacking fault energy (probability) and antiferromagnetic temperature. Contribution of thermomechanical training to SME is introduced. The Fe-Mn-Si-RE (rare earth elements) and Fe-Mn-Si-Cr-N alloys are recommended as two novel shape memory alloys with superior SME. (orig.)

  17. Nano-islands Based Charge Trapping Memory: A Scalability Study

    KAUST Repository

    Elatab, Nazek; Saadat, Irfan; Saraswat, Krishna; Nayfeh, Ammar

    2017-01-01

    Zinc-oxide (ZnO) and zirconia (ZrO2) metal oxides have been studied extensively in the past few decades with several potential applications including memory devices. In this work, a scalability study, based on the ITRS roadmap, is conducted on memory devices with ZnO and ZrO2 nano-islands charge trapping layer. Both nano-islands are deposited using atomic layer deposition (ALD), however, the different sizes, distribution and properties of the materials result in different memory performance. The results show that at the 32-nm node charge trapping memory with 127 ZrO2 nano-islands can provide a 9.4 V memory window. However, with ZnO only 31 nano-islands can provide a window of 2.5 V. The results indicate that ZrO2 nano-islands are more promising than ZnO in scaled down devices due to their higher density, higher-k, and absence of quantum confinement effects.

  18. 3D Printed Photoresponsive Devices Based on Shape Memory Composites.

    Science.gov (United States)

    Yang, Hui; Leow, Wan Ru; Wang, Ting; Wang, Juan; Yu, Jiancan; He, Ke; Qi, Dianpeng; Wan, Changjin; Chen, Xiaodong

    2017-09-01

    Compared with traditional stimuli-responsive devices with simple planar or tubular geometries, 3D printed stimuli-responsive devices not only intimately meet the requirement of complicated shapes at macrolevel but also satisfy various conformation changes triggered by external stimuli at the microscopic scale. However, their development is limited by the lack of 3D printing functional materials. This paper demonstrates the 3D printing of photoresponsive shape memory devices through combining fused deposition modeling printing technology and photoresponsive shape memory composites based on shape memory polymers and carbon black with high photothermal conversion efficiency. External illumination triggers the shape recovery of 3D printed devices from the temporary shape to the original shape. The effect of materials thickness and light density on the shape memory behavior of 3D printed devices is quantified and calculated. Remarkably, sunlight also triggers the shape memory behavior of these 3D printed devices. This facile printing strategy would provide tremendous opportunities for the design and fabrication of biomimetic smart devices and soft robotics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nano-islands Based Charge Trapping Memory: A Scalability Study

    KAUST Repository

    Elatab, Nazek

    2017-10-19

    Zinc-oxide (ZnO) and zirconia (ZrO2) metal oxides have been studied extensively in the past few decades with several potential applications including memory devices. In this work, a scalability study, based on the ITRS roadmap, is conducted on memory devices with ZnO and ZrO2 nano-islands charge trapping layer. Both nano-islands are deposited using atomic layer deposition (ALD), however, the different sizes, distribution and properties of the materials result in different memory performance. The results show that at the 32-nm node charge trapping memory with 127 ZrO2 nano-islands can provide a 9.4 V memory window. However, with ZnO only 31 nano-islands can provide a window of 2.5 V. The results indicate that ZrO2 nano-islands are more promising than ZnO in scaled down devices due to their higher density, higher-k, and absence of quantum confinement effects.

  20. Lifetime-Based Memory Management for Distributed Data Processing Systems

    DEFF Research Database (Denmark)

    Lu, Lu; Shi, Xuanhua; Zhou, Yongluan

    2016-01-01

    create a large amount of long-living data objects in the heap, which may quickly saturate the garbage collector, especially when handling a large dataset, and hence would limit the scalability of the system. To eliminate this problem, we propose a lifetime-based memory management framework, which...... the garbage collection time by up to 99.9%, 2) to achieve up to 22.7x speed up in terms of execution time in cases without data spilling and 41.6x speedup in cases with data spilling, and 3) to consume up to 46.6% less memory.......In-memory caching of intermediate data and eager combining of data in shuffle buffers have been shown to be very effective in minimizing the re-computation and I/O cost in distributed data processing systems like Spark and Flink. However, it has also been widely reported that these techniques would...

  1. Object-based Encoding in Visual Working Memory: Evidence from Memory-driven Attentional Capture

    OpenAIRE

    Gao, Zaifeng; Yu, Shixian; Zhu, Chengfeng; Shui, Rende; Weng, Xuchu; Li, Peng; Shen, Mowei

    2016-01-01

    Visual working memory (VWM) adopts a specific manner of object-based encoding (OBE) to extract perceptual information: Whenever one feature-dimension is selected for entry into VWM, the others are also extracted. Currently most studies revealing OBE probed an ?irrelevant-change distracting effect?, where changes of irrelevant-features dramatically affected the performance of the target feature. However, the existence of irrelevant-feature change may affect participants? processing manner, lea...

  2. Towards Modeling False Memory With Computational Knowledge Bases.

    Science.gov (United States)

    Li, Justin; Kohanyi, Emma

    2017-01-01

    One challenge to creating realistic cognitive models of memory is the inability to account for the vast common-sense knowledge of human participants. Large computational knowledge bases such as WordNet and DBpedia may offer a solution to this problem but may pose other challenges. This paper explores some of these difficulties through a semantic network spreading activation model of the Deese-Roediger-McDermott false memory task. In three experiments, we show that these knowledge bases only capture a subset of human associations, while irrelevant information introduces noise and makes efficient modeling difficult. We conclude that the contents of these knowledge bases must be augmented and, more important, that the algorithms must be refined and optimized, before large knowledge bases can be widely used for cognitive modeling. Copyright © 2016 Cognitive Science Society, Inc.

  3. Expression of MEP Pathway Genes and Non-volatile Sequestration Are Associated with Circadian Rhythm of Dominant Terpenoids Emission in Osmanthus fragrans Lour. Flowers

    Directory of Open Access Journals (Sweden)

    Riru Zheng

    2017-10-01

    Full Text Available Osmanthus fragrans Lour. is one of the top 10 traditional ornamental flowers in China famous for its unique fragrance. Preliminary study proved that the terpenoids including ionone, linalool, and ocimene and their derivatives are the dominant aroma-active compounds that contribute greatly to the scent bouquet. Pollination observation implies the emission of aromatic terpenoids may follow a circadian rhythm. In this study, we investigated the variation of volatile terpenoids and its potential regulators. The results showed that both volatile and non-volatile terpenoids presented circadian oscillation with high emission or accumulation during the day and low emission or accumulation during the night. The volatile terpenoids always increased to reach their maximum values at 12:00 h, while free and glycosylated compounds continued increasing throughout the day. The depletion of non-volatile pool might provide the substrates for volatile emission at 0:00–6:00, suggesting the sequestration of non-volatile compounds acted like a buffer regulating emission of terpenoids. Further detection of MEP pathway genes demonstrated that their expressions increased significantly in parallel with the evident increase of both volatile and non-volatile terpenoids during the day, indicating that the gene expressions were also closely associated with terpenoid formation. Thus, the expression of MEP pathway genes and internal sequestration both played crucial roles in modulating circadian rhythm of terpenoid emission in O. fragrans.

  4. Thermoplastic shape-memory polyurethanes based on natural oils

    International Nuclear Information System (INIS)

    Saralegi, Ainara; Eceiza, Arantxa; Corcuera, Maria Angeles; Johan Foster, E; Weder, Christoph

    2014-01-01

    A new family of segmented thermoplastic polyurethanes with thermally activated shape-memory properties was synthesized and characterized. Polyols derived from castor oil with different molecular weights but similar chemical structures and a corn-sugar-based chain extender (propanediol) were used as starting materials in order to maximize the content of carbon from renewable resources in the new materials. The composition was systematically varied to establish a structure–property map and identify compositions with desirable shape-memory properties. The thermal characterization of the new polyurethanes revealed a microphase separated structure, where both the soft (by convention the high molecular weight diol) and the hard phases were highly crystalline. Cyclic thermo-mechanical tensile tests showed that these polymers are excellent candidates for use as thermally activated shape-memory polymers, in which the crystalline soft segments promote high shape fixity values (close to 100%) and the hard segment crystallites ensure high shape recovery values (80–100%, depending on the hard segment content). The high proportion of components from renewable resources used in the polyurethane formulation leads to the synthesis of bio-based polyurethanes with shape-memory properties. (paper)

  5. Creating a recollection-based memory through drawing.

    Science.gov (United States)

    Wammes, Jeffrey D; Meade, Melissa E; Fernandes, Myra A

    2018-05-01

    Drawing a picture of to-be-remembered information substantially boosts memory performance in free-recall tasks. In the current work, we sought to test the notion that drawing confers its benefit to memory performance by creating a detailed recollection of the encoding context. In Experiments 1 and 2, we demonstrated that for both pictures and words, items that were drawn by the participant at encoding were better recognized in a later test than were words that were written out. Moreover, participants' source memory (in this experiment, correct identification of whether the word was drawn or written) was superior for items drawn relative to written at encoding. In Experiments 3A and 3B, we used a remember-know paradigm to demonstrate again that drawn words were better recognized than written words, and further showed that this effect was driven by a greater proportion of recollection-, rather than familiarity-based responses. Lastly, in Experiment 4 we implemented a response deadline procedure, and showed that when recognition responses were speeded, thereby reducing participants' capacity for recollection, the benefit of drawing was substantially smaller. Taken together, our findings converge on the idea that drawing improves memory as a result of providing vivid contextual information which can be later called upon to aid retrieval. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Dimension-based attention in visual short-term memory.

    Science.gov (United States)

    Pilling, Michael; Barrett, Doug J K

    2016-07-01

    We investigated how dimension-based attention influences visual short-term memory (VSTM). This was done through examining the effects of cueing a feature dimension in two perceptual comparison tasks (change detection and sameness detection). In both tasks, a memory array and a test array consisting of a number of colored shapes were presented successively, interleaved by a blank interstimulus interval (ISI). In Experiment 1 (change detection), the critical event was a feature change in one item across the memory and test arrays. In Experiment 2 (sameness detection), the critical event was the absence of a feature change in one item across the two arrays. Auditory cues indicated the feature dimension (color or shape) of the critical event with 80 % validity; the cues were presented either prior to the memory array, during the ISI, or simultaneously with the test array. In Experiment 1, the cue validity influenced sensitivity only when the cue was given at the earliest position; in Experiment 2, the cue validity influenced sensitivity at all three cue positions. We attributed the greater effectiveness of top-down guidance by cues in the sameness detection task to the more active nature of the comparison process required to detect sameness events (Hyun, Woodman, Vogel, Hollingworth, & Luck, Journal of Experimental Psychology: Human Perception and Performance, 35; 1140-1160, 2009).

  7. Strategies To Enhance Memory Based on Brain-Research.

    Science.gov (United States)

    Banikowski, Alison K.; Mehring, Teresa A.

    1999-01-01

    This article reviews the literature on three aspects of memory: (1) an information processing model of memory (including the sensory register, attention, short-term memory, and long-term memory); (2) instructional strategies designed to enhance memory (which stress gaining students' attention and active involvement); and (3) reasons why…

  8. Atomic crystals resistive switching memory

    International Nuclear Information System (INIS)

    Liu Chunsen; Zhang David Wei; Zhou Peng

    2017-01-01

    Facing the growing data storage and computing demands, a high accessing speed memory with low power and non-volatile character is urgently needed. Resistive access random memory with 4F 2 cell size, switching in sub-nanosecond, cycling endurances of over 10 12 cycles, and information retention exceeding 10 years, is considered as promising next-generation non-volatile memory. However, the energy per bit is still too high to compete against static random access memory and dynamic random access memory. The sneak leakage path and metal film sheet resistance issues hinder the further scaling down. The variation of resistance between different devices and even various cycles in the same device, hold resistive access random memory back from commercialization. The emerging of atomic crystals, possessing fine interface without dangling bonds in low dimension, can provide atomic level solutions for the obsessional issues. Moreover, the unique properties of atomic crystals also enable new type resistive switching memories, which provide a brand-new direction for the resistive access random memory. (topical reviews)

  9. Fast-Responding Bio-Based Shape Memory Thermoplastic Polyurethanes.

    Science.gov (United States)

    Petrović, Zoran S; Milić, Jelena; Zhang, Fan; Ilavsky, Jan

    2017-07-14

    Novel fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol for the first time. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate of the soft segment gives these polyurethanes unique properties suitable for shape-memory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. These materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.

  10. Memory

    OpenAIRE

    Wager, Nadia

    2017-01-01

    This chapter will explore a response to traumatic victimisation which has divided the opinions of psychologists at an exponential rate. We will be examining amnesia for memories of childhood sexual abuse and the potential to recover these memories in adulthood. Whilst this phenomenon is generally accepted in clinical circles, it is seen as highly contentious amongst research psychologists, particularly experimental cognitive psychologists. The chapter will begin with a real case study of a wo...

  11. Organic electronic memory based on a ferroelectric polymer

    Energy Technology Data Exchange (ETDEWEB)

    Kalbitz, R; Fruebing, P; Gerhard, R [Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str., 24-25, 14476 Potsdam (Germany); Taylor, D M, E-mail: d.m.taylor@bangor.ac.uk [School of Electronic Engineering, Bangor University, Dean Street, Bangor, Gwynedd LL57 1UT (United Kingdom)

    2011-06-23

    Measurements of the capacitance of metal-insulator-semiconductor capacitors and the output characteristics of thin film transistors based on poly(3-hexylthiophene) as the active semiconductor and poly(vinylidenefluoride-trifluoroethylene) as the gate insulator show that ferroelectric polarisation in the insulator is stable but that its effect when poled by depletion voltages is partially neutralised by trapping of electrons at or near the semiconductor interface. Nevertheless, the combination of materials is capable of providing an adequate memory function.

  12. My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys

    Science.gov (United States)

    Miyazaki, Shuichi

    2017-12-01

    The present author has been studying shape memory alloys including Cu-Al-Ni, Ti-Ni-based, and Ni-free Ti-based alloys since 1979. This paper reviews the present author's research results for the latter two materials since 1981. The topics on the Ti-Ni-based alloys include the achievement of superelasticity in Ti-Ni alloys through understanding of the role of microstructures consisting of dislocations and precipitates, followed by the contribution to the development of application market of shape memory effect and superelasticity, characterization of the R-phase and monoclinic martensitic transformations, clarification of the basic characteristics of fatigue properties, development of sputter-deposited shape memory thin films and fabrication of prototypes of microactuators utilizing thin films, development of high temperature shape memory alloys, and so on. The topics of Ni-free Ti-based shape memory alloys include the characterization of the orthorhombic phase martensitic transformation and related shape memory effect and superelasticity, the effects of texture, omega phase and adding elements on the martensitic transformation and shape memory properties, clarification of the unique effects of oxygen addition to induce non-linear large elasticity, Invar effect and heating-induced martensitic transformation, and so on.

  13. Recent trends in hardware security exploiting hybrid CMOS-resistive memory circuits

    Science.gov (United States)

    Sahay, Shubham; Suri, Manan

    2017-12-01

    This paper provides a comprehensive review and insight of recent trends in the field of random number generator (RNG) and physically unclonable function (PUF) circuits implemented using different types of emerging resistive non-volatile (NVM) memory devices. We present a detailed review of hybrid RNG/PUF implementations based on the use of (i) Spin-Transfer Torque (STT-MRAM), and (ii) metal-oxide based (OxRAM), NVM devices. Various approaches on Hybrid CMOS-NVM RNG/PUF circuits are considered, followed by a discussion on different nanoscale device phenomena. Certain nanoscale device phenomena (variability/stochasticity etc), which are otherwise undesirable for reliable memory and storage applications, form the basis for low power and highly scalable RNG/PUF circuits. Detailed qualitative comparison and benchmarking of all implementations is performed.

  14. Cortical dynamics of visual change detection based on sensory memory.

    Science.gov (United States)

    Urakawa, Tomokazu; Inui, Koji; Yamashiro, Koya; Tanaka, Emi; Kakigi, Ryusuke

    2010-08-01

    Detecting a visual change was suggested to relate closely to the visual sensory memory formed by visual stimuli before the occurrence of the change, because change detection involves identifying a difference between ongoing and preceding sensory conditions. Previous neuroimaging studies showed that an abrupt visual change activates the middle occipital gyrus (MOG). However, it still remains to be elucidated whether the MOG is related to visual change detection based on sensory memory. Here we tried to settle this issue using a new method of stimulation with blue and red LEDs to emphasize a memory-based change detection process. There were two stimuli, a standard trial stimulus and a deviant trial stimulus. The former was a red light lasting 500 ms, and the latter was a red light lasting 250 ms immediately followed by a blue light lasting 250 ms. Effects of the trial-trial interval, 250 approximately 2000 ms, were investigated to know how cortical responses to the abrupt change (from red to blue) were affected by preceding conditions. The brain response to the deviant trial stimulus was recorded by magnetoencephalography. Results of a multi-dipole analysis showed that the activity in the MOG, peaking at around 150 ms after the change onset, decreased in amplitude as the interval increased, but the earlier activity in BA 17/18 was not affected by the interval. These results suggested that the MOG is an important cortical area relating to the sensory memory-based visual change-detecting system. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Scaling Techniques for Massive Scale-Free Graphs in Distributed (External) Memory

    KAUST Repository

    Pearce, Roger; Gokhale, Maya; Amato, Nancy M.

    2013-01-01

    We present techniques to process large scale-free graphs in distributed memory. Our aim is to scale to trillions of edges, and our research is targeted at leadership class supercomputers and clusters with local non-volatile memory, e.g., NAND Flash

  16. Single-Walled Carbon-Nanotubes-Based Organic Memory Structures

    Directory of Open Access Journals (Sweden)

    Sundes Fakher

    2016-09-01

    Full Text Available The electrical behaviour of organic memory structures, based on single-walled carbon-nanotubes (SWCNTs, metal–insulator–semiconductor (MIS and thin film transistor (TFT structures, using poly(methyl methacrylate (PMMA as the gate dielectric, are reported. The drain and source electrodes were fabricated by evaporating 50 nm gold, and the gate electrode was made from 50 nm-evaporated aluminium on a clean glass substrate. Thin films of SWCNTs, embedded within the insulating layer, were used as the floating gate. SWCNTs-based memory devices exhibited clear hysteresis in their electrical characteristics (capacitance–voltage (C–V for MIS structures, as well as output and transfer characteristics for transistors. Both structures were shown to produce reliable and large memory windows by virtue of high capacity and reduced charge leakage. The hysteresis in the output and transfer characteristics, the shifts in the threshold voltage of the transfer characteristics, and the flat-band voltage shift in the MIS structures were attributed to the charging and discharging of the SWCNTs floating gate. Under an appropriate gate bias (1 s pulses, the floating gate is charged and discharged, resulting in significant threshold voltage shifts. Pulses as low as 1 V resulted in clear write and erase states.

  17. Suppressing my memories by listening to yours: The effect of socially triggered context-based prediction error on memory.

    Science.gov (United States)

    Vlasceanu, Madalina; Drach, Rae; Coman, Alin

    2018-05-03

    The mind is a prediction machine. In most situations, it has expectations as to what might happen. But when predictions are invalidated by experience (i.e., prediction errors), the memories that generate these predictions are suppressed. Here, we explore the effect of prediction error on listeners' memories following social interaction. We find that listening to a speaker recounting experiences similar to one's own triggers prediction errors on the part of the listener that lead to the suppression of her memories. This effect, we show, is sensitive to a perspective-taking manipulation, such that individuals who are instructed to take the perspective of the speaker experience memory suppression, whereas individuals who undergo a low-perspective-taking manipulation fail to show a mnemonic suppression effect. We discuss the relevance of these findings for our understanding of the bidirectional influences between cognition and social contexts, as well as for the real-world situations that involve memory-based predictions.

  18. Memory window engineering of Ta2O5-x oxide-based resistive switches via incorporation of various insulating frames

    Science.gov (United States)

    Lee, Ah Rahm; Baek, Gwang Ho; Kim, Tae Yoon; Ko, Won Bae; Yang, Seung Mo; Kim, Jongmin; Im, Hyun Sik; Hong, Jin Pyo

    2016-07-01

    Three-dimensional (3D) stackable memory frames, including nano-scaled crossbar arrays, are one of the most reliable building blocks to meet the demand of high-density non-volatile memory electronics. However, their utilization has the disadvantage of introducing issues related to sneak paths, which can negatively impact device performance. We address the enhancement of complementary resistive switching (CRS) features via the incorporation of insulating frames as a generic approach to extend their use; here, a Pt/Ta2O5-x/Ta/Ta2O5-x/Pt frame is chosen as the basic CRS cell. The incorporation of Ta/Ta2O5-x/Ta or Pt/amorphous TaN/Pt insulting frames into the basic CRS cell ensures the appreciably advanced memory features of CRS cells including higher on/off ratios, improved read margins, and increased selectivity without reliability degradation. Experimental observations identified that a suitable insulating frame is crucial for adjusting the abrupt reset events of the switching element, thereby facilitating the enhanced electrical characteristics of CRS cells that are suitable for practical applications.

  19. Changes in non-volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying.

    Science.gov (United States)

    Pei, Fei; Shi, Ying; Gao, Xingyang; Wu, Fangning; Mariga, Alfred Mugambi; Yang, Wenjian; Zhao, Liyan; An, Xinxin; Xin, Zhihong; Yang, Fangmei; Hu, Qiuhui

    2014-12-15

    Button mushroom slices were dehydrated using freeze drying (FD) or FD combined with microwave vacuum drying (FMVD), and the non-volatile component profiles were studied. The results showed that the level of non-volatile components in button mushroom firstly increased during sublimation of FD/FMVD process and then fell during desorption in FD process and MVD in FMVD process. Compared to FD products, the contents of soluble sugars and polyols in FMVD products were relatively low, whereas the contents of total free amino acids were significantly higher, close to the level of fresh mushroom. However, there was no significant difference in the contents of 5'-nucleotides and organic acids between FD and FMVD products. The equivalent umami concentration (EUC) values for FD and FMVD products did not differ from fresh, indicating that both drying methods could effectively preserve MSG (monosodium glutamate)-like components in button mushroom. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The effect of visual salience on memory-based choices.

    Science.gov (United States)

    Pooresmaeili, Arezoo; Bach, Dominik R; Dolan, Raymond J

    2014-02-01

    Deciding whether a stimulus is the "same" or "different" from a previous presented one involves integrating among the incoming sensory information, working memory, and perceptual decision making. Visual selective attention plays a crucial role in selecting the relevant information that informs a subsequent course of action. Previous studies have mainly investigated the role of visual attention during the encoding phase of working memory tasks. In this study, we investigate whether manipulation of bottom-up attention by changing stimulus visual salience impacts on later stages of memory-based decisions. In two experiments, we asked subjects to identify whether a stimulus had either the same or a different feature to that of a memorized sample. We manipulated visual salience of the test stimuli by varying a task-irrelevant feature contrast. Subjects chose a visually salient item more often when they looked for matching features and less often so when they looked for a nonmatch. This pattern of results indicates that salient items are more likely to be identified as a match. We interpret the findings in terms of capacity limitations at a comparison stage where a visually salient item is more likely to exhaust resources leading it to be prematurely parsed as a match.

  1. Prion-based memory of heat stress in yeast.

    Science.gov (United States)

    Chernova, Tatiana A; Chernoff, Yury O; Wilkinson, Keith D

    2017-05-04

    Amyloids and amyloid-based prions are self-perpetuating protein aggregates which can spread by converting a normal protein of the same sequence into a prion form. They are associated with diseases in humans and mammals, and control heritable traits in yeast and other fungi. Some amyloids are implicated in biologically beneficial processes. As prion formation generates reproducible memory of a conformational change, prions can be considered as molecular memory devices.  We have demonstrated that in yeast, stress-inducible cytoskeleton-associated protein Lsb2 forms a metastable prion in response to high temperature. This prion promotes conversion of other proteins into prions and can persist in a fraction of cells for a significant number of cell generations after stress, thus maintaining the memory of stress in a population of surviving cells. Acquisition of an amino acid substitution required for Lsb2 to form a prion coincides with acquisition of increased thermotolerance in the evolution of Saccharomyces yeast. Thus the ability to form an Lsb2 prion in response to stress coincides with yeast adaptation to growth at higher temperatures. These findings intimately connect prion formation to the cellular response to environmental stresses.

  2. A Scalable Unsegmented Multiport Memory for FPGA-Based Systems

    Directory of Open Access Journals (Sweden)

    Kevin R. Townsend

    2015-01-01

    Full Text Available On-chip multiport memory cores are crucial primitives for many modern high-performance reconfigurable architectures and multicore systems. Previous approaches for scaling memory cores come at the cost of operating frequency, communication overhead, and logic resources without increasing the storage capacity of the memory. In this paper, we present two approaches for designing multiport memory cores that are suitable for reconfigurable accelerators with substantial on-chip memory or complex communication. Our design approaches tackle these challenges by banking RAM blocks and utilizing interconnect networks which allows scaling without sacrificing logic resources. With banking, memory congestion is unavoidable and we evaluate our multiport memory cores under different memory access patterns to gain insights about different design trade-offs. We demonstrate our implementation with up to 256 memory ports using a Xilinx Virtex-7 FPGA. Our experimental results report high throughput memories with resource usage that scales with the number of ports.

  3. Organic ferroelectric/semiconducting nanowire hybrid layer for memory storage

    NARCIS (Netherlands)

    Cai, R.; Kassa, H.G.; Haouari, R.; Marrani, A.; Geerts, Y.H.; Ruzié, C.; Breemen, A.J.J.M. van; Gelinck, G.H.; Nysten, B.; Hu, Z.; Jonas, A.M.

    2016-01-01

    Ferroelectric materials are important components of sensors, actuators and non-volatile memories. However, possible device configurations are limited due to the need to provide screening charges to ferroelectric interfaces to avoid depolarization. Here we show that, by alternating ferroelectric and

  4. Memories.

    Science.gov (United States)

    Brand, Judith, Ed.

    1998-01-01

    This theme issue of the journal "Exploring" covers the topic of "memories" and describes an exhibition at San Francisco's Exploratorium that ran from May 22, 1998 through January 1999 and that contained over 40 hands-on exhibits, demonstrations, artworks, images, sounds, smells, and tastes that demonstrated and depicted the biological,…

  5. Reducing the influence of STI on SONOS memory through optimizing added boron implantation technology

    International Nuclear Information System (INIS)

    Xu Yue; Yan Feng; Li Zhiguo; Yang Fan; Wang Yonggang; Chang Jianguang

    2010-01-01

    The influence of shallow trench isolation (STI) on a 90 nm polysilicon-oxide-nitride-oxide-silicon structure non-volatile memory has been studied based on experiments. It has been found that the performance of edge memory cells adjacent to STI deteriorates remarkably. The compressive stress and boron segregation induced by STI are thought to be the main causes of this problem. In order to mitigate the STI impact, an added boron implantation in the STI region is developed as a new solution. Four kinds of boron implantation experiments have been implemented to evaluate the impact of STI on edge cells, respectively. The experimental results show that the performance of edge cells can be greatly improved through optimizing added boron implantation technology. (semiconductor devices)

  6. Generation-based memory synchronization in a multiprocessor system with weakly consistent memory accesses

    Energy Technology Data Exchange (ETDEWEB)

    Ohmacht, Martin

    2017-08-15

    In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.

  7. Generation-based memory synchronization in a multiprocessor system with weakly consistent memory accesses

    Science.gov (United States)

    Ohmacht, Martin

    2014-09-09

    In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.

  8. TiAu based shape memory alloys for high temperature applications

    International Nuclear Information System (INIS)

    Wadood, Abdul; Yamabe-Mitarai, Yoko; Hosoda, Hideki

    2014-01-01

    TiAu (equiatomic) exhibits phase transformaion from B2 (ordered bcc) to thermo-elastic orthorhombic B19 martensite at about 875K and thus TiAu is categorized as high temperature shape memory alloy. In this study, recent research and developments related to TiAu based high temperature shape memory alloys will be discussed in the Introduction part. Then some results of our research group related to strengthening of TiAu based high temperature shape memory alloys will be presented. Potential of TiAu based shape memory alloys for high temperature shape memory materials applications will also be discussed

  9. Individual differences in event-based prospective memory: Evidence for multiple processes supporting cue detection.

    Science.gov (United States)

    Brewer, Gene A; Knight, Justin B; Marsh, Richard L; Unsworth, Nash

    2010-04-01

    The multiprocess view proposes that different processes can be used to detect event-based prospective memory cues, depending in part on the specificity of the cue. According to this theory, attentional processes are not necessary to detect focal cues, whereas detection of nonfocal cues requires some form of controlled attention. This notion was tested using a design in which we compared performance on a focal and on a nonfocal prospective memory task by participants with high or low working memory capacity. An interaction was found, such that participants with high and low working memory performed equally well on the focal task, whereas the participants with high working memory performed significantly better on the nonfocal task than did their counterparts with low working memory. Thus, controlled attention was only necessary for detecting event-based prospective memory cues in the nonfocal task. These results have implications for theories of prospective memory, the processes necessary for cue detection, and the successful fulfillment of intentions.

  10. An UV photochromic memory effect in proton-based WO3 electrochromic devices

    International Nuclear Information System (INIS)

    Zhang Yong; Lee, S.-H.; Mascarenhas, A.; Deb, S. K.

    2008-01-01

    We report an UV photochromic memory effect on a standard proton-based WO 3 electrochromic device. It exhibits two memory states, associated with the colored and bleached states of the device, respectively. Such an effect can be used to enhance device performance (increasing the dynamic range), re-energize commercial electrochromic devices, and develop memory devices

  11. An UV photochromic memory effect in proton-based WO3 electrochromic devices

    Science.gov (United States)

    Zhang, Yong; Lee, S.-H.; Mascarenhas, A.; Deb, S. K.

    2008-11-01

    We report an UV photochromic memory effect on a standard proton-based WO3 electrochromic device. It exhibits two memory states, associated with the colored and bleached states of the device, respectively. Such an effect can be used to enhance device performance (increasing the dynamic range), re-energize commercial electrochromic devices, and develop memory devices.

  12. Spike-based population coding and working memory.

    Directory of Open Access Journals (Sweden)

    Martin Boerlin

    2011-02-01

    Full Text Available Compelling behavioral evidence suggests that humans can make optimal decisions despite the uncertainty inherent in perceptual or motor tasks. A key question in neuroscience is how populations of spiking neurons can implement such probabilistic computations. In this article, we develop a comprehensive framework for optimal, spike-based sensory integration and working memory in a dynamic environment. We propose that probability distributions are inferred spike-per-spike in recurrently connected networks of integrate-and-fire neurons. As a result, these networks can combine sensory cues optimally, track the state of a time-varying stimulus and memorize accumulated evidence over periods much longer than the time constant of single neurons. Importantly, we propose that population responses and persistent working memory states represent entire probability distributions and not only single stimulus values. These memories are reflected by sustained, asynchronous patterns of activity which make relevant information available to downstream neurons within their short time window of integration. Model neurons act as predictive encoders, only firing spikes which account for new information that has not yet been signaled. Thus, spike times signal deterministically a prediction error, contrary to rate codes in which spike times are considered to be random samples of an underlying firing rate. As a consequence of this coding scheme, a multitude of spike patterns can reliably encode the same information. This results in weakly correlated, Poisson-like spike trains that are sensitive to initial conditions but robust to even high levels of external neural noise. This spike train variability reproduces the one observed in cortical sensory spike trains, but cannot be equated to noise. On the contrary, it is a consequence of optimal spike-based inference. In contrast, we show that rate-based models perform poorly when implemented with stochastically spiking neurons.

  13. PLS-based memory control scheme for enhanced process monitoring

    KAUST Repository

    Harrou, Fouzi

    2017-01-20

    Fault detection is important for safe operation of various modern engineering systems. Partial least square (PLS) has been widely used in monitoring highly correlated process variables. Conventional PLS-based methods, nevertheless, often fail to detect incipient faults. In this paper, we develop new PLS-based monitoring chart, combining PLS with multivariate memory control chart, the multivariate exponentially weighted moving average (MEWMA) monitoring chart. The MEWMA are sensitive to incipient faults in the process mean, which significantly improves the performance of PLS methods and widen their applicability in practice. Using simulated distillation column data, we demonstrate that the proposed PLS-based MEWMA control chart is more effective in detecting incipient fault in the mean of the multivariate process variables, and outperform the conventional PLS-based monitoring charts.

  14. A memory-based model of posttraumatic stress disorder

    DEFF Research Database (Denmark)

    Rubin, David C.; Berntsen, Dorthe; Johansen, Marlene Klindt

    2008-01-01

    In the mnemonic model of posttraumatic stress disorder (PTSD), the current memory of a negative event, not the event itself, determines symptoms. The model is an alternative to the current event-based etiology of PTSD represented in the Diagnostic and Statistical Manual of Mental Disorders (4th ed......., text rev.; American Psychiatric Association, 2000). The model accounts for important and reliable findings that are often inconsistent with the current diagnostic view and that have been neglected by theoretical accounts of the disorder, including the following observations. The diagnosis needs...

  15. Content-addressable memory based enforcement of configurable policies

    Science.gov (United States)

    Berg, Michael J

    2014-05-06

    A monitoring device for monitoring transactions on a bus includes content-addressable memory ("CAM") and a response policy unit. The CAM includes an input coupled to receive a bus transaction tag based on bus traffic on the bus. The CAM stores data tags associated with rules of a security policy to compare the bus transaction tag to the data tags. The CAM generates an output signal indicating whether one or more matches occurred. The response policy unit is coupled to the CAM to receive the output signal from the CAM and to execute a policy action in response to the output signal.

  16. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions

    KAUST Repository

    Huang, Yi-Jen; Chao, Shih-Chun; Lien, Der-Hsien; Wen, Cheng-Yen; He, Jr-Hau; Lee, Si-Chen

    2016-01-01

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we

  17. Cognitive load and task condition in event- and time-based prospective memory: an experimental investigation.

    Science.gov (United States)

    Khan, Azizuddin; Sharma, Narendra K; Dixit, Shikha

    2008-09-01

    Prospective memory is memory for the realization of delayed intention. Researchers distinguish 2 kinds of prospective memory: event- and time-based (G. O. Einstein & M. A. McDaniel, 1990). Taking that distinction into account, the present authors explored participants' comparative performance under event- and time-based tasks. In an experimental study of 80 participants, the authors investigated the roles of cognitive load and task condition in prospective memory. Cognitive load (low vs. high) and task condition (event- vs. time-based task) were the independent variables. Accuracy in prospective memory was the dependent variable. Results showed significant differential effects under event- and time-based tasks. However, the effect of cognitive load was more detrimental in time-based prospective memory. Results also revealed that time monitoring is critical in successful performance of time estimation and so in time-based prospective memory. Similarly, participants' better performance on the event-based prospective memory task showed that they acted on the basis of environment cues. Event-based prospective memory was environmentally cued; time-based prospective memory required self-initiation.

  18. Hardware emulation of Memristor based Ternary Content Addressable Memory

    KAUST Repository

    Bahloul, Mohamed A.

    2017-12-13

    MTCAM (Memristor Ternary Content Addressable Memory) is a special purpose storage medium in which data could be retrieved based on the stored content. Using Memristors as the main storage element provides the potential of achieving higher density and more efficient solutions than conventional methods. A key missing item in the validation of such approaches is the wide spread availability of hardware emulation platforms that can provide reliable and repeatable performance statistics. In this paper, we present a hardware MTCAM emulation based on 2-Transistors-2Memristors (2T2M) bit-cell. It builds on a bipolar memristor model with storing and fetching capabilities based on the actual current-voltage behaviour. The proposed design offers a flexible verification environment with quick design revisions, high execution speeds and powerful debugging techniques. The proposed design is modeled using VHDL and prototyped on Xilinx Virtex® FPGA.

  19. A digital memories based user authentication scheme with privacy preservation.

    Directory of Open Access Journals (Sweden)

    JunLiang Liu

    Full Text Available The traditional username/password or PIN based authentication scheme, which still remains the most popular form of authentication, has been proved insecure, unmemorable and vulnerable to guessing, dictionary attack, key-logger, shoulder-surfing and social engineering. Based on this, a large number of new alternative methods have recently been proposed. However, most of them rely on users being able to accurately recall complex and unmemorable information or using extra hardware (such as a USB Key, which makes authentication more difficult and confusing. In this paper, we propose a Digital Memories based user authentication scheme adopting homomorphic encryption and a public key encryption design which can protect users' privacy effectively, prevent tracking and provide multi-level security in an Internet & IoT environment. Also, we prove the superior reliability and security of our scheme compared to other schemes and present a performance analysis and promising evaluation results.

  20. Hardware emulation of Memristor based Ternary Content Addressable Memory

    KAUST Repository

    Bahloul, Mohamed A.; Naous, Rawan; Masmoudi, M.

    2017-01-01

    MTCAM (Memristor Ternary Content Addressable Memory) is a special purpose storage medium in which data could be retrieved based on the stored content. Using Memristors as the main storage element provides the potential of achieving higher density and more efficient solutions than conventional methods. A key missing item in the validation of such approaches is the wide spread availability of hardware emulation platforms that can provide reliable and repeatable performance statistics. In this paper, we present a hardware MTCAM emulation based on 2-Transistors-2Memristors (2T2M) bit-cell. It builds on a bipolar memristor model with storing and fetching capabilities based on the actual current-voltage behaviour. The proposed design offers a flexible verification environment with quick design revisions, high execution speeds and powerful debugging techniques. The proposed design is modeled using VHDL and prototyped on Xilinx Virtex® FPGA.

  1. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics

    Science.gov (United States)

    Goswami, Sreetosh; Matula, Adam J.; Rath, Santi P.; Hedström, Svante; Saha, Surajit; Annamalai, Meenakshi; Sengupta, Debabrata; Patra, Abhijeet; Ghosh, Siddhartha; Jani, Hariom; Sarkar, Soumya; Motapothula, Mallikarjuna Rao; Nijhuis, Christian A.; Martin, Jens; Goswami, Sreebrata; Batista, Victor S.; Venkatesan, T.

    2017-12-01

    Non-volatile memories will play a decisive role in the next generation of digital technology. Flash memories are currently the key player in the field, yet they fail to meet the commercial demands of scalability and endurance. Resistive memory devices, and in particular memories based on low-cost, solution-processable and chemically tunable organic materials, are promising alternatives explored by the industry. However, to date, they have been lacking the performance and mechanistic understanding required for commercial translation. Here we report a resistive memory device based on a spin-coated active layer of a transition-metal complex, which shows high reproducibility (~350 devices), fast switching (106 s) and scalability (down to ~60 nm2). In situ Raman and ultraviolet-visible spectroscopy alongside spectroelectrochemistry and quantum chemical calculations demonstrate that the redox state of the ligands determines the switching states of the device whereas the counterions control the hysteresis. This insight may accelerate the technological deployment of organic resistive memories.

  2. Adult age differences in perceptually based, but not conceptually based implicit tests of memory.

    Science.gov (United States)

    Small, B J; Hultsch, D F; Masson, M E

    1995-05-01

    Implicit tests of memory assess the influence of recent experience without requiring awareness of remembering. Evidence concerning age differences on implicit tests of memory suggests small age differences in favor of younger adults. However, the majority of research examining this issue has relied upon perceptually based implicit tests. Recently, a second type of implicit test, one that relies upon conceptually based processes, has been identified. The pattern of age differences on this second type of implicit test is less clear. In the present study, we examined the pattern of age differences on one conceptually based (fact completion) and one perceptually based (stem completion) implicit test of memory, as well as two explicit tests of memory (fact and word recall). Tasks were administered to 403 adults from three age groups (19-34 years, 58-73 years, 74-89 years). Significant age differences in favor of the young were found on stem completion but not fact completion. Age differences were present for both word and fast recall. Correlational analyses examining the relationship of memory performance to other cognitive variables indicated that the implicit tests were supported by different components than the explicit tests, as well as being different from each other.

  3. Fabrication of Nano-Crossbar Resistive Switching Memory Based on the Copper-Tantalum Pentoxide-Platinum Device Structure

    Science.gov (United States)

    Olga Gneri, Paula; Jardim, Marcos

    Resistive switching memory has been of interest lately not only for its simple metal-insulator-metal (MIM) structure but also for its promising ease of scalability an integration into current CMOS technologies like the Field Programmable Gate Arrays and other non-volatile memory applications. There are several resistive switching MIM combinations but under this scope of research, attention will be paid to the bipolar resistive switching characteristics and fabrication of Tantalum Pentaoxide sandwiched between platinum and copper. By changing the polarity of the voltage bias, this metal-insulator-metal (MIM) device can be switched between a high resistive state (OFF) and low resistive state (ON). The change in states is induced by an electrochemical metallization process, which causes a formation or dissolution of Cu metal filamentary paths in the Tantalum Pentaoxide insulator. There is very little thorough experimental information about the Cu-Ta 2O5-Pt switching characteristics when scaled to nanometer dimensions. In this light, the MIM structure was fabricated in a two-dimensional crossbar format. Also, with the limited available resources, a multi-spacer technique was formulated to localize the active device area in this MIM configuration to less than 20nm. This step is important in understanding the switching characteristics and reliability of this structure when scaled to nanometer dimensions.

  4. Shape memory-based tunable resistivity of polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongsheng, E-mail: hongshengluo@163.com [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Zhou, Xingdong; Ma, Yuanyuan [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Yi, Guobin, E-mail: ygb116@163.com [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Cheng, Xiaoling [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Zhu, Yong [Shanghai Hiend Polyurethane Inc., No. 389, Jinshan District, Shanghai (China); Zu, Xihong; Zhang, Nanjun; Huang, Binghao; Yu, Lifang [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-02-15

    Graphical abstract: Hybrid nanofillers of the CNTs and AgNPs were embedded into a shape memory polyurethane. The composites exhibited tunable conduction, which could be facially tailored by the compositions and the thermal–mechanical programming. - Highlights: • Electrically conductive polymer composites in bi-layer structure were fabricated. • The CNTs/AgNPs layer had influence on the mechanics and thermal transitions. • The conductivity could be facially tailored via a thermo-mechanical programming. • The AgNPs contents enlarged the gauge factor of the resistivity–strain curves. • Tunneling theory was suitable for simulating the strain-dependent behaviors. - Abstract: A conductive composite in bi-layer structure was fabricated by embedding hybrid nanofillers, namely carbon nanotubes (CNTs) and silver nanoparticles (AgNPs), into a shape memory polyurethane (SMPU). The CNT/AgNP-SMPU composites exhibited a novel tunable conductivity which could be facially tailored in wide range via the compositions or a specifically designed thermo-mechanical shape memory programming. The morphologies of the conductive fillers and the composites were investigated by scanning electron microscope (SEM). The mechanical and thermal measurements were performed by tensile tests and differential scanning calorimetry (DSC). By virtue of a specifically explored shape memory programming, the composites were stretched and fixed into different temporary states. The electrical resistivity (R{sub s}) varied accordingly, which was able to be stabilized along with the shape fixing. Theoretical prediction based upon the tunneling model was performed. The R{sub s}–strain curves of the composites with different compositions were well fitted. Furthermore, the relative resistivity and the Gauge factor along with the elongation were calculated. The influence of the compositions on the strain-dependent R{sub s} was disclosed. The findings provided a new avenue to tailor the conductivity

  5. Community-based memorials to September 11, 2001: environmental stewardship as memory work

    Science.gov (United States)

    Erika S. Svendsen; Lindsay K. Campbell

    2014-01-01

    This chapter investigates how people use trees, parks, gardens, and other natural resources as raw materials in and settings for memorials to September 11, 2001. In particular, we focus on 'found space living memorials', which we define as sites that are community-managed, re-appropriated from their prior use, often carved out of the public right-of-way, and...

  6. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    Science.gov (United States)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  7. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    International Nuclear Information System (INIS)

    Krishnan, V.B.; Singh, J.D.; Woodruff, T.R.; Vaidyanathan, R.; Notardonato, W.U.

    2004-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed

  8. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.

    Science.gov (United States)

    Yang, Shengxiang

    2008-01-01

    In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.

  9. Qualitative Characteristics of Memories for Real, Imagined, and Media-Based Events

    Science.gov (United States)

    Gordon, Ruthanna; Gerrig, Richard J.; Franklin, Nancy

    2009-01-01

    People's memories must be able to represent experiences with multiple types of origins--including the real world and our own imaginations, but also printed texts (prose-based media), movies, and television (screen-based media). This study was intended to identify cues that distinguish prose- and screen-based media memories from each other, as well…

  10. Implementation of digital equality comparator circuit on memristive memory crossbar array using material implication logic

    Science.gov (United States)

    Haron, Adib; Mahdzair, Fazren; Luqman, Anas; Osman, Nazmie; Junid, Syed Abdul Mutalib Al

    2018-03-01

    One of the most significant constraints of Von Neumann architecture is the limited bandwidth between memory and processor. The cost to move data back and forth between memory and processor is considerably higher than the computation in the processor itself. This architecture significantly impacts the Big Data and data-intensive application such as DNA analysis comparison which spend most of the processing time to move data. Recently, the in-memory processing concept was proposed, which is based on the capability to perform the logic operation on the physical memory structure using a crossbar topology and non-volatile resistive-switching memristor technology. This paper proposes a scheme to map digital equality comparator circuit on memristive memory crossbar array. The 2-bit, 4-bit, 8-bit, 16-bit, 32-bit, and 64-bit of equality comparator circuit are mapped on memristive memory crossbar array by using material implication logic in a sequential and parallel method. The simulation results show that, for the 64-bit word size, the parallel mapping exhibits 2.8× better performance in total execution time than sequential mapping but has a trade-off in terms of energy consumption and area utilization. Meanwhile, the total crossbar area can be reduced by 1.2× for sequential mapping and 1.5× for parallel mapping both by using the overlapping technique.

  11. [Prospective memory - concepts, methods of assessment, neuroanatomical bases and its deficits in mental disorders].

    Science.gov (United States)

    Wiłkość, Monika; Izdebski, Paweł; Zajac-Lamparska, Ludmiła

    2013-01-01

    In the last two decades of the last century there has been a shift in the studies on memory. In psychology of memory the criticism of the laboratory approach resulted in development of the ecological approach. One of the effects of this change was to initiate researches on memory that includes plans for the future, which has resulted in the distinction of the concept of prospective memory. Prospective memory is used in many aspects of everyday life. It deals with remembering intentions and plans, it is connected with remembering about specific task or activity in the future. There are three types of PM: event-based prospective memory, time-based prospective memory and activity-based prospective memory. Current research in this field have already established its own paradigm and tools measuring PM and there is still increasing scientific interest in this issue. Prospective memory assessment may be carried out in various ways. Among them, the most frequently used are: a) questionnaires, b) psychological tests, c) experimental procedures. Within the latter, the additional distinction can be introduced for: the experiments conducted under natural conditions and the laboratory procedures. In Polish literature, there are only a few articles on PM. The aim of this work is to review studies on assessment methods of PM. Its neuroanatomical bases and its functioning in different mental disorders are analyzed. The work is aimed to focus clinicians attention on prospective memory as an area which is important for complex diagnosis of cognitive processes.

  12. Nonvolatile Memory Technology for Space Applications

    Science.gov (United States)

    Oldham, Timothy R.; Irom, Farokh; Friendlich, Mark; Nguyen, Duc; Kim, Hak; Berg, Melanie; LaBel, Kenneth A.

    2010-01-01

    This slide presentation reviews several forms of nonvolatile memory for use in space applications. The intent is to: (1) Determine inherent radiation tolerance and sensitivities, (2) Identify challenges for future radiation hardening efforts, (3) Investigate new failure modes and effects, and technology modeling programs. Testing includes total dose, single event (proton, laser, heavy ion), and proton damage (where appropriate). Test vehicles are expected to be a variety of non-volatile memory devices as available including Flash (NAND and NOR), Charge Trap, Nanocrystal Flash, Magnetic Memory (MRAM), Phase Change--Chalcogenide, (CRAM), Ferroelectric (FRAM), CNT, and Resistive RAM.

  13. Factors influencing shape memory effect and phase transformation behaviour of Fe-Mn-Si based shape memory alloys

    International Nuclear Information System (INIS)

    Li, H.; Dunne, D.; Kennon, N.

    1999-01-01

    The objective of this research work was to investigate the factors influencing the shape memory effect and phase transformation behaviour of three Fe-Mn-Si based shape memory alloys: Fe-28Mn-6Si, Fe-13Mn-5Si-10Cr-6Ni and Fe-20Mn-6Si-7Cr-1Cu. The research results show that the shape memory capacity of Fe-Mn-Si based shape memory alloys varies with annealing temperature, and this effect can be explained in terms of the effect of annealing on γ ε transformation. The nature and concentration of defects in austenite are strongly affected by annealing conditions. A high annealing temperature results in a low density of stacking faults, leading to a low nucleation rate during stress induced γ→ε transformation. The growth of ε martensite plates is favoured rather than the formation of new ε martensite plates. Coarse martensite plates produce high local transformation strains which can be accommodated by local slip deformation, leading to a reduction in the reversibility of the martensitic transformation and to a degradation of the shape memory effect. Annealing at low temperatures (≤673 K) for reasonable times does not eliminate complex defects (dislocation jogs, kinks and vacancy clusters) created by hot and cold working strains. These defects can retard the movement and rearrangement of Shockley partial dislocations, i.e. suppress γ→ε transformation, also leading to a degradation of shape memory effect. Annealing at about 873 K was found to be optimal to form the dislocation structures which are favourable for stress induced martensitic transformation, thus resulting in the best shape memory behaviour. (orig.)

  14. Numerical analysis of a polysilicon-based resistive memory device

    KAUST Repository

    Berco, Dan

    2018-03-08

    This study investigates a conductive bridge resistive memory device based on a Cu top electrode, 10-nm polysilicon resistive switching layer and a TiN bottom electrode, by numerical analysis for $$10^{3}$$103 programming and erase simulation cycles. The low and high resistive state values in each cycle are calculated, and the analysis shows that the structure has excellent retention reliability properties. The presented Cu species density plot indicates that Cu insertion occurs almost exclusively along grain boundaries resulting in a confined isomorphic conductive filament that maintains its overall shape and electric properties during cycling. The superior reliability of this structure may thus be attributed to the relatively low amount of Cu migrating into the RSL during initial formation. In addition, the results show a good match and help to confirm experimental measurements done over a previously demonstrated device.

  15. The NEEDS Data Base Management and Archival Mass Memory System

    Science.gov (United States)

    Bailey, G. A.; Bryant, S. B.; Thomas, D. T.; Wagnon, F. W.

    1980-01-01

    A Data Base Management System and an Archival Mass Memory System are being developed that will have a 10 to the 12th bit on-line and a 10 to the 13th off-line storage capacity. The integrated system will accept packetized data from the data staging area at 50 Mbps, create a comprehensive directory, provide for file management, record the data, perform error detection and correction, accept user requests, retrieve the requested data files and provide the data to multiple users at a combined rate of 50 Mbps. Stored and replicated data files will have a bit error rate of less than 10 to the -9th even after ten years of storage. The integrated system will be demonstrated to prove the technology late in 1981.

  16. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  17. Contribution of non-volatile and aroma fractions to in-mouth sensory properties of red wines: wine reconstitution strategies and sensory sorting task.

    Science.gov (United States)

    Sáenz-Navajas, María-Pilar; Campo, Eva; Avizcuri, José Miguel; Valentin, Dominique; Fernández-Zurbano, Purificación; Ferreira, Vicente

    2012-06-30

    This work explores to what extent the aroma or the non-volatile fractions of red wines are responsible for the overall flavor differences perceived in-mouth. For this purpose, 14 samples (4 commercial and 10 reconstituted wines), were sorted by a panel of 30 trained assessors according to their sensory in-mouth similarities. Reconstituted wines were prepared by adding the same volatile fraction (coming from a red wine) to the non-volatile fraction of 10 different red wines showing large differences in perceived astringency. Sorting was performed under three different conditions: (a) no aroma perception: nose-close condition (NA), (b) retronasal aroma perception only (RA), and (c) allowing retro- and involuntary orthonasal aroma perception (ROA). Similarity estimates were derived from the sorting and submitted to multidimensional scaling (MDS) followed by hierarchical cluster analysis (HCA). Results have clearly shown that, globally, aroma perception is not the major driver of the in-mouth sensory perception of red wine, which is undoubtedly primarily driven by the perception of astringency and by the chemical compounds causing it, particularly protein precipitable proanthocyanidins (PAs). However, aroma perception plays a significant role on the perception of sweetness and bitterness. The impact of aroma seems to be more important whenever astringency, total polyphenols and protein precipitable PAs levels are smaller. Results also indicate that when a red-black fruit odor nuance is clearly perceived in conditions in which orthonasal odor perception is allowed, a strong reduction in astringency takes place. Such red-black fruit odor nuance seems to be the result of a specific aroma release pattern as a consequence of the interaction between aroma compounds and the non-volatile matrix. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Low-cost fabrication of ternary CuInSe{sub 2} nanocrystals by colloidal route using a novel combination of volatile and non-volatile capping agents

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, Parul; Narain Sharma, Shailesh, E-mail: shailesh@nplindia.org; Singh, Son

    2014-11-15

    Wet-route synthesis of CuInSe{sub 2} (CISe) nanocrystals has been envisaged with the utilization of the unique combination of coordinating ligand and non coordinating solvent. Our work demonstrates the formation of a single-phase, nearly stoichiometric and monodispersive, stable and well-passivated colloidal ternary CISe nanocrystals (band gap (E{sub g})∼1.16 eV) using a novel combination of ligands; viz. volatile arylamine aniline and non-volatile solvent 1-octadecene. The synthesis and growth conditions have been manoeuvred using the colligative properties of the mixture and thus higher growth temperature (∼250 °C) could be attained that promoted larger grain growth. The beneficial influence of the capping agents (aniline and 1-octadecene) on the properties of chalcopyrite nanocrystals has enabled us to pictorally model the structural, morphological and optoelectronic aspects of CISe nanoparticles. - Graphical abstract: Without resorting to any post-selenization process and using the colligative properties of the mixture comprising of volatile aniline and non-volatile 1-octadecene to manoeuvre the growth conditions to promote Ostwald ripening, a single phase, monodispersive and nearly stoichiometric ternary CISe nanocrystals are formed by wet-synthesis route. - Highlights: • Wet-route synthesis of CISe nanocrystals reported without post-selenization process. • Single-phase, stable and well-passivated colloidal ternary CISe nanocrystals formed. • Novel combination of capping agents: volatile aniline and non-volatile 1-octadecene. • Higher growth temperature attained using the colligative properties of the mixture. • Metallic salts presence explains exp. and theoretical boiling point difference.

  19. A novel ternary content addressable memory design based on resistive random access memory with high intensity and low search energy

    Science.gov (United States)

    Han, Runze; Shen, Wensheng; Huang, Peng; Zhou, Zheng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2018-04-01

    A novel ternary content addressable memory (TCAM) design based on resistive random access memory (RRAM) is presented. Each TCAM cell consists of two parallel RRAM to both store and search for ternary data. The cell size of the proposed design is 8F2, enable a ∼60× cell area reduction compared with the conventional static random access memory (SRAM) based implementation. Simulation results also show that the search delay and energy consumption of the proposed design at the 64-bit word search are 2 ps and 0.18 fJ/bit/search respectively at 22 nm technology node, where significant improvements are achieved compared to previous works. The desired characteristics of RRAM for implementation of the high performance TCAM search chip are also discussed.

  20. The neurobiological bases of memory formation: from physiological conditions to psychopathology.

    Science.gov (United States)

    Bisaz, Reto; Travaglia, Alessio; Alberini, Cristina M

    2014-01-01

    The formation of long-term memories is a function necessary for an adaptive survival. In the last two decades, great progress has been made in the understanding of the biological bases of memory formation. The identification of mechanisms necessary for memory consolidation and reconsolidation, the processes by which the posttraining and postretrieval fragile memory traces become stronger and insensitive to disruption, has indicated new approaches for investigating and treating psychopathologies. In this review, we will discuss some key biological mechanisms found to be critical for memory consolidation and strengthening, the role/s and mechanisms of memory reconsolidation, and how the interference with consolidation and/or reconsolidation can modulate the retention and/or storage of memories that are linked to psychopathologies. © 2014 S. Karger AG, Basel.

  1. Cathode and ion-luminescence of Eu:ZnO thin films prepared by reactive magnetron sputtering and plasma decomposition of non-volatile precursors

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Rostra, Jorge [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, C/Américo Vespucio 49, E-41092 Sevilla (Spain); Ferrer, Francisco J. [Centro Nacional de Aceleradores, CSIC, Univ. Sevilla, Av. Thomas A. Edison 7, E-41092 Sevilla (Spain); Martín, Inocencio R. [Departamento de Física Fundamental y Experimental, Electrónica y Sistemas, U. La Laguna, C/Astrofísico Francisco Sánchez s/n, E-38206 La Laguna, Santa Cruz de Tenerife (Spain); González-Elipe, Agustín R.; Yubero, Francisco [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, C/Américo Vespucio 49, E-41092 Sevilla (Spain)

    2016-10-15

    This paper reports the luminescent behavior of Eu:ZnO thin films prepared by an one-step procedure that combines reactive magnetron sputtering deposition of ZnO with the plasma activated decomposition of a non-volatile acetylacetonate precursor of Eu sublimated in an effusion cell. Chemical composition and microstructure of the Eu:ZnO thin films have been characterized by several methods and their photo-, cathode- and ion-luminescent properties studied as a function of Eu concentration. The high transparency and well controlled optical properties of the films have demonstrated to be ideal for the development of cathode- and ion- luminescence sensors.

  2. Feature-based memory-driven attentional capture: Visual working memory content affects visual attention.

    NARCIS (Netherlands)

    Olivers, C.N.L.; Meijer, F.; Theeuwes, J.

    2006-01-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly

  3. Sleep does not cause false memories on a story-based test of suggestibility.

    Science.gov (United States)

    van Rijn, Elaine; Carter, Neil; McMurtrie, Hazel; Willner, Paul; Blagrove, Mark T

    2017-07-01

    Sleep contributes to the consolidation of memories. This process may involve extracting the gist of learned material at the expense of details. It has thus been proposed that sleep might lead to false memory formation. Previous research examined the effect of sleep on false memory using the Deese-Roediger-McDermott (DRM) paradigm. Mixed results were found, including increases and decreases in false memory after sleep relative to wake. It has been questioned whether DRM false memories occur by the same processes as real-world false memories. Here, the effect of sleep on false memory was investigated using the Gudjonsson Suggestibility Scale. Veridical memory deteriorated after a 12-h period of wake, but not after a 12-h period including a night's sleep. No difference in false memory was found between conditions. Although the literature supports sleep-dependent memory consolidation, the results here call into question extending this to a gist-based false memory effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Shape Memory Alloy-Based Periodic Cellular Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  5. A Chinese Chan-based lifestyle intervention improves memory of older adults

    Directory of Open Access Journals (Sweden)

    Agnes S. eChan

    2014-03-01

    Full Text Available This study aims to explore the potential benefits of a Chinese Chan-based lifestyle intervention on enhancing memory in older people with lower memory function. Forty-four aged 60 to 83 adults with various level of memory ability participated in the study. Their memories (including verbal and visual components were assessed before and after a 3-month intervention. The intervention consisted of 12 sessions, with one 90-minute session per week. The intervention involved components of adopting a special vegetarian diet, practicing a type of mind-body exercises and learning self-realization. Elderly with lower memory function at the baseline (i.e., their performance on standardized memory tests was within 25th percentile showed a significant memory improvement after the intervention. Their verbal and visual memory performance has showed 50% and 49% enhancement respectively. In addition, their improvement can be considered as a reliable and clinically significant change as reflected by their significant pre-post differences and reliable change indices. Such robust treatment effect was found to be specific to memory functions, but less influencing on the other cognitive functions. These preliminary encouraging results have shed some light on the potential applicability of the Chinese Chan-based lifestyle intervention as a method for enhancing memory in the elderly population.

  6. Testing the effectiveness of group-based memory rehabilitation in chronic stroke patients.

    Science.gov (United States)

    Miller, Laurie A; Radford, Kylie

    2014-01-01

    Memory complaints are common after stroke, yet there have been very few studies of the outcome of memory rehabilitation in these patients. The present study evaluated the effectiveness of a new manualised, group-based memory training programme. Forty outpatients with a single-stroke history and ongoing memory complaints were enrolled. The six-week course involved education and strategy training and was evaluated using a wait-list crossover design, with three assessments conducted 12 weeks apart. Outcome measures included: tests of anterograde memory (Rey Auditory Verbal Learning Test: RAVLT; Complex Figure Test) and prospective memory (Royal Prince Alfred Prospective Memory Test); the Comprehensive Assessment of Prospective Memory (CAPM) questionnaire and self-report of number of strategies used. Significant training-related gains were found on RAVLT learning and delayed recall and on CAPM informant report. Lower baseline scores predicted greater gains for several outcome measures. Patients with higher IQ or level of education showed more gains in number of strategies used. Shorter time since onset was related to gains in prospective memory, but no other stroke-related variables influenced outcome. Our study provides evidence that a relatively brief, group-based training intervention can improve memory functioning in chronic stroke patients and clarified some of the baseline factors that influence outcome.

  7. Adding memory processing behaviors to the fuzzy behaviorist-based navigation of mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.; Bender, S.R.

    1996-05-01

    Most fuzzy logic-based reasoning schemes developed for robot control are fully reactive, i.e., the reasoning modules consist of fuzzy rule bases that represent direct mappings from the stimuli provided by the perception systems to the responses implemented by the motion controllers. Due to their totally reactive nature, such reasoning systems can encounter problems such as infinite loops and limit cycles. In this paper, we proposed an approach to remedy these problems by adding a memory and memory-related behaviors to basic reactive systems. Three major types of memory behaviors are addressed: memory creation, memory management, and memory utilization. These are first presented, and examples of their implementation for the recognition of limit cycles during the navigation of an autonomous robot in a priori unknown environments are then discussed.

  8. Auditory Distraction in Semantic Memory: A Process-Based Approach

    Science.gov (United States)

    Marsh, John E.; Hughes, Robert W.; Jones, Dylan M.

    2008-01-01

    Five experiments demonstrate auditory-semantic distraction in tests of memory for semantic category-exemplars. The effects of irrelevant sound on category-exemplar recall are shown to be functionally distinct from those found in the context of serial short-term memory by showing sensitivity to: The lexical-semantic, rather than acoustic,…

  9. Belief Inhibition in Children's Reasoning: Memory-Based Evidence

    Science.gov (United States)

    Steegen, Sara; Neys, Wim De

    2012-01-01

    Adult reasoning has been shown as mediated by the inhibition of intuitive beliefs that are in conflict with logic. The current study introduces a classic procedure from the memory field to investigate belief inhibition in 12- to 17-year-old reasoners. A lexical decision task was used to probe the memory accessibility of beliefs that were cued…

  10. A nanowire magnetic memory cell based on a periodic magnetic superlattice

    International Nuclear Information System (INIS)

    Song, J-F; Bird, J P; Ochiai, Y

    2005-01-01

    We analyse the operation of a semiconductor nanowire-based memory cell. Large changes in the nanowire conductance result when the magnetization of a periodic array of nanoscale magnetic gates, which comprise the other key component of the memory cell, is switched between distinct configurations by an external magnetic field. The resulting conductance change provides the basis for a robust memory effect, which can be implemented in a semiconductor structure compatible with conventional semiconductor integrated circuits

  11. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening

    International Nuclear Information System (INIS)

    Sangouard, Nicolas; Simon, Christoph; Afzelius, Mikael; Gisin, Nicolas

    2007-01-01

    We present a detailed analysis of a quantum memory for photons based on controlled and reversible inhomogeneous broadening. The explicit solution of the equations of motion is obtained in the weak excitation regime, making it possible to gain insight into the dependence of the memory efficiency on the optical depth, and on the width and shape of the atomic spectral distributions. We also study a simplified memory protocol which does not require any optical control fields

  12. Evaluation of non-volatile metabolites in beer stored at high temperature and utility as an accelerated method to predict flavour stability.

    Science.gov (United States)

    Heuberger, Adam L; Broeckling, Corey D; Sedin, Dana; Holbrook, Christian; Barr, Lindsay; Kirkpatrick, Kaylyn; Prenni, Jessica E

    2016-06-01

    Flavour stability is vital to the brewing industry as beer is often stored for an extended time under variable conditions. Developing an accelerated model to evaluate brewing techniques that affect flavour stability is an important area of research. Here, we performed metabolomics on non-volatile compounds in beer stored at 37 °C between 1 and 14 days for two beer types: an amber ale and an India pale ale. The experiment determined high temperature to influence non-volatile metabolites, including the purine 5-methylthioadenosine (5-MTA). In a second experiment, three brewing techniques were evaluated for improved flavour stability: use of antioxidant crowns, chelation of pro-oxidants, and varying plant content in hops. Sensory analysis determined the hop method was associated with improved flavour stability, and this was consistent with reduced 5-MTA at both regular and high temperature storage. Future studies are warranted to understand the influence of 5-MTA on flavour and aging within different beer types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Kinetic memory based on the enzyme-limited competition.

    Science.gov (United States)

    Hatakeyama, Tetsuhiro S; Kaneko, Kunihiko

    2014-08-01

    Cellular memory, which allows cells to retain information from their environment, is important for a variety of cellular functions, such as adaptation to external stimuli, cell differentiation, and synaptic plasticity. Although posttranslational modifications have received much attention as a source of cellular memory, the mechanisms directing such alterations have not been fully uncovered. It may be possible to embed memory in multiple stable states in dynamical systems governing modifications. However, several experiments on modifications of proteins suggest long-term relaxation depending on experienced external conditions, without explicit switches over multi-stable states. As an alternative to a multistability memory scheme, we propose "kinetic memory" for epigenetic cellular memory, in which memory is stored as a slow-relaxation process far from a stable fixed state. Information from previous environmental exposure is retained as the long-term maintenance of a cellular state, rather than switches over fixed states. To demonstrate this kinetic memory, we study several models in which multimeric proteins undergo catalytic modifications (e.g., phosphorylation and methylation), and find that a slow relaxation process of the modification state, logarithmic in time, appears when the concentration of a catalyst (enzyme) involved in the modification reactions is lower than that of the substrates. Sharp transitions from a normal fast-relaxation phase into this slow-relaxation phase are revealed, and explained by enzyme-limited competition among modification reactions. The slow-relaxation process is confirmed by simulations of several models of catalytic reactions of protein modifications, and it enables the memorization of external stimuli, as its time course depends crucially on the history of the stimuli. This kinetic memory provides novel insight into a broad class of cellular memory and functions. In particular, applications for long-term potentiation are discussed

  14. Transfer after process-based object-location memory training in healthy older adults.

    Science.gov (United States)

    Zimmermann, Kathrin; von Bastian, Claudia C; Röcke, Christina; Martin, Mike; Eschen, Anne

    2016-11-01

    A substantial part of age-related episodic memory decline has been attributed to the decreasing ability of older adults to encode and retrieve associations among simultaneously processed information units from long-term memory. In addition, this ability seems to share unique variance with reasoning. In this study, we therefore examined whether process-based training of the ability to learn and remember associations has the potential to induce transfer effects to untrained episodic memory and reasoning tasks in healthy older adults (60-75 years). For this purpose, the experimental group (n = 36) completed 30 sessions of process-based object-location memory training, while the active control group (n = 31) practiced visual perception on the same material. Near (spatial episodic memory), intermediate (verbal episodic memory), and far transfer effects (reasoning) were each assessed with multiple tasks at four measurements (before, midway through, immediately after, and 4 months after training). Linear mixed-effects models revealed transfer effects on spatial episodic memory and reasoning that were still observed 4 months after training. These results provide first empirical evidence that process-based training can enhance healthy older adults' associative memory performance and positively affect untrained episodic memory and reasoning abilities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Parallel constraint satisfaction in memory-based decisions.

    Science.gov (United States)

    Glöckner, Andreas; Hodges, Sara D

    2011-01-01

    Three studies sought to investigate decision strategies in memory-based decisions and to test the predictions of the parallel constraint satisfaction (PCS) model for decision making (Glöckner & Betsch, 2008). Time pressure was manipulated and the model was compared against simple heuristics (take the best and equal weight) and a weighted additive strategy. From PCS we predicted that fast intuitive decision making is based on compensatory information integration and that decision time increases and confidence decreases with increasing inconsistency in the decision task. In line with these predictions we observed a predominant usage of compensatory strategies under all time-pressure conditions and even with decision times as short as 1.7 s. For a substantial number of participants, choices and decision times were best explained by PCS, but there was also evidence for use of simple heuristics. The time-pressure manipulation did not significantly affect decision strategies. Overall, the results highlight intuitive, automatic processes in decision making and support the idea that human information-processing capabilities are less severely bounded than often assumed.

  16. Role of samarium additions on the shape memory behavior of iron based alloys

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad; Kang, Kisuk

    2011-01-01

    Research highlights: → The effect of samarium contents on shape memory behavior has been studied. → Addition of samarium increases the strength, c/a ratio and ε (hcp martensite). → Addition of samarium retards the nucleation of α (bcc martensite). → Improvement in shape memory effect with the increase in samarium contents. - Abstract: The effect of samarium contents on shape memory behavior of iron based shape memory alloys has been studied. It is found that the strength of the alloys increases with the increase in samarium contents. This effect can be attributed to the solid solution strengthening of austenite by samarium addition. It is also noticed that the shape memory effect increases with the increase in samarium contents. This improvement in shape memory effect presumably can be regarded as the effect of improvement in strength, increase in c/a ratio and obstruction of nucleation of α in the microstructure.

  17. Feature-Based Memory-Driven Attentional Capture: Visual Working Memory Content Affects Visual Attention

    Science.gov (United States)

    Olivers, Christian N. L.; Meijer, Frank; Theeuwes, Jan

    2006-01-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by…

  18. Working Memory Span Development: A Time-Based Resource-Sharing Model Account

    Science.gov (United States)

    Barrouillet, Pierre; Gavens, Nathalie; Vergauwe, Evie; Gaillard, Vinciane; Camos, Valerie

    2009-01-01

    The time-based resource-sharing model (P. Barrouillet, S. Bernardin, & V. Camos, 2004) assumes that during complex working memory span tasks, attention is frequently and surreptitiously switched from processing to reactivate decaying memory traces before their complete loss. Three experiments involving children from 5 to 14 years of age…

  19. No functional role of attention-based rehearsal in maintenance of spatial working memory representations

    NARCIS (Netherlands)

    Belopolsky, A.V.; Theeuwes, J.

    2009-01-01

    The present study systematically examined the role of attention in maintenance of spatial representations in working memory as proposed by the attention-based rehearsal hypothesis [Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental

  20. Observation of long term potentiation in papain-based memory devices

    KAUST Repository

    Bag, A.

    2014-06-01

    Biological synaptic behavior in terms of long term potentiation has been observed in papain-based (plant protein) memory devices (memristors) for the first time. Improvement in long term potentiation depends on pulse amplitude and width (duration). Continuous/repetitive dc voltage sweep leads to an increase in memristor conductivity leading to a long term memory in the \\'learning\\' processes.

  1. Observation of long term potentiation in papain-based memory devices

    KAUST Repository

    Bag, A.; Hota, Mrinal Kanti; Mallik, Sandipan B.; Maì ti, Chinmay Kumar

    2014-01-01

    Biological synaptic behavior in terms of long term potentiation has been observed in papain-based (plant protein) memory devices (memristors) for the first time. Improvement in long term potentiation depends on pulse amplitude and width (duration). Continuous/repetitive dc voltage sweep leads to an increase in memristor conductivity leading to a long term memory in the 'learning' processes.

  2. Strategies for memory-based decision making : Modeling behavioral and neural signatures within a cognitive architecture

    NARCIS (Netherlands)

    Fechner, Hanna B; Pachur, Thorsten; Schooler, Lael J; Mehlhorn, Katja; Battal, Ceren; Volz, Kirsten G; Borst, Jelmer P.

    2016-01-01

    How do people use memories to make inferences about real-world objects? We tested three strategies based on predicted patterns of response times and blood-oxygen-level-dependent (BOLD) responses: one strategy that relies solely on recognition memory, a second that retrieves additional knowledge, and

  3. Forming mechanism of Te-based conductive-bridge memories

    Science.gov (United States)

    Mendes, M. Kazar; Martinez, E.; Marty, A.; Veillerot, M.; Yamashita, Y.; Gassilloud, R.; Bernard, M.; Renault, O.; Barrett, N.

    2018-02-01

    We investigated origins of the resistivity change during the forming of ZrTe/Al2O3 based conductive-bridge resistive random access memories. Non-destructive hard X-ray photoelectron spectroscopy was used to investigate redox processes with sufficient depth sensitivity. Results highlighted the reduction of alumina correlated to the oxidation of zirconium at the interface between the solid electrolyte and the active electrode. In addition the resistance switching caused a decrease of Zr-Te bonds and an increase of elemental Te showing an enrichment of tellurium at the ZrTe/Al2O3 interface. XPS depth profiling using argon clusters ion beam confirmed the oxygen diffusion towards the top electrode. A four-layer capacitor model showed an increase of both the ZrO2 and AlOx interfacial layers, confirming the redox process located at the ZrTe/Al2O3 interface. Oxygen vacancies created in the alumina help the filament formation by acting as preferential conductive paths. This study provides a first direct evidence of the physico-chemical phenomena involved in resistive switching of such devices.

  4. Shape Memory Alloy (SMA)-Based Launch Lock

    Science.gov (United States)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  5. Shape Memory Alloy-Based Periodic Cellular Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  6. PIMS: Memristor-Based Processing-in-Memory-and-Storage.

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeanine

    2018-02-01

    Continued progress in computing has augmented the quest for higher performance with a new quest for higher energy efficiency. This has led to the re-emergence of Processing-In-Memory (PIM) ar- chitectures that offer higher density and performance with some boost in energy efficiency. Past PIM work either integrated a standard CPU with a conventional DRAM to improve the CPU- memory link, or used a bit-level processor with Single Instruction Multiple Data (SIMD) control, but neither matched the energy consumption of the memory to the computation. We originally proposed to develop a new architecture derived from PIM that more effectively addressed energy efficiency for high performance scientific, data analytics, and neuromorphic applications. We also originally planned to implement a von Neumann architecture with arithmetic/logic units (ALUs) that matched the power consumption of an advanced storage array to maximize energy efficiency. Implementing this architecture in storage was our original idea, since by augmenting storage (in- stead of memory), the system could address both in-memory computation and applications that accessed larger data sets directly from storage, hence Processing-in-Memory-and-Storage (PIMS). However, as our research matured, we discovered several things that changed our original direc- tion, the most important being that a PIM that implements a standard von Neumann-type archi- tecture results in significant energy efficiency improvement, but only about a O(10) performance improvement. In addition to this, the emergence of new memory technologies moved us to propos- ing a non-von Neumann architecture, called Superstrider, implemented not in storage, but in a new DRAM technology called High Bandwidth Memory (HBM). HBM is a stacked DRAM tech- nology that includes a logic layer where an architecture such as Superstrider could potentially be implemented.

  7. Photo-reactive charge trapping memory based on lanthanide complex

    Science.gov (United States)

    Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V. A. L.

    2015-10-01

    Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 104 s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.

  8. Hippocampal atrophy in people with memory deficits: results from the population-based IPREA study.

    Science.gov (United States)

    Ferrarini, Luca; van Lew, Baldur; Reiber, Johan H C; Gandin, Claudia; Galluzzo, Lucia; Scafato, Emanuele; Frisoni, Giovanni B; Milles, Julien; Pievani, Michela

    2014-07-01

    Clinical studies have shown that hippocampal atrophy is present before dementia in people with memory deficits and can predict dementia development. The question remains whether this association holds in the general population. This is of interest for the possible use of hippocampal atrophy to screen population for preventive interventions. The aim of this study was to assess hippocampal volume and shape abnormalities in elderly adults with memory deficits in a cross-sectional population-based study. We included individuals participating in the Italian Project on the Epidemiology of Alzheimer Disease (IPREA) study: 75 cognitively normal individuals (HC), 31 individuals with memory deficits (MEM), and 31 individuals with memory deficits not otherwise specified (MEMnos). Hippocampal volumes and shape were extracted through manual tracing and the growing and adaptive meshes (GAMEs) shape-modeling algorithm. We investigated between-group differences in hippocampal volume and shape, and correlations with memory deficits. In MEM participants, hippocampal volumes were significantly smaller than in HC and were mildly associated with worse memory scores. Memory-associated shape changes mapped to the anterior hippocampus. Shape-based analysis detected no significant difference between MEM and HC, while MEMnos showed shape changes in the posterior hippocampus compared with HC and MEM groups. These findings support the discriminant validity of hippocampal volumetry as a biomarker of memory impairment in the general population. The detection of shape changes in MEMnos but not in MEM participants suggests that shape-based biomarkers might lack sensitivity to detect Alzheimer's-like pathology in the general population.

  9. Electric-field-controlled interface dipole modulation for Si-based memory devices.

    Science.gov (United States)

    Miyata, Noriyuki

    2018-05-31

    Various nonvolatile memory devices have been investigated to replace Si-based flash memories or emulate synaptic plasticity for next-generation neuromorphic computing. A crucial criterion to achieve low-cost high-density memory chips is material compatibility with conventional Si technologies. In this paper, we propose and demonstrate a new memory concept, interface dipole modulation (IDM) memory. IDM can be integrated as a Si field-effect transistor (FET) based memory device. The first demonstration of this concept employed a HfO 2 /Si MOS capacitor where the interface monolayer (ML) TiO 2 functions as a dipole modulator. However, this configuration is unsuitable for Si-FET-based devices due to its large interface state density (D it ). Consequently, we propose, a multi-stacked amorphous HfO 2 /1-ML TiO 2 /SiO 2 IDM structure to realize a low D it and a wide memory window. Herein we describe the quasi-static and pulse response characteristics of multi-stacked IDM MOS capacitors and demonstrate flash-type and analog memory operations of an IDM FET device.

  10. Different effects of color-based and location-based selection on visual working memory.

    Science.gov (United States)

    Li, Qi; Saiki, Jun

    2015-02-01

    In the present study, we investigated how feature- and location-based selection influences visual working memory (VWM) encoding and maintenance. In Experiment 1, cue type (color, location) and cue timing (precue, retro-cue) were manipulated in a change detection task. The stimuli were color-location conjunction objects, and binding memory was tested. We found a significantly greater effect for color precues than for either color retro-cues or location precues, but no difference between location pre- and retro-cues, consistent with previous studies (e.g., Griffin & Nobre in Journal of Cognitive Neuroscience, 15, 1176-1194, 2003). We also found no difference between location and color retro-cues. Experiment 2 replicated the color precue advantage with more complex color-shape-location conjunction objects. Only one retro-cue effect was different from that in Experiment 1: Color retro-cues were significantly less effective than location retro-cues in Experiment 2, which may relate to a structural property of multidimensional VWM representations. In Experiment 3, a visual search task was used, and the result of a greater location than color precue effect suggests that the color precue advantage in a memory task is related to the modulation of VWM encoding rather than of sensation and perception. Experiment 4, using a task that required only memory for individual features but not for feature bindings, further confirmed that the color precue advantage is specific to binding memory. Together, these findings reveal new aspects of the interaction between attention and VWM and provide potentially important implications for the structural properties of VWM representations.

  11. Memory properties of a Ge nanoring MOS device fabricated by pulsed laser deposition.

    Science.gov (United States)

    Ma, Xiying

    2008-07-09

    The non-volatile charge-storage properties of memory devices with MOS structure based on Ge nanorings have been studied. The two-dimensional Ge nanorings were prepared on a p-Si(100) matrix by means of pulsed laser deposition (PLD) using the droplet technique combined with rapid annealing. Complete planar nanorings with well-defined sharp inner and outer edges were formed via an elastic self-transformation droplet process, which is probably driven by the lateral strain of the Ge/Si layers and the surface tension in the presence of Ar gas. The low leakage current was attributed to the small roughness and the few interface states in the planar Ge nanorings, and also to the effect of Coulomb blockade preventing injection. A significant threshold-voltage shift of 2.5 V was observed when an operating voltage of 8 V was implemented on the device.

  12. Shape memory alloy wire-based smart natural rubber bearing

    International Nuclear Information System (INIS)

    Hedayati Dezfuli, F; Shahria Alam, M

    2013-01-01

    In this study, two types of smart elastomeric bearings are presented using shape memory alloy (SMA) wires. Due to the unique characteristics of SMAs, such as the superelastic effect and the recentering capability, the residual deformation in SMA-based natural rubber bearings (SMA-NRBs) is significantly reduced whereas the energy dissipation capacity is increased. Two different configurations of SMA wires incorporated in elastomeric bearings are considered. The effect of several parameters, including the shear strain amplitude, the type of SMA, the aspect ratio of the base isolator, the thickness of SMA wire, and the amount of pre-strain in the wires on the performance of SMA-NRBs is investigated. Rubber bearings are composed of natural rubber layers bonded to steel shims as reinforcement. Results show that ferrous SMA wire, FeNiCuAlTaB, with 13.5% superelastic strain and a very low austenite finish temperature (−62 °C), is the best candidate to be used in SMA-NRBs subjected to high shear strain amplitudes. In terms of the lateral flexibility and wire strain level, the smart rubber bearing with a cross configuration of SMA wires is more efficient. Moreover, the cross configuration can be implemented in high-aspect-ratio elastomeric bearings since the strain induced in the wire does not exceed the superelastic range. When cross SMA wires with 2% pre-strain are used in a smart NRB, the dissipated energy is increased by 74% and the residual deformation is decreased by 15%. (paper)

  13. The construction of semantic memory: grammar based representations learned from relational episodic information

    Directory of Open Access Journals (Sweden)

    Francesco P Battaglia

    2011-08-01

    Full Text Available After acquisition, memories underlie a process of consolidation, making them more resistant to interference and brain injury. Memory consolidation involves systems-level interactions, most importantly between the hippocampus and associated structures, which takes part in the initial encoding of memory, and the neocortex, which supports long-term storage. This dichotomy parallels the contrast between episodic memory (tied to the hippocampal formation, collecting an autobiographical stream of experiences, and semantic memory, a repertoire of facts and statistical regularities about the world, involving the neocortex at large. Experimental evidence points to a gradual transformation of memories, following encoding, from an episodic to a semantic character. This may require an exchange of information between different memory modules during inactive periods. We propose a theory for such interactions and for the formation of semantic memory, in which episodic memory is encoded as relational data. Semantic memory is modeled as a modified stochastic grammar, which learns to parse episodic configurations expressed as an association matrix. The grammar produces tree-like representations of episodes, describing the relationships between its main constituents at multiple levels of categorization, based on its current knowledge of world regularities. These regularities are learned by the grammar from episodic memory information, through an expectation-maximization procedure, analogous to the inside-outside algorithm for stochastic context-free grammars. We propose that a Monte-Carlo sampling version of this algorithm can be mapped on the dynamics of ``sleep replay'' of previously acquired information in the hippocampus and neocortex. We propose that the model can reproduce several properties of semantic memory such as decontextualization, top-down processing, and creation of schemata.

  14. The Construction of Semantic Memory: Grammar-Based Representations Learned from Relational Episodic Information

    Science.gov (United States)

    Battaglia, Francesco P.; Pennartz, Cyriel M. A.

    2011-01-01

    After acquisition, memories underlie a process of consolidation, making them more resistant to interference and brain injury. Memory consolidation involves systems-level interactions, most importantly between the hippocampus and associated structures, which takes part in the initial encoding of memory, and the neocortex, which supports long-term storage. This dichotomy parallels the contrast between episodic memory (tied to the hippocampal formation), collecting an autobiographical stream of experiences, and semantic memory, a repertoire of facts and statistical regularities about the world, involving the neocortex at large. Experimental evidence points to a gradual transformation of memories, following encoding, from an episodic to a semantic character. This may require an exchange of information between different memory modules during inactive periods. We propose a theory for such interactions and for the formation of semantic memory, in which episodic memory is encoded as relational data. Semantic memory is modeled as a modified stochastic grammar, which learns to parse episodic configurations expressed as an association matrix. The grammar produces tree-like representations of episodes, describing the relationships between its main constituents at multiple levels of categorization, based on its current knowledge of world regularities. These regularities are learned by the grammar from episodic memory information, through an expectation-maximization procedure, analogous to the inside–outside algorithm for stochastic context-free grammars. We propose that a Monte-Carlo sampling version of this algorithm can be mapped on the dynamics of “sleep replay” of previously acquired information in the hippocampus and neocortex. We propose that the model can reproduce several properties of semantic memory such as decontextualization, top-down processing, and creation of schemata. PMID:21887143

  15. The charge storage characteristics of ZrO2 nanocrystallite-based charge trap nonvolatile memory

    International Nuclear Information System (INIS)

    Tang Zhen-Jie; Li Rong; Yin Jiang

    2013-01-01

    ZrO 2 nanocrystallite-based charge trap flash memory capacitors incorporating a (ZrO 2 ) 0.6 (SiO 2 ) 0.4 pseudobinary high-k oxide film as the charge trapping layer were prepared and investigated. The precipitation reaction in the charge trapping layer, forming ZrO 2 nanocrystallites during rapid thermal annealing, was investigated by transmission electron microscopy and X-ray diffraction. It was observed that a ZrO 2 nanocrystallite-based memory capacitor after post-annealing at 850 °C for 60 s exhibits a maximum memory window of about 6.8 V, good endurance and a low charge loss of ∼25% over a period of 10 years (determined by extrapolating the charge loss curve measured experimentally), even at 85 °C. Such 850 °C-annealed memory capacitors appear to be candidates for future nonvolatile flash memory device applications

  16. Knowledge and method base for shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Welp, E.G.; Breidert, J. [Ruhr-University Bochum, Institute of Engineering Design, 44780 Bochum (Germany)

    2004-05-01

    It is often impossible for design engineers to decide whether it is possible to use shape memory alloys (SMA) for a particular task. In case of a decision to use SMA for product development, design engineers normally do not know in detail how to proceed in a correct and beneficial way. In order to support design engineers who have no previous knowledge about SMA and to assist in the transfer of results from basic research to industrial practice, an essential knowledge and method base has been developed. Through carefully conducted literature studies and patent analysis material and design information could be collected. All information is implemented into a computer supported knowledge and method base that provides design information with a particular focus on the conceptual and embodiment design phase. The knowledge and method base contains solution principles and data about effects, material and manufacturing as well as design guidelines and calculation methods for dimensioning and optimization. A browser-based user interface ensures that design engineers have immediate access to the latest version of the knowledge and method base. In order to ensure a user friendly application, an evaluation with several test users has been carried out. Reactions of design engineers from the industrial sector underline the need for support related to knowledge on SMA. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Fuer Konstrukteure ist es haeufig schwierig zu entscheiden, ob sich der Einsatz von Formgedaechtnislegierungen (FGL) fuer eine bestimmte Aufgabe eignet. Fuer den Fall, dass FGL fuer die Produktentwicklung genutzt werden sollen, besitzen Ingenieure zumeist nur unzureichende Detailkenntnisse, um Formgedaechtnislegierungen richtig und in vorteilhafter Weise anwenden zu koennen. Zur Unterstuetzung von Konstrukteuren, die ueber kein Vorwissen und keine Erfahrungen zu FGL verfuegen und zum Transfer von Forschungsergebnissen in die industrielle Praxis, ist eine

  17. Beyond accessibility? Toward an on-line and memory-based model of framing effects

    OpenAIRE

    Matthes, Jörg

    2007-01-01

    This theoretical article investigates the effects of media frames on individuals' judgments. In contrast to previous theorizing, we suggest that framing scholars should embrace both, on-line and memory-based judgment formation processes. Based on that premise, we propose a model that distinguishes between two phases of framing effects. Along the first phase, the media's framing contributes to the formation of an on-line or a memory-based judgment. The second phase describes six hypothetical r...

  18. The Interplay of Hippocampus and Ventromedial Prefrontal Cortex in Memory-Based Decision Making

    Directory of Open Access Journals (Sweden)

    Regina A. Weilbächer

    2016-12-01

    Full Text Available Episodic memory and value-based decision making are two central and intensively studied research domains in cognitive neuroscience, but we are just beginning to understand how they interact to enable memory-based decisions. The two brain regions that have been associated with episodic memory and value-based decision making are the hippocampus and the ventromedial prefrontal cortex, respectively. In this review article, we first give an overview of these brain–behavior associations and then focus on the mechanisms of potential interactions between the hippocampus and ventromedial prefrontal cortex that have been proposed and tested in recent neuroimaging studies. Based on those possible interactions, we discuss several directions for future research on the neural and cognitive foundations of memory-based decision making.

  19. Impacts of post-metallization annealing on the memory performance of Ti/HfO2-based resistive memory

    International Nuclear Information System (INIS)

    Chen, Pang-Shiu; Chen, Yu-Sheng; Lee, Heng-Yuan

    2013-01-01

    Impacts of post-metallization annealing (PMA) on bipolar resistance switching of Ti/HfO x stacked films were investigated. A Ti capping film as a scavenging layer with assistance of PMA is used to tune the dielectric strength of the 10-nm-thick HfO x layer. The polycrystalline microstructure of 10-nm-thick HfO x seems immune to the temperature of PMA in this work. The initial resistance and forming voltage in the Ti/HfO x devices mitigate as the increment of the annealing temperature. With enough annealing temperature (>450 °C), the device shows a good on/off ratio, high temperature operation ability and robust endurance (>10 6 cycles). Through the reaction between Ti and HfO x at 500 °C, the abundant oxygen ions are depleted from the insulator and the left charge-defects building conductive percolative paths in the dielectric layer. The operation-polarity independence of the form-free HfO x device in initial state is demonstrated. The forming-free memory with initial low resistance of 800 Ω at 0.1 V can be operated with stable bipolar resistance switching via initially positive or negative voltage sweep. The formless device with 10 nm thick HfO x also exhibits excellent nonvolatile memory performances, including enough on/off ratio, improved HRS uniformity and good high temperature retention (3 × 10 4 s at 200 °C). The results of this work suggest that the PMA temperature will affect the memory window and cycling reliability of the Ti/HfO x -based resistive memory. Optimum temperature (450 °C) will improve the memory performance of the Ti/HfO x stacked layer. (paper)

  20. Cooperation in memory-based prisoner's dilemma game on interdependent networks

    Science.gov (United States)

    Luo, Chao; Zhang, Xiaolin; Liu, Hong; Shao, Rui

    2016-05-01

    Memory or so-called experience normally plays the important role to guide the human behaviors in real world, that is essential for rational decisions made by individuals. Hence, when the evolutionary behaviors of players with bounded rationality are investigated, it is reasonable to make an assumption that players in system are with limited memory. Besides, in order to unravel the intricate variability of complex systems in real world and make a highly integrative understanding of their dynamics, in recent years, interdependent networks as a comprehensive network structure have obtained more attention in this community. In this article, the evolution of cooperation in memory-based prisoner's dilemma game (PDG) on interdependent networks composed by two coupled square lattices is studied. Herein, all or part of players are endowed with finite memory ability, and we focus on the mutual influence of memory effect and interdependent network reciprocity on cooperation of spatial PDG. We show that the density of cooperation can be significantly promoted within an optimal region of memory length and interdependent strength. Furthermore, distinguished by whether having memory ability/external links or not, each kind of players on networks would have distinct evolutionary behaviors. Our work could be helpful to understand the emergence and maintenance of cooperation under the evolution of memory-based players on interdependent networks.

  1. Enhanced resistive switching and multilevel behavior in bilayered HfAlO/HfAlO{sub x} structures for non-volatile memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Faita, F. L., E-mail: fabriciofaita@gmail.com [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Departamento de Física, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Silva, J. P. B., E-mail: josesilva@fisica.uminho.pt [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto (Portugal); Pereira, M.; Gomes, M. J. M. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-12-14

    In this work, hafnium aluminum oxide (HfAlO) thin films were deposited by ion beam sputtering deposition technique on Si substrate. The presence of oxygen vacancies in the HfAlO{sub x} layer deposited in oxygen deficient environment is evidenced from the photoluminescence spectra. Furthermore, HfAlO(oxygen rich)/HfAlO{sub x}(oxygen poor) bilayer structures exhibit multilevel resistive switching (RS), and the switching ratio becomes more prominent with increasing the HfAlO layer thickness. The bilayer structure with HfAlO/HfAlO{sub x} thickness of 30/40 nm displays the enhanced multilevel resistive switching characteristics, where the high resistance state/intermediate resistance state (IRS) and IRS/low resistance state resistance ratios are ≈10{sup 2} and ≈5 × 10{sup 5}, respectively. The switching mechanisms in the bilayer structures were investigated by the temperature dependence of the three resistance states. This study revealed that the multilevel RS is attributed to the coupling of ionic conduction and the metallic conduction, being the first associated to the formation and rupture of conductive filaments related to oxygen vacancies and the second with the formation of a metallic filament. Moreover, the bilayer structures exhibit good endurance and stability in time.

  2. Simultaneous Microwave Extraction and Separation of Volatile and Non-Volatile Organic Compounds of Boldo Leaves. From Lab to Industrial Scale

    Directory of Open Access Journals (Sweden)

    Loïc Petigny

    2014-04-01

    Full Text Available Microwave extraction and separation has been used to increase the concentration of the extract compared to the conventional method with the same solid/liquid ratio, reducing extraction time and separate at the same time Volatile Organic Compounds (VOC from non-Volatile Organic Compounds (NVOC of boldo leaves. As preliminary study, a response surface method has been used to optimize the extraction of soluble material and the separation of VOC from the plant in laboratory scale. The results from the statistical analysis revealed that the optimized conditions were: microwave power 200 W, extraction time 56 min and solid liquid ratio of 7.5% of plants in water. Lab scale optimized microwave method is compared to conventional distillation, and requires a power/mass ratio of 0.4 W/g of water engaged. This power/mass ratio is kept in order to upscale from lab to pilot plant.

  3. Threshold-voltage modulated phase change heterojunction for application of high density memory

    International Nuclear Information System (INIS)

    Yan, Baihan; Tong, Hao; Qian, Hang; Miao, Xiangshui

    2015-01-01

    Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-ray photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current

  4. Threshold-voltage modulated phase change heterojunction for application of high density memory

    Science.gov (United States)

    Yan, Baihan; Tong, Hao; Qian, Hang; Miao, Xiangshui

    2015-09-01

    Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-ray photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.

  5. A review on the neural bases of episodic odor memory: from laboratory-based to autobiographical approaches

    Science.gov (United States)

    Saive, Anne-Lise; Royet, Jean-Pierre; Plailly, Jane

    2014-01-01

    Odors are powerful cues that trigger episodic memories. However, in light of the amount of behavioral data describing the characteristics of episodic odor memory, the paucity of information available on the neural substrates of this function is startling. Furthermore, the diversity of experimental paradigms complicates the identification of a generic episodic odor memory network. We conduct a systematic review of the literature depicting the current state of the neural correlates of episodic odor memory in healthy humans by placing a focus on the experimental approaches. Functional neuroimaging data are introduced by a brief characterization of the memory processes investigated. We present and discuss laboratory-based approaches, such as odor recognition and odor associative memory, and autobiographical approaches, such as the evaluation of odor familiarity and odor-evoked autobiographical memory. We then suggest the development of new laboratory-ecological approaches allowing for the controlled encoding and retrieval of specific multidimensional events that could open up new prospects for the comprehension of episodic odor memory and its neural underpinnings. While large conceptual differences distinguish experimental approaches, the overview of the functional neuroimaging findings suggests relatively stable neural correlates of episodic odor memory. PMID:25071494

  6. A review on the neural bases of episodic odor memory: from laboratory-based to autobiographical approaches

    Directory of Open Access Journals (Sweden)

    Anne-Lise eSaive

    2014-07-01

    Full Text Available Odors are powerful cues that trigger episodic memories. However, in light of the amount of behavioral data describing the characteristics of episodic odor memory, the paucity of information available on the neural substrates of this function is startling. Furthermore, the diversity of experimental paradigms complicates the identification of a generic episodic odor memory network. We conduct a systematic review of the literature depicting the current state of the neural correlates of episodic odor memory in healthy humans by placing a focus on the experimental approaches. Functional neuroimaging data are introduced by a brief characterization of the memory processes investigated. We present and discuss laboratory-based approaches, such as odor recognition and odor associative memory, and autobiographical approaches, such as the evaluation of odor familiarity and odor-evoked autobiographical memory. We then suggest the development of new laboratory-ecological approaches allowing for the controlled encoding and retrieval of specific multidimensional events that could open up new prospects for the comprehension of episodic odor memory and its neural underpinnings. While large conceptual differences distinguish experimental approaches, the overview of the functional neuroimaging findings suggests relatively stable neural correlates of episodic odor memory.

  7. A Simultaneous Analytical Method to Profile Non-Volatile Components with Low Polarity Elucidating Differences Between Tobacco Leaves Using Atmospheric Pressure Chemical Ionization Mass Spectrometry Detection

    Directory of Open Access Journals (Sweden)

    Ishida Naoyuki

    2016-04-01

    Full Text Available A comprehensive analytical method using liquid chromatography atmospheric pressure chemical ionization mass spectrometry detector (LC/APCI-MSD was developed to determine key non-volatile components with low polarity elucidating holistic difference among tobacco leaves. Nonaqueous reversed-phase chromatography (NARPC using organic solvent ensured simultaneous separation of various components with low polarity in tobacco resin. Application of full-scan mode to APCI-MSD hyphenated with NARPC enabled simultaneous detection of numerous intense product ions given by APCI interface. Parameters for data processing to filter, feature and align peaks were adjusted in order to strike a balance between comprehensiveness and reproducibility in analysis. 63 types of components such as solanesols, chlorophylls, phytosterols, triacylglycerols, solanachromene and others were determined on total ion chromatograms according to authentic components, wavelength spectrum and mass spectrum. The whole area of identified entities among the ones detected on total ion chromatogram reached to over 60% and major entities among those identified showed favorable linearity of determination coefficient of over 0.99. The developed method and data processing procedure were therefore considered feasible for subsequent multivariate analysis. Data matrix consisting of a number of entities was then subjected to principal component analysis (PCA and hierarchical clustering analysis. Cultivars of tobacco leaves were distributed far from each cultivar on PCA score plot and each cluster seemed to be characterized by identified non-volatile components with low polarity. While fluecured Virginia (FCV was loaded by solanachromene, phytosterol esters and triacylglycerols, free phytosterols and chlorophylls loaded Burley (BLY and Oriental (ORI respectively. Consequently the whole methodology consisting of comprehensive method and data processing procedure proved useful to determine key

  8. Memory-based frame synchronizer. [for digital communication systems

    Science.gov (United States)

    Stattel, R. J.; Niswander, J. K. (Inventor)

    1981-01-01

    A frame synchronizer for use in digital communications systems wherein data formats can be easily and dynamically changed is described. The use of memory array elements provide increased flexibility in format selection and sync word selection in addition to real time reconfiguration ability. The frame synchronizer comprises a serial-to-parallel converter which converts a serial input data stream to a constantly changing parallel data output. This parallel data output is supplied to programmable sync word recognizers each consisting of a multiplexer and a random access memory (RAM). The multiplexer is connected to both the parallel data output and an address bus which may be connected to a microprocessor or computer for purposes of programming the sync word recognizer. The RAM is used as an associative memory or decorder and is programmed to identify a specific sync word. Additional programmable RAMs are used as counter decoders to define word bit length, frame word length, and paragraph frame length.

  9. Social importance enhances prospective memory: evidence from an event-based task.

    Science.gov (United States)

    Walter, Stefan; Meier, Beat

    2017-07-01

    Prospective memory performance can be enhanced by task importance, for example by promising a reward. Typically, this comes at costs in the ongoing task. However, previous research has suggested that social importance (e.g., providing a social motive) can enhance prospective memory performance without additional monitoring costs in activity-based and time-based tasks. The aim of the present study was to investigate the influence of social importance in an event-based task. We compared four conditions: social importance, promising a reward, both social importance and promising a reward, and standard prospective memory instructions (control condition). The results showed enhanced prospective memory performance for all importance conditions compared to the control condition. Although ongoing task performance was slowed in all conditions with a prospective memory task when compared to a baseline condition with no prospective memory task, additional costs occurred only when both the social importance and reward were present simultaneously. Alone, neither social importance nor promising a reward produced an additional slowing when compared to the cost in the standard (control) condition. Thus, social importance and reward can enhance event-based prospective memory at no additional cost.

  10. An OSKit-Based Implementation of Least Privilege Separation Kernel Memory Partitioning

    National Research Council Canada - National Science Library

    Carter, Donald W

    2007-01-01

    .... This work is to build a working prototype of selected TCX kernel functionality. The prototype is constructed and based on OSKit, and restricts information flow between memory partitions and resource accesses...

  11. Semihierarchical quantum repeaters based on moderate lifetime quantum memories

    Science.gov (United States)

    Liu, Xiao; Zhou, Zong-Quan; Hua, Yi-Lin; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-01

    The construction of large-scale quantum networks relies on the development of practical quantum repeaters. Many approaches have been proposed with the goal of outperforming the direct transmission of photons, but most of them are inefficient or difficult to implement with current technology. Here, we present a protocol that uses a semihierarchical structure to improve the entanglement distribution rate while reducing the requirement of memory time to a range of tens of milliseconds. This protocol can be implemented with a fixed distance of elementary links and fixed requirements on quantum memories, which are independent of the total distance. This configuration is especially suitable for scalable applications in large-scale quantum networks.

  12. Cross-cultural differences in memory: the role of culture-based stereotypes about aging.

    Science.gov (United States)

    Yoon, C; Hasher, L; Feinberg, F; Rahhal, T A; Winocur, G

    2000-12-01

    The extent to which cultural stereotypes about aging contribute to age differences in memory performance is investigated by comparing younger and older Anglophone Canadians to demographically matched Chinese Canadians, who tend to hold more positive views of aging. Four memory tests were administered. In contrast to B. Levy and E. Langer's (1994) findings, younger adults in both cultural groups outperformed their older comparison group on all memory tests. For 2 tests, which made use of visual stimuli resembling ideographic characters in written Chinese, the older Chinese Canadians approached, but did not reach, the performance achieved by their younger counterparts, as well as outperformed the older Anglophone Canadians. However, on the other two tests, which assess memory for complex figures and abstract designs, no differences were observed between the older Chinese and Anglophone Canadians. Path analysis results suggest that this pattern of findings is not easily attributed to a wholly culturally based account of age differences in memory performance.

  13. Thermodynamic stability criteria for a quantum memory based on stabilizer and subsystem codes

    International Nuclear Information System (INIS)

    Chesi, Stefano; Loss, Daniel; Bravyi, Sergey; Terhal, Barbara M

    2010-01-01

    We discuss several thermodynamic criteria that have been introduced to characterize the thermal stability of a self-correcting quantum memory. We first examine the use of symmetry-breaking fields in analyzing the properties of self-correcting quantum memories in the thermodynamic limit; we show that the thermal expectation values of all logical operators vanish for any stabilizer and any subsystem code in any spatial dimension. On the positive side, we generalize the results of Alicki et al to obtain a general upper bound on the relaxation rate of a quantum memory at nonzero temperature, assuming that the quantum memory interacts via a Markovian master equation with a thermal bath. This upper bound is applicable to quantum memories based on either stabilizer or subsystem codes.

  14. Optimization of pentacene double floating gate memories based on charge injection regulated by SAM functionalization

    Directory of Open Access Journals (Sweden)

    S. Li

    2018-02-01

    Full Text Available Pentacene based double nano-floating gate memories (NFGM by using gold nanoparticles (Au NPs and reduced graphene oxide (rGO sheets as charge trapping layers are prepared and demonstrated. Particularly, the NFGM chemically treated by 2,3,4,5,6-pentafluorobenzenethiol (PFBT self-assembled monolayers (SAM exhibits excellent memory performances, including high mobility of 0.23 cm2V-1s-1, the large memory window of 51 V, and the stable retention property more than 108 s. Comparing the performances of NFGM without treating with PFBT SAM, the improving performances of the memory devices by SAM modification are explained by the increase of charge injection, which could be further investigated by XPS and UPS. In particular, the results highlight the utility of SAM modulations and controlling of charge transport in the development of organic transistor memories.

  15. Optimization of pentacene double floating gate memories based on charge injection regulated by SAM functionalization

    Science.gov (United States)

    Li, S.; Guérin, D.; Lenfant, S.; Lmimouni, K.

    2018-02-01

    Pentacene based double nano-floating gate memories (NFGM) by using gold nanoparticles (Au NPs) and reduced graphene oxide (rGO) sheets as charge trapping layers are prepared and demonstrated. Particularly, the NFGM chemically treated by 2,3,4,5,6-pentafluorobenzenethiol (PFBT) self-assembled monolayers (SAM) exhibits excellent memory performances, including high mobility of 0.23 cm2V-1s-1, the large memory window of 51 V, and the stable retention property more than 108 s. Comparing the performances of NFGM without treating with PFBT SAM, the improving performances of the memory devices by SAM modification are explained by the increase of charge injection, which could be further investigated by XPS and UPS. In particular, the results highlight the utility of SAM modulations and controlling of charge transport in the development of organic transistor memories.

  16. NI Based System for Seu Testing of Memory Chips for Avionics

    Directory of Open Access Journals (Sweden)

    Boruzdina Anna

    2016-01-01

    Full Text Available This paper presents the results of implementation of National Instrument based system for Single Event Upset testing of memory chips into neutron generator experimental facility, which used for SEU tests for avionics purposes. Basic SEU testing algorithm with error correction and constant errors detection is presented. The issues of radiation shielding of NI based system are discussed and solved. The examples of experimental results show the applicability of the presented system for SEU memory testing under neutrons influence.

  17. A Memory-Based Programmable Logic Device Using Look-Up Table Cascade with Synchronous Static Random Access Memories

    Science.gov (United States)

    Nakamura, Kazuyuki; Sasao, Tsutomu; Matsuura, Munehiro; Tanaka, Katsumasa; Yoshizumi, Kenichi; Nakahara, Hiroki; Iguchi, Yukihiro

    2006-04-01

    A large-scale memory-technology-based programmable logic device (PLD) using a look-up table (LUT) cascade is developed in the 0.35-μm standard complementary metal oxide semiconductor (CMOS) logic process. Eight 64 K-bit synchronous SRAMs are connected to form an LUT cascade with a few additional circuits. The features of the LUT cascade include: 1) a flexible cascade connection structure, 2) multi phase pseudo asynchronous operations with synchronous static random access memory (SRAM) cores, and 3) LUT-bypass redundancy. This chip operates at 33 MHz in 8-LUT cascades at 122 mW. Benchmark results show that it achieves a comparable performance to field programmable gate array (FPGAs).

  18. Phases stability of shape memory alloys Cu based under irradiation

    International Nuclear Information System (INIS)

    Zelaya, Maria Eugenia

    2006-01-01

    The effects of irradiation on the relative phase stability of phases related by a martensitic transformation in copper based shape memory alloys were studied in this work.Different kind of particles and energies were employed in the irradiation experiments.The first kind of irradiation was performed with 2,6 MeV electrons, the second one with 170 keV and 300 keV Cu ions and the third one with swift heavy ions (Kr, Xe, Au) with energies between 200 and 600 MeV.Stabilization of the 18 R martensite in Cu-Zn-Al-Ni induced by electron irradiation was studied.The results were compared to those of the stabilization induced by quenching and ageing in the same alloy, and the ones obtained by irradiation in 18 R-Cu-Zn-Al alloys.The effects of Cu irradiation over b phase were analyzed with several electron microscopy techniques including: scanning electron microscopy (S E M), high resolution electron microscopy (H R E M), micro diffraction and X-ray energy dispersive spectroscopy (E D S). Structural changes in Cu-Zn-Al b phase into a closed packed structure were induced by Cu ion implantation.The closed packed structures depend on the irradiation fluence.Based on these results, the interface between these structures (closed packed and b) and the stability of disordered phases were analyzed. It was also compared the evolution of long range order in the Cu-Zn-Al and in the Cu-Zn-Al-Ni b phase as a function of fluence.The evolution of the g phase was also compared. Both results were discussed in terms of the mobility of irradiation induced point defects.Finally, the effects induced by swift heavy ions in b phase and 18 R martensite were studied. The results of the irradiation in b phase were qualitatively similar to those produced by irradiation with lower energies. On the contrary, nano metric defects were found in the irradiated 18 R martensite.These defects were characterized by H R E M.The characteristic contrast of the defects was associated to a local change in the

  19. A Chinese Chan-based Mind-Body Intervention Improves Memory of Older Adults

    Directory of Open Access Journals (Sweden)

    Agnes S. Chan

    2017-06-01

    Full Text Available There is growing interest in the adoption of lifestyle interventions to remediate age-related declines in memory functioning and physical and psychological health among older adults. This study aimed to investigate whether a Chinese Chan-based lifestyle intervention, the Dejian Mind-Body Intervention (DMBI, leads to positive benefits for memory functioning in older adults. Fifty-six adults aged 60 years or older with subjective memory complaints (SMC were randomly assigned to receive the DMBI or a control intervention (i.e., a conventional memory intervention; MI once a week for 10 weeks; 48 of the adults completed the intervention. Participants’ verbal and visual memory functioning before and after the intervention were compared. In addition, changes in the participants’ subjective feelings about their memory performance and physical and psychological health after the intervention were examined. The results showed that both the DMBI and MI resulted in significant improvements in both verbal and visual memory functioning and that the extent of the improvements was correlated with participants’ level of performance at baseline. In addition, compared to the MI group, the DMBI group had significantly greater improvements in subjective physical and psychological health after the intervention. In summary, the present findings support the potential of the DMBI as an alternative lifestyle intervention for improving memory functioning, subjective physical and psychological health of older adults with SMC.

  20. Dietary inflammatory index and memory function: population-based national sample of elderly Americans.

    Science.gov (United States)

    Frith, Emily; Shivappa, Nitin; Mann, Joshua R; Hébert, James R; Wirth, Michael D; Loprinzi, Paul D

    2018-03-01

    The objective of this study was to examine the association between dietary inflammatory potential and memory and cognitive functioning among a representative sample of the US older adult population. Cross-sectional data from the 2011-2012 and 2013-2014 National Health and Nutrition Examination Survey were utilised to identify an aggregate sample of adults 60-85 years of age (n 1723). Dietary inflammatory index (DII®) scores were calculated using 24-h dietary recall interviews. Three memory-related assessments were employed, including the Consortium to Establish a Registry for Alzheimer's disease (CERAD) Word Learning subset, the Animal Fluency test and the Digit Symbol Substitution Test (DSST). Inverse associations were observed between DII scores and the different memory parameters. Episodic memory (CERAD) (b adjusted=-0·39; 95 % CI -0·79, 0·00), semantic-based memory (Animal Fluency Test) (b adjusted=-1·18; 95 % CI -2·17, -0·20) and executive function and working-memory (DSST) (b adjusted=-2·80; 95 % CI -5·58, -0·02) performances were lowest among those with the highest mean DII score. Though inverse relationships were observed between DII scores and memory and cognitive functioning, future work is needed to further explore the neurobiological mechanisms underlying the complex relationship between inflammation-related dietary behaviour and memory and cognition.

  1. Memory-Based Quantity Discrimination in Coyotes (Canis latrans

    Directory of Open Access Journals (Sweden)

    Salif Mahamane

    2014-08-01

    Full Text Available Previous research has shown that the ratio between competing quantities of food significantly mediates coyotes‘ (Canis latrans ability to choose the larger of two food options. These previous findings are consistent with predictions made by Weber‘s Law and indicate that coyotes possess quantity discrimination abilities that are similar to other species. Importantly, coyotes‘ discrimination abilities are similar to domestic dogs (Canis lupus familiaris, indicating that quantitative discrimination may remain stable throughout certain species‘ evolution. However, while previously shown in two domestic dogs, it is unknown whether coyotes possess the ability to discriminate visual quantities from memory. Here, we address this question by displaying different ratios of food quantities to 14 coyotes before placing the choices out of sight. The coyotes were then allowed to select one of either non-visible food quantities. Coyotes‘ discrimination of quantity from memory does not follow Weber‘s Law in this particular task. These results suggest that working memory in coyotes may not be adapted to maintain information regarding quantity as well as in domestic dogs. The likelihood of a coyote‘s choosing the large option increased when it was presented with difficult ratios of food options first, before it was later presented with trials using more easily discriminable ratios, and when the large option was placed on one particular side. This suggests that learning or motivation increased across trials when coyotes experienced difficult ratios first, and that location of food may have been more salient in working memory than quantity of food.

  2. Working Memory Load and Reminder Effect on Event-Based Prospective Memory of High- and Low-Achieving Students in Math

    Science.gov (United States)

    Chen, Youzhen; Lian, Rong; Yang, Lixian; Liu, Jianrong; Meng, Yingfang

    2017-01-01

    The effects of working memory (WM) demand and reminders on an event-based prospective memory (PM) task were compared between students with low and high achievement in math. WM load (1- and 2-back tasks) was manipulated as a within-subject factor and reminder (with or without reminder) as a between-subject factor. Results showed that high-achieving…

  3. The memory effect of a pentacene field-effect transistor with a polarizable gate dielectric

    Science.gov (United States)

    Unni, K. N. N.; de Bettignies, Remi; Dabos-Seignon, Sylvie; Nunzi, Jean-Michel

    2004-06-01

    The nonvolatile transistor memory element is an interesting topic in organic electronics. In this case a memory cell consists of only one device where the stored information is written as a gate insulator polarization by a gate voltage pulse and read by the channel conductance control with channel voltage pulse without destruction of the stored information. Therefore such transistor could be the base of non-volatile non-destructively readable computer memory of extremely high density. Also devices with polarizable gate dielectrics can function more effectively in certain circuits. The effective threshold voltage Vt can be brought very close to zero, for applications where the available gate voltage is limited. Resonant and adaptive circuits can be tuned insitu by polarizing the gates. Poly(vinylidene fluoride), PVDF and its copolymer with trifluoroethylene P(VDF-TrFE) are among the best known and most widely used ferroelectric polymers. In this manuscript, we report new results of an organic FET, fabricated with pentacene as the active material and P(VDF-TrFE) as the gate insulator. Application of a writing voltage of -50 V for short duration results in significant change in the threshold voltage and remarkable increase in the drain current. The memory effect is retained over a period of 20 hours.

  4. Distinct neuroanatomical bases of episodic and semantic memory performance in Alzheimer's disease.

    Science.gov (United States)

    Hirni, Daniela I; Kivisaari, Sasa L; Monsch, Andreas U; Taylor, Kirsten I

    2013-04-01

    Alzheimer's disease (AD) neurofibrillary pathology begins in the medial perirhinal cortex (mPRC) before spreading to the entorhinal cortex (ERC) and hippocampus (HP) in anterior medial temporal lobe (aMTL). While the role of the ERC/HP complex in episodic memory formation is well-established, recent research suggests that the PRC is required to form semantic memories of individual objects. We aimed to test whether commonly used clinical measures of episodic and semantic memory are distinctly associated with ERC/HP and mPRC integrity, respectively, in healthy mature individuals and very early AD patients. One hundred thirty normal controls, 32 amnestic mild cognitive impairment patients, some of whom are in the earliest (i.e., preclinical) stages of AD, and ten early-stage AD patients received neuropsychological testing and high-resolution anatomic and diffusion MRI. Voxel-based regression analyses tested for regions where episodic memory (delayed recall scores on the California Verbal Learning and Rey Osterrieth Complex Figure Tests) and semantic memory (Boston Naming Test, category fluency) performance correlated with gray matter (GM) regions of interest and whole-brain fractional anisotropy (FA) voxel values. When controlling for the opposing memory performance, poorer episodic memory performance was associated with reduced bilateral ERC/HP GM volume and related white matter integrity, but not with mPRC GM volume. Poor semantic memory performance was associated with both reduced left mPRC and ERC/HP GM volume, as well as reduced FA values in white matter tracts leading to the PRC. These results indicate a partial division of labor within the aMTL and suggest that mPRC damage in very early AD may be detectable with common clinical tests of semantic memory if episodic memory performance is controlled. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The role of rostral prefrontal cortex in prospective memory: a voxel-based lesion study.

    Science.gov (United States)

    Volle, Emmanuelle; Gonen-Yaacovi, Gil; Costello, Angela de Lacy; Gilbert, Sam J; Burgess, Paul W

    2011-07-01

    Patients with lesions in rostral prefrontal cortex (PFC) often experience problems in everyday-life situations requiring multitasking. A key cognitive component that is critical in multitasking situations is prospective memory, defined as the ability to carry out an intended action after a delay period filled with unrelated activity. The few functional imaging studies investigating prospective memory have shown consistent activation in both medial and lateral rostral PFC but also in more posterior prefrontal regions and non-frontal regions. The aim of this study was to determine regions that are necessary for prospective memory performance, using the human lesion approach. We designed an experimental paradigm allowing us to assess time-based (remembering to do something at a particular time) and event-based (remembering to do something in a particular situation) prospective memory, using two types of material, words and pictures. Time estimation tasks and tasks controlling for basic attention, inhibition and multiple instructions processing were also administered. We examined brain-behaviour relationships with a voxelwise lesion method in 45 patients with focal brain lesions and 107 control subjects using this paradigm. The results showed that lesions in the right polar prefrontal region (in Brodmann area 10) were specifically associated with a deficit in time-based prospective memory tasks for both words and pictures. This deficit could not be explained by impairments in basic attention, detection, inhibition or multiple instruction processing, and there was also no deficit in event-based prospective memory conditions. In addition to their prospective memory difficulties, these polar prefrontal patients were significantly impaired in time estimation ability compared to other patients. The same region was found to be involved using both words and pictures, suggesting that right rostral PFC plays a material nonspecific role in prospective memory. This is the first

  6. Electrophysiological correlates of strategic monitoring in event-based and time-based prospective memory.

    Directory of Open Access Journals (Sweden)

    Giorgia Cona

    Full Text Available Prospective memory (PM is the ability to remember to accomplish an action when a particular event occurs (i.e., event-based PM, or at a specific time (i.e., time-based PM while performing an ongoing activity. Strategic Monitoring is one of the basic cognitive functions supporting PM tasks, and involves two mechanisms: a retrieval mode, which consists of maintaining active the intention in memory; and target checking, engaged for verifying the presence of the PM cue in the environment. The present study is aimed at providing the first evidence of event-related potentials (ERPs associated with time-based PM, and at examining differences and commonalities in the ERPs related to Strategic Monitoring mechanisms between event- and time-based PM tasks.The addition of an event-based or a time-based PM task to an ongoing activity led to a similar sustained positive modulation of the ERPs in the ongoing trials, mainly expressed over prefrontal and frontal regions. This modulation might index the retrieval mode mechanism, similarly engaged in the two PM tasks. On the other hand, two further ERP modulations were shown specifically in an event-based PM task. An increased positivity was shown at 400-600 ms post-stimulus over occipital and parietal regions, and might be related to target checking. Moreover, an early modulation at 130-180 ms post-stimulus seems to reflect the recruitment of attentional resources for being ready to respond to the event-based PM cue. This latter modulation suggests the existence of a third mechanism specific for the event-based PM; that is, the "readiness mode".

  7. Shape memory and pseudoelastic properties of Fe-Mn-Si and Ti-Ni based alloys

    International Nuclear Information System (INIS)

    Guenin, G.

    1997-01-01

    The aim of this presentation is to analyse and discuss some recent advances in shape memory and pseudoelastic properties of different alloys. Experimental work in connection with theoretical ones will be reviewed. The first part is devoted to the microstructural origin of shape memory properties of Fe-Mn-Si based alloys (γ-ε transformation); the second part is a synthetic analysis of the effects of thermomechanical treatments on shape memory and pseudoelastic effects in Ti-Ni alloys, with some focus on the behaviour of the R phase introduced. (orig.)

  8. Temporal Memory Reinforcement Learning for the Autonomous Micro-mobile Robot Based-behavior

    Institute of Scientific and Technical Information of China (English)

    Yang Yujun(杨玉君); Cheng Junshi; Chen Jiapin; Li Xiaohai

    2004-01-01

    This paper presents temporal memory reinforcement learning for the autonomous micro-mobile robot based-behavior. Human being has a memory oblivion process, i.e. the earlier to memorize, the earlier to forget, only the repeated thing can be remembered firmly. Enlightening forms this, and the robot need not memorize all the past states, at the same time economizes the EMS memory space, which is not enough in the MPU of our AMRobot. The proposed algorithm is an extension of the Q-learning, which is an incremental reinforcement learning method. The results of simulation have shown that the algorithm is valid.

  9. Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory

    International Nuclear Information System (INIS)

    Han, Jinhua; Wang, Wei; Ying, Jun; Xie, Wenfa

    2014-01-01

    An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized

  10. Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jinhua; Wang, Wei, E-mail: wwei99@jlu.edu.cn; Ying, Jun; Xie, Wenfa [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2014-01-06

    An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized.

  11. Feature-based and object-based attention orientation during short-term memory maintenance.

    Science.gov (United States)

    Ku, Yixuan

    2015-12-01

    Top-down attention biases the short-term memory (STM) processing at multiple stages. Orienting attention during the maintenance period of STM by a retrospective cue (retro-cue) strengthens the representation of the cued item and improves the subsequent STM performance. In a recent article, Backer et al. (Backer KC, Binns MA, Alain C. J Neurosci 35: 1307-1318, 2015) extended these findings from the visual to the auditory domain and combined electroencephalography to dissociate neural mechanisms underlying feature-based and object-based attention orientation. Both event-related potentials and neural oscillations explained the behavioral benefits of retro-cues and favored the theory that feature-based and object-based attention orientation were independent. Copyright © 2015 the American Physiological Society.

  12. Memory and learning behaviors mimicked in nanogranular SiO2-based proton conductor gated oxide-based synaptic transistors.

    Science.gov (United States)

    Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing

    2013-11-07

    In neuroscience, signal processing, memory and learning function are established in the brain by modifying ionic fluxes in neurons and synapses. Emulation of memory and learning behaviors of biological systems by nanoscale ionic/electronic devices is highly desirable for building neuromorphic systems or even artificial neural networks. Here, novel artificial synapses based on junctionless oxide-based protonic/electronic hybrid transistors gated by nanogranular phosphorus-doped SiO2-based proton-conducting films are fabricated on glass substrates by a room-temperature process. Short-term memory (STM) and long-term memory (LTM) are mimicked by tuning the pulse gate voltage amplitude. The LTM process in such an artificial synapse is due to the proton-related interfacial electrochemical reaction. Our results are highly desirable for building future neuromorphic systems or even artificial networks via electronic elements.

  13. Topographical memory for newly-learned maps is differentially affected by route-based versus landmark-based learning

    DEFF Research Database (Denmark)

    Beatty, Erin L.; Muller-Gass, Alexandra; Wojtarowicz, Dorothy

    2018-01-01

    on their ability to distinguish previously studied 'old' maps from completely unfamiliar 'new' maps under conditions of high and low working memory load in the functional MRI scanner. Viewing old versus new maps was associated with relatively greater activation in a distributed set of regions including bilateral...... inferior temporal gyrus - an important region for recognizing visual objects. Critically, whereas the performance of participants who had followed a route-based strategy dropped to chance level under high working memory load, participants who had followed a landmark-based strategy performed at above chance...... levels under both high and low working memory load - reflected by relatively greater activation in the left inferior parietal lobule (i.e. rostral part of the supramarginal gyrus known as area PFt). Our findings suggest that landmark-based learning may buffer against the effects of working memory load...

  14. Retrospective cues based on object features improve visual working memory performance in older adults.

    Science.gov (United States)

    Gilchrist, Amanda L; Duarte, Audrey; Verhaeghen, Paul

    2016-01-01

    Research with younger adults has shown that retrospective cues can be used to orient top-down attention toward relevant items in working memory. We examined whether older adults could take advantage of these cues to improve memory performance. Younger and older adults were presented with visual arrays of five colored shapes; during maintenance, participants were presented either with an informative cue based on an object feature (here, object shape or color) that would be probed, or with an uninformative, neutral cue. Although older adults were less accurate overall, both age groups benefited from the presentation of an informative, feature-based cue relative to a neutral cue. Surprisingly, we also observed differences in the effectiveness of shape versus color cues and their effects upon post-cue memory load. These results suggest that older adults can use top-down attention to remove irrelevant items from visual working memory, provided that task-relevant features function as cues.

  15. A simplified memory network model based on pattern formations

    Science.gov (United States)

    Xu, Kesheng; Zhang, Xiyun; Wang, Chaoqing; Liu, Zonghua

    2014-12-01

    Many experiments have evidenced the transition with different time scales from short-term memory (STM) to long-term memory (LTM) in mammalian brains, while its theoretical understanding is still under debate. To understand its underlying mechanism, it has recently been shown that it is possible to have a long-period rhythmic synchronous firing in a scale-free network, provided the existence of both the high-degree hubs and the loops formed by low-degree nodes. We here present a simplified memory network model to show that the self-sustained synchronous firing can be observed even without these two necessary conditions. This simplified network consists of two loops of coupled excitable neurons with different synaptic conductance and with one node being the sensory neuron to receive an external stimulus signal. This model can be further used to show how the diversity of firing patterns can be selectively formed by varying the signal frequency, duration of the stimulus and network topology, which corresponds to the patterns of STM and LTM with different time scales. A theoretical analysis is presented to explain the underlying mechanism of firing patterns.

  16. Optimal colour quality of LED clusters based on memory colours.

    Science.gov (United States)

    Smet, Kevin; Ryckaert, Wouter R; Pointer, Michael R; Deconinck, Geert; Hanselaer, Peter

    2011-03-28

    The spectral power distributions of tri- and tetrachromatic clusters of Light-Emitting-Diodes, composed of simulated and commercially available LEDs, were optimized with a genetic algorithm to maximize the luminous efficacy of radiation and the colour quality as assessed by the memory colour quality metric developed by the authors. The trade-off of the colour quality as assessed by the memory colour metric and the luminous efficacy of radiation was investigated by calculating the Pareto optimal front using the NSGA-II genetic algorithm. Optimal peak wavelengths and spectral widths of the LEDs were derived, and over half of them were found to be close to Thornton's prime colours. The Pareto optimal fronts of real LED clusters were always found to be smaller than those of the simulated clusters. The effect of binning on designing a real LED cluster was investigated and was found to be quite large. Finally, a real LED cluster of commercially available AlGaInP, InGaN and phosphor white LEDs was optimized to obtain a higher score on memory colour quality scale than its corresponding CIE reference illuminant.

  17. Differential effects of stress-induced cortisol responses on recollection and familiarity-based recognition memory.

    Science.gov (United States)

    McCullough, Andrew M; Ritchey, Maureen; Ranganath, Charan; Yonelinas, Andrew

    2015-09-01

    Stress-induced changes in cortisol can impact memory in various ways. However, the precise relationship between cortisol and recognition memory is still poorly understood. For instance, there is reason to believe that stress could differentially affect recollection-based memory, which depends on the hippocampus, and familiarity-based recognition, which can be supported by neocortical areas alone. Accordingly, in the current study we examined the effects of stress-related changes in cortisol on the processes underlying recognition memory. Stress was induced with a cold-pressor test after incidental encoding of emotional and neutral pictures, and recollection and familiarity-based recognition memory were measured one day later. The relationship between stress-induced cortisol responses and recollection was non-monotonic, such that subjects with moderate stress-related increases in cortisol had the highest levels of recollection. In contrast, stress-related cortisol responses were linearly related to increases in familiarity. In addition, measures of cortisol taken at the onset of the experiment showed that individuals with higher levels of pre-learning cortisol had lower levels of both recollection and familiarity. The results are consistent with the proposition that hippocampal-dependent memory processes such as recollection function optimally under moderate levels of stress, whereas more cortically-based processes such as familiarity are enhanced even with higher levels of stress. These results indicate that whether post-encoding stress improves or disrupts recognition memory depends on the specific memory process examined as well as the magnitude of the stress-induced cortisol response. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Retrospective Cues Based on Object Features Improve Visual Working Memory Performance in Older Adults

    OpenAIRE

    Gilchrist, Amanda L.; Duarte, Audrey; Verhaeghen, Paul

    2015-01-01

    Research with younger adults has shown that retrospective cues can be used to orient top-down attention toward relevant items in working memory. We examined whether older adults could take advantage of these cues to improve memory performance. Younger and older adults were presented with visual arrays of five colored shapes; during maintenance, participants were either presented with an informative cue based on an object feature (here, object shape or color) that would be probed, or with an u...

  19. Three-dimensional theory of quantum memories based on Λ-type atomic ensembles

    International Nuclear Information System (INIS)

    Zeuthen, Emil; Grodecka-Grad, Anna; Soerensen, Anders S.

    2011-01-01

    We develop a three-dimensional theory for quantum memories based on light storage in ensembles of Λ-type atoms, where two long-lived atomic ground states are employed. We consider light storage in an ensemble of finite spatial extent and we show that within the paraxial approximation the Fresnel number of the atomic ensemble and the optical depth are the only important physical parameters determining the quality of the quantum memory. We analyze the influence of these parameters on the storage of light followed by either forward or backward read-out from the quantum memory. We show that for small Fresnel numbers the forward memory provides higher efficiencies, whereas for large Fresnel numbers the backward memory is advantageous. The optimal light modes to store in the memory are presented together with the corresponding spin waves and outcoming light modes. We show that for high optical depths such Λ-type atomic ensembles allow for highly efficient backward and forward memories even for small Fresnel numbers F(greater-or-similar sign)0.1.

  20. No functional role of attention-based rehearsal in maintenance of spatial working memory representations.

    Science.gov (United States)

    Belopolsky, Artem V; Theeuwes, Jan

    2009-10-01

    The present study systematically examined the role of attention in maintenance of spatial representations in working memory as proposed by the attention-based rehearsal hypothesis [Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology--Human Perception and Performance, 24(3), 780-790]. Three main issues were examined. First, Experiments 1-3 demonstrated that inhibition and not facilitation of visual processing is often observed at the memorized location during the retention interval. This inhibition was caused by keeping a location in memory and not by the exogenous nature of the memory cue. Second, Experiment 4 showed that inhibition of the memorized location does not lead to any significant impairment in memory accuracy. Finally, Experiment 5 connected current results to the previous findings and demonstrated facilitation of processing at the memorized location. Importantly, facilitation of processing did not lead to more accurate memory performance. The present results challenge the functional role of attention in maintenance of spatial working memory representations.

  1. Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops

    Science.gov (United States)

    Murphy, Andrew; Averin, Dmitri V.; Bezryadin, Alexey

    2017-06-01

    The demand for low-dissipation nanoscale memory devices is as strong as ever. As Moore’s law is staggering, and the demand for a low-power-consuming supercomputer is high, the goal of making information processing circuits out of superconductors is one of the central goals of modern technology and physics. So far, digital superconducting circuits could not demonstrate their immense potential. One important reason for this is that a dense superconducting memory technology is not yet available. Miniaturization of traditional superconducting quantum interference devices is difficult below a few micrometers because their operation relies on the geometric inductance of the superconducting loop. Magnetic memories do allow nanometer-scale miniaturization, but they are not purely superconducting (Baek et al 2014 Nat. Commun. 5 3888). Our approach is to make nanometer scale memory cells based on the kinetic inductance (and not geometric inductance) of superconducting nanowire loops, which have already shown many fascinating properties (Aprili 2006 Nat. Nanotechnol. 1 15; Hopkins et al 2005 Science 308 1762). This allows much smaller devices and naturally eliminates magnetic-field cross-talk. We demonstrate that the vorticity, i.e., the winding number of the order parameter, of a closed superconducting loop can be used for realizing a nanoscale nonvolatile memory device. We demonstrate how to alter the vorticity in a controlled fashion by applying calibrated current pulses. A reliable read-out of the memory is also demonstrated. We present arguments that such memory can be developed to operate without energy dissipation.

  2. Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops

    International Nuclear Information System (INIS)

    Murphy, Andrew; Bezryadin, Alexey; Averin, Dmitri V

    2017-01-01

    The demand for low-dissipation nanoscale memory devices is as strong as ever. As Moore’s law is staggering, and the demand for a low-power-consuming supercomputer is high, the goal of making information processing circuits out of superconductors is one of the central goals of modern technology and physics. So far, digital superconducting circuits could not demonstrate their immense potential. One important reason for this is that a dense superconducting memory technology is not yet available. Miniaturization of traditional superconducting quantum interference devices is difficult below a few micrometers because their operation relies on the geometric inductance of the superconducting loop. Magnetic memories do allow nanometer-scale miniaturization, but they are not purely superconducting (Baek et al 2014 Nat. Commun. 5 3888). Our approach is to make nanometer scale memory cells based on the kinetic inductance (and not geometric inductance) of superconducting nanowire loops, which have already shown many fascinating properties (Aprili 2006 Nat. Nanotechnol. 1 15; Hopkins et al 2005 Science 308 1762). This allows much smaller devices and naturally eliminates magnetic-field cross-talk. We demonstrate that the vorticity, i.e., the winding number of the order parameter, of a closed superconducting loop can be used for realizing a nanoscale nonvolatile memory device. We demonstrate how to alter the vorticity in a controlled fashion by applying calibrated current pulses. A reliable read-out of the memory is also demonstrated. We present arguments that such memory can be developed to operate without energy dissipation. (paper)

  3. Preservation of memory-based automaticity in reading for older adults.

    Science.gov (United States)

    Rawson, Katherine A; Touron, Dayna R

    2015-12-01

    Concerning age-related effects on cognitive skill acquisition, the modal finding is that older adults do not benefit from practice to the same extent as younger adults in tasks that afford a shift from slower algorithmic processing to faster memory-based processing. In contrast, Rawson and Touron (2009) demonstrated a relatively rapid shift to memory-based processing in the context of a reading task. The current research extended beyond this initial study to provide more definitive evidence for relative preservation of memory-based automaticity in reading tasks for older adults. Younger and older adults read short stories containing unfamiliar noun phrases (e.g., skunk mud) followed by disambiguating information indicating the combination's meaning (either the normatively dominant meaning or an alternative subordinate meaning). Stories were repeated across practice blocks, and then the noun phrases were presented in novel sentence frames in a transfer task. Both age groups shifted from computation to retrieval after relatively few practice trials (as evidenced by convergence of reading times for dominant and subordinate items). Most important, both age groups showed strong evidence for memory-based processing of the noun phrases in the transfer task. In contrast, older adults showed minimal shifting to retrieval in an alphabet arithmetic task, indicating that the preservation of memory-based automaticity in reading was task-specific. Discussion focuses on important implications for theories of memory-based automaticity in general and for specific theoretical accounts of age effects on memory-based automaticity, as well as fruitful directions for future research. (c) 2015 APA, all rights reserved).

  4. Status and Prospects of ZnO-Based Resistive Switching Memory Devices

    Science.gov (United States)

    Simanjuntak, Firman Mangasa; Panda, Debashis; Wei, Kung-Hwa; Tseng, Tseung-Yuen

    2016-08-01

    In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges.

  5. Novel spintronics devices for memory and logic: prospects and challenges for room temperature all spin computing

    Science.gov (United States)

    Wang, Jian-Ping

    An energy efficient memory and logic device for the post-CMOS era has been the goal of a variety of research fields. The limits of scaling, which we expect to reach by the year 2025, demand that future advances in computational power will not be realized from ever-shrinking device sizes, but rather by innovative designs and new materials and physics. Magnetoresistive based devices have been a promising candidate for future integrated magnetic computation because of its unique non-volatility and functionalities. The application of perpendicular magnetic anisotropy for potential STT-RAM application was demonstrated and later has been intensively investigated by both academia and industry groups, but there is no clear path way how scaling will eventually work for both memory and logic applications. One of main reasons is that there is no demonstrated material stack candidate that could lead to a scaling scheme down to sub 10 nm. Another challenge for the usage of magnetoresistive based devices for logic application is its available switching speed and writing energy. Although a good progress has been made to demonstrate the fast switching of a thermally stable magnetic tunnel junction (MTJ) down to 165 ps, it is still several times slower than its CMOS counterpart. In this talk, I will review the recent progress by my research group and my C-SPIN colleagues, then discuss the opportunities, challenges and some potential path ways for magnetoresitive based devices for memory and logic applications and their integration for room temperature all spin computing system.

  6. Search for Non-Volatile Components with Low Polarity Characterizing Tobacco Leaves Using Liquid Chromatography / Atmospheric Pressure Chemical Ionization Mass Spectrometry Detector

    Directory of Open Access Journals (Sweden)

    Ishida Naoyuki

    2015-06-01

    Full Text Available Alors que les regards se sont principalement tournés sur les composants à faible polarité dans la résine de feuilles de tabac en raison de leur lien probable avec le goût et l’arôme des produits du tabac, l’absence d’une méthode praticable et d’un outil analytique a longtemps fait obstacle à l’identification des composants non-volatils à faible polarité. L’auteur a, en l’occurrence, porté son attention sur l’analyse recourant à la chromatographie en phase inverse non aqueuse couplée à un détecteur à barrettes de photodiodes et à un détecteur de spectrométrie de masse par ionisation chimique à pression atmosphérique. Cette analyse fut considérée applicable à la séparation des composants nonvolatils significatifs mais inconnus. Son application a permis, avec succès, de séparer, détecter et quantifier simultanément plus de 100 composants non-volatils présentant des polarités faibles et différenciées. Ces composantes furent, entre autres, des solanésols, des triacylglycérides, des phytostérols et des chlorophylles. Cependant, les données concernant les différences de composition parmi les diverses feuilles de tabac demeurent encore partielles et basées sur une analyse ciblée plutôt que globales et basées sur une analyse exhaustive. Aucune étude n’a été, à ce jour, accomplie qui recense les composants essentiels permettant de distinguer, parmi les feuilles de tabac, les différents goûts, arômes, variétés, cultivars, processus de séchage et régions de culture. Par conséquent, toutes les données de quantification ont été consolidées dans le but de former une matrice multidimensionnelle complète et ont subi un traitement statistique qui a mis en exergue les catégories et les composants-clés des diverses feuilles de tabac grâce à une analyse en composantes principales et une classification hiérarchique. Les feuilles de tabac ont, dans un premier temps, été ventilées en

  7. Memory and communication support in dementia: research-based strategies for caregivers.

    Science.gov (United States)

    Smith, Erin R; Broughton, Megan; Baker, Rosemary; Pachana, Nancy A; Angwin, Anthony J; Humphreys, Michael S; Mitchell, Leander; Byrne, Gerard J; Copland, David A; Gallois, Cindy; Hegney, Desley; Chenery, Helen J

    2011-03-01

    Difficulties with memory and communication are prominent and distressing features of dementia which impact on the person with dementia and contribute to caregiver stress and burden. There is a need to provide caregivers with strategies to support and maximize memory and communication abilities in people with dementia. In this project, a team of clinicians, researchers and educators in neuropsychology, psychogeriatrics, nursing and speech pathology translated research-based knowledge from these fields into a program of practical strategies for everyday use by family and professional caregivers. From the available research evidence, the project team identified compensatory or facilitative strategies to assist with common areas of difficulty, and structured these under the mnemonics RECAPS (for memory) and MESSAGE (for communication). This information was adapted for presentation in a DVD-based education program in accordance with known characteristics of effective caregiver education. The resultant DVD comprises (1) information on the nature and importance of memory and communication in everyday life; (2) explanations of common patterns of difficulty and preserved ability in memory and communication across the stages of dementia; (3) acted vignettes demonstrating the strategies, based on authentic samples of speech in dementia; and (4) scenarios to prompt the viewer to consider the benefits of using the strategies. Using a knowledge-translation framework, information and strategies can be provided to family and professional caregivers to help them optimize residual memory and communication in people with dementia. Future development of the materials, incorporating consumer feedback, will focus on methods for enabling wider dissemination.

  8. ERP correlates of source memory: unitized source information increases familiarity-based retrieval.

    Science.gov (United States)

    Diana, Rachel A; Van den Boom, Wijnand; Yonelinas, Andrew P; Ranganath, Charan

    2011-01-07

    Source memory tests typically require subjects to make decisions about the context in which an item was encoded and are thought to depend on recollection of details from the study episode. Although it is generally believed that familiarity does not contribute to source memory, recent behavioral studies have suggested that familiarity may also support source recognition when item and source information are integrated, or "unitized," during study (Diana, Yonelinas, and Ranganath, 2008). However, an alternative explanation of these behavioral findings is that unitization affects the manner in which recollection contributes to performance, rather than increasing familiarity-based source memory. To discriminate between these possibilities, we conducted an event-related potential (ERP) study testing the hypothesis that unitization increases the contribution of familiarity to source recognition. Participants studied associations between words and background colors using tasks that either encouraged or discouraged unitization. ERPs were recorded during a source memory test for background color. The results revealed two distinct neural correlates of source recognition: a frontally distributed positivity that was associated with familiarity-based source memory in the high-unitization condition only and a parietally distributed positivity that was associated with recollection-based source memory in both the high- and low-unitization conditions. The ERP and behavioral findings provide converging evidence for the idea that familiarity can contribute to source recognition, particularly when source information is encoded as an item detail. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Apolipoprotein ɛ4 breaks the association between declarative long-term memory and memory-based orienting of spatial attention in middle-aged individuals.

    Science.gov (United States)

    Salvato, Gerardo; Patai, Eva Z; McCloud, Tayla; Nobre, Anna C

    2016-09-01

    Apolipoprotein (APOE) ɛ4 genotype has been identified as a risk factor for late-onset Alzheimer disease (AD). The memory system is mostly involved in AD, and memory deficits represent its key feature. A growing body of studies has focused on the earlier identification of cognitive dysfunctions in younger and older APOE ɛ4 carriers, but investigation on middle-aged individuals remains rare. Here we sought to investigate if the APOE ɛ4 genotype modulates declarative memory and its influences on perception in the middle of the life span. We tested 60 middle-aged individuals recruited according to their APOE allele variants (ɛ3/ɛ3, ɛ3/ɛ4, ɛ4/ɛ4) on a long-term memory-based orienting of attention task. Results showed that the APOE ɛ4 genotype impaired neither explicit memory nor memory-based orienting of spatial attention. Interestingly, however, we found that the possession of the ɛ4 allele broke the relationship between declarative long-term memory and memory-guided orienting of visuo-spatial attention, suggesting an earlier modulation exerted by pure genetic characteristics on cognition. These findings are discussed in light of possible accelerated brain ageing in middle-aged ɛ4-carriers, and earlier structural changes in the brain occurring at this stage of the lifespan. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The Cognitive Processes Underlying Event-Based Prospective Memory In School Age Children and Young Adults: A Formal Model-Based Study

    OpenAIRE

    Smith, Rebekah E.; Bayen, Ute Johanna; Martin, Claudia

    2010-01-01

    Fifty 7-year-olds (29 female), 53 10-year-olds (29 female), and 36 young adults (19 female), performed a computerized event-based prospective memory task. All three groups differed significantly in prospective memory performance with adults showing the best performance and 7-year-olds the poorest performance. We used a formal multinomial process tree model of event-based prospective memory to decompose age differences in cognitive processes that jointly contribute to prospective memory perfor...

  11. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2016-09-01

    aerodynamic lens based on the design of Liu et al. [35] and Zhang et al. [36, 37]. The lens focuses the particles into a narrow beam , which then enters...6. TEST DESIGN ......................................................................................................................... 23 ii...26 Figure 17. Diagram of multi-filter sampler connected to 4-way splitter in Figure 16

  12. Normal aging affects movement execution but not visual motion working memory and decision-making delay during cue-dependent memory-based smooth-pursuit.

    Science.gov (United States)

    Fukushima, Kikuro; Barnes, Graham R; Ito, Norie; Olley, Peter M; Warabi, Tateo

    2014-07-01

    Aging affects virtually all functions including sensory/motor and cognitive activities. While retinal image motion is the primary input for smooth-pursuit, its efficiency/accuracy depends on cognitive processes. Elderly subjects exhibit gain decrease during initial and steady-state pursuit, but reports on latencies are conflicting. Using a cue-dependent memory-based smooth-pursuit task, we identified important extra-retinal mechanisms for initial pursuit in young adults including cue information priming and extra-retinal drive components (Ito et al. in Exp Brain Res 229:23-35, 2013). We examined aging effects on parameters for smooth-pursuit using the same tasks. Elderly subjects were tested during three task conditions as previously described: memory-based pursuit, simple ramp-pursuit just to follow motion of a single spot, and popping-out of the correct spot during memory-based pursuit to enhance retinal image motion. Simple ramp-pursuit was used as a task that did not require visual motion working memory. To clarify aging effects, we then compared the results with the previous young subject data. During memory-based pursuit, elderly subjects exhibited normal working memory of cue information. Most movement-parameters including pursuit latencies differed significantly between memory-based pursuit and simple ramp-pursuit and also between young and elderly subjects. Popping-out of the correct spot motion was ineffective for enhancing initial pursuit in elderly subjects. However, the latency difference between memory-based pursuit and simple ramp-pursuit in individual subjects, which includes decision-making delay in the memory task, was similar between the two groups. Our results suggest that smooth-pursuit latencies depend on task conditions and that, although the extra-retinal mechanisms were functional for initial pursuit in elderly subjects, they were less effective.

  13. Martensitic transformation in Co-based ferromagnetic shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Kopeček, Jaromír; Yokaichiya, F.; Laufek, F.; Jarošová, Markéta; Jurek, Karel; Drahokoupil, Jan; Sedláková-Ignácová, Silvia; Molnár, Peter; Heczko, Oleg

    2012-01-01

    Roč. 122, č. 3 (2012), s. 475-477 ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR GAP107/10/0824; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : microstructure * shape memory alloys * neutron diffraction * cobalt alloys Subject RIV: JG - Metallurgy Impact factor: 0.531, year: 2012

  14. Computational Model-Based Prediction of Human Episodic Memory Performance Based on Eye Movements

    Science.gov (United States)

    Sato, Naoyuki; Yamaguchi, Yoko

    Subjects' episodic memory performance is not simply reflected by eye movements. We use a ‘theta phase coding’ model of the hippocampus to predict subjects' memory performance from their eye movements. Results demonstrate the ability of the model to predict subjects' memory performance. These studies provide a novel approach to computational modeling in the human-machine interface.

  15. High speed vision processor with reconfigurable processing element array based on full-custom distributed memory

    Science.gov (United States)

    Chen, Zhe; Yang, Jie; Shi, Cong; Qin, Qi; Liu, Liyuan; Wu, Nanjian

    2016-04-01

    In this paper, a hybrid vision processor based on a compact full-custom distributed memory for near-sensor high-speed image processing is proposed. The proposed processor consists of a reconfigurable processing element (PE) array, a row processor (RP) array, and a dual-core microprocessor. The PE array includes two-dimensional processing elements with a compact full-custom distributed memory. It supports real-time reconfiguration between the PE array and the self-organized map (SOM) neural network. The vision processor is fabricated using a 0.18 µm CMOS technology. The circuit area of the distributed memory is reduced markedly into 1/3 of that of the conventional memory so that the circuit area of the vision processor is reduced by 44.2%. Experimental results demonstrate that the proposed design achieves correct functions.

  16. Volterra series based predistortion for broadband RF power amplifiers with memory effects

    Institute of Scientific and Technical Information of China (English)

    Jin Zhe; Song Zhihuan; He Jiaming

    2008-01-01

    RF power amplifiers(PAs)are usually considered as memoryless devices in most existing predistortion techniques.However,in broadband communication systems,such as WCDMA,the PA memory effects are significant,and memoryless predistortion cannot linearize the PAs effectively.After analyzing the PA memory effects,a novel predistortion method based on the simplified Volterra series is proposed to linearize broadband RF PAs with memory effects.The indirect learning architecture is adopted to design the predistortion scheme and the recursive least squares algorithm with forgetting factor is applied to identify the parameters of the predistorter.Simulation results show that the proposed predistortion method can compensate the nonlinear distortion and memory effects of broadband RF PAs effectively.

  17. Ultra Low Voltage Class AB Switched Current Memory Cells Based on Floating Gate Transistors

    DEFF Research Database (Denmark)

    Mucha, Igor

    1999-01-01

    current memory cells were designed using a CMOS process with threshold voltages V-T0n = \\V-T0p\\ = 0.9 V for the n- and p-channel devices. Both hand calculations and PSPICE simulations showed that the designed example switched current memory cell allowed a maximum signal range better than +/-18 mu......A proposal for a class AB switched current memory cell, suitable for ultra-low-voltage applications is presented. The proposal employs transistors with floating gates, allowing to build analog building blocks for ultralow supply voltage operation also in CMOS processes with high threshold voltages....... This paper presents the theoretical basis for the design of "floating-gate'' switched current memory cells by giving a detailed description and analysis of the most important impacts degrading the performance of the cells. To support the theoretical assumptions circuits based on "floating-gate'' switched...

  18. Intrinsic Ge nanowire nonvolatile memory based on a simple core–shell structure

    International Nuclear Information System (INIS)

    Chen, Wen-Hua; Liu, Chang-Hai; Li, Qin-Liang; Sun, Qi-Jun; Liu, Jie; Gao, Xu; Sun, Xuhui; Wang, Sui-Dong

    2014-01-01

    Intrinsic Ge nanowires (NWs) with a Ge core covered by a thick Ge oxide shell are utilized to achieve nanoscale field-effect transistor nonvolatile memories, which show a large memory window and a high ON/OFF ratio with good retention. The retainable surface charge trapping is considered to be responsible for the memory effect, and the Ge oxide shell plays a key role as the insulating tunneling dielectric which must be thick enough to prevent stored surface charges from leaking out. Annealing the device in air is demonstrated to be a simple and effective way to attain thick Ge oxide on the Ge NW surface, and the Ge-NW-based memory corresponding to thick Ge oxide exhibits a much better retention capability compared with the case of thin Ge oxide. (paper)

  19. Feature-Based Visual Short-Term Memory Is Widely Distributed and Hierarchically Organized.

    Science.gov (United States)

    Dotson, Nicholas M; Hoffman, Steven J; Goodell, Baldwin; Gray, Charles M

    2018-06-15

    Feature-based visual short-term memory is known to engage both sensory and association cortices. However, the extent of the participating circuit and the neural mechanisms underlying memory maintenance is still a matter of vigorous debate. To address these questions, we recorded neuronal activity from 42 cortical areas in monkeys performing a feature-based visual short-term memory task and an interleaved fixation task. We find that task-dependent differences in firing rates are widely distributed throughout the cortex, while stimulus-specific changes in firing rates are more restricted and hierarchically organized. We also show that microsaccades during the memory delay encode the stimuli held in memory and that units modulated by microsaccades are more likely to exhibit stimulus specificity, suggesting that eye movements contribute to visual short-term memory processes. These results support a framework in which most cortical areas, within a modality, contribute to mnemonic representations at timescales that increase along the cortical hierarchy. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A High-Performance Optical Memory Array Based on Inhomogeneity of Organic Semiconductors.

    Science.gov (United States)

    Pei, Ke; Ren, Xiaochen; Zhou, Zhiwen; Zhang, Zhichao; Ji, Xudong; Chan, Paddy Kwok Leung

    2018-03-01

    Organic optical memory devices keep attracting intensive interests for diverse optoelectronic applications including optical sensors and memories. Here, flexible nonvolatile optical memory devices are developed based on the bis[1]benzothieno[2,3-d;2',3'-d']naphtho[2,3-b;6,7-b']dithiophene (BBTNDT) organic field-effect transistors with charge trapping centers induced by the inhomogeneity (nanosprouts) of the organic thin film. The devices exhibit average mobility as high as 7.7 cm 2 V -1 s -1 , photoresponsivity of 433 A W -1 , and long retention time for more than 6 h with a current ratio larger than 10 6 . Compared with the standard floating gate memory transistors, the BBTNDT devices can reduce the fabrication complexity, cost, and time. Based on the reasonable performance of the single device on a rigid substrate, the optical memory transistor is further scaled up to a 16 × 16 active matrix array on a flexible substrate with operating voltage less than 3 V, and it is used to map out 2D optical images. The findings reveal the potentials of utilizing [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivatives as organic semiconductors for high-performance optical memory transistors with a facile structure. A detailed study on the charge trapping mechanism in the derivatives of BTBT materials is also provided, which is closely related to the nanosprouts formed inside the organic active layer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. PDA: A coupling of knowledge and memory for case-based reasoning

    Science.gov (United States)

    Bharwani, S.; Walls, J.; Blevins, E.

    1988-01-01

    Problem solving in most domains requires reference to past knowledge and experience whether such knowledge is represented as rules, decision trees, networks or any variant of attributed graphs. Regardless of the representational form employed, designers of expert systems rarely make a distinction between the static and dynamic aspects of the system's knowledge base. The current paper clearly distinguishes between knowledge-based and memory-based reasoning where the former in its most pure sense is characterized by a static knowledge based resulting in a relatively brittle expert system while the latter is dynamic and analogous to the functions of human memory which learns from experience. The paper discusses the design of an advisory system which combines a knowledge base consisting of domain vocabulary and default dependencies between concepts with a dynamic conceptual memory which stores experimental knowledge in the form of cases. The case memory organizes past experience in the form of MOPs (memory organization packets) and sub-MOPs. Each MOP consists of a context frame and a set of indices. The context frame contains information about the features (norms) common to all the events and sub-MOPs indexed under it.

  2. Comprehensive profiling and marker identification in non-volatile citrus oil residues by mass spectrometry and nuclear magnetic resonance.

    Science.gov (United States)

    Marti, Guillaume; Boccard, Julien; Mehl, Florence; Debrus, Benjamin; Marcourt, Laurence; Merle, Philippe; Delort, Estelle; Baroux, Lucie; Sommer, Horst; Rudaz, Serge; Wolfender, Jean-Luc

    2014-05-01

    The detailed characterization of cold-pressed lemon oils (CPLOs) is of great importance for the flavor and fragrance (F&F) industry. Since a control of authenticity by standard analytical techniques can be bypassed using elaborated adulterated oils to pretend a higher quality, a combination of advanced orthogonal methods has been developed. The present study describes a combined metabolomic approach based on UHPLC-TOF-MS profiling and (1)H NMR fingerprinting to highlight metabolite differences on a set of representative samples used in the F&F industry. A new protocol was set up and adapted to the use of CPLO residues. Multivariate analysis based on both fingerprinting methods showed significant chemical variations between Argentinian and Italian samples. Discriminating markers identified in mixtures belong to furocoumarins, flavonoids, terpenoids and fatty acids. Quantitative NMR revealed low citropten and high bergamottin content in Italian samples. The developed metabolomic approach applied to CPLO residues gives some new perspectives for authenticity assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Memory as the "whole brain work": a large-scale model based on "oscillations in super-synergy".

    Science.gov (United States)

    Başar, Erol

    2005-01-01

    According to recent trends, memory depends on several brain structures working in concert across many levels of neural organization; "memory is a constant work-in progress." The proposition of a brain theory based on super-synergy in neural populations is most pertinent for the understanding of this constant work in progress. This report introduces a new model on memory basing on the processes of EEG oscillations and Brain Dynamics. This model is shaped by the following conceptual and experimental steps: 1. The machineries of super-synergy in the whole brain are responsible for formation of sensory-cognitive percepts. 2. The expression "dynamic memory" is used for memory processes that evoke relevant changes in alpha, gamma, theta and delta activities. The concerted action of distributed multiple oscillatory processes provides a major key for understanding of distributed memory. It comprehends also the phyletic memory and reflexes. 3. The evolving memory, which incorporates reciprocal actions or reverberations in the APLR alliance and during working memory processes, is especially emphasized. 4. A new model related to "hierarchy of memories as a continuum" is introduced. 5. The notions of "longer activated memory" and "persistent memory" are proposed instead of long-term memory. 6. The new analysis to recognize faces emphasizes the importance of EEG oscillations in neurophysiology and Gestalt analysis. 7. The proposed basic framework called "Memory in the Whole Brain Work" emphasizes that memory and all brain functions are inseparable and are acting as a "whole" in the whole brain. 8. The role of genetic factors is fundamental in living system settings and oscillations and accordingly in memory, according to recent publications. 9. A link from the "whole brain" to "whole body," and incorporation of vegetative and neurological system, is proposed, EEG oscillations and ultraslow oscillations being a control parameter.

  4. Building a columnar database on shared main memory-based storage

    OpenAIRE

    Tinnefeld, Christian

    2014-01-01

    In the field of disk-based parallel database management systems exists a great variety of solutions based on a shared-storage or a shared-nothing architecture. In contrast, main memory-based parallel database management systems are dominated solely by the shared-nothing approach as it preserves the in-memory performance advantage by processing data locally on each server. We argue that this unilateral development is going to cease due to the combination of the following three trends: a) Nowad...

  5. Shape memory polymers based on uniform aliphatic urethane networks

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  6. Investigating Phase Transform Behavior in Indium Selenide Based RAM and Its Validation as a Memory Element

    Directory of Open Access Journals (Sweden)

    Swapnil Sourav

    2016-01-01

    Full Text Available Phase transform properties of Indium Selenide (In2Se3 based Random Access Memory (RAM have been explored in this paper. Phase change random access memory (PCRAM is an attractive solid-state nonvolatile memory that possesses potential to meet various current technology demands of memory design. Already reported PCRAM models are mainly based upon Germanium-Antimony-Tellurium (Ge2Sb2Te5 or GST materials as their prime constituents. However, PCRAM using GST material lacks some important memory attributes required for memory elements such as larger resistance margin between the highly resistive amorphous and highly conductive crystalline states in phase change materials. This paper investigates various electrical and compositional properties of the Indium Selenide (In2Se3 material and also draws comparison with its counterpart mainly focusing on phase transform properties. To achieve this goal, a SPICE model of In2Se3 based PCRAM model has been reported in this work. The reported model has been also validated to act as a memory cell by associating it with a read/write circuit proposed in this work. Simulation results demonstrate impressive retentivity and low power consumption by requiring a set pulse of 208 μA for a duration of 100 μs to set the PCRAM in crystalline state. Similarly, a reset pulse of 11.7 μA for a duration of 20 ns can set the PCRAM in amorphous state. Modeling of In2Se3 based PCRAM has been done in Verilog-A and simulation results have been extensively verified using SPICE simulator.

  7. Spironolactone release from liquisolid formulations prepared with Capryol™ 90, Solutol® HS-15 and Kollicoat® SR 30 D as non-volatile liquid vehicles.

    Science.gov (United States)

    Elkordy, Amal Ali; Tan, Xin Ning; Essa, Ebtessam Ahmed

    2013-02-01

    The purpose of the study is to enhance dissolution of spironolactone as a model hydrophobic drug through application of liquisolid technology. Spironolactone is prepared as liquisolid formulations, and its dissolution property is evaluated and compared to that of conventional spironolactone tablets and pure spironolactone. Three non-volatile liquid vehicles were used in the design of spironolactone liquisolid formulations, Capryol™ 90, Synperonic® PE/L61 in combination with Solutol® HS-15 at a ratio of 1:1, and Kollicoat® SR 30 D. Spironolactone liquisolid formulations were tested according to British Pharmacopoeia (BP) quality control tests. Furthermore, the prepared liquisolid powder formulations were evaluated via differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) and scanning electron microscopy. Also, liquisolid formulations were subjected to testing of storage stability at high relative humidity. The results indicated that most of liquisolid tablets met the BP requirements. Dissolution results indicate that release of spironolactone was significantly increased (PSolutol® HS-15 showed highest dissolution. DSC thermograms from liquisolid formulations revealed that drug endothermic peak was disappeared after processing. Dissolution, DSC and FT-IR data after storage demonstrated that there were no significant changes in the formulations after storage. In conclusion, the liquid vehicles used within spironolactone liquisolid formulations enhanced drug dissolution rate. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Volatile and non-volatile radiolysis products in irradiated multilayer coextruded food-packaging films containing a buried layer of recycled low-density polyethylene.

    Science.gov (United States)

    Chytiri, S; Goulas, A E; Badeka, A; Riganakos, K A; Kontominas, M G

    2005-12-01

    The effects of gamma-irradiation (5-60 kGy) on radiolysis products and sensory changes of experimental five-layer food-packaging films were determined. Films contained a middle buried layer of recycled low-density polyethylene (LDPE) comprising 25-50% by weight (bw) of the multilayer structure. Respective films containing 100% virgin LDPE as the buried layer were used as controls. Under realistic polymer/food simulant contact conditions during irradiation, a large number of primary and secondary radiolysis products (hydrocarbons, aldehydes, ketones, alcohols, carboxylic acids) were produced. These compounds were detected in the food simulant after contact with all films tested, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food preservation). The type and concentration of radiolysis products increased progressively with increasing dose. Generally, there were no significant differences in radiolysis products between samples containing a buried layer of recycled LDPE and those containing virgin LDPE (all absorbed doses), indicating the good barrier properties of external virgin polymer layers. Volatile and non-volatile compounds produced during irradiation affected the sensory properties of potable water after contact with packaging films. Taste transfer to water was observed mainly at higher doses and was more noticeable for multilayer structures containing recycled LDPE, even though differences were slight.

  9. A chiral-based magnetic memory device without a permanent magnet.

    Science.gov (United States)

    Ben Dor, Oren; Yochelis, Shira; Mathew, Shinto P; Naaman, Ron; Paltiel, Yossi

    2013-01-01

    Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices.

  10. Virtual reality-based prospective memory training program for people with acquired brain injury.

    Science.gov (United States)

    Yip, Ben C B; Man, David W K

    2013-01-01

    Acquired brain injuries (ABI) may display cognitive impairments and lead to long-term disabilities including prospective memory (PM) failure. Prospective memory serves to remember to execute an intended action in the future. PM problems would be a challenge to an ABI patient's successful community reintegration. While retrospective memory (RM) has been extensively studied, treatment programs for prospective memory are rarely reported. The development of a treatment program for PM, which is considered timely, can be cost-effective and appropriate to the patient's environment. A 12-session virtual reality (VR)-based cognitive rehabilitation program was developed using everyday PM activities as training content. 37 subjects were recruited to participate in a pretest-posttest control experimental study to evaluate its treatment effectiveness. Results suggest that significantly better changes were seen in both VR-based and real-life PM outcome measures, related cognitive attributes such as frontal lobe functions and semantic fluency. VR-based training may be well accepted by ABI patients as encouraging improvement has been shown. Large-scale studies of a virtual reality-based prospective memory (VRPM) training program are indicated.

  11. Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices

    Science.gov (United States)

    Chen, C.; Gao, S.; Zeng, F.; Tang, G. S.; Li, S. Z.; Song, C.; Fu, H. D.; Pan, F.

    2013-07-01

    Oxides-based resistive switching memory induced by oxygen ions migration is attractive for future nonvolatile memories. Numerous works had focused their attentions on the sandwiched oxide materials for depressing the characteristic variations, but the comprehensive studies of the dependence of electrodes on the migration behavior of oxygen ions are overshadowed. Here, we investigated the interaction of various metals (Ni, Co, Al, Ti, Zr, and Hf) with oxygen atoms at the metal/Ta2O5 interface under electric stress and explored the effect of top electrode on the characteristic variations of Ta2O5-based memory device. It is demonstrated that chemically inert electrodes (Ni and Co) lead to the scattering switching characteristics and destructive gas bubbles, while the highly chemically active metals (Hf and Zr) formed a thick and dense interfacial intermediate oxide layer at the metal/Ta2O5 interface, which also degraded the resistive switching behavior. The relatively chemically active metals (Al and Ti) can absorb oxygen ions from the Ta2O5 film and avoid forming the problematic interfacial layer, which is benefit to the formation of oxygen vacancies composed conduction filaments in Ta2O5 film thus exhibit the minimum variations of switching characteristics. The clarification of oxygen ions migration behavior at the interface can lead further optimization of resistive switching performance in Ta2O5-based memory device and guide the rule of electrode selection for other oxide-based resistive switching memories.

  12. Integration of ammonia-plasma-functionalized graphene nanodiscs as charge trapping centers for nonvolatile memory applications

    KAUST Repository

    Wang, Jer-Chyi

    2016-11-23

    Graphene nanodiscs (GNDs), functionalized using NH3 plasma, as charge trapping sites (CTSs) for non-volatile memory applications have been investigated in this study. The fabrication process relies on the patterning of Au nanoparticles (Au-NPs), whose thicknesses are tuned to adjust the GND density and size upon etching. A GND density as high as 8 × 1011 cm−2 and a diameter of approximately 20 nm are achieved. The functionalization of GNDs by NH3 plasma creates Nsingle bondH+ functional groups that act as CTSs, as observed by Raman and Fourier transform infrared spectroscopy. This inherently enhances the density of CTSs in the GNDs, as a result, the memory window becomes more than 2.4 V and remains stable after 104 operating cycles. The charge loss is less than 10% for a 10-year data retention testing, making this low-temperature process suitable for low-cost non-volatile memory applications on flexible substrates.

  13. A new approach for two-terminal electronic memory devices - Storing information on silicon nanowires

    Science.gov (United States)

    Saranti, Konstantina; Alotaibi, Sultan; Paul, Shashi

    2016-06-01

    The work described in this paper focuses on the utilisation of silicon nanowires as the information storage element in flash-type memory devices. Silicon nanostructures have attracted attention due to interesting electrical and optical properties, and their potential integration into electronic devices. A detailed investigation of the suitability of silicon nanowires as the charge storage medium in two-terminal non-volatile memory devices are presented in this report. The deposition of the silicon nanostructures was carried out at low temperatures (less than 400 °C) using a previously developed a novel method within our research group. Two-terminal non-volatile (2TNV) memory devices and metal-insulator-semiconductor (MIS) structures containing the silicon nanowires were fabricated and an in-depth study of their characteristics was carried out using current-voltage and capacitance techniques.

  14. Threshold switching uniformity in In2Se3 nanowire-based phase change memory

    International Nuclear Information System (INIS)

    Chen Jian; Du Gang; Liu Xiao-Yan

    2015-01-01

    The uniformity of threshold voltage and threshold current in the In 2 Se 3 nanowire-based phase change memory (PCM) devices is investigated. Based on the trap-limited transport model, amorphous layer thickness, trap density, and trap depth are considered to clarify their influences upon the threshold voltage and threshold current through simulations. (paper)

  15. Internalizing versus Externalizing Control: Different Ways to Perform a Time-Based Prospective Memory Task

    Science.gov (United States)

    Huang, Tracy; Loft, Shayne; Humphreys, Michael S.

    2014-01-01

    "Time-based prospective memory" (PM) refers to performing intended actions at a future time. Participants with time-based PM tasks can be slower to perform ongoing tasks (costs) than participants without PM tasks because internal control is required to maintain the PM intention or to make prospective-timing estimates. However, external…

  16. Towards Terabit Memories

    Science.gov (United States)

    Hoefflinger, Bernd

    Memories have been the major yardstick for the continuing validity of Moore's law. In single-transistor-per-Bit dynamic random-access memories (DRAM), the number of bits per chip pretty much gives us the number of transistors. For decades, DRAM's have offered the largest storage capacity per chip. However, DRAM does not scale any longer, both in density and voltage, severely limiting its power efficiency to 10 fJ/b. A differential DRAM would gain four-times in density and eight-times in energy. Static CMOS RAM (SRAM) with its six transistors/cell is gaining in reputation because it scales well in cell size and operating voltage so that its fundamental advantage of speed, non-destructive read-out and low-power standby could lead to just 2.5 electrons/bit in standby and to a dynamic power efficiency of 2aJ/b. With a projected 2020 density of 16 Gb/cm², the SRAM would be as dense as normal DRAM and vastly better in power efficiency, which would mean a major change in the architecture and market scenario for DRAM versus SRAM. Non-volatile Flash memory have seen two quantum jumps in density well beyond the roadmap: Multi-Bit storage per transistor and high-density TSV (through-silicon via) technology. The number of electrons required per Bit on the storage gate has been reduced since their first realization in 1996 by more than an order of magnitude to 400 electrons/Bit in 2010 for a complexity of 32Gbit per chip at the 32 nm node. Chip stacking of eight chips with TSV has produced a 32GByte solid-state drive (SSD). A stack of 32 chips with 2 b/cell at the 16 nm node will reach a density of 2.5 Terabit/cm². Non-volatile memory with a density of 10 × 10 nm²/Bit is the target for widespread development. Phase-change memory (PCM) and resistive memory (RRAM) lead in cell density, and they will reach 20 Gb/cm² in 2D and higher with 3D chip stacking. This is still almost an order-of-magnitude less than Flash. However, their read-out speed is ~10-times faster, with as yet

  17. The Effects of Feature-Based Priming and Visual Working Memory on Oculomotor Capture

    Science.gov (United States)

    Silvis, Jeroen D.; Belopolsky, Artem V.; Murris, Jozua W. I.; Donk, Mieke

    2015-01-01

    Recently, it has been demonstrated that objects held in working memory can influence rapid oculomotor selection. This has been taken as evidence that perceptual salience can be modified by active working memory representations. The goal of the present study was to examine whether these results could also be caused by feature-based priming. In two experiments, participants were asked to saccade to a target line segment of a certain orientation that was presented together with a to-be-ignored distractor. Both objects were given a task-irrelevant color that varied per trial. In a secondary task, a color had to be memorized, and that color could either match the color of the target, match the color of the distractor, or it did not match the color of any of the objects in the search task. The memory task was completed either after the search task (Experiment 1), or before it (Experiment 2). The results showed that in both experiments the memorized color biased oculomotor selection. Eye movements were more frequently drawn towards objects that matched the memorized color, irrespective of whether the memory task was completed after (Experiment 1) or before (Experiment 2) the search task. This bias was particularly prevalent in short-latency saccades. The results show that early oculomotor selection performance is not only affected by properties that are actively maintained in working memory but also by those previously memorized. Both working memory and feature priming can cause early biases in oculomotor selection. PMID:26566137

  18. Fear memory in a neurodevelopmental model of schizophrenia based on the postnatal blockade of NMDA receptors.

    Science.gov (United States)

    Latusz, Joachim; Radaszkiewicz, Aleksandra; Bator, Ewelina; Wędzony, Krzysztof; Maćkowiak, Marzena

    2017-02-01

    Epidemiological data have indicated that memory impairment is observed during adolescence in groups at high risk for schizophrenia and might precede the appearance of schizophrenia symptoms in adulthood. In the present study, we used a neurodevelopmental model of schizophrenia based on the postnatal blockade of N-methyl-d-aspartate (NMDA) receptors in rats to investigate fear memory in adolescence and adulthood. The rats were treated with increasing doses of CGP 37849 (CGP), a competitive antagonist of the NMDA receptor (1.25mg/kg on days 1, 3, 6, 9; 2.5mg/kg on days 12, 15, 18 and 5mg/kg on day 21). Fear memory was analysed in delay and trace fear conditioning. Sensorimotor gating deficit, which is another cognitive symptom of schizophrenia, was also determined in adolescent and adult CGP-treated rats. Postnatal CGP administration disrupted cue- and context-dependent fear memory in adolescent rats in both delay and trace conditioning. In contrast, CGP administration evoked impairment only in cue-dependent fear memory in rats exposed to trace but not delay fear conditioning. The postnatal blockade of NMDA receptors induced sensorimotor gating deficits in adult rats but not in adolescent rats. The postnatal blockade of NMDA receptors induced fear memory impairment in adolescent rats before the onset of neurobehavioral deficits associated with schizophrenia. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  19. The Effects of Feature-Based Priming and Visual Working Memory on Oculomotor Capture.

    Science.gov (United States)

    Silvis, Jeroen D; Belopolsky, Artem V; Murris, Jozua W I; Donk, Mieke

    2015-01-01

    Recently, it has been demonstrated that objects held in working memory can influence rapid oculomotor selection. This has been taken as evidence that perceptual salience can be modified by active working memory representations. The goal of the present study was to examine whether these results could also be caused by feature-based priming. In two experiments, participants were asked to saccade to a target line segment of a certain orientation that was presented together with a to-be-ignored distractor. Both objects were given a task-irrelevant color that varied per trial. In a secondary task, a color had to be memorized, and that color could either match the color of the target, match the color of the distractor, or it did not match the color of any of the objects in the search task. The memory task was completed either after the search task (Experiment 1), or before it (Experiment 2). The results showed that in both experiments the memorized color biased oculomotor selection. Eye movements were more frequently drawn towards objects that matched the memorized color, irrespective of whether the memory task was completed after (Experiment 1) or before (Experiment 2) the search task. This bias was particularly prevalent in short-latency saccades. The results show that early oculomotor selection performance is not only affected by properties that are actively maintained in working memory but also by those previously memorized. Both working memory and feature priming can cause early biases in oculomotor selection.

  20. The Effects of Feature-Based Priming and Visual Working Memory on Oculomotor Capture.

    Directory of Open Access Journals (Sweden)

    Jeroen D Silvis

    Full Text Available Recently, it has been demonstrated that objects held in working memory can influence rapid oculomotor selection. This has been taken as evidence that perceptual salience can be modified by active working memory representations. The goal of the present study was to examine whether these results could also be caused by feature-based priming. In two experiments, participants were asked to saccade to a target line segment of a certain orientation that was presented together with a to-be-ignored distractor. Both objects were given a task-irrelevant color that varied per trial. In a secondary task, a color had to be memorized, and that color could either match the color of the target, match the color of the distractor, or it did not match the color of any of the objects in the search task. The memory task was completed either after the search task (Experiment 1, or before it (Experiment 2. The results showed that in both experiments the memorized color biased oculomotor selection. Eye movements were more frequently drawn towards objects that matched the memorized color, irrespective of whether the memory task was completed after (Experiment 1 or before (Experiment 2 the search task. This bias was particularly prevalent in short-latency saccades. The results show that early oculomotor selection performance is not only affected by properties that are actively maintained in working memory but also by those previously memorized. Both working memory and feature priming can cause early biases in oculomotor selection.

  1. Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia.

    Science.gov (United States)

    Fisher, Melissa; Holland, Christine; Merzenich, Michael M; Vinogradov, Sophia

    2009-07-01

    Impaired verbal memory in schizophrenia is a key rate-limiting factor for functional outcome, does not respond to currently available medications, and shows only modest improvement after conventional behavioral remediation. The authors investigated an innovative approach to the remediation of verbal memory in schizophrenia, based on principles derived from the basic neuroscience of learning-induced neuroplasticity. The authors report interim findings in this ongoing study. Fifty-five clinically stable schizophrenia subjects were randomly assigned to either 50 hours of computerized auditory training or a control condition using computer games. Those receiving auditory training engaged in daily computerized exercises that placed implicit, increasing demands on auditory perception through progressively more difficult auditory-verbal working memory and verbal learning tasks. Relative to the control group, subjects who received active training showed significant gains in global cognition, verbal working memory, and verbal learning and memory. They also showed reliable and significant improvement in auditory psychophysical performance; this improvement was significantly correlated with gains in verbal working memory and global cognition. Intensive training in early auditory processes and auditory-verbal learning results in substantial gains in verbal cognitive processes relevant to psychosocial functioning in schizophrenia. These gains may be due to a training method that addresses the early perceptual impairments in the illness, that exploits intact mechanisms of repetitive practice in schizophrenia, and that uses an intensive, adaptive training approach.

  2. The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity

    Science.gov (United States)

    Veselkova, N. G.; Sokolov, I. V.

    2017-07-01

    Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field-medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg-Langevin equations for atomic variables in the cases of a large and a small number of atoms.

  3. Music-Based Memory Enhancement in Alzheimer’s Disease: Promise and Limitations

    Science.gov (United States)

    Simmons-Stern, Nicholas R.; Deason, Rebecca G.; Brandler, Brian J.; Frustace, Bruno S.; O’Connor, Maureen K.; Ally, Brandon A.; Budson, Andrew E.

    2012-01-01

    In a previous study (Simmons-Stern, Budson, & Ally 2010), we found that patients with Alzheimer’s disease (AD) better recognized visually presented lyrics when the lyrics were also sung rather than spoken at encoding. The present study sought to further investigate the effects of music on memory in patients with AD by making the content of the song lyrics relevant for the daily life of an older adult and by examining how musical encoding alters several different aspects of episodic memory. Patients with AD and healthy older adults studied visually presented novel song lyrics related to instrumental activities of daily living (IADL) that were accompanied by either a sung or a spoken recording. Overall, participants performed better on a memory test of general lyric content for lyrics that were studied sung as compared to spoken. However, on a memory test of specific lyric content, participants performed equally well for sung and spoken lyrics. We interpret these results in terms of a dual-process model of recognition memory such that the general content questions represent a familiarity-based representation that is preferentially sensitive to enhancement via music, while the specific content questions represent a recollection-based representation unaided by musical encoding. Additionally, in a test of basic recognition memory for the audio stimuli, patients with AD demonstrated equal discrimination for sung and spoken stimuli. We propose that the perceptual distinctiveness of musical stimuli enhanced metamemorial awareness in AD patients via a non-selective distinctiveness heuristic, thereby reducing false recognition while at the same time reducing true recognition and eliminating the mnemonic benefit of music. These results are discussed in the context of potential music-based memory enhancement interventions for the care of patients with AD. PMID:23000133

  4. Music-based memory enhancement in Alzheimer's disease: promise and limitations.

    Science.gov (United States)

    Simmons-Stern, Nicholas R; Deason, Rebecca G; Brandler, Brian J; Frustace, Bruno S; O'Connor, Maureen K; Ally, Brandon A; Budson, Andrew E

    2012-12-01

    In a previous study (Simmons-Stern, Budson & Ally, 2010), we found that patients with Alzheimer's disease (AD) better recognized visually presented lyrics when the lyrics were also sung rather than spoken at encoding. The present study sought to further investigate the effects of music on memory in patients with AD by making the content of the song lyrics relevant for the daily life of an older adult and by examining how musical encoding alters several different aspects of episodic memory. Patients with AD and healthy older adults studied visually presented novel song lyrics related to instrumental activities of daily living (IADL) that were accompanied by either a sung or a spoken recording. Overall, participants performed better on a memory test of general lyric content for lyrics that were studied sung as compared to spoken. However, on a memory test of specific lyric content, participants performed equally well for sung and spoken lyrics. We interpret these results in terms of a dual-process model of recognition memory such that the general content questions represent a familiarity-based representation that is preferentially sensitive to enhancement via music, while the specific content questions represent a recollection-based representation unaided by musical encoding. Additionally, in a test of basic recognition memory for the audio stimuli, patients with AD demonstrated equal discrimination for sung and spoken stimuli. We propose that the perceptual distinctiveness of musical stimuli enhanced metamemorial awareness in AD patients via a non-selective distinctiveness heuristic, thereby reducing false recognition while at the same time reducing true recognition and eliminating the mnemonic benefit of music. These results are discussed in the context of potential music-based memory enhancement interventions for the care of patients with AD. Published by Elsevier Ltd.

  5. MRI-based volumetry correlates of autobiographical memory in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Nathalie Philippi

    Full Text Available The aim of the present volumetric study was to explore the neuro-anatomical correlates of autobiographical memory loss in Alzheimer's patients and healthy elderly, in terms of the delay of retention, with a particular interest in the medial temporal lobe structures. Fifteen patients in early stages of the disease and 11 matched control subjects were included in the study. To assess autobiographical memory and the effect of the retention delay, a modified version of the Crovitz test was used according to five periods of life. Autobiographical memory deficits were correlated to local atrophy via structural MRI using Voxel Based Morphometry. We used a 'lateralized index' to compare the relative contribution of hippocampal sub-regions (anterior vs posterior, left vs right according to the different periods of life. Our results confirm the involvement of the hippocampus proper in autobiographical memory retrieval for both recent and very remote encoding periods, with larger aspect for the very remote period on the left side. Contrary to the prominent left-sided involvement for the young adulthood period, the implication of the right hippocampus prevails for the more recent periods and decreases with the remoteness of the memories, which might be associated with the visuo-spatial processing of the memories. Finally, we suggest the existence of a rostrocaudal gradient depending on the retention duration, with left anterior aspects specifically related to retrieval deficits of remote memories from the young adulthood period, whereas posterior aspects would result of simultaneous encoding and/or consolidation and retrieval deficit of more recent memories.

  6. Materials selection for oxide-based resistive random access memories

    International Nuclear Information System (INIS)

    Guo, Yuzheng; Robertson, John

    2014-01-01

    The energies of atomic processes in resistive random access memories (RRAMs) are calculated for four typical oxides, HfO 2 , TiO 2 , Ta 2 O 5 , and Al 2 O 3 , to define a materials selection process. O vacancies have the lowest defect formation energy in the O-poor limit and dominate the processes. A band diagram defines the operating Fermi energy and O chemical potential range. It is shown how the scavenger metal can be used to vary the O vacancy formation energy, via controlling the O chemical potential, and the mean Fermi energy. The high endurance of Ta 2 O 5 RRAM is related to its more stable amorphous phase and the adaptive lattice rearrangements of its O vacancy

  7. Materials selection for oxide-based resistive random access memories

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuzheng; Robertson, John [Engineering Department, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2014-12-01

    The energies of atomic processes in resistive random access memories (RRAMs) are calculated for four typical oxides, HfO{sub 2}, TiO{sub 2}, Ta{sub 2}O{sub 5}, and Al{sub 2}O{sub 3}, to define a materials selection process. O vacancies have the lowest defect formation energy in the O-poor limit and dominate the processes. A band diagram defines the operating Fermi energy and O chemical potential range. It is shown how the scavenger metal can be used to vary the O vacancy formation energy, via controlling the O chemical potential, and the mean Fermi energy. The high endurance of Ta{sub 2}O{sub 5} RRAM is related to its more stable amorphous phase and the adaptive lattice rearrangements of its O vacancy.

  8. Eight-logic memory cell based on multiferroic junctions

    International Nuclear Information System (INIS)

    Yang Feng; Zhou, Y C; Tang, M H; Liu Fen; Ma Ying; Zheng, X J; Zhao, W F; Xu, H Y; Sun, Z H

    2009-01-01

    A model is proposed for a device combining a multiferroic tunnel junction with a magnetoelectric (ME) film in which the magnetic configuration is controlled by the electric field. Calculations embodying the Green's function approach show that the magnetic polarization can be switched on and off by an electric field in the ME film due to the effect of elastic coupling interaction. Using a model including the spin-filter effect and screening of polarization charges, we have produced eight logic states of tunnelling resistance in the tunnel junction and have obtained corresponding laws that control them. The results provide some insights into the realization of an eight-logic memory cell. (fast track communication)

  9. More than a filter: Feature-based attention regulates the distribution of visual working memory resources.

    Science.gov (United States)

    Dube, Blaire; Emrich, Stephen M; Al-Aidroos, Naseem

    2017-10-01

    Across 2 experiments we revisited the filter account of how feature-based attention regulates visual working memory (VWM). Originally drawing from discrete-capacity ("slot") models, the filter account proposes that attention operates like the "bouncer in the brain," preventing distracting information from being encoded so that VWM resources are reserved for relevant information. Given recent challenges to the assumptions of discrete-capacity models, we investigated whether feature-based attention plays a broader role in regulating memory. Both experiments used partial report tasks in which participants memorized the colors of circle and square stimuli, and we provided a feature-based goal by manipulating the likelihood that 1 shape would be probed over the other across a range of probabilities. By decomposing participants' responses using mixture and variable-precision models, we estimated the contributions of guesses, nontarget responses, and imprecise memory representations to their errors. Consistent with the filter account, participants were less likely to guess when the probed memory item matched the feature-based goal. Interestingly, this effect varied with goal strength, even across high probabilities where goal-matching information should always be prioritized, demonstrating strategic control over filter strength. Beyond this effect of attention on which stimuli were encoded, we also observed effects on how they were encoded: Estimates of both memory precision and nontarget errors varied continuously with feature-based attention. The results offer support for an extension to the filter account, where feature-based attention dynamically regulates the distribution of resources within working memory so that the most relevant items are encoded with the greatest precision. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Feasibility study of molecular memory device based on DNA using methylation to store information

    International Nuclear Information System (INIS)

    Jiang, Liming; Al-Dirini, Feras; Qiu, Wanzhi; Skafidas, Efstratios; Hossain, Faruque M.; Evans, Robin

    2016-01-01

    DNA, because of its robustness and dense information storage capability, has been proposed as a potential candidate for next-generation storage media. However, encoding information into the DNA sequence requires molecular synthesis technology, which to date is costly and prone to synthesis errors. Reading the DNA strand information is also complex. Ideally, DNA storage will provide methods for modifying stored information. Here, we conduct a feasibility study investigating the use of the DNA 5-methylcytosine (5mC) methylation state as a molecular memory to store information. We propose a new 1-bit memory device and study, based on the density functional theory and non-equilibrium Green's function method, the feasibility of electrically reading the information. Our results show that changes to methylation states lead to changes in the peak of negative differential resistance which can be used to interrogate memory state. Our work demonstrates a new memory concept based on methylation state which can be beneficial in the design of next generation DNA based molecular electronic memory devices.

  11. Feasibility study of molecular memory device based on DNA using methylation to store information

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Liming; Al-Dirini, Feras [Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010 (Australia); Center for Neural Engineering (CfNE), The University of Melbourne, Carlton 3053 (Australia); National ICT Australia, The University of Melbourne, Parkville 3010 (Australia); Qiu, Wanzhi; Skafidas, Efstratios, E-mail: sskaf@unimelb.edu.au [Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010 (Australia); Center for Neural Engineering (CfNE), The University of Melbourne, Carlton 3053 (Australia); Hossain, Faruque M. [Center for Neural Engineering (CfNE), The University of Melbourne, Carlton 3053 (Australia); Evans, Robin [Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010 (Australia)

    2016-07-14

    DNA, because of its robustness and dense information storage capability, has been proposed as a potential candidate for next-generation storage media. However, encoding information into the DNA sequence requires molecular synthesis technology, which to date is costly and prone to synthesis errors. Reading the DNA strand information is also complex. Ideally, DNA storage will provide methods for modifying stored information. Here, we conduct a feasibility study investigating the use of the DNA 5-methylcytosine (5mC) methylation state as a molecular memory to store information. We propose a new 1-bit memory device and study, based on the density functional theory and non-equilibrium Green's function method, the feasibility of electrically reading the information. Our results show that changes to methylation states lead to changes in the peak of negative differential resistance which can be used to interrogate memory state. Our work demonstrates a new memory concept based on methylation state which can be beneficial in the design of next generation DNA based molecular electronic memory devices.

  12. Spin Orbit Interaction Engineering for beyond Spin Transfer Torque memory

    Science.gov (United States)

    Wang, Kang L.

    Spin transfer torque memory uses electron current to transfer the spin torque of electrons to switch a magnetic free layer. This talk will address an alternative approach to energy efficient non-volatile spintronics through engineering of spin orbit interaction (SOC) and the use of spin orbit torque (SOT) by the use of electric field to improve further the energy efficiency of switching. I will first discuss the engineering of interface SOC, which results in the electric field control of magnetic moment or magneto-electric (ME) effect. Magnetic memory bits based on this ME effect, referred to as magnetoelectric RAM (MeRAM), is shown to have orders of magnitude lower energy dissipation compared with spin transfer torque memory (STTRAM). Likewise, interests in spin Hall as a result of SOC have led to many advances. Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures have been shown to arise from the large SOC. The large SOC is also shown to give rise to the large SOT. Due to the presence of an intrinsic extraordinarily strong SOC and spin-momentum lock, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. In particular, we will show the magnetization switching in a chromium-doped magnetic TI bilayer heterostructure by charge current. A giant SOT of more than three orders of magnitude larger than those reported in heavy metals is also obtained. This large SOT is shown to come from the spin-momentum locked surface states of TI, which may further lead to innovative low power applications. I will also describe other related physics of SOC at the interface of anti-ferromagnetism/ferromagnetic structure and show the control exchange bias by electric field for high speed memory switching. The work was in part supported by ERFC-SHINES, NSF, ARO, TANMS, and FAME.

  13. Time-based prospective memory in young children-Exploring executive functions as a developmental mechanism.

    Science.gov (United States)

    Kretschmer, Anett; Voigt, Babett; Friedrich, Sylva; Pfeiffer, Kathrin; Kliegel, Matthias

    2014-01-01

    The present study investigated time-based prospective memory (PM) during the transition from kindergarten/preschool to school age and applied mediation models to test the impact of executive functions (working memory, inhibitory control) and time monitoring on time-based PM development. Twenty-five preschool (age: M = 5.75, SD = 0.28) and 22 primary school children (age: M = 7.83, SD = 0.39) participated. To examine time-based PM, children had to play a computer-based driving game requiring them to drive a car on a road without hitting others cars (ongoing task) and to refill the car regularly according to a fuel gauge, which serves as clock equivalent (PM task). The level of gas that was still left in the fuel gauge was not displayed on the screen and children had to monitor it via a button press (time monitoring). Results revealed a developmental increase in time-based PM performance from preschool to school age. Applying the mediation models, only working memory was revealed to influence PM development. Neither inhibitory control alone nor the mediation paths leading from both executive functions to time monitoring could explain the link between age and time-based PM. Thus, results of the present study suggest that working memory may be one key cognitive process driving the developmental growth of time-based PM during the transition from preschool to school age.

  14. Is there pre-attentive memory-based comparison of pitch?

    Science.gov (United States)

    Jacobsen, T; Schröger, E

    2001-07-01

    The brain's responsiveness to changes in sound frequency has been demonstrated by an overwhelming number of studies. Change detection occurs unintentionally and automatically. It is generally assumed that this brain response, the so-called mismatch negativity (MMN) of the event-related brain potential or evoked magnetic field, is based on the outcome of a memory-comparison mechanism rather than being due to a differential state of refractoriness of tonotopically organized cortical neurons. To the authors' knowledge, however, there is no entirely compelling evidence for this belief. An experimental protocol controlling for refractoriness effects was developed and a true memory-comparison-based brain response to pitch change was demonstrated.

  15. Three-terminal resistive switching memory in a transparent vertical-configuration device

    International Nuclear Information System (INIS)

    Ungureanu, Mariana; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2014-01-01

    The resistive switching phenomenon has attracted much attention recently for memory applications. It describes the reversible change in the resistance of a dielectric between two non-volatile states by the application of electrical pulses. Typical resistive switching memories are two-terminal devices formed by an oxide layer placed between two metal electrodes. Here, we report on the fabrication and operation of a three-terminal resistive switching memory that works as a reconfigurable logic component and offers an increased logic density on chip. The three-terminal memory device we present is transparent and could be further incorporated in transparent computing electronic technologies

  16. Analysis and modeling of resistive switching mechanism oriented to fault tolerance of resistive memory based on memristor

    International Nuclear Information System (INIS)

    Huang Da; Wu Jun-Jie; Tang Yu-Hua

    2014-01-01

    With the progress of the semiconductor industry, resistive memories, especially the memristor, have drawn increasing attention. The resistive memory based on memrsitor has not been commercialized mainly because of data error. Currently, there are more studies focused on fault tolerance of resistive memory. This paper studies the resistive switching mechanism which may have time-varying characteristics. Resistive switching mechanism is analyzed and its respective circuit model is established based on the memristor Spice model

  17. Operation mode switchable charge-trap memory based on few-layer MoS2

    Science.gov (United States)

    Hou, Xiang; Yan, Xiao; Liu, Chunsen; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2018-03-01

    Ultrathin layered two-dimensional (2D) semiconductors like MoS2 and WSe2 have received a lot of attention because of their excellent electrical properties and potential applications in electronic devices. We demonstrate a charge-trap memory with two different tunable operation modes based on a few-layer MoS2 channel and an Al2O3/HfO2/Al2O3 charge storage stack. Our device shows excellent memory properties under the traditional three-terminal operation mode. More importantly, unlike conventional charge-trap devices, this device can also realize the memory performance with just two terminals (drain and source) because of the unique atomic crystal electrical characteristics. Under the two-terminal operation mode, the erase/program current ratio can reach up to 104 with a stable retention property. Our study indicates that the conventional charge-trap memory cell can also realize the memory performance without the gate terminal based on novel two dimensional materials, which is meaningful for low power consumption and high integration density applications.

  18. Systematic Development Strategy for Smart Devices Based on Shape-Memory Polymers

    Directory of Open Access Journals (Sweden)

    Andrés Díaz Lantada

    2017-10-01

    Full Text Available Shape-memory polymers are outstanding “smart” materials, which can perform important geometrical changes, when activated by several types of external stimuli, and which can be applied to several emerging engineering fields, from aerospace applications, to the development of biomedical devices. The fact that several shape-memory polymers can be structured in an additive way is an especially noteworthy advantage, as the development of advanced actuators with complex geometries for improved performance can be achieved, if adequate design and manufacturing considerations are taken into consideration. Present study presents a review of challenges and good practices, leading to a straightforward methodology (or integration of strategies, for the development of “smart” actuators based on shape-memory polymers. The combination of computer-aided design, computer-aided engineering and additive manufacturing technologies is analyzed and applied to the complete development of interesting shape-memory polymer-based actuators. Aspects such as geometrical design and optimization, development of the activation system, selection of the adequate materials and related manufacturing technologies, training of the shape-memory effect, final integration and testing are considered, as key processes of the methodology. Current trends, including the use of low-cost 3D and 4D printing, and main challenges, including process eco-efficiency and biocompatibility, are also discussed and their impact on the proposed methodology is considered.

  19. Write/erase time of nanoseconds in quantum dot based memory structures

    International Nuclear Information System (INIS)

    Nowozin, Tobias; Marent, Andreas; Geller, Martin; Bimberg, Dieter

    2008-01-01

    We have developed a novel charge-storage memory concept based on III-V semiconductor quantum dots (QDs) which has a number of fundamental advantages over conventional Si/SiO 2 floating gate memories (Flash): material-tunable and voltage-tunable barriers for improved intrinsic speed and/or storage time and high endurance. To investigate the potential of this new memory concept we have determined intrinsic write/erase times in memory structures based on InAs/GaAs and GaSb/GaAs QDs using capacitance-voltage spectroscopy. We measured a write time below 15 ns independent of the localization energy (i.e. the storage time) of the QDs. This write time is more than three orders of magnitude faster than in a Flash cell and already below the write time of a dynamic random access memory (DRAM). The erase time was determined to be 42 ns for InAs/GaAs QDs and 1.5 ms for GaSb/GaAs QDs for applied electric fields of 166 kV/cm and 206 kV/cm, respectively. From these results we derive an erase time of 1 ns in GaSb QDs for an electric field of 330 kV/cm

  20. The influence of thickness on memory characteristic based on nonvolatile tuning behavior in poly(N-vinylcarbazole) films

    International Nuclear Information System (INIS)

    Sun, Yanmei; Ai, Chunpeng; Lu, Junguo; Li, Lei; Wen, Dianzhong; Bai, Xuduo

    2016-01-01

    The memory characteristic based on nonvolatile tuning behavior in indium tin oxide/poly(N-vinylcarbazole)/aluminum (ITO/PVK/Al) was investigated, the different memory behaviors were first observed in PVK film as the film thickness changing. By control of PVK film thickness with different spinning speeds, the nonvolatile behavior of ITO/PVK/Al sandwich structure can be tuned in a controlled manner. Obviously different nonvolatile behaviors, such as (i) flash memory behavior and (ii) write-once-read-many times (WORM) memory behavior are from the current–voltage (I–V) characteristics of the PVK films. The results suggest that the film thickness plays a key part in determining the memory type of the PVK. - Highlights: • The different memory behaviors were observed in PVK film. • The nonvolatile behavior of ITO/PVK/Al sandwich structure can be tuned. • The film thickness plays a key part in determining the memory type of the PVK.

  1. Different cortical mechanisms for spatial vs. feature-based attentional selection in visual working memory

    Directory of Open Access Journals (Sweden)

    Anna Heuer

    2016-08-01

    Full Text Available The limited capacity of visual working memory necessitates attentional mechanisms that selectively update and maintain only the most task-relevant content. Psychophysical experiments have shown that the retroactive selection of memory content can be based on visual properties such as location or shape, but the neural basis for such differential selection is unknown. For example, it is not known if there are different cortical modules specialized for spatial versus feature-based mnemonic attention, in the same way that has been demonstrated for attention to perceptual input. Here, we used transcranial magnetic stimulation (TMS to identify areas in human parietal and occipital cortex involved in the selection of objects from memory based on cues to their location (spatial information or their shape (featural information. We found that TMS over the supramarginal gyrus (SMG selectively facilitated spatial selection, whereas TMS over the lateral occipital cortex selectively enhanced feature-based selection for remembered objects in the contralateral visual field. Thus, different cortical regions are responsible for spatial vs. feature-based selection of working memory representations. Since the same regions are involved in attention to external events, these new findings indicate overlapping mechanisms for attentional control over perceptual input and mnemonic representations.

  2. Low-resistivity C54-TiSi2 as a sidewall-confinement nanoscale electrode for three-dimensional vertical resistive memory

    KAUST Repository

    Duran Retamal, Jose Ramon; Kang, Chen-Fang; Yang, Po-Kang; Lee, Chuan-Pei; Lien, Der-Hsien; Ho, Chih-Hsiang; He, Jr-Hau

    2014-01-01

    A three-dimensional (3D) double-layer HfO2-based vertical-resistive random access memory (VRRAM) with low-resistivity C54-TiSi2 as horizontal electrodes is demonstrated using complementary metal-oxide semiconductor processing. The electrical measurements show bipolar resistive switching by using C54-TiSi2 as electrodes for resistive switching (RS) applications. The statistical analysis exhibits cycle-to-cycle and cell-to-cell stable non-volatile properties with robust endurance (100 cycles) and long term data retention (104s), suggesting that the ultrathin sidewall of C54-TiSi2 nanoscale electrodes serve to confine and stabilize the random nature of the conducting nanofilaments. The superior RS characteristics demonstrated here highlight the applicability of C54-TiSi2 sidewall-confinement nanoscale electrodes to VRRAM.

  3. Low-resistivity C54-TiSi2 as a sidewall-confinement nanoscale electrode for three-dimensional vertical resistive memory

    KAUST Repository

    Duran Retamal, Jose Ramon

    2014-11-03

    A three-dimensional (3D) double-layer HfO2-based vertical-resistive random access memory (VRRAM) with low-resistivity C54-TiSi2 as horizontal electrodes is demonstrated using complementary metal-oxide semiconductor processing. The electrical measurements show bipolar resistive switching by using C54-TiSi2 as electrodes for resistive switching (RS) applications. The statistical analysis exhibits cycle-to-cycle and cell-to-cell stable non-volatile properties with robust endurance (100 cycles) and long term data retention (104s), suggesting that the ultrathin sidewall of C54-TiSi2 nanoscale electrodes serve to confine and stabilize the random nature of the conducting nanofilaments. The superior RS characteristics demonstrated here highlight the applicability of C54-TiSi2 sidewall-confinement nanoscale electrodes to VRRAM.

  4. Foliar Essential Oil Glands of Eucalyptus Subgenus Eucalyptus (Myrtaceae Are a Rich Source of Flavonoids and Related Non-Volatile Constituents.

    Directory of Open Access Journals (Sweden)

    Jason Q D Goodger

    Full Text Available The sub-dermal secretory cavities (glands embedded within the leaves of Eucalyptus (Myrtaceae were once thought to be the exclusive repositories of monoterpene and sesquiterpene oils. Recent research has debunked this theory and shown that abundant non-volatile compounds also occur within foliar glands. In particular, glands of four species in subgenus Eucalyptus contain the biologically active flavanone pinocembrin. Pinocembrin shows great promise as a pharmaceutical and is predominantly plant-sourced, so Eucalyptus could be a potential commercial source of such compounds. To explore this we quantified and assessed the purity of pinocembrin in glands of 11 species of E. subg. Eucalyptus using Electro-Spray Ionisation Liquid Chromatography Mass Spectrometry of acetonitrile extracts and Gas Chromatography Mass Spectrometry analyses of hexane extracts of isolated glands which were free from other leaf tissues. Our results showed that the glands of subgenus Eucalyptus contain numerous flavanones that are structurally related to pinocembrin and often present in much greater abundance. The maximum concentration of pinocembrin was 2 mg g-1 dry leaf found in E. stellulata, whereas that of dimethylpinocembrin (5,7-dimethoxyflavanone was 10 mg g-1 in E. oreades and that of pinostrobin (5-hydroxy-7-methoxyflavanone was 12 mg g-1 in E. nitida. We also found that the flavanones are exclusively located within the foliar glands rather than distributed throughout leaf tissues. The flavanones differ from the non-methylated pinocembrin in the degree and positions of methylation. This finding is particularly important given the attractiveness of methylated flavonoids as pharmaceuticals and therapeutics. Another important finding was that glands of some members of the subgenus also contain flavanone O-glucosides and flavanone-β-triketone conjugates. In addition, glands contain free β-triketones, β-triketone heterodimers and chromone C-glucosides. Therefore, the

  5. Foliar Essential Oil Glands of Eucalyptus Subgenus Eucalyptus (Myrtaceae) Are a Rich Source of Flavonoids and Related Non-Volatile Constituents.

    Science.gov (United States)

    Goodger, Jason Q D; Seneratne, Samiddhi L; Nicolle, Dean; Woodrow, Ian E

    2016-01-01

    The sub-dermal secretory cavities (glands) embedded within the leaves of Eucalyptus (Myrtaceae) were once thought to be the exclusive repositories of monoterpene and sesquiterpene oils. Recent research has debunked this theory and shown that abundant non-volatile compounds also occur within foliar glands. In particular, glands of four species in subgenus Eucalyptus contain the biologically active flavanone pinocembrin. Pinocembrin shows great promise as a pharmaceutical and is predominantly plant-sourced, so Eucalyptus could be a potential commercial source of such compounds. To explore this we quantified and assessed the purity of pinocembrin in glands of 11 species of E. subg. Eucalyptus using Electro-Spray Ionisation Liquid Chromatography Mass Spectrometry of acetonitrile extracts and Gas Chromatography Mass Spectrometry analyses of hexane extracts of isolated glands which were free from other leaf tissues. Our results showed that the glands of subgenus Eucalyptus contain numerous flavanones that are structurally related to pinocembrin and often present in much greater abundance. The maximum concentration of pinocembrin was 2 mg g-1 dry leaf found in E. stellulata, whereas that of dimethylpinocembrin (5,7-dimethoxyflavanone) was 10 mg g-1 in E. oreades and that of pinostrobin (5-hydroxy-7-methoxyflavanone) was 12 mg g-1 in E. nitida. We also found that the flavanones are exclusively located within the foliar glands rather than distributed throughout leaf tissues. The flavanones differ from the non-methylated pinocembrin in the degree and positions of methylation. This finding is particularly important given the attractiveness of methylated flavonoids as pharmaceuticals and therapeutics. Another important finding was that glands of some members of the subgenus also contain flavanone O-glucosides and flavanone-β-triketone conjugates. In addition, glands contain free β-triketones, β-triketone heterodimers and chromone C-glucosides. Therefore, the foliar glands

  6. Comparison of volatile and non-volatile metabolites in rice wine fermented by Koji inoculated with Saccharomycopsis fibuligera and Aspergillus oryzae.

    Science.gov (United States)

    Son, Eun Yeong; Lee, Sang Mi; Kim, Minjoo; Seo, Jeong-Ah; Kim, Young-Suk

    2018-07-01

    This study investigated volatile and nonvolatile metabolite profiles of makgeolli (a traditional rice wine in Korea) fermented by koji inoculated with Saccharomycopsis fibuligera and/or Aspergillus oryzae. The enzyme activities in koji were also examined to determine their effects on the formation of metabolites. The contents of all 18 amino acids detected were the highest in makgeolli fermented by S. fibuligera CN2601-09, and increased after combining with A. oryzae CN1102-08, unlike the contents of most fatty acids. On the other hand, major volatile metabolites were fusel alcohols, acetate esters, and ethyl esters. The contents of most fusel alcohols and acetate esters were the highest in makgeolli fermented by S. fibuligera CN2601-09, for which the protease activity was the highest, leading to the largest amounts of amino acods. The makgeolli samples fermented only by koji inoculated with S. fibuligera could be discriminated on PCA plots from the makgeolli samples fermented in combination with A. oryzae. In the case of nonvolatile metabolites, all amino acids and some metabolites such as xylose, 2-methylbenzoic acid, and oxalic acid contributed mainly to the characteristics of makgeolli fermented by koji inoculated with S. fibuligera and A. oryzae. These results showed that the formations of volatile and nonvolatile metabolites in makgeolli can be significantly affected by microbial strains with different enzyme activities in koji. To our knowledge, this study is the first report on the effects of S. fibuligera strains on the formation of volatile and non-volatile metabolites in rice wine, facilitating their use in brewing rice wine. Copyright © 2018. Published by Elsevier Ltd.

  7. Ketamine alters lateral prefrontal oscillations in a rule-based working memory task.

    Science.gov (United States)

    Ma, Liya; Skoblenick, Kevin; Johnston, Kevin; Everling, Stefan

    2018-02-02

    Acute administration of N-methyl-D-aspartate receptor (NMDAR) antagonists in healthy humans and animals produces working memory deficits similar to those observed in schizophrenia. However, it is unclear whether they also lead to altered low-frequency (rule-based prosaccade and antisaccade working memory task, both before and after systemic injections of a subanesthetic dose (delay periods and inter-trial intervals. It also increased task-related alpha-band activities, likely reflecting compromised attention. Beta-band oscillations may be especially relevant to working memory processes, as stronger beta power weakly but significantly predicted shorter saccadic reaction time. Also in beta band, ketamine reduced the performance-related oscillation as well as the rule information encoded in the spectral power. Ketamine also reduced rule information in the spike-field phase consistency in almost all frequencies up to 60Hz. Our findings support NMDAR antagonists in non-human primates as a meaningful model for altered neural oscillations and synchrony, which reflect a disorganized network underlying the working memory deficits in schizophrenia. SIGNIFICANCE STATEMENT Low doses of ketamine-an NMDA receptor blocker-produce working memory deficits similar to those observed in schizophrenia. In the LPFC, a key brain region for working memory, we found that ketamine altered neural oscillatory activities in similar ways that differentiate schizophrenic patients and healthy subjects, during both task and non-task periods. Ketamine induced stronger gamma (30-60Hz) and weaker beta (13-30Hz) oscillations, reflecting local hyperactivity and reduced long-range communications. Furthermore, ketamine reduced performance-related oscillatory activities, as well as the rule information encoded in the oscillations and in the synchrony between single cell activities and oscillations. The ketamine model helps link the molecular and cellular basis of neural oscillatory changes to the working

  8. Benefits of a Classroom Based Instrumental Music Program on Verbal Memory of Primary School Children: A Longitudinal Study

    Science.gov (United States)

    Rickard, Nikki S.; Vasquez, Jorge T.; Murphy, Fintan; Gill, Anneliese; Toukhsati, Samia R.

    2010-01-01

    Previous research has demonstrated a benefit of music training on a number of cognitive functions including verbal memory performance. The impact of school-based music programs on memory processes is however relatively unknown. The current study explored the effect of increasing frequency and intensity of classroom-based instrumental training…

  9. Phonological and Executive Working Memory in L2 Task-Based Speech Planning and Performance

    Science.gov (United States)

    Wen, Zhisheng

    2016-01-01

    The present study sets out to explore the distinctive roles played by two working memory (WM) components in various aspects of L2 task-based speech planning and performance. A group of 40 post-intermediate proficiency level Chinese EFL learners took part in the empirical study. Following the tenets and basic principles of the…

  10. Compiling for Novel Scratch Pad Memory based Multicore Architectures for Extreme Scale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Aviral

    2016-02-05

    The objective of this proposal is to develop tools and techniques (in the compiler) to manage data of a task and communication among tasks on the scratch pad memory (SPM) of the core, so that any application (a set of tasks) can be executed efficiently on an SPM based manycore architecture.

  11. A Memory-Based Model of Posttraumatic Stress Disorder: Evaluating Basic Assumptions Underlying the PTSD Diagnosis

    Science.gov (United States)

    Rubin, David C.; Berntsen, Dorthe; Bohni, Malene Klindt

    2008-01-01

    In the mnemonic model of posttraumatic stress disorder (PTSD), the current memory of a negative event, not the event itself, determines symptoms. The model is an alternative to the current event-based etiology of PTSD represented in the "Diagnostic and Statistical Manual of Mental Disorders" (4th ed., text rev.; American Psychiatric Association,…

  12. Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications

    KAUST Repository

    Ghoneim, Mohamed T.; Zidan, Mohammed A.; Al-Nassar, Mohammed Y.; Hanna, Amir; Kosel, Jü rgen; Salama, Khaled N.; Hussain, Muhammad Mustafa

    2015-01-01

    A flexible version of traditional thin lead zirconium titanate ((Pb1.1Zr0.48Ti0.52O3)-(PZT)) based ferroelectric random access memory (FeRAM) on silicon shows record performance in flexible arena. The thin PZT layer requires lower operational

  13. On dynamic selection of households for direct marketing based on Markov chain models with memory

    NARCIS (Netherlands)

    Otter, Pieter W.

    A simple, dynamic selection procedure is proposed, based on conditional, expected profits using Markov chain models with memory. The method is easy to apply, only frequencies and mean values have to be calculated or estimated. The method is empirically illustrated using a data set from a charitable

  14. When Does Modality Matter? Perceptual versus Conceptual Fluency-Based Illusions in Recognition Memory

    Science.gov (United States)

    Miller, Jeremy K.; Lloyd, Marianne E.; Westerman, Deanne L.

    2008-01-01

    Previous research has shown that illusions of recognition memory based on enhanced perceptual fluency are sensitive to the perceptual match between the study and test phases of an experiment. The results of the current study strengthen that conclusion, as they show that participants will not interpret enhanced perceptual fluency as a sign of…

  15. Development of elastic properties of Cu-based shape memory alloys during martensitic transformation

    Czech Academy of Sciences Publication Activity Database

    Novák, Václav; Landa, Michal; Šittner, Petr

    2004-01-01

    Roč. 115, - (2004), s. 363 ISSN 1155-4339 Institutional research plan: CEZ:AV0Z1010914 Keywords : Cu-based shape memory alloy s * elastic properties * elastic constants * modelling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.294, year: 2004

  16. Applications of Case Based Organizational Memory Supported by the PAbMM Architecture

    Directory of Open Access Journals (Sweden)

    Martín

    2017-04-01

    Full Text Available In the aim to manage and retrieve the organizational knowledge, in the last years numerous proposals of models and tools for knowledge management and knowledge representation have arisen. However, most of them store knowledge in a non-structured or semi-structured way, hindering the semantic and automatic processing of this knowledge. In this paper we present a more detailed case-based organizational memory ontology, which aims at contributing to the design of an organizational memory based on cases, so that it can be used to learn, reasoning, solve problems, and as support to better decision making as well. The objective of this Organizational Memory is to serve as base for the organizational knowledge exchange in a processing architecture specialized in the measurement and evaluation. In this way, our processing architecture is based on the C-INCAMI framework (Context-Information Need, Concept model, Attribute, Metric and Indicator for defining the measurement projects. Additionally, the proposal architecture uses a big data repository to make available the data for consumption and to manage the Organizational Memory, which allows a feedback mechanism in relation with online processing. In order to illustrate its utility, two practical cases are explained: A pasture predictor system, using the data of the weather radar (WR of the Experimental Agricultural Station (EAS INTA Anguil (La Pampa State, Argentina and an outpatient monitoring scenario. Future trends and concluding remarks are extended.

  17. Local nondestructive data reading in three-dimensional memory systems based on the optical Kerr effect

    International Nuclear Information System (INIS)

    Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A

    1998-01-01

    An investigation was made of the characteristics of the optical Kerr effect in a spiropyran solution. It was found that this effect makes it possible to distinguish the coloured and uncoloured forms of spiropyran and that it represents a promising method for nondestructive data reading in three-dimensional optical memory systems based on photochromic materials. (letters to the editor)

  18. Gist-based memory for prices and "better buys" in younger and older adults.

    Science.gov (United States)

    Flores, Cynthia C; Hargis, Mary B; McGillivray, Shannon; Friedman, Michael C; Castel, Alan D

    2017-04-01

    Ageing typically leads to various memory deficits which results in older adults' tendency to remember more general information and rely on gist memory. The current study examined if younger and older adults could remember which of two comparable grocery items (e.g., two similar but different jams) was paired with a lower price (the "better buy"). Participants studied lists of grocery items and their prices, in which the two items in each category were presented consecutively (Experiment 1), or separated by intervening items (Experiment 2). At test, participants were asked to identify the "better buy" and recall the price of both items. There were negligible age-related differences for the "better buy" in Experiment 1, but age-related differences were present in Experiment 2 when there were greater memory demands involved in comparing the two items. Together, these findings suggest that when price information of two items can be evaluated and compared within a short period of time, older adults can form stable gist-based memory for prices, but that this is impaired with longer delays. We relate the findings to age-related changes in the use of gist and verbatim memory when remembering prices, as well as the associative deficit account of cognitive ageing.

  19. Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate

    International Nuclear Information System (INIS)

    Che, Yongli; Zhang, Yating; Song, Xiaoxian; Cao, Mingxuan; Zhang, Guizhong; Yao, Jianquan; Cao, Xiaolong; Dai, Haitao; Yang, Junbo

    2016-01-01

    Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔV th  ∼ 15 V) and a long retention time (>10 5  s). The magnitude of ΔV th depended on both P/E voltages and the bias voltage (V DS ): ΔV th was a cubic function to V P/E and linearly depended on V DS . Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.

  20. Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA

    Science.gov (United States)

    Lin, Liulan; Zhang, Lingfeng; Guo, Yanwei

    2018-01-01

    In this study, the effect of content of glutaraldehyde (GA) on the shape memory behavior of a shape memory polymer based on polyvinyl alcohol chemically cross-linked with GA was investigated. Thermal-responsive shape memory composites with three different GA levels, GA-PVA (3 wt%, 5 wt%, 7 wt%), were prepared by particle melting, mold forming and freeze-drying technique. The mechanical properties, thermal properties and shape memory behavior were measured by differential scanning calorimeter, physical bending test and cyclic thermo-mechanical test. The addition of GA to PVA led to a steady shape memory transition temperature and an improved mechanical compressive strength. The composite with 5 wt% of GA exhibited the best shape recoverability. Further increase in the crosslinking agent content of GA would reduce the recovery force and prolong the recovery time due to restriction in the movement of the soft PVA chain segments. These results provide important information for the study on materials in 4D printing.