WorldWideScience

Sample records for non-viral midge vector-driven

  1. Peripheral non-viral MIDGE vector-driven delivery of β-endorphin in inflammatory pain

    Directory of Open Access Journals (Sweden)

    Busch Melanie

    2009-12-01

    Full Text Available Abstract Background Leukocytes infiltrating inflamed tissue produce and release opioid peptides such as β-endorphin, which activate opioid receptors on peripheral terminals of sensory nerves resulting in analgesia. Gene therapy is an attractive strategy to enhance continuous production of endogenous opioids. However, classical viral and plasmid vectors for gene delivery are hampered by immunogenicity, recombination, oncogene activation, anti-bacterial antibody production or changes in physiological gene expression. Non-viral, non-plasmid minimalistic, immunologically defined gene expression (MIDGE vectors may overcome these problems as they carry only elements needed for gene transfer. Here, we investigated the effects of a nuclear localization sequence (NLS-coupled MIDGE encoding the β-endorphin precursor proopiomelanocortin (POMC on complete Freund's adjuvant-induced inflammatory pain in rats. Results POMC-MIDGE-NLS injected into inflamed paws appeared to be taken up by leukocytes resulting in higher concentrations of β-endorphin in these cells. POMC-MIDGE-NLS treatment reversed enhanced mechanical sensitivity compared with control MIDGE-NLS. However, both effects were moderate, not always statistically significant or directly correlated with each other. Also, the anti-hyperalgesic actions could not be increased by enhancing β-endorphin secretion or by modifying POMC-MIDGE-NLS to code for multiple copies of β-endorphin. Conclusion Although MIDGE vectors circumvent side-effects associated with classical viral and plasmid vectors, the current POMC-MIDGE-NLS did not result in reliable analgesic effectiveness in our pain model. This was possibly associated with insufficient and variable efficacy in transfection and/or β-endorphin production. Our data point at the importance of the reproducibility of gene therapy strategies for the control of chronic pain.

  2. Recent Advances in Non-viral Vectors for Gene Delivery

    Science.gov (United States)

    Guo, Xia; Huang, Leaf

    2011-01-01

    CONSPECTUS Non-viral vectors, typically based on cationic lipids or polymers, are preferred due to safety concerns with viral vectors. So far, non-viral vectors can proficiently transfect cells in culture, but obtaining efficient nanomedicines is far from evident. To overcome the hurdles associated with non-viral vectors is significant for improving delivery efficiency and therapeutic effect of nucleic acid. The drawbacks include the strong interaction of cationic delivery vehicles with blood components, uptake by the reticuloendothelial system (RES), toxicity, targeting ability of the carriers to the cells of interest, and so on. PEGylation is the predominant method used to reduce the binding of plasma proteins with non-viral vectors and minimize the clearance by RES after intravenous administration. The nanoparticles that are not rapidly cleared from the circulation accumulate in the tumors due to the enhanced permeability and retention effect, and the targeting ligands attached to the distal end of the PEGylated components allow binding to the receptors on the target cell surface. Neutral or anionic liposomes have been also developed for systemic delivery of nucleic acids in experimental animal model. Designing and synthesizing novel cationic lipids and polymers, and binding nucleic acid with peptides, targeting ligands, polymers, or environmentally sensitive moieties also attract many attentions for resolving the problems encountered by non-viral vectors. The application of inorganic nanoparticles in nucleic acid delivery is an emerging field, too. Recently, different classes of non-viral vectors appear to be converging and the features of different classes of non-viral vectors could be combined in one strategy. More hurdles associated with efficient nucleic acid delivery therefore might be expected to be overcome. In this account, we will focus on these novel non-viral vectors, which are classified into multifunctional hybrid nucleic acid vectors, novel

  3. Characterization of Viral Communities of Biting Midges and Identification of Novel Thogotovirus Species and Rhabdovirus Genus

    Directory of Open Access Journals (Sweden)

    Sarah Temmam

    2016-03-01

    Full Text Available More than two thirds of emerging viruses are of zoonotic origin, and among them RNA viruses represent the majority. Ceratopogonidae (genus Culicoides are well-known vectors of several viruses responsible for epizooties (bluetongue, epizootic haemorrhagic disease, etc.. They are also vectors of the only known virus infecting humans: the Oropouche virus. Female midges usually feed on a variety of hosts, leading to possible transmission of emerging viruses from animals to humans. In this context, we report here the analysis of RNA viral communities of Senegalese biting midges using next-generation sequencing techniques as a preliminary step toward the identification of potential viral biohazards. Sequencing of the RNA virome of three pools of Culicoides revealed the presence of a significant diversity of viruses infecting plants, insects and mammals. Several novel viruses were detected, including a novel Thogotovirus species, related but genetically distant from previously described tick-borne thogotoviruses. Novel rhabdoviruses were also detected, possibly constituting a novel Rhabdoviridae genus, and putatively restricted to insects. Sequences related to the major viruses transmitted by Culicoides, i.e., African horse sickness, bluetongue and epizootic haemorrhagic disease viruses were also detected. This study highlights the interest in monitoring the emergence and circulation of zoonoses and epizooties using their arthropod vectors.

  4. Characterization of Viral Communities of Biting Midges and Identification of Novel Thogotovirus Species and Rhabdovirus Genus

    Science.gov (United States)

    Temmam, Sarah; Monteil-Bouchard, Sonia; Robert, Catherine; Baudoin, Jean-Pierre; Sambou, Masse; Aubadie-Ladrix, Maxence; Labas, Noémie; Raoult, Didier; Mediannikov, Oleg; Desnues, Christelle

    2016-01-01

    More than two thirds of emerging viruses are of zoonotic origin, and among them RNA viruses represent the majority. Ceratopogonidae (genus Culicoides) are well-known vectors of several viruses responsible for epizooties (bluetongue, epizootic haemorrhagic disease, etc.). They are also vectors of the only known virus infecting humans: the Oropouche virus. Female midges usually feed on a variety of hosts, leading to possible transmission of emerging viruses from animals to humans. In this context, we report here the analysis of RNA viral communities of Senegalese biting midges using next-generation sequencing techniques as a preliminary step toward the identification of potential viral biohazards. Sequencing of the RNA virome of three pools of Culicoides revealed the presence of a significant diversity of viruses infecting plants, insects and mammals. Several novel viruses were detected, including a novel Thogotovirus species, related but genetically distant from previously described tick-borne thogotoviruses. Novel rhabdoviruses were also detected, possibly constituting a novel Rhabdoviridae genus, and putatively restricted to insects. Sequences related to the major viruses transmitted by Culicoides, i.e., African horse sickness, bluetongue and epizootic haemorrhagic disease viruses were also detected. This study highlights the interest in monitoring the emergence and circulation of zoonoses and epizooties using their arthropod vectors. PMID:26978389

  5. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer.

    Science.gov (United States)

    Morille, Marie; Passirani, Catherine; Vonarbourg, Arnaud; Clavreul, Anne; Benoit, Jean-Pierre

    2008-01-01

    Initially, gene therapy was viewed as an approach for treating hereditary diseases, but its potential role in the treatment of acquired diseases such as cancer is now widely recognized. The understanding of the molecular mechanisms involved in cancer and the development of nucleic acid delivery systems are two concepts that have led to this development. Systemic gene delivery systems are needed for therapeutic application to cells inaccessible by percutaneous injection and for multi-located tumor sites, i.e. metastases. Non-viral vectors based on the use of cationic lipids or polymers appear to have promising potential, given the problems of safety encountered with viral vectors. Using these non-viral vectors, the current challenge is to obtain a similarly effective transfection to viral ones. Based on the advantages and disadvantages of existing vectors and on the hurdles encountered with these carriers, the aim of this review is to describe the "perfect vector" for systemic gene therapy against cancer.

  6. Graphene materials as 2D non-viral gene transfer vector platforms.

    Science.gov (United States)

    Vincent, M; de Lázaro, I; Kostarelos, K

    2017-03-01

    Advances in genomics and gene therapy could offer solutions to many diseases that remain incurable today, however, one of the critical reasons halting clinical progress is due to the difficulty in designing efficient and safe delivery vectors for the appropriate genetic cargo. Safety and large-scale production concerns counter-balance the high gene transfer efficiency achieved with viral vectors, while non-viral strategies have yet to become sufficiently efficient. The extraordinary physicochemical, optical and photothermal properties of graphene-based materials (GBMs) could offer two-dimensional components for the design of nucleic acid carrier systems. We discuss here such properties and their implications for the optimization of gene delivery. While the design of such vectors is still in its infancy, we provide here an exhaustive and up-to-date analysis of the studies that have explored GBMs as gene transfer vectors, focusing on the functionalization strategies followed to improve vector performance and on the biological effects attained.

  7. Culicoides midges (Diptera: Ceratopogonidae as vectors of orbiviruses in Slovakia

    Directory of Open Access Journals (Sweden)

    Adela Sarvašová

    2014-09-01

    Full Text Available In recent years, rapid spread of Culicoides-borne pathogens such as bluetongue (BT and Schmallenberg viruses have been reported in Europe. In this study we examined the Culicoides populations in farms with wild and domestic ruminants in Eastern Slovakia with the aim to confirm the presence of biting midges serving as potential vectors of important pathogens. The main vector complexes were the Obsoletus complex (54%; n=4,209 and the Pulicaris complex (23%; n=1,796. To estimate the relative abundance of the cryptic species of the Obsoletus complex (Culicoides obsoletus, Culicoides scoticus and Culicoides montanus, we performed the multiplex polymerase chain reaction (PCR based on ITS-2 and ITS-1 segments, on 125 midges randomly sampled. The relative abundance of C. obsoletus ranged from 5.26% in the farm with wild ruminants to 85.71% in another farm with cattle and sheep. A total of 112 pools of parous and gravid females belonging to the Obsoletus and Pulicaris complexes were tested for virus detection by the real-time reverse transcription polymerase chain reaction (RT-PCR for BT virus, as well as for the Epizootic Hemorrhagic Disease Virus (EHDV, with negative results.

  8. Physical non-viral gene delivery methods for tissue engineering.

    Science.gov (United States)

    Mellott, Adam J; Forrest, M Laird; Detamore, Michael S

    2013-03-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.

  9. Physical non-viral gene delivery methods for tissue engineering

    Science.gov (United States)

    Mellott, Adam J.; Forrest, M. Laird; Detamore, Michael S.

    2016-01-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that “fits-all” cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications. PMID:23099792

  10. Viral vector-based influenza vaccines

    Science.gov (United States)

    de Vries, Rory D.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345

  11. Mosquitoes and Culicoides biting midges: vector range and the influence of climate change.

    Science.gov (United States)

    Elbers, A R W; Koenraadt, C J M; Meiswinkel, R

    2015-04-01

    Vector-borne animal diseases pose a continuous and substantial threat to livestock economies around the globe. Increasing international travel, the globalisation of trade, and climate change are likely to play a progressively more important role in the introduction, establishment and spread of arthropod-borne pathogens worldwide. A review of the literature reveals that many climatic variables, functioning singly or in combination, exert varying effects on the distribution and range of Culicoides vector midges and mosquitoes. For example, higher temperatures may be associated with increased insect abundance--thereby amplifying the risk of disease transmission--but there are no indications yet of dramatic shifts occurring in the geographic range of Culicoides midges. However, the same cannot be said for mosquitoes: over the last few decades, multiple Asian species have established themselves in Europe, spread and are unlikely to ever be eradicated. Research on how insects respond to changes in climate is still in its infancy. The authors argue that we need to grasp how other annectant changes, such as extremes in precipitation (drought and flooding), may affect the dispersal capability of mosquitoes. Models are useful for assessing the interplay between mosquito vectors expanding their range and the native flora and fauna; however, ecological studies employing classical mark-release-recapture techniques remain essential for addressing fundamental questions about the survival and dispersal of mosquito species, with the resulting parameters fed directly into new-generation disease transmission models. Studies on the eventual impact of mosquitoes on animal and human health should be tackled through large-scale integrated research programmes. Such an approach calls for more collaborative efforts, along the lines of the One Health Initiative.

  12. Tripartite polyionic complex (PIC) micelles as non-viral vectors for mesenchymal stem cell siRNA transfection.

    Science.gov (United States)

    Raisin, Sophie; Morille, Marie; Bony, Claire; Noël, Danièle; Devoisselle, Jean-Marie; Belamie, Emmanuel

    2017-08-22

    In the context of regenerative medicine, the use of RNA interference mechanisms has already proven its efficiency in targeting specific gene expression with the aim of enhancing, accelerating or, more generally, directing stem cell differentiation. However, achievement of good transfection levels requires the use of a gene vector. For in vivo applications, synthetic vectors are an interesting option to avoid possible issues associated with viral vectors (safety, production costs, etc.). Herein, we report on the design of tripartite polyionic complex micelles as original non-viral polymeric vectors suited for mesenchymal stem cell transfection with siRNA. Three micelle formulations were designed to exhibit pH-triggered disassembly in an acidic pH range comparable to that of endosomes. One formulation was selected as the most promising with the highest siRNA loading capacity while clearly maintaining pH-triggered disassembly properties. A thorough investigation of the internalization pathway of micelles into cells with tagged siRNA was made before showing an efficient inhibition of Runx2 expression in primary bone marrow-derived stem cells. This work evidenced PIC micelles as promising synthetic vectors that allow efficient MSC transfection and control over their behavior, from the perspective of their clinical use.

  13. Dynamics of epizootic hemorrhagic disease virus infection within the vector, Culicoides sonorensis (Diptera: Ceratopogonidae.

    Directory of Open Access Journals (Sweden)

    Mary K Mills

    Full Text Available Culicoides sonorensis biting midges are confirmed vectors of epizootic hemorrhagic disease virus (EHDV, which causes mortality in white-tailed deer and ruminant populations. Currently, of the seven EHDV serotypes, only 1, 2, and 6 are detected in the USA, and very few studies have focused on the infection time course of these serotypes within the midge. The objective of this current research was to characterize EHDV-2 infection within the midge by measuring infection prevalence, virus dissemination, and viral load over the course of infection. Midges were fed a blood meal containing 106.9 PFU/ml EHDV-2, collected every 12 h from 0-2 days post feeding (dpf and daily from 3-10 dpf, and cohorts of 20 C. sonorensis were processed using techniques that assessed EHDV infection and dissemination. Cytopathic effect assays and quantitative (qPCR were used to determine infection prevalence, revealing a 50% infection rate by 10 dpf using both methods. Using immunohistochemistry, EHDV-2 infection was detectable at 5 dpf, and shown to disseminate from the midgut to other tissues, including fat body, eyes, and salivary glands by 5 dpf. Stain intensity increased from 5-8 dpf, indicating replication of EHDV-2 in secondary infection sites after dissemination. This finding is also supported by trends in viral load over time as determined by plaque assays and qPCR. An increase in titer between 4-5 dpf correlated with viral replication in the midgut as seen with staining at day 5, while the subsequent gradual increase in viral load from 8-10 dpf suggested viral replication in midges with disseminated infection. Overall, the data presented herein suggest that EHDV-2 disseminates via the hemolymph to secondary infection sites throughout the midge and demonstrate a high potential for transmission at five days at 25°C after an infective blood-meal.

  14. Non-viral Nucleic Acid Delivery Strategies to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    James-Kevin Tan

    2016-11-01

    Full Text Available With an increased prevalence and understanding of central nervous system injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the central nervous system and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection, and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the central nervous system are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for central nervous system applications and will ultimately bring non-viral vectors closer to clinical application.

  15. pEPito: a significantly improved non-viral episomal expression vector for mammalian cells

    Directory of Open Access Journals (Sweden)

    Ogris Manfred

    2010-03-01

    Full Text Available Abstract Background The episomal replication of the prototype vector pEPI-1 depends on a transcription unit starting from the constitutively expressed Cytomegalovirus immediate early promoter (CMV-IEP and directed into a 2000 bp long matrix attachment region sequence (MARS derived from the human β-interferon gene. The original pEPI-1 vector contains two mammalian transcription units and a total of 305 CpG islands, which are located predominantly within the vector elements necessary for bacterial propagation and known to be counterproductive for persistent long-term transgene expression. Results Here, we report the development of a novel vector pEPito, which is derived from the pEPI-1 plasmid replicon but has considerably improved efficacy both in vitro and in vivo. The pEPito vector is significantly reduced in size, contains only one transcription unit and 60% less CpG motives in comparison to pEPI-1. It exhibits major advantages compared to the original pEPI-1 plasmid, including higher transgene expression levels and increased colony-forming efficiencies in vitro, as well as more persistent transgene expression profiles in vivo. The performance of pEPito-based vectors was further improved by replacing the CMV-IEP with the human CMV enhancer/human elongation factor 1 alpha promoter (hCMV/EF1P element that is known to be less affected by epigenetic silencing events. Conclusions The novel vector pEPito can be considered suitable as an improved vector for biotechnological applications in vitro and for non-viral gene delivery in vivo.

  16. Culicoides (Diptera: Ceratopogonidae) midges, the vectors of African horse sickness virus--a host/vector contact study in the Niayes area of Senegal.

    Science.gov (United States)

    Fall, Moussa; Diarra, Maryam; Fall, Assane G; Balenghien, Thomas; Seck, Momar T; Bouyer, Jérémy; Garros, Claire; Gimonneau, Geoffrey; Allène, Xavier; Mall, Iba; Delécolle, Jean-Claude; Rakotoarivony, Ignace; Bakhoum, Mame T; Dusom, Ange M; Ndao, Massouka; Konaté, Lassana; Faye, Ousmane; Baldet, Thierry

    2015-01-21

    African horse sickness (AHS) is an equine disease endemic to Senegal. The African horse sickness virus (AHSV) is transmitted to the mammalian hosts by midges of the Culicoides Latreille genus. During the last epizootic outbreak of AHS in Senegal in 2007, 1,169 horses died from this disease entailing an estimated cost of 1.4 million euros. In spite of the serious animal health and economic implications of AHS, very little is known about determinants involved in transmission such as contact between horses and the Culicoides species suspected of being its vectors. The monthly variation in host/vector contact was determined in the Niayes area, Senegal, an area which was severely affected by the 2007 outbreak of AHS. A horse-baited trap and two suction light traps (OVI type) were set up at each of five sites for three consecutive nights every month for one year. Of 254,338 Culicoides midges collected 209,543 (82.4%) were female and 44,795 (17.6%) male. Nineteen of the 41 species collected were new distribution records for Senegal. This increased the number of described Culicoides species found in Senegal to 53. Only 19 species, of the 41 species found in light trap, were collected in the horse-baited trap (23,669 specimens) largely dominated by Culicoides oxystoma (22,300 specimens, i.e. 94.2%) followed by Culicoides imicola (482 specimens, i.e. 2.0%) and Culicoides kingi (446 specimens, i.e. 1.9%). Culicoides oxystoma should be considered as a potential vector of AHSV in the Niayes area of Senegal due to its abundance on horses and its role in the transmission of other Culicoides-borne viruses.

  17. Chitosan-Graft-Polyethylenimine/DNA Nanoparticles as Novel Non-Viral Gene Delivery Vectors Targeting Osteoarthritis

    Science.gov (United States)

    Lv, Lulu; Zhao, Huiqing

    2014-01-01

    The development of safe and efficient gene carriers is the key to the clinical success of gene therapy. The present study was designed to develop and evaluate the chitosan-graft-polyethylenimine (CP)/DNA nanoparticles as novel non-viral gene vectors for gene therapy of osteoarthritis. The CP/DNA nanoparticles were produced through a complex coacervation of the cationic polymers with pEGFP after grafting chitosan (CS) with a low molecular weight (Mw) PEI (Mw = 1.8 kDa). Particle size and zeta potential were related to the weight ratio of CP:DNA, where decreases in nanoparticle size and increases in surface charge were observed as CP content increased. The buffering capacity of CP was significantly greater than that of CS. The transfection efficiency of CP/DNA nanoparticles was similar with that of the Lipofectamine™ 2000, and significantly higher than that of CS/DNA and PEI (25 kDa)/DNA nanoparticles. The transfection efficiency of the CP/DNA nanoparticles was dependent on the weight ratio of CP:DNA (w/w). The average cell viability after the treatment with CP/DNA nanoparticles was over 90% in both chondrocytes and synoviocytes, which was much higher than that of PEI (25 kDa)/DNA nanoparticles. The CP copolymers efficiently carried the pDNA inside chondrocytes and synoviocytes, and the pDNA was detected entering into nucleus. These results suggest that CP/DNA nanoparticles with improved transfection efficiency and low cytotoxicity might be a safe and efficient non-viral vector for gene delivery to both chondrocytes and synoviocytes. PMID:24392152

  18. Cationic lipid-formulated DNA vaccine against hepatitis B virus: immunogenicity of MIDGE-Th1 vectors encoding small and large surface antigen in comparison to a licensed protein vaccine.

    Directory of Open Access Journals (Sweden)

    Anne Endmann

    Full Text Available Currently marketed vaccines against hepatitis B virus (HBV based on the small (S hepatitis B surface antigen (HBsAg fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.

  19. Microneedle-mediated delivery of viral vectored vaccines.

    Science.gov (United States)

    Zaric, Marija; Ibarzo Yus, Bárbara; Kalcheva, Petya Petrova; Klavinskis, Linda Sylvia

    2017-10-01

    Microneedle array platforms are a promising technology for vaccine delivery, due to their ease of administration with no sharp waste generated, small size, possibility of targeted delivery to the specified skin depth and efficacious delivery of different vaccine formulations, including viral vectors. Areas covered: Attributes and challenges of the most promising viral vector candidates that have advanced to the clinic and that have been leveraged for skin delivery by microneedles; The importance of understanding the immunobiology of antigen-presenting cells in the skin, in particular dendritic cells, in order to generate further improved skin vaccination strategies; recent studies where viral vectors expressing various antigens have been coupled with microneedle technology to examine their potential for improved vaccination. Expert opinion: Simple, economic and efficacious vaccine delivery methods are needed to improve health outcomes and manage possible outbreaks of new emerging viruses. Understanding what innate/inflammatory signals are required to induce both immediate and long-term responses remains a major hurdle in the development of the effective vaccines. One approach to meet these needs is microneedle-mediated viral vector vaccination. In order for this technology to fulfil this potential the industry must invest significantly to further develop its design, production, biosafety, delivery and large-scale manufacturing.

  20. Improved osteogenic vector for non-viral gene therapy

    Directory of Open Access Journals (Sweden)

    ARA Hacobian

    2016-03-01

    Full Text Available Therapeutic compensation of deficient bone regeneration is a challenging task and a topic of on-going search for novel treatment strategies. One promising approach for improvement involves non-viral gene delivery using the bone morphogenetic protein-2 (BMP-2 gene to provide transient, local and sustained expression of the growth factor. However, since efficiency of non-viral gene delivery is low, this study focused on the improvement of a BMP-2 gene expression system, aiming for compensation of poor transfection efficiency. First, the native BMP-2 gene sequence was modified by codon optimisation and altered by inserting a highly truncated artificial intron (96 bp. Transfection of multiple cell lines and rat adipose-derived mesenchymal stem cells with plasmids harbouring the improved BMP-2 sequence led to a several fold increased expression rate and subsequent osteogenic differentiation. Additionally, comparing expression kinetics of elongation factor 1 alpha (EF1α promoter with a state of the art CMV promoter revealed significantly higher BMP-2 expression when under the influence of the EF1α promoter. Results obtained by quantification of bone markers as well as osteogenic assays showed reduced sensitivity to promoter silencing effects of the EF1α promoter in rat adipose-derived mesenchymal stem cells. Finally, screening of several protein secretion signals using either luciferase or BMP-2 as reporter protein revealed no superior candidates for potential replacement of the native BMP-2 secretion signal. Taken together, by enhancing the exogenous BMP-2 expression system, low transfection efficiencies in therapeutic applications can be compensated, making safe non-viral systems even more suitable for tissue regeneration approaches.

  1. Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features.

    Science.gov (United States)

    Pilgrim, Jack; Ander, Mats; Garros, Claire; Baylis, Matthew; Hurst, Gregory D D; Siozios, Stefanos

    2017-10-01

    There is increasing interest in the heritable bacteria of invertebrate vectors of disease as they present novel targets for control initiatives. Previous studies on biting midges (Culicoides spp.), known to transmit several RNA viruses of veterinary importance, have revealed infections with the endosymbiotic bacteria, Wolbachia and Cardinium. However, rickettsial symbionts in these vectors are underexplored. Here, we present the genome of a previously uncharacterized Rickettsia endosymbiont from Culicoides newsteadi (RiCNE). This genome presents unique features potentially associated with host invasion and adaptation, including genes for the complete non-oxidative phase of the pentose phosphate pathway, and others predicted to mediate lipopolysaccharides and cell wall modification. Screening of 414 Culicoides individuals from 29 Palearctic or Afrotropical species revealed that Rickettsia represent a widespread but previously overlooked association, reaching high frequencies in midge populations and present in 38% of the species tested. Sequence typing clusters the Rickettsia within the Torix group of the genus, a group known to infect several aquatic and hematophagous taxa. FISH analysis indicated the presence of Rickettsia bacteria in ovary tissue, indicating their maternal inheritance. Given the importance of biting midges as vectors, a key area of future research is to establish the impact of this endosymbiont on vector competence. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells.

    Science.gov (United States)

    Chen, Xuguang; Nomani, Alireza; Patel, Niket; Nouri, Faranak S; Hatefi, Arash

    2018-01-01

    Vectors used for stem cell transfection must be non-genotoxic, in addition to possessing high efficiency, because they could potentially transform normal stem cells into cancer-initiating cells. The objective of this research was to bioengineer an efficient vector that can be used for genetic modification of stem cells without any negative somatic or genetic impact. Two types of multifunctional vectors, namely targeted and non-targeted were genetically engineered and purified from E. coli. The targeted vectors were designed to enter stem cells via overexpressed receptors. The non-targeted vectors were equipped with MPG and Pep1 cell penetrating peptides. A series of commercial synthetic non-viral vectors and an adenoviral vector were used as controls. All vectors were evaluated for their efficiency and impact on metabolic activity, cell membrane integrity, chromosomal aberrations (micronuclei formation), gene dysregulation, and differentiation ability of stem cells. The results of this study showed that the bioengineered vector utilizing VEGFR-1 receptors for cellular entry could transfect mesenchymal stem cells with high efficiency without inducing genotoxicity, negative impact on gene function, or ability to differentiate. Overall, the vectors that utilized receptors as ports for cellular entry (viral and non-viral) showed considerably better somato- and genosafety profiles in comparison to those that entered through electrostatic interaction with cellular membrane. The genetically engineered vector in this study demonstrated that it can be safely and efficiently used to genetically modify stem cells with potential applications in tissue engineering and cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.

    Science.gov (United States)

    Sizemore, Rachel J; Seeger-Armbruster, Sonja; Hughes, Stephanie M; Parr-Brownlie, Louise C

    2016-04-01

    Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. Copyright © 2016 the American Physiological Society.

  4. Field evaluation of the efficacy and safety of a deltamethrin pour on formulation (Butox® 7.5 mg/ml pour on) for the control of Culicoides midges in sheep

    OpenAIRE

    Weiher, Wiebke

    2014-01-01

    Culicoides spp. (Diptera: Ceratopogonidae) are the main vectors of Bluetongue and Schmallenberg virus disease, which are infectious diseases of ruminants. Recently, both viral diseases occurred for the first time in Germany and caused substantial suffering and large economic losses, primarily in sheep flocks. None of the currently available insecticides is registered to control infestations with Culicoides midges in ruminants. This study aimed to assess the safety and efficacy of a pour on fo...

  5. Community analysis of the abundance and diversity of biting midge species (Diptera: Ceratopogonidae) in three European countries at different latitudes.

    Science.gov (United States)

    Möhlmann, Tim W R; Wennergren, Uno; Tälle, Malin; Favia, Guido; Damiani, Claudia; Bracchetti, Luca; Takken, Willem; Koenraadt, Constantianus J M

    2018-03-27

    The outbreaks of bluetongue and Schmallenberg disease in Europe have increased efforts to understand the ecology of Culicoides biting midges and their role in pathogen transmission. However, most studies have focused on a specific habitat, region, or country. To facilitate wider comparisons, and to obtain a better understanding of the spread of disease through Europe, the present study focused on monitoring biting midge species diversity in three different habitat types and three countries across Europe. Biting midges were trapped using Onderstepoort Veterinary Institute light traps at a total of 27 locations in Sweden, the Netherlands and Italy, comprising farm, peri-urban and wetland habitats. From July 2014 to June 2015 all locations were sampled monthly, except for during the winter months. Trapped midges were counted and identified morphologically. Indices on species richness, evenness and diversity were calculated. Community compositions were analysed using non-metric multidimensional scaling (NMDS) techniques. A total of 50,085 female midges were trapped during 442 collection nights. More than 88% of these belonged to the Obsoletus group. The highest midge diversity was found in Sweden, while species richness was highest in the Netherlands, and most specimens were trapped in Italy. For habitats within countries, diversity of the trapped midges was lowest for farms in all countries. Differences in biting midge species communities were more distinct across the three countries than the three habitat types. A core midge community could be identified, in which the Obsoletus group was the most abundant. Variations in vector communities across countries imply different patterns of disease spread throughout Europe. How specific species and their associated communities affect disease risk is still unclear. Our results emphasize the importance of midge diversity data at community level, how this differs across large geographic range within Europe, and its implications

  6. Endophagy of biting midges attacking cavity-nesting birds.

    Science.gov (United States)

    Votýpka, J; Synek, P; Svobodová, M

    2009-09-01

    Feeding behaviour, host preferences and the spectrum of available hosts determine the role of vectors in pathogen transmission. Feeding preferences of blood-feeding Diptera depend on, among others factors, the willingness of flies to attack their hosts either in the open (exophagy) or in enclosed places (endophagy). As far as ornithophilic blood-feeding Diptera are concerned, the biting midges (Diptera: Ceratopogonidae) and blackflies (Diptera: Simuliidae) are generally considered to be strictly exophagous. We determined which blood-sucking Diptera enter nest cavities and feed on birds by placing sticky foil traps inside artificial nest boxes. A total of 667 females of eight species of biting midges of the genus Culicoides (Latreille, 1809) were captured on traps during 2006-2007, with Culicoides truncorum (Edwards, 1939) being the dominant species. DNA blood analyses of blood-engorged females proved that midges actually fed on birds nesting in the boxes. Three species were identified as endophagous: Culicoides truncorum, Culicoides pictipennis (Staeger, 1839), and Culicoides minutissimus (Zetterstedt, 1855). Our study represents the first evidence that ornithophilic biting midges are endophagous. The fact that we caught no blackflies in the bird boxes supports the exophagy of blackflies. We believe that our findings are important for surveillance programmes focusing on Diptera that transmit various bird pathogens.

  7. Differential effects on kidney and liver growth of a non-viral hGH-expression vector in hypophysectomized mice

    DEFF Research Database (Denmark)

    Khamaisi, Mogher; Søndergaard, Morten; Segev, Yael

    2007-01-01

    Non-viral gene transfer was investigated as a potential modality for the treatment of growth hormone deficiency (GHD) using hypophysectomized (Hx) mice as a model. Hx mice were injected with a control plasmid or a plasmid containing the human (h) GH gene driven by a ubiquitin promoter, or left...... and serum IGF-I levels, has differential effects on renal growth and glomerular volume. The potential effects of such excess glomerular growth induced by this intervention require further investigation....

  8. Retroviral Vectors for Analysis of Viral Mutagenesis and Recombination

    Directory of Open Access Journals (Sweden)

    Jonathan M.O. Rawson

    2014-09-01

    Full Text Available Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.

  9. Zn(II)-dipicolylamine-based metallo-lipids as novel non-viral gene vectors.

    Science.gov (United States)

    Su, Rong-Chuan; Liu, Qiang; Yi, Wen-Jing; Zhao, Zhi-Gang

    2017-08-01

    In this study, a series of Zn(II)-dipicolylamine (Zn-DPA) based cationic lipids bearing different hydrophobic tails (long chains, α-tocopherol, cholesterol or diosgenin) were synthesized. Structure-activity relationship (SAR) of these lipids was studied in detail by investigating the effects of several structural aspects including the type of hydrophobic tails, the chain length and saturation degree. In addition, several assays were used to study their interactions with plasmid DNA, and results reveal that these lipids could condense DNA into nanosized particles with appropriate size and zeta-potentials. MTT-based cell viability assays showed that lipoplexes 5 had low cytotoxicity. The in vitro gene transfection studies showed the hydrophobic tails clearly affected the TE, and hexadecanol-containing lipid 5b gives the best TE, which was 2.2 times higher than bPEI 25k in the presence of 10% serum. The results not only demonstrate that these lipids might be promising non-viral gene vectors, but also afford us clues for further optimization of lipidic gene delivery materials.

  10. Novel non-viral vectors for gene delivery: synthesis of a second-generation library of mono-functionalized poly-(guanidinium)amines and their introduction into cationic lipids.

    Science.gov (United States)

    Byk, G; Soto, J; Mattler, C; Frederic, M; Scherman, D

    1998-01-01

    The development of new gene delivery technologies is a prerequisite towards gene therapy clinical trials. Because gene delivery mediated by viral vectors remains of limited scope due to immunological and propagation risks, the development of new non-viral gene delivery systems is of crucial importance. We have synthesized a secondary library of mono-functionalized poly-(guanidinium)amines generated from a library of mono-functionalized polyamines applying the concept of "libraries from libraries." The method allows a quick and easy access to mono-functionalized geometrically varied poly-(guanidinium)amines. The new building blocks were introduced into cationic lipids to obtain novel poly-(guanidinium)amine lipids, which are potential DNA vectors for gene delivery. Copyright 1998 John Wiley & Sons, Inc.

  11. DODAB:monoolein-based lipoplexes as non-viral vectors for transfection of mammalian cells.

    Science.gov (United States)

    Silva, J P Neves; Oliveira, A C N; Casal, M P P A; Gomes, A C; Coutinho, P J G; Coutinho, O P; Oliveira, M E C D Real

    2011-10-01

    DNA/Cationic liposome complexes (lipoplexes) have been widely used as non-viral vectors for transfection. Neutral lipids in liposomal formulation are determinant for transfection efficiency using these vectors. In this work, we studied the potential of monoolein (MO) as helper lipid for cellular transfection. Lipoplexes composed of pDNA and dioctadecyldimethylammonium bromide (DODAB)/1-monooleoyl-rac-glycerol (MO) at different molar ratios (4:1, 2:1 and 1:1) and at different cationic lipid/DNA ratios were investigated. The physicochemical properties of the lipoplexes (size, charge and structure), were studied by Dynamic Light Scattering (DLS), Zeta Potential (ζ) and cryo-transmission electron microscopy (cryo-TEM). The effect of MO on pDNA condensation and the effect of heparin and heparan sulphate on the percentage of pDNA release from the lipoplexes were also studied by Ethidium Bromide (EtBr) exclusion assays and electrophoresis. Cytotoxicity and transfection efficiency of these lipoplexes were evaluated using 293T cells and compared with the golden standard helper lipids 1,2-dioleoyl-sn-glycero-3-hosphoethanolamine (DOPE) and cholesterol (Chol) as well as with a commercial transfection agent (Lipofectamine™ LTX). The internalization of transfected fluorescently-labeled pDNA was also visualized using the same cell line. The results demonstrate that the presence of MO not only increases pDNA compactation efficiency, but also affects the physicochemical properties of the lipoplexes, which can interfere with lipoplex-cell interactions. The DODAB:MO formulations tested showed little toxicity and successfully mediated in vitro cell transfection. These results were supported by fluorescence microscopy studies, which illustrated that lipoplexes were able to access the cytosol and deliver pDNA to the nucleus. DODAB:MO-based lipoplexes were thus validated as non-toxic, efficient lipofection vectors for genetic modification of mammalian cells. Understanding the

  12. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities.

    Science.gov (United States)

    Li, Ling; Hu, Shuo; Chen, Xiaoyuan

    2018-07-01

    In recent years, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) genome editing systems have become one of the most robust platforms in basic biomedical research and therapeutic applications. To date, efficient in vivo delivery of the CRISPR/Cas9 system to the targeted cells remains a challenge. Although viral vectors have been widely used in the delivery of the CRISPR/Cas9 system in vitro and in vivo, their fundamental shortcomings, such as the risk of carcinogenesis, limited insertion size, immune responses and difficulty in large-scale production, severely limit their further applications. Alternative non-viral delivery systems for CRISPR/Cas9 are urgently needed. With the rapid development of non-viral vectors, lipid- or polymer-based nanocarriers have shown great potential for CRISPR/Cas9 delivery. In this review, we analyze the pros and cons of delivering CRISPR/Cas9 systems in the form of plasmid, mRNA, or protein and then discuss the limitations and challenges of CRISPR/Cas9-based genome editing. Furthermore, current non-viral vectors that have been applied for CRISPR/Cas9 delivery in vitro and in vivo are outlined in details. Finally, critical obstacles for non-viral delivery of CRISPR/Cas9 system are highlighted and promising strategies to overcome these barriers are proposed. Published by Elsevier Ltd.

  13. Viral Vectors for Use in the Development of Biodefense Vaccines

    National Research Council Canada - National Science Library

    Lee, John S; Hadjipanayis, Angela G; Parker, Michael D

    2005-01-01

    .... DNA vectors, live-attenuated viruses and bacteria, recombinant proteins combined with adjuvant, and viral- or bacterial-vectored vaccines have been developed as countermeasures against many potential...

  14. Is passive transmission of non-viral vectors through artificial insemination of sperm-DNA mixtures sufficient for chicken transgenesis?

    Science.gov (United States)

    CHAPARIAN, Shahram; ABDULAHNEJAD, Ahad; RASHIDI, Farzad; TOGHYANI, Majid; GHEISARI, Abbasali; EGHBALSAIED, Shahin

    2016-01-01

    DNA uptake in the post-acrosomal region of the spermatozoa takes place exclusively in immotile spermatozoa that are naturally unable to fertilize eggs. The present study aimed to assess whether passive transmission of non-viral vectors to the surrounding areas of chicken embryos could be an alternate mechanism in chicken sperm-mediated gene transfer. First, the presence of nucleases in rooster seminal plasma was evaluated. Semen ejaculates from five roosters were centrifuged and the supernatant was incubated with pBL2 for 1 h. A robust nuclease cocktail was detected in the rooster semen. To overcome these nucleases, plasmid-TransIT combinations were incubated with semen for 1 h. Incubation of exogenous DNA in the lipoplex structure could considerably bypass the semen nuclease effect. Then, intravaginal insemination of 1 × 109 sperm mixed with lipoplexes (40 µg pBL2:40 µl TransIT) was carried out in 15 virgin hens. Neither the epithelial tissue from the inseminated female reproductive tracts nor the produced embryos following artificial insemination showed the transgene. To remove any bias in the transgene transmission possibility, the plasmid-TransIT admixture was directly injected in close vicinity of the embryos in newly laid eggs. Nonetheless, none of the produced fetuses or chicks carried the transgene. In conclusion, the results of the present study revealed a nuclease admixture in rooster seminal plasma, and passive/active transmission of the non-viral vector into close vicinity of the chicken embryo was inefficient for producing transgenic chicks. PMID:26935324

  15. Viral Hybrid Vectors for Somatic Integration - Are They the Better Solution?

    Directory of Open Access Journals (Sweden)

    Anja Ehrhardt

    2009-12-01

    Full Text Available The turbulent history of clinical trials in viral gene therapy has taught us important lessons about vector design and safety issues. Much effort was spent on analyzing genotoxicity after somatic integration of therapeutic DNA into the host genome. Based on these findings major improvements in vector design including the development of viral hybrid vectors for somatic integration have been achieved. This review provides a state-of-the-art overview of available hybrid vectors utilizing viruses for high transduction efficiencies in concert with various integration machineries for random and targeted integration patterns. It discusses advantages but also limitations of each vector system.

  16. Optimizing viral and non-viral gene transfer methods for genetic modification of porcine mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stiehler, Maik; Duch, Mogens R.; Mygind, Tina

    2006-01-01

    -old Danish landrace pigs by Ficoll step gradient separation and polystyrene adherence technique. Vectors expressing enhanced green fluorescent protein (eGFP) and human bone morphogenetic protein-2 (BMP-2) were transferred to the cells by different non-viral methods and by use of recombinant adeno...

  17. New records of non-biting midges (Diptera: Chironomidae, Orthocladiinae from Mallorca, Spain

    Directory of Open Access Journals (Sweden)

    Viktor Baranov

    2016-09-01

    Full Text Available Ten species of non-biting midges belonging to the subfamily Orthocladiinae were found in samples from predominantly madicolous habitats in Mallorca, Spain. One species, Bryophaenocladius nidorum (Edwards, 1929, has not previously been recorded from Spain, while Smittia pratorum (Goetghebuer, 1927, Bryophaenocladius inconstans (Brundin, 1947, Orthocladius (O. maius Goetghebuer, 1942, Paracladius conversus (Walker, 1856 and Paraphaenocladius impensus (Walker, 1856 are recorded for the first time from the Balearic Islands.

  18. Optimizing viral and non-viral gene transfer methods for genetic modification of porcine mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stiehler, Maik; Duch, Mogens; Mygind, Tina

    2006-01-01

    INTRODUCTION: Mesenchymal stem cells (MSCs) provide an excellent source of pluripotent progenitor cells for tissue-engineering applications due to their proliferation capacity and differentiation potential. Genetic modification of MSCs with genes encoding tissue-specific growth factors...... viral and non-viral ex vivo gene delivery systems with respect to gene transfer efficiency, maintenance of transgene expression, and safety issues using primary porcine MSCs as target cells. MATERIALS AND METHODS: MSCs were purified from bone marrow aspirates from the proximal tibiae of four 3-month......-old Danish landrace pigs by Ficoll step gradient separation and polystyrene adherence technique. Vectors expressing enhanced green fluorescent protein (eGFP) and human bone morphogenetic protein-2 (BMP-2) were transferred to the cells by different non-viral methods and by use of recombinant adeno...

  19. Seasonal and interseasonal dynamics of bluetongue virus infection of dairy cattle and Culicoides sonorensis midges in northern California--implications for virus overwintering in temperate zones.

    Directory of Open Access Journals (Sweden)

    Christie E Mayo

    Full Text Available Bluetongue virus (BTV is the cause of an economically important arboviral disease of domestic and wild ruminants. The occurrence of BTV infection of livestock is distinctly seasonal in temperate regions of the world, thus we determined the dynamics of BTV infection (using BTV-specific real time reverse transcriptase polymerase chain reaction among sentinel cattle and vector Culicoides sonorensis (C. sonorensis midges on a dairy farm in northern California throughout both the seasonal and interseasonal (overwintering periods of BTV activity from August 2012 until March 2014. The data confirmed widespread infection of both sentinel cattle and vector midges during the August-November period of seasonal BTV transmission, however BTV infection of parous female midges captured in traps set during daylight hours also was detected in February of both 2013 and 2014, during the interseasonal period. The finding of BTV-infected vector midges during mid-winter suggests that BTV may overwinter in northern California by infection of long-lived female C. sonorensis midges that were infected during the prior seasonal period of virus transmission, and reemerged sporadically during the overwintering period; however the data do not definitively preclude other potential mechanisms of BTV overwintering that are also discussed.

  20. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector.

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-11-01

    Full Text Available Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors.

  1. Effective photodynamic therapy in drug-resistant prostate cancer cells utilizing a non-viral antitumor vector (a secondary publication).

    Science.gov (United States)

    Yamauchi, Masaya; Honda, Norihiro; Hazama, Hisanao; Tachikawa, Shoji; Nakamura, Hiroyuki; Kaneda, Yasufumi; Awazu, Kunio

    2016-03-31

    There is an urgent need to develop an efficient strategy for the treatment of drug-resistant prostate cancer. Photodynamic therapy (PDT), in which low incident levels of laser energy are used to activate a photosensitizer taken up by tumor cells, is expected as a novel therapy for the treatment of prostate cancer because of the minimal invasive nature of PDT. The present study was designed to assess the efficacy of a novel vector approach combined with a conventional porphyrin-based photosensitizer. Our group focused on a non-viral vector (hemagglutinating virus of Japan envelope; HVJ-E) combined with protoporphyrin IX (PpIX) lipid, termed the porphyrus envelope (PE). It has been previously confirmed that HVJ-E has drug-delivering properties and can induce cancer-specific cell death. The PE (HVJ-E contained in PpIX lipid) was developed as a novel photosensitizer. In this study, the antitumor and PDT efficacy of the PE against hormone-antagonistic human prostate cancer cells (PC-3) were evaluated. Our results demonstrated that, under specific circumstances, PDT using the PE was very effective against PC-3 cells. A novel therapy for drug-resistant prostate cancer based on this vector approach is eagerly anticipated.

  2. An adeno-associated viral vector transduces the rat hypothalamus and amygdala more efficient than a lentiviral vector

    Directory of Open Access Journals (Sweden)

    Vreugdenhil Erno

    2010-07-01

    Full Text Available Abstract Background This study compared the transduction efficiencies of an adeno-associated viral (AAV vector, which was pseudotyped with an AAV1 capsid and encoded the green fluorescent protein (GFP, with a lentiviral (LV vector, which was pseudotyped with a VSV-G envelop and encoded the discosoma red fluorescent protein (dsRed, to investigate which viral vector transduced the lateral hypothalamus or the amygdala more efficiently. The LV-dsRed and AAV1-GFP vector were mixed and injected into the lateral hypothalamus or into the amygdala of adult rats. The titers that were injected were 1 × 108 or 1 × 109 genomic copies of AAV1-GFP and 1 × 105 transducing units of LV-dsRed. Results Immunostaining for GFP and dsRed showed that AAV1-GFP transduced significantly more cells than LV-dsRed in both the lateral hypothalamus and the amygdala. In addition, the number of LV particles that were injected can not easily be increased, while the number of AAV1 particles can be increased easily with a factor 100 to 1000. Both viral vectors appear to predominantly transduce neurons. Conclusions This study showed that AAV1 vectors are better tools to overexpress or knockdown genes in the lateral hypothalamus and amygdala of adult rats, since more cells can be transduced with AAV1 than with LV vectors and the titer of AAV1 vectors can easily be increased to transduce the area of interest.

  3. Bioreducible poly(amido amine)s for non-viral gene delivery

    NARCIS (Netherlands)

    Lin, C.

    2008-01-01

    This thesis describes the design and development of bioreducible poly(amido amine)s as non-viral vectors for gene delivery in vitro and in vivo. The structural influences of these polymers on their physico-chemical properties and gene delivery properties, transfection capability and cytotoxicity in

  4. Using remote sensing and machine learning for the spatial modelling of a bluetongue virus vector

    Science.gov (United States)

    Van doninck, J.; Peters, J.; De Baets, B.; Ducheyne, E.; Verhoest, N. E. C.

    2012-04-01

    Bluetongue is a viral vector-borne disease transmitted between hosts, mostly cattle and small ruminants, by some species of Culicoides midges. Within the Mediterranean basin, C. imicola is the main vector of the bluetongue virus. The spatial distribution of this species is limited by a number of environmental factors, including temperature, soil properties and land cover. The identification of zones at risk of bluetongue outbreaks thus requires detailed information on these environmental factors, as well as appropriate epidemiological modelling techniques. We here give an overview of the environmental factors assumed to be constraining the spatial distribution of C. imicola, as identified in different studies. Subsequently, remote sensing products that can be used as proxies for these environmental constraints are presented. Remote sensing data are then used together with species occurrence data from the Spanish Bluetongue National Surveillance Programme to calibrate a supervised learning model, based on Random Forests, to model the probability of occurrence of the C. imicola midge. The model will then be applied for a pixel-based prediction over the Iberian peninsula using remote sensing products for habitat characterization.

  5. Delivery of viral vectors to tumor cells: extracellular transport, systemic distribution, and strategies for improvement.

    Science.gov (United States)

    Wang, Yong; Yuan, Fan

    2006-01-01

    It is a challenge to deliver therapeutic genes to tumor cells using viral vectors because (i) the size of these vectors are close to or larger than the space between fibers in extracellular matrix and (ii) viral proteins are potentially toxic in normal tissues. In general, gene delivery is hindered by various physiological barriers to virus transport from the site of injection to the nucleus of tumor cells and is limited by normal tissue tolerance of toxicity determined by local concentrations of transgene products and viral proteins. To illustrate the obstacles encountered in the delivery and yet limit the scope of discussion, this review focuses only on extracellular transport in solid tumors and distribution of viral vectors in normal organs after they are injected intravenously or intratumorally. This review also discusses current strategies for improving intratumoral transport and specificity of viral vectors.

  6. Studies on biting midges of the genus Culicoides in the Suez Canal Zone.

    Science.gov (United States)

    Morsy, T A; Bebars, M A; Sabry, A H; Ahmed, M M; Abdel Fattah, S A

    1989-06-01

    The importance of the biting midges of the genus Culicoides being in their role as vector of non periodic filarial worms of the genus Mansonella and Dipetalonema to man and pathogenic virus to livestock. Besides, their painful bite may disappear within an hour or cause an appreciable systemic reaction. In this paper, the four species recorded in the Suez Canal Zone (C. schultzei, C. puncticollis, C. pallidipennis & C. distinctipennis) were redescribed. Also, the hours of activity of the most common and abundant species, C. schultzei was studied. C. neavei Austin, 1912, representing a new record in Egypt.

  7. Spatial and temporal variation in the abundance of Culicoides biting midges (Diptera: Ceratopogonidae) in nine European countries

    DEFF Research Database (Denmark)

    Cuellar, Ana Carolina; Kjær, Lene Jung; Kirkeby, Carsten Thure

    2018-01-01

    Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are vectors of bluetongue virus (BTV), African horse sickness virus and Schmallenberg virus (SBV). Outbreaks of both BTV and SBV have affected large parts of Europe. The spread of these diseases depends largely on vector distributio...

  8. Entomopathogenic Fungus as a Biological Control for an Important Vector of Livestock Disease: The Culicoides Biting Midge

    Science.gov (United States)

    Ansari, Minshad Ali; Pope, Edward C.; Carpenter, Simon; Scholte, Ernst-Jan; Butt, Tariq M.

    2011-01-01

    Background The recent outbreak of bluetongue virus in northern Europe has led to an urgent need to identify control measures for the Culicoides (Diptera: Ceratopogonidae) biting midges that transmit it. Following successful use of the entomopathogenic fungus Metarhizium anisopliae against larval stages of biting midge Culicoides nubeculosus Meigen, we investigated the efficacy of this strain and other fungi (Beauveria bassiana, Isaria fumosorosea and Lecanicillium longisporum) as biocontrol agents against adult C. nubeculosus in laboratory and greenhouse studies. Methodology/Findings Exposure of midges to ‘dry’ conidia of all fungal isolates caused significant reductions in survival compared to untreated controls. Metarhizium anisopliae strain V275 was the most virulent, causing a significantly decrease in midge survival compared to all other fungal strains tested. The LT50 value for strain V275 was 1.42 days compared to 2.21–3.22 days for the other isolates. The virulence of this strain was then further evaluated by exposing C. nubeculosus to varying doses (108–1011 conidia m−2) using different substrates (horse manure, damp peat, leaf litter) as a resting site. All exposed adults were found to be infected with the strain V275 four days after exposure. A further study exposed C. nubeculosus adults to ‘dry’ conidia and ‘wet’ conidia (conidia suspended in 0.03% aq. Tween 80) of strain V275 applied to damp peat and leaf litter in cages within a greenhouse. ‘Dry’ conidia were more effective than ‘wet’ conidia, causing 100% mortality after 5 days. Conclusion/Significance This is the first study to demonstrate that entomopathogenic fungi are potential biocontrol agents against adult Culicoides, through the application of ‘dry’ conidia on surfaces (e.g., manure, leaf litter, livestock) where the midges tend to rest. Subsequent conidial transmission between males and females may cause an increased level of fungi-induced mortality in midges

  9. Exploring the utility of DNA barcoding in species delimitation of Polypedilum (Tripodura) non-biting midges (Diptera: Chironomidae).

    Science.gov (United States)

    Song, Chao; Wang, Qian; Zhang, Ruilei; Sun, Bingjiao; Wang, Xinhua

    2016-02-16

    In this study, we tested the utility of the mitochondrial gene cytochrome c oxidase subunit 1 (CO1) as the barcode region to deal with taxonomical problems of Polypedilum (Tripodura) non-biting midges (Diptera: Chironomidae). The 114 DNA barcodes representing 27 morphospecies are divided into 33 well separated clusters based on both Neighbor Joining and Maximum Likelihood methods. DNA barcodes revealed an 82% success rate in matching with morphospecies. The selected DNA barcode data support 37-64 operational taxonomic units (OTUs) based on the methods of Automatic Barcode Gap Discovery (ABGD) and Poisson Tree Process (PTP). Furthermore, a priori species based on consistent phenotypic variations were attested by molecular analysis, and a taxonomical misidentification of barcode sequences from GenBank was found. We could not observe a distinct barcode gap but an overlap ranged from 9-12%. Our results supported DNA barcoding as an ideal method to detect cryptic species, delimit sibling species, and associate different life stages in non-biting midges.

  10. Viral Vectors for Use in the Development of Biodefense Vaccines

    National Research Council Canada - National Science Library

    Lee, John S; Hadjipanayis, Angela G; Parker, Michael D

    2005-01-01

    ... agents of bioterrorism or biowarfare. The use of viruses, for example adenovirus, vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine-vectors has enabled researchers to develop effective means for countering the threat of bioterrorism and biowarfare. An overview of the different viral vectors and the threats they counter will be discussed.

  11. Possible over-wintering of bluetongue virus in Culicoides populations in the Onderstepoort area, Gauteng, South Africa

    Directory of Open Access Journals (Sweden)

    Jumari Steyn

    2016-10-01

    Full Text Available Several studies have demonstrated the ability of certain viruses to overwinter in arthropod vectors. The over-wintering mechanism of bluetongue virus (BTV is unknown. One hypothesis is over-wintering within adult Culicoides midges (Diptera; Ceratopogonidae that survive mild winters where temperatures seldom drop below 10 °C. The reduced activity of midges and the absence of outbreaks during winter may create the impression that the virus has disappeared from an area. Light traps were used in close association with horses to collect Culicoides midges from July 2010 to September 2011 in the Onderstepoort area, in Gauteng Province, South Africa. More than 500 000 Culicoides midges were collected from 88 collections and sorted to species level, revealing 26 different Culicoides species. Culicoides midges were present throughout the 15 month study. Nine Culicoides species potentially capable of transmitting BTV were present during the winter months. Midges were screened for the presence of BTV ribonucleic acid (RNA with the aid of a real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR assay. In total 91.2% of midge pools tested positive for BTV RNA. PCR results were compared with previous virus isolation results (VI that demonstrated the presence of viruses in summer and autumn months. The results indicate that BTV-infected Culicoides vectors are present throughout the year in the study area. Viral RNA-positive midges were also found throughout the year with VI positive midge pools only in summer and early autumn. Midges that survive mild winter temperatures could therefore harbour BTV but with a decreased vector capacity. When the population size, biting rate and viral replication decrease, it could stop BTV transmission. Over-wintering of BTV in the Onderstepoort region could therefore result in re-emergence because of increased vector activity rather than reintroduction from outside the region.

  12. Generation of transgene-free induced pluripotent stem cells with non-viral methods.

    Science.gov (United States)

    Wang, Tao; Zhao, Hua-shan; Zhang, Qiu-ling; Xu, Chang-lin; Liu, Chang-bai

    2013-03-01

    Induced pluripotent stem (iPS) cells were originally generated from mouse fibroblasts by enforced expression of Yamanaka factors (Oct3/4, Sox2, Klf4, and c-Myc). The technique was quickly reproduced with human fibroblasts or mesenchymal stem cells. Although having been showed therapeutic potential in animal models of sickle cell anemia and Parkinson's disease, iPS cells generated by viral methods do not suit all the clinical applications. Various non-viral methods have appeared in recent years for application of iPS cells in cell transplantation therapy. These methods mainly include DNA vector-based approaches, transfection of mRNA, and transduction of reprogramming proteins. This review summarized these non-viral methods and compare the advantages, disadvantages, efficiency, and safety of these methods.

  13. PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector Mosquitoes.

    Directory of Open Access Journals (Sweden)

    Pascal Miesen

    2016-12-01

    Full Text Available Vector mosquitoes are responsible for transmission of the majority of arthropod-borne (arbo- viruses. Virus replication in these vectors needs to be sufficiently high to permit efficient virus transfer to vertebrate hosts. The mosquito immune response therefore is a key determinant for arbovirus transmission. Mosquito antiviral immunity is primarily mediated by the small interfering RNA pathway. Besides this well-established antiviral machinery, the PIWI-interacting RNA (piRNA pathway processes viral RNA into piRNAs. In recent years, significant progress has been made in characterizing the biogenesis and function of these viral piRNAs. In this review, we discuss these developments, identify knowledge gaps, and suggest directions for future research.

  14. Design and Potential of Non-Integrating Lentiviral Vectors

    Directory of Open Access Journals (Sweden)

    Aaron Shaw

    2014-01-01

    Full Text Available Lentiviral vectors have demonstrated promising results in clinical trials that target cells of the hematopoietic system. For these applications, they are the vectors of choice since they provide stable integration into cells that will undergo extensive expansion in vivo. Unfortunately, integration can have unintended consequences including dysregulated cell growth. Therefore, lentiviral vectors that do not integrate are predicted to have a safer profile compared to integrating vectors and should be considered for applications where transient expression is required or for sustained episomal expression such as in quiescent cells. In this review, the system for generating lentiviral vectors will be described and used to illustrate how alterations in the viral integrase or vector Long Terminal Repeats have been used to generate vectors that lack the ability to integrate. In addition to their safety advantages, these non-integrating lentiviral vectors can be used when persistent expression would have adverse consequences. Vectors are currently in development for use in vaccinations, cancer therapy, site-directed gene insertions, gene disruption strategies, and cell reprogramming. Preclinical work will be described that illustrates the potential of this unique vector system in human gene therapy.

  15. Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression.

    Science.gov (United States)

    Jiang, Xiaoou; Yu, Han; Teo, Cui Rong; Tan, Genim Siu Xian; Goh, Sok Chin; Patel, Parasvi; Chua, Yiqiang Kevin; Hameed, Nasirah Banu Sahul; Bertoletti, Antonio; Patzel, Volker

    2016-09-01

    Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.

  16. Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector.

    Directory of Open Access Journals (Sweden)

    Claudia Merkl

    Full Text Available Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4 into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications.

  17. The salivary secretome of the biting midge, Culicoides sonorensis

    Directory of Open Access Journals (Sweden)

    Christopher J. Lehiy

    2014-06-01

    Full Text Available Culicoides biting midges (Diptera: Ceratopogonidae are hematophagous insects with over 1400 species distributed throughout the world. Many of these species are of particular agricultural importance as primary vectors of bluetongue and Schmallenberg viruses, yet little is known about Culicoides genomics and proteomics. Detailed studies of members from other blood-feeding Dipteran families, including those of mosquito (Culicidae and black fly (Simuliidae, have shown that protein components within the insect’s saliva facilitate the blood feeding process. To determine the protein components in Culicoides sonorensis midges, secreted saliva was collected for peptide sequencing by tandem mass spectrometry. Forty-five secreted proteins were identified, including members of the D7 odorant binding protein family, Kunitz-like serine protease inhibitors, maltase, trypsin, and six novel proteins unique to C. sonorensis. Identifying the complex myriad of proteins in saliva from blood-feeding Dipteran species is critical for understanding their role in blood feeding, arbovirus transmission, and possibly the resulting disease pathogenesis.

  18. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency

    Science.gov (United States)

    Yang, Zhe; Jiang, Zhaozhong; Cao, Zhong; Zhang, Chao; Gao, Di; Luo, Xingen; Zhang, Xiaofang; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2014-08-01

    We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell for nanoparticle stabilization, poly(γ-glutamic acid) (γ-PGA) and mTAT (a cell-penetrating peptide) for accelerated cellular uptake, and a nuclear localization signal peptide (NLS) for enhanced intracellular transport of DNA to the nucleus. In vitro study showed that coating of the binary PPMS/DNA polyplex with γ-PGA promotes cellular uptake of the polyplex particles, particularly by γ-glutamyl transpeptidase (GGT)-positive cells through the GGT-mediated endocytosis pathway. Conjugating PEG to the γ-PGA led to the formation of a ternary PPMS/DNA/PGA-g-PEG polyplex with decreased positive charges on the surface of the polyplex particles and substantially higher stability in serum-containing aqueous medium. The cellular uptake rate was further improved by incorporating mTAT into the ternary polyplex system. Addition of the NLS peptide was designed to facilitate intracellular delivery of the plasmid to the nucleus--a rate-limiting step in the gene transfection process. As a result, compared with the binary PPMS/LucDNA polyplex, the new mTAT-quaternary PPMS/LucDNA/NLS/PGA-g-PEG-mTAT system exhibited reduced cytotoxicity, remarkably faster cellular uptake rate, and enhanced transport of DNA to the nucleus. All these advantageous functionalities contribute to the remarkable gene transfection efficiency of the mTAT-quaternary polyplex both in vitro and in vivo, which exceeds that of the binary polyplex and commercial Lipofectamine™ 2000/DNA lipoplex. The multifunctional mTAT-quaternary polyplex system with improved efficiency and reduced cytotoxicity represents a new type of promising non-viral vectors for the delivery of therapeutic genes to treat tumors.We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell

  19. Synthesis, and Characterization, and Evaluation of Cellular Effects of the FOL-PEG-g-PEI-GAL Nanoparticles as a Potential Non-Viral Vector for Gene Delivery

    International Nuclear Information System (INIS)

    Ghiamkazemi, S.; Amanzadeh, A.; Dinarvand, R.; Rafiee-Tehrani, M.; Amini, M.; Ghiamkazemi, S.; Dinarvand, R.; Rafiee-Tehrani, M.; Ghiamkazemi, S.; Rafiee-Tehrani, M.; Amanzadeh, A.; Rafiee-Tehrani, M.

    2010-01-01

    In this manuscript, we synthesized the potential non viral vector for gene delivery with proper transfection efficiency and low cytotoxicity. Polyethylenimine (PEI) is a well-known cationic polymer which has high positive surface charge for condensing plasmid DNA. However; it is highly cytotoxic in many cell lines because of the high surface charge, non-biodegradability and non-biocompatibility. To enhance PEI biodegradability, the graft copolymer PEG-g-PEI was synthesized. To target cancer liver cells, two targeting ligands folic acid and galactose (lactobionic acid) which are over expressed on human hepatocyte carcinoma were attached to graft copolymer and FOL-PEG-g-PEI-GAL copolymer was synthesized. Composition of this grafted copolymer was characterized using 1H-NMR and FTIR spectra. The molecular weight and zeta potential of this copolymer was compared to PEI. The particle size and zeta potential of FOL-PEG-g-PEI-GAL/DNA complexes at various N/P ratio were measured using dynamic light scattering (DLS). Cytotoxicity of the copolymer was also studied in cultured HepG2 human hepatoblastoma cell line. The FOL-PEG-g-PEI-GAL/DNA complexes at various N/P ratios exhibited no cytotoxicity in HepG2 cell line compared to PEI 25K as a control. The novel copolymer showed enhanced biodegradability in physiological conditions in compared with PEI and targeted cultured HepG2 cells. More importantly, significant transfection efficiency was exhibited in cancer liver cells. Together, our results showed that FOL-PEG-g-PEI-GAL nanoparticles could be considered as a useful non-viral vector for targeted gene delivery.

  20. Stable solutions of inflation driven by vector fields

    Energy Technology Data Exchange (ETDEWEB)

    Emami, Razieh [Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Mukohyama, Shinji [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502, Kyoto (Japan); Namba, Ryo [Department of Physics, McGill University, Montréal, QC, H3A 2T8 (Canada); Zhang, Ying-li, E-mail: iasraziehm@ust.hk, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp, E-mail: namba@physics.mcgill.ca, E-mail: yingli@bao.ac.cn [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China)

    2017-03-01

    Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.

  1. Stable solutions of inflation driven by vector fields

    International Nuclear Information System (INIS)

    Emami, Razieh; Mukohyama, Shinji; Namba, Ryo; Zhang, Ying-li

    2017-01-01

    Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.

  2. Viral vectors for production of recombinant proteins in plants.

    Science.gov (United States)

    Lico, Chiara; Chen, Qiang; Santi, Luca

    2008-08-01

    Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins. (c) 2008 Wiley-Liss, Inc.

  3. Modified montmorillonite as vector for gene delivery.

    Science.gov (United States)

    Lin, Feng-Huei; Chen, Chia-Hao; Cheng, Winston T K; Kuo, Tzang-Fu

    2006-06-01

    Currently, gene delivery systems can be divided into two parts: viral or non-viral vectors. In general, viral vectors have a higher efficiency on gene delivery. However, they may sometimes provoke mutagenesis and carcinogenesis once re-activating in human body. Lots of non-viral vectors have been developed that tried to solve the problems happened on viral vectors. Unfortunately, most of non-viral vectors showed relatively lower transfection rate. The aim of this study is to develop a non-viral vector for gene delivery system. Montmorillonite (MMT) is one of clay minerals that consist of hydrated aluminum with Si-O tetrahedrons on the bottom of the layer and Al-O(OH)2 octahedrons on the top. The inter-layer space is about 12 A. The room is not enough to accommodate DNA for gene delivery. In the study, the cationic hexadecyltrimethylammonium (HDTMA) will be intercalated into the interlayer of MMT as a layer expander to expand the layer space for DNA accommodation. The optimal condition for the preparation of DNA-HDTMA-MMT is as follows: 1 mg of 1.5CEC HDTMA-MMT was prepared under pH value of 10.7 and with soaking time for 2 h. The DNA molecules can be protected from nuclease degradation, which can be proven by the electrophoresis analysis. DNA was successfully transfected into the nucleus of human dermal fibroblast and expressed enhanced green fluorescent protein (EGFP) gene with green fluorescence emission. The HDTMA-MMT has a great potential as a vector for gene delivery in the future.

  4. Culicoides-virus interactions: infection barriers and possible factors underlying vector competence

    Science.gov (United States)

    In the United States, Culicoides midges vector arboviruses of economic importance such as Bluetongue Virus and Epizootic Hemorrhagic Disease Virus. A limited number of studies have demonstrated the complexities of midge-virus interactions, including dynamic changes in virus titer and prevalence over...

  5. 60Co accumulation from sediment and planktonic algae by midge larvae (Chironomus luridus)

    International Nuclear Information System (INIS)

    Baudin, J.P.; Nucho, R.

    1992-01-01

    This paper reports the results of several experiments carried out to evaluate uptake and retention by a limicolous midge larva of 60 Co retained in sediment, either adsorbed on mineral particles or bound to planktonic algae. In order to determine their relative contributions in radionuclide accumulation, the different vectors (water, algae and sediment) were first labelled individually and then simultaneously. 60 Co accumulation from water and from algae results in a maximum concentration factor of 30 and in a mean trophic transfer factor of 4·5 × 10 −3 . The level of contamination of midge larvae from sediment is markedly influenced by the presence of endogenous organic matter. Thus the radionuclide transfer factor is about twice as high for larvae placed in labelled raw sediment than for larvae placed in labelled incinerated sediment, in the presence as in the absence of contaminated planktonic algae. Irrespective of the contamination conditions, 60 Co depuration from midge larvae is a very rapid phenomenon that corresponds, in all cases, to a radionuclide half-life of only a few days

  6. 60Co accumulation from sediment and planktonic algae by midge larvae (Chironomus luridus)

    International Nuclear Information System (INIS)

    Baudin, J.P.; Nucho, R.

    1992-01-01

    This paper reports the results of several experiments carried out to evaluate uptake and retention by a limicolous midge larva of 60 Co retained in sediment, either adsorbed on mineral particles or bound to planktonic algae. In order to determine their relative contributions in radionuclide accumulation, the different vectors (water, algae and sediment) were first labelled individually and then simultaneously. 60 Co accumulation from water and from algae results in a maximum concentration factor of 30 and in a mean trophic transfer factor of 4.5 x 10 -3 . The level of contamination of midge larvae from sediment is markedly influenced by the presence of endogenous organic matter. Thus the radionuclide transfer factor is about twice as high for larvae placed in labelled raw sediment than for larvae placed in labelled incinerated sediment, in the presence as in the absence of contaminated planktonic algae. Irrespective of the contamination conditions, 60 Co depuration from midge larvae is a very rapid phenomenon that corresponds, in all cases, to a radionuclide half-life of only a few days. (author)

  7. Faktor Risiko Non Viral Pada Karsinoma Nasofaring

    Directory of Open Access Journals (Sweden)

    Sukri Rahman

    2015-09-01

    Full Text Available Abstrak           Latar belakang: Karsinoma nasofaring adalah tumor ganas epitel nasofaring yang sampai saat ini penyebabnya belum diketahui, infeksi virus Epstein Barr dilaporkan sebagai faktor dominan terjadinya karsinoma nasofaring tetapi faktor non viral juga berperan untuk timbulnya keganasan nasofaring. Tujuan: Untuk mengetahui faktor non viral  yang dapat meningkatkan kejadian karsinoma nasofaring sehingga dapat mencegah dan menghindari faktor-faktor non viral tersebut. Tinjauan Pustaka: Karsinoma nasofaring merupakan tumor ganas epitel nasofaring yang penyebabnya berhubungan dengan faktor viral dan non viral diantaranya asap rokok, ikan asin, formaldehid, genetik, asap kayu bakar , debu kayu, infeksi kronik telinga hidung tenggorok, alkohol dan obat tradisional. Kesimpulan: Pembuktian secara klinis dan ilmiah terhadap faktor non viral sebagai penyebab timbulnya karsinoma nasofaring masih belum dapat dijelaskan secara pasti. Faktor non viral merupakan salah satu faktor risiko yang dapat meningkatkan angka kejadian timbulnya keganasan nasofaring Kata kunci: karsinoma nasofaring, faktor risiko, non viral AbstractBackground: Nasopharyngeal carcinoma is a malignant epithelial nasopharyngeal tumor that until now the cause still unknown, Epstein barr virus infection had reported as predominant occurance of nasopharyngeal carcinoma but non viral factors may also contribute to the onset of the incidence of nasopharyngeal malignancy. Purpose: To find non viral factors that may increase the incidence of nasopharyngel carcinoma in order to prevent and avoid non-viral factors Literature: Nasopharyngeal carcinoma is a malignant tumor that causes nasopharyngeal epithelium associated with viral and non-viral factors such as cigarette smoke, salt fish, formaldehyde, genetic, wood smoke ,wood dust, ear nose throat chronic infections, alcohol, and traditional medicine. Conclusion: Clinically and scientifically proving the non-viral factors as

  8. Papular dermatitis induced in guinea pigs by the biting midge Culicoides sonorensis (Diptera: Ceratopogonidae).

    Science.gov (United States)

    O'Toole, D; Pérez de León, A A; Hearne, C; McHolland, L; Yun, L; Tabachnick, W

    2003-01-01

    Histological, ultrastructural, and virological examinations were performed on abdominal skin from guinea pigs after a blood meal by colony-bred biting midges, Culicoides sonorensis. Small, superficial, cutaneous, crateriform ulcers with necrosis of superficial dermis developed at feeding sites and healed within 24-48 hours. Animals developed nonpruritic erythematous papules 5 days after feeding that persisted until the study ended at 12 days after feeding. Papules corresponded histologically to foci of epidermal hyperplasia and superficial interstitial dermatitis with intraepidermal micropustules and scattered intraepidermal polykaryons. The principal ultrastructural changes were spongiosis in germinal epithelium and neutrophilic-histiocytic exocytosis. No viral agents or broken mouthparts were identified in lesions. The dermatitis may represent a host reaction to persisting insect salivary secretion and should be considered as an additional consequence of blood feeding in future studies involving biting midges.

  9. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    Science.gov (United States)

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  10. Adeno-associated viral vectors as agents for gene delivery : application in disorders and trauma of the central nervous system

    NARCIS (Netherlands)

    Ruitenberg, Marc J; Eggers, Ruben; Boer, Gerard J; Verhaagen, J.

    2002-01-01

    The use of viral vectors as agents for gene delivery provides a direct approach to manipulate gene expression in the mammalian central nervous system (CNS). The present article describes in detail the methodology for the injection of viral vectors, in particular adeno-associated virus (AAV) vectors,

  11. Viral vectors for cystic fibrosis gene therapy: What does the future hold?

    Directory of Open Access Journals (Sweden)

    Uta Griesenbach

    2010-12-01

    Full Text Available Uta Griesenbach1, Makoto Inoue2, Mamoru Hasegawa2, Eric WFW Alton11Department of Gene Therapy, Imperial College London, UK; The UK Cystic Fibrosis Gene Therapy Consortium; 2DNAVEC Corporation, Tsukuba, JapanAbstract: Gene transfer to the airway epithelium has been more difficult than originally anticipated, largely because of significant extra- and intracellular barriers in the lung. In general, viral vectors are more adapted to overcoming these barriers than nonviral gene transfer agents and are, therefore, more efficient in transferring genes into recipient cells. Viral vectors derived from adenovirus, adeno-associated virus, and Sendai virus, which all have a natural tropism for the airway epithelium, have been evaluated for cystic fibrosis (CF gene therapy. Although these vectors transduce airway epithelial cells efficiently, gene expression is transient and repeated administration is inefficient. They are, therefore, unlikely to be suitable for CF gene therapy. More recently, lentiviruses (LV have been assessed for lung gene transfer. In contrast to retroviruses, they transduce nondividing cells and randomly integrate into the genome. However, LVs do not have a natural tropism for the lung, and a significant amount of effort has been put into pseudotyping these vectors with proteins suitable for airway gene transfer. Several studies have shown that LV-mediated transduction leads to persistent gene expression (for the lifetime of the animal in the airways and, importantly, repeated administration is feasible. Thus, appropriately pseudotyped LV vectors are promising candidates for CF gene therapy. Here, we will review preclinical and clinical research related to viral CF gene therapy.Keywords: cystic fibrosis, gene therapy, adenovirus, AAV, lentivirus, Sendai virus

  12. Development of Viral Vectors for Gene Therapy for Chronic Pain

    Directory of Open Access Journals (Sweden)

    Yu Huang

    2011-01-01

    Full Text Available Chronic pain is a major health concern that affects millions of people. There are no adequate long-term therapies for chronic pain sufferers, leading to significant cost for both society and the individual. The most commonly used therapy for chronic pain is the application of opioid analgesics and nonsteroidal anti-inflammatory drugs, but these drugs can lead to addiction and may cause side effects. Further studies of the mechanisms of chronic pain have opened the way for development of new treatment strategies, one of which is gene therapy. The key to gene therapy is selecting safe and highly efficient gene delivery systems that can deliver therapeutic genes to overexpress or suppress relevant targets in specific cell types. Here we review several promising viral vectors that could be applied in gene transfer for the treatment of chronic pain and further discuss the possible mechanisms of genes of interest that could be delivered with viral vectors for the treatment of chronic pain.

  13. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Dolder, J. van den; Yang, F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and

  14. Vector competence of Culicoides sonorensis (Diptera: Ceratopogonidae to epizootic hemorrhagic disease virus serotype 7

    Directory of Open Access Journals (Sweden)

    Ruder Mark G

    2012-10-01

    Full Text Available Abstract Background Culicoides sonorensis (Diptera: Ceratopogonidae is a vector of epizootic hemorrhagic disease virus (EHDV serotypes 1 and 2 in North America, where these viruses are well-known pathogens of white-tailed deer (WTD and other wild ruminants. Although historically rare, reports of clinical EHDV infection in cattle have increased in some parts of the world over the past decade. In 2006, an EHDV-7 epizootic in cattle resulted in economic loss for the Israeli dairy industry. White-tailed deer are susceptible to EHDV-7 infection and disease; however, this serotype is exotic to the US and the susceptibility of C. sonorensis to this cattle-virulent EHDV is not known. The objective of the study was to determine if C. sonorensis is susceptible to EHDV-7 infection and is a competent vector. Methods To evaluate the susceptibility of C. sonorensis, midges were fed on EHDV-7 infected WTD, held at 22 ± 1°C, and processed individually for virus isolation and titration on 4–16 days post feeding (dpf. Midges with a virus titer of ≥102.7 median tissue culture infective doses (TCID50/midge were considered potentially competent. To determine if infected C. sonorensis were capable of transmitting EHDV-7 to a host, a susceptible WTD was then fed on by a group of 14–16 dpf midges. Results From 4–16 dpf, 45% (156/350 of midges that fed on WTD with high titer viremia (>107 TCID50/ml were virus isolation-positive, and starting from 10–16 dpf, 32% (35/109 of these virus isolation-positive midges were potentially competent (≥102.7 TCID50/midge. Midges that fed on infected deer transmitted the virus to a susceptible WTD at 14–16 dpf. The WTD developed viremia and severe clinical disease. Conclusion This study demonstrates that C. sonorensis is susceptible to EHDV-7 infection and can transmit the virus to susceptible WTD, thus, C. sonorensis should be considered a potential vector of EHDV-7. Together with previous work, this study demonstrates

  15. Vector competence of Culicoides sonorensis (Diptera: Ceratopogonidae) to epizootic hemorrhagic disease virus serotype 7.

    Science.gov (United States)

    Ruder, Mark G; Howerth, Elizabeth W; Stallknecht, David E; Allison, Andrew B; Carter, Deborah L; Drolet, Barbara S; Klement, Eyal; Mead, Daniel G

    2012-10-17

    Culicoides sonorensis (Diptera: Ceratopogonidae) is a vector of epizootic hemorrhagic disease virus (EHDV) serotypes 1 and 2 in North America, where these viruses are well-known pathogens of white-tailed deer (WTD) and other wild ruminants. Although historically rare, reports of clinical EHDV infection in cattle have increased in some parts of the world over the past decade. In 2006, an EHDV-7 epizootic in cattle resulted in economic loss for the Israeli dairy industry. White-tailed deer are susceptible to EHDV-7 infection and disease; however, this serotype is exotic to the US and the susceptibility of C. sonorensis to this cattle-virulent EHDV is not known. The objective of the study was to determine if C. sonorensis is susceptible to EHDV-7 infection and is a competent vector. To evaluate the susceptibility of C. sonorensis, midges were fed on EHDV-7 infected WTD, held at 22 ± 1°C, and processed individually for virus isolation and titration on 4-16 days post feeding (dpf). Midges with a virus titer of ≥ 10(2.7) median tissue culture infective doses (TCID(50))/midge were considered potentially competent. To determine if infected C. sonorensis were capable of transmitting EHDV-7 to a host, a susceptible WTD was then fed on by a group of 14-16 dpf midges. From 4-16 dpf, 45% (156/350) of midges that fed on WTD with high titer viremia (>10(7) TCID(50)/ml) were virus isolation-positive, and starting from 10-16 dpf, 32% (35/109) of these virus isolation-positive midges were potentially competent (≥ 10(2.7) TCID(50)/midge). Midges that fed on infected deer transmitted the virus to a susceptible WTD at 14-16 dpf. The WTD developed viremia and severe clinical disease. This study demonstrates that C. sonorensis is susceptible to EHDV-7 infection and can transmit the virus to susceptible WTD, thus, C. sonorensis should be considered a potential vector of EHDV-7. Together with previous work, this study demonstrates that North America has a susceptible ruminant and

  16. Environmental statistical modelling of mosquito vectors at different geographical scales

    NARCIS (Netherlands)

    Cianci, D.

    2015-01-01

    Vector-borne diseases are infections transmitted by the bite of infected arthropod vectors, such as mosquitoes, ticks, fleas, midges and flies. Vector-borne diseases pose an increasingly wider threat to global public health, both in terms of people affected and their geographical spread. Mosquitoes

  17. Discovery of Cationic Polymers for Non-viral Gene Delivery using Combinatorial Approaches

    Science.gov (United States)

    Barua, Sutapa; Ramos, James; Potta, Thrimoorthy; Taylor, David; Huang, Huang-Chiao; Montanez, Gabriela; Rege, Kaushal

    2015-01-01

    Gene therapy is an attractive treatment option for diseases of genetic origin, including several cancers and cardiovascular diseases. While viruses are effective vectors for delivering exogenous genes to cells, concerns related to insertional mutagenesis, immunogenicity, lack of tropism, decay and high production costs necessitate the discovery of non-viral methods. Significant efforts have been focused on cationic polymers as non-viral alternatives for gene delivery. Recent studies have employed combinatorial syntheses and parallel screening methods for enhancing the efficacy of gene delivery, biocompatibility of the delivery vehicle, and overcoming cellular level barriers as they relate to polymer-mediated transgene uptake, transport, transcription, and expression. This review summarizes and discusses recent advances in combinatorial syntheses and parallel screening of cationic polymer libraries for the discovery of efficient and safe gene delivery systems. PMID:21843141

  18. Non-viral gene delivery strategies for cancer therapy, tissue engineering and regenerative medicine

    Science.gov (United States)

    Bhise, Nupura S.

    Gene therapy involves the delivery of deoxyribonucleic acid (DNA) into cells to override or replace a malfunctioning gene for treating debilitating genetic diseases, including cancer and neurodegenerative diseases. In addition to its use as a therapeutic, it can also serve as a technology to enable regenerative medicine strategies. The central challenge of the gene therapy research arena is developing a safe and effective delivery agent. Since viral vectors have critical immunogenic and tumorogenic safety issues that limit their clinical use, recent efforts have focused on developing non-viral biomaterial based delivery vectors. Cationic polymers are an attractive class of gene delivery vectors due to their structural versatility, ease of synthesis, biodegradability, ability to self-complex into nanoparticles with negatively charged DNA, capacity to carry large cargo, cellular uptake and endosomal escape capacity. In this thesis, we hypothesized that developing a biomaterial library of poly(betaamino esters) (PBAE), a newer class of cationic polymers consisting of biodegradable ester groups, would allow investigating vector design parameters and formulating effective non-viral gene delivery strategies for cancer drug delivery, tissue engineering and stem cell engineering. Consequently, a high-throughput transfection assay was developed to screen the PBAE-based nanoparticles in hard to transfect fibroblast cell lines. To gain mechanistic insights into the nanoparticle formulation process, biophysical properties of the vectors were characterized in terms of molecular weight (MW), nanoparticle size, zeta potential and plasmid per particle count. We report a novel assay developed for quantifying the plasmid per nanoparticle count and studying its implications for co-delivery of multiple genes. The MW of the polymers ranged from 10 kDa to 100 kDa, nanoparticle size was about 150 run, zeta potential was about 30 mV in sodium acetate buffer (25 mM, pH 5) and 30 to 100

  19. Carbohydrate-Based Ice Recrystallization Inhibitors Increase Infectivity and Thermostability of Viral Vectors

    Science.gov (United States)

    Ghobadloo, Shahrokh M.; Balcerzak, Anna K.; Gargaun, Ana; Muharemagic, Darija; Mironov, Gleb G.; Capicciotti, Chantelle J.; Briard, Jennie G.; Ben, Robert N.; Berezovski, Maxim V.

    2014-07-01

    The inability of vaccines to retain sufficient thermostability has been an obstacle to global vaccination programs. To address this major limitation, we utilized carbohydrate-based ice recrystallization inhibitors (IRIs) to eliminate the cold chain and stabilize the potency of Vaccinia virus (VV), Vesicular Stomatitis virus (VSV) and Herpes virus-1 (HSV-1). The impact of these IRIs was tested on the potency of the viral vectors using a plaque forming unit assay following room temperature storage, cryopreservation with successive freeze-thaw cycles and lyophilization. Viral potency after storage with all three conditions demonstrated that N-octyl-gluconamide (NOGlc) recovered the infectivity of shelf stored VV, 5.6 Log10 PFU mL-1 during 40 days, and HSV-1, 2.7 Log10 PFU mL-1 during 9 days. Carbon-linked antifreeze glycoprotein analogue ornithine-glycine-glycine-galactose (OGG-Gal) increases the recovery of VV and VSV more than 1 Log10 PFU mL-1 after 10 freeze-thaw cycles. In VSV, cryostorage with OGG-Gal maintains high infectivity and reduces temperature-induced aggregation of viral particles by 2 times that of the control. In total, OGG-Gal and NOGlc preserve virus potency during cryostorage. Remarkably, NOGlc has potential to eliminate the cold chain and permit room temperature storage of viral vectors.

  20. The development of a murine model for Forcipomyia taiwana (biting midge) allergy.

    Science.gov (United States)

    Lee, Mey-Fann; Yang, Kai-Jei; Wang, Nancy M; Chiu, Yung-Tsung; Chen, Pei-Chih; Chen, Yi-Hsing

    2014-01-01

    Forcipomyia taiwana (biting midge) allergy is the most prevalent biting insect allergy in Taiwan. An animal model corresponding to the human immuno-pathologic features of midge allergy is needed for investigating the mechanisms and therapies. This study successfully developed a murine model of Forcipomyia taiwana allergy. BALB/c mice were sensitized intra-peritoneally with midge extract on days 0, 7, 14, 21 then intra-dermally on days 28, 31 and 35. Serum midge-specific IgE, IgG1, and IgG2a were measured every 14 days by indirect ELISA. The mice were challenged intradermally with midge extract at day 40 and then sacrificed. Proliferation and cytokine production of splenocytes after stimulation with midge extract were determined by MTT assay and ELISA, respectively. The cytokine mRNA expression in response to midge stimulation was analyzed by RT-PCR. Serum IgE, total IgG, and IgG1 antibody levels against midge extract were significantly higher in the midge-sensitized mice than in the control mice. After the two-step sensitization, all mice in the midge-sensitized group displayed immediate itch and plasma extravasation reactions in response to challenge with midge extract. Skin histology from midge-sensitized mice showed marked eosinophil and lymphocyte infiltrations similar to that observed in humans. Stimulation of murine splenocytes with midge extract elicited significant proliferation, IL-4, IL-10, IL-13 and IFN-γ protein production, and up-regulation of mRNA in a dose-dependent manner in the midge-sensitized group, but not in the control group. A murine model of midge bite allergy has been successfully developed using a two-step sensitization protocol. The sensitized mice have very similar clinical and immunologic reactions to challenge with midge proteins as the reactions of human to midge bites. This murine model may be a useful platform for future research and the development of treatment strategies for insect bite allergy.

  1. Algevir: An Expression System for Microalgae Based on Viral Vectors

    Directory of Open Access Journals (Sweden)

    Bernardo Bañuelos-Hernández

    2017-06-01

    Full Text Available The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin, which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture, which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins.

  2. Algevir: An Expression System for Microalgae Based on Viral Vectors

    Science.gov (United States)

    Bañuelos-Hernández, Bernardo; Monreal-Escalante, Elizabeth; González-Ortega, Omar; Angulo, Carlos; Rosales-Mendoza, Sergio

    2017-01-01

    The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus) and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin), which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture), which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins. PMID:28713333

  3. A spatial simulation model for the dispersal of the bluetongue vector Culicoides brevitarsis in Australia.

    Directory of Open Access Journals (Sweden)

    Joel K Kelso

    Full Text Available The spread of Bluetongue virus (BTV among ruminants is caused by movement of infected host animals or by movement of infected Culicoides midges, the vector of BTV. Biologically plausible models of Culicoides dispersal are necessary for predicting the spread of BTV and are important for planning control and eradication strategies.A spatially-explicit simulation model which captures the two underlying population mechanisms, population dynamics and movement, was developed using extensive data from a trapping program for C. brevitarsis on the east coast of Australia. A realistic midge flight sub-model was developed and the annual incursion and population establishment of C. brevitarsis was simulated. Data from the literature was used to parameterise the model.The model was shown to reproduce the spread of C. brevitarsis southwards along the east Australian coastline in spring, from an endemic population to the north. Such incursions were shown to be reliant on wind-dispersal; Culicoides midge active flight on its own was not capable of achieving known rates of southern spread, nor was re-emergence of southern populations due to overwintering larvae. Data from midge trapping programmes were used to qualitatively validate the resulting simulation model.The model described in this paper is intended to form the vector component of an extended model that will also include BTV transmission. A model of midge movement and population dynamics has been developed in sufficient detail such that the extended model may be used to evaluate the timing and extent of BTV outbreaks. This extended model could then be used as a platform for addressing the effectiveness of spatially targeted vaccination strategies or animal movement bans as BTV spread mitigation measures, or the impact of climate change on the risk and extent of outbreaks. These questions involving incursive Culicoides spread cannot be simply addressed with non-spatial models.

  4. Methods of treating Parkinson's disease using viral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, Krystof; Cunningham, Janet

    2016-11-15

    Methods of delivering viral vectors, particularly recombinant adeno-associated virus (rAAV) virions, to the central nervous system (CNS) using convection enhanced delivery (CED) are provided. The rAAV virions include a nucleic acid sequence encoding a therapeutic polypeptide. The methods can be used for treating CNS disorders such as for treating Parkinson's Disease.

  5. Non-viral gene delivery strategies for gene therapy: a “ménage à trois” among nucleic acids, materials, and the biological environment

    International Nuclear Information System (INIS)

    Pezzoli, Daniele; Candiani, Gabriele

    2013-01-01

    Gene delivery is the science of transferring genetic material into cells by means of a vector to alter cellular function or structure at a molecular level. In this context, a number of nucleic acid-based drugs have been proposed and experimented so far and, as they act on distinct steps along the gene transcription–translation pathway, specific delivery strategies are required to elicit the desired outcome. Cationic lipids and polymers, collectively known as non-viral delivery systems, have thus made their breakthrough in basic and medical research. Albeit they are promising alternatives to viral vectors, their therapeutic application is still rather limited as high transfection efficiencies are normally associated to adverse cytotoxic side effects. In this scenario, drawing inspiration from processes naturally occurring in vivo, major strides forward have been made in the development of more effective materials for gene delivery applications. Specifically, smart vectors sensitive to a variety of physiological stimuli such as cell enzymes, redox status, and pH are substantially changing the landscape of gene delivery by helping to overcome some of the systemic and intracellular barriers that viral vectors naturally evade. Herein, after summarizing the state-of-the-art information regarding the use of nucleic acids as drugs, we review the main bottlenecks still limiting the overall effectiveness of non-viral gene delivery systems. Finally, we provide a critical outline of emerging stimuli-responsive strategies and discuss challenges still existing on the road toward conceiving more efficient and safer multifunctional vectors.

  6. O'nyong nyong virus molecular determinants of unique vector specificity reside in non-structural protein 3.

    Directory of Open Access Journals (Sweden)

    Kali D Saxton-Shaw

    Full Text Available O'nyong nyong virus (ONNV and Chikungunya virus (CHIKV are two closely related alphaviruses with very different infection patterns in the mosquito, Anopheles gambiae. ONNV is the only alphavirus transmitted by anopheline mosquitoes, but specific molecular determinants of infection of this unique vector specificity remain unidentified. Fifteen distinct chimeric viruses were constructed to evaluate both structural and non-structural regions of the genome and infection patterns were determined through artificial infectious feeds in An. gambiae with each of these chimeras. Only one region, non-structural protein 3 (nsP3, was sufficient to up-regulate infection to rates similar to those seen with parental ONNV. When ONNV non-structural protein 3 (nsP3 replaced nsP3 from CHIKV virus in one of the chimeric viruses, infection rates in An. gambiae went from 0% to 63.5%. No other single gene or viral region addition was able to restore infection rates. Thus, we have shown that a non-structural genome element involved in viral replication is a major element involved in ONNV's unique vector specificity.

  7. CRISPR/Cas9-Mediated Knockin Application in Cell Therapy: A Non-viral Procedure for Bystander Treatment of Glioma in Mice

    Directory of Open Access Journals (Sweden)

    Oscar Meca-Cortés

    2017-09-01

    Full Text Available The use of non-viral procedures, together with CRISPR/Cas9 genome-editing technology, allows the insertion of single-copy therapeutic genes at pre-determined genomic sites, overcoming safety limitations resulting from random gene insertions of viral vectors with potential for genome damage. In this study, we demonstrate that combination of non-viral gene delivery and CRISPR/Cas9-mediated knockin via homology-directed repair can replace the use of viral vectors for the generation of genetically modified therapeutic cells. We custom-modified human adipose mesenchymal stem cells (hAMSCs, using electroporation as a transfection method and CRISPR/Cas9-mediated knockin for the introduction and stable expression of a 3 kb DNA fragment including the eGFP (selectable marker and a variant of the herpes simplex virus 1 thymidine kinase genes (therapeutic gene, under the control of the human elongation factor 1 alpha promoter in exon 5 of the endogenous thymidine kinase 2 gene. Using a U87 glioma model in SCID mice, we show that the therapeutic capacity of the new CRISPR/Cas9-engineered hAMSCs is equivalent to that of therapeutic hAMSCs generated by introduction of the same therapeutic gene by transduction with a lentiviral vector previously published by our group. This strategy should be of general use to other applications requiring genetic modification of therapeutic cells. Keywords: CRISPR/Cas9, cell therapy, mesenchymal stem cells, bystander suicide therapy, glioblastoma, non-invasive bioluminescence imaging, CRISPR/Cas9, CRISPR/Cas9 knockin

  8. Novel viral vectors utilizing intron splice-switching to activate genome rescue, expression and replication in targeted cells

    Directory of Open Access Journals (Sweden)

    El Andaloussi Samir

    2011-05-01

    Full Text Available Abstract Background The outcome of virus infection depends from the precise coordination of viral gene expression and genome replication. The ability to control and regulate these processes is therefore important for analysis of infection process. Viruses are also useful tools in bio- and gene technology; they can efficiently kill cancer cells and trigger immune responses to tumors. However, the methods for constructing tissue- or cell-type specific viruses typically suffer from low target-cell specificity and a high risk of reversion. Therefore novel and universal methods of regulation of viral infection are also important for therapeutic application of virus-based systems. Methods Aberrantly spliced introns were introduced into crucial gene-expression units of adenovirus vector and alphavirus DNA/RNA layered vectors and their effects on the viral gene expression, replication and/or the release of infectious genomes were studied in cell culture. Transfection of the cells with splice-switching oligonucleotides was used to correct the introduced functional defect(s. Results It was demonstrated that viral gene expression, replication and/or the release of infectious genomes can be blocked by the introduction of aberrantly spliced introns. The insertion of such an intron into an adenovirus vector reduced the expression of the targeted gene more than fifty-fold. A similar insertion into an alphavirus DNA/RNA layered vector had a less dramatic effect; here, only the release of the infectious transcript was suppressed but not the subsequent replication and spread of the virus. However the insertion of two aberrantly spliced introns resulted in an over one hundred-fold reduction in the infectivity of the DNA/RNA layered vector. Furthermore, in both systems the observed effects could be reverted by the delivery of splice-switching oligonucleotide(s, which corrected the splicing defects. Conclusions Splice-switch technology, originally developed for

  9. DNA Minicircle Technology Improves Purity of Adeno-associated Viral Vector Preparations

    Directory of Open Access Journals (Sweden)

    Maria Schnödt

    2016-01-01

    Full Text Available Adeno-associated viral (AAV vectors are considered as one of the most promising delivery systems in human gene therapy. In addition, AAV vectors are frequently applied tools in preclinical and basic research. Despite this success, manufacturing pure AAV vector preparations remains a difficult task. While empty capsids can be removed from vector preparations owing to their lower density, state-of-the-art purification strategies as of yet failed to remove antibiotic resistance genes or other plasmid backbone sequences. Here, we report the development of minicircle (MC constructs to replace AAV vector and helper plasmids for production of both, single-stranded (ss and self-complementary (sc AAV vectors. As bacterial backbone sequences are removed during MC production, encapsidation of prokaryotic plasmid backbone sequences is avoided. This is of particular importance for scAAV vector preparations, which contained an unproportionally high amount of plasmid backbone sequences (up to 26.1% versus up to 2.9% (ssAAV. Replacing standard packaging plasmids by MC constructs not only allowed to reduce these contaminations below quantification limit, but in addition improved transduction efficiencies of scAAV preparations up to 30-fold. Thus, MC technology offers an easy to implement modification of standard AAV packaging protocols that significantly improves the quality of AAV vector preparations.

  10. Enhancement of Mucosal Immunogenicity of Viral Vectored Vaccines by the NKT Cell Agonist Alpha-Galactosylceramide as Adjuvant

    Directory of Open Access Journals (Sweden)

    Shailbala Singh

    2014-10-01

    Full Text Available Gene-based vaccination strategies, specifically viral vectors encoding vaccine immunogens are effective at priming strong immune responses. Mucosal routes offer practical advantages for vaccination by ease of needle-free administration, and immunogen delivery at readily accessible oral/nasal sites to efficiently induce immunity at distant gut and genital tissues. However, since mucosal tissues are inherently tolerant for induction of immune responses, incorporation of adjuvants for optimal mucosal vaccination strategies is important. We report here the effectiveness of alpha-galactosylceramide (α-GalCer, a synthetic glycolipid agonist of natural killer T (NKT cells, as an adjuvant for enhancing immunogenicity of vaccine antigens delivered using viral vectors by mucosal routes in murine and nonhuman primate models. Significant improvement in adaptive immune responses in systemic and mucosal tissues was observed by including α-GalCer adjuvant for intranasal immunization of mice with vesicular stomatitis virus vector encoding the model antigen ovalbumin and adenoviral vectors expressing HIV env and Gag antigens. Activation of NKT cells in systemic and mucosal tissues along with significant increases in adaptive immune responses were observed in rhesus macaques immunized by intranasal and sublingual routes with protein or adenovirus vectored antigens when combined with α-GalCer adjuvant. These results support the utility of α-GalCer adjuvant for enhancing immunogenicity of mucosal vaccines delivered using viral vectors.

  11. Geometry of quantal adiabatic evolution driven by a non-Hermitian Hamiltonian

    International Nuclear Information System (INIS)

    Wu Zhaoyan; Yu Ting; Zhou Hongwei

    1994-01-01

    It is shown by using a counter example, which is exactly solvable, that the quantal adiabatic theorem does not generally hold for a non-Hermitian driving Hamiltonian, even if it varies extremely slowly. The condition for the quantal adiabatic theorem to hold for non-Hermitian driving Hamiltonians is given. The adiabatic evolutions driven by a non-Hermitian Hamiltonian provide examples of a new geometric structure, that is the vector bundle in which the inner product of two parallelly transported vectors generally changes. A new geometric concept, the attenuation tensor, is naturally introduced to describe the decay or flourish of the open quantum system. It is constructed in terms of the spectral projector of the Hamiltonian. (orig.)

  12. Data-driven identification of potential Zika virus vectors

    Science.gov (United States)

    Evans, Michelle V; Dallas, Tad A; Han, Barbara A; Murdock, Courtney C; Drake, John M

    2017-01-01

    Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. DOI: http://dx.doi.org/10.7554/eLife.22053.001 PMID:28244371

  13. Construction of non-viral vector (mPEG5k-PCL1.2k)1.4-g-PEI10k and its gene delivery efficacy in vitro

    OpenAIRE

    Wei HUANG; Ming LV; Zhong-gao GAO; Ming-ji JIN; Fei-fei YANG; Yu-li WANG

    2011-01-01

    Objective To construct(mPEG5k-PCL1.2k)1.4-g-PEI10k,a copolymer designed as delivery vector for non-viral gene therapy,and explore its cytotoxicity and efficacy in delivery of plasmid DNA(pDNA).Methods The copolymer,mPEG5k-PCL1.2k-OH,was prepared by ring-opening polymerization and then followed by a conversion of hydroxyl terminal(-OH) into N-hydroxysuccinimide(NHS) to prepare mPEG5k-PCL1.2k-NHS.One of the branches,PEI10k,was then reacted with mPEG5k-PCL1.2k-NHS to synthesize a ternary copolym...

  14. Anti-metastatic effects of viral and non-viral mediated Nk4 delivery to tumours.

    Science.gov (United States)

    Buhles, Alexandra; Collins, Sara A; van Pijkeren, Jan P; Rajendran, Simon; Miles, Michelle; O'Sullivan, Gerald C; O'Hanlon, Deirdre M; Tangney, Mark

    2009-03-09

    The most common cause of death of cancer sufferers is through the occurrence of metastases. The metastatic behaviour of tumour cells is regulated by extracellular growth factors such as hepatocyte growth factor (HGF), a ligand for the c-Met receptor tyrosine kinase, and aberrant expression/activation of the c-Met receptor is closely associated with metastatic progression. Nk4 (also known as Interleukin (IL)32b) is a competitive antagonist of the HGF c-Met system and inhibits c-Met signalling and tumour metastasis. Nk4 has an additional anti-angiogenic activity independent of its HGF-antagonist function. Angiogenesis-inhibitory as well as cancer-specific apoptosis inducing effects make the Nk4 sequence an attractive candidate for gene therapy of cancer. This study investigates the inhibition of tumour metastasis by gene therapy mediated production of Nk4 by the primary tumour. Optimal delivery of anti-cancer genes is vital in order to achieve the highest therapeutic responses. Non-viral plasmid delivery methods have the advantage of safety and ease of production, providing immediate transgene expression, albeit short-lived in most tumours. Sustained presence of anti-angiogenic molecules is preferable with anti-angiogenic therapies, and the long-term expression mediated by Adeno-associated Virus (AAV) might represent a more appropriate delivery in this respect. However, the incubation time required by AAV vectors to reach appropriate gene expression levels hampers efficacy in many fast-growing murine tumour models. Here, we describe murine trials assessing the effects of Nk4 on the spontaneously metastatic Lewis Lung Carcinoma (LLC) model when delivered to primary tumour via plasmid lipofection or AAV2 vector. Intratumoural AAV-Nk4 administration produced the highest therapeutic response with significant reduction in both primary tumour growth and incidence of lung metastases. Plasmid-mediated therapy also significantly reduced metastatic growth, but with moderate

  15. Viral and vector zoonotic exploitation of a homo-sociome memetic complex.

    Science.gov (United States)

    Rupprecht, C E; Burgess, G W

    2015-05-01

    As most newly characterized emerging infectious diseases are considered to be zoonotic, a modern pre-eminence ascribed within this classification lies clearly within the viral taxonomic realm. In particular, RNA viruses deserve special concern given their documented impact on conservation biology, veterinary medicine and public health, with an unprecedented ability to promote an evolutionary host-pathogen arms race from the ultimate infection and immunity perspective. However, besides the requisite molecular/gross anatomical and physiological bases for infectious diseases to transmit from one host to another, both viral pathogens and their reservoirs/vectors exploit a complex anthropological, cultural, historical, psychological and social suite that specifically defines the phylodynamics within Homo sapiens, unlike any other species. Some of these variables include the ecological benefits of living in groups, decisions on hunting and foraging behaviours and dietary preferences, myths and religious doctrines, health economics, travel destinations, population planning, political decisions on agricultural product bans and many others, in a homo-sociome memetic complex. Taken to an extreme, such complexities elucidate the underpinnings of explanations as to why certain viral zoonoses reside in neglected people, places and things, whereas others are chosen selectively and prioritized for active mitigation. Canine-transmitted rabies serves as one prime example of how a neglected viral zoonosis may transition to greater attention on the basis of renewed advocacy, social media, local champions and vested international community engagement. In contrast, certain bat-associated and arboviral diseases suffer from basic ignorance and perpetuated misunderstanding of fundamental reservoir and vector ecology tenets, translated into failed control policies that only exacerbate the underlying environmental conditions of concern. Beyond applied biomedical knowledge, epidemiological

  16. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Woldbye, David Paul Drucker; Ängehagen, Mikael; Gøtzsche, Casper René

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure...... recombinant adeno-associated viral vectors. In two temporal lobe epilepsy models, electrical kindling and kainate-induced seizures, vector-based transduction of Y2 receptor complementary DNA in the hippocampus of adult rats exerted seizure-suppressant effects. Simultaneous overexpression of Y2...... and neuropeptide Y had a more pronounced seizure-suppressant effect. These results demonstrate that overexpression of Y2 receptors (alone or in combination with neuropeptide Y) could be an alternative strategy for epilepsy treatment....

  17. Redescription of Chironomus salinarius (Diptera: Chironomidae), nuisance midges that emerged in brackish water of Jinhae-man (Bay), Kyongsangnam-do, Korea

    Science.gov (United States)

    Yum, Jin-Hwoa

    2006-01-01

    Huge numbers of non-biting midges emerged from brackish water which were made at the harbor construction field in Jinhae City, Kyongsangnam-do, Korea in late summer in 2005, and caused a serious nuisance to villagers. The midges were collected and identified as Chironomus salinarius (Kieffer, 1921). Although this species was recorded in Korea for the first time in 1998, the morphological descriptions were so brief and simple. A full redescription is made with detailed illustrations for ecological and control workers of this nuisance midge. PMID:16514284

  18. CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes.

    Science.gov (United States)

    Ehrke-Schulz, Eric; Schiwon, Maren; Leitner, Theo; Dávid, Stephan; Bergmann, Thorsten; Liu, Jing; Ehrhardt, Anja

    2017-12-07

    The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system revolutionized the field of gene editing but viral delivery of the CRISPR/Cas9 system has not been fully explored. Here we adapted clinically relevant high-capacity adenoviral vectors (HCAdV) devoid of all viral genes for the delivery of the CRISPR/Cas9 machinery using a single viral vector. We present a platform enabling fast transfer of the Cas9 gene and gRNA expression units into the HCAdV genome including the option to choose between constitutive or inducible Cas9 expression and gRNA multiplexing. Efficacy and versatility of this pipeline was exemplified by producing different CRISPR/Cas9-HCAdV targeting the human papillomavirus (HPV) 18 oncogene E6, the dystrophin gene causing Duchenne muscular dystrophy (DMD) and the HIV co-receptor C-C chemokine receptor type 5 (CCR5). All CRISPR/Cas9-HCAdV proved to be efficient to deliver the respective CRISPR/Cas9 expression units and to introduce the desired DNA double strand breaks at their intended target sites in immortalized and primary cells.

  19. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Jensen, Benjamin Anderschou Holbech; Ragonnaud, Emeline

    2015-01-01

    In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilita......In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes...... was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted...

  20. Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep

    Science.gov (United States)

    Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.

    2017-01-01

    A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818

  1. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...... in human MSCs and to assess whether AAV transduction affects MSC multipotentiality. The results indicated that human MSCs could indeed be transiently transduced in vitro by the AAV2 vector with efficiencies of up to 65%. The percentage of GFP-positive cells peaked at 4 days post-transduction and declined...... rapidly towards 0% after day 8. The level of transgene expression in the GFP-positive population increased 4-fold over a 10,000 fold viral dose increase. This dose-response contrasted with the 200-fold increase observed in similarly transduced 293-cells, indicating a relatively restricted transgene...

  2. Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody.

    Directory of Open Access Journals (Sweden)

    Frank Sainsbury

    2010-11-01

    Full Text Available The capacity of plants and plant cells to produce large amounts of recombinant protein has been well established. Due to advantages in terms of speed and yield, attention has recently turned towards the use of transient expression systems, including viral vectors, to produce proteins of pharmaceutical interest in plants. However, the effects of such high level expression from viral vectors and concomitant effects on host cells may affect the quality of the recombinant product.To assess the quality of antibodies transiently expressed to high levels in plants, we have expressed and characterised the human anti-HIV monoclonal antibody, 2G12, using both replicating and non-replicating systems based on deleted versions of Cowpea mosaic virus (CPMV RNA-2. The highest yield (approximately 100 mg/kg wet weight leaf tissue of affinity purified 2G12 was obtained when the non-replicating CPMV-HT system was used and the antibody was retained in the endoplasmic reticulum (ER. Glycan analysis by mass-spectrometry showed that the glycosylation pattern was determined exclusively by whether the antibody was retained in the ER and did not depend on whether a replicating or non-replicating system was used. Characterisation of the binding and neutralisation properties of all the purified 2G12 variants from plants showed that these were generally similar to those of the Chinese hamster ovary (CHO cell-produced 2G12.Overall, the results demonstrate that replicating and non-replicating CPMV-based vectors are able to direct the production of a recombinant IgG similar in activity to the CHO-produced control. Thus, a complex recombinant protein was produced with no apparent effect on its biochemical properties using either high-level expression or viral replication. The speed with which a recombinant pharmaceutical with excellent biochemical characteristics can be produced transiently in plants makes CPMV-based expression vectors an attractive option for

  3. Bunyavirus-Vector Interactions

    Directory of Open Access Journals (Sweden)

    Kate McElroy Horne

    2014-11-01

    Full Text Available The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family.

  4. Tyrosine phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    Science.gov (United States)

    Zhong, Li; Li, Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.; Weigel-Van Aken, Kirsten A.; Hobbs, Jacqueline A.; Zolotukhin, Sergei; Muzyczka, Nicholas; Srivastava, Arun

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by ~68% and ~74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which leads to ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy. PMID:18834608

  5. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    International Nuclear Information System (INIS)

    Zhong Li; Li Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by ∼ 68% and ∼ 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy

  6. Wide Awake and Ready to Move: 20 Years of Non-Viral Therapeutic Genome Engineering with the Sleeping Beauty Transposon System.

    Science.gov (United States)

    Hodge, Russ; Narayanavari, Suneel A; Izsvák, Zsuzsanna; Ivics, Zoltán

    2017-10-01

    Gene therapies will only become a widespread tool in the clinical treatment of human diseases with the advent of gene transfer vectors that integrate genetic information stably, safely, effectively, and economically. Two decades after the discovery of the Sleeping Beauty (SB) transposon, it has been transformed into a vector system that is fulfilling these requirements. SB may well overcome some of the limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are being used in the majority of ongoing clinical trials. The SB system has achieved a high level of stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, representing crucial steps that may permit its clinical use in the near future. This article reviews the most important aspects of SB as a tool for gene therapy, including aspects of its vectorization and genomic integration. As an illustration, the clinical development of the SB system toward gene therapy of age-related macular degeneration and cancer immunotherapy is highlighted.

  7. Meadow-grass gall midge

    DEFF Research Database (Denmark)

    Hansen, Lars Monrad

    The area with meadow-grass (Poa pratensis, L.) grown for seed production in Den-mark is a significant proportion of the entire seed production. The meadow-grass gall midge (Mayetiola schoberi, Barnes 1958) is of considerable economic importance since powerful attacks can reduce the yield...

  8. NYVAC vector modified by C7L viral gene insertion improves T cell immune responses and effectiveness against leishmaniasis.

    Science.gov (United States)

    Sánchez-Sampedro, L; Mejías-Pérez, E; S Sorzano, Carlos Óscar; Nájera, J L; Esteban, M

    2016-07-15

    The NYVAC poxvirus vector is used as vaccine candidate for HIV and other diseases, although there is only limited experimental information on its immunogenicity and effectiveness for use against human pathogens. Here we defined the selective advantage of NYVAC vectors in a mouse model by comparing the immune responses and protection induced by vectors that express the LACK (Leishmania-activated C-kinase antigen), alone or with insertion of the viral host range gene C7L that allows the virus to replicate in human cells. Using DNA prime/virus boost protocols, we show that replication-competent NYVAC-LACK that expresses C7L (NYVAC-LACK-C7L) induced higher-magnitude polyfunctional CD8(+) and CD4(+) primary adaptive and effector memory T cell responses (IFNγ, TNFα, IL-2, CD107a) to LACK antigen than non-replicating NYVAC-LACK. Compared to NYVAC-LACK, the NYVAC-LACK-C7L-induced CD8(+) T cell population also showed higher proliferation when stimulated with LACK antigen. After a challenge by subcutaneous Leishmania major metacyclic promastigotes, NYVAC-LACK-C7L-vaccinated mouse groups showed greater protection than the NYVAC-LACK-vaccinated group. Our results indicate that the type and potency of immune responses induced by LACK-expressing NYVAC vectors is improved by insertion of the C7L gene, and that a replication-competent vector as a vaccine renders greater protection against a human pathogen than a non-replicating vector. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nano-sized calcium phosphate (CaP) carriers for non-viral gene deilvery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghyun, E-mail: dhlee@cau.ac.kr [Department of Biomedical Engineering, Division of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Upadhye, Kalpesh [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Mechanical Engineering and Materials Sceince, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer Nanostructured calcium phosphates (NanoCaPs): comprehensive review. Black-Right-Pointing-Pointer Non viral gene delivery mechanisms: detailed mechanisms are outlined. Black-Right-Pointing-Pointer Barriers to non-viral gene delivery: detailed barriers are discussed. - Abstract: Gene therapy has garnered much interest due to the potential for curing multiple inherited and/or increases in the acquired diseases. As a result, there has been intense activity from multiple research groups for developing effective delivery methods and carriers, which is a critical step in advancing gene delivery technologies. In order for the carriers to effectively deliver the genetic payloads, multiple extracellular and intracellular barriers need to be overcome. Although overcoming these challenges to improve the effectiveness is critical, the development of safe gene delivery agents is even more vital to assure its use in clinical applications. The development of safe and effective strategies has therefore been a major challenge impeding gene therapy progress. In this regard, calcium phosphate (CaP) based nano-particles has been considered as one of the candidate non-viral gene delivery vehicles, but has been plagued by inconsistent and low transfection efficiencies limiting its progress. There has been major research effort to improve the consistency and effectiveness of CaP based vectors. Currently, it is therefore thought that by controlling the various synthesis factors such as Ca/P ratio, mode of mixing, and type of calcium phosphate phase, such variability and inefficiency could be modulated. This review attempts to provide a comprehensive analysis of the current research activity in the development of CaP based ceramic and polymer-ceramic hybrid systems for non-viral gene delivery. Preliminary transfection results of hydroxyapatite (HA or NanoCaPs), amorphous calcium phosphate (ACP) and brushite phases are also compared to assess the

  10. High efficiency non-viral transfection of retinal and iris pigment epithelial cells with pigment epithelium-derived factor.

    Science.gov (United States)

    Thumann, G; Stöcker, M; Maltusch, C; Salz, A K; Barth, S; Walter, P; Johnen, S

    2010-02-01

    Transplantation of pigment epithelial cells in patients with age-related macular degeneration and Parkinson's disease has the potential to improve functional rehabilitation. Genetic modification of cells before transplantation may allow the delivery of neuroprotective factors to achieve functional improvement. As transplantation of cells modified using viral vectors is complicated by the possible dissemination of viral particles and severe immune reactions, we have explored non-viral methods to insert genetic material in pigment epithelial cells. Using lipofection or nucleofection ARPE-19 cells, freshly isolated and primary retinal and iris pigment epithelial (IPE) cells were transfected with plasmids encoding green fluorescent protein (GFP) and with three plasmids encoding recombinant pigment epithelium-derived factor (PEDF) and GFP. Transfection efficiency was evaluated by fluorescence microscopy and stability of protein expression by immunoblotting. Pigment epithelial cells were successfully transfected with plasmid encoding GFP. Expression of GFP in ARPE-19 was transient, but was observed for up to 1 year in IPE cells. Analysis of pigment epithelial cells transfected with PEDF plasmids revealed that PEDF fusion proteins were successfully expressed and functionally active. In conclusion, efficient transfer of genetic information in pigment epithelial cells can be achieved using non-viral transfection protocols.

  11. Construction of a recombinant viral vector containing part of the nucleocapsid protein gene of newcastle disease virus

    Energy Technology Data Exchange (ETDEWEB)

    Bader, D.E.

    1995-09-01

    This report describes the procedures used to clone a 673 base pair gene fragment of the major nucleocapsid protein gene of Newcastle disease virus into a viral vector molecule for the purpose of maintaining a stable, long-term, renewable source of this target sequence for gene probe studies. The gene fragment was prepared by reverse-transcription polymerase chain reaction of Newcastle disease virus RNA and was cloned into the viral DNA vector Ml3mp18 RF to produce a recombinant DNA molecule. The cloned fragment was shown to be present in the recombinant clones based on (i) clonal selection on indicator plates; (ii) restriction enzyme analysis; (iii) gene probe analysis and (iv) nested PCR amplification.

  12. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    OpenAIRE

    Zhong, Li; Li, Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.; Weigel-Van Aken, Kirsten A.; Hobbs, Jacqueline A.; Zolotukhin, Sergei; Muzyczka, Nicholas; Srivastava, Arun

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV cap...

  13. Role of mammalian immune responses in vector-enhanced orbiviral transmission

    Science.gov (United States)

    Culicoides sonorensis biting midges are vectors of several emerging and re-emerging orbiviruses including bluetongue, epizootic hemorrhagic disease, and African horse sickness viruses. They feed primarily on domestic sheep and cattle, but opportunistically feed on a variety of wildlife and on humans...

  14. Generation of a non-transmissive Borna disease virus vector lacking both matrix and glycoprotein genes.

    Science.gov (United States)

    Fujino, Kan; Yamamoto, Yusuke; Daito, Takuji; Makino, Akiko; Honda, Tomoyuki; Tomonaga, Keizo

    2017-09-01

    Borna disease virus (BoDV), a prototype of mammalian bornavirus, is a non-segmented, negative strand RNA virus that often causes severe neurological disorders in infected animals, including horses and sheep. Unique among animal RNA viruses, BoDV transcribes and replicates non-cytopathically in the cell nucleus, leading to establishment of long-lasting persistent infection. This striking feature of BoDV indicates its potential as an RNA virus vector system. It has previously been demonstrated by our team that recombinant BoDV (rBoDV) lacking an envelope glycoprotein (G) gene develops persistent infections in transduced cells without loss of the viral genome. In this study, a novel non-transmissive rBoDV, rBoDV ΔMG, which lacks both matrix (M) and G genes in the genome, is reported. rBoDV-ΔMG expressing green fluorescence protein (GFP), rBoDV ΔMG-GFP, was efficiently generated in Vero/MG cells stably expressing both BoDV M and G proteins. Infection with rBoDV ΔMG-GFP was persistently maintained in the parent Vero cells without propagation within cell culture. The optimal ratio of M and G for efficient viral particle production by transient transfection of M and G expression plasmids into cells persistently infected with rBoDV ΔMG-GFP was also demonstrated. These findings indicate that the rBoDV ΔMG-based BoDV vector may provide an extremely safe virus vector system and could be a novel strategy for investigating the function of M and G proteins and the host range of bornaviruses. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  15. Haematophageous vector monitoring in Djibouti city from 2008 to 2009: first records of Culex pipiens ssp. torridus (IGLISCH), and Anopheles sergentii (theobald).

    Science.gov (United States)

    Faulde, Michael K; Ahmed, Ammar A

    2010-08-01

    The Horn of Africa represents a region formerly known to be highly susceptible to mosquito-borne infectious diseases. In order to monitor and analyze the current presence and threat of vector mosquitoes, continuous and standardized trapping using CDC light traps without an additional CO2-generator has been carried out at six selected monitoring sites located in Djibouti City, from August 2008 until December 2009. An overall of 620 haematophageous Diptera were trapped, 603 (97.3%) were mosquitoes, 10 (1.6%) were sand flies, and 7 (1.1%) were biting midges, respectively. Genus distribution of mosquitoes revealed that 600 (99.5%) were Culex spp., 2 (0.3%) were Anopheles sergentii, and 1 (0.2%) was Aedes aegypti. Culex species were represented by Cx. quinquefasciatus (78.5%), and Cx. pipiens ssp. torridus (21.5%). The later species was first detected focally in early December 2009 showing a strongly increasing population density resulting in a maximum trap rate of 25 mosquitoes per trap night. Sand flies were all Sergentomyia antennata, and biting midges of the genus Culicoides were represented by C. nubeculosus (71.4%) and C. vexans (28.6 %). The findings included the first records for Cx. pipiens ssp. torridus and An. sergentii in Djibouti. However, none of the captured female Culex spp, the known vector for West Nile Virus, showed positive results for viral nucleic acids using WNV RT-real time PCR system. Also, females An. sergentii were Plasmodium falciparum and P. vivax circumsporozoite protein negative.

  16. Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function

    NARCIS (Netherlands)

    Blits, B; Oudega, M.; Boer, G J; Bartlett Bunge, M; Verhaagen, J

    2003-01-01

    To foster axonal growth from a Schwann cell bridge into the caudal spinal cord, spinal cells caudal to the implant were transduced with adeno-associated viral (AAV) vectors encoding for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (AAV-NT-3). Control rats received AAV vectors encoding

  17. Junk DNA enhances pEI-based non-viral gene delivery

    NARCIS (Netherlands)

    Gaal, E.V.B. van; Oosting, R.S.; Hennink, W.E.; Crommelin, D.J.A.; Mastrobattista, E.

    Gene therapy aims at delivering exogenous DNA into the nuclei of target cells to establish expression of a therapeutic protein. Non-viral gene delivery is examined as a safer alternative to viral approaches, but is presently characterized by a low efficiency. In the past years several non-viral

  18. A compact dual promoter adeno-associated viral vector for efficient delivery of two genes to dorsal root ganglion neurons

    NARCIS (Netherlands)

    Fagoe, N D; Eggers, R; Verhaagen, J; Mason, M R J

    Adeno-associated viral (AAV) vectors based on serotype 5 are an efficient means to target dorsal root ganglia (DRG) to study gene function in the primary sensory neurons of the peripheral nervous system. In this study, we have developed a compact AAV dual promoter vector composed of the

  19. Perinatal systemic gene delivery using adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Rajvinder eKarda

    2014-11-01

    Full Text Available Neurodegenerative monogenic diseases can also affect a broad range of tissues and organs throughout the body. An effective treatment would require a systemic approach. The intravenous administration of novel therapies is ideal but is hampered by the inability of such drugs to cross the blood-brain barrier and precludes efficacy in the central nervous system. A number of these early lethal intractable diseases also present devastating irreversible pathology at birth or soon after. Therefore, any therapy would ideally be administered during the perinatal period to prevent, stop or ameliorate disease progression. The concept of perinatal gene therapy has moved a step further towards being a feasible approach to treating such disorders. This has primarily been driven by the recent discoveries that particular serotypes of adeno-associated virus (AAV gene delivery vectors have the ability to cross the blood-brain barrier following intravenous administration. Furthermore, this has been safely demonstrated in perinatal mice and non-human primates. This review focuses on the progress made in using AAV to achieve systemic transduction and what this means for developing perinatal gene therapy for early lethal neurodegenerative diseases.

  20. Production and purification of non replicative canine adenovirus type 2 derived vectors.

    Science.gov (United States)

    Szelechowski, Marion; Bergeron, Corinne; Gonzalez-Dunia, Daniel; Klonjkowski, Bernard

    2013-12-03

    Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 10(10) infectious particles per ml and can be directly administrated in vivo.

  1. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2005-01-01

    Full Text Available Abstract Background RNA interference (RNAi mediated by small interfering RNAs (siRNAs has proved to be a highly effective gene silencing mechanism with great potential for HIV/AIDS gene therapy. Previous work with siRNAs against cellular coreceptors CXCR4 and CCR5 had shown that down regulation of these surface molecules could prevent HIV-1 entry and confer viral resistance. Since monospecific siRNAs targeting individual coreceptors are inadequate in protecting against both T cell tropic (X4 and monocyte tropic (R5 viral strains simultaneously, bispecific constructs with dual specificity are required. For effective long range therapy, the bispecific constructs need to be stably transduced into HIV-1 target cells via integrating viral vectors. Results To achieve this goal, lentiviral vectors incorporating both CXCR4 and CCR5 siRNAs of short hairpin design were constructed. The CXCR4 siRNA was driven by a U6 promoter whereas the CCR5 siRNA was driven by an H1 promoter. A CMV promoter driven EGFP reporter gene is also incorporated in the bispecific construct. High efficiency transduction into coreceptor expressing Magi and Ghost cell lines with a concomitant down regulation of respective coreceptors was achieved with lentiviral vectors. When the siRNA expressing transduced cells were challenged with X4 and R5 tropic HIV-1, they demonstrated marked viral resistance. HIV-1 resistance was also observed in bispecific lentiviral vector transduced primary PBMCs. Conclusions Both CXCR4 and CCR5 coreceptors could be simultaneously targeted for down regulation by a single combinatorial lentiviral vector incorporating respective anti-coreceptor siRNAs. Stable down regulation of both the coreceptors protects cells against infection by both X4 and R5 tropic HIV-1. Stable down regulation of cellular molecules that aid in HIV-1 infection will be an effective strategy for long range HIV gene therapy.

  2. A Low Protein Binding Cationic Poly(2-oxazoline) as Non-Viral Vector

    KAUST Repository

    He, Zhijian

    2015-04-02

    © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Developing safe and efficient non-viral gene delivery systems remains a major challenge. We present a new cationic poly(2-oxazoline) (CPOx) block copolymer for gene therapy that was synthesized by sequential polymerization of non-ionic 2-methyl-2-oxazoline and a new 2-oxazoline monomer, 2-(N-methyl, N-Boc-amino)-methyl-2-oxazoline, followed by deprotection of the pendant secondary amine groups. Upon mixing with plasmid DNA (pDNA), CPOx forms small (diameter ≈80 nm) and narrowly dispersed polyplexes (PDI <0.2), which are stable upon dilution in saline and against thermal challenge. These polyplexes exhibited low plasma protein binding and very low cytotoxicity in vitro compared to the polyplexes of pDNA and poly(ethylene glycol)-b-poly(L-lysine) (PEG-b-PLL). CPOx/pDNA polyplexes at N/P = 5 bound considerably less plasma protein compared to polyplexes of PEG-b-PLL at the same N/P ratio. This is a unique aspect of the developed polyplexes emphasizing their potential for systemic delivery in vivo. The transfection efficiency of the polyplexes in B16 murine melanoma cells was low after 4 h, but increased significantly for 10 h exposure time, indicative of slow internalization of polyplexes. Addition of Pluronic P85 boosted the transfection using CPOx/pDNA polyplexes considerably. The low protein binding of CPOx/pDNA polyplexes is particularly interesting for the future development of targeted gene delivery.

  3. Non-coaxial superposition of vector vortex beams.

    Science.gov (United States)

    Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P

    2016-02-10

    Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.

  4. Versatile generation of optical vector fields and vector beams using a non-interferometric approach.

    Science.gov (United States)

    Tripathi, Santosh; Toussaint, Kimani C

    2012-05-07

    We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.

  5. A comparative analysis of constitutive promoters located in adeno-associated viral vectors.

    Directory of Open Access Journals (Sweden)

    Lkhagvasuren Damdindorj

    Full Text Available The properties of constitutive promoters within adeno-associated viral (AAV vectors have not yet been fully characterized. In this study, AAV vectors, in which enhanced GFP expression was directed by one of the six constitutive promoters (human β-actin, human elongation factor-1α, chicken β-actin combined with cytomegalovirus early enhancer, cytomegalovirus (CMV, simian virus 40, and herpes simplex virus thymidine kinase, were constructed and introduced into the HCT116, DLD-1, HT-1080, and MCF-10A cell lines. Quantification of GFP signals in infected cells demonstrated that the CMV promoter produced the highest GFP expression in the six promoters and maintained relatively high GFP expression for up to eight weeks after infection of HCT116, DLD-1, and HT-1080. Exogenous human CDKN2A gene expression was also introduced into DLD-1 and MCF-10A in a similar pattern by using AAV vectors bearing the human β-actin and the CMV promoters. The six constitutive promoters were subsequently placed upstream of the neomycin resistance gene within AAV vectors, and HCT116, DLD-1, and HT-1080 were infected with the resulting vectors. Of the six promoters, the CMV promoter produced the largest number of G418-resistant colonies in all three cell lines. Because AAV vectors have been frequently used as a platform to construct targeting vectors that permit gene editing in human cell lines, we lastly infected the three cell lines with AAV-based targeting vectors against the human PIGA gene in which one of the six promoters regulate the neomycin resistance gene. This assay revealed that the CMV promoter led to the lowest PIGA gene targeting efficiency in the investigated promoters. These results provide a clue to the identification of constitutive promoters suitable to express exogenous genes with AAV vectors, as well as those helpful to conduct efficient gene targeting using AAV-based targeting vectors in human cell lines.

  6. Culicoides Species Communities Associated with Wild Ruminant Ecosystems in Spain: Tracking the Way to Determine Potential Bridge Vectors for Arboviruses.

    Directory of Open Access Journals (Sweden)

    Sandra Talavera

    Full Text Available The genus Culicoides Latreille 1809 is a well-known vector for protozoa, filarial worms and, above all, numerous viruses. The Bluetongue virus (BTV and the recently emerged Schmallenberg virus (SBV are responsible for important infectious, non-contagious, insect-borne viral diseases found in domestic ruminants and transmitted by Culicoides spp. Both of these diseases have been detected in wild ruminants, but their role as reservoirs during the vector-free season still remains relatively unknown. In fact, we tend to ignore the possibility of wild ruminants acting as a source of disease (BTV, SBV and permitting its reintroduction to domestic ruminants during the following vector season. In this context, a knowledge of the composition of the Culicoides species communities that inhabit areas where there are wild ruminants is of major importance as the presence of a vector species is a prerequisite for disease transmission. In this study, samplings were conducted in areas inhabited by different wild ruminant species; samples were taken in both 2009 and 2010, on a monthly basis, during the peak season for midge activity (in summer and autumn. A total of 102,693 specimens of 40 different species of the genus Culicoides were trapped; these included major BTV and SBV vector species. The most abundant vector species were C. imicola and species of the Obsoletus group, which represented 15% and 11% of total numbers of specimens, respectively. At the local scale, the presence of major BTV and SBV vector species in areas with wild ruminants coincided with that of the nearest sentinel farms included in the Spanish Bluetongue Entomological Surveillance Programme, although their relative abundance varied. The data suggest that such species do not exhibit strong host specificity towards either domestic or wild ruminants and that they could consequently play a prominent role as bridge vectors for different pathogens between both types of ruminants. This finding

  7. Mucosal immunization with recombinant adenoviral vectors expressing murine gammaherpesvirus-68 genes M2 and M3 can reduce latent viral load.

    Science.gov (United States)

    Hoegh-Petersen, Mette; Thomsen, Allan R; Christensen, Jan P; Holst, Peter J

    2009-11-12

    Gammaherpesviruses establish life-long latent infections in their hosts. If the host becomes immunosuppressed, these viruses may reactivate and cause severe disease, and even in immunocompetent individuals the gammaherpesviruses are presumed to have an oncogenic potential. Murine gammaherpesvirus-68 (MHV-68) is a member of the Gammaherpesvirinae subfamily and represents a useful murine model for this category of infections, in which new vaccination strategies may initially be evaluated. Two attenuated variants of MHV-68 have successfully been used as vaccines, but the oncogenic potential of the gammaherpesvirinae speaks against using a similar approach in humans. DNA immunization with plasmids encoding the MHV-68 genes M2 or M3 caused a reduction in either acute or early latent viral load, respectively, but neither immunization had an effect at times later than 14 days post-infection. Adenovirus-based vaccines are substantially more immunogenic than DNA vaccines and can be applied to induce mucosal immunity. Here we show that a significant reduction of the late viral load in the spleens, at 60 days post-infection, was achieved when immunizing mice both intranasally and subcutaneously with adenoviral vectors encoding both M2 and M3. Additionally we show that M3 immunization prevented the usual development of virus-induced splenomegaly at 2-3 weeks post-infection. This is the first time that immunization with a non-replicating vaccine has lead to a significantly reduced viral load at time points beyond 14 days post-infection, and thus demonstrates that a non-replicating vaccine may successfully be employed to reduce the viral burden during chronic gammaherpesvirus infection.

  8. A Single Swede Midge (Diptera: Cecidomyiidae) Larva Can Render Cauliflower Unmarketable.

    Science.gov (United States)

    Stratton, Chase A; Hodgdon, Elisabeth A; Zuckerman, Samuel G; Shelton, Anthony M; Chen, Yolanda H

    2018-05-01

    Swede midge, Contarinia nasturtii Kieffer (Diptera: Cecidomyiidae), is an invasive pest causing significant damage on Brassica crops in the Northeastern United States and Eastern Canada. Heading brassicas, like cauliflower, appear to be particularly susceptible. Swede midge is difficult to control because larvae feed concealed inside meristematic tissues of the plant. In order to develop damage and marketability thresholds necessary for integrated pest management, it is important to determine how many larvae render plants unmarketable and whether the timing of infestation affects the severity of damage. We manipulated larval density (0, 1, 3, 5, 10, or 20) per plant and the timing of infestation (30, 55, and 80 d after seeding) on cauliflower in the lab and field to answer the following questions: 1) What is the swede midge damage threshold? 2) How many swede midge larvae can render cauliflower crowns unmarketable? and 3) Does the age of cauliflower at infestation influence the severity of damage and marketability? We found that even a single larva can cause mild twisting and scarring in the crown rendering cauliflower unmarketable 52% of the time, with more larvae causing more severe damage and additional losses, regardless of cauliflower age at infestation.

  9. Safety of the novel influenza viral vector Brucella abortus vaccine in pregnant heifers

    Directory of Open Access Journals (Sweden)

    Kaissar Tabynov

    2016-01-01

    Full Text Available ABSTRACT: The present study provides the first information about the safety of a new influenza viral vector vaccine expressing the Brucella ribosomal protein L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10 or subcutaneous (n=10 route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with B. abortus S19 (n=10 or B. abortus RB51 (n=10 and a negative (PBS+Montanide Gel01; n=10 control group. Clinical studies, thermometry, assessment of local reactogenicity and observation of abortion showed that the vector vaccine via the conjunctival or subcutaneous route was completely safe for pregnant heifers compared to the commercial vaccines B. abortus S19 or B. abortus RB51. The only single adverse event was the formation of infiltration at the site of subcutaneous injection; this reaction was not observed for the conjunctival route.

  10. A sight on the current nanoparticle-based gene delivery vectors

    Science.gov (United States)

    Dizaj, Solmaz Maleki; Jafari, Samira; Khosroushahi, Ahmad Yari

    2014-05-01

    Nowadays, gene delivery for therapeutic objects is considered one of the most promising strategies to cure both the genetic and acquired diseases of human. The design of efficient gene delivery vectors possessing the high transfection efficiencies and low cytotoxicity is considered the major challenge for delivering a target gene to specific tissues or cells. On this base, the investigations on non-viral gene vectors with the ability to overcome physiological barriers are increasing. Among the non-viral vectors, nanoparticles showed remarkable properties regarding gene delivery such as the ability to target the specific tissue or cells, protect target gene against nuclease degradation, improve DNA stability, and increase the transformation efficiency or safety. This review attempts to represent a current nanoparticle based on its lipid, polymer, hybrid, and inorganic properties. Among them, hybrids, as efficient vectors, are utilized in gene delivery in terms of materials (synthetic or natural), design, and in vitro/ in vivo transformation efficiency.

  11. The Polerovirus Minor Capsid Protein Determines Vector Specificity and Intestinal Tropism in the Aphid

    Science.gov (United States)

    Brault, Véronique; Périgon, Sophie; Reinbold, Catherine; Erdinger, Monique; Scheidecker, Danièle; Herrbach, Etienne; Richards, Ken; Ziegler-Graff, Véronique

    2005-01-01

    Aphid transmission of poleroviruses is highly specific, but the viral determinants governing this specificity are unknown. We used a gene exchange strategy between two poleroviruses with different vectors, Beet western yellows virus (BWYV) and Cucurbit aphid-borne yellows virus (CABYV), to analyze the role of the major and minor capsid proteins in vector specificity. Virus recombinants obtained by exchanging the sequence of the readthrough domain (RTD) between the two viruses replicated in plant protoplasts and in whole plants. The hybrid readthrough protein of chimeric viruses was incorporated into virions. Aphid transmission experiments using infected plants or purified virions revealed that vector specificity is driven by the nature of the RTD. BWYV and CABYV have specific intestinal sites in the vectors for endocytosis: the midgut for BWYV and both midgut and hindgut for CABYV. Localization of hybrid virions in aphids by transmission electron microscopy revealed that gut tropism is also determined by the viral origin of the RTD. PMID:16014930

  12. Role of complement and antibodies in controlling infection with pathogenic simian immunodeficiency virus (SIV in macaques vaccinated with replication-deficient viral vectors

    Directory of Open Access Journals (Sweden)

    Strasak Alexander

    2009-06-01

    Full Text Available Abstract Background We investigated the interplay between complement and antibodies upon priming with single-cycle replicating viral vectors (SCIV encoding SIV antigens combined with Adeno5-SIV or SCIV pseudotyped with murine leukemia virus envelope boosting strategies. The vaccine was applied via spray-immunization to the tonsils of rhesus macaques and compared with systemic regimens. Results Independent of the application regimen or route, viral loads were significantly reduced after challenge with SIVmac239 (p Conclusion The heterologous prime-boost strategy with replication-deficient viral vectors administered exclusively via the tonsils did not induce any neutralizing antibodies before challenge. However, after challenge, comparable SIV-specific humoral immune responses were observed in all vaccinated animals. Immunization with single cycle immunodeficiency viruses mounts humoral immune responses comparable to live-attenuated immunodeficiency virus vaccines.

  13. Chikungunya viral fitness measures within the vector and subsequent transmission potential.

    Directory of Open Access Journals (Sweden)

    Rebecca C Christofferson

    Full Text Available Given the recent emergence of chikungunya in the Americas, the accuracy of forecasting and prediction of chikungunya transmission potential in the U.S. requires urgent assessment. The La Reunion-associated sub-lineage of chikungunya (with a valine substitution in the envelope protein was shown to increase viral fitness in the secondary vector, Ae. albopictus. Subsequently, a majority of experimental and modeling efforts focused on this combination of a sub-lineage of the East-Central-South African genotype (ECSA-V-Ae. albopictus, despite the Asian genotype being the etiologic agent of recent chikungunya outbreaks world-wide. We explore a collection of data to investigate relative transmission efficiencies of the three major genotypes/sub-lineages of chikungunya and found difference in the extrinsic incubation periods to be largely overstated. However, there is strong evidence supporting the role of Ae. albopictus in the expansion of chikungunya that our R0 calculations cannot attribute to fitness increases in one vector over another. This suggests other ecological factors associated with the Ae. albopictus-ECSA-V cycle may drive transmission intensity differences. With the apparent bias in literature, however, we are less prepared to evaluate transmission where Ae. aegypti plays a significant role. Holistic investigations of CHIKV transmission cycle(s will allow for more complete assessment of transmission risk in areas affected by either or both competent vectors.

  14. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    Science.gov (United States)

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  15. Presencia de rotavirus durante un proceso de compostaje. Abonos como vectores de contaminación viral

    Directory of Open Access Journals (Sweden)

    María Mercedes Martínez

    2009-12-01

    Full Text Available Rotavirus presence in a waste composting process. Organic fertilizers as vehicles for viral contamination. Objective. To show thepresence of rotavirus in different stages of a composting process: matrices used as raw material, mixture to be composted and the finalproduct. Materials and methods. Immunochromatography, ELISA and RT-PCR were used for viral detection. Results. Rotavirus wasfound in the first composting step, no virus was found in the second step, and some inhibitory substances were found in the third step thatposed difficulties in interpreting the PCR results and therefore providing a concluding result on rotavirus presence in the final product.Conclusions. Organic fertilizers can be vectors of human pathogenic viruses; therefore quality control tests must be implemented to avoidfurther viral dissemination. There are inhibitory substances present in organic fertilizers capable of interfering with the detection tests.

  16. Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells).

    Science.gov (United States)

    Howarth, Joanna L; Lee, Youn Bok; Uney, James B

    2010-02-01

    In recent years, the development of powerful viral gene transfer techniques has greatly facilitated the study of gene function. This review summarises some of the viral delivery systems routinely used to mediate gene transfer into cell lines, primary cell cultures and in whole animal models. The systems described were originally discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop that was held at University College London on 1st April 2009. Recombinant-deficient viral vectors (viruses that are no longer able to replicate) are used to transduce dividing and post-mitotic cells, and they have been optimised to mediate regulatable, powerful, long-term and cell-specific expression. Hence, viral systems have become very widely used, especially in the field of neurobiology. This review introduces the main categories of viral vectors, focusing on their initial development and highlighting modifications and improvements made since their introduction. In particular, the use of specific promoters to restrict expression, translational enhancers and regulatory elements to boost expression from a single virion and the development of regulatable systems is described.

  17. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach.

    Science.gov (United States)

    Debowski, Katharina; Warthemann, Rita; Lentes, Jana; Salinas-Riester, Gabriela; Dressel, Ralf; Langenstroth, Daniel; Gromoll, Jörg; Sasaki, Erika; Behr, Rüdiger

    2015-01-01

    Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS) cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus) as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80) and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement therapies in

  18. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach.

    Directory of Open Access Journals (Sweden)

    Katharina Debowski

    Full Text Available Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80 and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement

  19. Switching non-local vector median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2016-04-01

    This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.

  20. Delivery and evaluation of recombinant adeno-associated viral vectors in the equine distal extremity for the treatment of laminitis.

    Science.gov (United States)

    Mason, J B; Gurda, B L; Van Wettere, A; Engiles, J B; Wilson, J M; Richardson, D W

    2017-01-01

    Our long-term aim is to develop a gene therapy approach for the prevention of laminitis in the contralateral foot of horses with major musculoskeletal injuries and non-weightbearing lameness. The goal of this study was to develop a practical method to efficiently deliver therapeutic proteins deep within the equine foot. Randomised in vivo experiment. We used recombinant adeno-associated viral vectors (rAAVs) to deliver marker genes using regional limb perfusion through the palmar digital artery of the horse. Vector serotypes rAAV2/1, 2/8 and 2/9 all successfully transduced equine foot tissues and displayed similar levels and patterns of transduction. The regional distribution of transduction within the foot decreased with decreasing vector dose. The highest transduction values were seen in the sole and coronary regions and the lowest transduction values were detected in the dorsal hoof-wall region. The use of a surfactant-enriched vector diluent increased regional distribution of the vector and improved the transduction in the hoof-wall region. The hoof-wall region of the foot, which exhibited the lowest levels of transduction using saline as the vector diluent, displayed a dramatic increase in transduction when surfactant was included in the vector diluent (9- to 81-fold increase). In transduced tissues, no significant difference was observed between promoters (chicken β-actin vs. cytomegalovirus) for gene expression. All horses tested for vector-neutralising antibodies were positive for serotype-specific neutralising antibodies to rAAV2/5. The current experiments demonstrate that transgenes can be successfully delivered to the equine distal extremity using rAAV vectors and that serotypes 2/8, 2/9 and 2/1 can successfully transduce tissues of the equine foot. When the vector was diluted with surfactant-containing saline, the level of transduction increased dramatically. The increased level of transduction due to the addition of surfactant also improved the

  1. Biting rates and developmental substrates for biting midges (Diptera: Ceratopogonidae) in Iquitos, Peru.

    Science.gov (United States)

    Mercer, David R; Spinelli, Gustavo R; Watts, Douglas M; Tesh, Robert B

    2003-11-01

    Biting midges (Diptera: Ceratopogonidae) were collected at 16 periurban and rural sites around Iquitos, Peru, between 17 October 1996 and 26 May 1997. Culicoides paraensis (Goeldi), the principal vector of Oropouche virus, was the most commonly collected species (9,086 flies) with Culicoides insinuatus Wirth & Blanton second (7,229 flies). Although both species were collected at all sampling sites (linear (distance surveyed approximately 25 km), C. paraensis dominated at northern collection sites (> 90%), whereas C. insinuatus prevailed at southern collection sites (> 60%). C. paraensis were collected from human sentinels at a constant rate throughout daylight hours, at similar rates during wet and dry months, and regardless of rainfall. Larval developmental substrates for C. paraensis included decaying platano (Musa x paradisiaca L. [Musaceae]) stems, stumps, flowers, fruits, and debris beneath platano trees as well as from soil beneath a fruiting mamay (Syzygium malaccense Merr. & Perry [Myrtaceae] ) tree and organic-rich mud along a lake shoreline. C. insinuatus adults likewise emerged from decaying platano and organic-rich mud along a lake shoreline, but also from debris accumulated in the axils of aguaje (Mauritia flexuosa L. [Palmae]) fronds and decaying citrus fruit. Despite high numbers of biting adults near putative substrates, adults of neither species emerged from other decomposing plant material, soil, phytotelmata, or artificial containers. Because both species of biting midges emerged in high numbers from all parts of platano (ubiquitous in Iquitos), it will be challenging to control them through sanitation.

  2. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic...

  3. Intrapulmonary Versus Nasal Transduction of Murine Airways With GP64-pseudotyped Viral Vectors

    Directory of Open Access Journals (Sweden)

    Mayumi Oakland

    2013-01-01

    Full Text Available Persistent viral vector-mediated transgene expression in the airways requires delivery to cells with progenitor capacity and avoidance of immune responses. Previously, we observed that GP64-pseudotyped feline immunodeficiency virus (FIV-mediated gene transfer was more efficient in the nasal airways than the large airways of the murine lung. We hypothesized that in vivo gene transfer was limited by immunological and physiological barriers in the murine intrapulmonary airways. Here, we systematically investigate multiple potential barriers to lentiviral gene transfer in the airways of mice. We show that GP64-FIV vector transduced primary cultures of well-differentiated murine nasal epithelia with greater efficiency than primary cultures of murine tracheal epithelia. We further demonstrate that neutrophils, type I interferon (IFN responses, as well as T and B lymphocytes are not the major factors limiting the transduction of murine conducting airways. In addition, we observed better transduction of GP64-pseudotyped vesicular stomatitis virus (VSV in the nasal epithelia compared with the intrapulmonary airways in mice. VSVG glycoprotein pseudotyped VSV transduced intrapulmonary epithelia with similar efficiency as nasal epithelia. Our results suggest that the differential transduction efficiency of nasal versus intrapulmonary airways by FIV vector is not a result of immunological barriers or surface area, but rather differential expression of cellular factors specific for FIV vector transduction.

  4. A rapid and efficient branched DNA hybridization assay to titer lentiviral vectors.

    Science.gov (United States)

    Nair, Ayyappan; Xie, Jinger; Joshi, Sarasijam; Harden, Paul; Davies, Joan; Hermiston, Terry

    2008-11-01

    A robust assay to titer lentiviral vectors is imperative to qualifying their use in drug discovery, target validation and clinical applications. In this study, a novel branched DNA based hybridization assay was developed to titer lentiviral vectors by quantifying viral RNA genome copy numbers from viral lysates without having to purify viral RNA, and this approach was compared with other non-functional (p24 protein ELISA and viral RT-qPCR) and a functional method (reporter gene expression) used commonly. The RT-qPCR method requires purification of viral RNA and the accuracy of titration therefore depends on the efficiency of purification; this requirement is ameliorated in the hybridization assay as RNA is measured directly in viral lysates. The present study indicates that the hybridization based titration assay performed on viral lysates was more accurate and has additional advantages of being rapid, robust and not dependent on transduction efficiency in different cell types.

  5. Distribution of Brugia malayi larvae and DNA in vector and non-vector mosquitoes: implications for molecular diagnostics

    Directory of Open Access Journals (Sweden)

    Christensen Bruce M

    2009-11-01

    Full Text Available Abstract Background The purpose of this study was to extend prior studies of molecular detection of Brugia malayi DNA in vector (Aedes aegypti- Liverpool and non-vector (Culex pipiens mosquitoes at different times after ingestion of infected blood. Results Parasite DNA was detected over a two week time course in 96% of pooled thoraces of vector mosquitoes. In contrast, parasite DNA was detected in only 24% of thorax pools from non-vectors; parasite DNA was detected in 56% of midgut pools and 47% of abdomen pools from non-vectors. Parasite DNA was detected in vectors in the head immediately after the blood meal and after 14 days. Parasite DNA was also detected in feces and excreta of the vector and non-vector mosquitoes which could potentially confound results obtained with field samples. However, co-housing experiments failed to demonstrate transfer of parasite DNA from infected to non-infected mosquitoes. Parasites were also visualized in mosquito tissues by immunohistololgy using an antibody to the recombinant filarial antigen Bm14. Parasite larvae were detected consistently after mf ingestion in Ae. aegypti- Liverpool. Infectious L3s were seen in the head, thorax and abdomen of vector mosquitoes 14 days after Mf ingestion. In contrast, parasites were only detected by histology shortly after the blood meal in Cx. pipiens, and these were not labeled by the antibody. Conclusion This study provides new information on the distribution of filarial parasites and parasite DNA in vector and non-vector mosquitoes. This information should be useful for those involved in designing and interpreting molecular xenomonitoring studies.

  6. Non-driven micromechanical gyroscopes and their applications

    CERN Document Server

    Zhang, Fuxue; Wang, Guosheng

    2018-01-01

    This book comprehensively and systematically introduces readers to the theories, structures, performance and applications of non-driven mechanical and non-driven micromechanical gyroscopes. The book is divided into three parts, the first of which mainly addresses mathematic models, precision, performance and operating error in non-driven mechanical gyroscopes. The second part focuses on the operating theory, error, phase shift and performance experiments involving non-driven micromechanical gyroscopes in rotating flight carriers, while the third part shares insights into the application of non-driven micromechanical gyroscopes in control systems for rotating flight carriers. The book offers a unique resource for all researchers and engineers who are interested in the use of inertial devices and automatic control systems for rotating flight carriers.  It can also serve as a reference book for undergraduates, graduates and instructors in related fields at colleges and universities.

  7. Host and Potential Vector Susceptibility to an Emerging Orbivirus in the United States: Epizootic Hemorrhagic Disease Virus Serotype 6.

    Science.gov (United States)

    Ruder, M G; Stallknecht, D E; Allison, A B; Mead, D G; Carter, D L; Howerth, E W

    2016-05-01

    Epizootic hemorrhagic disease viruses (EHDVs) are orbiviruses transmitted by Culicoides biting midges to domestic and wild ruminants. EHDV-1 and EHDV-2 are endemic in the United States, where epizootic hemorrhagic disease is the most significant viral disease of white-tailed deer (WTD;Odocoileus virginianus) and reports of epizootic hemorrhagic disease in cattle are increasing. In 2006, a reassortant EHDV-6 was isolated from dead WTD in Indiana and has been detected each subsequent year over a wide geographic region. Since EHDV-6 is not a historically endemic serotype in the United States, it is important to understand infection outcome in potential hosts. Specifically, we aimed to evaluate the pathogenicity of the virus in 2 primary US ruminant hosts (WTD and cattle) and the susceptibility of a confirmed US vector (Culicoides sonorensis). Five WTD and 4 cattle were inoculated with >10(6)TCID50EHDV-6 by intradermal and subcutaneous injection. All 5 WTD exhibited moderate to severe disease, and 3 died. Viremia was first detected 3 to 5 days postinfection (dpi) with surviving animals seroconverting by 10 dpi. Two of 4 inoculated cattle had detectable viremia, 5 to 10 dpi and 7 to 24 dpi, respectively. No clinical, hematologic, or pathologic abnormalities were observed. Antibodies were detected by 10 dpi in 3 of 4 cows.C. sonorensis were fed on WTD blood spiked with EHDV-6 and held for 4 to 14 days postfeeding at 25°C. From 4 to 14 days postfeeding, 19 of 171 midges were virus isolation positive and 6 of 171 had ≥10(2.7)TCID50EHDV-6. Although outcomes varied, these studies demonstrate the susceptibility of ruminant and vector hosts in the United States for this recently emerged EHDV serotype. © The Author(s) 2015.

  8. Community-driven demand creation for the use of routine viral load testing: a model to scale up routine viral load testing.

    Science.gov (United States)

    Killingo, Bactrin M; Taro, Trisa B; Mosime, Wame N

    2017-11-01

    HIV treatment outcomes are dependent on the use of viral load measurement. Despite global and national guidelines recommending the use of routine viral load testing, these policies alone have not translated into widespread implementation or sufficiently increased access for people living with HIV (PLHIV). Civil society and communities of PLHIV recognize the need to close this gap and to enable the scale up of routine viral load testing. The International Treatment Preparedness Coalition (ITPC) developed an approach to community-led demand creation for the use of routine viral load testing. Using this Community Demand Creation Model, implementers follow a step-wise process to capacitate and empower communities to address their most pressing needs. This includes utlizing a specific toolkit that includes conducting a baseline assessment, developing a treatment education toolkit, organizing mobilization workshops for knowledge building, provision of small grants to support advocacy work and conducting benchmark evaluations. The Community Demand Creation Model to increase demand for routine viral load testing services by PLHIV has been delivered in diverse contexts including in the sub-Saharan African, Asian, Latin American and the Caribbean regions. Between December 2015 and December 2016, ITPC trained more than 240 PLHIV activists, and disbursed US$90,000 to network partners in support of their national advocacy work. The latter efforts informed a regional, community-driven campaign calling for domestic investment in the expeditious implementation of national viral load testing guidelines. HIV treatment education and community mobilization are critical components of demand creation for access to optimal HIV treatment, especially for the use of routine viral load testing. ITPC's Community Demand Creation Model offers a novel approach to achieving this goal. © 2017 The Authors. Journal of the International AIDS Society published by John Wiley & sons Ltd on behalf of

  9. Extracellular electrical activity from the photoreceptors of midge

    Indian Academy of Sciences (India)

    Unknown

    349. Keywords. Chironomus; electroretinogram; insect development; midge; photoreceptor ... ceran insects, only larval ocelli of mosquito (Family: Culi- cidae) have been ... and Ball (1995) studied the influence of light in Chiro- nomus tentans ...

  10. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    . Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity...

  11. Viral Vector-Based Dissection of Marmoset GFAP Promoter in Mouse and Marmoset Brains.

    Directory of Open Access Journals (Sweden)

    Yoichiro Shinohara

    Full Text Available Adeno-associated virus (AAV vectors are small in diameter, diffuse easily in the brain, and represent a highly efficient means by which to transfer a transgene to the brain of a large animal. A major demerit of AAV vectors is their limited accommodation capacity for transgenes. Thus, a compact promoter is useful when delivering large transgenes via AAV vectors. In the present study, we aimed to identify the shortest astrocyte-specific GFAP promoter region that could be used for AAV-vector-mediated transgene expression in the marmoset brain. The 2.0-kb promoter region upstream of the GFAP gene was cloned from the marmoset genome, and short promoters (1.6 kb, 1.4 kb, 0.6 kb, 0.3 kb and 0.2 kb were obtained by progressively deleting the original 2.0-kb promoter from the 5' end. The short promoters were screened in the mouse cerebellum in terms of their strength and astrocyte specificity. We found that the 0.3-kb promoter maintained 40% of the strength of the original 2.0-kb promoter, and approximately 90% of its astrocyte specificity. These properties were superior to those of the 1.4-kb, 0.6-kb (20% promoter strength and 0.2-kb (70% astrocyte specificity promoters. Then, we verified whether the 0.3-kb GFAP promoter retained astrocyte specificity in the marmoset cerebral cortex. Injection of viral vectors carrying the 0.3-kb marmoset GFAP promoter specifically transduced astrocytes in both the cerebral cortex and cerebellar cortex of the marmoset. These results suggest that the compact 0.3-kb promoter region serves as an astrocyte-specific promoter in the marmoset brain, which permits us to express a large gene by AAV vectors that have a limited accommodation capacity.

  12. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment.

    Science.gov (United States)

    Ausubel, L J; Meseck, M; Derecho, I; Lopez, P; Knoblauch, C; McMahon, R; Anderson, J; Dunphy, N; Quezada, V; Khan, R; Huang, P; Dang, W; Luo, M; Hsu, D; Woo, S L C; Couture, L

    2011-04-01

    Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.

  13. Community analysis of biting midges (Culicoides Latr.) on livestock farms in Denmark

    DEFF Research Database (Denmark)

    Nielsen, S. A.; Banta, G.; Rasmussen, Anne-Marie

    2014-01-01

    This study presents descriptive statistics and community analysis of adult biting midges trapped at 16 livestock farms by means of light traps on Zealand and Lolland-Falster, Denmark. A total of 9,047 male and female Culicoides divided into 24 species, were caught. Biotic and abiotic factors...... ranging from presence of different host species (cattle or sheep/goats), presence of small woody areas or wetlands in the surrounding landscape, and agricultural practice (organic or conventional) were included in the community analysis. Only differences in the Culicoides communities between conventional...... and organic practices were tested significantly different. Total numbers of Culicoides individuals were higher on the organic farms than on the conventional farms. The larger loads of biting midges on the organic farms may be due to free-ranging animals that attracted the midges on pastures and carried them...

  14. Non-Replicating Adenovirus-Vectored Anthrax Vaccine

    International Nuclear Information System (INIS)

    Van Kampen, K. R.; Zhang, J.; Jex, E.; Tang, D. C.

    2007-01-01

    As bioterrorism is emerging as a national threat, it is urgent to develop a new generation of anthrax vaccines that can be rapidly produced and mass administered in an emergency setting. We have demonstrated that protective immunity against anthrax spores could be elicited in mice by intranasal administration of a non-replicating human adenovirus serotype 5 (Ad5)-derived vector encoding Bacillus anthracis protective antigen (PA) in a single-dose regimen. The potency of an Ad5 vector encoding PA was remarkably enhanced by codon optimization of the PA gene to match the tRNA pool found in human cells. This nasal vaccine can be mass-administered by non-medical personnel during a bioterrorist attack. In addition, replication-competent adenovirus (RCA)-free Ad5-vectored anthrax vaccines can be mass produced in PER.C6 cells in serum-free wave bioreactors and purified by column chromatography to meet a surge in demand. The non-replicating nature of this new generation of anthrax vaccine ensures an excellent safety profile for vaccines and the environment.(author)

  15. Les porcheries : réservoirs des Culicoides (Diptera : Ceratopogonidae, vecteurs des virus de la Maladie de la Langue bleue et de Schmallenberg ?

    Directory of Open Access Journals (Sweden)

    Zimmer, JY.

    2014-01-01

    Full Text Available Pig farms: reservoirs of vectors of Bluetongue and Schmallenberg viruses?. Bluetongue (BT is a vector-borne disease that affects domestic and wild ruminants. Since its recent outbreak in northern Europe, this viral disease has caused considerable economic losses. The biological vectors of the bluetongue virus are biting midges belonging to the genus Culicoides (Diptera: Ceratopogonidae. Several light trapping campaigns targeting these adult midges have been previously conducted in Belgium within cattle and sheep farms, but none have been performed inside pig farms. This study therefore aims to assess, using light traps, the levels of Culicoides populations that may have been present inside two Belgian pig farms during the fall and winter of 2008. The presence of (potential Culicoides vector species was demonstrated inside the pig buildings during the fall: 8 and 749 specimens belonging to 2 and 7 species were respectively trapped inside the pigsties, with the majority being Obsoletus complex females. The opening up of the buildings seemed to strongly influence their presence. Observation of the females' nutritional status suggests that these midges were likely to have fed or to have laid eggs inside the pig farms, despite the fact that pig's blood could not be identified in the abdomen of engorged females and that pig manure did not reveal the presence of larvae. Pigs could thus be involved in the maintenance of potential vector species populations of the BT virus, or of the new Schmallenberg virus.

  16. Quantum dot coating of baculoviral vectors enables visualization of transduced cells and tissues

    International Nuclear Information System (INIS)

    Zhao, Ying; Lo, Seong Loong; Zheng, Yuangang; Lam, Dang Hoang; Wu, Chunxiao; Han, Ming Yong; Wang, Shu

    2013-01-01

    Highlights: •The use of quantum dot (QD)-labeled viral vectors for in vivo imaging is not well investigated. •A new method to label enveloped baculovirus with glutathione-capped CdTe QDs is developed. •The labeling enables the identification of transduced, cultured cells based on fluorescence. •The labeling also allows evaluation of viral transduction in a real-time manner in living mice. •The method has the potential to assess viral vector-based gene therapy protocols in future. -- Abstract: Imaging of transduced cells and tissues is valuable in developing gene transfer vectors and evaluating gene therapy efficacy. We report here a simple method to use bright and photostable quantum dots to label baculovirus, an emerging gene therapy vector. The labeling was achieved through the non-covalent interaction of glutathione-capped CdTe quantum dots with the virus envelope, without the use of chemical conjugation. The quantum dot labeling was nondestructive to viral transduction function and enabled the identification of baculoviral vector-transduced, living cells based on red fluorescence. When the labeled baculoviral vectors were injected intravenously or intraventricularly for in vivo delivery of a transgene into mice, quantum dot fluorescence signals allow us monitor whether or not the injected tissues were transduced. More importantly, using a dual-color whole-body imaging technology, we demonstrated that in vivo viral transduction could be evaluated in a real-time manner in living mice. Thus, our method of labeling a read-to-use gene delivery vector with quantum dots could be useful towards the improvement of vector design and will have the potential to assess baculovirus-based gene therapy protocols in future

  17. Diseño y construcción de vectores de transferencia para la obtención de virus vaccinia Ankara modificado (MVA recombinantes Design and construction of transfer vectors in order to obtain recombinant modified vaccinia virus Ankara (MVA

    Directory of Open Access Journals (Sweden)

    M. F. Ferrer

    2007-09-01

    Full Text Available El virus vaccinia Ankara modificado (MVA constituye un buen candidato para el desarrollo de vectores virales de expresión no replicativos porque no replica en la mayoría de las células de mamíferos. Para la producción de MVA recombinantes es fundamental disponer de vectores de transferencia que, por recombinación homóloga con el genoma viral, permitan introducir los genes de interés en regiones no esenciales para la replicación in vitro. En este trabajo se diseñaron y obtuvieron los vectores de transferencia denominados VT-MHA y VT-MTK que portan las regiones correspondientes a las posiciones 1-303 y 608-948 del gen MVA165R y 1-244 y 325-534 del gen MVA086R, respectivamente, las que flanquean un sitio de clonado múltiple para la inserción de los genes foráneos. En dichos vectores se clonaron los casetes para la expresión de los genes lac Z o uid A, y la actividad de las enzimas marcadoras b-galactosidasa y b-glucuronidasa se confirmó in situ. Además, utilizando el vector denominado VT-MTK-GUS, se obtuvieron y aislaron MVA recombinantes puros que portan y expresan el gen uid A. Los resultados obtenidos constituyen las herramientas básicas para establecer la metodología de obtención de MVA recombinantes, con el propósito de desarrollar localmente vectores virales no replicativos candidatos a vacunas.Modified Vaccinia virus Ankara (MVA constitutes a good candidate for the development of non-replicative expression viral vectors because it does not replicate in most of mammalian cells. It is essential, for the production of recombinant MVA, the availability of transfer vectors which allow the introduction of desired genes into non-essential regions for in vitro viral replication, by homologous recombination with the viral genome. In the present work, the transfer vectors named VT-MHA and VT-MTK were designed and obtained. They carried genomic regions corresponding to 1- 303 and 608-948 positions of the MVA165R gene and 1-244 and

  18. An adaptive mode-driven spatiotemporal motion vector prediction for wavelet video coding

    Science.gov (United States)

    Zhao, Fan; Liu, Guizhong; Qi, Yong

    2010-07-01

    The three-dimensional subband/wavelet codecs use 5/3 filters rather than Haar filters for the motion compensation temporal filtering (MCTF) to improve the coding gain. In order to curb the increased motion vector rate, an adaptive motion mode driven spatiotemporal motion vector prediction (AMDST-MVP) scheme is proposed. First, by making use of the direction histograms of four motion vector fields resulting from the initial spatial motion vector prediction (SMVP), the motion mode of the current GOP is determined according to whether the fast or complex motion exists in the current GOP. Then the GOP-level MVP scheme is thereby determined by either the S-MVP or the AMDST-MVP, namely, AMDST-MVP is the combination of S-MVP and temporal-MVP (T-MVP). If the latter is adopted, the motion vector difference (MVD) between the neighboring MV fields and the S-MVP resulting MV of the current block is employed to decide whether or not the MV of co-located block in the previous frame is used for prediction the current block. Experimental results show that AMDST-MVP not only can improve the coding efficiency but also reduce the number of computation complexity.

  19. Transcriptomic analyses of the secreted proteins from the salivary glands of the wheat midge larvae

    Science.gov (United States)

    Both the wheat midge (Sitodiplosis mosellana) and the Hessian fly (Mayetiola destructor) belong to a group of insects called gall midges (Diptera: Cecidomyiidae) and both are destructive pests of wheat. From Hessian fly larvae, a large number of genes have been identified to encode Secreted Salivary...

  20. Identity and diversity of blood meal hosts of biting midges (Dipterea: Ceratopogonidae: Culicoides Latreille) in Denmark

    DEFF Research Database (Denmark)

    Lassen, Sandra; Nielsen, Søren Achim; Kristensen, Michael

    2012-01-01

    biting midges were sorted and head and wings were removed for morphological species identification. The thoraxes and abdomens including the blood meals of the individual females were subsequently subjected to DNA isolation. The molecular marker cytochrome oxidase I (COI barcode) was applied to identify......: Twenty-four species of biting midges were identified from the four study sites. A total of 111,356 Culicoides biting midges were collected, of which 2,164 were blood-fed. Specimens of twenty species were identified with blood in their abdomens. Blood meal sources were successfully identified by DNA...

  1. Viral Determinants and Vector Competence of Zika Virus Transmission

    Directory of Open Access Journals (Sweden)

    Hong-Wai Tham

    2018-05-01

    Full Text Available Zika virus (ZIKV has emerged as a new global health threat. Since its first discovery in Zika forest in Uganda, this virus has been isolated from several mosquito species, including Aedes aegypti and Aedes albopictus. The geographical distribution of these mosquito species across tropical and subtropical regions has led to several outbreaks, including the recent pandemic in Brazil, followed by the Pacific islands and other areas of North and South America. This has gained attention of the scientific community to elucidate the epidemiology and transmission of ZIKV. Despite its strong attention on clinical aspects for healthcare professionals, the relationships between ZIKV and its principal vectors, A. aegypti and A. albopictus, have not gained substantial interest in the scientific research community. As such, this review aims to summarize the current knowledge on ZIKV tropism and some important mechanisms which may be employed by the virus for effective strategies on viral survival in mosquitoes. In addition, this review identifies the areas of research that should be placed attention to, for which to be exploited for novel mosquito control strategies.

  2. Viral Determinants and Vector Competence of Zika Virus Transmission

    Science.gov (United States)

    Tham, Hong-Wai; Balasubramaniam, Vinod; Ooi, Man K.; Chew, Miaw-Fang

    2018-01-01

    Zika virus (ZIKV) has emerged as a new global health threat. Since its first discovery in Zika forest in Uganda, this virus has been isolated from several mosquito species, including Aedes aegypti and Aedes albopictus. The geographical distribution of these mosquito species across tropical and subtropical regions has led to several outbreaks, including the recent pandemic in Brazil, followed by the Pacific islands and other areas of North and South America. This has gained attention of the scientific community to elucidate the epidemiology and transmission of ZIKV. Despite its strong attention on clinical aspects for healthcare professionals, the relationships between ZIKV and its principal vectors, A. aegypti and A. albopictus, have not gained substantial interest in the scientific research community. As such, this review aims to summarize the current knowledge on ZIKV tropism and some important mechanisms which may be employed by the virus for effective strategies on viral survival in mosquitoes. In addition, this review identifies the areas of research that should be placed attention to, for which to be exploited for novel mosquito control strategies. PMID:29875751

  3. Non-canonical dorsoventral patterning in the moth midge Clogmia albipunctata

    Directory of Open Access Journals (Sweden)

    Karl R. Wotton

    2017-11-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs are of central importance for dorsal–ventral (DV axis specification. They are core components of a signalling cascade that includes the BMP ligand decapentaplegic (DPP and its antagonist short gastrulation (SOG in Drosophila melanogaster. These components are very ancient, with orthologs involved in DV patterning in both protostomes and deuterostomes. Despite such strong conservation, recent comparative work in insects has revealed interesting differences in the way the patterning function of the DV system is achieved in different species. Results In this paper, we characterise the expression patterns of the principal components of the BMP DV patterning system, as well as its signalling outputs and downstream targets, in the non-cyclorrhaphan moth midge Clogmia albipunctata (Diptera: Psychodidae. We previously reported ventral expression patterns of dpp in the pole regions of C. albipunctata blastoderm embryos. Strikingly, we also find ventral sog and posteriorly restricted tkv expression, as well as expanded polar activity of pMad. We use our results from gene knock-down by embryonic RNA interference to propose a mechanism of polar morphogen shuttling in C. albipunctata. We compare these results to available data from other species and discuss scenarios for the evolution of DV signalling in the holometabolan insects. Conclusions A comparison of gene expression patterns across hemipteran and holometabolan insects reveals that expression of upstream signalling factors in the DV system is very variable, while signalling output is highly conserved. This has two major implications: first, as long as ligand shuttling and other upstream regulatory mechanisms lead to an appropriately localised activation of BMP signalling at the dorsal midline, it is of less importance exactly where the upstream components of the DV system are expressed. This, in turn, explains why the early-acting components of

  4. [Effects of plant viruses on vector and non-vector herbivorous arthropods and their natural enemies: a mini review].

    Science.gov (United States)

    He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian

    2014-05-01

    Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.

  5. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity

    NARCIS (Netherlands)

    Roberts, Diane M.; Nanda, Anjali; Havenga, Menzo J. E.; Abbink, Peter; Lynch, Diana M.; Ewald, Bonnie A.; Liu, Jinyan; Thorner, Anna R.; Swanson, Patricia E.; Gorgone, Darci A.; Lifton, Michelle A.; Lemckert, Angelique A. C.; Holterman, Lennart; Chen, Bing; Dilraj, Athmanundh; Carville, Angela; Mansfield, Keith G.; Goudsmit, Jaap; Barouch, Dan H.

    2006-01-01

    A common viral immune evasion strategy involves mutating viral surface proteins in order to evade host neutralizing antibodies. Such immune evasion tactics have not previously been intentionally applied to the development of novel viral gene delivery vectors that overcome the critical problem of

  6. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection.

    Directory of Open Access Journals (Sweden)

    Zach N Adelman

    Full Text Available The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus, exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2 or Argonaute-2 (AGO-2. We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.

  7. Advances in Viral Vector-Based TRAIL Gene Therapy for Cancer

    International Nuclear Information System (INIS)

    Norian, Lyse A.; James, Britnie R.; Griffith, Thomas S.

    2011-01-01

    Numerous biologic approaches are being investigated as anti-cancer therapies in an attempt to induce tumor regression while circumventing the toxic side effects associated with standard chemo- or radiotherapies. Among these, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown particular promise in pre-clinical and early clinical trials, due to its preferential ability to induce apoptotic cell death in cancer cells and its minimal toxicity. One limitation of TRAIL use is the fact that many tumor types display an inherent resistance to TRAIL-induced apoptosis. To circumvent this problem, researchers have explored a number of strategies to optimize TRAIL delivery and to improve its efficacy via co-administration with other anti-cancer agents. In this review, we will focus on TRAIL-based gene therapy approaches for the treatment of malignancies. We will discuss the main viral vectors that are being used for TRAIL gene therapy and the strategies that are currently being attempted to improve the efficacy of TRAIL as an anti-cancer therapeutic

  8. The yellow fever 17D vaccine virus: molecular basis of viral attenuation and its use as an expression vector

    Directory of Open Access Journals (Sweden)

    Galler R.

    1997-01-01

    Full Text Available The yellow fever (YF virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed

  9. UMG Lenti: novel lentiviral vectors for efficient transgene- and reporter gene expression in human early hematopoietic progenitors.

    Directory of Open Access Journals (Sweden)

    Emanuela Chiarella

    Full Text Available Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and -LV6 where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG-LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in

  10. UMG Lenti: novel lentiviral vectors for efficient transgene- and reporter gene expression in human early hematopoietic progenitors.

    Science.gov (United States)

    Chiarella, Emanuela; Carrà, Giovanna; Scicchitano, Stefania; Codispoti, Bruna; Mega, Tiziana; Lupia, Michela; Pelaggi, Daniela; Marafioti, Maria G; Aloisio, Annamaria; Giordano, Marco; Nappo, Giovanna; Spoleti, Cristina B; Grillone, Teresa; Giovannone, Emilia D; Spina, Raffaella; Bernaudo, Francesca; Moore, Malcolm A S; Bond, Heather M; Mesuraca, Maria; Morrone, Giovanni

    2014-01-01

    Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and -LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG-LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and

  11. Recombinant viruses as vaccines against viral diseases

    Directory of Open Access Journals (Sweden)

    A.P.D. Souza

    2005-04-01

    Full Text Available Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.

  12. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector.

    Science.gov (United States)

    Herzog, R W; Yang, E Y; Couto, L B; Hagstrom, J N; Elwell, D; Fields, P A; Burton, M; Bellinger, D A; Read, M S; Brinkhous, K M; Podsakoff, G M; Nichols, T C; Kurtzman, G J; High, K A

    1999-01-01

    Hemophilia B is a severe X-linked bleeding diathesis caused by the absence of functional blood coagulation factor IX, and is an excellent candidate for treatment of a genetic disease by gene therapy. Using an adeno-associated viral vector, we demonstrate sustained expression (>17 months) of factor IX in a large-animal model at levels that would have a therapeutic effect in humans (up to 70 ng/ml, adequate to achieve phenotypic correction, in an animal injected with 8.5x10(12) vector particles/kg). The five hemophilia B dogs treated showed stable, vector dose-dependent partial correction of the whole blood clotting time and, at higher doses, of the activated partial thromboplastin time. In contrast to other viral gene delivery systems, this minimally invasive procedure, consisting of a series of percutaneous intramuscular injections at a single timepoint, was not associated with local or systemic toxicity. Efficient gene transfer to muscle was shown by immunofluorescence staining and DNA analysis of biopsied tissue. Immune responses against factor IX were either absent or transient. These data provide strong support for the feasibility of the approach for therapy of human subjects.

  13. Biodegradable charged polyester-based vectors (BCPVs) as an efficient non-viral transfection nanoagent for gene knockdown of the BCR-ABL hybrid oncogene in a human chronic myeloid leukemia cell line

    Science.gov (United States)

    Yang, Chengbin; Panwar, Nishtha; Wang, Yucheng; Zhang, Butian; Liu, Maixian; Toh, Huiting; Yoon, Ho Sup; Tjin, Swee Chuan; Chong, Peter Han Joo; Law, Wing-Cheung; Chen, Chih-Kuang; Yong, Ken-Tye

    2016-04-01

    First-line therapy of chronic myelogenous leukemia (CML) has always involved the use of BCR-ABL tyrosine-kinase inhibitors which is associated with an abnormal chromosome called Philadelphia chromosome. Although the overall survival rate has been improved by the current therapeutic regime, the presence of resistance has resulted in limited efficacy. In this study, an RNA interference (RNAi)-based therapeutic regime is proposed with the aim to knockdown the BCR-ABL hybrid oncogene using small interfering RNA (siRNA). The siRNA transfection rates have usually been limited due to the declining contact probability among polyplexes and the non-adherent nature of leukemic cells. Our work aims at addressing this limitation by using a biodegradable charged polyester-based vector (BCPV) as a nanocarrier for the delivery of BCR-ABL-specific siRNA to the suspension culture of a K562 CML cell line. BCR-ABL siRNAs were encapsulated in the BCPVs by electrostatic force. Cell internalization was facilitated by the BCPV and assessed by confocal microscopy and flow cytometry. The regulation of the BCR-ABL level in K562 cells as a result of RNAi was analyzed by real-time polymerase chain reaction (RT-PCR). We observed that BCPV was able to form stable nanoplexes with siRNA molecules, even in the presence of fetal bovine serum (FBS), and successfully assisted in vitro siRNA transfection in the non-adherent K562 cells. As a consequence of downregulation of BCR-ABL, BCPV-siRNA nanoplexes inhibited cell proliferation and promoted cell apoptosis. All results were compared with a commercial transfection reagent, Lipofectamine2000™, which served as a positive control. More importantly, this class of non-viral vector exhibits biodegradable features and negligible cytotoxicity, thus providing a versatile platform to deliver siRNA to non-adherent leukemia cells with high transfection efficiency by effectively overcoming extra- and intra-cellular barriers. Due to the excellent in vitro

  14. Generating and measuring non-diffracting vector Bessel beams

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2014-03-01

    Full Text Available We demonstrate how to create non-diffracting vector Bessel beams by implementing a spatial light modulator (SLM) to generate scalar Bessel beams which are then converted into vector fields by the use of an azimuthally-varying birefringent plate...

  15. Gall midges (Diptera: Cecidomyiidae) new to the Danish fauna

    DEFF Research Database (Denmark)

    Haarder, Simon; Bruun, Hans Henrik; Harris, Keith M.

    2016-01-01

    First records of twenty-three gall midge species in Denmark are reported: Asphondylia ervi Rübsaamen, Contarinia acetosellae Rübsaamen, C. viburnorum Kieffer, Dasineura astragalorum (Kieffer), D. fructum (Rübsaamen), D. harrisoni (Bagnall), D. lotharingiae (Kieffer), D. papaveris (Winnertz), D...

  16. Non-viral ex vivo hepatic gene transfer by in situ lipofection of liver and intraperitoneal transplantation of hepatocytes.

    Science.gov (United States)

    Rangarajan, P N; Vatsala, P G; Ashok, M S; Srinivas, V K; Habibullah, C M; Padmanaban, G

    1997-04-29

    Perfusion of liver with plasmid DNA-lipofectin complexes via the portal vein results in efficient accumulation of the vector in hepatocytes. Such hepatocytes, when administered intraperitoneally into a hepatectomized rat, repopulate the liver and express the transgene efficiently. This procedure obviates the need for large-scale hepatocyte culture for ex vivo gene transfer. Further, intraperitoneal transplantation is a simple and cost-effective strategy of introducing genetically modified hepatocytes into liver. Thus, in situ lipofection of liver and intraperitoneal transfer of hepatocytes can be developed into a novel method of non-viral ex vivo gene transfer technique that has applications in the treatment of metabolic disorders of liver and hepatic gene therapy.

  17. Breeding sites and species association of the main Bluetongue and Schmallenberg virus vectors, the Culicoides species (Diptera: Ceratopogonidae), in northern Europe

    OpenAIRE

    Zimmer, Jean-Yves; Losson, Bertrand; Saegerman, Claude; Haubruge, Eric; Francis, Frédéric

    2013-01-01

    Several species of Culicoides (Diptera: Ceratopogonidae) biting midges are biological vectors of bluetongue virus (BTV) and, as recently discovered, Schmallenberg virus (SBV) in northern Europe. Since their recent emergence in this part of the continent, these diseases that affect domestic and wild ruminants have caused considerable economic losses to the sheep and cattle industries. The substrates that are suitable for larval development of the main vector species are still relatively unknow...

  18. Rotation vectors for homeomorphisms of non-positively curved manifolds

    International Nuclear Information System (INIS)

    Lessa, Pablo

    2011-01-01

    Rotation vectors, as defined for homeomorphisms of the torus that are isotopic to the identity, are generalized to such homeomorphisms of any complete Riemannian manifold with non-positive sectional curvature. These generalized rotation vectors are shown to exist for almost every orbit of such a dynamical system with respect to any invariant measure with compact support. The concept is then extended to flows and, as an application, it is shown how non-null rotation vectors can be used to construct a measurable semi-conjugacy between a given flow and the geodesic flow of a manifold

  19. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Maucksch C

    2012-01-01

    Full Text Available Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP-expressing astrocytes. This study represents a novel virus-free approach for direct reprogramming of human fibroblasts to a neural precursor fate.

  20. Direct Neural Conversion from Human Fibroblasts Using Self-Regulating and Nonintegrating Viral Vectors

    Directory of Open Access Journals (Sweden)

    Shong Lau

    2014-12-01

    Full Text Available Summary: Recent findings show that human fibroblasts can be directly programmed into functional neurons without passing via a proliferative stem cell intermediate. These findings open up the possibility of generating subtype-specific neurons of human origin for therapeutic use from fetal cell, from patients themselves, or from matched donors. In this study, we present an improved system for direct neural conversion of human fibroblasts. The neural reprogramming genes are regulated by the neuron-specific microRNA, miR-124, such that each cell turns off expression of the reprogramming genes once the cell has reached a stable neuronal fate. The regulated system can be combined with integrase-deficient vectors, providing a nonintegrative and self-regulated conversion system that rids problems associated with the integration of viral transgenes into the host genome. These modifications make the system suitable for clinical use and therefore represent a major step forward in the development of induced neurons for cell therapy. : Lau et al. now use miRNA targeting to build a self-regulating neural conversion system. Combined with nonintegrating vectors, this system can efficiently drive conversion of human fibroblasts into functional induced neurons (iNs suitable for clinical applications.

  1. Introduction of optical reporter gene into cancer and immune cells using lentiviral vector

    International Nuclear Information System (INIS)

    Min, Jung Joon; Le, Uyenchi N.; Moon, Sung Min; Heo, Young Jun; Song, Ho Chun; Bom, Hee Seung; Kim, Yeon Soo

    2004-01-01

    For some applications such as gene therapy or reporter gene imaging, a gene has to be introduced into the organism of interest. Adenoviral vectors are capable of transducing both replicating and non-dividing cells. The adenoviral vectors do not integrate their DNA into host DNA, but do lead to an immune response. Lentiviruses belong to the retrovirus family and are capable of infecting both dividing and non-dividing cells. The human immunodeficiency virus (HIV) is an example of a lentavirus. A disabled HIV virus has been developed and could be used for in vivo gene delivery. A portion of the viral genome which encodes for accessory proteins canbe deleted without affecting production of the vector and efficiency of infection. Lentiviral delivery into various rodent tissues shows sustained expression of the transgene of up to six months. Furthermore, there seems to be little or no immune response with these vectors. These lentiviral vectors hold significant promise for in vivo gene delivery. We constructed lentiviral vector encoding firefly luciferase (Fluc) and eGFP. Fluc-eGFP fusion gene was inserted into multiple cloning sites of pLentiM1.3 vector. Reporter gene (Fluc-eGFP) was designed to be driven by murine CMV promoter with enhanced efficacy of transgene expression as compared to human CMV promoter. We transfected pLenti1.3-Fluc into human cervix cancer cell line (HeLa) and murine T lymphocytes. We also constructed adenovirus encoding Fluc and transfected to HeLa and T cells. This LentiM1.3-Fluc was transfected into HeLa cells and murine T lymphocytes in vitro, showing consistent expression of eGFP under the fluorescence microscopy from the 2nd day of transfection. Firefly luciferase reporter gene was not expressed in immune cells when it is mediated by adenovirus. Lentivirus was validated as a useful vector for both immune and cancer cells

  2. A new pathway for developing in vitro nanostructured non-viral gene carriers

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Benjamin [Chemistry Department, Stony Brook University, Stony Brook, NY 11794-3400 (United States); Liang Dehai [Chemistry Department, Stony Brook University, Stony Brook, NY 11794-3400 (United States); Hadjiargyrou, Michael [Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794-3400 (United States); Hsiao, Benjamin S [Chemistry Department, Stony Brook University, Stony Brook, NY 11794-3400 (United States)

    2006-09-13

    Extracellular and intracellular barriers typically prevent the efficient transfection of non-viral gene vectors. The formulation of a gene delivery carrier that can overcome the barriers would be a key for successful gene therapy. We have developed a novel pathway for the preparation of core-shelled DNA nanoparticles by invoking solvent-induced condensation of plasmid DNA ({beta}-galactosidase) in a poor solvent mixture and subsequent encapsulation of the condensed DNA globule in a tri-block copolymer (e.g. polylactide-poly(ethylene glycol)-polylactide, L{sub 8}E{sub 78}L{sub 8}). The polylactide shell can protect the encapsulated DNA from degradation during electrospinning of a mixture of encapsulated DNA nanoparticles and biodegradable PLGA (a random copolymer of lactide and glycolide) to form a non-woven nanofibrous DNA-containing scaffold. The bioactive plasmid DNA can then be released in an intact form and in sufficient quantity from the scaffold with a controlled release rate and to transfect cells in vitro. Further consideration of the stability of the DNA in extracellular and intracellular environments is proposed. In particular, the use of block copolymers with a positively charged block and a hydrophilic block, as well as tri-arm block copolymers with an additional hydrophobic, biodegradable block to stabilize the DNA chain of interest, is discussed.

  3. Chikungunya Virus–Vector Interactions

    Directory of Open Access Journals (Sweden)

    Lark L. Coffey

    2014-11-01

    Full Text Available Chikungunya virus (CHIKV is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed.

  4. Generation of a human induced pluripotent stem cell line (MUSIi001-A from caesarean section scar fibroblasts using Sendai viral vectors

    Directory of Open Access Journals (Sweden)

    Methichit Wattanapanitch

    2018-03-01

    Full Text Available We generated a human induced pluripotent stem cell (iPSC line from caesarean section scar fibroblasts of a 33-year-old healthy woman using transgene-free Sendai viral vectors under feeder-free condition. The established iPSC line, designated as MUSIi001-A, exhibited a normal karyotype, expressed pluripotent markers, differentiated into cells of three embryonic germ layers. Further analyses showed that the Sendai viral genome was absent at passage 25. The MUSIi001-A line can serve as a control for studying developmental biology and phenotypic comparison with disease-specific iPSCs.

  5. Differential adenoassociated virus vector-driven expression of a neuropeptide Y gene in primary rat brain astroglial cultures after transfection with Sendai virosomes versus Lipofectin.

    Science.gov (United States)

    de Fiebre, C M; Wu, P; Notabartolo, D; Millard, W J; Meyer, E M

    1994-06-01

    The ability of Sendai virosomes or Lipofectin to introduce an AAV vector into primary rat brain astroglial cultures was characterized. The pJDT95npy vector was constructed by inserting rat NPY cDNA downstream from the indigenous AAV p5, p19 and p40 promoters in pJDT95. Lipofectin-mediated transfection with pJDT95npy (10 micrograms) resulted in pronounced expression of several NPY mRNA species: p5-driven (3.3 kb), p19-driven (2.7 kb) and p40-driven (0.6, 0.8, 1.1, and 1.8 kb). Exposure to virosomally encapsulated pJDT95npy (50 or 100 ng) resulted in transient expression of some p40-driven mRNA species (0.8 and 1.8 kb). Neither method produced astroglia cells which synthesized mature NPY immunoreactivity. This demonstrates that an AAV-derived vector can drive gene expression in astroglia, that Sendai virosomes can infuse vectors into astroglia, but that the amount of DNA infused in this manner may limit long term expression.

  6. The Therapeutic Potential of CRISPR/Cas9 Systems in Oncogene-Addicted Cancer Types: Virally Driven Cancers as a Model System

    Directory of Open Access Journals (Sweden)

    Luqman Jubair

    2017-09-01

    Full Text Available The field of gene editing is undergoing unprecedented growth. The first ex vivo human clinical trial in China started in 2016, more than 1000 US patents have been filed, and there is exponential growth in publications. The ability to edit genes with high fidelity is promising for the development of new treatments for a range of diseases, particularly inherited conditions, infectious diseases, and cancers. For cancer, a major issue is the identification of driver mutations and oncogenes to target for therapeutic effect, and this requires the development of robust models with which to prove their efficacy. The challenge is that there is rarely a single critical gene. However, virally driven cancers, in which cells are addicted to the expression of a single viral oncogene in some cases, may serve as model systems for CRISPR/Cas therapies, as they did for RNAi. These models and systems offer an excellent opportunity to test both preclinical models and clinical conditions to examine the effectiveness of gene editing, and here we review the options and offer a way forward. Keywords: CRISPR/Cas9, virally-driven cancers, cervical cancer, oncogene-addiction

  7. To bite or not to bite! A questionnaire-based survey assessing why some people are bitten more than others by midges

    Directory of Open Access Journals (Sweden)

    Weeks Emma NI

    2010-05-01

    Full Text Available Abstract Background The Scottish biting midge, Culicoides impunctatus, responsible for more than 90% of biting attacks on human beings in Scotland, is known to demonstrate a preference for certain human hosts over others. Methods In this study we used a questionnaire-based survey to assess the association between people's perception of how badly they get bitten by midges and their demographic, lifestyle and health related characteristics. Results Most people (85.8% reported being bitten sometimes, often or always with only 14.2% reporting never being bitten by midges when in Scotland. There was no association between level of bites received and age, smoking, diet, exercise, medication, eating strongly flavoured foods or alcohol consumption. However, there was a strong association between the probability of being bitten and increasing height (in men and BMI (in women. A large proportion of participants (33.8% reported experiencing a bad/severe reaction to midge bites while 53.1% reported a minor reaction and 13.1% no reaction at all. Also, women tend to react more than men to midge bites. Additionally, the results indicated that the susceptibility to being bitten by midges is hereditary. Conclusions This study suggests that midges prefer to bite men that are tall and women that have a large BMI, and that the tendency for a child to be bitten or not could be inherited from their parent. The study is questionnaire-based; therefore, the interpretation of the results may be limited by the subjectivity of the answers given by the respondents. Although the results are relevant only to the Scottish biting midge, the approach used here could be useful for investigating human-insect interactions for other insects, particularly those which transmit pathogens that cause disease.

  8. Apigenin Restricts FMDV Infection and Inhibits Viral IRES Driven Translational Activity

    Directory of Open Access Journals (Sweden)

    Suhong Qian

    2015-03-01

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of domestic and wild ruminants that is caused by FMD virus (FMDV. FMD outbreaks have occurred in livestock-containing regions worldwide. Apigenin, which is a flavonoid naturally existing in plant, possesses various pharmacological effects, including anti-inflammatory, anticancer, antioxidant and antiviral activities. Results show that apigenin can inhibit FMDV-mediated cytopathogenic effect and FMDV replication in vitro. Further studies demonstrate the following: (i apigenin inhibits FMDV infection at the viral post-entry stage; (ii apigenin does not exhibit direct extracellular virucidal activity; and (iii apigenin interferes with the translational activity of FMDV driven by internal ribosome entry site. Studies on applying apigein in vivo are required for drug development and further identification of potential drug targets against FDMV infection.

  9. Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity.

    Science.gov (United States)

    Qian, Suhong; Fan, Wenchun; Qian, Ping; Zhang, Dong; Wei, Yurong; Chen, Huanchun; Li, Xiangmin

    2015-03-31

    Foot-and-mouth disease (FMD) is a highly contagious disease of domestic and wild ruminants that is caused by FMD virus (FMDV). FMD outbreaks have occurred in livestock-containing regions worldwide. Apigenin, which is a flavonoid naturally existing in plant, possesses various pharmacological effects, including anti-inflammatory, anticancer, antioxidant and antiviral activities. Results show that apigenin can inhibit FMDV-mediated cytopathogenic effect and FMDV replication in vitro. Further studies demonstrate the following: (i) apigenin inhibits FMDV infection at the viral post-entry stage; (ii) apigenin does not exhibit direct extracellular virucidal activity; and (iii) apigenin interferes with the translational activity of FMDV driven by internal ribosome entry site. Studies on applying apigein in vivo are required for drug development and further identification of potential drug targets against FDMV infection.

  10. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene.

    Science.gov (United States)

    Cui, Hongguang; Wang, Aiming

    2017-03-01

    RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Dynamic Systems Driven by Non-Poissonian Impulses

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Iwankiewicz, R.

    interarrival times. The moment equations for the augmented Poisson driven system are derived and closed by an ordinary cumulant neglect closure at the order N=4. The obtained moments are compared with these obtained by Monte Carlo simulations for both the original process with lognormally distributed......Dynamic systems under random trains of impulses driven by renewal point processes are studied. Then the system state variables no longer form a Markov vector as it is in the case of Poisson impulses. A general format is given for the replacing an ordinary renewal process by an equivalent Poisson...... process at the expense of the introduction of auxiliary state variables. A technique is devised for truncating the hierarchy of stochastic equations governing the auxiliary state variables. For the generalized Erlang process, suitable for approximating a wide class of renewal processes, the technique...

  12. The Asian Rice Gall Midge (Orseolia oryzae Mitogenome Has Evolved Novel Gene Boundaries and Tandem Repeats That Distinguish Its Biotypes.

    Directory of Open Access Journals (Sweden)

    Isha Atray

    Full Text Available The complete mitochondrial genome of the Asian rice gall midge, Orseolia oryzae (Diptera; Cecidomyiidae was sequenced, annotated and analysed in the present study. The circular genome is 15,286 bp with 13 protein-coding genes, 22 tRNAs and 2 ribosomal RNA genes, and a 578 bp non-coding control region. All protein coding genes used conventional start codons and terminated with a complete stop codon. The genome presented many unusual features: (1 rearrangement in the order of tRNAs as well as protein coding genes; (2 truncation and unusual secondary structures of tRNAs; (3 presence of two different repeat elements in separate non-coding regions; (4 presence of one pseudo-tRNA gene; (5 inversion of the rRNA genes; (6 higher percentage of non-coding regions when compared with other insect mitogenomes. Rearrangements of the tRNAs and protein coding genes are explained on the basis of tandem duplication and random loss model and why intramitochondrial recombination is a better model for explaining rearrangements in the O. oryzae mitochondrial genome is discussed. Furthermore, we evaluated the number of iterations of the tandem repeat elements found in the mitogenome. This led to the identification of genetic markers capable of differentiating rice gall midge biotypes and the two Orseolia species investigated.

  13. Moonlight receptor of the '1-h-midge' Clunio marinus studied by micro-XRF

    International Nuclear Information System (INIS)

    Falkenberg, G; Wellenreuther, G; Alraun, P; Fleissner, Ge; Fleissner, Gue; Neumann, D

    2013-01-01

    Melanin is a pigment widely occurring in animals, plants, fungi and algae. It does not only colour skin, hair and eyes but serves mainly as photoprotectant and prevents overload with minerals induced by inflammations, infections and degenerative diseases. Therefore, the mechanisms underlying melanisation gained increasing interest in the field of biomedical research and clinic. So far, the processes of melanogenesis are only partly analysed, nearly nothing is known on a putative switch between melanins of different types. Here we offer a model organism to study these mechanisms as part of a naturally cycling change of transparency of the retinal shielding pigment. A marine midge, Clunio marinus, living in coastal regions, underlies a complex timing of its development by solar and lunar climatic periodicities, which synchronise biological clocks. The question was how the animals can discriminate changing sunlight from moonlight intensities. For the first time, we could show a 'moonlight window' in the larval ocelli of this midge, and propose a hypothesis on the underlying mechanisms. Driven by a lunar clock the image forming ocelli become transparent and convert during moonlit nights to a sensitive photometer, which can record the dynamics of environmental light. High resolution X-ray fluorescence (XRF) measurements of the distribution of trace minerals in single melanosomes combined with their fine structural details in various states of the lunar cycle provide a first insight into the enzymatic pathways for the generation of a dark melanin (like eumelanin) and a light coloured melanin (like phaeomelanin). Essential advantage of this approach is the spatial and temporal resolution of the metals associated with melanisation processes, which could never before be demonstrated in these details. The data may stimulate further research projects in biomedicine

  14. Vectors and covectors in non-commutative setting

    OpenAIRE

    Parfionov, G. N.; Romashev, Yu. A.; Zapatrine, R. R.

    1995-01-01

    Following the guidelines of classical differential geometry the `building material' for the tensor calculus in non-commutative geometry is suggested. The algebraic account of moduli of vectors and covectors is carried out.

  15. Reversible Vector Ratchet Effect in Skyrmion Systems

    Science.gov (United States)

    Ma, Xiaoyu; Reichhardt, Charles; Reichhardt, Cynthia

    Magnetic skyrmions are topological non-trivial spin textures found in several magnetic materials. Since their motion can be controlled using ultralow current densities, skyrmions are appealing for potential applications in spintronics as information carriers and processing devices. In this work, we studied the collective transport properties of driven skyrmions based on a particle-like model with molecular dynamics (MD) simulation. Our results show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a new class of ratchet system, which we call a vector ratchet, that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated up to 360 degrees relative to the substrate asymmetry direction. This could represent a new method for controlling skyrmion motion for spintronic applications.

  16. ON A PROLONGATION CONSTRUCTION FOR LOCAL NON-DIVERGENT VECTOR FIELDS ON Rn

    Directory of Open Access Journals (Sweden)

    A. M. Lukatsky

    2015-01-01

    Full Text Available The problem of a prolongation of non-divergent vector field, defined in a vicinity of zero in Rn t, to a finite non-divergent vector field on Rn is considered. Explicit formulas for the elements of the simple Lie algebra of non-divergent vector from the well-known Cartan series are obtained. This construction allows to move from the Euler equations for the ideal incompressible fluid to the Euler equations on finite-dimensional Lie groups.

  17. Development of a gene silencing DNA vector derived from a broad host range geminivirus

    Directory of Open Access Journals (Sweden)

    Hancock Leandria C

    2009-07-01

    Full Text Available Abstract Background Gene silencing is proving to be a powerful tool for genetic, developmental, and physiological analyses. The use of viral induced gene silencing (VIGS offers advantages to transgenic approaches as it can be potentially applied to non-model systems for which transgenic techniques are not readily available. However, many VIGS vectors are derived from Gemini viruses that have limited host ranges. We present a new, unipartite vector that is derived from a curtovirus that has a broad host range and will be amenable to use in many non-model systems. Results The construction of a gene silencing vector derived from the geminivirus Beet curly top virus (BCTV, named pWSRi, is reported. Two versions of the vector have been developed to allow application by biolistic techniques or by agro-infiltration. We demonstrate its ability to silence nuclear genes including ribulose bisphosphate carboxylase small subunit (rbcS, transketolase, the sulfur allele of magnesium chelatase (ChlI, and two homeotic transcription factors in spinach or tomato by generating gene-specific knock-down phenotypes. Onset of phenotypes occurred 3 to 12 weeks post-inoculation, depending on the target gene, in organs that developed after the application. The vector lacks movement genes and we found no evidence for significant spread from the site of inoculation. However, viral amplification in inoculated tissue was detected and is necessary for systemic silencing, suggesting that signals generated from active viral replicons are efficiently transported within the plant. Conclusion The unique properties of the pWSRi vector, the ability to silence genes in meristem tissue, the separation of virus and silencing phenotypes, and the broad natural host range of BCTV, suggest that it will have wide utility.

  18. Replication-competent infectious hepatitis B virus vectors carrying substantially sized transgenes by redesigned viral polymerase translation.

    Directory of Open Access Journals (Sweden)

    Zihua Wang

    Full Text Available Viral vectors are engineered virus variants able to deliver nonviral genetic information into cells, usually by the same routes as the parental viruses. For several virus families, replication-competent vectors carrying reporter genes have become invaluable tools for easy and quantitative monitoring of replication and infection, and thus also for identifying antivirals and virus susceptible cells. For hepatitis B virus (HBV, a small enveloped DNA virus causing B-type hepatitis, such vectors are not available because insertions into its tiny 3.2 kb genome almost inevitably affect essential replication elements. HBV replicates by reverse transcription of the pregenomic (pg RNA which is also required as bicistronic mRNA for the capsid (core protein and the reverse transcriptase (Pol; their open reading frames (ORFs overlap by some 150 basepairs. Translation of the downstream Pol ORF does not involve a conventional internal ribosome entry site (IRES. We reasoned that duplicating the overlap region and providing artificial IRES control for translation of both Pol and an in-between inserted transgene might yield a functional tricistronic pgRNA, without interfering with envelope protein expression. As IRESs we used a 22 nucleotide element termed Rbm3 IRES to minimize genome size increase. Model plasmids confirmed its activity even in tricistronic arrangements. Analogous plasmids for complete HBV genomes carrying 399 bp and 720 bp transgenes for blasticidin resistance (BsdR and humanized Renilla green fluorescent protein (hrGFP produced core and envelope proteins like wild-type HBV; while the hrGFP vector replicated poorly, the BsdR vector generated around 40% as much replicative DNA as wild-type HBV. Both vectors, however, formed enveloped virions which were infectious for HBV-susceptible HepaRG cells. Because numerous reporter and effector genes with sizes of around 500 bp or less are available, the new HBV vectors should become highly useful tools to

  19. Immunization with a Novel Human type 5 Adenovirus-Vectored Vaccine Expressing the Premembrane and Envelope Proteins of Zika Virus Provides Consistent and Sterilizing Protection in Multiple Immunocompetent and Immunocompromised Animal Models.

    Science.gov (United States)

    Guo, Qiang; Chan, Jasper Fuk-Woo; Poon, Vincent Kwok-Man; Wu, Shipo; Chan, Chris Chung-Sing; Hou, Lihua; Yip, Cyril Chik-Yan; Ren, Changpeng; Cai, Jian-Piao; Zhao, Mengsu; Zhang, Anna Jinxia; Song, Xiaohong; Chan, Kwok-Hung; Wang, Busen; Kok, Kin-Hang; Wen, Yanbo; Yuen, Kwok-Yung; Chen, Wei

    2018-03-29

    Zika virus (ZIKV) infection may be associated with severe complications and disseminated via both vector-borne and non-vector-borne routes. Adenovirus-vectored vaccines represent a favorable controlling measure for the ZIKV epidemic as they have been shown to be safe, immunogenic, and rapidly generable for other emerging viral infections. Evaluations of two previously reported adenovirus-vectored ZIKV vaccines were performed using non-lethal animal models and/or non-epidemic ZIKV strain. We constructed and evaluated two human adenovirus-5-vectored vaccines containing the ZIKV premembrane-envelope(Ad5-Sig-prM-Env) and envelope(Ad5-Env) proteins, respectively, in multiple non-lethal and lethal animal models using epidemic ZIKV strains. Both vaccines elicited robust humoral and cellular immune responses in immunocompetent BALB/c mice. Dexamethasone-immunosuppressed mice vaccinated with either vaccine demonstrated robust and durable antibody responses and significantly lower blood/tissue viral loads than controls(Panimal models, Ad5-Sig-prM-Env-vaccinated mice had significantly(P<0.05) higher titers of anti-ZIKV-specific neutralizing antibody titers and lower(undetectable) viral loads than Ad5-Env-vaccinated mice. The close correlation between the neutralizing antibody titer and viral load helped to explain the better protective effect of Ad5-Sig-prM-Env than Ad5-Env. Anamnestic response was absent in Ad5-Sig-prM-Env-vaccinated A129 mice. Ad5-Sig-prM-Env provided sterilizing protection against ZIKV infection in mice.

  20. Niewirusowy transfer genów do komórek skóry – wybrane metody = Non-viral gene transfer into skin cells – selected methods

    Directory of Open Access Journals (Sweden)

    Ewelina Wędrowska

    2016-01-01

    . Therefore, there is an urgent need for alternative, non-viral methods of gene transfer. Aim of the study: To present methods for non-viral gene transfer used in gene therapy of skin diseases. Short description of knowledge state: Gene therapy for skin diseases include the usage of plasmid vectors as a carrier for therapeutic genes and different methods for their delivery into cells such as: electroporation, microinjection, sonication, lipid carriers and cationic polymers. Summary: Non-viral gene transfer methods offer some advantages including lower toxicity, non-infectious properties, ease of production and low costs as compared to viral techniques. Non-viral approaches are the promising tool in gene therapy of skin diseases, in particular in skin cancer ceases.   Key words: plasmids, gene transfer, skin, viruses, gene therapy.

  1. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management

    Directory of Open Access Journals (Sweden)

    B. W. Narladkar

    2018-02-01

    Full Text Available Broadly, species of arthropods infesting livestock are grouped into flies (biting and non-biting, fleas, lice (biting and sucking, ticks (soft and hard, and mites (burrowing, non-burrowing, and follicular. Among which, biting and non-biting flies and ticks are the potent vectors for many bacterial, viral, rickettsial, and protozoan diseases. Vectors of livestock are having economic significance on three points (1 direct losses from their bite and annoyance, worries, and psychological disturbances produced during the act of biting and feeding, (2 diseases they transmit, and (3 expenditure incurred for their control. Flies such as Culicoides spp. and Musca spp. and various species of hard ticks play important role in disease transmission in addition to their direct effects. For control of vectors, recent concept of integrated pest management (IPM provides the best solution and also addresses the problems related to acaricide resistance and environmental protection from hazardous chemicals. However, to successfully implement the concept of IPM, for each vector species, estimation of two monitory benchmarks, i.e., economic injury level (EIL and economic threshold level (ETL is essential prerequisite. For many vector species and under several circumstances, estimation of EIL and ETL appears to be difficult. Under such scenario, although may not be exact, an approximate estimate can be accrued by taking into account several criteria such as percent prevalence of vectors in a geographical area, percent losses produced, total livestock population, and current prices of livestock products such as milk, meat, and wool. Method for approximate estimation is first time described and elaborated in the present review article.

  2. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management

    Science.gov (United States)

    Narladkar, B. W.

    2018-01-01

    Broadly, species of arthropods infesting livestock are grouped into flies (biting and non-biting), fleas, lice (biting and sucking), ticks (soft and hard), and mites (burrowing, non-burrowing, and follicular). Among which, biting and non-biting flies and ticks are the potent vectors for many bacterial, viral, rickettsial, and protozoan diseases. Vectors of livestock are having economic significance on three points (1) direct losses from their bite and annoyance, worries, and psychological disturbances produced during the act of biting and feeding, (2) diseases they transmit, and (3) expenditure incurred for their control. Flies such as Culicoides spp. and Musca spp. and various species of hard ticks play important role in disease transmission in addition to their direct effects. For control of vectors, recent concept of integrated pest management (IPM) provides the best solution and also addresses the problems related to acaricide resistance and environmental protection from hazardous chemicals. However, to successfully implement the concept of IPM, for each vector species, estimation of two monitory benchmarks, i.e., economic injury level (EIL) and economic threshold level (ETL) is essential prerequisite. For many vector species and under several circumstances, estimation of EIL and ETL appears to be difficult. Under such scenario, although may not be exact, an approximate estimate can be accrued by taking into account several criteria such as percent prevalence of vectors in a geographical area, percent losses produced, total livestock population, and current prices of livestock products such as milk, meat, and wool. Method for approximate estimation is first time described and elaborated in the present review article. PMID:29657396

  3. Vaccines against viral hemorrhagic fevers: non-human primate models.

    Science.gov (United States)

    Carrion, Ricardo; Patterson, Jean L

    2011-06-01

    Viral hemorrhagic fevers are a group of disease syndromes caused by infection with certain RNA viruses. The disease is marked by a febrile response, malaise, coagulopathy and vascular permeability culminating in death. Case fatality rates can reach 90% depending on the etiologic agent. Currently, there is no approved antiviral treatment. Because of the high case fatality, risk of importation and the potential to use these agents as biological weapons, development of countermeasures to these agents is a high priority. The sporadic nature of disease outbreaks and the ethical issues associated with conducting a human trial for such diseases make human studies impractical; therefore, development of countermeasures must occur in relevant animal models. Non-human primates are superior models to study infectious disease because their immune system is similar to humans and they are good predictors of efficacy in vaccine development and other intervention strategies. This review article summarizes viral hemorrhagic fever non-human primate models.

  4. Non-inductively driven currents in JET

    International Nuclear Information System (INIS)

    Challis, C.D.; Cordey, J.G.; Hamnen, H.; Stubberfield, P.M.; Christiansen, J.P.; Lazzaro, E.; Muir, D.G.; Stork, D.; Thompson, E.

    1989-01-01

    Neutral beam heating data from JET have been analysed in detail to determine what proportion of the current is driven non-inductively. It is found that in low density limiter discharges, currents of the order of 0.5 MA are driven, while in H-mode plasmas currents of the order of 0.7 MA are measured. These measured currents are found to be in reasonable agreement with theoretical predictions based on neoclassical models. In low density plasmas the beam driven current is large while the neoclassical bootstrap current dominates H-mode plasmas. (author). 19 refs, 11 figs

  5. Response of the nonbiting midge Chironomus riparius to multigeneration toxicant exposure

    NARCIS (Netherlands)

    Marinković, M.; de Bruijn, K.; Asselman, M.; Bogaert, M.; Jonker, M.J.; Kraak, M.H.S.; Admiraal, W.

    2012-01-01

    The ability of the nonbiting midge Chironomus riparius to withstand long-term toxicant exposure has been attributed to genetic adaptation. Recently, however, evidence has arisen that supports phenotypic plasticity. Therefore, the present study aimed to investigate if Chironomus riparius indeed copes

  6. Vector calculus in non-integer dimensional space and its applications to fractal media

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-02-01

    We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.

  7. Safe and Effective Gene Therapy for Murine Wiskott-Aldrich Syndrome Using an Insulated Lentiviral Vector

    Directory of Open Access Journals (Sweden)

    Swati Singh

    2017-03-01

    Full Text Available Wiskott-Aldrich syndrome (WAS is a life-threatening immunodeficiency caused by mutations within the WAS gene. Viral gene therapy to restore WAS protein (WASp expression in hematopoietic cells of patients with WAS has the potential to improve outcomes relative to the current standard of care, allogeneic bone marrow transplantation. However, the development of viral vectors that are both safe and effective has been problematic. While use of viral transcriptional promoters may increase the risk of insertional mutagenesis, cellular promoters may not achieve WASp expression levels necessary for optimal therapeutic effect. Here we evaluate a self-inactivating (SIN lentiviral vector combining a chromatin insulator upstream of a viral MND (MPSV LTR, NCR deleted, dl587 PBS promoter driving WASp expression. Used as a gene therapeutic in Was−/− mice, this vector resulted in stable WASp+ cells in all hematopoietic lineages and rescue of T and B cell defects with a low number of viral integrations per cell, without evidence of insertional mutagenesis in serial bone marrow transplants. In a gene transfer experiment in non-human primates, the insulated MND promoter (driving GFP expression demonstrated long-term polyclonal engraftment of GFP+ cells. These observations demonstrate that the insulated MND promoter safely and efficiently reconstitutes clinically effective WASp expression and should be considered for future WAS therapy.

  8. Movements of adult Culicoides midges around stables in KwaZulu ...

    African Journals Online (AJOL)

    The catches were identified to species level and regression analysis was performed on untransformed data which followed a negative binomial distribution with a log link function. Midges were found to frequent dung heaps and the interior of stable blocks significantly more than any other site. This occurs most markedly ...

  9. Immune Response to Recombinant Adenovirus in Humans: Capsid Components from Viral Input Are Targets for Vector-Specific Cytotoxic T Lymphocytes

    Science.gov (United States)

    Molinier-Frenkel, Valérie; Gahery-Segard, Hanne; Mehtali, Majid; Le Boulaire, Christophe; Ribault, Sébastien; Boulanger, Pierre; Tursz, Thomas; Guillet, Jean-Gérard; Farace, Françoise

    2000-01-01

    We previously demonstrated that a single injection of 109 PFU of recombinant adenovirus into patients induces strong vector-specific immune responses (H. Gahéry-Ségard, V. Molinier-Frenkel, C. Le Boulaire, P. Saulnier, P. Opolon, R. Lengagne, E. Gautier, A. Le Cesne, L. Zitvogel, A. Venet, C. Schatz, M. Courtney, T. Le Chevalier, T. Tursz, J.-G. Guillet, and F. Farace, J. Clin. Investig. 100:2218–2226, 1997). In the present study we analyzed the mechanism of vector recognition by cytotoxic T lymphocytes (CTL). CD8+ CTL lines were derived from two patients and maintained in long-term cultures. Target cell infections with E1-deleted and E1-plus E2-deleted adenoviruses, as well as transcription-blocking experiments with actinomycin D, revealed that host T-cell recognition did not require viral gene transcription. Target cells treated with brefeldin A were not lysed, indicating that viral input protein-derived peptides are associated with HLA class I molecules. Using recombinant capsid component-loaded targets, we observed that the three major proteins could be recognized. These results raise the question of the use of multideleted adenoviruses for gene therapy in the quest to diminish antivector CTL responses. PMID:10906225

  10. Occupational allergy to aquarium fish food: red midge larva, freshwater shrimp, and earthworm. A clinical and immunological study.

    Science.gov (United States)

    Meseguer Arce, J; Villajos, I M Sánchez-Guerrero; Iraola, V; Carnés, J; Fernández Caldas, E

    2013-01-01

    Chironomids seem to be the main cause of occupational allergy to aquarium fish food. The aim of this study was to investigate the pattern of occupational sensitization to 3 different arthropod species used as components of aquarium fish food. The study sample comprised 8 workers from a fish food packing department. The control group comprised 40 atopic patients (20 of whom were allergic to mites). We performed prick tests with extracts of red midge larva (Chironomus thummi), freshwater shrimp (Gammarus species), earthworm (Tubifex species), and other arthropod species and a battery of common inhalant allergens. We measured peak expiratory flow rate (PEFR) and specific immunoglobulin (Ig) E and performed a methacholine challenge test, nasal challenge test, and immunoblotting. Cross-reactivity analyses were completed using immunoblotting and CAP inhibition. Prick test results were positive to red midge larvae in 7 patients (87.5%), Gammarus in 5 (62.5%), Tubifex in 3 (37.5%), and mites in 6 (75%). In the mite-allergic controls, 30% had positive prick test results to red midge larvae. PEFR decreased > or = 20% during the packing process in all patients, and in 1 patient it indicated a dual asthmatic response. Methacholine challenge test results were positive in all participants. Nasal challenge tests were performed in 4 patients, and the results were positive. Specific IgE to red midge larvae was detected in 62.5%, Gammarus in 50%, and Tubifex in 16%. Bands of approximately 14-15 kDa and 31 kDa were observed in Gammarus and red midge larvae extracts. Cross-reactivity assays demonstrated that Gammarus totally inhibited red midge larvae, while Tubifex did so partially. Dermatophagoides pteronyssinus showed very low inhibitory capacity. Aquarium fish food arthropods are potent allergens with an elevated prevalence of sensitization and variable degree of crossreactivity. This is the first report of occupational allergy to Tubifex. More data are necessary to identify and

  11. Prolonged liver-specific transgene expression by a non-primate lentiviral vector

    International Nuclear Information System (INIS)

    Condiotti, Reba; Curran, Michael A.; Nolan, Garry P.; Giladi, Hilla; Ketzinel-Gilad, Mali; Gross, Eitan; Galun, Eithan

    2004-01-01

    Liver-directed gene therapy has the potential for treatment of numerous inherited diseases affecting metabolic functions. The aim of this study was to evaluate gene expression in hepatocytes using feline immunodeficiency virus-based lentiviral vectors, which may be potentially safer than those based on human immunodeficiency virus. In vitro studies revealed that gene expression was stable for up to 24 days post-transduction and integration into the host cell genome was suggested by Alu PCR and Southern blot analyses. Systemic in vivo administration of viral particles by the hydrodynamics method resulted in high levels of gene expression exclusively in the liver for over 7 months whereas injection of plasmid DNA by the same method led to transient expression levels. Our studies suggest that feline immunodeficiency-based lentiviral vectors specifically transduce liver cells and may be used as a novel vehicle of gene delivery for treatment of metabolic disease

  12. Fowl adenovirus serotype 9 vectored vaccine for protection of avian influenza virus

    Science.gov (United States)

    A fowl adenovirus serotype 9, a non-pathogenic large double stranded DNA virus, was developed as a viral vector to express influenza genes as a potential vaccine. Two separate constructs were developed that expressed either the hemagglutinin gene of A/Chicken/Jalisco/2012 (H7) or A/ Chicken/Iowa/20...

  13. A molecular toolbox for rapid generation of viral vectors to up- or down-regulate in vivo neuronal gene expression

    Directory of Open Access Journals (Sweden)

    Melanie D. White

    2011-07-01

    Full Text Available We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1 and Kir3.2 and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miR. We show that AAV assembled to express HCN1 miR produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miR with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience.

  14. Non-Gaussianity and statistical anisotropy from vector field populated inflationary models

    CERN Document Server

    Dimastrogiovanni, Emanuela; Matarrese, Sabino; Riotto, Antonio

    2010-01-01

    We present a review of vector field models of inflation and, in particular, of the statistical anisotropy and non-Gaussianity predictions of models with SU(2) vector multiplets. Non-Abelian gauge groups introduce a richer amount of predictions compared to the Abelian ones, mostly because of the presence of vector fields self-interactions. Primordial vector fields can violate isotropy leaving their imprint in the comoving curvature fluctuations zeta at late times. We provide the analytic expressions of the correlation functions of zeta up to fourth order and an analysis of their amplitudes and shapes. The statistical anisotropy signatures expected in these models are important and, potentially, the anisotropic contributions to the bispectrum and the trispectrum can overcome the isotropic parts.

  15. Wing pattern variation in the Patagonian biting midge, Forcipomyia (Forcipomyia multipicta Ingram & Macfie (Diptera, Ceratopogonidae

    Directory of Open Access Journals (Sweden)

    Gustavo R. SPINELLI

    2012-01-01

    Full Text Available Examination of the type-series and non-type specimens of the Patagonian biting midge, Forcipomyia (Forcipomyia multipicta Ingram & Macfie (Diptera: Ceratopogonidae, revealed considerable variation in wing patterns of both sexes. One pattern includes several distinct light spot areas, whereas another pattern (e.g, in the holotype only features marginal light spots in cell r3, while other light spots are barely perceptible or absent. The cause(s of the differential lack of dark macrotrichia in certain areas of the wing membrane in specimens of some series could not be attributed either to their age, sex, or method of preservation.

  16. Foamy Virus Biology and Its Application for Vector Development

    Directory of Open Access Journals (Sweden)

    Axel Rethwilm

    2011-05-01

    Full Text Available Spuma- or foamy viruses (FV, endemic in most non-human primates, cats, cattle and horses, comprise a special type of retrovirus that has developed a replication strategy combining features of both retroviruses and hepadnaviruses. Unique features of FVs include an apparent apathogenicity in natural hosts as well as zoonotically infected humans, a reverse transcription of the packaged viral RNA genome late during viral replication resulting in an infectious DNA genome in released FV particles and a special particle release strategy depending capsid and glycoprotein coexpression and specific interaction between both components. In addition, particular features with respect to the integration profile into the host genomic DNA discriminate FV from orthoretroviruses. It appears that some inherent properties of FV vectors set them favorably apart from orthoretroviral vectors and ask for additional basic research on the viruses as well as on the application in Gene Therapy. This review will summarize the current knowledge of FV biology and the development as a gene transfer system.

  17. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    Science.gov (United States)

    Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C

    2013-01-01

    The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  18. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    Directory of Open Access Journals (Sweden)

    Érica Araújo Mendes

    Full Text Available The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1 of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination. Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1, to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  19. Diversity of non-biting midge larvae assemblages in the Jacuí River basin, Brazil.

    Science.gov (United States)

    Floss, Elzira Cecília Serafini; Kotzian, Carla Bender; Spies, Márcia Regina; Secretti, Elisangela

    2012-01-01

    The richness and composition of a mountain-river chironomid larvae assemblage in the Jacuí River basin, Brazil were studied, and compared with other riverine non-biting midge larvae assemblages previously studied in the country. Additionally, the influence of some regional-scale environmental characteristics on the spatial distribution of these assemblages was tested. The specimens were collected at 12 sites in the middle course of the Jacuí River basin (in the state of Rio Grande do Sul) between April 2000 and May 2002. Around 100 taxa were recorded. The dominant taxa belonged to the genera Rheotanytarsus, Cricotopus, Polypedilum, and Pseudochironomus. Twenty-two rare taxa were found, representing 22% of the total of taxa inventoried. Fourteen genera (Aedokritus, Axarus, Endotribelos, Kiefferulus, Manoa, Oukuriella, Phaenopsectra, Stenochironomus, Xenochironomus, Xestochironomus, Cardiocladius, Metriocnemus, Paracladius, and Rheocricotopus) represent new occurrences in Rio Grande do Sul. The similarity analysis of the chironomid larvae assemblages inventoried in 32 regions of Brazil indicated five groups with similarity higher than 50%. The groups, when the effects of spatial autocorrelation were removed, displayed a weak positive correlation between the assemblage composition and the aquatic system or hydraulic conditions and the hydrographic basin, and a weak negative correlation in relation to the biome. The altitude showed no correlation with the composition of the assemblage. The relatively high richness of the region surveyed in relation to other Brazilian regions corroborates some tendencies already noted in other parts of the world, such as: i) lotic systems may constitute an exception to the rule that diversity is greater in tropical regions, ii) regions of transitional relief may contain the greatest richness of Chironomidae, and iii) in rivers, the group might have its spatial distribution influenced to a greater extent by local environmental

  20. On the population dynamics of the malaria vector

    International Nuclear Information System (INIS)

    Ngwa, G.A.

    2005-10-01

    A deterministic differential equation model for the population dynamics of the human malaria vector is derived and studied. Conditions for the existence and stability of a non-zero steady state vector population density are derived. These reveal that a threshold parameter, the vectorial basic reproduction number, exist and the vector can establish itself in the community if and only if this parameter exceeds unity. When a non-zero steady state population density exists, it can be stable but it can also be driven to instability via a Hopf Bifurcation to periodic solutions, as a parameter is varied in parameter space. By considering a special case, an asymptotic perturbation analysis is used to derive the amplitude of the oscillating solutions for the full non-linear system. The present modelling exercise and results show that it is possible to study the population dynamics of disease vectors, and hence oscillatory behaviour as it is often observed in most indirectly transmitted infectious diseases of humans, without recourse to external seasonal forcing. (author)

  1. Prospects for Foamy Viral Vector Anti-HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Arun K. Nalla

    2016-03-01

    Full Text Available Stem cell gene therapy approaches for Human Immunodeficiency Virus (HIV infection have been explored in clinical trials and several anti-HIV genes delivered by retroviral vectors were shown to block HIV replication. However, gammaretroviral and lentiviral based retroviral vectors have limitations for delivery of anti-HIV genes into hematopoietic stem cells (HSC. Foamy virus vectors have several advantages including efficient delivery of transgenes into HSC in large animal models, and a potentially safer integration profile. This review focuses on novel anti-HIV transgenes and the potential of foamy virus vectors for HSC gene therapy of HIV.

  2. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    In this paper we study second order non-linear periodic systems driven by the ordinary vector -Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth conditions on ...

  3. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. In this paper we study second order non-linear periodic systems driven by the ordinary vector p-Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth ...

  4. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells.

    Science.gov (United States)

    White, April F; Mazur, Marina; Sorscher, Eric J; Zinn, Kurt R; Ponnazhagan, Selvarangan

    2008-12-01

    Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.

  5. Revival of cloaking effect in a driven bilayer graphene vector barrier

    Science.gov (United States)

    Maiti, S.; Panigrahi, A.; Biswas, R.; Sinha, C.

    2018-05-01

    Transmission profiles in bilayer graphene are studied theoretically through a rectangular vector potential (magnetic) barrier with and without the presence of an oscillatory potential. Unlike the electrostatic barrier, the Fano resonances (FR) are noted in the transmission spectra both for normal and glancing incidences due to non-conservation of chirality for a static vector barrier. The results for normal incidence indicate that the cloaking effect is a manifestation of the chirality conservation in charge transport through bilayer graphene scalar barriers. It is also noted that the aforesaid FR for a static vector barrier might disappear (photon induced electronic cloaking effect) due to the predominant photon exchange processes in presence of an external oscillating potential. The study of Fano resonances in transmission spectrum is in high demand in respect of localization of charge carriers in graphene nano structures for its potential applications in digital device fabrications.

  6. New gall midges (Diptera, Cecidomyiidae) associated with Eugenia uniflora and Psidium cattleianum (Myrtaceae)

    OpenAIRE

    Maia,Valéria C; Nava,Dori E

    2011-01-01

    Two new species and a new genus of gall midges (Diptera, Cecidomyiidae) are described and illustrated. Both species induce leaf galls on Myrtaceae, the former on Eugenia uniflora and the latter on Psidium cattleianum.

  7. Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4+ T Cells

    Science.gov (United States)

    Muraro, Elena; Merlo, Anna; Martorelli, Debora; Cangemi, Michela; Dalla Santa, Silvia; Dolcetti, Riccardo; Rosato, Antonio

    2017-01-01

    CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors. PMID:28289418

  8. Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials.

    Science.gov (United States)

    Kallel, Héla; Kamen, Amine A

    2015-05-01

    Efforts to make vaccines against infectious diseases and immunotherapies for cancer have evolved to utilize a variety of heterologous expression systems such as viral vectors. These vectors are often attenuated or engineered to safely deliver genes encoding antigens of different pathogens. Adenovirus and poxvirus vectors are among the viral vectors that are most frequently used to develop prophylactic vaccines against infectious diseases as well as therapeutic cancer vaccines. This mini-review describes the trends and processes in large-scale production of adenovirus and poxvirus vectors to meet the needs of clinical applications. We briefly describe the general principles for the production and purification of adenovirus and poxvirus viral vectors. Currently, adenovirus and poxvirus vector manufacturing methods rely on well-established cell culture technologies. Several improvements have been evaluated to increase the yield and to reduce the overall manufacturing cost, such as cultivation at high cell densities and continuous downstream processing. Additionally, advancements in vector characterization will greatly facilitate the development of novel vectored vaccine candidates. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. TACN-based cationic lipids with amino acid backbone and double tails: materials for non-viral gene delivery.

    Science.gov (United States)

    Wang, Bing; Yi, Wen-Jing; Zhang, Ji; Zhang, Qin-Fang; Xun, Miao-Miao; Yu, Xiao-Qi

    2014-04-01

    Cationic lipids have become an efficient type of non-viral vectors for gene delivery. In this Letter, four cationic lipids containing 1,4,7-triazacyclononane (TACN) headgroup, glutamic/aspartic acid backbone and dioleyl tails were designed and synthesized. The TACN headgroup gives these lipids excellent pH buffering capacities, which were higher than branched 25 kDa PEI. Cationic liposomes prepared from these lipids and DOPE showed good DNA affinity, and full DNA condensation was found at N/P ratio of 3 via agarose gel electrophoresis. The lipoplexes were characterized by dynamic light scattering (DLS) assay, which gave proper particle sizes and zeta-potentials for transfection. In vitro gene transfection results in two cell lines reveal that TAN (with aspartic acid and amide bond in the structure) shows the best transfection efficiency, which is close to commercially available transfection agent Lipofectamine 2000. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Hobo-like transposable elements as non-drosophilid gene vectors

    International Nuclear Information System (INIS)

    O'Brochta, D.A.; Warren, W.D.; Saville, K.J.; Whyard, S.; Mende, H.A.; Pinkerton, A.C.; Coates, C.J.; Atkinson, P.W.

    1998-01-01

    Using genetic and physical methods we discovered short-inverted repeat type transposable elements in non-drosophilid insects including, Bactorcera tryoni, Musca domestica, Musca vetustissima and Lucilia cuprina. These elements are related to hobo, Ac and Tam3. The Hermes element from M domestica is 2749 bp in length and has terminal inverted repeats and a transposase coding region very similar to those in hobo. Hermes is functional in M Domestic and can act as a gene vector in this species. When Hermes is introduced into D. melanogaster it is hyperactive, relative to existing vector systems used in this species. Hermes will be useful as a gene vector. (author)

  11. Spatial and temporal variability in midge (Nematocera) assemblages in shallow Finnish lakes (60-70 deg N) : community-based modelling of past environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Luoto, T.

    2010-07-01

    Multi- and intralake datasets of fossil midge assemblages in surface sediments of small shallow lakes in Finland were studied to determine the most important environmental factors explaining trends in midge distribution and abundance. The aim was to develop palaeoenvironmental calibration models for the most important environmental variables for the purpose of reconstructing past environmental conditions. The developed models were applied to three high-resolution fossil midge stratigraphies from southern and eastern Finland to interpret environmental variability over the past 2000 years, with special focus on the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and recent anthropogenic changes. The midge-based results were compared with physical properties of the sediment, historical evidence and environmental reconstructions based on diatoms (Bacillariophyta), cladocerans (Crustacea: Cladocera) and tree rings. The results showed that the most important environmental factor controlling midge distribution and abundance along a latitudinal gradient in Finland was the mean July air temperature (TJul). However, when the dataset was environmentally screened to include only pristine lakes, water depth at the sampling site became more important. Furthermore, when the dataset was geographically scaled to southern Finland, hypolimnetic oxygen conditions became the dominant environmental factor. The results from an intralake dataset from eastern Finland showed that the most important environmental factors controlling midge distribution within a lake basin were river contribution, water depth and submerged vegetation patterns. In addition, the results of the intralake dataset showed that the fossil midge assemblages represent fauna that lived in close proximity to the sampling sites, thus enabling the exploration of within-lake gradients in midge assemblages. Importantly, this within-lake heterogeneity in midge assemblages may have effects on midge-based temperature

  12. Virus Database and Online Inquiry System Based on Natural Vectors.

    Science.gov (United States)

    Dong, Rui; Zheng, Hui; Tian, Kun; Yau, Shek-Chung; Mao, Weiguang; Yu, Wenping; Yin, Changchuan; Yu, Chenglong; He, Rong Lucy; Yang, Jie; Yau, Stephen St

    2017-01-01

    We construct a virus database called VirusDB (http://yaulab.math.tsinghua.edu.cn/VirusDB/) and an online inquiry system to serve people who are interested in viral classification and prediction. The database stores all viral genomes, their corresponding natural vectors, and the classification information of the single/multiple-segmented viral reference sequences downloaded from National Center for Biotechnology Information. The online inquiry system serves the purpose of computing natural vectors and their distances based on submitted genomes, providing an online interface for accessing and using the database for viral classification and prediction, and back-end processes for automatic and manual updating of database content to synchronize with GenBank. Submitted genomes data in FASTA format will be carried out and the prediction results with 5 closest neighbors and their classifications will be returned by email. Considering the one-to-one correspondence between sequence and natural vector, time efficiency, and high accuracy, natural vector is a significant advance compared with alignment methods, which makes VirusDB a useful database in further research.

  13. Creation of a cardiotropic adeno-associated virus: the story of viral directed evolution

    Directory of Open Access Journals (Sweden)

    Yang Lin

    2013-02-01

    Full Text Available Abstract Adeno-associated virus (AAV is an important vector system for human gene therapy. Although use of AAV serotypes can result in efficient myocardial gene transfer, improvements in the transduction efficiency and specificity are still required. As a method for artificial modification and selection of gene function, directed evolution has been used for diverse applications in genetic engineering of enzymes and proteins. Since 2000, pioneering work has been performed on directed evolution of viral vectors. We further attempted to evolve the AAV using DNA shuffling and in vivo biopanning in a mouse model. An AAVM41 mutant was characterized, which was found to have improved transduction efficiency and specificity in myocardium, an attribute unknown for any natural AAV serotypes. This review focuses on the development of AAV vector for cardiac gene transfer, the history of directed evolution of viral vectors, and our creation of a cardiotropic AAV, which might have implications for the future design and application of viral vectors.

  14. Viral vectors for gene modification of plants as chem/bio sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Manginell, Monica; Harper, Jason C.; Arango, Dulce C.; Brozik, Susan Marie; Dolan, Patricia L.

    2006-11-01

    Chemical or biological sensors that are specific, sensitive, and robust allowing intelligence gathering for verification of nuclear non-proliferation treaty compliance and detouring production of weapons of mass destruction are sorely needed. Although much progress has been made in the area of biosensors, improvements in sensor lifetime, robustness, and device packaging are required before these devices become widely used. Current chemical and biological detection and identification techniques require less-than-covert sample collection followed by transport to a laboratory for analysis. In addition to being expensive and time consuming, results can often be inconclusive due to compromised sample integrity during collection and transport. We report here a demonstration of a plant based sensor technology which utilizes mature and seedling plants as chemical sensors. One can envision genetically modifying native plants at a site of interest that can report the presence of specific toxins or chemicals. In this one year project we used a developed inducible expression system to show the feasibility of plant sensors. The vector was designed as a safe, non-infectious vector which could be used to invade, replicate, and introduce foreign genes into mature host plants that then allow the plant to sense chem/bio agents. The genes introduced through the vector included a reporter gene that encodes for green fluorescent protein (GFP) and a gene that encodes for a mammalian receptor that recognizes a chemical agent. Specifically, GFP was induced by the presence of 17-{beta}-Estradiol (estrogen). Detection of fluorescence indicated the presence of the target chemical agent. Since the sensor is a plant, costly device packaging development or manufacturing of the sensor were not required. Additionally, the biological recognition and reporting elements are maintained in a living, natural environment and therefore do not suffer from lifetime disadvantages typical of most biosensing

  15. Mosquitoes and Culicoides biting midges: vector range and the influence of climate change

    NARCIS (Netherlands)

    Elbers, A.R.W.; Koenraadt, C.J.M.; Meiswinkel, R.

    2015-01-01

    Vector-borne animal diseases pose a continuous and substantial threat to livestock economies around the globe. Increasing international travel, the globalisation of trade, and climate change are likely to play a progressively more important role in the introduction, establishment and spread of

  16. From Midges to Spiders: Mercury Biotransport in Riparian Zones Near the Buffalo River Area of Concern (AOC), USA.

    Science.gov (United States)

    Pennuto, C M; Smith, M

    2015-12-01

    Riparian communities can receive environmental contaminants from adjacent aquatic 'donor' habitats. We investigated mercury biotransport from aquatic to terrestrial habitats via aquatic insect emergence and uptake by riparian spiders at sites within and upstream of the Buffalo River Area of Concern (AOC), a site with known sediment Hg contamination. Mercury concentration in emerging midges was roughly 10× less than contaminated sediment levels with the AOC, but biomagnification factors from midges to spiders ranged from 2.0 to 2.65 between sites. There was a significantly negative body mass:total mercury relationship in spiders (p Spiders contained significantly more mercury than their midge prey and spiders upstream of the AOC had higher mercury concentrations than spiders from within the AOC. Collectively, these data indicate that riparian spiders can be good mercury sentinels in urban environments, and that riparian communities upstream from the AOC may be at greater risk to mercury than has been previously considered.

  17. Combining dispersion modelling with synoptic patterns to understand the wind-borne transport into the UK of the bluetongue disease vector.

    Science.gov (United States)

    Burgin, Laura; Ekström, Marie; Dessai, Suraje

    2017-07-01

    Bluetongue, an economically important animal disease, can be spread over long distances by carriage of insect vectors (Culicoides biting midges) on the wind. The weather conditions which influence the midge's flight are controlled by synoptic scale atmospheric circulations. A method is proposed that links wind-borne dispersion of the insects to synoptic circulation through the use of a dispersion model in combination with principal component analysis (PCA) and cluster analysis. We illustrate how to identify the main synoptic situations present during times of midge incursions into the UK from the European continent. A PCA was conducted on high-pass-filtered mean sea-level pressure data for a domain centred over north-west Europe from 2005 to 2007. A clustering algorithm applied to the PCA scores indicated the data should be divided into five classes for which averages were calculated, providing a classification of the main synoptic types present. Midge incursion events were found to mainly occur in two synoptic categories; 64.8% were associated with a pattern displaying a pressure gradient over the North Atlantic leading to moderate south-westerly flow over the UK and 17.9% of the events occurred when high pressure dominated the region leading to south-easterly or easterly winds. The winds indicated by the pressure maps generally compared well against observations from a surface station and analysis charts. This technique could be used to assess frequency and timings of incursions of virus into new areas on seasonal and decadal timescales, currently not possible with other dispersion or biological modelling methods.

  18. Improved vaccine protection against retrovirus infection after co-administration of adenoviral vectors encoding viral antigens and type I interferon subtypes

    Directory of Open Access Journals (Sweden)

    Groitl Peter

    2011-09-01

    Full Text Available Abstract Background Type I interferons (IFNs exhibit direct antiviral effects, but also distinct immunomodulatory properties. In this study, we analyzed type I IFN subtypes for their effect on prophylactic adenovirus-based anti-retroviral vaccination of mice against Friend retrovirus (FV or HIV. Results Mice were vaccinated with adenoviral vectors encoding FV Env and Gag proteins alone or in combination with vectors encoding IFNα1, IFNα2, IFNα4, IFNα5, IFNα6, IFNα9 or IFNβ. Only the co-administration of adenoviral vectors encoding IFNα2, IFNα4, IFNα6 and IFNα9 resulted in strongly improved immune protection of vaccinated mice from subsequent FV challenge infection with high control over FV-induced splenomegaly and reduced viral loads. The level of protection correlated with augmented virus-specific CD4+ T cell responses and enhanced antibody titers. Similar results were obtained when mice were vaccinated against HIV with adenoviral vectors encoding HIV Env and Gag-Pol in combination with various type I IFN encoding vectors. Here mainly CD4+ T cell responses were enhanced by IFNα subtypes. Conclusions Our results indicate that certain IFNα subtypes have the potential to improve the protective effect of adenovirus-based vaccines against retroviruses. This correlated with augmented virus-specific CD4+ T cell and antibody responses. Thus, co-expression of select type I IFNs may be a valuable tool for the development of anti-retroviral vaccines.

  19. CHANGES OF GLYCEROL CONTENT IN DIAPAUSE LARVAEOF THE ORANGE WHEAT BLOSSOM MIDGE, SITODIPLOSIS MOSELLANA (GEHIN) IN VARIOUS SEASONS

    Institute of Scientific and Technical Information of China (English)

    Jun-xiangWu; FengYuan

    2004-01-01

    The glycerol contents in diapause larvae of the orange wheat blossom midge, Sitodiplosis mosellana (Gehin), collected from various seasons, were measured. The results showed that there was less glycerol content in larvae during living on the wheat head. Content of glycerol began to increase significantly when the larvae left the wheat head and entered the soil. A change trend of upper- lower- upper- lower in larvae glycerol contents during diapause in soil was observed from June to April of next year. More glycerol could be examined in larvae collected in summer and winter than in spring and autumn. There was not more glycerol in cocooned larvae than that in non-cocooned larvae during various seasons from the point of statistics. Comparing the glycerol content of larvae being diapause in the first year with that of larvae in the second year, there was yet no obvious difference when larvae were collected in the same season belonged to different years. Therefore, it is shown that the content of glycerol in larvae of the wheat midge in diapause is affected mainly by the seasons or diapause intensity.

  20. Non-infectious plasmid engineered to simulate multiple viral threat agents.

    Science.gov (United States)

    Carrera, Monica; Sagripanti, Jose-Luis

    2009-07-01

    The aim of this study was to design and construct a non-virulent simulant to replace several pathogenic viruses in the development of detection and identification methods in biodefense. A non-infectious simulant was designed and engineered to include the nucleic acid signature of VEEV (Venezuelan Equine Encephalitis virus), Influenza virus, Rift Valley Fever virus, Machupo virus, Lassa virus, Yellow Fever virus, Ebola virus, Eastern Equine Encephalitis virus, Junin virus, Marburg virus, Dengue virus, and Crimean-Congo virus, all in a single construct. The nucleic acid sequences of all isolates available for each virus species were aligned using ClustalW software in order to obtain conserved regions of the viral genomes. Specific primers were designed to permit the identification and differentiation between viral threat agents. A chimera of 3143 base pairs was engineered to produce 13 PCR amplicons of different sizes. PCR amplification of the simulant with virus-specific primers revealed products of the predicted length, in bands of similar intensity, and without detectable unspecific products by electrophoresis analysis. The simulant described could reduce the need to use infectious viruses in the development of detection and diagnostic methods, and could also be useful as a non-virulent positive control in nucleic acid-based tests against biological threat agents.

  1. Effects of pH on the life cycle of the midge Tanytansus dissimilis

    Energy Technology Data Exchange (ETDEWEB)

    Bell, H L

    1970-01-01

    All stages of the life cycle of the midge Tanytarsus (paratanytarsus) dissimilis joh. were subjected to low pH and the exremes of tolerance were determined. The life cycle could not be completed below a pH of 5.5.

  2. Major vectors and vector-borne diseases in small ruminants in Ethiopia: A systematic review.

    Science.gov (United States)

    Asmare, Kassahun; Abayneh, Takele; Sibhat, Berhanu; Shiferaw, Dessie; Szonyi, Barbara; Krontveit, Randi I; Skjerve, Eystein; Wieland, Barbara

    2017-06-01

    five genera, four species of Glossina and 4 genera of biting flies were reported. Despite the evidence on presence of various vectors including ticks, flies, mosquitoes and midges, studies on vector-borne diseases in Ethiopia are surprisingly rare, especially considering risks related to climate change, which is likely to affect distribution of vectors. Thus better evidence on the current situation is urgently needed in order to prevent spread and to model future distribution scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Suppression of cancer growth in mice by adeno-associated virus vector-mediated IFN-beta expression driven by hTERT promoter.

    Science.gov (United States)

    He, Ling Feng; Wang, Yi Gang; Xiao, Tian; Zhang, Kang Jiang; Li, Gong Chu; Gu, Jin Fa; Chu, Liang; Tang, Wen Hao; Tan, Wen-Song; Liu, Xin Yuan

    2009-12-28

    Adeno-associated virus (AAV) has rapidly become a promising gene delivery vehicle for its excellent advantages of non-immunogenic, low pathogenicity and long-term gene expression in vivo. However, a major obstacle in development of effective AAV vector is the lack of tissue specificity, which caused low efficiency of AAV transfer to target cells. The application of human telomerase reverse transcriptase (hTERT) promoter is a prior targeting strategy for AAV in cancer gene therapy as hTERT activity is transcriptionally upregulated in most cancer cells. In the present work, we investigated whether AAV-mediated human interferon beta (IFN-beta) gene driven by hTERT promoter could specifically express in tumor cells and suppress tumor cell growth. Our data demonstrated that hTERT promoter-driven IFN-beta expression was the tumor-specific, decreased the cell viability of tumor cells but not normal cells, and induced tumor cell apoptosis via activation of caspase pathway and release of cytochrome c. AAV-mediated IFN-beta expression driven by hTERT promoter significantly suppressed the growth of colorectal cancer and lung cancer xenograft in mice and resulted in tumor cells death in vivo. These data suggested that AAVs in combination with hTERT-mediated IFN-beta expression could exert potential antitumor activity and provide a novel targeting approach to clinical gene therapy of varieties of cancers.

  4. Non-Viral Deoxyribonucleoside Kinases

    DEFF Research Database (Denmark)

    Christiansen, Louise Slot; Munch-Petersen, Birgitte; Knecht, Wolfgang

    2015-01-01

    Deoxyribonucleoside kinases (dNKs) phosphorylate deoxyribonucleosides to their corresponding monophosphate compounds. dNks also phosphorylate deoxyribonucleoside analogues that are used in the treatment of cancer or viral infections. The study of the mammalian dNKs has therefore always been of gr...

  5. Magnetic concentration of a retroviral vector using magnetite cationic liposomes.

    Science.gov (United States)

    Ito, Akira; Takahashi, Tetsuya; Kameyama, Yujiro; Kawabe, Yoshinori; Kamihira, Masamichi

    2009-03-01

    For tissue engineering purposes, retroviral vectors represent an efficient method of delivering exogenous genes such as growth factors to injured tissues because gene-transduced cells can produce stable and constant levels of the gene product. However, retroviral vector technology suffers from low yields. In the present study, we used magnetite nanoparticles and magnetic force to concentrate the retroviral vectors to enhance the transduction efficiency and to enable their magnetic manipulation. Magnetite nanoparticles modified with cationic liposomes were added to a solution containing a retroviral vector pseudotyped with vesicular stomatitis virus glycoprotein. The magnetic particles that captured the viral vectors were collected using a magnetic force and seeded into mouse neuroblastoma Neuro2a cells. The viral titer was up to 55 times greater (up to 3 x 10(8) infectious units/mL). Additionally, the magnetically labeled retroviral vectors can be directed to the desired regions for infection by applying magnetic fields, and micro-patterns of gene-transduced cell regions could be created on a cellular monolayer using micro-patterned magnetic concentrators. These results suggest that this technique provides a promising approach to capturing and concentrating viral vectors, thus achieving high transduction efficiency and the ability to deliver genes to a specific injured site by applying a magnetic field.

  6. Analyses of a whole-genome inter-clade recombination map of hepatitis delta virus suggest a host polymerase-driven and viral RNA structure-promoted template-switching mechanism for viral RNA recombination

    Science.gov (United States)

    Chao, Mei; Wang, Tzu-Chi; Lin, Chia-Chi; Yung-Liang Wang, Robert; Lin, Wen-Bin; Lee, Shang-En; Cheng, Ying-Yu; Yeh, Chau-Ting; Iang, Shan-Bei

    2017-01-01

    The genome of hepatitis delta virus (HDV) is a 1.7-kb single-stranded circular RNA that folds into an unbranched rod-like structure and has ribozyme activity. HDV redirects host RNA polymerase(s) (RNAP) to perform viral RNA-directed RNA transcription. RNA recombination is known to contribute to the genetic heterogeneity of HDV, but its molecular mechanism is poorly understood. Here, we established a whole-genome HDV-1/HDV-4 recombination map using two cloned sequences coexisting in cultured cells. Our functional analyses of the resulting chimeric delta antigens (the only viral-encoded protein) and recombinant genomes provide insights into how recombination promotes the genotypic and phenotypic diversity of HDV. Our examination of crossover distribution and subsequent mutagenesis analyses demonstrated that ribozyme activity on HDV genome, which is required for viral replication, also contributes to the generation of an inter-clade junction. These data provide circumstantial evidence supporting our contention that HDV RNA recombination occurs via a replication-dependent mechanism. Furthermore, we identify an intrinsic asymmetric bulge on the HDV genome, which appears to promote recombination events in the vicinity. We therefore propose a mammalian RNAP-driven and viral-RNA-structure-promoted template-switching mechanism for HDV genetic recombination. The present findings improve our understanding of the capacities of the host RNAP beyond typical DNA-directed transcription. PMID:28977829

  7. The specific transmission of Grapevine fanleaf virus by its nematode vector Xiphinema index is solely determined by the viral coat protein

    International Nuclear Information System (INIS)

    Andret-Link, Peggy; Schmitt-Keichinger, Corinne; Demangeat, Gerard; Komar, Veronique; Fuchs, Marc

    2004-01-01

    The viral determinants involved in the specific transmission of Grapevine fanleaf virus (GFLV) by its nematode vector Xiphinema index are located within the 513 C-terminal residues of the RNA2-encoded polyprotein, that is, the 9 C-terminal amino acids of the movement protein (2B MP ) and contiguous 504 amino acids of the coat protein (2C CP ) [Virology 291 (2001) 161]. To further delineate the viral determinants responsible for the specific spread, the four amino acids that are different within the 9 C-terminal 2B MP residues between GFLV and Arabis mosaic virus (ArMV), another nepovirus which is transmitted by Xiphinema diversicaudatum but not by X. index, were subjected to mutational analysis. Of the recombinant viruses derived from transcripts of GFLV RNA1 and RNA2 mutants that systemically infected herbaceous host plants, all with the 2C CP of GFLV were transmitted by X. index unlike none with the 2C CP of ArMV, regardless of the mutations within the 2B MP C-terminus. These results demonstrate that the coat protein is the sole viral determinant for the specific spread of GFLV by X. index

  8. Effects of pH on the toxicity and uptake of [14C]lindane in the midge, Chironomus riparius

    International Nuclear Information System (INIS)

    Fisher, S.W.

    1985-01-01

    The toxicity of the insecticide, lindane, was measured in the midge, Chironomus riparius, at pH 4, 6, and 8 with the finding that lindane is significantly more toxic at pH 6 than at pH 4 and 8. The higher toxicity of lindane at pH 6 is a product of two factors. First the penetration of the compound into the midge is lower at pH 4 than at pH 6 and 8. Second, a greater percentage of total radioactivity is contributed by parent compound at pH 6

  9. Non-existence of limit cycles for planar vector fields

    Directory of Open Access Journals (Sweden)

    Jaume Gine

    2014-03-01

    Full Text Available This article presents sufficient conditions for the non-existence of limit cycles for planar vector fields. Classical methods for the nonexistence of limit cycles are connected with the theory developed here.

  10. Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR.

    Science.gov (United States)

    Lock, Martin; Alvira, Mauricio R; Chen, Shu-Jen; Wilson, James M

    2014-04-01

    Accurate titration of adeno-associated viral (AAV) vector genome copies is critical for ensuring correct and reproducible dosing in both preclinical and clinical settings. Quantitative PCR (qPCR) is the current method of choice for titrating AAV genomes because of the simplicity, accuracy, and robustness of the assay. However, issues with qPCR-based determination of self-complementary AAV vector genome titers, due to primer-probe exclusion through genome self-annealing or through packaging of prematurely terminated defective interfering (DI) genomes, have been reported. Alternative qPCR, gel-based, or Southern blotting titering methods have been designed to overcome these issues but may represent a backward step from standard qPCR methods in terms of simplicity, robustness, and precision. Droplet digital PCR (ddPCR) is a new PCR technique that directly quantifies DNA copies with an unparalleled degree of precision and without the need for a standard curve or for a high degree of amplification efficiency; all properties that lend themselves to the accurate quantification of both single-stranded and self-complementary AAV genomes. Here we compare a ddPCR-based AAV genome titer assay with a standard and an optimized qPCR assay for the titration of both single-stranded and self-complementary AAV genomes. We demonstrate absolute quantification of single-stranded AAV vector genomes by ddPCR with up to 4-fold increases in titer over a standard qPCR titration but with equivalent readout to an optimized qPCR assay. In the case of self-complementary vectors, ddPCR titers were on average 5-, 1.9-, and 2.3-fold higher than those determined by standard qPCR, optimized qPCR, and agarose gel assays, respectively. Droplet digital PCR-based genome titering was superior to qPCR in terms of both intra- and interassay precision and is more resistant to PCR inhibitors, a desirable feature for in-process monitoring of early-stage vector production and for vector genome biodistribution

  11. Zika and its vector mosquitoes in Mexico

    Directory of Open Access Journals (Sweden)

    Luis del Carpio-Orantes

    2018-06-01

    Full Text Available In the present study, we carried out a review on the potential vectors of the Zika virus in the Americas, specifically in Mexico. Being vectors of the Culicidae family, they have great predominance in those territories, which could facilitate viral dissemination.

  12. Diverse Array of New Viral Sequences Identified in Worldwide Populations of the Asian Citrus Psyllid (Diaphorina citri) Using Viral Metagenomics.

    Science.gov (United States)

    Nouri, Shahideh; Salem, Nidá; Nigg, Jared C; Falk, Bryce W

    2015-12-16

    The Asian citrus psyllid, Diaphorina citri, is the natural vector of the causal agent of Huanglongbing (HLB), or citrus greening disease. Together; HLB and D. citri represent a major threat to world citrus production. As there is no cure for HLB, insect vector management is considered one strategy to help control the disease, and D. citri viruses might be useful. In this study, we used a metagenomic approach to analyze viral sequences associated with the global population of D. citri. By sequencing small RNAs and the transcriptome coupled with bioinformatics analysis, we showed that the virus-like sequences of D. citri are diverse. We identified novel viral sequences belonging to the picornavirus superfamily, the Reoviridae, Parvoviridae, and Bunyaviridae families, and an unclassified positive-sense single-stranded RNA virus. Moreover, a Wolbachia prophage-related sequence was identified. This is the first comprehensive survey to assess the viral community from worldwide populations of an agricultural insect pest. Our results provide valuable information on new putative viruses, some of which may have the potential to be used as biocontrol agents. Insects have the most species of all animals, and are hosts to, and vectors of, a great variety of known and unknown viruses. Some of these most likely have the potential to be important fundamental and/or practical resources. In this study, we used high-throughput next-generation sequencing (NGS) technology and bioinformatics analysis to identify putative viruses associated with Diaphorina citri, the Asian citrus psyllid. D. citri is the vector of the bacterium causing Huanglongbing (HLB), currently the most serious threat to citrus worldwide. Here, we report several novel viral sequences associated with D. citri. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Insect symbiotic bacteria harbour viral pathogens for transovarial transmission.

    Science.gov (United States)

    Jia, Dongsheng; Mao, Qianzhuo; Chen, Yong; Liu, Yuyan; Chen, Qian; Wu, Wei; Zhang, Xiaofeng; Chen, Hongyan; Li, Yi; Wei, Taiyun

    2017-03-06

    Many insects, including mosquitoes, planthoppers, aphids and leafhoppers, are the hosts of bacterial symbionts and the vectors for transmitting viral pathogens 1-3 . In general, symbiotic bacteria can indirectly affect viral transmission by enhancing immunity and resistance to viruses in insects 3-5 . Whether symbiotic bacteria can directly interact with the virus and mediate its transmission has been unknown. Here, we show that an insect symbiotic bacterium directly harbours a viral pathogen and mediates its transovarial transmission to offspring. We observe rice dwarf virus (a plant reovirus) binding to the envelopes of the bacterium Sulcia, a common obligate symbiont of leafhoppers 6-8 , allowing the virus to exploit the ancient oocyte entry path of Sulcia in rice leafhopper vectors. Such virus-bacterium binding is mediated by the specific interaction of the viral capsid protein and the Sulcia outer membrane protein. Treatment with antibiotics or antibodies against Sulcia outer membrane protein interferes with this interaction and strongly prevents viral transmission to insect offspring. This newly discovered virus-bacterium interaction represents the first evidence that a viral pathogen can directly exploit a symbiotic bacterium for its transmission. We believe that such a model of virus-bacterium communication is a common phenomenon in nature.

  14. Life cycle responses of the midge Chironomus riparius to polycyclic aromatic compound exposure

    NARCIS (Netherlands)

    León Paumen, M.; Borgman, E.; Kraak, M.H.S.; van Gestel, C.A.M.; Admiraal, W.

    2008-01-01

    During acute exposure, polycyclic aromatic compounds (PACs) act mainly by narcosis, but during chronic exposure the same compounds may exert sublethal life cycle effects. The aim of this study was therefore to evaluate the chronic effects of sediment spiked PACs on the emergence of the midge

  15. Insecticide-driven patterns of genetic variation in the dengue vector Aedes aegypti in Martinique Island.

    Directory of Open Access Journals (Sweden)

    Sébastien Marcombe

    Full Text Available Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determine gene flow intensity, we first investigated neutral patterns of genetic variability in sixteen populations representative of the many environments found in Martinique and experiencing various levels of insecticide pressure, using 6 microsatellites. Allelic richness was lower in populations resistant to deltamethrin, and consanguinity was higher in populations resistant to temephos, consistent with a negative effect of insecticide pressure on neutral genetic diversity. The global genetic differentiation was low, suggesting high gene flow among populations, but significant structure was found, with a pattern of isolation-by-distance at the global scale. Then, we investigated adaptive patterns of divergence in six out of the 16 populations using 319 single nucleotide polymorphisms (SNPs. Five SNP outliers displaying levels of genetic differentiation out of neutral expectations were detected, including the kdr-V1016I mutation in the voltage-gated sodium channel gene. Association tests revealed a total of seven SNPs associated with deltamethrin resistance. Six other SNPs were associated with temephos resistance, including two non-synonymous substitutions in an alkaline phosphatase and in a sulfotransferase respectively. Altogether, both neutral and adaptive patterns of genetic variation in mosquito populations appear to be largely driven by insecticide pressure in Martinique.

  16. Chitosan in Non-Viral Gene Delivery: Role of Structure, Characterization Methods, and Insights in Cancer and Rare Diseases Therapies

    Directory of Open Access Journals (Sweden)

    Beatriz Santos-Carballal

    2018-04-01

    Full Text Available Non-viral gene delivery vectors have lagged far behind viral ones in the current pipeline of clinical trials of gene therapy nanomedicines. Even when non-viral nanovectors pose less safety risks than do viruses, their efficacy is much lower. Since the early studies to deliver pDNA, chitosan has been regarded as a highly attractive biopolymer to deliver nucleic acids intracellularly and induce a transgenic response resulting in either upregulation of protein expression (for pDNA, mRNA or its downregulation (for siRNA or microRNA. This is explained as the consequence of a multi-step process involving condensation of nucleic acids, protection against degradation, stabilization in physiological conditions, cellular internalization, release from the endolysosome (“proton sponge” effect, unpacking and enabling the trafficking of pDNA to the nucleus or the siRNA to the RNA interference silencing complex (RISC. Given the multiple steps and complexity involved in the gene transfection process, there is a dearth of understanding of the role of chitosan’s structural features (Mw and degree of acetylation, DA% on each step that dictates the net transfection efficiency and its kinetics. The use of fully characterized chitosan samples along with the utilization of complementary biophysical and biological techniques is key to bridging this gap of knowledge and identifying the optimal chitosans for delivering a specific gene. Other aspects such as cell type and administration route are also at play. At the same time, the role of chitosan structural features on the morphology, size and surface composition of synthetic virus-like particles has barely been addressed. The ongoing revolution brought about by the recent discovery of CRISPR-Cas9 technology will undoubtedly be a game changer in this field in the short term. In the field of rare diseases, gene therapy is perhaps where the greatest potential lies and we anticipate that chitosans will be key players

  17. Wigner functions on non-standard symplectic vector spaces

    Science.gov (United States)

    Dias, Nuno Costa; Prata, João Nuno

    2018-01-01

    We consider the Weyl quantization on a flat non-standard symplectic vector space. We focus mainly on the properties of the Wigner functions defined therein. In particular we show that the sets of Wigner functions on distinct symplectic spaces are different but have non-empty intersections. This extends previous results to arbitrary dimension and arbitrary (constant) symplectic structure. As a by-product we introduce and prove several concepts and results on non-standard symplectic spaces which generalize those on the standard symplectic space, namely, the symplectic spectrum, Williamson's theorem, and Narcowich-Wigner spectra. We also show how Wigner functions on non-standard symplectic spaces behave under the action of an arbitrary linear coordinate transformation.

  18. Non-Primate Lentiviral Vectors and Their Applications in Gene Therapy for Ocular Disorders

    Directory of Open Access Journals (Sweden)

    Vincenzo Cavalieri

    2018-06-01

    Full Text Available Lentiviruses have a number of molecular features in common, starting with the ability to integrate their genetic material into the genome of non-dividing infected cells. A peculiar property of non-primate lentiviruses consists in their incapability to infect and induce diseases in humans, thus providing the main rationale for deriving biologically safe lentiviral vectors for gene therapy applications. In this review, we first give an overview of non-primate lentiviruses, highlighting their common and distinctive molecular characteristics together with key concepts in the molecular biology of lentiviruses. We next examine the bioengineering strategies leading to the conversion of lentiviruses into recombinant lentiviral vectors, discussing their potential clinical applications in ophthalmological research. Finally, we highlight the invaluable role of animal organisms, including the emerging zebrafish model, in ocular gene therapy based on non-primate lentiviral vectors and in ophthalmology research and vision science in general.

  19. Gene transfer to chicks using lentiviral vectors administered via the embryonic chorioallantoic membrane.

    Directory of Open Access Journals (Sweden)

    Gideon Hen

    Full Text Available The lack of affordable techniques for gene transfer in birds has inhibited the advancement of molecular studies in avian species. Here we demonstrate a new approach for introducing genes into chicken somatic tissues by administration of a lentiviral vector, derived from the feline immunodeficiency virus (FIV, into the chorioallantoic membrane (CAM of chick embryos on embryonic day 11. The FIV-derived vectors carried yellow fluorescent protein (YFP or recombinant alpha-melanocyte-stimulating hormone (α-MSH genes, driven by the cytomegalovirus (CMV promoter. Transgene expression, detected in chicks 2 days after hatch by quantitative real-time PCR, was mostly observed in the liver and spleen. Lower expression levels were also detected in the brain, kidney, heart and breast muscle. Immunofluorescence and flow cytometry analyses confirmed transgene expression in chick tissues at the protein level, demonstrating a transduction efficiency of ∼0.46% of liver cells. Integration of the viral vector into the chicken genome was demonstrated using genomic repetitive (CR1-PCR amplification. Viability and stability of the transduced cells was confirmed using terminal deoxynucleotidyl transferase (dUTP nick end labeling (TUNEL assay, immunostaining with anti-proliferating cell nuclear antigen (anti-PCNA, and detection of transgene expression 51 days post transduction. Our approach led to only 9% drop in hatching efficiency compared to non-injected embryos, and all of the hatched chicks expressed the transgenes. We suggest that the transduction efficiency of FIV vectors combined with the accessibility of the CAM vasculature as a delivery route comprise a new powerful and practical approach for gene delivery into somatic tissues of chickens. Most relevant is the efficient transduction of the liver, which specializes in the production and secretion of proteins, thereby providing an optimal target for prolonged study of secreted hormones and peptides.

  20. Development and applications of VSV vectors based on cell tropism

    Directory of Open Access Journals (Sweden)

    Hideki eTani

    2012-01-01

    Full Text Available Viral vectors have been available in various fields such as medical and biological research or gene therapy applications. Targeting vectors pseudotyped with distinct viral envelope proteins that influence cell tropism and transfection efficiency is a useful tool not only for examining entry mechanisms or cell tropisms but also for vaccine vector development. Vesicular stomatitis virus (VSV is an excellent candidate for development as a pseudotype vector. A recombinant VSV lacking its own envelope (G gene has been used to produce a pseudotype or recombinant VSV possessing the envelope proteins of heterologous viruses. These viruses possess a reporter gene instead of a VSV G gene in their genome, and therefore it is easy to evaluate their infectivity in the study of viral entry, including identification of viral receptors. Furthermore, advantage can be taken of a property of the pseudotype VSV, which is competence for single-round infection, in handling many different viruses that are either difficult to amplify in cultured cells or animals or that require specialized containment facilities. Here we describe procedures for producing pseudotype or recombinant VSVs and a few of the more prominent examples from among envelope viruses, such as hepatitis C virus, Japanese encephalitis virus, baculovirus, and hemorrhagic fever viruses.

  1. Exercise Improves Host Response to Influenza Viral Infection in Obese and Non-Obese Mice through Different Mechanisms

    Science.gov (United States)

    Warren, Kristi J.; Olson, Molly M.; Thompson, Nicholas J.; Cahill, Mackenzie L.; Wyatt, Todd A.; Yoon, Kyoungjin J.; Loiacono, Christina M.; Kohut, Marian L.

    2015-01-01

    Obesity has been associated with greater severity of influenza virus infection and impaired host defense. Exercise may confer health benefits even when weight loss is not achieved, but it has not been determined if regular exercise improves immune defense against influenza A virus (IAV) in the obese condition. In this study, diet-induced obese mice and lean control mice exercised for eight weeks followed by influenza viral infection. Exercise reduced disease severity in both obese and non-obese mice, but the mechanisms differed. Exercise reversed the obesity-associated delay in bronchoalveolar-lavage (BAL) cell infiltration, restored BAL cytokine and chemokine production, and increased ciliary beat frequency and IFNα-related gene expression. In non-obese mice, exercise treatment reduced lung viral load, increased Type-I-IFN-related gene expression early during infection, but reduced BAL inflammatory cytokines and chemokines. In both obese and non-obese mice, exercise increased serum anti-influenza virus specific IgG2c antibody, increased CD8+ T cell percentage in BAL, and reduced TNFα by influenza viral NP-peptide-responding CD8+ T cells. Overall, the results suggest that exercise “restores” the immune response of obese mice to a phenotype similar to non-obese mice by improving the delay in immune activation. In contrast, in non-obese mice exercise treatment results in an early reduction in lung viral load and limited inflammatory response. PMID:26110868

  2. Algebraic inversion of the Dirac equation for the vector potential in the non-Abelian case

    International Nuclear Information System (INIS)

    Inglis, S M; Jarvis, P D

    2012-01-01

    We study the Dirac equation for spinor wavefunctions minimally coupled to an external field, from the perspective of an algebraic system of linear equations for the vector potential. By analogy with the method in electromagnetism, which has been well-studied, and leads to classical solutions of the Maxwell–Dirac equations, we set up the formalism for non-Abelian gauge symmetry, with the SU(2) group and the case of four-spinor doublets. An extended isospin-charge conjugation operator is defined, enabling the hermiticity constraint on the gauge potential to be imposed in a covariant fashion, and rendering the algebraic system tractable. The outcome is an invertible linear equation for the non-Abelian vector potential in terms of bispinor current densities. We show that, via application of suitable extended Fierz identities, the solution of this system for the non-Abelian vector potential is a rational expression involving only Pauli scalar and Pauli triplet, Lorentz scalar, vector and axial vector current densities, albeit in the non-closed form of a Neumann series. (paper)

  3. Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements

    Science.gov (United States)

    Kohl, Alain; Pondeville, Emilie; Schnettler, Esther; Crisanti, Andrea; Supparo, Clelia; Christophides, George K.; Kersey, Paul J.; Maslen, Gareth L.; Takken, Willem; Koenraadt, Constantianus J. M.; Oliva, Clelia F.; Busquets, Núria; Abad, F. Xavier; Failloux, Anna-Bella; Levashina, Elena A.; Wilson, Anthony J.; Veronesi, Eva; Pichard, Maëlle; Arnaud Marsh, Sarah; Simard, Frédéric; Vernick, Kenneth D.

    2016-01-01

    Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector–pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations. PMID:27677378

  4. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B. abortus infection.

    Science.gov (United States)

    Tabynov, Kaissar; Sansyzbay, Abylai; Kydyrbayev, Zhailaubay; Yespembetov, Bolat; Ryskeldinova, Sholpan; Zinina, Nadezhda; Assanzhanova, Nurika; Sultankulova, Kulaisan; Sandybayev, Nurlan; Khairullin, Berik; Kuznetsova, Irina; Ferko, Boris; Egorov, Andrej

    2014-04-10

    We generated novel, effective candidate vaccine against Brucella abortus based on recombinant influenza viruses expressing the Brucella ribosomal protein L7/L12 or outer membrane protein (Omp)-16 from the NS1 open reading frame. The main purpose of this work was to evaluate the safety, immunogenicity and protectiveness of vaccine candidate in laboratory animals. Four recombinant influenza A viral constructs of the subtypes Н5N1 or H1N1 expressing the Brucella proteins L7/L12 or Omp16 were obtained by a reverse genetics method: Flu-NS1-124-L7/L12-H5N1, Flu-NS1-124-Omp16-H5N1, Flu-NS1-124-L7/L12-H1N1 and Flu-NS1-124-Omp16-H1N1. Despite of substantial modification of NS1 gene, all constructs replicated well and were retain their Brucella inserts over five passages in embryonated chicken eggs (CE). Administration of the mono- or bivalent vaccine formulation via prime-boost intranasal (i.n.), conjunctival (c.) or subcutaneous (s.c.) immunization was safe in mice; no deaths, body weight loss or pathomorphological changes were observed over 56 days. Moreover, guinea pigs vaccinated i.n. with vaccine vectors did not shed the vaccine viruses through their upper respiratory tract after the prime and booster vaccination. These findings confirmed the replication-deficient phenotype of viral vectors. The highest antibody response to Brucella antigen was obtained with constructs expressing L7/L12 (ELISA, GMT 242.5-735.0); whereas the highest T-cell immune response- with construct expressing Omp16 (ELISPOT, 337 ± 52-651 ± 45 spots/4×105cells), which was comparable (P > 0.05) to the response induced by the commercial vaccine B. abortus 19. Interestingly, c. immunization appeared to be optimal for eliciting T-cell immune response. In guinea pigs, the highest protective efficacy after challenge with B. abortus 544 was achieved with Omp16 expressing constructs in both monovalent or bivalent vaccine formulations; protective efficacy was comparable to those induced by

  5. Preclinical assessment of viral vectored and protein vaccines targeting the Duffy-binding protein region II of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Simone C de Cassan

    2015-07-01

    Full Text Available Malaria vaccine development has largely focused on Plasmodium falciparum; however a reawakening to the importance of P. vivax has spurred efforts to develop vaccines against this difficult to treat and at times severe form of relapsing malaria, which constitutes a significant proportion of human malaria cases worldwide. The almost complete dependence of P. vivax red blood cell invasion on the interaction of the P. vivax Duffy-binding protein region II (PvDBP_RII with the human Duffy antigen receptor for chemokines (DARC, makes this antigen an attractive vaccine candidate against blood-stage P. vivax. Here, we generated both preclinical and clinically-compatible adenoviral and poxviral vectored vaccine candidates expressing the Salvador I allele of PvDBP_RII – including human adenovirus serotype 5 (HAdV5, chimpanzee adenovirus serotype 63 (ChAd63 and modified vaccinia virus Ankara (MVA vectors. We report on the antibody and T cell immunogenicity of these vaccines in mice or rabbits, either used alone in a viral vectored prime-boost regime, or in ‘mixed-modality’ adenovirus prime – protein-in-adjuvant boost regimes (using a recombinant protein PvDBP_RII protein antigen formulated in Montanide®ISA720 or Abisco®100 adjuvants. Antibodies induced by these regimes were found to bind to native parasite antigen from P. vivax infected Thai patients and were capable of inhibiting the binding of PvDBP_RII to its receptor DARC using an in vitro binding inhibition assay. In recent years, recombinant ChAd63 and MVA vectors have been quickly translated into human clinical trials for numerous antigens from P. falciparum as well as a growing number of other pathogens. The vectors reported here are immunogenic in small animals, elicit antibodies against PvDBP_RII and have recently entered clinical trials which will provide the first assessment of the safety and immunogenicity of the PvDBP_RII antigen in humans.

  6. Interactions among the Predatory Midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae, the Fungal Pathogen Metarhizium brunneum (Ascomycota: Hypocreales, and Maize-Infesting Aphids in Greenhouse Mesocosms

    Directory of Open Access Journals (Sweden)

    Ana Gorete Campos de Azevedo

    2017-04-01

    Full Text Available The generalist entomopathogenic fungus, Metarhizium brunneum, has proved to have great potential as a versatile biological pest control agent. The gall midge Aphidoletes aphidimyza is a specialist predator that occurs naturally in Europe and has been successfully used for aphid suppression. However, the interaction between these two biological control organisms and how it may affect the biological control of aphids awaits further investigation. As part of the EU-supported project INBIOSOIL, this study was conducted in greenhouse conditions to assess the possible effects of combining both biological control agents. In a randomized complete block design, sweet corn (Zea mays var. saccharata plants were grown in large pots filled with natural soil or natural soil inoculated with M. brunneum. At the third leaf stage, before being individually caged, plants were infested with Rhopalosiphum padi and A. aphidimyza pupae were introduced in the soil. Aphidoletes aphidimyza midge emergence, number of living midges and number of aphids were recorded daily. The presence of conidia in the soil and on leaves was assessed during the experiment. At the conclusion of the experiment, the number of live aphids and their developmental stage, consumed aphids, and A. aphidimyza eggs was assessed under stereomicroscope. This study’s findings showed that the presence of M. brunneum did not affect A. aphidimyza midge emergence. However, longevity was significantly affected. As the study progressed, significantly fewer predatory midges were found in cages treated with M. brunneum compared to untreated cages. Furthermore, by the end of the study, the number of predatory midges found in the Metarhizium-treated cages was four times lower than in the untreated cages. Both daily and final count of aphids were significantly affected by treatment. Aphidoletes aphidimyza applied alone suppressed the aphid population more effectively than M. brunneum applied alone. Additionally

  7. Farms, pastures and woodlands: the fine-scale distribution of Palearctic Culicoides spp. biting midges along an agro-ecological gradient.

    Science.gov (United States)

    Rigot, T; Drubbel, M Vercauteren; Delécolle, J-C; Gilbert, M

    2013-03-01

    The spatial epidemiology of Bluetongue virus (BTV) at the landscape level relates to the fine-scale distribution and dispersal capacities of its vectors, midges belonging to the genus Culicoides Latreille (Diptera: Ceratopogonidae). Although many previous researches have carried out Culicoides sampling on farms, little is known of the fine-scale distribution of Culicoides in the landscape immediately surrounding farms. The aim of this study was to gain a better understanding of Culicoides populations at increasing distances from typical dairy farms in north-west Europe, through the use of eight Onderstepoort-type black-light traps positioned along linear transects departing from farms, going through pastures and entering woodlands. A total of 16 902 Culicoides were collected in autumn 2008 and spring 2009. The majority were females, of which more than 97% were recognized as potential vectors. In pastures, we found decreasing numbers of female Culicoides as a function of the distance to the farm. This pattern was modelled by leptokurtic models, with parameters depending on season and species. By contrast, the low number of male Culicoides caught were homogeneously distributed along the transects. When transects entered woodlands, we found a higher abundance of Culicoides than expected considering the distance of the sampling sites to the farm, although this varied according to species. © 2012 The Authors. Medical and Veterinary Entomology © 2012 The Royal Entomological Society.

  8. CHRONIC EFFECTS OF THE HERBICIDE DIURON ON FRESHWATER CLADOCERANS,AMPHIPODS,MIDGES,MINNOWS,WORMS, AND SNAILS

    Science.gov (United States)

    The chronic effects of the herbicide diuron on survival and reproduction of Daphnia pulex, and survival and growth of the amphipod Hyalella azteca, the midge Chironomus tentans, juvenile and embro/larval fathead minnows, Pimephales promelas, annelid worms, Lumbriculus variegatus,...

  9. New Genus and Species of Gall Midges (Diptera, Cecidomyiidae, Porricondylinae, Holoneurini from the Late Eocene Amber of Olevsk (Zhitomir Region, Ukraine

    Directory of Open Access Journals (Sweden)

    Fedotova Z. A.

    2017-02-01

    Full Text Available Gall midges are reported for the first time in Late Eocene Rovno amber from the Olevsk, Zhitomir Region. This is the second amber locality to yield gall midges in the Zhitomir Region, after Gulyanka. Rovnoholoneurus gen. n. and two new species, Rovnoholoneurus davidi sp. n. and R. miyae sp. n. are described. Bryocrypta laqueata Fedotova, 2005 is transferred to the genus Rovnoholoneurus, and Rovnoholoneurus laqueatus (Fedotova, 2005, comb. n. is established. A key to the species of Rovnoholoneurus is provided.

  10. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection

    Directory of Open Access Journals (Sweden)

    Leo Swadling

    2016-08-01

    Full Text Available An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV infection, as an adjunct to newly developed directly-acting antivirals (DAA, or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3 vector and a modified vaccinia Ankara (MVA, encoding the non-structural proteins of HCV (NSmut, used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy, determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T

  11. Anisotropic fractal media by vector calculus in non-integer dimensional space

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  12. Anisotropic fractal media by vector calculus in non-integer dimensional space

    Science.gov (United States)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  13. Anisotropic fractal media by vector calculus in non-integer dimensional space

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2014-01-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media

  14. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector

    Science.gov (United States)

    Peluffo, Hugo; Acarin, Laia; Arís, Anna; González, Pau; Villaverde, Antoni; Castellano, Bernardo; González, Berta

    2006-01-01

    Background Superoxide mediated oxidative stress is a key neuropathologic mechanism in acute central nervous system injuries. We have analyzed the neuroprotective efficacy of the transient overexpression of antioxidant enzyme Cu/Zn Superoxide dismutase (SOD) after excitotoxic injury to the immature rat brain by using a recently constructed modular protein vector for non-viral gene delivery termed NLSCt. For this purpose, animals were injected with the NLSCt vector carrying the Cu/Zn SOD or the control GFP transgenes 2 hours after intracortical N-methyl-D-aspartate (NMDA) administration, and daily functional evaluation was performed. Moreover, 3 days after, lesion volume, neuronal degeneration and nitrotyrosine immunoreactivity were evaluated. Results Overexpression of Cu/Zn SOD transgene after NMDA administration showed improved functional outcome and a reduced lesion volume at 3 days post lesion. In secondary degenerative areas, increased neuronal survival as well as decreased numbers of degenerating neurons and nitrotyrosine immunoreactivity was seen. Interestingly, injection of the NLSCt vector carrying the control GFP transgene also displayed a significant neuroprotective effect but less pronounced. Conclusion When the appropriate levels of Cu/Zn SOD are expressed transiently after injury using the non-viral modular protein vector NLSCt a neuroprotective effect is seen. Thus recombinant modular protein vectors may be suitable for in vivo gene therapy, and Cu/Zn SOD should be considered as an interesting therapeutic transgene. PMID:16638118

  15. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector

    Directory of Open Access Journals (Sweden)

    Castellano Bernardo

    2006-04-01

    Full Text Available Abstract Background Superoxide mediated oxidative stress is a key neuropathologic mechanism in acute central nervous system injuries. We have analyzed the neuroprotective efficacy of the transient overexpression of antioxidant enzyme Cu/Zn Superoxide dismutase (SOD after excitotoxic injury to the immature rat brain by using a recently constructed modular protein vector for non-viral gene delivery termed NLSCt. For this purpose, animals were injected with the NLSCt vector carrying the Cu/Zn SOD or the control GFP transgenes 2 hours after intracortical N-methyl-D-aspartate (NMDA administration, and daily functional evaluation was performed. Moreover, 3 days after, lesion volume, neuronal degeneration and nitrotyrosine immunoreactivity were evaluated. Results Overexpression of Cu/Zn SOD transgene after NMDA administration showed improved functional outcome and a reduced lesion volume at 3 days post lesion. In secondary degenerative areas, increased neuronal survival as well as decreased numbers of degenerating neurons and nitrotyrosine immunoreactivity was seen. Interestingly, injection of the NLSCt vector carrying the control GFP transgene also displayed a significant neuroprotective effect but less pronounced. Conclusion When the appropriate levels of Cu/Zn SOD are expressed transiently after injury using the non-viral modular protein vector NLSCt a neuroprotective effect is seen. Thus recombinant modular protein vectors may be suitable for in vivo gene therapy, and Cu/Zn SOD should be considered as an interesting therapeutic transgene.

  16. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus.

    Science.gov (United States)

    Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian; Wei, Taiyun

    2016-01-15

    Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an

  17. Non-daily pre-exposure prophylaxis for HIV prevention

    Science.gov (United States)

    Anderson, Peter L.; García-Lerma, J. Gerardo; Heneine, Walid

    2015-01-01

    Purpose of review To discuss non-daily pre-exposure prophylaxis (PrEP) modalities that may provide advantages compared with daily PrEP in cost and cumulative toxicity, but may have lower adherence forgiveness. Recent Findings Animal models have informed our understanding of early viral transmission events, which help guide event-driven PrEP dosing strategies. These models indicate early establishment of viral replication in rectal or cervicovaginal tissues, so event-driven PrEP should rapidly deliver high mucosal drug concentrations within hours of the potential exposure event. Macaque models have demonstrated the high biological efficacy for event-driven dosing of oral tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) against both vaginal and rectal virus transmission. In humans, the IPERGAY study demonstrated 86% efficacy for event-driven oral TDF/FTC dosing among men who have sex with men (MSM), while no similar efficacy data are available on women or heterosexual men. The HPTN 067 study showed that certain MSM populations adhere well to non-daily PrEP while other populations of women adhere more poorly to non-daily versus daily regimens. Pharmacokinetic studies following oral TDF/FTC dosing in humans, indicate that TFV-diphosphate (the active form of TFV) accumulates to higher concentrations in rectal versus cervicovaginal tissue but non-adherence in trials complicates the interpretation of differential mucosal drug concentrations. Summary Event-driven dosing for TFV-based PrEP has promise for HIV prevention in MSM. Future research of event-driven PrEP in women and heterosexual men should be guided by a better understanding of the importance of mucosal drug concentrations for PrEP efficacy and its sensitivity to adherence. PMID:26633641

  18. Langevin dynamics encapsulate the microscopic and emergent macroscopic properties of midge swarms

    Science.gov (United States)

    2018-01-01

    In contrast to bird flocks, fish schools and animal herds, midge swarms maintain cohesion but do not possess global order. High-speed imaging techniques are now revealing that these swarms have surprising properties. Here, I show that simple models found on the Langevin equation are consistent with this wealth of recent observations. The models predict correctly that large accelerations, exceeding 10 g, will be common and they predict correctly the coexistence of core condensed phases surrounded by dilute vapour phases. The models also provide new insights into the influence of environmental conditions on swarm dynamics. They predict that correlations between midges increase the strength of the effective force binding the swarm together. This may explain why such correlations are absent in laboratory swarms but present in natural swarms which contend with the wind and other disturbances. Finally, the models predict that swarms have fluid-like macroscopic mechanical properties and will slosh rather than slide back and forth after being abruptly displaced. This prediction offers a promising avenue for future experimentation that goes beyond current quasi-static testing which has revealed solid-like responses. PMID:29298958

  19. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis

    Directory of Open Access Journals (Sweden)

    Boyce Mark

    2012-08-01

    Full Text Available Abstract Background Bluetongue virus (BTV is a double-stranded RNA (dsRNA virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Results Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1 as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3′ poly(A sequence identifying the 3′ end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. Conclusions NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed

  20. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis.

    Science.gov (United States)

    Boyce, Mark; Celma, Cristina C P; Roy, Polly

    2012-08-29

    Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp) as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1) as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs) of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3' poly(A) sequence identifying the 3' end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed replacement of cellular protein synthesis with viral protein

  1. Landing sites and diel activity in Culicoides midges attacking Fjord horses in the Netherlands

    NARCIS (Netherlands)

    Elbers, A.R.W.; Heuvel, van den S.J.; Meiswinkel, R.

    2016-01-01

    In the Old World, African horse sickness (AHS) and equine encephalosis are transmitted to equids by Culicoides midges. AHS has a case-fatality-rate of 95% in horses. Though endemic to sub-Saharan Africa, AHS virus is able to incur northwards and to disseminate widely within Mediterranean countries.

  2. Celticecis, a Genus of Gall Midges (Diptera: Cecidomyiidae), Newly Reported for the Western Palearctic Region

    Science.gov (United States)

    Raymond J. Gagné; John C. Moser

    1997-01-01

    Many Holarctic genera of trees and shrubs are host over much of their ranges to particular genera of Cecidomyiidae. As examples, willows host gall midges of Rabdophaga and Iteomyia, oaks host Macrodiplosis and Polystepha, and birches host Semudobia in both the Nearctic and...

  3. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector

    OpenAIRE

    Peluffo, Hugo; Acarin, Laia; Arís, Anna; González, Pau; Villaverde, Antoni; Castellano, Bernardo; González, Berta

    2006-01-01

    Abstract Background Superoxide mediated oxidative stress is a key neuropathologic mechanism in acute central nervous system injuries. We have analyzed the neuroprotective efficacy of the transient overexpression of antioxidant enzyme Cu/Zn Superoxide dismutase (SOD) after excitotoxic injury to the immature rat brain by using a recently constructed modular protein vector for non-viral gene delivery termed NLSCt. For this purpose, animals were injected with the NLSCt vector carrying the Cu/Zn S...

  4. On the non-Gaussian correlation of the primordial curvature perturbation with vector fields

    DEFF Research Database (Denmark)

    Kumar Jain, Rajeev; Sloth, Martin Snoager

    2013-01-01

    We compute the three-point cross-correlation function of the primordial curvature perturbation generated during inflation with two powers of a vector field in a model where conformal invariance is broken by a direct coupling of the vector field with the inflaton. If the vector field is identified...... with the electromagnetic field, this correlation would be a non-Gaussian signature of primordial magnetic fields generated during inflation. We find that the signal is maximized for the flattened configuration where the wave number of the curvature perturbation is twice that of the vector field and in this limit...

  5. Optimal vaccination strategies against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene

    2014-01-01

    Using a process oriented semi-agent based model, we simulated the spread of Bluetongue virus by Culicoides, biting midges, between cattle in Denmark. We evaluated the minimum vaccination cover and minimum cost for eight different preventive vaccination strategies in Denmark. The simulation model ...... results when index cases were in the vaccinated areas. However, given that the long-range spread of midge borne disease is still poorly quantified, more robust national vaccination schemes seem preferable....

  6. Hybrid Lentivirus-transposon Vectors With a Random Integration Profile in Human Cells

    DEFF Research Database (Denmark)

    Staunstrup, Nicklas H; Moldt, Brian; Mátés, Lajos

    2009-01-01

    Gene delivery by human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors (LVs) is efficient, but genomic integration of the viral DNA is strongly biased toward transcriptionally active loci resulting in an increased risk of insertional mutagenesis in gene therapy protocols. Nonviral...... Sleeping Beauty (SB) transposon vectors have a significantly safer insertion profile, but efficient delivery into relevant cell/tissue types is a limitation. In an attempt to combine the favorable features of the two vector systems we established a novel hybrid vector technology based on SB transposase......-mediated insertion of lentiviral DNA circles generated during transduction of target cells with integrase (IN)-defective LVs (IDLVs). By construction of a lentivirus-transposon hybrid vector allowing transposition exclusively from circular viral DNA substrates, we demonstrate that SB transposase added in trans...

  7. Chromosome preference of disease genes and vectorization for the prediction of non-coding disease genes.

    Science.gov (United States)

    Peng, Hui; Lan, Chaowang; Liu, Yuansheng; Liu, Tao; Blumenstein, Michael; Li, Jinyan

    2017-10-03

    Disease-related protein-coding genes have been widely studied, but disease-related non-coding genes remain largely unknown. This work introduces a new vector to represent diseases, and applies the newly vectorized data for a positive-unlabeled learning algorithm to predict and rank disease-related long non-coding RNA (lncRNA) genes. This novel vector representation for diseases consists of two sub-vectors, one is composed of 45 elements, characterizing the information entropies of the disease genes distribution over 45 chromosome substructures. This idea is supported by our observation that some substructures (e.g., the chromosome 6 p-arm) are highly preferred by disease-related protein coding genes, while some (e.g., the 21 p-arm) are not favored at all. The second sub-vector is 30-dimensional, characterizing the distribution of disease gene enriched KEGG pathways in comparison with our manually created pathway groups. The second sub-vector complements with the first one to differentiate between various diseases. Our prediction method outperforms the state-of-the-art methods on benchmark datasets for prioritizing disease related lncRNA genes. The method also works well when only the sequence information of an lncRNA gene is known, or even when a given disease has no currently recognized long non-coding genes.

  8. Size, age and composition: characteristics of plant taxa as diversity predictors of gall-midges (Diptera: Cecidomyiidae

    Directory of Open Access Journals (Sweden)

    Walter S Araújo

    2011-12-01

    Full Text Available Many hypotheses have been proposed to explain the diversity of gall-midge insects (Diptera: Cecidomyiidae, some of them taking into account plant diversity. This study aims to test the importance of size, age and composition of host plant taxa in the diversity of Cecidomyiidae. For this we used inventories data on the diversity of galling and host plants in Brazil. We found that Asterales, Myrtales and Malpighiales, were the most important orders, with 34, 33 and 25, gall morphotypes, respectively. The most representative host families were Asteraceae (34 morphotypes, Myrtaceae (23 and Fabaceae (22. In general, the order size and the plant family were good predictors of the galling diversity, but not the taxon age. The most diverse host genera for gall-midges were Mikania, Eugenia and Styrax, with 15, 13 and nine galler species, respectively. The size of plant genera showed no significant relationship with the richness of Cecidomyiidae, contrary to the prediction of the plant taxon size hypothesis. The plant genera with the greatest diversity of galling insects are not necessarily those with the greatest number of species. These results indicate that some plant taxa have a high intrinsic richness of galling insects, suggesting that the plant species composition may be equally or more important for the diversity of gall-midges than the size or age of the host taxon. Rev. Biol. Trop. 59 (4: 1599- 1607. Epub 2011 December 01.

  9. Dehydration, rehydration and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica

    Science.gov (United States)

    We investigated molecular responses elicited by three types of dehydration (fast, slow and cryoprotective), rehydration and overhydration in larvae of the Antarctic midge, Belgica antarctica. The larvae spend most the year encased in ice but during the austral summer are vulnerable to summer storms,...

  10. Development of Recombinant Vaccine Using Herpesvirus of Turkey (Hvt as Vector for Several Viral Diseases in Poultry Industry

    Directory of Open Access Journals (Sweden)

    Risza Hartawan

    2011-03-01

    Full Text Available Herpesvirus of turkey (HVT has been utilised as live vaccine against Marek’s disease in poultry industry world-wide for many years. However, the potency of HVT is not limited on the Marek’s disease only. Along with rapid development of recombinant technique, the potency of HVT can be broaden for other diseases. As naturally apathogenic virus, HVT is a suitable candidate as vector vaccine to express important antigens of viral pathogens. Several researches have been dedicated to design HVT recombinant vaccine by inserting gene of important virus, such as Marek’s disease virus (MDV, immuno bursal disease virus (IBDV, Newcastle disease virus (NDV and Avian Influenza virus (AIV. Therefore, the future recombinant of HVT has been expected to be better in performance along with the improvement of recombinant technique.

  11. Trypanosoma avium of raptors (Falconiformes): phylogeny and identification of vectors.

    Science.gov (United States)

    Votýpka, J; Oborník, M; Volf, P; Svobodová, M; Lukes, J

    2002-09-01

    Avian trypanosomes are widespread parasites of birds, the transmission of which remains mostly unclear, with various blood-sucking insects mentioned as possible vectors. A search for vectors of trypanosomes of sparrowhawk (Accipiter nisus), buzzard (Buteo buteo), lesser-spotted eagle (Aquila pomarina) and kestrel (Falco tinnunculus) was performed in Czech and Slovak Republics. Black flies (Eusimulium spp.), hippoboscid flies (Ornithomyia avicularia), mosquitoes (Culex pipiens pipiens) and biting midges (Culicoides spp.), trapped while attempting to feed on raptor nestlings, were found to contain trypanosomatids in their intestine. Trypanosomes from the raptors and blood-sucking insects were isolated, and their 18S rRNA sequences were used for species identification and for the inference of intra- and interspecific relationships. Together with the trypanosome isolated from a black fly, the bird trypanosomes formed a well-supported Trypanosoma avium clade. The isolates derived from hippoboscid flies and mosquitoes are most likely also avian trypanosomes infecting birds other than the studied raptors. Analysis of the kinetoplast, that has features characteristic for the avian trypanosomes (minicircle size; dimensions of the kinetoplast disc), provided further evidence for the identification of vectors. It is suggested that all trypanosomes isolated from raptors included in this study belong to the T. avium complex and are transmitted by the ornithophilic simuliids such as Eusimulium securiforme.

  12. Effects of Bacillus thuringiensis israelensis and spinosad on adult emergence of the non-biting midges Polypedilum nubifer (Skuse) and Tanytarsus curticornis Kieffer (Diptera: Chironomidae) in coastal wetlands.

    Science.gov (United States)

    Duchet, Claire; Franquet, Evelyne; Lagadic, Laurent; Lagneau, Christophe

    2015-05-01

    To optimize their efficacy, some insecticides used for mosquito control are introduced into aquatic ecosystems where mosquito larvae develop (marshes, ponds, sanitation devices) and cannot escape from the treated water. However, this raises the question of possible effects of mosquito larvicides on non-target aquatic species. Bacillus thuringiensis var. israelensis (Bti), which is well-known for its selectivity for Nematocera dipterans, is widely used for mosquito control all over the world. Spinosad, a mixture of spinosyns A and D known as fermentation products of a soil actinomycete (Saccharopolyspora spinosa), is a biological neurotoxic insecticide with a broader action spectrum. It is a candidate larvicide for mosquito control, but some studies showed that it may be toxic to beneficial or non-target species, including non-biting midges. The present study was therefore undertaken to assess the impact of Bti and spinosad on natural populations of Polypedilum nubifer (Skuse) and Tanytarsus curticornis Kieffer (Diptera: Chironomidae) in field enclosures implemented in Mediterranean coastal wetlands. Unlike Bti, spinosad had a strong lethal effect on P. nubifer and seems to affect T. curticornis at presumed recommended rates for field application. Differences in the sensitivity of these two species to spinosad confirm that population dynamics need to be known for a proper assessment of the risk encountered by chironomids in wetlands where larvicide-based mosquito control occurs. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Solid lipid nanoparticles mediate non-viral delivery of plasmid DNA to dendritic cells

    Science.gov (United States)

    Penumarthi, Alekhya; Parashar, Deepti; Abraham, Amanda N.; Dekiwadia, Chaitali; Macreadie, Ian; Shukla, Ravi; Smooker, Peter M.

    2017-06-01

    There is an increasing demand for novel DNA vaccine delivery systems, mainly for the non-viral type as they are considered relatively safe. Therefore, solid lipid nanoparticles (SLNs) were investigated for their suitability as a non-viral DNA vaccine delivery system. SLNs were synthesised by a modified solvent-emulsification method in order to study their potential to conjugate with plasmid DNA and deliver them in vitro to dendritic cells using eGFP as the reporter plasmid. The DNA-SLN complexes were characterised by electron microscopy, gel retardation assays and dynamic light scattering. The cytotoxicity assay data supported their biocompatibility and was used to estimate safe threshold concentration resulting in high transfection rate. The transfection efficiency of these complexes in a dendritic cell line was shown to increase significantly compared to plasmid alone, and was comparable to that mediated by lipofectamine. Transmission electron microscopy studies delineated the pathway of cellular uptake. Endosomal escape was observed supporting the mechanism of transfection.

  14. Vectorization, parallelization and porting of nuclear codes on the VPP500 system (vectorization). Progress report fiscal 1997

    International Nuclear Information System (INIS)

    Kawasaki, Nobuo; Ogasawara, Shinobu; Adachi, Masaaki; Kume, Etsuo; Ishizuki, Shigeru; Tanabe, Hidenobu; Nemoto, Toshiyuki; Kawai, Wataru; Watanabe, Hideo

    1999-05-01

    Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system and/or the AP3000 system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. We dealt with 14 codes in fiscal 1997. These results are reported in 3 parts, i.e., the vectorization part, the parallelization part and the porting part. In this report, we describe the vectorization. In this vectorization part, the vectorization of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations, statistical decay code SD and three-dimensional thermal analysis code for in-core test section (T2) of HENDEL SSPHEAT are described. In the parallelization part, the parallelization of cylindrical direct numerical simulation code CYLDNS44N, worldwide version of system for prediction of environmental emergency dose information code WSPEEDI, extension of quantum molecular dynamics code EQMD and three-dimensional non-steady compressible fluid dynamics code STREAM are described. In the porting part, the porting of transient reactor analysis code TRAC-BF1 and Monte Carlo radiation transport code MCNP4A on the AP3000 are described. In addition, a modification of program libraries for command-driven interactive data analysis plotting program IPLOT is described. (author)

  15. Intrinsic non-inductive current driven by ETG turbulence in tokamaks

    Science.gov (United States)

    Singh, Rameswar; Kaw, P. K.; Singh, R.; Gürcan, Ã.-. D.

    2017-10-01

    Motivated by observations and physics understanding of the phenomenon of intrinsic rotation, it is suggested that similar considerations for electron dynamics may result in intrinsic current in tokamaks. We have investigated the possibility of intrinsic non-inductive current in the turbulent plasma of tokamaks. Ohm's law is generalized to include the effect of turbulent fluctuations in the mean field approach. This clearly leads to the identification of sources and the mechanisms of non-inductive current drive by electron temperature gradient turbulence. It is found that a mean parallel electro-motive force and hence a mean parallel current can be generated by (1) the divergence of residual current flux density and (2) a non-flux like turbulent source from the density and parallel electric field correlations. Both residual flux and the non-flux source require parallel wave-number k∥ symmetry breaking for their survival which can be supplied by various means like mean E × B shear, turbulence intensity gradient, etc. Estimates of turbulence driven current are compared with the background bootstrap current in the pedestal region. It is found that turbulence driven current is nearly 10% of the bootstrap current and hence can have a significant influence on the equilibrium current density profiles and current shear driven modes.

  16. Chitosan nanoparticles as non-viral gene delivery systems: determination of loading efficiency.

    Science.gov (United States)

    Carrillo, Carolina; Suñé, Josep Maria; Pérez-Lozano, Pilar; García-Montoya, Encarna; Sarrate, Rocío; Fàbregas, Anna; Miñarro, Montserrat; Ticó, Josep Ramon

    2014-07-01

    Chitosan has been studied for use in particle delivery systems for therapeutic purposes, since one of its most important applications is as a non-viral vector in gene therapy. Due to its positive charge, it is capable of forming DNA complexes (polyplexes) obtained through several methods and with the property of protecting nucleic acids. Two methods for obtaining the nanoparticles of chitosan-nucleic acids are reported in this study: simple complexation (of depolymerized chitosan or of different chitosan salts with plasmid) and ionic gelation (by adsorption of plasmid in the nanoparticles or by encapsulation of plasmid into nanoparticles). The determination of the loading efficiency of chitosan nanoparticles with the plasmid is carried out by electrophoretic mobility of the samples on agarose gel. Furthermore, the nanoparticles have been characterized according to their morphology, size and surface charge using AFM, TEM, laser diffraction and dynamic light scattering techniques. The polyplexes obtained have been found to be spherical and nanometric in size (between 100-230nm) with a zeta potential between 37 and 48mV. Positive results have been obtained by agarose gel electrophoresis for all studied cases: a concentration of between 20 and 30μg/mL of chitosan salts is required while for the remaining chitosan samples studied, 100% loading efficiency does not occur until a concentration equal to 100μg/mL (regardless of previous depolymerisation and the method performed). Chitosan-plasmid nanocapsules have been obtained at the polymer concentrations worked with (between 0.025 and 0.2%). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Strong-field non-sequential ionization: The vector momentum distribution of multiply charged Ne ions

    International Nuclear Information System (INIS)

    Rottke, H.; Trump, C.; Wittmann, M.; Korn, G.; Becker, W.; Hoffmann, K.; Sandner, W.; Moshammer, R.; Feuerstein, B.; Dorn, A.; Schroeter, C.D.; Ullrich, J.; Schmitt, W.

    2000-01-01

    COLTRIMS (COLd Target Recoil-Ion Momentum Spectroscopy) was used to measure the vector momentum distribution of Ne n+ (n=1,2,3) ions formed in ultrashort (30 fsec) high-intensity (≅10 15 W/cm 2 ) laser pulses with center wavelength at 795 nm. To a high degree of accuracy the length of the Ne n+ ion momentum vector is equal to the length of the total momentum vector of the n photoelectrons released, with both vectors pointing into opposite directions. At a light intensity where non-sequential ionization of the atom dominates the Ne 2+ and Ne 3+ momentum distributions show distinct maxima at 4.0 a.u. and 7.5 a.u. along the polarization axis of the linearly polarized light beam. First, this is a clear signature of non-sequential multiple ionization. Second, it indicates that instantaneous emission of two (or more) electrons at electric field strength maxima of the light wave can be ruled out as main mechanism of non-sequential strong-field multiple ionization. In contrast, this experimental result is in accordance with the kinematical constraints of the 'rescattering model'

  18. Molecular identification of bloodmeals from biting midges (Diptera: Ceratopogonidae; Culicoides Latreille) in Denmark

    DEFF Research Database (Denmark)

    Lassen, Sandra Boline; Nielsen, Søren A; Skovgård, Henrik

    2011-01-01

    engorged biting midges, and hosts were identified in 115 of 125 analysed specimens (90%). Cow, roe deer, horse, mallard and wood pigeon were identified as hosts. The most abundant host species was cow, which constituted 73.9% of the total identified bloodmeals, but the common wood pigeon was found...

  19. Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells.

    Directory of Open Access Journals (Sweden)

    Claudia V Filomatori

    2017-03-01

    Full Text Available The Flavivirus genus includes a large number of medically relevant pathogens that cycle between humans and arthropods. This host alternation imposes a selective pressure on the viral population. Here, we found that dengue virus, the most important viral human pathogen transmitted by insects, evolved a mechanism to differentially regulate the production of viral non-coding RNAs in mosquitos and humans, with a significant impact on viral fitness in each host. Flavivirus infections accumulate non-coding RNAs derived from the viral 3'UTRs (known as sfRNAs, relevant in viral pathogenesis and immune evasion. We found that dengue virus host adaptation leads to the accumulation of different species of sfRNAs in vertebrate and invertebrate cells. This process does not depend on differences in the host machinery; but it was found to be dependent on the selection of specific mutations in the viral 3'UTR. Dissecting the viral population and studying phenotypes of cloned variants, the molecular determinants for the switch in the sfRNA pattern during host change were mapped to a single RNA structure. Point mutations selected in mosquito cells were sufficient to change the pattern of sfRNAs, induce higher type I interferon responses and reduce viral fitness in human cells, explaining the rapid clearance of certain viral variants after host change. In addition, using epidemic and pre-epidemic Zika viruses, similar patterns of sfRNAs were observed in mosquito and human infected cells, but they were different from those observed during dengue virus infections, indicating that distinct selective pressures act on the 3'UTR of these closely related viruses. In summary, we present a novel mechanism by which dengue virus evolved an RNA structure that is under strong selective pressure in the two hosts, as regulator of non-coding RNA accumulation and viral fitness. This work provides new ideas about the impact of host adaptation on the variability and evolution of

  20. Site-specific integration of CAR gene into Jurkat T cells with a linear close-ended AAV-based DNA vector for CAR-T engineering.

    Science.gov (United States)

    Zhang, Yun; Liu, Xiaomei; Zhang, Jinju; Zhang, Chun

    2016-09-01

    To develop a site-specific integration strategy for CAR-T engineering by using a non-viral vector dependent on adeno-associated viral (AAV) genome, which tends to be integrated into AAVS1 site with the help of its Rep proteins. AAV-dependent vectors were produced in Sf9 cells. Structural analyses revealed the vector as covalently close-ended, linear duplex molecules, which was termed "CELiD" DNA. A plasmid CMV-Rep was constructed to express the integrases Rep78 and Rep68. Jurkat cells were co-electroporated with "CELiD" DNA and plasmid CMV-Rep in order to specifically integrate CAR gene into AAVS1 site. We examined 71 stably transfected Jurkat clones by nested PCR, sequencing and southern blotting, of which 30 clones bore CAR gene within AAVS1 site. The site-specific integration efficiency was nearly 42.2 %. The AAV-dependent vector preferentially integrated CAR into AAVS1 site, which could be further used in human T cell modification and enhance the security of CAR-T therapy.

  1. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications

    Directory of Open Access Journals (Sweden)

    Hanni Uusi-Kerttula

    2015-11-01

    Full Text Available Adenoviruses (Ad are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies.

  2. Electric cell-substrate impedance sensing (ECIS) based real-time measurement of titer dependent cytotoxicity induced by adenoviral vectors in an IPI-2I cell culture model.

    Science.gov (United States)

    Müller, Jakob; Thirion, Christian; Pfaffl, Michael W

    2011-01-15

    Recombinant viral vectors are widespread tools for transfer of genetic material in various modern biotechnological applications like for example RNA interference (RNAi). However, an accurate and reproducible titer assignment represents the basic step for most downstream applications regarding a precise multiplicity of infection (MOI) adjustment. As necessary scaffold for the studies described in this work we introduce a quantitative real-time PCR (qPCR) based approach for viral particle measurement. Still an implicated problem concerning physiological effects is that the appliance of viral vectors is often attended by toxic effects on the individual target. To determine the critical viral dose leading to cell death we developed an electric cell-substrate impedance sensing (ECIS) based assay. With ECIS technology the impedance change of a current flow through the cell culture medium in an array plate is measured in a non-invasive manner, visualizing effects like cell attachment, cell-cell contacts or proliferation. Here we describe the potential of this online measurement technique in an in vitro model using the porcine ileal epithelial cell line IPI-2I in combination with an adenoviral transfection vector (Ad5-derivate). This approach shows a clear dose-depending toxic effect, as the amount of applied virus highly correlates (p<0.001) with the level of cell death. Thus this assay offers the possibility to discriminate the minimal non-toxic dose of the individual transfection method. In addition this work suggests that the ECIS-device bears the feasibility to transfer this assay to multiple other cytotoxicological questions. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Understanding Image Virality

    Science.gov (United States)

    2015-06-07

    Example non-viral images. Figure 1: Top: Images with high viral scores in our dataset depict internet “celebrity” memes ex. “Grumpy Cat”; Bottom: Images...of images that is most similar to ours is the concurrently introduced viral meme generator of Wang et al., that combines NLP and Computer Vision (low...doing any of our tasks. The test included questions about widely spread Reddit memes and jargon so that anyone familiar with Reddit can easily get a high

  4. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    Science.gov (United States)

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  5. Viral Reservoirs in Lymph Nodes of FIV-Infected Progressor and Long-Term Non-Progressor Cats during the Asymptomatic Phase.

    Directory of Open Access Journals (Sweden)

    C D Eckstrand

    Full Text Available Examination of a cohort of cats experimentally infected with feline immunodeficiency virus (FIV for 5.75 years revealed detectable proviral DNA in peripheral blood mononuclear cells (PBMCs harvested during the asymptomatic phase, undetectable plasma viral RNA (FIV gag, and rarely detectable cell-associated viral RNA. Despite apparent viral latency in peripheral CD4+ T cells, circulating CD4+ T cell numbers progressively declined in progressor animals. The aim of this study was to explore this dichotomy of peripheral blood viral latency in the face of progressive immunopathology. The viral replication status, cellular immunophenotypes, and histopathologic features were compared between popliteal lymph nodes (PLNs and peripheral blood. Also, we identified and further characterized one of the FIV-infected cats identified as a long-term non-progressor (LTNP.PLN-derived leukocytes from FIV-infected cats during the chronic asymptomatic phase demonstrated active viral gag transcription and FIV protein translation as determined by real-time RT-PCR, Western blot and in situ immunohistochemistry, whereas viral RNA in blood leukocytes was either undetectable or intermittently detectable and viral protein was not detected. Active transcription of viral RNA was detectable in PLN-derived CD4+ and CD21+ leukocytes. Replication competent provirus was reactivated ex vivo from PLN-derived leukocytes from three of four FIV-infected cats. Progressor cats showed a persistent and dramatically decreased proportion and absolute count of CD4+ T cells in blood, and a decreased proportion of CD4+ T cells in PLNs. A single long-term non-progressor (LTNP cat persistently demonstrated an absolute peripheral blood CD4+ T cell count indistinguishable from uninfected animals, a lower proviral load in unfractionated blood and PLN leukocytes, and very low amounts of viral RNA in the PLN.Collectively our data indicates that PLNs harbor important reservoirs of ongoing viral

  6. Characterization of infectivity of knob-modified adenoviral vectors in glioma

    NARCIS (Netherlands)

    C.P.L. Paul (C. P L); M. Everts (M.); J.N. Glasgow (J.); P. Dent (P.); P.B. Fisher (P.); I.V. Ulasov (I.); M.S. Lesniak (M.); M.A. Stoff-Khalili (M.); J.C. Roth (J.); M. Preuss (Michael); C.M.F. Dirven (Clemens); M.L.M. Lamfers (Martine); T. Siegal (Tali); Z.B. Zhu (Z.); R.E. Curiel (Rafael E.)

    2008-01-01

    textabstractMalignant glioma continues to be a major target for gene therapy and virotherapy due to its aggressive growth and the current lack of effective treatment. However, these approaches have been hampered by inefficient infection of glioma cells by viral vectors, particularly vectors derived

  7. Novel recombinant alphaviral and adenoviral vectors for cancer immunotherapy.

    Science.gov (United States)

    Osada, Takuya; Morse, Michael A; Hobeika, Amy; Lyerly, H Kim

    2012-06-01

    Although cellular immunotherapy based on autolgous dendritic cells (DCs) targeting antigens expressed by metastatic cancer has demonstrated clinical efficacy, the logistical challenges in generating an individualized cell product create an imperative to develop alternatives to DC-based cancer vaccines. Particularly attractive alternatives include in situ delivery of antigen and activation signals to resident antigen-presenting cells (APCs), which can be achieved by novel fusion molecules targeting the mannose receptor and by recombinant viral vectors expressing the antigen of interest and capable of infecting DCs. A particular challenge in the use of viral vectors is the well-appreciated clinical obstacles to their efficacy, specifically vector-specific neutralizing immune responses. Because heterologous prime and boost strategies have been demonstrated to be particularly potent, we developed two novel recombinant vectors based on alphaviral replicon particles and a next-generation adenovirus encoding an antigen commonly overexpressed in many human cancers, carcinoembryonic antigen (CEA). The rationale for developing these vectors, their unique characteristics, the preclinical studies and early clinical experience with each, and opportunities to enhance their effectiveness will be reviewed. The potential of each of these potent recombinant vectors to efficiently generate clinically active anti-tumor immune response alone, or in combination, will be discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility

    DEFF Research Database (Denmark)

    Cavaliere, Guiseppe; Rahbæk, Anders; Taylor, A.M. Robert

    Many key macro-economic and financial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special...

  9. Non-Gaussianity at tree and one-loop levels from vector field perturbations

    International Nuclear Information System (INIS)

    Valenzuela-Toledo, Cesar A.; Rodriguez, Yeinzon; Lyth, David H.

    2009-01-01

    We study the spectrum P ζ and bispectrum B ζ of the primordial curvature perturbation ζ when the latter is generated by scalar and vector field perturbations. The tree-level and one-loop contributions from vector field perturbations are worked out considering the possibility that the one-loop contributions may be dominant over the tree-level terms [both (either) in P ζ and (or) in B ζ ] and vice versa. The level of non-Gaussianity in the bispectrum, f NL , is calculated and related to the level of statistical anisotropy in the power spectrum, g ζ . For very small amounts of statistical anisotropy in the power spectrum, the level of non-Gaussianity may be very high, in some cases exceeding the current observational limit.

  10. Adeno-associated viral vector serotype 5 poorly transduces liver in rat models.

    Directory of Open Access Journals (Sweden)

    Paula S Montenegro-Miranda

    Full Text Available Preclinical studies in mice and non-human primates showed that AAV serotype 5 provides efficient liver transduction and as such seems a promising vector for liver directed gene therapy. An advantage of AAV5 compared to serotype 8 already shown to provide efficient correction in a phase 1 trial in patients suffering from hemophilia B, is its lower seroprevalence in the general population. Our goal is liver directed gene therapy for Crigler-Najjar syndrome type I, inherited severe unconjugated hyperbilirubinemia caused by UGT1A1 deficiency. In a relevant animal model, the Gunn rat, we compared the efficacy of AAV 5 and 8 to that of AAV1 previously shown to be effective. Ferrying a construct driving hepatocyte specific expression of UGT1A1, both AAV8 and AAV1 provided an efficient correction of hyperbilirubinemia. In contrast to these two and to other animal models AAV5 failed to provide any correction. To clarify whether this unexpected finding was due to the rat model used or due to a problem with AAV5, the efficacy of this serotype was compared in a mouse and two additional rat strains. Administration of an AAV5 vector expressing luciferase under the control of a liver specific promoter confirmed that this serotype poorly performed in rat liver, rendering it not suitable for proof of concept studies in this species.

  11. Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Rahbek, Anders Christian; Taylor, A. M. Robert

    Many key macro-economic and …nancial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special...

  12. Transcriptional Silencing of Retroviral Vectors

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M.; Pedersen, F.S.

    1996-01-01

    . Extinction of long-term vector expression has been observed after implantation of transduced hematopoietic cells as well as fibroblasts, myoblasts and hepatocytes. Here we review the influence of vector structure, integration site and cell type on transcriptional silencing. While down-regulation of proviral...... transcription is known from a number of cellular and animal models, major insight has been gained from studies in the germ line and embryonal cells of the mouse. Key elements for the transfer and expression of retroviral vectors, such as the viral transcriptional enhancer and the binding site for the t......RNA primer for reverse transcription may have a major influence on transcriptional silencing. Alterations of these elements of the vector backbone as well as the use of internal promoter elements from housekeeping genes may contribute to reduce transcriptional silencing. The use of cell culture and animal...

  13. Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system

    Directory of Open Access Journals (Sweden)

    Verhaagen Joost

    2010-02-01

    Full Text Available Abstract Background After a spinal cord lesion, axon regeneration is inhibited by the presence of a diversity of inhibitory molecules in the lesion environment. At and around the lesion site myelin-associated inhibitors, chondroitin sulfate proteoglycans (CSPGs and several axon guidance molecules, including all members of the secreted (class 3 Semaphorins, are expressed. Interfering with multiple inhibitory signals could potentially enhance the previously reported beneficial effects of blocking single molecules. RNA interference (RNAi is a tool that can be used to simultaneously silence expression of multiple genes. In this study we aimed to employ adeno-associated virus (AAV mediated expression of short hairpin RNAs (shRNAs to target all Semaphorin class 3 signaling by knocking down its receptors, Neuropilin 1 (Npn-1 and Neuropilin 2 (Npn-2. Results We have successfully generated shRNAs that knock down Npn-1 and Npn-2 in a neuronal cell line. We detected substantial knockdown of Npn-2 mRNA when AAV5 viral vector particles expressing Npn-2 specific shRNAs were injected in dorsal root ganglia (DRG of the rat. Unexpectedly however, AAV1-mediated expression of Npn-2 shRNAs and a control shRNA in the red nucleus resulted in an adverse tissue response and neuronal degeneration. The observed toxicity was dose dependent and was not seen with control GFP expressing AAV vectors, implicating the shRNAs as the causative toxic agents. Conclusions RNAi is a powerful tool to knock down Semaphorin receptor expression in neuronal cells in vitro and in vivo. However, when shRNAs are expressed at high levels in CNS neurons, they trigger an adverse tissue response leading to neuronal degradation.

  14. New gall midges (Diptera, Cecidomyiidae) associated with Eugenia uniflora and Psidium cattleianum (Myrtaceae)

    OpenAIRE

    Maia, Valéria C; Nava, Dori E

    2011-01-01

    Two new species and a new genus of gall midges (Diptera, Cecidomyiidae) are described and illustrated. Both species induce leaf galls on Myrtaceae, the former on Eugenia uniflora and the latter on Psidium cattleianum. Duas novas espécies e um novo gênero de insetos galhadores (Diptera, Cecidomyiidae) são descritos e ilustrados. Ambas espécies induzem galhas foliares em Myrtaceae, a primeira em Eugenia uniflora e a segunda em Psidium cattleianum.

  15. Vaccines for viral and parasitic diseases produced with baculovirus vectors

    NARCIS (Netherlands)

    Oers, van M.M.

    2006-01-01

    The baculovirus¿insect cell expression system is an approved system for the production of viral antigens with vaccine potential for humans and animals and has been used for production of subunit vaccines against parasitic diseases as well. Many candidate subunit vaccines have been expressed in this

  16. A virus vector based on Canine Herpesvirus for vaccine applications in canids.

    Science.gov (United States)

    Strive, T; Hardy, C M; Wright, J; Reubel, G H

    2007-01-31

    Canine Herpesvirus (CHV) is being developed as a virus vector for the vaccination of European red foxes. However, initial studies using recombinant CHV vaccines in foxes revealed viral attenuation and lack of antibody response to inserted foreign antigens. These findings were attributed both to inactivation of the thymidine kinase (TK) gene and excess foreign genetic material in the recombinant viral genome. In this study, we report an improved CHV-bacterial artificial chromosome (BAC) vector system designed to overcome attenuation in foxes. A non-essential region was identified in the CHV genome as an alternative insertion site for foreign genes. Replacement of a guanine/cytosine (GC)-rich intergenic region between UL21 and UL22 of CHV with a marker gene did not change growth behaviour in vitro, showing that this region is not essential for virus growth in cell culture. We subsequently produced a CHV-BAC vector with an intact TK gene in which the bacterial genes and the antigen expression cassette were inserted into this GC-rich locus. Unlike earlier constructs, the new CHV-BAC allowed self-excision of the bacterial genes via homologous recombination after transfection of BACs into cell culture. The BAC-CHV system was used to produce a recombinant virus that constitutively expressed porcine zona pellucida subunit C protein between the UL21 and UL22 genes of CHV. Complete self-excision of the bacterial genes from CHV was achieved within one round of replication whilst retaining antigen gene expression.

  17. Virally and physically transgenized equine adipose-derived stromal cells as a cargo for paracrine secreted factors

    Directory of Open Access Journals (Sweden)

    Cavirani Sandro

    2010-09-01

    Full Text Available Abstract Background Adipose-Derived Stromal Cells have been shown to have multiple lineage differentiation properties and to be suitable for tissues regeneration in many degenerative processes. Their use has been proposed for the therapy of joint diseases and tendon injuries in the horse. In the present report the genetic manipulation of Equine Adipose-Derived Stromal Cells has been investigated. Results Equine Adipose-Derived Stromal Cells were successfully virally transduced as well as transiently and stably transfected with appropriate parameters, without detrimental effect on their differentiation properties. Moreover, green fluorescent protein alone, fused to neo gene, or co-expressed as bi-cistronic reporter constructs, driven by viral and house-keeping gene promoters, were tested. The better expressed cassette was employed to stably transfect Adipose-Derived Stromal Cells for cell therapy purposes. Stably transfected Equine Adipose-Derived Stromal Cells with a heterologous secreted viral antigen were able to immunize horses upon injection into the lateral wall of the neck. Conclusion This study provides the methods to successfully transgenize Adipose-Derived Stromal Cells both by lentiviral vector and by transfection using optimized constructs with suitable promoters and reporter genes. In conclusion these findings provide a working platform for the delivery of potentially therapeutic proteins to the site of cells injection via transgenized Equine Adipose-Derived Stromal Cells.

  18. Porcine semen as a vector for transmission of viral pathogens.

    Science.gov (United States)

    Maes, Dominiek; Van Soom, Ann; Appeltant, Ruth; Arsenakis, Ioannis; Nauwynck, Hans

    2016-01-01

    Different viruses have been detected in porcine semen. Some of them are on the list of the World Organization for Animal Health (OIE), and consequently, these pathogens are of socioeconomic and/or public health importance and are of major importance in the international trade of animals and animal products. Artificial insemination (AI) is one of the most commonly used assisted reproductive technologies in pig production worldwide. This extensive use has enabled pig producers to benefit from superior genetics at a lower cost compared to natural breeding. However, the broad distribution of processed semen doses for field AI has increased the risk of widespread transmission of swine viral pathogens. Contamination of semen can be due to infections of the boar or can occur during semen collection, processing, and storage. It can result in reduced semen quality, embryonic mortality, endometritis, and systemic infection and/or disease in the recipient female. The presence of viral pathogens in semen can be assessed by demonstration of viable virus, nucleic acid of virus, or indirectly by measuring serum antibodies in the boar. The best way to prevent disease transmission via the semen is to assure that the boars in AI centers are free from the disease, to enforce very strict biosecurity protocols, and to perform routine health monitoring of boars. Prevention of viral semen contamination should be the primary focus because it is easier to prevent contamination than to eliminate viruses once present in semen. Nevertheless, research and development of novel semen processing treatments such as single-layer centrifugation is ongoing and may allow in the future to decontaminate semen. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Enhancing poxvirus vectors vaccine immunogenicity.

    Science.gov (United States)

    García-Arriaza, Juan; Esteban, Mariano

    2014-01-01

    Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought.

  20. Histomorphological changes in hepatitis C non-responders with respect to viral genotypes

    International Nuclear Information System (INIS)

    Adnan, U.; Mirza, T.; Naz, E.; Aziz, S.

    2013-01-01

    Objective: To evaluate the distinct histopathological changes of chronic hepatitis C (CHC) non-responders in association with viral genotypes. Methods: This cross-sectional study was conducted at the histopathology section of the Dow Diagnostic Research and Reference Laboratory, Dow University of Health Sciences in collaboration with Sarwar Zuberi Liver Centre, Civil Hospital, Karachi from September 2009 to August 2011. Seventy-five non-responders (end-treatment-response [ETR] positive patients) from a consecutive series of viral-RNA positive CHC patients with known genotypes were selected. Their genotypes and pertinent clinical history was recorded. They were subjected to liver biopsies which were assessed for grade, stage, steatosis, stainable iron and characteristic histological lesions. Results: Majority of the patients (63, 84%) had genotype 3 while 12(16%) cases had genotype 1. The genotype 1 patients had significantly higher scores of inflammation (p<0.03) and fibrosis (p<0.04) as compared to genotype 3. Steatosis was significantly present in all genotype 3 patients in higher scores (p<0.001) compared to genotype 1. Stainable iron scores were generally low in the patients in this study, however, it was more commonly seen in genotype 3. The distribution of characteristic histological lesions was noteworthy in both the groups, irrespective of genotype. Conclusion: In this series, the predominant genotype was 3. However, genotype 1 patients were more prone to the aggressive nature of the disease with significantly higher scores of inflammation and fibrosis. Steatosis was characteristically observed in genotype 3 group. Stainable iron could not be attributed as a cause of non-response. (author)

  1. Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge

    Science.gov (United States)

    Plant pests including insects must manipulate plants in order to utilize the nutrition and environment of the host. Here, we show that the heat-shock protein gene Mayetiola destructor susceptibility gene-1 (Mds-1) is a major susceptibility gene in wheat that allows the gall midge M. destructor, com...

  2. Efficient gene delivery to primary human retinal pigment epithelial cells: The innate and acquired properties of vectors.

    Science.gov (United States)

    Tasharrofi, Nooshin; Kouhkan, Fatemeh; Soleimani, Masoud; Soheili, Zahra-Soheila; Atyabi, Fatemeh; Akbari Javar, Hamid; Abedin Dorkoosh, Farid

    2017-02-25

    The purpose of this study is designing non-viral gene delivery vectors for transfection of the primary human retinal pigment epithelial cells (RPE). In the design process of gene delivery vectors, considering physicochemical properties of vectors alone does not seem to be enough since they interact with constituents of the surrounding environment and hence gain new characteristics. Moreover, due to these interactions, their cargo can be released untimely or undergo degradation before reaching to the target cells. Further, the characteristics of cells itself can also influence the transfection efficacy. For example, the non-dividing property of RPE cells can impede the transfection efficiency which in most studies was ignored by using immortal cell lines. In this study, vectors with different characteristics differing in mixing orders of pDNA, PEI polymer, and PLGA/PEI or PLGA nanoparticles were prepared and characterized. Then, their characteristics and efficacy in gene delivery to RPE cells in the presence of vitreous or fetal bovine serum (FBS) were evaluated. All formulations showed no cytotoxicity and were able to protect pDNA from premature release and degradation in extracellular media. Also, the adsorption of vitreous or serum proteins onto the surface of vectors changed their properties and hence cellular uptake and transfection efficacy. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Non-Abelian formulation of a vector-tensor gauge theory with topological coupling

    International Nuclear Information System (INIS)

    Barcelos Neto, J.; Cabo, A.; Silva, M.B.D.

    1995-08-01

    We obtain a non-Abelian version of a theory involving vector and tensor and tensor gauge fields interacting via a massive topological coupling, besides the nonminimum one. The new fact is that the non-Abelian theory is not reducible and Stuckelberg fields are introduced in order to compatibilize gauge invariance, nontrivial physical degrees of freedom and the limit of the Abelian case. (author). 9 refs

  4. Non-gaussianity from the trispectrum and vector field perturbations

    International Nuclear Information System (INIS)

    Valenzuela-Toledo, Cesar A.; Rodriguez, Yeinzon

    2010-01-01

    We use the δN formalism to study the trispectrum T ζ of the primordial curvature perturbation ζ when the latter is generated by vector field perturbations, considering the tree-level and one-loop contributions. The order of magnitude of the level of non-gaussianity in the trispectrum, τ NL , is calculated in this scenario and related to the order of magnitude of the level of non-gaussianity in the bispectrum, f NL , and the level of statistical anisotropy in the power spectrum, g ζ . Such consistency relations will put under test this scenario against future observations. Comparison with the expected observational bound on τ NL from WMAP, for generic inflationary models, is done.

  5. Mal de Río Cuarto Virus Infection Triggers the Production of Distinctive Viral-Derived siRNA Profiles in Wheat and Its Planthopper Vector.

    Science.gov (United States)

    de Haro, Luis A; Dumón, Analía D; Mattio, María F; Argüello Caro, Evangelina Beatriz; Llauger, Gabriela; Zavallo, Diego; Blanc, Hervé; Mongelli, Vanesa C; Truol, Graciela; Saleh, María-Carla; Asurmendi, Sebastián; Del Vas, Mariana

    2017-01-01

    Plant reoviruses are able to multiply in gramineae plants and delphacid vectors encountering different defense strategies with unique features. This study aims to comparatively assess alterations of small RNA (sRNA) populations in both hosts upon virus infection. For this purpose, we characterized the sRNA profiles of wheat and planthopper vectors infected by Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae ) and quantified virus genome segments by quantitative reverse transcription PCR We provide evidence that plant and insect silencing machineries differentially recognize the viral genome, thus giving rise to distinct profiles of virus-derived small interfering RNAs (vsiRNAs). In plants, most of the virus genome segments were targeted preferentially within their upstream sequences and vsiRNAs mapped with higher density to the smaller genome segments than to the medium or larger ones. This tendency, however, was not observed in insects. In both hosts, vsiRNAs were equally derived from sense and antisense RNA strands and the differences in vsiRNAs accumulation did not correlate with mRNAs accumulation. We also established that the piwi-interacting RNA (piRNA) pathway was active in the delphacid vector but, contrary to what is observed in virus-infected mosquitoes, virus-specific piRNAs were not detected. This work contributes to the understanding of the silencing response in insect and plant hosts.

  6. Viral pathogen production in a wild grass host driven by host growth and soil nitrogen.

    Science.gov (United States)

    Whitaker, Briana K; Rúa, Megan A; Mitchell, Charles E

    2015-08-01

    Nutrient limitation is a basic ecological constraint that has received little attention in studies on virus production and disease dynamics. Nutrient availability could directly limit the production of viral nucleic acids and proteins, or alternatively limit host growth and thus indirectly limit metabolic pathways necessary for viral replication. In order to compare direct and indirect effects of nutrient limitation on virus production within hosts, we manipulated soil nitrogen (N) and phosphorus (P) availability in a glasshouse for the wild grass host Bromus hordeaceus and the viral pathogen Barley yellow dwarf virus-PAV. We found that soil N additions increased viral concentrations within host tissues, and the effect was mediated by host growth. Specifically, in statistical models evaluating the roles of host biomass production, leaf N and leaf P, viral production depended most strongly on host biomass, rather than the concentration of either nutrient. Furthermore, at low soil N, larger plants supported greater viral concentrations than smaller ones, whereas at high N, smaller plants supported greater viral concentrations. Our results suggest that enhanced viral productivity under N enrichment is an indirect consequence of nutrient stimulation to host growth rate. Heightened pathogen production in plants has important implications for a world facing increasing rates of nutrient deposition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Non-perturbative renormalization of the static vector current and its O(a)-improvement in quenched QCD

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F.

    2007-06-15

    We carry out the renormalization and the Symanzik O(a)-improvement programme for the static vector current in quenched lattice QCD. The scale independent ratio of the renormalization constants of the static vector and axial currents is obtained non-perturbatively from an axial Ward identity with Wilson-type light quarks and various lattice discretizations of the static action. The improvement coefficients c{sub V}{sup stat} and b{sub V}{sup stat} are obtained up to O(g{sub 4}{sup 0})-terms by enforcing improvement conditions respectively on the axial Ward identity and a three-point correlator of the static vector current. A comparison between the non-perturbative estimates and the corresponding one-loop results shows a non-negligible effect of the O(g{sub 4}{sup 0})-terms on the improvement coefficients but a good accuracy of the perturbative description of the ratio of the renormalization constants. (orig.)

  8. Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells.

    Directory of Open Access Journals (Sweden)

    Zeeshan Pasha

    Full Text Available The current protocols for generation of induced pluripotent stem (iPS cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs using small molecules.SMs from young male Oct3/4-GFP(+ transgenic mouse were treated with DNA methyltransferase (DNMT inhibitor, RG108. Two weeks later, GFP(+ colonies of SM derived iPS cells (SiPS expressing GFP and with morphological similarity of mouse embryonic stem (ESCs were formed and propagated in vitro. SiPS were positive for alkaline phosphatase activity, expressed SSEA1, displayed ES cell specific pluripotency markers and formed teratoma in nude mice. Optimization of culture conditions for embryoid body (EBs formation yielded spontaneously contracting EBs having morphological, molecular, and ultra-structural similarities with cardiomyocytes and expressed early and late cardiac markers. miR profiling showed abrogation of let-7 family and upregulation of ESCs specific miR-290-295 cluster thus indicating that SiPS were similar to ESCs in miR profile. Four weeks after transplantation into the immunocompetent mice model of acute myocardial infarction (n = 12 per group, extensive myogenesis was observed in SiPS transplanted hearts as compared to DMEM controls (n = 6 per group. A significant reduction in fibrosis and improvement in global heart function in the hearts transplanted with SiPS derived cardiac progenitor cells were observed.Reprogramming of SMs by DNMT inhibitor is a simple, reproducible and efficient technique more likely to generate transgene integration-free iPS cells. Cardiac progenitors derived from iPS cells propagated extensively in the infarcted myocardium without tumorgenesis and improved cardiac function.

  9. In vitro expression of erythropoietin by transfected human mesenchymal stromal cells.

    Science.gov (United States)

    Mok, P-L; Cheong, S-K; Leong, C-F; Othman, A

    2008-01-01

    Mesenchymal stromal cells (MSC) are pluripotent progenitor cells that can be found in human bone marrow (BM). These cells have low immunogenicity and could suppress alloreactive T-cell responses. In the current study, MSC were tested for their capacity to carry and deliver the erythropoietin (EPO) gene in vitro. Expanded BM MSC was transfected with EPO-encoded plasmid pMCV1.2 and EPO-encoded MIDGE (minimalistic immunologically defined gene expression) vector by electroporation. The expressed EPO was used to induce hematopoietic stem cells (HSC) into erythroid colonies. The results showed that the MIDGE vector was more effective and stable than the plasmid (pMCV1.2) in delivering EPO gene into MSC. The supernatants containing EPO obtained from the transfected cell culture were able to induce the differentiation of HSC into erythroid colonies. MSC hold promise as a cell factory for the production of biologic molecules, and MIDGE vector is more effective and stable than the plasmid in nucleofection involving the EPO gene.

  10. Low-Dose Gene Therapy for Murine PKU Using Episomal Naked DNA Vectors Expressing PAH from Its Endogenous Liver Promoter

    Directory of Open Access Journals (Sweden)

    Hiu Man Grisch-Chan

    2017-06-01

    Full Text Available Limited duration of transgene expression, insertional mutagenesis, and size limitations for transgene cassettes pose challenges and risk factors for many gene therapy vectors. Here, we report on physiological expression of liver phenylalanine hydroxylase (PAH by delivery of naked DNA/minicircle (MC-based vectors for correction of homozygous enu2 mice, a model of human phenylketonuria (PKU. Because MC vectors lack a defined size limit, we constructed a MC vector expressing a codon-optimized murine Pah cDNA that includes a truncated intron and is under the transcriptional control of a 3.6-kb native Pah promoter/enhancer sequence. This vector, delivered via hydrodynamic injection, yielded therapeutic liver PAH activity and sustained correction of blood phenylalanine comparable to viral or synthetic liver promoters. Therapeutic efficacy was seen with vector copy numbers of 95% loss of vector genomes and PAH activity in liver, demonstrating that MC vectors had not integrated into the liver genome. In conclusion, MC vectors, which do not have a defined size-limitation, offer a favorable safety profile for hepatic gene therapy due to their non-integration in combination with native promoters.

  11. Non-viral gene therapy that targets motor neurons in vivo

    Directory of Open Access Journals (Sweden)

    Mary-Louise eRogers

    2014-10-01

    Full Text Available A major challenge in neurological gene therapy is safe delivery of transgenes to sufficient cell numbers from the circulation or periphery. This is particularly difficult for diseases involving spinal cord motor neurons such as amyotrophic lateral sclerosis (ALS. We have examined the feasibility of non-viral gene delivery to spinal motor neurons from intraperitoneal injections of plasmids carried by ‘immunogene’ nanoparticles targeted for axonal retrograde transport using antibodies. PEGylated polyethylenimine (PEI-PEG12 as DNA carrier was conjugated to an antibody (MLR2 to the neurotrophin receptor p75 (p75NTR. We used a plasmid (pVIVO2 designed for in vivo gene delivery that produces minimal immune responses, has improved nuclear entry into post mitotic cells and also expresses green fluorescent protein (GFP. MLR2-PEI-PEG12 carried pVIVO2 and was specific for mouse motor neurons in mixed cultures containing astrocytes. While only 8% of motor neurons expressed GFP 72 h post transfection in vitro, when the immunogene was given intraperitonealy to neonatal C57BL/6J mice GFP specific motor neuron expression was observed in 25.4% of lumbar, 18.3% of thoracic and 17.0 % of cervical motor neurons, 72 h post transfection. PEI-PEG12 carrying pVIVO2 by itself did not transfect motor neurons in vivo, demonstrating the need for specificity via the p75NTR antibody MLR2. This is the first time that specific transfection of spinal motor neurons has been achieved from peripheral delivery of plasmid DNA as part of a non-viral gene delivery agent. These results stress the specificity and feasibility of immunogene delivery targeted for p75NTR expressing motor neurons, but suggests that further improvements are required to increase the transfection efficiency of motor neurons in vivo.

  12. Vector choice determines immunogenicity and potency of genetic vaccines against Angola Marburg virus in nonhuman primates

    NARCIS (Netherlands)

    Geisbert, Thomas W.; Bailey, Michael; Geisbert, Joan B.; Asiedu, Clement; Roederer, Mario; Grazia-Pau, Maria; Custers, Jerome; Jahrling, Peter; Goudsmit, Jaap; Koup, Richard; Sullivan, Nancy J.

    2010-01-01

    The immunogenicity and durability of genetic vaccines are influenced by the composition of gene inserts and choice of delivery vector. DNA vectors are a promising vaccine approach showing efficacy when combined in prime-boost regimens with recombinant protein or viral vectors, but they have shown

  13. Gamow-Jordan vectors and non-reducible density operators from higher-order S-matrix poles

    International Nuclear Information System (INIS)

    Bohm, A.; Loewe, M.; Maxson, S.; Patuleanu, P.; Puentmann, C.; Gadella, M.

    1997-01-01

    In analogy to Gamow vectors that are obtained from first-order resonance poles of the S-matrix, one can also define higher-order Gamow vectors which are derived from higher-order poles of the S-matrix. An S-matrix pole of r-th order at z R =E R -iΓ/2 leads to r generalized eigenvectors of order k=0,1,hor-ellipsis,r-1, which are also Jordan vectors of degree (k+1) with generalized eigenvalue (E R -iΓ/2). The Gamow-Jordan vectors are elements of a generalized complex eigenvector expansion, whose form suggests the definition of a state operator (density matrix) for the microphysical decaying state of this higher-order pole. This microphysical state is a mixture of non-reducible components. In spite of the fact that the k-th order Gamow-Jordan vectors has the polynomial time-dependence which one always associates with higher-order poles, the microphysical state obeys a purely exponential decay law. copyright 1997 American Institute of Physics

  14. Non-gaussianity from the trispectrum and vector field perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela-Toledo, Cesar A., E-mail: cavalto@ciencias.uis.edu.c [Escuela de Fisica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia); Rodriguez, Yeinzon, E-mail: yeinzon.rodriguez@uan.edu.c [Escuela de Fisica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia); Centro de Investigaciones, Universidad Antonio Narino, Cra 3 Este 47A-15, Bogota D.C. (Colombia)

    2010-03-01

    We use the deltaN formalism to study the trispectrum T{sub z}eta of the primordial curvature perturbation zeta when the latter is generated by vector field perturbations, considering the tree-level and one-loop contributions. The order of magnitude of the level of non-gaussianity in the trispectrum, tau{sub NL}, is calculated in this scenario and related to the order of magnitude of the level of non-gaussianity in the bispectrum, f{sub NL}, and the level of statistical anisotropy in the power spectrum, g{sub z}eta. Such consistency relations will put under test this scenario against future observations. Comparison with the expected observational bound on tau{sub NL} from WMAP, for generic inflationary models, is done.

  15. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Song, Y.; Engbersen, Johannes F.J.; Lok, Martin C.; Hennink, Wim E.; Feijen, Jan

    2005-01-01

    A variety of degradable hyperbranched poly(ester amine)s containing primary, secondary and tertiary amino groups, were synthesized and evaluated as non-viral gene carriers. The polymers were obtained in high yields through a Michael-type conjugate addition of diacrylate monomers with trifunctional

  16. Molecular design for recombinant adeno-associated virus (rAAV) vector production.

    Science.gov (United States)

    Aponte-Ubillus, Juan Jose; Barajas, Daniel; Peltier, Joseph; Bardliving, Cameron; Shamlou, Parviz; Gold, Daniel

    2018-02-01

    Recombinant adeno-associated virus (rAAV) vectors are increasingly popular tools for gene therapy applications. Their non-pathogenic status, low inflammatory potential, availability of viral serotypes with different tissue tropisms, and prospective long-lasting gene expression are important attributes that make rAAVs safe and efficient therapeutic options. Over the last three decades, several groups have engineered recombinant AAV-producing platforms, yielding high titers of transducing vector particles. Current specific productivity yields from different platforms range from 10 3 to 10 5 vector genomes (vg) per cell, and there is an ongoing effort to improve vector yields in order to satisfy high product demands required for clinical trials and future commercialization.Crucial aspects of vector production include the molecular design of the rAAV-producing host cell line along with the design of AAV genes, promoters, and regulatory elements. Appropriately, configuring and balancing the expression of these elements not only contributes toward high productivity, it also improves process robustness and product quality. In this mini-review, the rational design of rAAV-producing expression systems is discussed, with special attention to molecular strategies that contribute to high-yielding, biomanufacturing-amenable rAAV production processes. Details on molecular optimization from four rAAV expression systems are covered: adenovirus, herpesvirus, and baculovirus complementation systems, as well as a recently explored yeast expression system.

  17. Non-diffusive transport in 3-D pressure driven plasma turbulence

    International Nuclear Information System (INIS)

    Del-Castillo-Negrete, D.; Carreras, B.A.; Lynch, V.

    2005-01-01

    Numerical evidence of non-diffusive transport in 3-dimensional, resistive, pressure-gradient-driven plasma turbulence is presented. It is shown that the probability density function (pdf) of tracers is strongly non-Gaussian and exhibits algebraic decaying tails. To describe these results, a transport model using fractional derivative operators in proposed. The model incorporates in a unified way non-locality (i.e., non-Fickian transport), memory effects (i.e., non-Markovian transport), and non-diffusive scaling features known to be present in fusion plasmas. There is quantitative agreement between the model and the turbulent transport numerical calculations. In particular, the model reproduces the shape and space-time scaling of the pdf, and the super-diffusive scaling of the moments. (author)

  18. Viral vectors encoding endomorphins and serine histogranin attenuate neuropathic pain symptoms after spinal cord injury in rats.

    Science.gov (United States)

    Nasirinezhad, Farinaz; Gajavelli, Shyam; Priddy, Blake; Jergova, Stanislava; Zadina, James; Sagen, Jacqueline

    2015-01-07

    The treatment of spinal cord injury (SCI)-induced neuropathic pain presents a challenging healthcare problem. The lack of available robust pharmacological treatments underscores the need for novel therapeutic methods and approaches. Due to the complex character of neuropathic pain following SCI, therapies targeting multiple mechanisms may be a better choice for obtaining sufficient long-term pain relief. Previous studies in our lab showed analgesic effects using combinations of an NMDA antagonist peptide [Ser1]histogranin (SHG), and the mu-opioid peptides endomorphins (EMs), in several pain models. As an alternative to drug therapy, this study evaluated the analgesic potential of these peptides when delivered via gene therapy. Lentiviruses encoding SHG and EM-1 and EM-2 were intraspinally injected, either singly or in combination, into rats with clip compression SCI 2 weeks following injury. Treated animals showed significant reduction in mechanical and thermal hypersensitivity, compared to control groups injected with GFP vector only. The antinociceptive effects of individually injected components were modest, but the combination of EMs and SHG produced robust and sustained antinociception. The onset of the analgesic effects was observed between 1-5 weeks post-injection and sustained without decrement for at least 7 weeks. No adverse effects on locomotor function were observed. The involvement of SHG and EMs in the observed antinociception was confirmed by pharmacologic inhibition using intrathecal injection of either the opioid antagonist naloxone or an anti-SHG antibody. Immunohistochemical analysis showed the presence of SHG and EMs in the spinal cord of treated animals, and immunodot-blot analysis of CSF confirmed the presence of these peptides in injected animals. In a separate group of rats, delayed injection of viral vectors was performed in order to mimic a more likely clinical scenario. Comparable and sustained antinociceptive effects were observed in

  19. Assessing the consequences of an incursion of a vector-borne disease. II. Spread of bluetongue in Scotland and impact of vaccination

    Directory of Open Access Journals (Sweden)

    Camille Szmaragd

    2010-09-01

    Full Text Available Bluetongue is a viral disease of ruminants transmitted by Culicoides biting midges, which has spread across Europe over the past decade. The disease arrived in south-east England in 2007, raising the possibility that it could pose a risk to the valuable Scottish livestock industry. As part of an assessment of the economic consequences of a bluetongue virus incursion into Scotland commissioned by Scottish Government, we investigated a defined set of feasible incursion scenarios under different vaccination strategies. Our epidemiological simulations, based on expert knowledge, highlighted that infection will rarely spread in Scotland after the initial incursion and will be efficiently controlled by vaccination. Keywords: Epidemiology, modelling, disease control

  20. Seroprevalence of some bovine viral respiratory diseases among non vaccinated cattle in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mohamed Abd El Fatah Mahmoud

    2013-02-01

    Full Text Available Aim: Four viral pathogens, bovine viral diarrhea virus (BVDV, and bovine herpes virus type 1 (BHV-1, bovine parainfluenza type 3 virus (PI-3V, bovine respiratory syncytial virus (BRSV are mainly associated with bovine respiratory diseases that cause major economic losses in the dairy cattle industry. This study aimed to document exposure of cattle in Saudi Arabia to infectious BVDV, BHV-1, PI-3V and BRSV viruses in non vaccinated cattle in order to obtain epidemiological and immunological information. Materials and Methods: In the present study, 460 random serum samples obtained from non vaccinated cattle in five districts (Riyadh, Eastern Province, Jizan, Najran, Asir of Saudi Arabia between January to March 2011. These samples were tested for presence of antibodies against BVDV, BHV-1, BRSV and PIV-3 by commercial indirect ELISA kits. Results: Our findings displayed that Seropositivity rates were 26 % for BVD, 17.4 % for BHV-1, 69.1 % for PI-3V and 75.6 % for BRSV in the sampled population. In addition, coinfections with more than one virus were considerably common among non-vaccinated dairy cattle. Conclusion: These results indicate that exposure to these agents is common within the study areas. Preventive and control measures against these infectious agents should therefore be adopted. [Vet World 2013; 6(1.000: 1-4

  1. Characterization of intravitreally delivered capsid mutant AAV2-Cre vector to induce tissue-specific mutations in murine retinal ganglion cells.

    Science.gov (United States)

    Langouet-Astrie, Christophe J; Yang, Zhiyong; Polisetti, Sraavya M; Welsbie, Derek S; Hauswirth, William W; Zack, Donald J; Merbs, Shannath L; Enke, Raymond A

    2016-10-01

    Targeted expression of Cre recombinase in murine retinal ganglion cells (RGCs) by viral vector is an effective strategy for creating tissue-specific gene knockouts for investigation of genetic contribution to RGC degeneration associated with optic neuropathies. Here we characterize dosage, efficacy and toxicity for sufficient intravitreal delivery of a capsid mutant Adeno-associated virus 2 (AAV2) vector encoding Cre recombinase. Wild type and Rosa26 (R26) LacZ mice were intravitreally injected with capsid mutant AAV2 viral vectors. Murine eyes were harvested at intervals ranging from 2 weeks to 15 weeks post-injection and were assayed for viral transduction, transgene expression and RGC survival. 10(9) vector genomes (vg) were sufficient for effective in vivo targeting of murine ganglion cell layer (GCL) retinal neurons. Transgene expression was observed as early as 2 weeks post-injection of viral vectors and persisted to 11 weeks. Early expression of Cre had no significant effect on RGC survival, while significant RGC loss was detected beginning 5 weeks post-injection. Early expression of viral Cre recombinase was robust, well-tolerated and predominantly found in GCL neurons suggesting this strategy can be effective in short-term RGC-specific mutation studies in experimental glaucoma models such as optic nerve crush and transection experiments. RGC degeneration with Cre expression for more than 4 weeks suggests that Cre toxicity is a limiting factor for targeted mutation strategies in RGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Multi-resistance strategy for viral diseases and short hairpin RNA verification method in pigs

    Directory of Open Access Journals (Sweden)

    Jong-nam Oh

    2018-04-01

    Full Text Available Objective Foot and mouth disease (FMD and porcine reproductive and respiratory syndrome (PRRS are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV and PRRS virus (PRRSV, the present study introduced two genetic modification techniques to porcine cells. Methods First, cluster of differentiation 163 (CD163, the PRRSV viral receptor, was edited with the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (shRNAs were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7 gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. Results shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. Conclusion We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.

  3. Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains

    Science.gov (United States)

    Koulouri, Alexandra; Brookes, Mike; Rimpiläinen, Ville

    2017-01-01

    In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field.

  4. Low Molecular Weight pDMAEMA-block-pHEMA Block-Copolymers Synthesized via RAFT-Polymerization: Potential Non-Viral Gene Delivery Agents?

    Directory of Open Access Journals (Sweden)

    Thomas Kissel

    2011-03-01

    Full Text Available The aim of this study was to investigate non-viral pDNA carriers based on diblock-copolymers consisting of poly(2-(dimethyl aminoethyl methacrylate (pDMAEMA and poly(2-hydroxyethyl methacrylate (pHEMA. Specifically the block-lengths and molecular weights were varied to determine the minimal requirements for transfection. Such vectors should allow better transfection at acceptable toxicity levels and the entire diblock-copolymer should be suitable for renal clearance. For this purpose, a library of linear poly(2-(dimethyl aminoethyl methacrylate-block-poly(2-hydroxyl methacrylate (pDMAEMA-block-pHEMA copolymers was synthesized via RAFT (reversible addition-fragmentation chain transfer polymerization in a molecular weight (Mw range of 17–35.7 kDa and analyzed using 1H and 13C NMR (nuclear magnetic resonance, ATR (attenuated total reflectance, GPC (gel permeation chromatography and DSC (differential scanning calorimetry. Copolymers possessing short pDMAEMA-polycation chains were 1.4–9.7 times less toxic in vitro than polyethylenimine (PEI 25 kDa, and complexed DNA into polyplexes of 100–170 nm, favorable for cellular uptake. The DNA-binding affinity and polyplex stability against competing polyanions was comparable with PEI 25 kDa. The zeta-potential of polyplexes of pDMAEMA-grafted copolymers remained positive (+15–30 mV. In comparison with earlier reported low molecular weight homo pDMAEMA vectors, these diblock-copolymers showed enhanced transfection efficacy under in vitro conditions due to their lower cytotoxicity, efficient cellular uptake and DNA packaging. The homo pDMAEMA115 (18.3 kDa self-assembled with DNA into small positively charged polyplexes, but was not able to transfect cells. The grafting of 6 and 57 repeating units of pHEMA (0.8 and 7.4 kDa to pDMAEMA115 increased the transfection efficacy significantly, implying a crucial impact of pHEMA on vector-cell interactions. The intracellular trafficking, in vivo transfection

  5. Chironomid midges (Diptera, chironomidae) show extremely small genome sizes.

    Science.gov (United States)

    Cornette, Richard; Gusev, Oleg; Nakahara, Yuichi; Shimura, Sachiko; Kikawada, Takahiro; Okuda, Takashi

    2015-06-01

    Chironomid midges (Diptera; Chironomidae) are found in various environments from the high Arctic to the Antarctic, including temperate and tropical regions. In many freshwater habitats, members of this family are among the most abundant invertebrates. In the present study, the genome sizes of 25 chironomid species were determined by flow cytometry and the resulting C-values ranged from 0.07 to 0.20 pg DNA (i.e. from about 68 to 195 Mbp). These genome sizes were uniformly very small and included, to our knowledge, the smallest genome sizes recorded to date among insects. Small proportion of transposable elements and short intron sizes were suggested to contribute to the reduction of genome sizes in chironomids. We discuss about the possible developmental and physiological advantages of having a small genome size and about putative implications for the ecological success of the family Chironomidae.

  6. Detection of Leishmania amazonensis and Leishmania braziliensis in Culicoides (Diptera, Ceratopogonidae) in an endemic area of cutaneous leishmaniasis in the Brazilian Amazonia.

    Science.gov (United States)

    Rebêlo, José Manuel Macário; Rodrigues, Bruno Leite; Bandeira, Maria da Conceição Abreu; Moraes, Jorge Luiz Pinto; Fonteles, Raquel Silva; Pereira, Silma Regina Ferreira

    2016-12-01

    Biting midges in the genus Culicoides act as vectors of arboviruses throughout the world and as vectors of filariasis in Latin America, the Caribbean, and parts of Africa. Although Culicoides spp. are currently not considered to be vectors of Leishmania protozoa, the high abundance of biting midges in areas with active cutaneous leishmaniasis transmission points to the possibility of Culicoides infection by these pathogens. We used PCR to test captured Culicoides species for natural infection with Leishmania spp. We tested 450 Culicoides females, divided into 30 pools of 15 individuals each, as follows: nine pools of C. foxi (135 specimens), seven pools of C. filariferus (105), seven pools of C. insignis (105), five pools of C. ignacioi (75), and two pools of C. flavivenula (30). PCR confirmed the presence of Leishmania braziliensis DNA in C. ignacioi (0.14%), C. insignis (0.14%), and C. foxi (0.11); and Le. amazonensis DNA in C. filariferus (0.14%) and C. flavivenula (0.50%). We conclude that these Culicoides species can be naturally infected, but vector competence and transmission capability must be confirmed in future studies. Our results warrant further investigation into the role of these biting midge species in the leishmaniasis epidemiological cycle. © 2016 The Society for Vector Ecology.

  7. Viral Cre-LoxP tools aid genome engineering in mammalian cells.

    Science.gov (United States)

    Sengupta, Ranjita; Mendenhall, Amy; Sarkar, Nandita; Mukherjee, Chandreyee; Afshari, Amirali; Huang, Joseph; Lu, Biao

    2017-01-01

    Targeted nucleases have transformed genome editing technology, providing more efficient methods to make targeted changes in mammalian genome. In parallel, there is an increasing demand of Cre-LoxP technology for complex genome manipulation such as large deletion, addition, gene fusion and conditional removal of gene sequences at the target site. However, an efficient and easy-to-use Cre-recombinase delivery system remains lacking. We designed and constructed two sets of expression vectors for Cre-recombinase using two highly efficient viral systems, the integrative lentivirus and non-integrative adeno associated virus. We demonstrate the effectiveness of those methods in Cre-delivery into stably-engineered HEK293 cells harboring LoxP-floxed red fluorescent protein (RFP) and puromycin (Puro) resistant reporters. The delivered Cre recombinase effectively excised the floxed RFP-Puro either directly or conditionally, therefore validating the function of these molecular tools. Given the convenient options of two selections markers, these viral-based systems offer a robust and easy-to-use tool for advanced genome editing, expanding complicated genome engineering to a variety of cell types and conditions. We have developed and functionally validated two viral-based Cre-recombinase delivery systems for efficient genome manipulation in various mammalian cells. The ease of gene delivery with the built-in reporters and inducible element enables live cell monitoring, drug selection and temporal knockout, broadening applications of genome editing.

  8. The Insect Microbiome Modulates Vector Competence for Arboviruses

    Directory of Open Access Journals (Sweden)

    Natapong Jupatanakul

    2014-11-01

    Full Text Available Diseases caused by arthropod-borne viruses (arboviruses, such as Dengue, West Nile, and Chikungunya, constitute a major global health burden and are increasing in incidence and geographic range. The natural microbiota of insect vectors influences various aspects of host biology, such as nutrition, reproduction, metabolism, and immunity, and recent studies have highlighted the ability of insect-associated bacteria to reduce vector competence for arboviruses and other pathogens. This reduction can occur through mechanisms, such as immune response activation, resource competition, or the production of anti-viral molecules. Studying the interactions between insect vectors and their microbiota is an important step toward developing alternative strategies for arbovirus transmission control.

  9. Major emerging vector-borne zoonotic diseases of public health importance in Canada.

    Science.gov (United States)

    Kulkarni, Manisha A; Berrang-Ford, Lea; Buck, Peter A; Drebot, Michael A; Lindsay, L Robbin; Ogden, Nicholas H

    2015-06-10

    In Canada, the emergence of vector-borne diseases may occur via international movement and subsequent establishment of vectors and pathogens, or via northward spread from endemic areas in the USA. Re-emergence of endemic vector-borne diseases may occur due to climate-driven changes to their geographic range and ecology. Lyme disease, West Nile virus (WNV), and other vector-borne diseases were identified as priority emerging non-enteric zoonoses in Canada in a prioritization exercise conducted by public health stakeholders in 2013. We review and present the state of knowledge on the public health importance of these high priority emerging vector-borne diseases in Canada. Lyme disease is emerging in Canada due to range expansion of the tick vector, which also signals concern for the emergence of human granulocytic anaplasmosis, babesiosis, and Powassan virus. WNV has been established in Canada since 2001, with epidemics of varying intensity in following years linked to climatic drivers. Eastern equine encephalitis virus, Jamestown Canyon virus, snowshoe hare virus, and Cache Valley virus are other mosquito-borne viruses endemic to Canada with the potential for human health impact. Increased surveillance for emerging pathogens and vectors and coordinated efforts among sectors and jurisdictions will aid in early detection and timely public health response.

  10. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Meador, Lydia R. [Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ (United States); Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Kessans, Sarah A. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Kilbourne, Jacquelyn; Kibler, Karen V. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Pantaleo, Giuseppe [Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne (Switzerland); Swiss Vaccine Research Institute, Lausanne (Switzerland); Roderiguez, Mariano Esteban [Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia – CSIC, Madrid (Spain); Blattman, Joseph N. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Jacobs, Bertram L., E-mail: bjacobs@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Mor, Tsafrir S., E-mail: tsafrir.mor@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States)

    2017-07-15

    Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1. - Highlights: • We devised a prime/boost anti HIV-1 vaccination strategy modeled after RV144. • We used plant-derived virus-like particles (VLPs) consisting of Gag and dgp41. • We used attenuated, replicating vaccinia virus vectors expressing the same antigens. • The immunogens elicited strong cellular and humoral immune responses.

  11. Novel redox nanomedicine improves gene expression of polyion complex vector

    Directory of Open Access Journals (Sweden)

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Full Text Available Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP as an ROS scavenger. When polyethyleneimine (PEI/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  12. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    Science.gov (United States)

    Bi, Yanwei; Sun, Le; Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan

    2014-05-01

    A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  13. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    Directory of Open Access Journals (Sweden)

    Yanwei Bi

    2014-05-01

    Full Text Available A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR-associated (Cas RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ and homology-directed repair (HDR pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  14. Infectivity of attenuated poxvirus vaccine vectors and immunogenicity of a raccoonpox vectored rabies vaccine in the Brazilian Free-tailed bat (Tadarida brasiliensis)

    Science.gov (United States)

    Stading, Benjamin; Osorio, Jorge E.; Velasco-Villa, Andres; Smotherman, Michael; Kingstad-Bakke, Brock; Rocke, Tonie E.

    2016-01-01

    Bats (Order Chiroptera) are an abundant group of mammals with tremendous ecological value as insectivores and plant dispersers, but their role as reservoirs of zoonotic diseases has received more attention in the last decade. With the goal of managing disease in free-ranging bats, we tested modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) as potential vaccine vectors in the Brazilian Free-tailed bat (Tadarida brasiliensis), using biophotonic in vivo imaging and immunogenicity studies. Animals were administered recombinant poxviral vectors expressing the luciferase gene (MVA-luc, RCN-luc) through oronasal (ON) or intramuscular (IM) routes and subsequently monitored for bioluminescent signal indicative of viral infection. No clinical illness was noted after exposure to any of the vectors, and limited luciferase expression was observed. Higher and longer levels of expression were observed with the RCN-luc construct. When given IM, luciferase expression was limited to the site of injection, while ON exposure led to initial expression in the oral cavity, often followed by secondary replication at another location, likely the gastric mucosa or gastric associated lymphatic tissue. Viral DNA was detected in oral swabs up to 7 and 9 days post infection (dpi) for MVA and RCN, respectively. While no live virus was detected in oral swabs from MVA-infected bats, titers up to 3.88 x 104 PFU/ml were recovered from oral swabs of RCN-infected bats. Viral DNA was also detected in fecal samples from two bats inoculated IM with RCN, but no live virus was recovered. Finally, we examined the immunogenicity of a RCN based rabies vaccine (RCN-G) following ON administration. Significant rabies neutralizing antibody titers were detected in the serum of immunized bats using the rapid fluorescence focus inhibition test (RFFIT). These studies highlight the safety and immunogenicity of attenuated poxviruses and their potential use as vaccine vectors in bats.

  15. Neuron-specific RNA interference using lentiviral vectors

    DEFF Research Database (Denmark)

    Nielsen, Troels Tolstrup; Marion, Ingrid van; Hasholt, Lis

    2009-01-01

    BACKGROUND: Viral vectors have been used in several different settings for the delivery of small hairpin (sh) RNAs. However, most vectors have utilized ubiquitously-expressing polymerase (pol) III promoters to drive expression of the hairpin as a result of the strict requirement for precise...... transcriptional initiation and termination. Recently, pol II promoters have been used to construct vectors for RNA interference (RNAi). By embedding the shRNA into a micro RNA-context (miRNA) the endogenous miRNA processing machinery is exploited to achieve the mature synthetic miRNA (smiRNA), thereby expanding...... the possible promoter choices and eventually allowing cell type specific down-regulation of target genes. METHODS: In the present study, we constructed lentiviral vectors expressing smiRNAs under the control of pol II promoters to knockdown gene expression in cell culture and in the brain. RESULTS: We...

  16. The evolution of heart gene delivery vectors

    Science.gov (United States)

    Wasala, Nalinda B.; Shin, Jin-Hong; Duan, Dongsheng

    2012-01-01

    Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. PMID:21837689

  17. Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers

    DEFF Research Database (Denmark)

    Guðbergsdóttir, Sóley Ruth; Deng, Ling; Chen, Zhengjun

    2011-01-01

    The adaptive immune CRISPR/Cas and CRISPR/Cmr systems of the crenarchaeal thermoacidophile Sulfolobus were challenged by a variety of viral and plasmid genes, and protospacers preceded by different dinucleotide motifs. The genes and protospacers were constructed to carry sequences matching...... individual spacers of CRISPR loci, and a range of mismatches were introduced. Constructs were cloned into vectors carrying pyrE/pyrF genes and transformed into uracil auxotrophic hosts derived from Sulfolobus solfataricus P2 or Sulfolobus islandicus REY15A. Most constructs, including those carrying different...... protospacer mismatches, yielded few viable transformants. These were shown to carry either partial deletions of CRISPR loci, covering a broad spectrum of sizes and including the matching spacer, or deletions of whole CRISPR/Cas modules. The deletions occurred independently of whether genes or protospacers...

  18. Integrase-Deficient Lentiviral Vector as an All-in-One Platform for Highly Efficient CRISPR/Cas9-Mediated Gene Editing

    Directory of Open Access Journals (Sweden)

    Pavel I. Ortinski

    2017-06-01

    Full Text Available The CRISPR/Cas9 systems have revolutionized the field of genome editing by providing unprecedented control over gene sequences and gene expression in many species, including humans. Lentiviral vectors (LVs are one of the primary delivery platforms for the CRISPR/Cas9 system due to their ability to accommodate large DNA payloads and sustain robust expression in a wide range of dividing and non-dividing cells. However, long-term expression of LV-delivered Cas9/guide RNA may lead to undesirable off-target effects characterized by non-specific RNA-DNA interactions and off-target DNA cleavages. Integrase-deficient lentiviral vectors (IDLVs present an attractive means for delivery of CRISPR/Cas9 components because: (1 they are capable of transducing a broad range of cells and tissues, (2 have superior packaging capacity compared to other vectors (e.g., adeno-associated viral vectors, and (3 they are expressed transiently and demonstrate very weak integration capability. In this manuscript, we aimed to establish IDLVs as a means for safe and efficient delivery of CRISPR/Cas9. To this end, we developed an all-in-one vector cassette with increased production efficacy and demonstrated that CRISPR/Cas9 delivered by the improved IDLV vectors can mediate rapid and robust gene editing in human embryonic kidney (HEK293T cells and post-mitotic brain neurons in vivo, via transient expression and with higher gene-targeting specificity than the corresponding integrase-competent vectors.

  19. Ion acceleration in non-equilibrium plasmas driven by fast drifting electron

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Di Bartolo, F., E-mail: fdibartolo@unime.it [Università di Messina, V.le F. Stagno D’Alcontres 31, 98166, Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Metodologie Fisiche e Chimiche per L’ingegneria, Viale A.Doria 6, 95125 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F.P. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Anzalone, A.; Celona, L.; Gammino, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Di Giugno, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Lanaia, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy)

    2013-05-01

    We hereby present results on ion acceleration mechanisms in non equilibrium plasmas generated by microwaves or high intensity laser pulses. Experiments point out that in magnetized plasmas X–B conversion takes place for under resonance values of the magnetic field, i.e. an electromagnetic mode is converted into an electrostatic wave. The strong self-generated electric field, of the order of 10{sup 7} V/m, causes a E × B drift which accelerates both ions and electrons, as it is evident by localized sputtering in the plasma chamber. These fields are similar (in magnitude) to the ones obtainable in laser generated plasmas at intensity of 10{sup 12} W/cm{sup 2}. In this latter case, we observe that the acceleration mechanism is driven by electrons drifting much faster than plasma bulk, thus generating an extremely strong electric field ∼10{sup 7} V/m. The two experiments confirm that ions acceleration at low energy is possible with table-top devices and following complementary techniques: i.e. by using microwave-driven (producing CW beams) plasmas, or non-equilibrium laser-driven plasmas (producing pulsed beams). Possible applications involve ion implantation, materials surface modifications, ion beam assisted lithography, etc.

  20. Double-diffusive mixed convection in a lid-driven cavity with non ...

    Indian Academy of Sciences (India)

    S SIVASANKARAN

    2017-11-11

    Nov 11, 2017 ... transfer are solved using the finite-volume method. The numerical ... Keywords. Mixed convection; double diffusion; non-uniform heating; lid-driven cavity. 1. ... exhaustive research due to its importance in various engi- neering ...

  1. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...

  2. Emerging Vector-Borne Diseases.

    Science.gov (United States)

    Huntington, Mark K; Allison, Jay; Nair, Dilip

    2016-10-01

    Several mosquito-borne viral infections have recently emerged in North America; West Nile virus is the most common in the United States. Although West Nile virus generally causes a self-limited, flulike febrile illness, a serious neuroinvasive form may occur. Dengue is the most common vector-borne viral disease worldwide, and it has been a significant public health threat in the United States since 2009. Known as breakbone fever for its severe myalgias and arthralgias, dengue may cause a hemorrhagic syndrome. Chikungunya also causes flulike febrile illness and disabling arthralgias. Although meningoencephalitis may occur with chikungunya, bleeding is uncommon. Symptoms of Zika virus infection are similar to those of dengue, but milder. Zika virus increases the risk of fetal brain abnormalities, including microcephaly, if a pregnant woman is infected. Zika virus is spread through Aedes albopictus mosquito bites, is transmitted sexually, and may rarely spread nonsexually from person to person. Diagnosis of these vectorborne infections is clinical and serologic, and treatment is supportive. Other, well-established vector-borne diseases are also important. Ehrlichiosis is a tick-borne bacterial disease that presents as a nonspecific syndrome of fever, headache, malaise, and myalgias. It is diagnosed via blood smear testing, with confirmatory serology. Ehrlichiosis is treated with doxycycline. Rickettsial infections are transmitted by fleas, mites, and ticks, and severity ranges from mild to life threatening. Rocky Mountain spotted fever, the most significant rickettsial infection, is primarily a clinical diagnosis that presents as fever, headache, myalgias, petechial rash, and tick exposure. Doxycycline is effective for rickettsial infections if administered promptly. Vector avoidance strategies are critical to the prevention of all of these infections.

  3. Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging

    NARCIS (Netherlands)

    Pfeifer, A.; Kessler, T.; Yang, M.; Baranov, E.; Kootstra, N.; Cheresh, D. A.; Hoffman, R. M.; Verma, I. M.

    2001-01-01

    Viral vectors based on lentiviruses, such as the human immunodeficiency virus, are able to transduce a broad spectrum of nondividing cells in vivo. This ability of lentiviral vectors makes them an attractive vehicle for gene transfer into the liver. In order to determine the requirements for

  4. Quantitative Temperature Reconstructions from Holocene and Late Glacial Lake Sediments in the Tropical Andes using Chironomidae (non-biting midges)

    Science.gov (United States)

    Matthews-Bird, F.; Gosling, W. D.; Brooks, S. J.; Montoya, E.; Coe, A. L.

    2014-12-01

    Chironomidae (non-biting midges) is a family of two-winged aquatic insects of the order Diptera. They are globally distributed and one of the most diverse families within aquatic ecosystems. The insects are stenotopic, and the rapid turnover of species and their ability to colonise quickly favourable habitats means chironomids are extremely sensitive to environmental change, notably temperature. Through the development of quantitative temperature inference models chironomids have become important palaeoecological tools. Proxies capable of generating independent estimates of past climate are crucial to disentangling climate signals and ecosystem response in the palaeoecological record. This project has developed the first modern environmental calibration data set in order to use chironomids from the Tropical Andes as quantitative climate proxies. Using surface sediments from c. 60 lakes from Bolivia, Peru and Ecuador we have developed an inference model capable of reconstructing temperatures, with a prediction error of 1-2°C, from fossil assemblages. Here we present the first Lateglacial and Holocene chironomid-inferred temperature reconstructions from two sites in the tropical Andes. The first record, from a high elevation (4153 m asl) lake in the Bolivian Andes, shows persistently cool temperatures for the past 15 kyr, punctuated by warm episodes in the early Holocene (9-10 kyr BP). The chironomid-inferred Holocene temperature trends from a lake sediment record on the eastern Andean flank of Ecuador (1248 m asl) spanning the last 5 millennia are synchronous with temperature changes in the NGRIP ice core record. The temperature estimates suggest along the eastern flank of the Andes, at lower latitudes (~1°S), climate closely resemble the well-established fluctuations of the Northern Hemisphere for this time period. Late-glacial climate fluctuations across South America are still disputed with some palaeoecological records suggesting evidence for Younger Dryas

  5. Bringing gay and lesbian activism to the White House: Midge Costanza and the National Gay Task Force Meeting.

    Science.gov (United States)

    Mattingly, Doreen J; Boyd, Ashley

    2013-01-01

    In March 1977, President Carter's Assistant Margaret "Midge" Costanza made history by meeting with representatives from the National Gay Task Force (NGTF) to hear their grievances about discriminatory federal policies. The effects of the meeting were many, including changes in policies of the Bureau of Prisons and the Public Health Service. It also initiated policy discussions that would continue for decades and contributed to the incorporation of gay rights within the Democratic Party. Midge Costanza was fundamental to the process. It was her decision to hold the meeting and to advocate on behalf of the NGTF, and she bore many of the meeting's political costs. In this article we make use of Costanza's own papers and multiple interviews with her to closely analyze Costanza's role in the historic meeting. In addition to adding detail to its politics and policy impacts of the meeting, we also look at her complex motivations for holding such a controversial meeting. Costanza maintained until her death in 2010 that she was motivated by her feminism and overall commitment to social justice, rather than her own identity or experiences.

  6. Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains

    Energy Technology Data Exchange (ETDEWEB)

    Koulouri, Alexandra, E-mail: koulouri@uni-muenster.de [Institute for Computational and Applied Mathematics, University of Münster, Einsteinstrasse 62, D-48149 Münster (Germany); Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT (United Kingdom); Brookes, Mike [Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT (United Kingdom); Rimpiläinen, Ville [Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, D-48149 Münster (Germany); Department of Mathematics, University of Auckland, Private bag 92019, Auckland 1142 (New Zealand)

    2017-01-15

    In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field. - Highlights: • Vector tomography is used to reconstruct electric fields generated by dipole

  7. Effects of exposure to azaarenes on emergence and mouthpart development in the midge Chironomus riparius (Diptera: Chironomidae)

    Energy Technology Data Exchange (ETDEWEB)

    Bleeker, E.A.J.; Leslie, H.A.; Groenendijk, D.; Plans, M.; Admiraal, W.

    1999-08-01

    Adverse effects of azaarenes on emergence and mouthpart development of the midge Chironomus riparius were analyzed using six closely related three-ringed isomers and metabolites. Effects on growth rate were examined by comparing the average day of emergence of exposed midges with that of controls. Fluctuating asymmetry (FA) in the pecten epipharyngis was examined as a measure of developmental abnormality. Delayed emergence was found at concentrations as low as 2% of the acute LC50, so emergence day appears to be a useful sensitive parameter to quantity life cycle effects. No differences in FA were found between exposed and control larvae, although, in other studies, all compounds have been proven to be genotoxic. The differences in FA were found between exposed and control larvae, although, in other studies, all compounds have been proven to be genotoxic. The differences in the genotoxic and FA-inducing properties of these compounds indicate that different mechanisms are involved in expressing these adverse effects. This study also illustrates that the choice of the morphological parameter strongly influences the results of developmental disturbance analyses and thus the risk qualification of a potentially hazardous compound.

  8. Non-Viral Transfection Methods Optimized for Gene Delivery to a Lung Cancer Cell Line

    OpenAIRE

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-01-01

    Background Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. Methods In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize deliver...

  9. SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products

    Science.gov (United States)

    Sowd, Gregory A.; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L.; Fanning, Ellen

    2014-01-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. PMID:25474690

  10. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products.

    Directory of Open Access Journals (Sweden)

    Gregory A Sowd

    2014-12-01

    Full Text Available Simian virus 40 (SV40 and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PK(cs kinase activity, facilitates some aspects of double strand break (DSB repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR and do not colocalize with non-homologous end joining (NHEJ factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PK(cs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.

  11. Incorporating double copies of a chromatin insulator into lentiviral vectors results in less viral integrants

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Jakobsson, Johan; Rosenqvist, Nina

    2009-01-01

    BACKGROUND: Lentiviral vectors hold great promise as gene transfer vectors in gene therapeutic settings. However, problems related to the risk of insertional mutagenesis, transgene silencing and positional effects have stalled the use of such vectors in the clinic. Chromatin insulators are boundary...

  12. Mucosal vaccination with heterologous viral vectored vaccine targeting subdominant SIV accessory antigens strongly inhibits early viral replication

    DEFF Research Database (Denmark)

    Xu, Huanbin; Andersson, Anne-Marie Carola; Ragonnaud, Emeline

    2017-01-01

    Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in providing long-term control. We immunized rhesus macaques intramuscularly and rectally using a heterologous adenovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat...

  13. Survey of UK horse owners' knowledge of equine arboviruses and disease vectors.

    Science.gov (United States)

    Chapman, Gail Elaine; Baylis, Matthew; Archer, Debra C

    2018-05-15

    Increased globalisation and climate change have led to concern about the increasing risk of arthropod-borne virus (arbovirus) outbreaks globally. An outbreak of equine arboviral disease in northern Europe could impact significantly on equine welfare, and result in economic losses. Early identification of arboviral disease by horse owners may help limit disease spread. In order to determine what horse owners understand about arboviral diseases of horses and their vectors, the authors undertook an open, cross-sectional online survey of UK horse owners. The questionnaire was distributed using social media and a press release and was active between May and July 2016. There were 466 respondents, of whom 327 completed the survey in full. High proportions of respondents correctly identified photographic images of biting midges (71.2 per cent) and mosquitoes (65.4 per cent), yet few were aware that they transmit equine infectious diseases (31.4 per cent and 35.9 per cent, respectively). Of the total number of respondents, only 7.4 per cent and 16.2 per cent correctly named a disease transmitted by biting midges and mosquitoes, respectively. Only 13.1 per cent and 12.5 per cent of participants identified specific clinical signs of African horse sickness (AHS) and West Nile virus (WNV), respectively. This study demonstrates that in the event of heightened disease risk educational campaigns directed towards horse owners need to be implemented, focussing on disease awareness, clinical signs and effective disease prevention strategies. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. AAVPG: A vigilant vector where transgene expression is induced by p53

    Energy Technology Data Exchange (ETDEWEB)

    Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.; Strauss, Bryan E., E-mail: bstrauss@usp.br

    2013-12-15

    Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 fold increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.

  15. Viral Interference and Persistence in Mosquito-Borne Flaviviruses

    Directory of Open Access Journals (Sweden)

    Juan Santiago Salas-Benito

    2015-01-01

    Full Text Available Mosquito-borne flaviviruses are important pathogens for humans, and the detection of two or more flaviviruses cocirculating in the same geographic area has often been reported. However, the epidemiological impact remains to be determined. Mosquito-borne flaviviruses are primarily transmitted through Aedes and Culex mosquitoes; these viruses establish a life-long or persistent infection without apparent pathological effects. This establishment requires a balance between virus replication and the antiviral host response. Viral interference is a phenomenon whereby one virus inhibits the replication of other viruses, and this condition is frequently associated with persistent infections. Viral interference and persistent infection are determined by several factors, such as defective interfering particles, competition for cellular factors required for translation/replication, and the host antiviral response. The interaction between two flaviviruses typically results in viral interference, indicating that these viruses share common features during the replicative cycle in the vector. The potential mechanisms involved in these processes are reviewed here.

  16. Generation of high-titer viral preparations by concentration using successive rounds of ultracentrifugation

    Directory of Open Access Journals (Sweden)

    Ichim Christine V

    2011-08-01

    Full Text Available Abstract Background Viral vectors provide a method of stably introducing exogenous DNA into cells that are not easily transfectable allowing for the ectopic expression or silencing of genes for therapeutic or experimental purposes. However, some cell types, in particular bone marrow cells, dendritic cells and neurons are difficult to transduce with viral vectors. Successful transduction of such cells requires preparation of highly concentrated viral stocks, which permit a high virus concentration and multiplicity of infection (MOI during transduction. Pseudotyping with the vesicular stomatitis virus G (VSV-G envelope protein is common practice for both lentiviral and retroviral vectors. The VSV-G glycoprotein adds physical stability to retroviral particles, allowing concentration of virus by high-speed ultracentrifugation. Here we describe a method report for concentration of virus from large volumes of culture supernatant by means of successive rounds of ultracentrifugation into the same ultracentrifuge tube. Method Stable retrovirus producer cell lines were generated and large volumes of virus-containing supernatant were produced. We then tested the transduction ability of virus following varying rounds of concentration by ultra-centrifugation. In a second series of experiments lentivirus-containing supernatant was produced by transient transfection of 297T/17 cells and again we tested the transduction ability of virus following multiple rounds of ultra-centrifugation. Results We report being able to centrifuge VSV-G coated retrovirus for as many as four rounds of ultracentrifugation while observing an additive increase in viral titer. Even after four rounds of ultracentrifugation we did not reach a plateau in viral titer relative to viral supernatant concentrated to indicate that we had reached the maximum tolerated centrifugation time, implying that it may be possible to centrifuge VSV-G coated retrovirus even further should it be necessary

  17. Epstein-Barr virus viral load and serology in childhood non-Hodgkin's lymphoma and chronic inflammatory conditions in Uganda: implications for disease risk and characteristics.

    Science.gov (United States)

    Orem, Jackson; Sandin, Sven; Mbidde, Edward; Mangen, Fred Wabwire; Middeldorp, Jaap; Weiderpass, Elisabete

    2014-10-01

    Epstein-Barr virus (EBV) has been linked to malignancies and chronic inflammatory conditions. In this study, EBV detection was compared in children with non-Hodgkin's lymphoma and children with chronic inflammatory conditions, using samples and data from a case-control study carried out at the Mulago National Referral Hospital between 2004 and 2008. EBV viral load was measured in saliva, whole blood and white blood cells by real-time PCR. Serological values for IgG-VCA, EBNA1, and EAd-IgG were compared in non-Hodgkin's lymphoma and chronic inflammatory conditions; and in Burkitt's lymphoma and other subtypes of non-Hodgkin's lymphoma. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated. Of the 127 children included (87 males and 40 females; median age 7 years, range 2-17), 96 had non-Hodgkin's lymphoma (46 Burkitt's lymphoma and 50 other non-Hodgkin's lymphoma), 31 had chronic inflammatory conditions, and only 10% were HIV-positive. The most common clinical presentations for all disease categories considered were fever, night sweats, and weight loss. EBV viral load in whole blood was elevated in Burkitt's lymphoma compared to other non-Hodgkin's lymphoma (OR 6.67, 95% CI 1.32, 33.69; P-value = 0.04), but EBV viral loads in saliva and white blood cells were not different in any of the disease categories considered. A significant difference in EAd-IgG was observed when non-Hodgkin's lymphoma was compared with chronic inflammatory conditions (OR 0.19, 95% CI 0.07, 0.51; P-value = 0.001). When compared to chronic inflammatory conditions, EBV viral load was elevated in Burkitt's lymphoma, and EA IgG was higher in non-Hodgkin's lymphoma. This study supports an association between virological and serological markers of EBV and childhood non-Hodgkin's lymphoma, irrespective of subtype, in Uganda. © 2014 Wiley Periodicals, Inc.

  18. Contribution of viral recombinants to the study of the immune response against the Epstein-Barr virus.

    Science.gov (United States)

    Delecluse, Henri-Jacques; Feederle, Regina; Behrends, Uta; Mautner, Josef

    2008-12-01

    Over the past two decades, Epstein-Barr virus (EBV) mutants have become valuable tools for the analysis of viral functions. Several experimental strategies are currently used to generate recombinant mutant genomes that carry alterations in one or several viral genes. The probably most versatile approach utilizes bacterial artificial chromosomes (BAC) carrying parts or the whole EBV genome, which permits extensive genetic manipulations in Escherichia coli cells. The 'mini-EBVs', for example, which contain roughly half of the wild type viral information, efficiently transform primary B cells and have been used as gene vectors for foreign antigens. After expression in lymphoblastoid cell lines (LCLs), these antigens are efficiently presented on MHC molecules and recognized by antigen-specific T cells. These vectors, however, cannot undergo lytic replication and require a helper cell line for efficient replication and DNA packaging. Further experimental systems include the complete viral genome cloned onto a BAC. These mutants can typically be complemented by expression plasmids, some of which are expressed on EBV-derived vectors and can be propagated without requirement of a helper cell line. Over the last years, these viral recombinants have been utilized increasingly to analyse different aspects of the immune response against EBV. Immunological applications are manifold and steadily growing and include crude screening of T cell clones for their specificity towards latent versus lytic antigens, or more detailed analyses in which the exact specificity of T cells is determined using EBV mutants that lack a single viral antigen. Other applications include detailed analysis of protein domains important for immune recognition, e.g. Gly-Ala repeats in the EBV nuclear antigen 1 (EBNA1) protein, expansion of T cell clones directed against virion structures using virus-like particles and phenotypic analysis of virus mutants defective in infection. Future developments might

  19. Functional validation of Apoptosis Genes IAP1 and DRONC in midgut tissue of the biting midge Culicoides sonorensis (Diptera: Ceratopogonidae) by RNAi

    Science.gov (United States)

    Background: Culicoides biting midges transmit multiple ruminant viruses, including bluetongue virus and epizootic hemorrhagic disease virus, causing significant economic burden worldwide due to trade restrictions and production loss. To limit the spread of these viruses, control strategies focus on ...

  20. An influenza viral vector Brucella abortus vaccine induces good cross-protection against Brucella melitensis infection in pregnant heifers.

    Science.gov (United States)

    Tabynov, Kaissar; Ryskeldinova, Sholpan; Sansyzbay, Abylai

    2015-07-17

    Brucella melitensis can be transmitted and cause disease in cattle herds as a result of inadequate management of mixed livestock farms. Ideally, vaccines against Brucella abortus for cattle should also provide cross-protection against B. melitensis. Previously we created a novel influenza viral vector B. abortus (Flu-BA) vaccine expressing the Brucella ribosomal proteins L7/L12 or Omp16. This study demonstrated Flu-BA vaccine with adjuvant Montanide Gel01 provided 100% protection against abortion in vaccinated pregnant heifers and good cross-protection of the heifers and their calves or fetuses (90-100%) after challenge with B. melitensis 16M; the level of protection provided by Flu-BA was comparable to the commercial vaccine B. abortus S19. In terms of the index of infection and colonization of Brucella in tissues, both vaccines demonstrated significant (P=0.02 to P<0.0001) protection against B. melitensis 16M infection compared to the negative control group (PBS+Montanide Gel01). Thus, we conclude the Flu-BA vaccine provides cross-protection against B. melitensis infection in pregnant heifers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Independent component analysis in non-hypothesis driven metabolomics

    DEFF Research Database (Denmark)

    Li, Xiang; Hansen, Jakob; Zhao, Xinjie

    2012-01-01

    In a non-hypothesis driven metabolomics approach plasma samples collected at six different time points (before, during and after an exercise bout) were analyzed by gas chromatography-time of flight mass spectrometry (GC-TOF MS). Since independent component analysis (ICA) does not need a priori...... information on the investigated process and moreover can separate statistically independent source signals with non-Gaussian distribution, we aimed to elucidate the analytical power of ICA for the metabolic pattern analysis and the identification of key metabolites in this exercise study. A novel approach...... based on descriptive statistics was established to optimize ICA model. In the GC-TOF MS data set the number of principal components after whitening and the number of independent components of ICA were optimized and systematically selected by descriptive statistics. The elucidated dominating independent...

  2. Multiple stressor effects on water quality in Poplar Bay, Lake of the Woods, Canada: a midge-based assessment of hypolimnetic oxygen conditions over the last two centuries

    Directory of Open Access Journals (Sweden)

    Jamie C. Summers

    2012-01-01

    Full Text Available Chironomid and Chaoborus (midge remains preserved in a dated sediment core from Poplar Bay, Lake of the Woods (LOW, Ontario, Canada, were used to assess the effects of multiple stressors (e.g., recent warming and shoreline development on water quality over the past ~200 years. As monitoring data for LOW do not extend beyond recent decades, paleolimnological methods are used to reconstruct long-term limnological trends and to establish pre-disturbance conditions. The effects of recent warming and shoreline development on Poplar Bay water quality are examined using an index of hypolimnetic oxygen (O2 status based on the ratio of Chaoborus to chironomid remains (chaob:chir and a midge-inferred volume-weighted hypolimnetic oxygen (VWHO model. Our paleolimnological data indicate that hypolimnetic [O2] in Poplar Bay have been historically hypoxic (1-4 mg O2 L-1 but have declined further (generally <2 mg O2 L-1 over the last few decades. Significant relationships between air temperature and midge data indicate that substantial warming starting in the late-1970s has triggered a marked response in the midge assemblages that pre-dates the onset of cottage development (mid-1990s. These findings complement a diatom-based study on the same sediment core, likewise suggesting that recent warming has played a prominent role in structuring limnetic communities. However, it is likely that the full, compounded effects of recent warming and shoreline development have not yet been realized. Our study highlights the complexity of multiple stressor systems, such as Poplar Bay, and emphasizes the benefits of using multiple, independent lines of paleoenvironmental evidence in gaining a more complete understanding of historical water quality.

  3. Viral Vector Induction of CREB Expression in the Periaqueductal Gray Induces a Predator Stress-Like Pattern of Changes in pCREB Expression, Neuroplasticity, and Anxiety in Rodents

    Directory of Open Access Journals (Sweden)

    Robert Adamec

    2009-01-01

    Full Text Available Predator stress is lastingly anxiogenic. Phosphorylation of CREB to pCREB (phosphorylated cyclic AMP response element binding protein is increased after predator stress in fear circuitry, including in the right lateral column of the PAG (periaqueductal gray. Predator stress also potentiates right but not left CeA-PAG (central amygdala-PAG transmission up to 12 days after stress. The present study explored the functional significance of pCREB changes by increasing CREB expression in non-predator stressed rats through viral vectoring, and assessing the behavioral, electrophysiological and pCREB expression changes in comparison with handled and predator stressed controls. Increasing CREB expression in right PAG was anxiogenic in the elevated plus maze, had no effect on risk assessment, and increased acoustic startle response while delaying startle habituation. Potentiation of the right but not left CeA-PAG pathway was also observed. pCREB expression was slightly elevated in the right lateral column of the PAG, while the dorsal and ventral columns were not affected. The findings of this study suggest that by increasing CREB and pCREB in the right lateral PAG, it is possible to produce rats that exhibit behavioral, brain, and molecular changes that closely resemble those seen in predator stressed rats.

  4. Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe

    Directory of Open Access Journals (Sweden)

    Jing Liu-Helmersson

    2016-05-01

    Full Text Available Warming temperatures may increase the geographic spread of vector-borne diseases into temperate areas. Although a tropical mosquito-borne viral disease, a dengue outbreak occurred in Madeira, Portugal, in 2012; the first in Europe since 1920s. This outbreak emphasizes the potential for dengue re-emergence in Europe given changing climates. We present estimates of dengue epidemic potential using vectorial capacity (VC based on historic and projected temperature (1901–2099. VC indicates the vectors' ability to spread disease among humans. We calculated temperature-dependent VC for Europe, highlighting 10 European cities and three non-European reference cities. Compared with the tropics, Europe shows pronounced seasonality and geographical heterogeneity. Although low, VC during summer is currently sufficient for dengue outbreaks in Southern Europe to commence–if sufficient vector populations (either Ae. aegypti and Ae. albopictus were active and virus were introduced. Under various climate change scenarios, the seasonal peak and time window for dengue epidemic potential increases during the 21st century. Our study maps dengue epidemic potential in Europe and identifies seasonal time windows when major cities are most conducive for dengue transmission from 1901 to 2099. Our findings illustrate, that besides vector control, mitigating greenhouse gas emissions crucially reduces the future epidemic potential of dengue in Europe.

  5. Determinants of abundance and effects of blood-sucking flying insects in the nest of a hole-nesting bird.

    Science.gov (United States)

    Tomás, Gustavo; Merino, Santiago; Martínez-de la Puente, Josué; Moreno, Juan; Morales, Judith; Lobato, Elisa

    2008-05-01

    Compared to non-flying nest-dwelling ectoparasites, the biology of most species of flying ectoparasites and its potential impact on avian hosts is poorly known and rarely, if ever, reported. In this study we explore for the first time the factors that may affect biting midge (Diptera: Ceratopogonidae) and black fly (Diptera: Simuliidae) abundances in the nest cavity of a bird, the hole-nesting blue tit Cyanistes caeruleus, and report their effects on adults and nestlings during reproduction. The abundance of biting midges was positively associated with nest mass, parental provisioning effort and abundance of blowflies and black flies, while negatively associated with nestling condition. Furthermore, a medication treatment to reduce blood parasitaemias in adult birds revealed that biting midges were more abundant in nests of females whose blood parasitaemias were experimentally reduced. This finding would be in accordance with these insect vectors attacking preferentially uninfected or less infected hosts to increase their own survival. The abundance of black flies in the population was lower than that of biting midges and increased in nests with later hatching dates. No significant effect of black fly abundance on adult or nestling condition was detected. Blood-sucking flying insects may impose specific, particular selection pressures on their hosts and more research is needed to better understand these host-parasite associations.

  6. Adenovirus dodecahedron, as a drug delivery vector.

    Directory of Open Access Journals (Sweden)

    Monika Zochowska

    Full Text Available BACKGROUND: Bleomycin (BLM is an anticancer antibiotic used in many cancer regimens. Its utility is limited by systemic toxicity and dose-dependent pneumonitis able to progress to lung fibrosis. The latter can affect up to nearly 50% of the total patient population, out of which 3% will die. We propose to improve BLM delivery by tethering it to an efficient delivery vector. Adenovirus (Ad dodecahedron base (DB is a particulate vector composed of 12 copies of a pentameric viral protein responsible for virus penetration. The vector efficiently penetrates the plasma membrane, is liberated in the cytoplasm and has a propensity to concentrate around the nucleus; up to 300000 particles can be observed in one cell in vitro. PRINCIPAL FINDINGS: Dodecahedron (Dd structure is preserved at up to about 50 degrees C at pH 7-8 and during dialysis, freezing and drying in the speed-vac in the presence of 150 mM ammonium sulfate, as well as during lyophilization in the presence of cryoprotectants. The vector is also stable in human serum for 2 h at 37 degrees C. We prepared a Dd-BLM conjugate which upon penetration induced death of transformed cells. Similarly to free bleomycin, Dd-BLM caused dsDNA breaks. Significantly, effective cytotoxic concentration of BLM delivered with Dd was 100 times lower than that of free bleomycin. CONCLUSIONS/SIGNIFICANCE: Stability studies show that Dds can be conveniently stored and transported, and can potentially be used for therapeutic purposes under various climates. Successful BLM delivery by Ad Dds demonstrates that the use of virus like particle (VLP results in significantly improved drug bioavailability. These experiments open new vistas for delivery of non-permeant labile drugs.

  7. Improvement of oncolytic adenovirus vectors through genetic capsid modifications

    NARCIS (Netherlands)

    Vrij, Jeroen de

    2012-01-01

    Recombinant viral vectors hold great promise in the field of cancer gene therapy. While a plethora of viruses is being evaluated as oncolytic agents, human adenoviruses of serotype 5 (HAdV-5) are among the most popular of viruses to be developed. Although clinical studies have demonstrated safety of

  8. Viral Diseases of Public Health Importance in India: Current Priorities with Special Emphasis on Prevention

    Directory of Open Access Journals (Sweden)

    Mageshbabu Ramamurthy

    2017-10-01

    Full Text Available India faces problems with both communicable and non communicable diseases. The major non communicable diseases are cancer, cardiovascular disease and diabetes mellitus. This article focuses on communicable diseases (infectious diseases especially viral infections of public health importance. The infections include bacterial, parasitic and viruses. It could be said that fungal infections by the nature of the spread are not of public health concern. The viral infections are transmitted by the respiratory route, water and food borne route, vectors and blood and blood products, sexual route and are of major concern. Efforts are aimed at early detection, prevention by use of vaccines and sentinel surveillance. For the success of public health programmes sentinel surveillance of diseases is mandatory. India has got several programme initiatives addressing the problem. The programs include IDSP, VBDCP and NACO. The approximate cumulative annual prevalence of infectious disease in India ranges from 100 to 200 million individuals affected in one year. India should aim to improve case detection by strengthening laboratory services with manpower training and nationwide quality control scheme, sentinel surveillance activity and prevention by improving the efficiency and scope of UIP. Also, creation of a single portal of infectious disease data handling hub to collect information from different sources will help avoid overlap and duplication of reporting.

  9. Functional responses and prey-stage preferences of a predatory gall midge and two predacious mites wtih twospotted spider mites, Tetranychus urticae as host

    Science.gov (United States)

    The twospotted spider mite, Tetranychus urticae (Acari: Tetranychidae), is an important pest of vegetables and other crops. This study was conducted to evaluate and compare the potential role of three commercially available predators, predatory gall midge, Feltiella acarisuga (Vallot) (Diptera: Ceci...

  10. Flavivirus RNAi suppression: decoding non-coding RNA.

    Science.gov (United States)

    Pijlman, Gorben P

    2014-08-01

    Flaviviruses are important human pathogens that are transmitted by invertebrate vectors, mostly mosquitoes and ticks. During replication in their vector, flaviviruses are subject to a potent innate immune response known as antiviral RNA interference (RNAi). This defense mechanism is associated with the production of small interfering (si)RNA that lead to degradation of viral RNA. To what extent flaviviruses would benefit from counteracting antiviral RNAi is subject of debate. Here, the experimental evidence to suggest the existence of flavivirus RNAi suppressors is discussed. I will highlight the putative role of non-coding, subgenomic flavivirus RNA in suppression of RNAi in insect and mammalian cells. Novel insights from ongoing research will reveal how arthropod-borne viruses modulate innate immunity including antiviral RNAi. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Non-viral causes of liver cancer: does obesity led inflammation play a role?

    Science.gov (United States)

    Alzahrani, Badr; Iseli, Tristan J; Hebbard, Lionel W

    2014-04-10

    Liver cancer is the fifth most common cancer worldwide and the third most common cause of cancer mortality. Hepatocellular carcinoma (HCC) accounts for around 90% of primary liver cancers. Chronic infection with hepatitis B and hepatitis C viruses are two of most common causes of liver cancer. However, there are non-viral factors that are associated with liver cancer development. Numerous population studies have revealed strong links between obesity and the development of liver cancer. Obesity can alter hepatic pathology, metabolism and promote inflammation, leading to nonalcoholic fatty liver disease (NAFLD) and the progression to the more severe form, non-alcoholic steatohepatitis (NASH). NASH is characterised by prominent steatosis and inflammation, and can lead to HCC. Here, we discuss the role of obesity in inflammation and the principal signalling mechanisms involved in HCC formation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Contagious Content: Viral Video Ads Identification of Content Characteristics that Help Online Video Advertisements Go Viral

    Directory of Open Access Journals (Sweden)

    Yentl Knossenburg

    2016-12-01

    Full Text Available Why do some online video advertisements go viral while others remain unnoticed? What kind of video content keeps the viewer interested and motivated to share? Many companies have realized the need to innovate their marketing strategies and have embraced the newest ways of using technology, as the Internet, to their advantage as in the example of virality. Yet few marketers actually understand how, and academic literature on this topic is still in development. This study investigated which content characteristics distinguish successful from non-successful online viral video advertisements by analyzing 641 cases using Structural Equation Modeling. Results show that Engagement and Surprise are two main content characteristics that significantly increase the chance of online video advertisements to go viral.  

  13. Quasi-stability of a vector trajectorial problem with non-linear partial criteria

    Directory of Open Access Journals (Sweden)

    Vladimir A. Emelichev

    2003-10-01

    Full Text Available Multi-objective (vector combinatorial problem of finding the Pareto set with four kinds of non-linear partial criteria is considered. Necessary and sufficient conditions of that kind of stability of the problem (quasi-stability are obtained. The problem is a discrete analogue of the lower semicontinuity by Hausdorff of the optimal mapping. Mathematics Subject Classification 2000: 90C10, 90C05, 90C29, 90C31.

  14. Optical property of few-mode fiber with non-uniform refractive index for cylindrical vector beam generation

    Science.gov (United States)

    Li, Hongye; Wan, Hongdan; Zhang, Zuxing; Sun, Bing; Zhang, Lin

    2016-10-01

    This paper investigates optical properties of few-mode fiber with non-uniform refractive index, namely: the few mode fiber with U-shape refractive index and the two-mode and four-mode few-mode fiber with bent radius. Finite element method is used to analyze the mode distributions based on their non-uniform refractive index. Effective mode control can be achieved through these few mode fibers to achieve vector beam generation. Finally, reflection spectra of a few-mode fiber Bragg grating are calculated theoretically and then measured under different bending conditions. Experimental results are in good accordance with the theoretical ones. These few mode fibers show potential applications in generation of cylindrical vector beam both for optical lasing and sensing systems.

  15. A metagenomic survey of viral abundance and diversity in mosquitoes from Hubei province.

    Directory of Open Access Journals (Sweden)

    Chenyan Shi

    Full Text Available Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process.

  16. A Metagenomic Survey of Viral Abundance and Diversity in Mosquitoes from Hubei Province

    Science.gov (United States)

    Shi, Chenyan; Liu, Yi; Hu, Xiaomin; Xiong, Jinfeng; Zhang, Bo; Yuan, Zhiming

    2015-01-01

    Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process. PMID:26030271

  17. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize.

    Science.gov (United States)

    Mei, Yu; Zhang, Chunquan; Kernodle, Bliss M; Hill, John H; Whitham, Steven A

    2016-06-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. A simple trapping method to estimate abundances of blood-sucking flying insects in avian nests

    NARCIS (Netherlands)

    Tomás, G.; Merino, S.; Martínez-de la Puente, J.; Moreno, J.; Morales, J.; Lobato, E.

    2008-01-01

    [KEYWORDS: birds; biting midges; blackflies; blood parasite-insect vector-vertebrate host relationships; Ceratopogonidae; Culicoides; distance to water sources; insecticide treatment; sampling methods; Simuliidae

  19. Response of Non-Linear Systems to Renewal Impulses by Path Integration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Iwankiewicz, R.

    The cell-to-cell mapping (path integration) technique has been devised for MDOF non-linear and non-hysteretic systems subjected to random trains of impulses driven by an ordinary renewal point process with gamma-distributed integer parameter interarrival times (an Erlang process). Since the renewal...... point process has not independent increments the state vector of the system, consisting of the generalized displacements and velocities, is not a Markov process. Initially it is shown how the indicated systems can be converted to an equivalent Poisson driven system at the expense of introducing...... additional discrete-valued state variables for which the stochastic equations are also formulated....

  20. Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice.

    Science.gov (United States)

    Strimpakos, Georgios; Corbi, Nicoletta; Pisani, Cinzia; Di Certo, Maria Grazia; Onori, Annalisa; Luvisetto, Siro; Severini, Cinzia; Gabanella, Francesca; Monaco, Lucia; Mattei, Elisabetta; Passananti, Claudio

    2014-09-01

    Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor "Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD. © 2014 Wiley Periodicals, Inc.

  1. Generalized 2-vector spaces and general linear 2-groups

    OpenAIRE

    Elgueta, Josep

    2008-01-01

    In this paper a notion of {\\it generalized 2-vector space} is introduced which includes Kapranov and Voevodsky 2-vector spaces. Various kinds of generalized 2-vector spaces are considered and examples are given. The existence of non free generalized 2-vector spaces and of generalized 2-vector spaces which are non Karoubian (hence, non abelian) categories is discussed, and it is shown how any generalized 2-vector space can be identified with a full subcategory of an (abelian) functor category ...

  2. Gauge anomaly with vector and axial-vector fields in 6D curved space

    Science.gov (United States)

    Yajima, Satoshi; Eguchi, Kohei; Fukuda, Makoto; Oka, Tomonori

    2018-03-01

    Imposing the conservation equation of the vector current for a fermion of spin 1/2 at the quantum level, a gauge anomaly for the fermion coupling with non-Abelian vector and axial-vector fields in 6D curved space is expressed in tensorial form. The anomaly consists of terms that resemble the chiral U(1) anomaly and the commutator terms that disappear if the axial-vector field is Abelian.

  3. Effective genetic modification and differentiation of hMSCs upon controlled release of rAAV vectors using alginate/poloxamer composite systems.

    Science.gov (United States)

    Díaz-Rodríguez, P; Rey-Rico, A; Madry, H; Landin, M; Cucchiarini, M

    2015-12-30

    Viral vectors are common tools in gene therapy to deliver foreign therapeutic sequences in a specific target population via their natural cellular entry mechanisms. Incorporating such vectors in implantable systems may provide strong alternatives to conventional gene transfer procedures. The goal of the present study was to generate different hydrogel structures based on alginate (AlgPH155) and poloxamer PF127 as new systems to encapsulate and release recombinant adeno-associated viral (rAAV) vectors. Inclusion of rAAV in such polymeric capsules revealed an influence of the hydrogel composition and crosslinking temperature upon the vector release profiles, with alginate (AlgPH155) structures showing the fastest release profiles early on while over time vector release was more effective from AlgPH155+PF127 [H] capsules crosslinked at a high temperature (50°C). Systems prepared at room temperature (AlgPH155+PF127 [C]) allowed instead to achieve a more controlled release profile. When tested for their ability to target human mesenchymal stem cells, the different systems led to high transduction efficiencies over time and to gene expression levels in the range of those achieved upon direct vector application, especially when using AlgPH155+PF127 [H]. No detrimental effects were reported on either cell viability or on the potential for chondrogenic differentiation. Inclusion of PF127 in the capsules was also capable of delaying undesirable hypertrophic cell differentiation. These findings are of promising value for the further development of viral vector controlled release strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Towards a resource-based habitat approach for spatial modelling of vector-borne disease risks.

    Science.gov (United States)

    Hartemink, Nienke; Vanwambeke, Sophie O; Purse, Bethan V; Gilbert, Marius; Van Dyck, Hans

    2015-11-01

    Given the veterinary and public health impact of vector-borne diseases, there is a clear need to assess the suitability of landscapes for the emergence and spread of these diseases. Current approaches for predicting disease risks neglect key features of the landscape as components of the functional habitat of vectors or hosts, and hence of the pathogen. Empirical-statistical methods do not explicitly incorporate biological mechanisms, whereas current mechanistic models are rarely spatially explicit; both methods ignore the way animals use the landscape (i.e. movement ecology). We argue that applying a functional concept for habitat, i.e. the resource-based habitat concept (RBHC), can solve these issues. The RBHC offers a framework to identify systematically the different ecological resources that are necessary for the completion of the transmission cycle and to relate these resources to (combinations of) landscape features and other environmental factors. The potential of the RBHC as a framework for identifying suitable habitats for vector-borne pathogens is explored and illustrated with the case of bluetongue virus, a midge-transmitted virus affecting ruminants. The concept facilitates the study of functional habitats of the interacting species (vectors as well as hosts) and provides new insight into spatial and temporal variation in transmission opportunities and exposure that ultimately determine disease risks. It may help to identify knowledge gaps and control options arising from changes in the spatial configuration of key resources across the landscape. The RBHC framework may act as a bridge between existing mechanistic and statistical modelling approaches. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  5. A potyvirus-based gene vector allows producing active human S-COMT and animal GFP, but not human sorcin, in vector-infected plants.

    Science.gov (United States)

    Kelloniemi, Jani; Mäkinen, Kristiina; Valkonen, Jari P T

    2006-05-01

    Potato virus A (PVA), a potyvirus with a (+)ssRNA genome translated to a large polyprotein, was engineered and used as a gene vector for expression of heterologous proteins in plants. Foreign genes including jellyfish GFP (Aequorea victoria) encoding the green fluorescent protein (GFP, 27 kDa) and the genes of human origin (Homo sapiens) encoding a soluble resistance-related calcium-binding protein (sorcin, 22 kDa) and the catechol-O-methyltransferase (S-COMT; 25 kDa) were cloned between the cistrons for the viral replicase and coat protein (CP). The inserts caused no adverse effects on viral infectivity and virulence, and the inserted sequences remained intact in progeny viruses in the systemically infected leaves. The heterologous proteins were released from the viral polyprotein following cleavage by the main viral proteinase, NIa, at engineered proteolytic processing sites flanking the insert. Active GFP, as indicated by green fluorescence, and S-COMT with high levels of enzymatic activity were produced. In contrast, no sorcin was detected despite the expected equimolar amounts of the foreign and viral proteins being expressed as a polyprotein. These data reveal inherent differences between heterologous proteins in their suitability for production in plants.

  6. Tailored HIV-1 vectors for genetic modification of primary human dendritic cells and monocytes.

    Science.gov (United States)

    Durand, Stéphanie; Nguyen, Xuan-Nhi; Turpin, Jocelyn; Cordeil, Stephanie; Nazaret, Nicolas; Croze, Séverine; Mahieux, Renaud; Lachuer, Joël; Legras-Lachuer, Catherine; Cimarelli, Andrea

    2013-01-01

    Monocyte-derived dendritic cells (MDDCs) play a key role in the regulation of the immune system and are the target of numerous gene therapy applications. The genetic modification of MDDCs is possible with human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LVs) but requires high viral doses to bypass their natural resistance to viral infection, and this in turn affects their physiological properties. To date, a single viral protein is able to counter this restrictive phenotype, Vpx, a protein derived from members of the HIV-2/simian immunodeficiency virus SM lineage that counters at least two restriction factors present in myeloid cells. By tagging Vpx with a short heterologous membrane-targeting domain, we have obtained HIV-1 LVs incorporating high levels of this protein (HIV-1-Src-Vpx). These vectors efficiently transduce differentiated MDDCs and monocytes either as previously purified populations or as populations within unsorted peripheral blood mononuclear cells (PBMCs). In addition, these vectors can be efficiently pseudotyped with receptor-specific envelopes, further restricting their cellular tropism almost uniquely to MDDCs. Compared to conventional HIV-1 LVs, these novel vectors allow for an efficient genetic modification of MDDCs and, more importantly, do not cause their maturation or affect their survival, which are unwanted side effects of the transduction process. This study describes HIV-1-Src-Vpx LVs as a novel potent tool for the genetic modification of differentiated MDDCs and of circulating monocyte precursors with strong potential for a wide range of gene therapy applications.

  7. Proteomic Analysis of Interaction between a Plant Virus and Its Vector Insect Reveals New Functions of Hemipteran Cuticular Protein.

    Science.gov (United States)

    Liu, Wenwen; Gray, Stewart; Huo, Yan; Li, Li; Wei, Taiyun; Wang, Xifeng

    2015-08-01

    Numerous viruses can be transmitted by their corresponding vector insects; however, the molecular mechanisms enabling virus transmission by vector insects have been poorly understood, especially the identity of vector components interacting with the virus. Here, we used the yeast two-hybrid system to study proteomic interactions of a plant virus (Rice stripe virus, RSV, genus Tenuivirus) with its vector insect, small brown planthopper (Laodelphax striatellus). Sixty-six proteins of L. striatellus that interacted with the nucleocapsid protein (pc3) of RSV were identified. A virus-insect interaction network, constructed for pc3 and 29 protein homologs of Drosophila melanogaster, suggested that nine proteins might directly interact with pc3. Of the 66 proteins, five (atlasin, a novel cuticular protein, jagunal, NAC domain protein, and vitellogenin) were most likely to be involved in viral movement, replication, and transovarial transmission. This work also provides evidence that the novel cuticular protein, CPR1, from L. striatellus is essential for RSV transmission by its vector insect. CPR1 binds the nucleocapsid protein (pc3) of RSV both in vivo and in vitro and colocalizes with RSV in the hemocytes of L. striatellus. Knockdown of CPR1 transcription using RNA interference resulted in a decrease in the concentration of RSV in the hemolymph, salivary glands and in viral transmission efficiency. These data suggest that CPR1 binds RSV in the insect and stabilizes the viral concentration in the hemolymph, perhaps to protect the virus or to help move the virus to the salivary tissues. Our studies provide direct experimental evidence that viruses can use existing vector proteins to aid their survival in the hemolymph. Identifying these putative vector molecules should lead to a better understanding of the interactions between viruses and vector insects. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Nanostructured silicate substituted calcium phosphate (NanoSiCaPs) nanoparticles — Efficient calcium phosphate based non-viral gene delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, Sudhanshu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States); McGowan Institute of Regenerative Medicine, University of Pittsburgh, PA 15261 (United States); Roy, Abhijit; Hong, Daeho [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States); McGowan Institute of Regenerative Medicine, University of Pittsburgh, PA 15261 (United States)

    2016-12-01

    Nanostructured ceramic particles, particularly, nanoparticles of calcium phosphate (CaP) remain an attractive option among the various types of non-viral gene delivery vectors studied because of their safety, biocompatibility, biodegradability, and ease of handling as well as their adsorptive capacity for DNA. We have accordingly developed an enhanced version of nanostructured calcium phosphates (NanoCaPs), by substituting known amounts of silicate for phosphate in the hydroxyapatite (HA) lattice (NanoSiCaPs). Results indicate that in addition to the excellent transfection levels exhibited by un-substituted NanoCaPs alone in vitro, an additional 20–50% increase in transfection is observed for NanoCaPs containing 8.3–50 mol% silicate aptly called NanoSiCaPs, owing to its rapid dissolution properties enabling nanoparticles escaping the lysosomal degradation. However, high silicate substitution (> 50 mol%) resulted in a drastic decline in transfection as the synthesized NanoCaPs deviated far from the characteristic hydroxyapatite phase formed as evidenced by the materials characterization results. - Highlights: • Successful demonstration of nanostructured NanoSiCaPs formation • Demonstration of superior transfection of NanoSiCaPs contrasted to NanoCaPs • Silicate substitution leads to smaller aggregates of nanoparticle complexes. • Enhanced dissolution of NanoSiCaPs demonstrated • Faster NanoSiCaPs dissolution leads to escape of pDNA from lysosomal degradation.

  9. An integrated approach to elucidate the intra-viral and viral-cellular protein interaction networks of a gamma-herpesvirus.

    Directory of Open Access Journals (Sweden)

    Shaoying Lee

    2011-10-01

    Full Text Available Genome-wide yeast two-hybrid (Y2H screens were conducted to elucidate the molecular functions of open reading frames (ORFs encoded by murine γ-herpesvirus 68 (MHV-68. A library of 84 MHV-68 genes and gene fragments was generated in a Gateway entry plasmid and transferred to Y2H vectors. All possible pair-wise interactions between viral proteins were tested in the Y2H assay, resulting in the identification of 23 intra-viral protein-protein interactions (PPIs. Seventy percent of the interactions between viral proteins were confirmed by co-immunoprecipitation experiments. To systematically investigate virus-cellular protein interactions, the MHV-68 Y2H constructs were screened against a cellular cDNA library, yielding 243 viral-cellular PPIs involving 197 distinct cellar proteins. Network analyses indicated that cellular proteins targeted by MHV-68 had more partners in the cellular PPI network and were located closer to each other than expected by chance. Taking advantage of this observation, we scored the cellular proteins based on their network distances from other MHV-68-interacting proteins and segregated them into high (Y2H-HP and low priority/not-scored (Y2H-LP/NS groups. Significantly more genes from Y2H-HP altered MHV-68 replication when their expression was inhibited with siRNAs (53% of genes from Y2H-HP, 21% of genes from Y2H-LP/NS, and 16% of genes randomly chosen from the human PPI network; p<0.05. Enriched Gene Ontology (GO terms in the Y2H-HP group included regulation of apoptosis, protein kinase cascade, post-translational protein modification, transcription from RNA polymerase II promoter, and IκB kinase/NFκB cascade. Functional validation assays indicated that PCBP1, which interacted with MHV-68 ORF34, may be involved in regulating late virus gene expression in a manner consistent with the effects of its viral interacting partner. Our study integrated Y2H screening with multiple functional validation approaches to create

  10. Immune responses to rAAV6: The influence of canine parvovirus vaccination and neonatal administration of viral vector

    Directory of Open Access Journals (Sweden)

    Andrea L H Arnett

    2011-11-01

    Full Text Available Recombinant adeno-associated viral (rAAV vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV. rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, one month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice.

  11. Geographic range of vector-borne infections and their vectors: the role of African wildlife.

    Science.gov (United States)

    van Vuuren, M; Penzhorn, B L

    2015-04-01

    The role of African wildlife in the occurrence of vector-borne infections in domestic animals has gained renewed interest as emerging and re-emerging infections occur worldwide at an increasing rate. In Africa, biodiversity conservation and the expansion of livestock production have increased the risk of transmitting vector-borne infections between wildlife and livestock. The indigenous African pathogens with transboundary potential, such as Rift Valley fever virus, African horse sickness virus, bluetongue virus, lumpy skin disease virus, African swine fever virus, and blood-borne parasites have received the most attention. There is no evidence for persistent vector-borne viral infections in African wildlife. For some viral infections, wildlife may act as a reservoir through the inter-epidemic circulation of viruses with mild or subclinical manifestations. Wildlife may also act as introductory or transporting hosts when moved to new regions, e.g. for lumpy skin disease virus, Rift Valley fever virus and West Nile virus. Wildlife may also act as amplifying hosts when exposed to viruses in the early part of the warm season when vectors are active, with spillover to domestic animals later in the season, e.g. with bluetongue and African horse sickness. Some tick species found on domestic animals are more abundant on wildlife hosts; some depend on wildlife hosts to complete their life cycle. Since the endemic stability of a disease depends on a sufficiently large tick population to ensure that domestic animals become infected at an early age, the presence of wildlife hosts that augment tick numbers may be beneficial. Many wild ungulate species are reservoirs of Anaplasma spp., while the role of wildlife in the epidemiology of heartwater (Ehrlichia ruminantium infection) has not been elucidated. Wild ungulates are not usually reservoirs of piroplasms that affect livestock; however, there are two exceptions: zebra, which are reservoirs of Babesia caballi and Theileria

  12. Targeting of breast metastases using a viral gene vector with tumour-selective transcription.

    LENUS (Irish Health Repository)

    Rajendran, Simon

    2012-01-31

    BACKGROUND: Adeno-associated virus (AAV) vectors have significant potential as gene delivery vectors for cancer gene therapy. However, broad AAV2 tissue tropism results in nonspecific gene expression. MATERIALS AND METHODS: We investigated use of the C-X-C chemokine receptor type 4 (CXCR4) promoter to restrict AAV expression to tumour cells, in subcutaneous MCF-7 xenograft mouse models of breast cancer and in patient samples, using bioluminescent imaging and flow cytometric analysis. RESULTS: Higher transgene expression levels were observed in subcutaneous MCF-7 tumours relative to normal tissue (muscle) using the CXCR4 promoter, unlike a ubiquitously expressing Cytomegalovirus promoter construct, with preferential AAVCXCR4 expression in epithelial tumour and CXCR4-positive cells. Transgene expression following intravenously administered AAVCXCR4 in a model of liver metastasis was detected specifically in livers of tumour bearing mice. Ex vivo analysis using patient samples also demonstrated higher AAVCXCR4 expression in tumour compared with normal liver tissue. CONCLUSION: This study demonstrates for the first time, the potential for systemic administration of AAV2 vector for tumour-selective gene therapy.

  13. Fibroscore for the non-invasive assessment of liver fibrosis in chronic viral hepatitis

    International Nuclear Information System (INIS)

    Ashraf, S.; Ahmed, S.A.

    2012-01-01

    Objective: To evaluate the predictive value of a set of laboratory markers for the assessment of liver fibrosis in chronic viral hepatitis patients. Study Design: Cross-sectional study. Place and Duration of Study: Baqai Medical University, Combined Military Hospital, Malir, Karachi, from November 2006 to May 2008. Methodology: Twenty laboratory parameters were measured in 100 treatment-native chronic viral hepatitis patients who also had liver biopsy performed. Descriptive statistics, areas under the ROC's curves, and multivariate logistic regression analysis identified a fibrosis panel, a set of five most useful markers, for the assessment of stages of fibrosis, stage 0 to stage 4. The fibrosis index, FibroScore, consisted of bilirubin, Gamma glutamyl transferase, Hyaluronic acid, alpha 2 macroglobulin, and platelets evaluation. Results: A score of > 0.5 predicted stages 2, 3 and 4, with a sensitivity of 82%, and specificity of 92%. A score > 0.5 for stages 3 and 4 had a sensitivity of 85%, and specificity of 89%. At a score of > 0.80, for stages 3 and 4, the sensitivity was 70%, specificity was 97%, and PPV 87% (there was > 85% possibility of presence of stage 3 or 4). A score of < 0.20 predicted the absence of stages 2, 3, and 4 with a sensitivity of 91%, specificity of 86%, and NPV of 96%. Scores from 0.00 to 0.10 almost certainly ruled out the presence of stages 2-4 (NPV=98%). The areas under the ROC curve were: 0.808 for stage 2; 0.938 for stage 3; and 0.959 for stage 4. Conclusion: A combination of 5 markers is very useful in predicting various stages of liver fibrosis, and is helpful in the non-invasive assessment of liver fibrosis in chronic viral hepatitis patients. (author)

  14. Expression of Separate Proteins in the Same Plant Leaves and Cells Using Two Independent Virus-Based Gene Vectors

    Directory of Open Access Journals (Sweden)

    Maria R. Mendoza

    2017-11-01

    Full Text Available Plant viral vectors enable the expression of proteins at high levels in a relatively short time. For many purposes (e.g., cell biological interaction studies it may be desirable to express more than one protein in a single cell but that is often not feasible when using a single virus vector. Such a co-expression strategy requires the simultaneous delivery by two compatible and non-competitive viruses that can co-exist to each express a separate protein. Here, we report on the use of two agro-launchable coat-protein gene substitution GFP-expressing virus vector systems based on Tomato bushy stunt virus (TBSV referred to as TG, and Tobacco mosaic virus (TMV annotated as TRBO-G. TG expressed GFP in Nicotiana benthamiana, tomato, lettuce and cowpea, whereas expression from TRBO-G was detected only in the first two species. Upon co-infiltration of the two vectors co-expression was monitored by: molecular detection of the two slightly differently sized GFPs, suppressor-complementation assays, and using TG in combination with TRBO-RFP. All the results revealed that in N. benthamiana and tomato the TBSV and TMV vectors accumulated and expressed proteins in the same plants, the same leaves, and in the same cells. Therefore, co-expression by these two vectors provides a platform for fast and high level expression of proteins to study their cell biology or other properties.

  15. A novel DNA vaccine technology conveying protection against a lethal herpes simplex viral challenge in mice.

    Directory of Open Access Journals (Sweden)

    Julie L Dutton

    Full Text Available While there are a number of licensed veterinary DNA vaccines, to date, none have been licensed for use in humans. Here, we demonstrate that a novel technology designed to enhance the immunogenicity of DNA vaccines protects against lethal herpes simplex virus 2 (HSV-2 challenge in a murine model. Polynucleotides were modified by use of a codon optimization algorithm designed to enhance immune responses, and the addition of an ubiquitin-encoding sequence to target the antigen to the proteasome for processing and to enhance cytotoxic T cell responses. We show that a mixture of these codon-optimized ubiquitinated and non-ubiquitinated constructs encoding the same viral envelope protein, glycoprotein D, induced both B and T cell responses, and could protect against lethal viral challenge and reduce ganglionic latency. The optimized vaccines, subcloned into a vector suitable for use in humans, also provided a high level of protection against the establishment of ganglionic latency, an important correlate of HSV reactivation and candidate endpoint for vaccines to proceed to clinical trials.

  16. Analysis of host genetic diversity and viral entry as sources of between-host variation in viral load

    Science.gov (United States)

    Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael

    2012-01-01

    Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.

  17. Discovery of the first maize-infecting mastrevirus in the Americas using a vector-enabled metagenomics approach.

    Science.gov (United States)

    Fontenele, Rafaela S; Alves-Freitas, Dione M T; Silva, Pedro I T; Foresti, Josemar; Silva, Paulo R; Godinho, Márcio T; Varsani, Arvind; Ribeiro, Simone G

    2018-01-01

    The genus Mastrevirus (family Geminiviridae) is composed of single-stranded DNA viruses that infect mono- and dicotyledonous plants and are transmitted by leafhoppers. In South America, there have been only two previous reports of mastreviruses, both identified in sweet potatoes (from Peru and Uruguay). As part of a general viral surveillance program, we used a vector-enabled metagenomics (VEM) approach and sampled leafhoppers (Dalbulus maidis) in Itumbiara (State of Goiás), Brazil. High-throughput sequencing of viral DNA purified from the leafhopper sample revealed mastrevirus-like contigs. Using a set of abutting primers, a 2746-nt circular genome was recovered. The circular genome has a typical mastrevirus genome organization and shares 99% pairwise identity with the one from the leafhopper. This is the first report of a maize-infecting mastrevirus in the Americas, the first identified in a non-vegetatively propagated mastrevirus host in South America, and the first mastrevirus to be identified in Brazil.

  18. The quest for a non-vector psyllid: Natural variation in acquisition and transmission of the huanglongbing pathogen 'Candidatus Liberibacter asiaticus' by Asian citrus psyllid isofemale lines

    Science.gov (United States)

    Genetic variability in insect vectors is valuable to study vector competence determinants and to select non-vector populations that may help reduce the spread of vector-borne pathogens. We collected and tested vector competency of 15 isofemale lines of Asian citrus psyllid (ACP) Diaphorina citri, v...

  19. Rift Valley fever potential mosquito vectors and their infection status ...

    African Journals Online (AJOL)

    Background: Rift Valley fever (RVF) is a mosquito-borne viral zoonotic disease. Rift Valley fever virus (RVFV) has been isolated from more than 40 species of mosquitoes from eight genera. This study was conducted to determine the abundance of potential mosquito vectors and their RVFV infection status in Ngorongoro ...

  20. Genetic and biochemical basis of Gall Midge resistance in some cultivars of Indica Rice. Final report for the period 1 October 1980 - 30 November 1986

    International Nuclear Information System (INIS)

    Reddy, G.M.

    1986-01-01

    The stability of high productivity of modern rice varieties is greatly affected by insect pests. Rice gall midge is a serious insect pest of rice that is prevalent in several south eastern asian countries. Gall midge resistance has been mainly attributed to antibiosis. No progress has so far been made in identifying the exact biochemical nature of resistance. In Indica subspecies the understanding of chemical nature of disease would be helpful in the control of the disease and also in breeding programme aimed at developing resistance varieties. Studies were undertaken to establish the biochemical basis of resistance. Biochemical characterization of resistant and susceptible varieties were carried out. The parameters considered were: total sugar and reducing sugar content, total phenol content, amino acid profile, post infectional changes in sugar and phenol, isozyme studies. 2 figs, 6 tabs

  1. Genetic and biochemical basis of Gall Midge resistance in some cultivars of Indica Rice. Final report for the period 1 October 1980 - 30 November 1986

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, G M [Osmania Univ., Hyderabad (India). Dept. of Genetics

    1987-12-31

    The stability of high productivity of modern rice varieties is greatly affected by insect pests. Rice gall midge is a serious insect pest of rice that is prevalent in several south eastern asian countries. Gall midge resistance has been mainly attributed to antibiosis. No progress has so far been made in identifying the exact biochemical nature of resistance. In Indica subspecies the understanding of chemical nature of disease would be helpful in the control of the disease and also in breeding programme aimed at developing resistance varieties. Studies were undertaken to establish the biochemical basis of resistance. Biochemical characterization of resistant and susceptible varieties were carried out. The parameters considered were: total sugar and reducing sugar content, total phenol content, amino acid profile, post infectional changes in sugar and phenol, isozyme studies. 2 figs, 6 tabs.

  2. System for Automated Calibration of Vector Modulators

    Science.gov (United States)

    Lux, James; Boas, Amy; Li, Samuel

    2009-01-01

    Vector modulators are used to impose baseband modulation on RF signals, but non-ideal behavior limits the overall performance. The non-ideal behavior of the vector modulator is compensated using data collected with the use of an automated test system driven by a LabVIEW program that systematically applies thousands of control-signal values to the device under test and collects RF measurement data. The technology innovation automates several steps in the process. First, an automated test system, using computer controlled digital-to-analog converters (DACs) and a computer-controlled vector network analyzer (VNA) systematically can apply different I and Q signals (which represent the complex number by which the RF signal is multiplied) to the vector modulator under test (VMUT), while measuring the RF performance specifically, gain and phase. The automated test system uses the LabVIEW software to control the test equipment, collect the data, and write it to a file. The input to the Lab - VIEW program is either user-input for systematic variation, or is provided in a file containing specific test values that should be fed to the VMUT. The output file contains both the control signals and the measured data. The second step is to post-process the file to determine the correction functions as needed. The result of the entire process is a tabular representation, which allows translation of a desired I/Q value to the required analog control signals to produce a particular RF behavior. In some applications, corrected performance is needed only for a limited range. If the vector modulator is being used as a phase shifter, there is only a need to correct I and Q values that represent points on a circle, not the entire plane. This innovation has been used to calibrate 2-GHz MMIC (monolithic microwave integrated circuit) vector modulators in the High EIRP Cluster Array project (EIRP is high effective isotropic radiated power). These calibrations were then used to create

  3. Optimal vaccination scenarios against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene

    that would increase distance between infectious and susceptible hosts. This can be done very efficiently on a regional scale if the incursion route is well specified. However as the long-range spread of midge borne disease is still poorly quantified, more robust national vaccination schemes seems preferable...

  4. Clonal Dominance With Retroviral Vector Insertions Near the ANGPT1 and ANGPT2 Genes in a Human Xenotransplant Mouse Model

    Directory of Open Access Journals (Sweden)

    Reinhard Haemmerle

    2014-01-01

    Full Text Available Insertional leukemogenesis represents the major risk factor of hematopoietic stem cell (HSC based gene therapy utilizing integrating viral vectors. To develop a pre-clinical model for the evaluation of vector-related genotoxicity directly in the relevant human target cells, cord blood CD34+ HSCs were transplanted into immunodeficient NOD.SCID.IL2rg−/− (NSG mice after transduction with an LTR-driven gammaretroviral vector (GV. Furthermore, we specifically investigated the effect of prolonged in vitro culture in the presence of cytokines recently described to promote HSC expansion or maintenance. Clonality of human hematopoiesis in NSG mice was assessed by high throughput insertion site analyses and validated by insertion site-specific PCR depicting a GV typical integration profile with insertion sites resembling to 25% those of clinical studies. No overrepresentation of integrations in the vicinity of cancer-related genes was observed, however, several dominant clones were identified including two clones harboring integrations in the ANGPT1 and near the ANGPT2 genes associated with deregulated ANGPT1- and ANGPT2-mRNA levels. While these data underscore the potential value of the NSG model, our studies also identified short-comings such as overall low numbers of engrafted HSCs, limited in vivo observation time, and the challenges of in-depth insertion site analyses by low contribution of gene modified hematopoiesis.

  5. Serine Proteases-Like Genes in the Asian Rice Gall Midge Show Differential Expression in Compatible and Incompatible Interactions with Rice

    Directory of Open Access Journals (Sweden)

    Suresh Nair

    2011-04-01

    Full Text Available The Asian rice gall midge, Orseolia oryzae (Wood-Mason, is a serious pest of rice. Investigations into the gall midge-rice interaction will unveil the underlying molecular mechanisms which, in turn, can be used as a tool to assist in developing suitable integrated pest management strategies. The insect gut is known to be involved in various physiological and biological processes including digestion, detoxification and interaction with the host. We have cloned and identified two genes, OoprotI and OoprotII, homologous to serine proteases with the conserved His87, Asp136 and Ser241 residues. OoProtI shared 52.26% identity with mosquito-type trypsin from Hessian fly whereas OoProtII showed 52.49% identity to complement component activated C1s from the Hessian fly. Quantitative real time PCR analysis revealed that both the genes were significantly upregulated in larvae feeding on resistant cultivar than in those feeding on susceptible cultivar. These results provide an opportunity to understand the gut physiology of the insect under compatible or incompatible interactions with the host. Phylogenetic analysis grouped these genes in the clade containing proteases of phytophagous insects away from hematophagous insects.

  6. Contaminated sediments and bioassay responses of three macroinvertebrates, the midge larva Chironomus riparius, the water louse Asellus aquaticus and the mayfly nymph Ephoron virgo

    NARCIS (Netherlands)

    Lange, de H.J.; Haas, de E.M.; Maas, H.; Peeters, E.T.H.M.

    2005-01-01

    Bioassays are widely used to estimate ecological risks of contaminated sediments. We compared the results of three whole sediment bioassays, using the midge larva Chironomus riparius, the water louse Asellus aquaticus, and the mayfly nymph Ephoron virgo. We used sediments from sixteen locations in

  7. Quantization of the minimal and non-minimal vector field in curved space

    OpenAIRE

    Toms, David J.

    2015-01-01

    The local momentum space method is used to study the quantized massive vector field (the Proca field) with the possible addition of non-minimal terms. Heat kernel coefficients are calculated and used to evaluate the divergent part of the one-loop effective action. It is shown that the naive expression for the effective action that one would write down based on the minimal coupling case needs modification. We adopt a Faddeev-Jackiw method of quantization and consider the case of an ultrastatic...

  8. Virally encoded chemokines and chemokine receptors in the role of viral infections

    DEFF Research Database (Denmark)

    Holst, Peter J; Lüttichau, Hans R; Schwartz, Thue W

    2003-01-01

    of these or potent ways to alter an efficient antiviral response to a weak Th2-driven response. Examples here are the chemokine scavenging by US28, attractance of Th2 cells and regulatory cells by vMIP1-3 and the selective engaging of CCR8 by MC148. Important insights into viral pathology and possible targets...... for antiviral therapies have been provided by UL33, UL78 and in particular ORF74 and the chances are that many more will follow. In HHV8 vMIP-2 and the chemokine-binding proteins potent anti-inflammatory agents have been provided. These have already had their potential demonstrated in animal models and may...

  9. An Update on Canine Adenovirus Type 2 and Its Vectors

    Science.gov (United States)

    Bru, Thierry; Salinas, Sara; Kremer, Eric J.

    2010-01-01

    Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd) have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2) biology and gives an overview of the generation of early region 1 (E1)-deleted to helper-dependent (HD) CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors. PMID:21994722

  10. Lentiviral vectors in cancer immunotherapy.

    Science.gov (United States)

    Oldham, Robyn Aa; Berinstein, Elliot M; Medin, Jeffrey A

    2015-01-01

    Basic science advances in cancer immunotherapy have resulted in various treatments that have recently shown success in the clinic. Many of these therapies require the insertion of genes into cells to directly kill them or to redirect the host's cells to induce potent immune responses. Other analogous therapies work by modifying effector cells for improved targeting and enhanced killing of tumor cells. Initial studies done using γ-retroviruses were promising, but safety concerns centered on the potential for insertional mutagenesis have highlighted the desire to develop other options for gene delivery. Lentiviral vectors (LVs) have been identified as potentially more effective and safer alternative delivery vehicles. LVs are now in use in clinical trials for many different types of inherited and acquired disorders, including cancer. This review will discuss current knowledge of LVs and the applications of this viral vector-based delivery vehicle to cancer immunotherapy.

  11. Pseudothermalization in driven-dissipative non-Markovian open quantum systems

    Science.gov (United States)

    Lebreuilly, José; Chiocchetta, Alessio; Carusotto, Iacopo

    2018-03-01

    We investigate a pseudothermalization effect, where an open quantum system coupled to a nonequilibrated environment consisting of several non-Markovian reservoirs presents an emergent thermal behavior. This thermal behavior is visible at both static and dynamical levels and the system satisfies the fluctuation-dissipation theorem. Our analysis is focused on the exactly solvable model of a weakly interacting driven-dissipative Bose gas in presence of frequency-dependent particle pumping and losses, and is based on a quantum Langevin theory, which we derive starting from a microscopical quantum optics model. For generic non-Markovian reservoirs, we demonstrate that the emergence of thermal properties occurs in the range of frequencies corresponding to low-energy excitations. For the specific case of non-Markovian baths verifying the Kennard-Stepanov relation, we show that pseudothermalization can instead occur at all energy scales. The possible implications regarding the interpretation of thermal laws in low-temperature exciton-polariton experiments are discussed. We finally show that the presence of either a saturable pumping or a dispersive environment leads to a breakdown of the pseudothermalization effect.

  12. Molecular diagnosis for the silk worm Bombyx Mori L. Viral and bacterial diseases in the irradiated and non-irradiated individuals

    International Nuclear Information System (INIS)

    Abulyazid, I.; Elshafei, A.; El-Said, E.; Mousa, S.; Taha, R.

    2007-01-01

    Genetic maps for the Bombyx Mori infectious flacherrie virus (BmlFV) causing flacherrie (Fl) disease and nuclear polyhedrosis virus (BmNPV) causing grasserie (Gr) disease were built up in an attempt to diagnose diseases early in young larval stages. For the non-irradiated and irradiated viral RNA of IFV, no amplification was obtained by using RT-PCR and RAPD-PCR techniques. HcoRI, EcoRV, BamHI, Hind III and BamHI restriction enzymes were used to digest the non-irradiated and irradiated viral DNA of BmNPV. It was found that, the two viral DNA samples were genetically different; the similarity indexes were 0.14, 0, 0, 0.18 and 0.15, respectively. At the biochemical level, native protein electrophoresis showed 4 and 3 new proteins in non-irradiated and irradiated Fl diseased larvae, respectively, while Gr diseased larvae showed 1 and 3 new protein types. The similarity index (S.I) between all the tested samples was not exceeded 44%. For lipoprotein pattern, 2 and 3 new lipoprotein types were appeared due to Fl disease in the non-irradiated and irradiated haemolymph samples, respectively, while Gr disease showed 3 new lipoproteins in the non-irradiated samples only. The highest S.I recorded was 56%. Glycoprotein pattern revealed 3 and 5 new glycoprotein types appeared due to Fl disease while Gr disease showed 4 and 6 new types in the non-irradiated and irradiated samples, respectively. The highest S.I was 77%. Fractionated protein with SDS revealed 2 common bands shared between the tested samples with R f values 0.28 and 0.71. Fl disease increased the number of protein bands with the appearance of 5 and 4 new proteins types. Gr disease reduced the total number of proteins with the appearance of 2 and 3 new types. The highest S.I was 59%. Both diseases and irradiation may be mutagenic through the epigenetic level in silkworm larvae leading to death. Thus, the results of the biochemical and genetic characterization of IFV and BmNPV enable us to conclude that the

  13. Lentiviral Vectors for Cancer Immunotherapy and Clinical Applications

    Directory of Open Access Journals (Sweden)

    David Escors

    2013-07-01

    Full Text Available The success of immunotherapy against infectious diseases has shown us the powerful potential that such a treatment offers, and substantial work has been done to apply this strategy in the fight against cancer. Cancer is however a fiercer opponent than pathogen-caused diseases due to natural tolerance towards tumour associated antigens and tumour-induced immunosuppression. Recent gene therapy clinical trials with viral vectors have shown clinical efficacy in the correction of genetic diseases, HIV and cancer. The first successful gene therapy clinical trials were carried out with onco(g-retroviral vectors but oncogenesis by insertional mutagenesis appeared as a serious complication. Lentiviral vectors have emerged as a potentially safer strategy, and recently the first clinical trial of patients with advanced leukemia using lentiviral vectors has proven successful. Additionally, therapeutic lentivectors have shown clinical efficacy for the treatment of HIV, X-linked adrenoleukodystrophy, and b-thalassaemia. This review aims at describing lentivectors and how they can be utilized to boost anti-tumour immune responses by manipulating the effector immune cells.

  14. Lentiviral Vectors for Cancer Immunotherapy and Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liechtenstein, Therese, E-mail: t.liechtenstein.12@ucl.ac.uk [University College London, 5 University Street, London, WC1E 6JF (United Kingdom); Perez-Janices, Noemi; Escors, David [University College London, 5 University Street, London, WC1E 6JF (United Kingdom); Navarrabiomed Fundacion Miguel Servet, 3 Irunlarrea St., Hospital Complex of Navarra, 31008 Pamplona, Navarra (Spain)

    2013-07-02

    The success of immunotherapy against infectious diseases has shown us the powerful potential that such a treatment offers, and substantial work has been done to apply this strategy in the fight against cancer. Cancer is however a fiercer opponent than pathogen-caused diseases due to natural tolerance towards tumour associated antigens and tumour-induced immunosuppression. Recent gene therapy clinical trials with viral vectors have shown clinical efficacy in the correction of genetic diseases, HIV and cancer. The first successful gene therapy clinical trials were carried out with onco(γ-)retroviral vectors but oncogenesis by insertional mutagenesis appeared as a serious complication. Lentiviral vectors have emerged as a potentially safer strategy, and recently the first clinical trial of patients with advanced leukemia using lentiviral vectors has proven successful. Additionally, therapeutic lentivectors have shown clinical efficacy for the treatment of HIV, X-linked adrenoleukodystrophy, and β-thalassaemia. This review aims at describing lentivectors and how they can be utilized to boost anti-tumour immune responses by manipulating the effector immune cells.

  15. Lentiviral Vectors for Cancer Immunotherapy and Clinical Applications

    International Nuclear Information System (INIS)

    Liechtenstein, Therese; Perez-Janices, Noemi; Escors, David

    2013-01-01

    The success of immunotherapy against infectious diseases has shown us the powerful potential that such a treatment offers, and substantial work has been done to apply this strategy in the fight against cancer. Cancer is however a fiercer opponent than pathogen-caused diseases due to natural tolerance towards tumour associated antigens and tumour-induced immunosuppression. Recent gene therapy clinical trials with viral vectors have shown clinical efficacy in the correction of genetic diseases, HIV and cancer. The first successful gene therapy clinical trials were carried out with onco(γ-)retroviral vectors but oncogenesis by insertional mutagenesis appeared as a serious complication. Lentiviral vectors have emerged as a potentially safer strategy, and recently the first clinical trial of patients with advanced leukemia using lentiviral vectors has proven successful. Additionally, therapeutic lentivectors have shown clinical efficacy for the treatment of HIV, X-linked adrenoleukodystrophy, and β-thalassaemia. This review aims at describing lentivectors and how they can be utilized to boost anti-tumour immune responses by manipulating the effector immune cells

  16. The standardised freight container: vector of vectors and vector-borne diseases.

    Science.gov (United States)

    Reiter, P

    2010-04-01

    The standardised freight container was one of the most important innovations of the 20th Century. Containerised cargoes travel from their point of origin to their destination by ship, road and rail as part of a single journey, without unpacking. This simple concept is the key element in cheap, rapid transport by land and sea, and has led to a phenomenal growth in global trade. Likewise, containerised air cargo has led to a remarkable increase in the inter-continental transportation of goods, particularly perishable items such as flowers, fresh vegetables and live animals. In both cases, containerisation offers great advantages in speed and security, but reduces the opportunity to inspect cargoes in transit. An inevitable consequence is the globalisation of undesirable species of animals, plants and pathogens. Moreover, cheap passenger flights offer worldwide travel for viral and parasitic pathogens in infected humans. The continued emergence of exotic pests, vectors and pathogens throughout the world is an unavoidable consequence of these advances in transportation technology.

  17. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize1[OPEN

    Science.gov (United States)

    Mei, Yu; Kernodle, Bliss M.; Hill, John H.

    2016-01-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. PMID:27208311

  18. Data Driven Constraints for the SVM

    DEFF Research Database (Denmark)

    Darkner, Sune; Clemmensen, Line Katrine Harder

    2012-01-01

    We propose a generalized data driven constraint for support vector machines exemplified by classification of paired observations in general and specifically on the human ear canal. This is particularly interesting in dynamic cases such as tissue movement or pathologies developing over time. Assum...

  19. Ultrastructure of the salivary glands, alimentary canal and bacteria-like organisms in the Asian citrus psyllid, vector of citrus huanglongbing-disease bacteria

    Science.gov (United States)

    Several psyllids (Hemiptera: Psylloidea) are known as vectors of some economically important viral and bacterial plant pathogens. The Asian citrus psyllid (ACP, Diaphorina citri, Hemiptera, Liviidae) is the principal vector of ‘Candidatus Liberibacter asiaticus’ (Las), the putative bacterial causal ...

  20. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results.

    LENUS (Irish Health Repository)

    Flotte, Terence R

    2011-10-01

    Recombinant adeno-associated virus (rAAV) vectors offer promise for the gene therapy of α(1)-antitrypsin (AAT) deficiency. In our prior trial, an rAAV vector expressing human AAT (rAAV1-CB-hAAT) provided sustained, vector-derived AAT expression for >1 year. In the current phase 2 clinical trial, this same vector, produced by a herpes simplex virus complementation method, was administered to nine AAT-deficient individuals by intramuscular injection at doses of 6.0×10(11), 1.9×10(12), and 6.0×10(12) vector genomes\\/kg (n=3 subjects\\/dose). Vector-derived expression of normal (M-type) AAT in serum was dose dependent, peaked on day 30, and persisted for at least 90 days. Vector administration was well tolerated, with only mild injection site reactions and no serious adverse events. Serum creatine kinase was transiently elevated on day 30 in five of six subjects in the two higher dose groups and normalized by day 45. As expected, all subjects developed anti-AAV antibodies and interferon-γ enzyme-linked immunospot responses to AAV peptides, and no subjects developed antibodies to AAT. One subject in the mid-dose group developed T cell responses to a single AAT peptide unassociated with any clinical effects. Muscle biopsies obtained on day 90 showed strong immunostaining for AAT and moderate to marked inflammatory cell infiltrates composed primarily of CD3-reactive T lymphocytes that were primarily of the CD8(+) subtype. These results support the feasibility and safety of AAV gene therapy for AAT deficiency, and indicate that serum levels of vector-derived normal human AAT >20 μg\\/ml can be achieved. However, further improvements in the design or delivery of rAAV-AAT vectors will be required to achieve therapeutic target serum AAT concentrations.

  1. Conformal Killing vectors in Robertson-Walker spacetimes

    International Nuclear Information System (INIS)

    Maartens, R.; Maharaj, S.d.

    1986-01-01

    It is well known that Robertson-Walker spacetimes admit a conformal Killingl vector normal to the spacelike homogeneous hypersurfaces. Because these spacetimes are conformally flat, there are a further eight conformal Killing vectors, which are neither normal nor tangent to the homogeneous hypersurfaces. The authors find these further conformal Killing vectors and the Lie algebra of the full G 15 of conformal motions. Conditions on the metric scale factor are determined which reduce some of the conformal Killing vectors to homothetic Killing vectors or Killing vectors, allowing one to regain in a unified way the known special geometries. The non-normal conformal Killing vectors provide a counter-example to show that conformal motions do not, in general, map a fluid flow conformally. These non-normal vectors are also used to find the general solution of the null geodesic equation and photon Liouville equation. (author)

  2. Viral diseases of northern ungulates

    Directory of Open Access Journals (Sweden)

    K. Frölich

    2000-03-01

    has a multi-factorial etiology. Foot-and-mouth disease virus (FMDV can infect deer and many other wild artiodactyls. Moose, roe deer and the saiga antelope (Saiga tatarica are the main hosts of FMDV in the Russian Federation. In addition, serological evidence of a FMD infection without clinical disease was detected in red deer in France. Epizootic haemorrhage disease of deer (EHD and bluetongue (BT are acute non-contagious viral diseases of wild ruminants characterised by extensive haemorrhage. Culicoides insects are the main vectors. EHD and BT only play a minor role in Europe but both diseases are widespread in North America.

  3. Optimal Hedging with the Vector Autoregressive Model

    NARCIS (Netherlands)

    L. Gatarek (Lukasz); S.G. Johansen (Soren)

    2014-01-01

    markdownabstract__Abstract__ We derive the optimal hedging ratios for a portfolio of assets driven by a Cointegrated Vector Autoregressive model with general cointegration rank. Our hedge is optimal in the sense of minimum variance portfolio. We consider a model that allows for the hedges to be

  4. Lentiviral vectors in neurodegenrative disorders - Aspects in gene therapy and disease models

    DEFF Research Database (Denmark)

    Nielsen, Troels Tolstrup

    2009-01-01

    Neurodegenerative disorders remain a complex group of diseases (i.e. Huntington's disease, HD) that are characterized by progressive loss of neurons resulting in movement disorders, cognitive decline, dementia and death. There is no cure for these diseases and treatment relies on symptomatic relief...... expression and escape transgene silencing during differentiation of neural stem cell lines. However, insulator vectors appeared to be impaired in functionality, which has importance for the future use of insulators in viral vectors. Finally, cell based models of HD was constructed to elucidate...

  5. Arthropod Innate Immune Systems and Vector-Borne Diseases

    OpenAIRE

    Baxter, Richard H. G.; Contet, Alicia; Krueger, Kathryn

    2017-01-01

    Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins ...

  6. Polyploidization without mitosis improves in vivo liver transduction with lentiviral vectors.

    Science.gov (United States)

    Pichard, Virginie; Couton, Dominique; Desdouets, Chantal; Ferry, Nicolas

    2013-02-01

    Lentiviral vectors are efficient gene delivery vehicles for therapeutic and research applications. In contrast to oncoretroviral vectors, they are able to infect most nonproliferating cells. In the liver, induction of cell proliferation dramatically improved hepatocyte transduction using all types of retroviral vectors. However, the precise relationship between hepatocyte division and transduction efficiency has not been determined yet. Here we compared gene transfer efficiency in the liver after in vivo injection of recombinant lentiviral or Moloney murine leukemia viral (MoMuLV) vectors in hepatectomized rats treated or not with retrorsine, an alkaloid that blocks hepatocyte division and induces megalocytosis. Partial hepatectomy alone resulted in a similar increase in hepatocyte transduction using either vector. In retrorsine-treated and partially hepatectomized rats, transduction with MoMuLV vectors dropped dramatically. In contrast, we observed that retrorsine treatment combined with partial hepatectomy increased lentiviral transduction to higher levels than hepatectomy alone. Analysis of nuclear ploidy in single cells showed that a high level of transduction was associated with polyploidization. In conclusion, endoreplication could be exploited to improve the efficiency of liver-directed lentiviral gene therapy.

  7. Vector competence of the Aedes aegypti population from Santiago Island, Cape Verde, to different serotypes of dengue virus.

    Science.gov (United States)

    da Moura, Aires Januário Fernandes; de Melo Santos, Maria Alice Varjal; Oliveira, Claudia Maria Fontes; Guedes, Duschinka Ribeiro Duarte; de Carvalho-Leandro, Danilo; da Cruz Brito, Maria Lidia; Rocha, Hélio Daniel Ribeiro; Gómez, Lara Ferrero; Ayres, Constância Flávia Junqueira

    2015-02-19

    Dengue is an arboviral disease caused by dengue virus (DENV), whose main vectors are the mosquitoes Aedes aegypti and Aedes albopictus. A. aegypti is the only DENV vector in Cape Verde, an African country that suffered its first outbreak of dengue in 2009. However, little is known about the variation in the level of vector competence of this mosquito population to the different DENV serotypes. This study aimed to evaluate the vector competence of A. aegypti from the island of Santiago, Cape Verde, to four DENV serotypes and to detect DENV vertical transmission. Mosquitoes were fed on blood containing DENV serotypes and were dissected at 7, 14 and 21 days post-infection (dpi) to detect the virus in the midgut, head and salivary glands (SG) using RT-PCR. Additionally, the number of copies of viral RNA present in the SG was determined by qRT-PCR. Furthermore, eggs were collected in the field and adult mosquitoes obtained were analyzed by RT-PCR and the platelia dengue NS1 antigen kit to detect transovarial transmission. High rates of SG infection were observed for DENV-2 and DENV-3 whereas for DENV-1, viral RNA was only detected in the midgut and head. DENV-4 did not spread to the head or SG, maintaining the infection only in the midgut. The number of viral RNA copies in the SG did not vary significantly between DENV-2 and DENV-3 or among the different periods of incubation and the various titers of DENV tested. With respect to DENV surveillance in mosquitoes obtained from the eggs collected in the field, no samples were positive. Although no DENV positive samples were collected from the field in 2014, it is important to highlight that the A. aegypti population from Santiago Islands exhibited different degrees of susceptibility to DENV serotypes. This population showed a high vector competence for DENV-2 and DENV-3 strains and a low susceptibility to DENV-1 and DENV-4. Viral RNA copies in the SG remained constant for at least 21 dpi, which may enhance the vector

  8. WNV infection - an emergent vector borne viral infection in Serbia: Current situation

    Directory of Open Access Journals (Sweden)

    Petrović Tamaš

    2015-01-01

    Full Text Available West Nile virus (WNV is a neurovirulent mosquito-borne Flavivirus with zoonotic potential. Virus is maintained in nature in an enzootic transmission cycle between avian hosts and mosquito vectors, but occasionally infects other vertebrates. The infection in horses and humans can be asymptomatic or it can have different clinical manifestations ranging from light febrile diseases to fatal meningoencephalitis. Recently, the number, frequency and severity of outbreaks with neurological consequences for birds, humans and horses have increased dramatically throughout central and south Europe, including Serbia, posing a serious veterinary and public health problem. The emergency of WNV infections in Serbia is described through the current epidemiology situation based on recent data on the incidence of WNV infection among virus natural hosts and vectors; sentinel (horses and other animal species, and in human population. The results of the WNV serology studies conducted on horse blood samples collected in different occasions during the last six years, and the results of the serology studies conducted among other animal species like pigs, wild boars, roe deer and dogs in Serbia are presented and discussed. Also, the results of the first studies on WNV presence in mosquito vectors and in wild birds as virus natural hosts in Serbia are presented and analyzed. In addition, the data on the WNV serology studies conducted in human population in Serbia in the last few years, and the existing data of WNV outbreaks in 2012 and 2013 are included. Regarding the existing knowledge on WNV epidemiology situation, the crucial role of veterinary service in early detection of WNV presence and ongoing national program of WNV surveillance in sentinel animals, mosquitoes and wild birds are discussed.

  9. A cryptic promoter in potato virus X vector interrupted plasmid construction

    Directory of Open Access Journals (Sweden)

    Schultz Ronald D

    2007-03-01

    Full Text Available Abstract Background Potato virus X has been developed into an expression vector for plants. It is widely used to express foreign genes. In molecular manipulation, the foreign genes need to be sub-cloned into the vector. The constructed plasmid needs to be amplified. Usually, during amplification stage, the foreign genes are not expressed. However, if the foreign gene is expressed, the construction work could be interrupted. Two different viral genes were sub-cloned into the vector, but only one foreign gene was successfully sub-cloned. The other foreign gene, canine parvovirus type 2 (CPV-2 VP1 could not be sub-cloned into the vector and amplified without mutation (frame shift mutation. Results A cryptic promoter in the PVX vector was discovered with RT-PCR. The promoter activity was studied with Northern blots and Real-time RT-PCR. Conclusion It is important to recognize the homologous promoter sequences in the vector when a virus is developed as an expression vector. During the plasmid amplification stage, an unexpected expression of the CPV-2 VP1 gene (not in the target plants, but in E. coli can interrupt the downstream work.

  10. Beyond viral suppression of HIV

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V.; Safreed-Harmon, Kelly; Barton, Simon E

    2016-01-01

    BACKGROUND: In 2016, the World Health Organization (WHO) adopted a new Global Health Sector Strategy on HIV for 2016-2021. It establishes 15 ambitious targets, including the '90-90-90' target calling on health systems to reduce under-diagnosis of HIV, treat a greater number of those diagnosed......, and ensure that those being treated achieve viral suppression. DISCUSSION: The WHO strategy calls for person-centered chronic care for people living with HIV (PLHIV), implicitly acknowledging that viral suppression is not the ultimate goal of treatment. However, it stops short of providing an explicit target...... for health-related quality of life. It thus fails to take into account the needs of PLHIV who have achieved viral suppression but still must contend with other intense challenges such as serious non-communicable diseases, depression, anxiety, financial stress, and experiences of or apprehension about HIV...

  11. Viral-specific T-cell transfer from HSCT donor for the treatment of viral infections or diseases after HSCT.

    Science.gov (United States)

    Qian, C; Wang, Y; Reppel, L; D'aveni, M; Campidelli, A; Decot, V; Bensoussan, D

    2018-02-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative option for treatment of some malignant and non-malignant hematological diseases. However, post-HSCT patients are severely immunocompromised and susceptible to viral infections, which are a major cause of morbidity and mortality. Although antiviral agents are now available for most types of viral infections, they are not devoid of side effects and their efficacy is limited when there is no concomitant antiviral immune reconstitution. In recent decades, adoptive transfer of viral-specific T cells (VSTs) became an alternative treatment for viral infection after HSCT. However, two major issues are concerned in VST transfer: the risk of GVHD and antiviral efficacy. We report an exhaustive review of the published studies that focus on prophylactic and/or curative therapy by donor VST transfer for post-HSCT common viral infections. A low incidence of GVHD and a good antiviral efficacy was observed after adoptive transfer of VSTs from HSCT donor. Viral-specific T-cell transfer is a promising approach for a broad clinical application. Nevertheless, a randomized controlled study in a large cohort of patients comparing antiviral treatment alone to antiviral treatment combined with VSTs is still needed to demonstrate efficacy and safety.

  12. Evidence for Culicoides obsoletus group as vector for Schmallenberg virus in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Kristensen, Birgit; Kirkeby, Carsten

    , in the south-west of Denmark (close to the German border), were sorted into pools and tested for the presence of Schmallenberg virus RNA by RT-qPCR. From 18 pools of 5 midges from the C. obsoletus group, 2 pools were both found positive in two separate assays, targeting the L- and S- segments of the SBV RNA....... However, 4 pools of C. punctatus s.str were negative. The sequence of 80bp (excluding the primer sequences) from the amplicons (ca. 145bp) was identical to that published for the expected region of the SBV L-segment. The levels of SBV RNA detected in the biting midges were much higher than could...

  13. Implicit Real Vector Automata

    Directory of Open Access Journals (Sweden)

    Jean-François Degbomont

    2010-10-01

    Full Text Available This paper addresses the symbolic representation of non-convex real polyhedra, i.e., sets of real vectors satisfying arbitrary Boolean combinations of linear constraints. We develop an original data structure for representing such sets, based on an implicit and concise encoding of a known structure, the Real Vector Automaton. The resulting formalism provides a canonical representation of polyhedra, is closed under Boolean operators, and admits an efficient decision procedure for testing the membership of a vector.

  14. Novel Strategy to Control Transgene Expression Mediated by a Sendai Virus-Based Vector Using a Nonstructural C Protein and Endogenous MicroRNAs.

    Directory of Open Access Journals (Sweden)

    Masayuki Sano

    Full Text Available Tissue-specific control of gene expression is an invaluable tool for studying various biological processes and medical applications. Efficient regulatory systems have been utilized to control transgene expression in various types of DNA viral or integrating viral vectors. However, existing regulatory systems are difficult to transfer into negative-strand RNA virus vector platforms because of significant differences in their transcriptional machineries. In this study, we developed a novel strategy for regulating transgene expression mediated by a cytoplasmic RNA vector based on a replication-defective and persistent Sendai virus (SeVdp. Because of the capacity of Sendai virus (SeV nonstructural C proteins to specifically inhibit viral RNA synthesis, overexpression of C protein significantly reduced transgene expression mediated by SeVdp vectors. We found that SeV C overexpression concomitantly reduced SeVdp mRNA levels and genomic RNA synthesis. To control C expression, target sequences for an endogenous microRNA were incorporated into the 3' untranslated region of the C genes. Incorporation of target sequences for miR-21 into the SeVdp vector restored transgene expression in HeLa cells by decreasing C expression. Furthermore, the SeVdp vector containing target sequences for let-7a enabled cell-specific control of transgene expression in human fibroblasts and induced pluripotent stem cells. Our findings demonstrate that SeV C can be used as an effective regulator for controlling transgene expression. This strategy will contribute to efficient and less toxic SeVdp-mediated gene transfer in various biological applications.

  15. Lentiviral Vector Mediated Claudin1 Silencing Inhibits Epithelial to Mesenchymal Transition in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xianqi Zhao

    2015-06-01

    Full Text Available Breast cancer has a high incidence and mortality rate worldwide. Several viral vectors including lentiviral, adenoviral and adeno-associated viral vectors have been used in gene therapy for various forms of human cancer, and have shown promising effects in controlling tumor development. Claudin1 (CLDN1 is a member of the tetraspan transmembrane protein family that plays a major role in tight junctions and is associated with tumor metastasis. However, the role of CLDN1 in breast cancer is largely unexplored. In this study, we tested the therapeutic potential of silencing CLDN1 expression in two breast cancer (MDA-MB-231 and MCF7 cell lines using lentiviral vector mediated RNA interference. We found that a CLDN1 short hairpin (shRNA construct efficiently silenced CLDN1 expression in both breast cancer cell lines, and CLDN1 knockdown resulted in reduced cell proliferation, survival, migration and invasion. Furthermore, silencing CLDN1 inhibited epithelial to mesenchymal transition (EMT by upregulating the epithelial cell marker, E-cadherin, and downregulating mesenchymal markers, smooth muscle cell alpha-actin (SMA and Snai2. Our data demonstrated that lentiviral vector mediated CLDN1 RNA interference has great potential in breast cancer gene therapy by inhibiting EMT and controlling tumor cell growth.

  16. Immune Modulation of NYVAC-Based HIV Vaccines by Combined Deletion of Viral Genes that Act on Several Signalling Pathways

    Directory of Open Access Journals (Sweden)

    Carmen Elena Gómez

    2017-12-01

    Full Text Available An HIV-1 vaccine continues to be a major target to halt the AIDS pandemic. The limited efficacy of the RV144 phase III clinical trial with the canarypox virus-based vector ALVAC and a gp120 protein component led to the conclusion that improved immune responses to HIV antigens are needed for a more effective vaccine. In non-human primates, the New York vaccinia virus (NYVAC poxvirus vector has a broader immunogenicity profile than ALVAC and has been tested in clinical trials. We therefore analysed the HIV immune advantage of NYVAC after removing viral genes that act on several signalling pathways (Toll-like receptors—TLR—interferon, cytokines/chemokines, as well as genes of unknown immune function. We generated a series of NYVAC deletion mutants and studied immune behaviour (T and B cell to HIV antigens and to the NYVAC vector in mice. Our results showed that combined deletion of selected vaccinia virus (VACV genes is a valuable strategy for improving the immunogenicity of NYVAC-based vaccine candidates. These immune responses were differentially modulated, positive or negative, depending on the combination of gene deletions. The deletions also led to enhanced antigen- or vector-specific cellular and humoral responses. These findings will facilitate the development of optimal NYVAC-based vaccines for HIV and other diseases.

  17. Nasopharyngeal polymicrobial colonization during health, viral upper respiratory infection and upper respiratory bacterial infection.

    Science.gov (United States)

    Xu, Qingfu; Wischmeyer, Jareth; Gonzalez, Eduardo; Pichichero, Michael E

    2017-07-01

    We sought to understand how polymicrobial colonization varies during health, viral upper respiratory infection (URI) and acute upper respiratory bacterial infection to understand differences in infection-prone vs. non-prone patients. Nasopharyngeal (NP) samples were collected from 74 acute otitis media (AOM) infection-prone and 754 non-prone children during 2094 healthy visits, 673 viral URI visits and 631 AOM visits. Three otopathogens Streptococcus pneumoniae (Spn), Nontypeable Haemophilus influenzae (NTHi), and Moraxella catarrhalis (Mcat) were identified by culture. NP colonization rates of multiple otopathogens during health were significantly lower than during viral URI, and during URI they were lower than at onset of upper respiratory bacterial infection in both AOM infection-prone and non-prone children. AOM infection-prone children had higher polymicrobial colonization rates than non-prone children during health, viral URI and AOM. Polymicrobial colonization rates of AOM infection-prone children during health were equivalent to that of non-prone children during viral URI, and during viral URI were equivalent to that of non-prone during AOM infection. Spn colonization was positively associated with NTHi and Mcat colonization during health, but negatively during AOM infection. The infection-prone patients more frequently have multiple potential bacterial pathogens in the NP than the non-prone patients. Polymicrobial interaction in the NP differs during health and at onset of infection. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  18. Vectorization, parallelization and porting of nuclear codes on the VPP500 system (vectorization). Progress report fiscal 1996

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Toshiyuki; Kawai, Wataru [Fujitsu Ltd., Tokyo (Japan); Kawasaki, Nobuo [and others

    1997-12-01

    Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. These results are reported in 3 parts, i.e., the vectorization part, the parallelization part and the porting part. In this report, we describe the vectorization. In this vectorization part, the vectorization of two and three dimensional discrete ordinates simulation code DORT-TORT, gas dynamics analysis code FLOWGR and relativistic Boltzmann-Uehling-Uhlenbeck simulation code RBUU are described. In the parallelization part, the parallelization of 2-Dimensional relativistic electromagnetic particle code EM2D, Cylindrical Direct Numerical Simulation code CYLDNS and molecular dynamics code for simulating radiation damages in diamond crystals DGR are described. And then, in the porting part, the porting of reactor safety analysis code RELAP5/MOD3.2 and RELAP5/MOD3.2.1.2, nuclear data processing system NJOY and 2-D multigroup discrete ordinate transport code TWOTRAN-II are described. And also, a survey for the porting of command-driven interactive data analysis plotting program IPLOT are described. (author)

  19. RNA interference-based therapeutics for human immunodeficiency virus HIV-1 treatment: synthetic siRNA or vector-based shRNA?

    Science.gov (United States)

    Subramanya, Sandesh; Kim, Sang-Soo; Manjunath, N; Shankar, Premlata

    2010-02-01

    Despite the clinical benefits of highly active antiretroviral therapy (HAART), the prospect of life-long antiretroviral treatment poses significant problems, which has spurred interest in developing new drugs and strategies to treat HIV infection and eliminate persistent viral reservoirs. RNAi has emerged as a therapeutic possibility for HIV. We discuss progress in overcoming hurdles to translating transient and stable RNAi enabling technologies to clinical application for HIV; covering the past 2 - 3 years. HIV inhibition can be achieved by transfection of chemically or enzymatically synthesized siRNAs or by DNA-based vector systems expressing short hairpin RNAs (shRNAs) that are processed intracellularly into siRNA. We compare these approaches, focusing on technical and safety issues that will guide the choice of strategy for clinical use. Introduction of synthetic siRNA into cells or its stable endogenous production using vector-driven shRNA have been shown to suppress HIV replication in vitro and, in some instances, in vivo. Each method has advantages and limitations in terms of ease of delivery, duration of silencing, emergence of escape mutants and potential toxicity. Both appear to have potential as future therapeutics for HIV, once the technical and safety issues of each approach are overcome.

  20. Data-driven non-Markovian closure models

    Science.gov (United States)

    Kondrashov, Dmitri; Chekroun, Mickaël D.; Ghil, Michael

    2015-03-01

    This paper has two interrelated foci: (i) obtaining stable and efficient data-driven closure models by using a multivariate time series of partial observations from a large-dimensional system; and (ii) comparing these closure models with the optimal closures predicted by the Mori-Zwanzig (MZ) formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a generalization and a time-continuous limit of existing multilevel, regression-based approaches to closure in a data-driven setting; these approaches include empirical model reduction (EMR), as well as more recent multi-layer modeling. It is shown that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the MZ formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are derived on the structure of the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a broad class of MSM applications, a class that includes non-polynomial predictors and nonlinearities that do not necessarily preserve quadratic energy invariants. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. It is shown that the resulting closure model with energy-conserving nonlinearities efficiently captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lotka-Volterra model of population dynamics in its chaotic regime. The challenges here include the rarity of strange attractors in the model's parameter

  1. Black holes in vector-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Kase, Ryotaro; Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Minamitsuji, Masato, E-mail: lavinia.heisenberg@eth-its.ethz.ch, E-mail: r.kase@rs.tus.ac.jp, E-mail: masato.minamitsuji@tecnico.ulisboa.pt, E-mail: shinji@rs.kagu.tus.ac.jp [Centro Multidisciplinar de Astrofisica—CENTRA, Departamento de Fisica, Instituto Superior Tecnico—IST, Universidade de Lisboa—UL, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2017-08-01

    We study static and spherically symmetric black hole (BH) solutions in second-order generalized Proca theories with nonminimal vector field derivative couplings to the Ricci scalar, the Einstein tensor, and the double dual Riemann tensor. We find concrete Lagrangians which give rise to exact BH solutions by imposing two conditions of the two identical metric components and the constant norm of the vector field. These exact solutions are described by either Reissner-Nordström (RN), stealth Schwarzschild, or extremal RN solutions with a non-trivial longitudinal mode of the vector field. We then numerically construct BH solutions without imposing these conditions. For cubic and quartic Lagrangians with power-law couplings which encompass vector Galileons as the specific cases, we show the existence of BH solutions with the difference between two non-trivial metric components. The quintic-order power-law couplings do not give rise to non-trivial BH solutions regular throughout the horizon exterior. The sixth-order and intrinsic vector-mode couplings can lead to BH solutions with a secondary hair. For all the solutions, the vector field is regular at least at the future or past horizon. The deviation from General Relativity induced by the Proca hair can be potentially tested by future measurements of gravitational waves in the nonlinear regime of gravity.

  2. Mesoporous silica nanoparticles as vectors for gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Crapina, Laura Cipriano; Bizeto, Marcos, E-mail: lauracrapina@hotmail.com [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil)

    2016-07-01

    Full text: Mesoporous silica nanoparticles present unique physical-chemical properties, such as high surface area, tunable pore size, easy surface chemical modification, good biocompatibility and low toxicology. Those properties make this class of inorganic materials promising for several potential applications in the biomedical field. This work seeks to develop mesoporous silica nanoparticles with characteristics suitable to the transport of nucleic acids, such as plasmid DNA and microRNA, with the aim of substituting viral vectors in gene therapy. A successful nanocarrier must have positive charge at physiological conditions and pore diameter larger than 30 Å. The mesoporous silica was synthesized according to the method described by Bein and collaborators [1]. Based on a cocondensation synthetic route, positively charged nanoparticles were obtained through the insertion of N-3-(trimethoxysilyl)propyldiethylenetriamine in the silica walls. Pore expansion was achieved through the incorporation of 1,2,4- trimethylbenzene into the hexadecyltrimethylammonium micellar aggregates, which are a structure-directing agent for the mesopores. The resulting nanoparticles were characterized by DLS, ζ potential, XRD, FTIR, SEM, TEM, TGA and elemental analysis. In addition, the capability of nucleic acid adsorption was tested and confirmed by gel electrophoresis. Discovery of a non-viral therapeutic agent would aid the viability of gene therapy, which is a treatment for chronic ischemia, metabolic and genetic disorders. Reference: [1] K. Moeller, J. Kobler, T. Bein, Journal of Materials Chemistry, 17, 624-631, (2007). (author)

  3. Adenovirus-encoding virus-associated RNAs suppress HDGF gene expression to support efficient viral replication.

    Directory of Open Access Journals (Sweden)

    Saki Kondo

    Full Text Available Non-coding small RNAs are involved in many physiological responses including viral life cycles. Adenovirus-encoding small RNAs, known as virus-associated RNAs (VA RNAs, are transcribed throughout the replication process in the host cells, and their transcript levels depend on the copy numbers of the viral genome. Therefore, VA RNAs are abundant in infected cells after genome replication, i.e. during the late phase of viral infection. Their function during the late phase is the inhibition of interferon-inducible protein kinase R (PKR activity to prevent antiviral responses; recently, mivaRNAs, the microRNAs processed from VA RNAs, have been reported to inhibit cellular gene expression. Although VA RNA transcription starts during the early phase, little is known about its function. The reason may be because much smaller amount of VA RNAs are transcribed during the early phase than the late phase. In this study, we applied replication-deficient adenovirus vectors (AdVs and novel AdVs lacking VA RNA genes to analyze the expression changes in cellular genes mediated by VA RNAs using microarray analysis. AdVs are suitable to examine the function of VA RNAs during the early phase, since they constitutively express VA RNAs but do not replicate except in 293 cells. We found that the expression level of hepatoma-derived growth factor (HDGF significantly decreased in response to the VA RNAs under replication-deficient condition, and this suppression was also observed during the early phase under replication-competent conditions. The suppression was independent of mivaRNA-induced downregulation, suggesting that the function of VA RNAs during the early phase differs from that during the late phase. Notably, overexpression of HDGF inhibited AdV growth. This is the first report to show the function, in part, of VA RNAs during the early phase that may be contribute to efficient viral growth.

  4. A novel non-toxic combined CTA1-DD and ISCOMS adjuvant vector for effective mucosal immunization against influenza virus.

    Science.gov (United States)

    Eliasson, Dubravka Grdic; Helgeby, Anja; Schön, Karin; Nygren, Caroline; El-Bakkouri, Karim; Fiers, Walter; Saelens, Xavier; Lövgren, Karin Bengtsson; Nyström, Ida; Lycke, Nils Y

    2011-05-23

    Here we demonstrate that by using non-toxic fractions of saponin combined with CTA1-DD we can achieve a safe and above all highly efficacious mucosal adjuvant vector. We optimized the construction, tested the requirements for function and evaluated proof-of-concept in an influenza A virus challenge model. We demonstrated that the CTA1-3M2e-DD/ISCOMS vector provided 100% protection against mortality and greatly reduced morbidity in the mouse model. The immunogenicity of the vector was superior to other vaccine formulations using the ISCOM or CTA1-DD adjuvants alone. The versatility of the vector was best exemplified by the many options to insert, incorporate or admix vaccine antigens with the vector. Furthermore, the CTA1-3M2e-DD/ISCOMS could be kept 1 year at 4°C or as a freeze-dried powder without affecting immunogenicity or adjuvanticity of the vector. Strong serum IgG and mucosal IgA responses were elicited and CD4 T cell responses were greatly enhanced after intranasal administration of the combined vector. Together these findings hold promise for the combined vector as a mucosal vaccine against influenza virus infections including pandemic influenza. The CTA1-DD/ISCOMS technology represents a breakthrough in mucosal vaccine vector design which successfully combines immunomodulation and targeting in a safe and stable particulate formation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Gene Therapy with Helper-Dependent Adenoviral Vectors: Current Advances and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Philip Ng

    2010-09-01

    Full Text Available Recombinant Adenoviral vectors represent one of the best gene transfer platforms due to their ability to efficiently transduce a wide range of quiescent and proliferating cell types from various tissues and species. The activation of an adaptive immune response against the transduced cells is one of the major drawbacks of first generation Adenovirus vectors and has been overcome by the latest generation of recombinant Adenovirus, the Helper-Dependent Adenoviral (HDAd vectors. HDAds have innovative features including the complete absence of viral coding sequences and the ability to mediate high level transgene expression with negligible chronic toxicity. This review summarizes the many aspects of HDAd biology and structure with a major focus on in vivo gene therapy application and with an emphasis on the unsolved issues that these vectors still presents toward clinical application.

  6. Ecological Fitness of Non-vector Planthopper Sogatella furcifera on Rice Plants Infected with Rice Black Streaked Dwarf Virus

    Directory of Open Access Journals (Sweden)

    Xiao-chan HE

    2012-12-01

    Full Text Available We evaluated the effects of rice black streak dwarf virus (RBSDV-infested rice plants on the ecological parameters and its relevant defensive and detoxification enzymes of white-backed planthopper (WBPH in laboratory for exploring the relationship between RBSDV and the non-vector planthopper. The results showed that nymph survival rate, female adult weight and fecundity, and egg hatchability of WBPH fed on RBSDV-infested rice plants did not markedly differ from those on healthy plants, whereas the female adult longevity and egg duration significantly shortened on diseased plants. Furthermore, significantly higher activities of defensive enzymes (dismutase, catalase and peroxidase and detoxification enzymes (acetylcholinesterase, carboxylesterase and glutathione S-transferase were found in WBPH adults fed on infected plants. Results implied that infestation by RBSDV increased the ecological fitness of non-vector planthopper population.

  7. Restoration of central nervous system alpha-N-acetylglucosaminidase activity and therapeutic benefits in mucopolysaccharidosis IIIB mice by a single intracisternal recombinant adeno-associated viral type 2 vector delivery.

    Science.gov (United States)

    Fu, Haiyan; DiRosario, Julianne; Kang, Lu; Muenzer, Joseph; McCarty, Douglas M

    2010-07-01

    Finding efficient central nervous system (CNS) delivery approaches has been the major challenge facing therapeutic development for treating diseases with global neurological manifestation, such as mucopolysaccharidosis (MPS) IIIB, a lysosomal storage disease, caused by autosomal recessive defect of alpha-N-acetylglucosaminidase (NaGlu). Previously, we developed an approach, intracisternal (i.c.) injection, to deliver recombinant adeno-associated viral (rAAV) vector to the CNS of mice, leading to a widespread periventricular distribution of transduction. In the present study, we delivered rAAV2 vector expressing human NaGlu into the CNS of MPS IIIB mice by an i.c. injection approach, to test its therapeutic efficacy and feasibility for treating the neurological manifestation of the disease. We demonstrated significant functional neurological benefits of a single i.c. vector infusion in adult MPS IIIB mice. The treatment slowed the disease progression by mediating widespread recombinant NaGlu expression in the CNS, resulting in the reduction of brain lysosomal storage pathology, significantly improved cognitive function and prolonged survival. However, persisting motor function deficits suggested that pathology in areas outside the CNS contributes to the MPS IIIB behavioral phenotype. The therapeutic benefit of i.c. rAAV2 delivery was dose-dependent and could be attribute solely to the CNS transduction because the procedure did not lead to detectable transduction in somatic tissues. A single IC rAAV2 gene delivery is functionally beneficial for treating the CNS disease of MPS IIIB in mice. It is immediately clinically translatable, with the potential of improving the quality of life for patients with MPS IIIB.

  8. Hall effect driven by non-collinear magnetic polarons in diluted magnetic semiconductors

    Science.gov (United States)

    Denisov, K. S.; Averkiev, N. S.

    2018-04-01

    In this letter, we develop the theory of Hall effect driven by non-collinear magnetic textures (topological Hall effect—THE) in diluted magnetic semiconductors (DMSs). We show that a carrier spin-orbit interaction induces a chiral magnetic ordering inside a bound magnetic polaron (BMP). The inner structure of non-collinear BMP is controlled by the type of spin-orbit coupling, allowing us to create skyrmion- (Rashba) or antiskyrmion-like (Dresselhaus) configurations. The asymmetric scattering of itinerant carriers on polarons leads to the Hall response which exists in weak external magnetic fields and at low temperatures. We point out that DMS-based systems allow one to investigate experimentally the dependence of THE both on a carrier spin polarization and on a non-collinear magnetic texture shape.

  9. Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector

    Science.gov (United States)

    Lee, Dukhyung; Kim, Dai-Sik

    2016-01-01

    We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies.

  10. Evolutionary-driven support vector machines for determining the degree of liver fibrosis in chronic hepatitis C.

    Science.gov (United States)

    Stoean, Ruxandra; Stoean, Catalin; Lupsor, Monica; Stefanescu, Horia; Badea, Radu

    2011-01-01

    Hepatic fibrosis, the principal pointer to the development of a liver disease within chronic hepatitis C, can be measured through several stages. The correct evaluation of its degree, based on recent different non-invasive procedures, is of current major concern. The latest methodology for assessing it is the Fibroscan and the effect of its employment is impressive. However, the complex interaction between its stiffness indicator and the other biochemical and clinical examinations towards a respective degree of liver fibrosis is hard to be manually discovered. In this respect, the novel, well-performing evolutionary-powered support vector machines are proposed towards an automated learning of the relationship between medical attributes and fibrosis levels. The traditional support vector machines have been an often choice for addressing hepatic fibrosis, while the evolutionary option has been validated on many real-world tasks and proven flexibility and good performance. The evolutionary approach is simple and direct, resulting from the hybridization of the learning component within support vector machines and the optimization engine of evolutionary algorithms. It discovers the optimal coefficients of surfaces that separate instances of distinct classes. Apart from a detached manner of establishing the fibrosis degree for new cases, a resulting formula also offers insight upon the correspondence between the medical factors and the respective outcome. What is more, a feature selection genetic algorithm can be further embedded into the method structure, in order to dynamically concentrate search only on the most relevant attributes. The data set refers 722 patients with chronic hepatitis C infection and 24 indicators. The five possible degrees of fibrosis range from F0 (no fibrosis) to F4 (cirrhosis). Since the standard support vector machines are among the most frequently used methods in recent artificial intelligence studies for hepatic fibrosis staging, the

  11. Progress on adenovirus-vectored universal influenza vaccines.

    Science.gov (United States)

    Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun

    2015-01-01

    Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.

  12. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    Motivation: Detecting genes in viral genomes is a complex task. Due to the biological necessity of them being constrained in length, RNA viruses in particular tend to code in overlapping reading frames. Since one amino acid is encoded by a triplet of nucleic acids, up to three genes may be coded...... allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  13. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells.

    Science.gov (United States)

    Venkataswamy, Manjunatha M; Ng, Tony W; Kharkwal, Shalu S; Carreño, Leandro J; Johnson, Alison J; Kunnath-Velayudhan, Shajo; Liu, Zheng; Bittman, Robert; Jervis, Peter J; Cox, Liam R; Besra, Gurdyal S; Wen, Xiangshu; Yuan, Weiming; Tsuji, Moriya; Li, Xiangming; Ho, David D; Chan, John; Lee, Sunhee; Frothingham, Richard; Haynes, Barton F; Panas, Michael W; Gillard, Geoffrey O; Sixsmith, Jaimie D; Korioth-Schmitz, Birgit; Schmitz, Joern E; Larsen, Michelle H; Jacobs, William R; Porcelli, Steven A

    2014-01-01

    Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag). We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC) into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.

  14. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells.

    Directory of Open Access Journals (Sweden)

    Manjunatha M Venkataswamy

    Full Text Available Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag. We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.

  15. Vectorization, parallelization and porting of nuclear codes. Vectorization and parallelization. Progress report fiscal 1999

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Masaaki; Ogasawara, Shinobu; Kume, Etsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishizuki, Shigeru; Nemoto, Toshiyuki; Kawasaki, Nobuo; Kawai, Wataru [Fujitsu Ltd., Tokyo (Japan); Yatake, Yo-ichi [Hitachi Ltd., Tokyo (Japan)

    2001-02-01

    Several computer codes in the nuclear field have been vectorized, parallelized and trans-ported on the FUJITSU VPP500 system, the AP3000 system, the SX-4 system and the Paragon system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. We dealt with 18 codes in fiscal 1999. These results are reported in 3 parts, i.e., the vectorization and the parallelization part on vector processors, the parallelization part on scalar processors and the porting part. In this report, we describe the vectorization and parallelization on vector processors. In this vectorization and parallelization on vector processors part, the vectorization of Relativistic Molecular Orbital Calculation code RSCAT, a microscopic transport code for high energy nuclear collisions code JAM, three-dimensional non-steady thermal-fluid analysis code STREAM, Relativistic Density Functional Theory code RDFT and High Speed Three-Dimensional Nodal Diffusion code MOSRA-Light on the VPP500 system and the SX-4 system are described. (author)

  16. Assessing Disparities of Dengue Virus Transmission Risk across the US-Mexican Border Using a Climate Driven Vector-Epidemiological Model

    Science.gov (United States)

    Morin, Cory; Monaghan, Andrew; Quattrochi, Dale; Crosson, William; Hayden, Mary; Ernst, Kacey

    2015-01-01

    Dengue fever is a mosquito-borne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Although transmission regularly occurs along the border region in Mexico, dengue virus transmission in bordering Arizona has not occurred. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input and Daymet for temperature and supplemental precipitation input, we modeled dengue transmission along a US-Mexico transect using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Model runs were performed for 5 cities in Sonora, Mexico and southern Arizona. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. For cities with reported dengue case data, the top model simulations that best reproduced dengue case numbers were retained and their parameter values were extracted for comparison. These parameter values were used to run simulations in areas where dengue virus transmission does not occur or where dengue fever case data was unavailable. Additional model runs were performed to reveal how changes in climate or parameter values could alter transmission risk along the transect. The relative influence of climate variability and model parameters on dengue virus transmission is assessed to help public health workers prepare location specific infection prevention strategies.

  17. Short Report Challenges with targeted viral load testing for medical ...

    African Journals Online (AJOL)

    Challenges with targeted viral load testing 179. Malawi Medical ... targeted viral load (VL) testing for patients who have been on ART for at least .... Tuberculosis. 32. Community-acquired pneumonia. 17. Non-typhoidal Salmonella sepsis. 5. Bacterial meningitis. 5. Disseminated Kaposi sarcoma. 4. Cryptococcal meningitis. 4.

  18. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes.

    Directory of Open Access Journals (Sweden)

    A Marm Kilpatrick

    2008-06-01

    Full Text Available The distribution and intensity of transmission of vector-borne pathogens can be strongly influenced by the competence of vectors. Vector competence, in turn, can be influenced by temperature and viral genetics. West Nile virus (WNV was introduced into the United States of America in 1999 and subsequently spread throughout much of the Americas. Previously, we have shown that a novel genotype of WNV, WN02, first detected in 2001, spread across the US and was more efficient than the introduced genotype, NY99, at infecting, disseminating, and being transmitted by Culex mosquitoes. In the current study, we determined the relationship between temperature and time since feeding on the probability of transmitting each genotype of WNV. We found that the advantage of the WN02 genotype increases with the product of time and temperature. Thus, warmer temperatures would have facilitated the invasion of the WN02 genotype. In addition, we found that transmission of WNV accelerated sharply with increasing temperature, T, (best fit by a function of T(4 showing that traditional degree-day models underestimate the impact of temperature on WNV transmission. This laboratory study suggests that both viral evolution and temperature help shape the distribution and intensity of transmission of WNV, and provides a model for predicting the impact of temperature and global warming on WNV transmission.

  19. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector

    Directory of Open Access Journals (Sweden)

    Juliette Doumayrou

    2016-11-01

    Full Text Available Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  20. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector.

    Science.gov (United States)

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen

    2016-11-18

    Understanding the molecular mechanisms involved in plant virus-vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus , Luteoviridae ) and Pea enation mosaic virus 2 (PEMV2, Umbravirus , Tombusviridae ) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum , and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum . Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  1. Oncolytic Herpes Simplex Virus Vectors Fully Retargeted to Tumor- Associated Antigens.

    Science.gov (United States)

    Uchida, Hiroaki; Hamada, Hirofumi; Nakano, Kenji; Kwon, Heechung; Tahara, Hideaki; Cohen, Justus B; Glorioso, Joseph C

    2018-01-01

    Oncolytic virotherapy is a novel therapeutic modality for malignant diseases that exploits selective viral replication in cancer cells. Herpes simplex virus (HSV) is a promising agent for oncolytic virotherapy due to its broad cell tropism and the identification of mutations that favor its replication in tumor over normal cells. However, these attenuating mutations also tend to limit the potency of current oncolytic HSV vectors that have entered clinical studies. As an alternative, vector retargeting to novel entry receptors has the potential to achieve tumor specificity at the stage of virus entry, eliminating the need for replication-attenuating mutations. Here, we summarize the molecular mechanism of HSV entry and recent advances in the development of fully retargeted HSV vectors for oncolytic virotherapy. Retargeted HSV vectors offer an attractive platform for the creation of a new generation of oncolytic HSV with improved efficacy and specificity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. CRISPR-Mediated Integration of Large Gene Cassettes Using AAV Donor Vectors

    Directory of Open Access Journals (Sweden)

    Rasmus O. Bak

    2017-07-01

    Full Text Available The CRISPR/Cas9 system has recently been shown to facilitate high levels of precise genome editing using adeno-associated viral (AAV vectors to serve as donor template DNA during homologous recombination (HR. However, the maximum AAV packaging capacity of ∼4.5 kb limits the donor size. Here, we overcome this constraint by showing that two co-transduced AAV vectors can serve as donors during consecutive HR events for the integration of large transgenes. Importantly, the method involves a single-step procedure applicable to primary cells with relevance to therapeutic genome editing. We use the methodology in primary human T cells and CD34+ hematopoietic stem and progenitor cells to site-specifically integrate an expression cassette that, as a single donor vector, would otherwise amount to a total of 6.5 kb. This approach now provides an efficient way to integrate large transgene cassettes into the genomes of primary human cells using HR-mediated genome editing with AAV vectors.

  3. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection

    International Nuclear Information System (INIS)

    Wong-Baeza, Carlos; Bustos, Israel; Serna, Manuel; Tescucano, Alonso; Alcantara-Farfan, Veronica; Ibanez, Miguel; Montanez, Cecilia; Wong, Carlos; Baeza, Isabel

    2010-01-01

    Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.

  4. Anterograde or Retrograde Transsynaptic Circuit Tracing in Vertebrates with Vesicular Stomatitis Virus Vectors.

    Science.gov (United States)

    Beier, Kevin T; Mundell, Nathan A; Pan, Y Albert; Cepko, Constance L

    2016-01-04

    Viruses have been used as transsynaptic tracers, allowing one to map the inputs and outputs of neuronal populations, due to their ability to replicate in neurons and transmit in vivo only across synaptically connected cells. To date, their use has been largely restricted to mammals. In order to explore the use of such viruses in an expanded host range, we tested the transsynaptic tracing ability of recombinant vesicular stomatitis virus (rVSV) vectors in a variety of organisms. Successful infection and gene expression were achieved in a wide range of organisms, including vertebrate and invertebrate model organisms. Moreover, rVSV enabled transsynaptic tracing of neural circuitry in predictable directions dictated by the viral envelope glycoprotein (G), derived from either VSV or rabies virus (RABV). Anterograde and retrograde labeling, from initial infection and/or viral replication and transmission, was observed in Old and New World monkeys, seahorses, jellyfish, zebrafish, chickens, and mice. These vectors are widely applicable for gene delivery, afferent tract tracing, and/or directional connectivity mapping. Here, we detail the use of these vectors and provide protocols for propagating virus, changing the surface glycoprotein, and infecting multiple organisms using several injection strategies. Copyright © 2016 John Wiley & Sons, Inc.

  5. Nucleocapsid-Independent Specific Viral RNA Packaging via Viral Envelope Protein and Viral RNA Signal

    OpenAIRE

    Narayanan, Krishna; Chen, Chun-Jen; Maeda, Junko; Makino, Shinji

    2003-01-01

    For any of the enveloped RNA viruses studied to date, recognition of a specific RNA packaging signal by the virus's nucleocapsid (N) protein is the first step described in the process of viral RNA packaging. In the murine coronavirus a selective interaction between the viral transmembrane envelope protein M and the viral ribonucleoprotein complex, composed of N protein and viral RNA containing a short cis-acting RNA element, the packaging signal, determines the selective RNA packaging into vi...

  6. Microbial and viral-like rhodopsins present in coastal marine sediments from four polar and subpolar regions

    Energy Technology Data Exchange (ETDEWEB)

    López, José L.; Golemba, Marcelo; Hernández, Edgardo; Lozada, Mariana; Dionisi, Hebe; Jansson, Janet K.; Carroll, Jolynn; Lundgren, Leif; Sjöling, Sara; Mac Cormack, Walter P.; Sobecky, Patricia

    2016-11-03

    Rhodopsins are broadly distributed. In this work, we analyzed 23 metagenomes corresponding to marine sediment samples from four regions that share cold climate conditions (Norway; Sweden; Argentina and Antarctica). In order to investigate the genes evolution of viral rhodopsins, an initial set of 6224 bacterial rhodopsin sequences according to COG5524 were retrieved from the 23 metagenomes. After selection by the presence of transmembrane domains and alignment, 123 viral (51) and non-viral (72) sequences (>50 amino acids) were finally included in further analysis. Viral rhodopsin genes were homologs of Phaeocystis globosa virus and Organic lake Phycodnavirus. Non-viral microbial rhodopsin genes were ascribed to Bacteroidetes, Planctomycetes, Firmicutes, Actinobacteria, Cyanobacteria, Proteobacteria, Deinococcus-Thermus and Cryptophyta and Fungi. A rescreening using Blastp, using as queries the viral sequences previously described, retrieved 30 sequences (>100 amino acids). Phylogeographic analysis revealed a geographical clustering of the sequences affiliated to the viral group. This clustering was not observed for the microbial non-viral sequences. The phylogenetic reconstruction allowed us to propose the existence of a putative ancestor of viral rhodopsin genes related to Actinobacteria and Chloroflexi. This is the first report about the existence of a phylogeographic association of the viral rhodopsin sequences from marine sediments.

  7. Transcriptome of the Plant Virus Vector Graminella nigrifrons, and the Molecular Interactions of Maize fine streak rhabdovirus Transmission

    Science.gov (United States)

    Chen, Yuting; Cassone, Bryan J.; Bai, Xiaodong; Redinbaugh, Margaret G.; Michel, Andrew P.

    2012-01-01

    Background Leafhoppers (Hemiptera: Cicadellidae) are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons) has been identified as the only known vector for the Maize fine streak virus (MFSV), an emerging plant pathogen in the Rhabdoviridae. Within G. nigrifrons populations, individuals can be experimentally separated into three classes based on their capacity for viral transmission: transmitters, acquirers and non-acquirers. Understanding the molecular interactions between vector and virus can reveal important insights in virus immune defense and vector transmission. Results RNA sequencing (RNA-Seq) was performed to characterize the transcriptome of G. nigrifrons. A total of 38,240 ESTs of a minimum 100 bp were generated from two separate cDNA libraries consisting of virus transmitters and acquirers. More than 60% of known D. melanogaster, A. gambiae, T. castaneum immune response genes mapped to our G. nigrifrons EST database. Real time quantitative PCR (RT-qPCR) showed significant down-regulation of three genes for peptidoglycan recognition proteins (PGRP – SB1, SD, and LC) in G. nigrifrons transmitters versus control leafhoppers. Conclusions Our study is the first to characterize the transcriptome of a leafhopper vector species. Significant sequence similarity in immune defense genes existed between G. nigrifrons and other well characterized insects. The down-regulation of PGRPs in MFSV transmitters suggested a possible role in rhabdovirus transmission. The results provide a framework for future studies aimed at elucidating the molecular mechanisms of plant virus vector competence. PMID:22808205

  8. Transcriptome of the plant virus vector Graminella nigrifrons, and the molecular interactions of maize fine streak rhabdovirus transmission.

    Directory of Open Access Journals (Sweden)

    Yuting Chen

    Full Text Available BACKGROUND: Leafhoppers (HEmiptera: Cicadellidae are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons has been identified as the only known vector for the Maize fine streak virus (MFSV, an emerging plant pathogen in the Rhabdoviridae. Within G. nigrifrons populations, individuals can be experimentally separated into three classes based on their capacity for viral transmission: transmitters, acquirers and non-acquirers. Understanding the molecular interactions between vector and virus can reveal important insights in virus immune defense and vector transmission. RESULTS: RNA sequencing (RNA-Seq was performed to characterize the transcriptome of G. nigrifrons. A total of 38,240 ESTs of a minimum 100 bp were generated from two separate cDNA libraries consisting of virus transmitters and acquirers. More than 60% of known D. melanogaster, A. gambiae, T. castaneum immune response genes mapped to our G. nigrifrons EST database. Real time quantitative PCR (RT-qPCR showed significant down-regulation of three genes for peptidoglycan recognition proteins (PGRP - SB1, SD, and LC in G. nigrifrons transmitters versus control leafhoppers. CONCLUSIONS: Our study is the first to characterize the transcriptome of a leafhopper vector species. Significant sequence similarity in immune defense genes existed between G. nigrifrons and other well characterized insects. The down-regulation of PGRPs in MFSV transmitters suggested a possible role in rhabdovirus transmission. The results provide a framework for future studies aimed at elucidating the molecular mechanisms of plant virus vector competence.

  9. Reduced Order Extended Luenberger Observer Based Sensorless Vector Control Fed by Matrix Converter with Non-linearity Modeling

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2004-01-01

    This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with non-linearity compensation. The nonlinear voltage distortion that is caused by commutation delay and on-state voltage drop in switching device is corrected by a new...

  10. Optimal hedging with the cointegrated vector autoregressive model

    DEFF Research Database (Denmark)

    Gatarek, Lukasz; Johansen, Søren

    We derive the optimal hedging ratios for a portfolio of assets driven by a Coin- tegrated Vector Autoregressive model (CVAR) with general cointegration rank. Our hedge is optimal in the sense of minimum variance portfolio. We consider a model that allows for the hedges to be cointegrated with the...

  11. Mansonella ozzardi and its vectors in the New World: an update with emphasis on the current situation in Haiti.

    Science.gov (United States)

    Raccurt, C P

    2017-10-25

    Mansonella ozzardi (Nematoda: Onchocercidae) is a little studied filarial nematode. This human parasite, transmitted by two families of dipteran vectors, biting midges (most of them members of the genus Culicoides) and blackflies (genus Simulium), is endemic to the Neotropical regions of the New World. With a patchy geographical distribution from southern Mexico to north-western Argentina, human infection with M. ozzardi is highly prevalent in some of the Caribbean islands, along riverine communities in the Amazon Basin, and on both sides of the border between Bolivia and Argentina. Studies conducted in Haiti between 1974 and 1984 allowed the first complete description of the adult worm and permitted clarification of the taxonomic position of this filarial species. This paper reports the known geographical distribution of M. ozzardi in Neotropical regions of the Americas, and focuses on the current situation in Haiti where this filariasis remains a completely neglected public health problem.

  12. Vectors for Inhaled Gene Therapy in Lung Cancer. Application for Nano Oncology and Safety of Bio Nanotechnology

    Science.gov (United States)

    Zarogouldis, Paul; Karamanos, Nikos K.; Porpodis, Konstantinos; Domvri, Kalliopi; Huang, Haidong; Hohenforst-Schimdt, Wolfgang; Goldberg, Eugene P.; Zarogoulidis, Konstantinos

    2012-01-01

    Novel aerosol therapeutic modalities have been investigated for lung cancer. Inhaled gene therapy has presented safety and effectiveness previously in cystic fibrosis. However, safety concerns have been raised regarding the safety of non-viral vectors for inhaled gene therapy in lung cancer, and therefore small steps have been made towards this multifunctional treatment modality. During the last decade, numerous new nanocomplexes have been created and investigated as a safe gene delivery nano-vehicle. These formulations are multifunctional; they can be used as either local therapy or carrier for an effective inhaled gene therapy for lung cancer. Herein, we present current and future perspectives of nanocomplexes for inhaled gene therapy treatment in lung cancer. PMID:23109824

  13. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    International Nuclear Information System (INIS)

    Kennedy, Edward M.; Cullen, Bryan R.

    2015-01-01

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  14. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Edward M.; Cullen, Bryan R., E-mail: bryan.cullen@duke.edu

    2015-05-15

    CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes

  15. Development and evaluation of a replicon particle vaccine expressing the E2 glycoprotein of bovine viral diarrhea virus (BVDV in cattle

    Directory of Open Access Journals (Sweden)

    Loy John Dustin

    2013-01-01

    Full Text Available Abstract Background Bovine viral diarrhea virus is one of the most significant and costly viral pathogens of cattle worldwide. Alphavirus-derived replicon particles have been shown to be safe and highly effective vaccine vectors against a variety of human and veterinary pathogens. Replicon particles are non-propagating, DIVA compatible, and can induce both humoral and cell mediated immune responses. This is the first experiment to demonstrate that Alphavirus-based replicon particles can be utilized in a standard prime/boost vaccination strategy in calves against a commercially significant bovine pathogen. Findings Replicon particles that express bovine viral diarrhea virus sub-genotype 1b E2 glycoprotein were generated and expression was confirmed in vitro using polyclonal and monoclonal antibodies specific to E2. Vaccine made from particles was generated in Vero cells and administered to BVDV free calves in a prime/boost regimen at two dosage levels. Vaccination resulted in neutralizing antibody titers that cross-neutralized both type 1 and type 2 BVD genotypes following booster vaccination. Additionally, high dose vaccine administration demonstrated some protection from clinical disease and significantly reduced the degree of leukopenia caused by viral infection. Conclusions Replicon particle vaccines administered in a prime/boost regimen expressing BVDV E2 glycoprotein can induce cross-neutralizing titers, reduce leukopenia post challenge, and mitigate clinical disease in calves. This strategy holds promise for a safe and effective vaccine to BVDV.

  16. Biology and harmfulness of Brassica pod midge (Dasineura brassicae Winn. in winter oilseed rape

    Directory of Open Access Journals (Sweden)

    Draga Graora

    2015-04-01

    Full Text Available The Brassica pod midge (Dasineura brassicae Winn. is an important pest in oilseed rape (Brasica napus L.. It develops two generations per year and overwinters in the larval stage in cocoons in soil. Immigration of the first generation adults lasted from the beginning of April until the end of May. Larvae developed in pods from mid-April to mid-June, causing pod deformation and cracking, which resulted in premature falling out of seeds and yield reduction. Pod damage amounted to 11.6%. The emergence of the second generation adults was detected at the end of May and in the first ten days of June. D. brassicae was found to lay eggs in healthy pods and no correlation was found with the cabbage seed weevil, Ceutorhynchus assimilis Paykull.

  17. Rituximab-related viral infections in lymphoma patients.

    Science.gov (United States)

    Aksoy, Sercan; Harputluoglu, Hakan; Kilickap, Saadettin; Dede, Didem Sener; Dizdar, Omer; Altundag, Kadri; Barista, Ibrahim

    2007-07-01

    Recently, a human/mouse chimeric monoclonal antibody, rituximab, has been successfully used to treat cases of B-cell non-Hodgkin's lymphoma and some autoimmune diseases. However, several viral infections related to rituximab have been reported in the literature, but were not well characterized. To further investigate this topic, relevant English language studies were identified through Medline. There were 64 previously reported cases of serious viral infection after rituximab treatment. The median age of the cases was 61 years (range: 21 - 79). The median time period from the start of rituximab treatment to viral infection diagnosis was 5.0 months (range: 1 - 20). The most frequently experienced viral infections were hepatitis B virus (HBV) (39.1%, n = 25), cytomegalovirus infection (CMV) (23.4%, n = 15), varicella-zoster virus (VZV) (9.4%, n = 6), and others (28.1%, n = 18). Of the patients with HBV infections, 13 (52.0%) died due to hepatic failure. Among the 39 cases that had viral infections other than HBV, 13 died due to these specific infections. In this study, about 50% of the rituximab-related HBV infections resulted in death, whereas this was the case in only 33% of the cases with other infections. Close monitoring for viral infection, particularly HBV and CMV, in patients treated with rituximab should be recommended.

  18. Pseudotyped Lentiviral Vectors for Retrograde Gene Delivery into Target Brain Regions

    Directory of Open Access Journals (Sweden)

    Kenta Kobayashi

    2017-08-01

    Full Text Available Gene transfer through retrograde axonal transport of viral vectors offers a substantial advantage for analyzing roles of specific neuronal pathways or cell types forming complex neural networks. This genetic approach may also be useful in gene therapy trials by enabling delivery of transgenes into a target brain region distant from the injection site of the vectors. Pseudotyping of a lentiviral vector based on human immunodeficiency virus type 1 (HIV-1 with various fusion envelope glycoproteins composed of different combinations of rabies virus glycoprotein (RV-G and vesicular stomatitis virus glycoprotein (VSV-G enhances the efficiency of retrograde gene transfer in both rodent and nonhuman primate brains. The most recently developed lentiviral vector is a pseudotype with fusion glycoprotein type E (FuG-E, which demonstrates highly efficient retrograde gene transfer in the brain. The FuG-E–pseudotyped vector permits powerful experimental strategies for more precisely investigating the mechanisms underlying various brain functions. It also contributes to the development of new gene therapy approaches for neurodegenerative disorders, such as Parkinson’s disease, by delivering genes required for survival and protection into specific neuronal populations. In this review article, we report the properties of the FuG-E–pseudotyped vector, and we describe the application of the vector to neural circuit analysis and the potential use of the FuG-E vector in gene therapy for Parkinson’s disease.

  19. Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations

    Science.gov (United States)

    Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin

    2018-04-01

    In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.

  20. Laboratory survival and blood feeding response of wild-caught Culicoides obsoletus Complex (Diptera: Ceratopogonidae) through natural and artificial membranes.

    Science.gov (United States)

    Goffredo, M; Romeo, G; Monaco, F; Di Gennaro, A; Savini, G

    2004-01-01

    In late summer 2002, live wild-caught midges of the Obsoletus Complex were collected using blacklight traps placed at a horse stable in Teramo (Abruzzo, Italy). For the survival study under laboratory conditions, 1,500 Obsoletus Complex midges were kept at 17 degrees C-25 degrees C and provided only with a sucrose solution. Of these, 150 (10%) survived for at least 40 days and 3 midges were still alive after 92 days. In addition, 10 midges survived 10 days at 4 degrees C. For the feeding trials, 40 blood-meals (9,440 midges) were administered, 27 of which were successful (67.5%); the feeding rate ranged from 0.3% to 16.7%, with a total of 592 engorged midges. Similar feeding rates (U Mann-Whitney test=129.5 p>0.05) were obtained when natural (day-old chicken skin) and artificial (stretched parafilm) membranes were used. To infect the insects, a field strain of bluetongue (BT) virus (BTV) serotype 2 isolated from the spleen of a sheep during the 2000 Italian outbreak was added to the blood-meal. Two different viral solutions, with titres of 10(6)TCID(50)/ml and 10(7)TCID(50)/ml, were prepared. Uninfected blood was significantly more appetising (U Mann-Whitney test=88.5 pdays. During the incubation period, the dead insects were collected daily and analysed for evidence of virus infection. Of the 251 engorged midges, 54 (21.5%) died in the feeding chambers or during sorting on the chill table, 136 died within the first 10 days and 61 survived longer. BTV was isolated only from those which died just after feeding (52.6%; 10/19) or 24 h later (47.8%; 11/23). Considering the small number of midges tested after 10 days of incubation, the prevalence of infection detected in this study (95% probability) would have been higher than 4.74%. These preliminary results appear very promising as this is the first time that midges of the Obsoletus Complex have been successfully fed under laboratory conditions.